1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
34 #include "libiberty.h"
38 #include "parameters.h"
42 #include "script-sections.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
50 #include "descriptors.h"
52 #include "incremental.h"
58 // Layout::Relaxation_debug_check methods.
60 // Check that sections and special data are in reset states.
61 // We do not save states for Output_sections and special Output_data.
62 // So we check that they have not assigned any addresses or offsets.
63 // clean_up_after_relaxation simply resets their addresses and offsets.
65 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
66 const Layout::Section_list
& sections
,
67 const Layout::Data_list
& special_outputs
)
69 for(Layout::Section_list::const_iterator p
= sections
.begin();
72 gold_assert((*p
)->address_and_file_offset_have_reset_values());
74 for(Layout::Data_list::const_iterator p
= special_outputs
.begin();
75 p
!= special_outputs
.end();
77 gold_assert((*p
)->address_and_file_offset_have_reset_values());
80 // Save information of SECTIONS for checking later.
83 Layout::Relaxation_debug_check::read_sections(
84 const Layout::Section_list
& sections
)
86 for(Layout::Section_list::const_iterator p
= sections
.begin();
90 Output_section
* os
= *p
;
92 info
.output_section
= os
;
93 info
.address
= os
->is_address_valid() ? os
->address() : 0;
94 info
.data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
95 info
.offset
= os
->is_offset_valid()? os
->offset() : -1 ;
96 this->section_infos_
.push_back(info
);
100 // Verify SECTIONS using previously recorded information.
103 Layout::Relaxation_debug_check::verify_sections(
104 const Layout::Section_list
& sections
)
107 for(Layout::Section_list::const_iterator p
= sections
.begin();
111 Output_section
* os
= *p
;
112 uint64_t address
= os
->is_address_valid() ? os
->address() : 0;
113 off_t data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
114 off_t offset
= os
->is_offset_valid()? os
->offset() : -1 ;
116 if (i
>= this->section_infos_
.size())
118 gold_fatal("Section_info of %s missing.\n", os
->name());
120 const Section_info
& info
= this->section_infos_
[i
];
121 if (os
!= info
.output_section
)
122 gold_fatal("Section order changed. Expecting %s but see %s\n",
123 info
.output_section
->name(), os
->name());
124 if (address
!= info
.address
125 || data_size
!= info
.data_size
126 || offset
!= info
.offset
)
127 gold_fatal("Section %s changed.\n", os
->name());
131 // Layout_task_runner methods.
133 // Lay out the sections. This is called after all the input objects
137 Layout_task_runner::run(Workqueue
* workqueue
, const Task
* task
)
139 off_t file_size
= this->layout_
->finalize(this->input_objects_
,
144 // Now we know the final size of the output file and we know where
145 // each piece of information goes.
147 if (this->mapfile_
!= NULL
)
149 this->mapfile_
->print_discarded_sections(this->input_objects_
);
150 this->layout_
->print_to_mapfile(this->mapfile_
);
153 Output_file
* of
= new Output_file(parameters
->options().output_file_name());
154 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
155 of
->set_is_temporary();
158 // Queue up the final set of tasks.
159 gold::queue_final_tasks(this->options_
, this->input_objects_
,
160 this->symtab_
, this->layout_
, workqueue
, of
);
165 Layout::Layout(int number_of_input_files
, Script_options
* script_options
)
166 : number_of_input_files_(number_of_input_files
),
167 script_options_(script_options
),
175 unattached_section_list_(),
176 special_output_list_(),
177 section_headers_(NULL
),
179 relro_segment_(NULL
),
181 symtab_section_(NULL
),
182 symtab_xindex_(NULL
),
183 dynsym_section_(NULL
),
184 dynsym_xindex_(NULL
),
185 dynamic_section_(NULL
),
186 dynamic_symbol_(NULL
),
188 eh_frame_section_(NULL
),
189 eh_frame_data_(NULL
),
190 added_eh_frame_data_(false),
191 eh_frame_hdr_section_(NULL
),
192 build_id_note_(NULL
),
196 output_file_size_(-1),
197 have_added_input_section_(false),
198 sections_are_attached_(false),
199 input_requires_executable_stack_(false),
200 input_with_gnu_stack_note_(false),
201 input_without_gnu_stack_note_(false),
202 has_static_tls_(false),
203 any_postprocessing_sections_(false),
204 resized_signatures_(false),
205 have_stabstr_section_(false),
206 incremental_inputs_(NULL
),
207 record_output_section_data_from_script_(false),
208 script_output_section_data_list_(),
209 segment_states_(NULL
),
210 relaxation_debug_check_(NULL
)
212 // Make space for more than enough segments for a typical file.
213 // This is just for efficiency--it's OK if we wind up needing more.
214 this->segment_list_
.reserve(12);
216 // We expect two unattached Output_data objects: the file header and
217 // the segment headers.
218 this->special_output_list_
.reserve(2);
220 // Initialize structure needed for an incremental build.
221 if (parameters
->incremental())
222 this->incremental_inputs_
= new Incremental_inputs
;
224 // The section name pool is worth optimizing in all cases, because
225 // it is small, but there are often overlaps due to .rel sections.
226 this->namepool_
.set_optimize();
229 // Hash a key we use to look up an output section mapping.
232 Layout::Hash_key::operator()(const Layout::Key
& k
) const
234 return k
.first
+ k
.second
.first
+ k
.second
.second
;
237 // Returns whether the given section is in the list of
238 // debug-sections-used-by-some-version-of-gdb. Currently,
239 // we've checked versions of gdb up to and including 6.7.1.
241 static const char* gdb_sections
[] =
243 // ".debug_aranges", // not used by gdb as of 6.7.1
250 // ".debug_pubnames", // not used by gdb as of 6.7.1
255 static const char* lines_only_debug_sections
[] =
257 // ".debug_aranges", // not used by gdb as of 6.7.1
264 // ".debug_pubnames", // not used by gdb as of 6.7.1
270 is_gdb_debug_section(const char* str
)
272 // We can do this faster: binary search or a hashtable. But why bother?
273 for (size_t i
= 0; i
< sizeof(gdb_sections
)/sizeof(*gdb_sections
); ++i
)
274 if (strcmp(str
, gdb_sections
[i
]) == 0)
280 is_lines_only_debug_section(const char* str
)
282 // We can do this faster: binary search or a hashtable. But why bother?
284 i
< sizeof(lines_only_debug_sections
)/sizeof(*lines_only_debug_sections
);
286 if (strcmp(str
, lines_only_debug_sections
[i
]) == 0)
291 // Sometimes we compress sections. This is typically done for
292 // sections that are not part of normal program execution (such as
293 // .debug_* sections), and where the readers of these sections know
294 // how to deal with compressed sections. This routine doesn't say for
295 // certain whether we'll compress -- it depends on commandline options
296 // as well -- just whether this section is a candidate for compression.
297 // (The Output_compressed_section class decides whether to compress
298 // a given section, and picks the name of the compressed section.)
301 is_compressible_debug_section(const char* secname
)
303 return (is_prefix_of(".debug", secname
));
306 // We may see compressed debug sections in input files. Return TRUE
307 // if this is the name of a compressed debug section.
310 is_compressed_debug_section(const char* secname
)
312 return (is_prefix_of(".zdebug", secname
));
315 // Whether to include this section in the link.
317 template<int size
, bool big_endian
>
319 Layout::include_section(Sized_relobj
<size
, big_endian
>*, const char* name
,
320 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
322 if (shdr
.get_sh_flags() & elfcpp::SHF_EXCLUDE
)
325 switch (shdr
.get_sh_type())
327 case elfcpp::SHT_NULL
:
328 case elfcpp::SHT_SYMTAB
:
329 case elfcpp::SHT_DYNSYM
:
330 case elfcpp::SHT_HASH
:
331 case elfcpp::SHT_DYNAMIC
:
332 case elfcpp::SHT_SYMTAB_SHNDX
:
335 case elfcpp::SHT_STRTAB
:
336 // Discard the sections which have special meanings in the ELF
337 // ABI. Keep others (e.g., .stabstr). We could also do this by
338 // checking the sh_link fields of the appropriate sections.
339 return (strcmp(name
, ".dynstr") != 0
340 && strcmp(name
, ".strtab") != 0
341 && strcmp(name
, ".shstrtab") != 0);
343 case elfcpp::SHT_RELA
:
344 case elfcpp::SHT_REL
:
345 case elfcpp::SHT_GROUP
:
346 // If we are emitting relocations these should be handled
348 gold_assert(!parameters
->options().relocatable()
349 && !parameters
->options().emit_relocs());
352 case elfcpp::SHT_PROGBITS
:
353 if (parameters
->options().strip_debug()
354 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
356 if (is_debug_info_section(name
))
359 if (parameters
->options().strip_debug_non_line()
360 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
362 // Debugging sections can only be recognized by name.
363 if (is_prefix_of(".debug", name
)
364 && !is_lines_only_debug_section(name
))
367 if (parameters
->options().strip_debug_gdb()
368 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
370 // Debugging sections can only be recognized by name.
371 if (is_prefix_of(".debug", name
)
372 && !is_gdb_debug_section(name
))
375 if (parameters
->options().strip_lto_sections()
376 && !parameters
->options().relocatable()
377 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
379 // Ignore LTO sections containing intermediate code.
380 if (is_prefix_of(".gnu.lto_", name
))
383 // The GNU linker strips .gnu_debuglink sections, so we do too.
384 // This is a feature used to keep debugging information in
386 if (strcmp(name
, ".gnu_debuglink") == 0)
395 // Return an output section named NAME, or NULL if there is none.
398 Layout::find_output_section(const char* name
) const
400 for (Section_list::const_iterator p
= this->section_list_
.begin();
401 p
!= this->section_list_
.end();
403 if (strcmp((*p
)->name(), name
) == 0)
408 // Return an output segment of type TYPE, with segment flags SET set
409 // and segment flags CLEAR clear. Return NULL if there is none.
412 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
413 elfcpp::Elf_Word clear
) const
415 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
416 p
!= this->segment_list_
.end();
418 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
419 && ((*p
)->flags() & set
) == set
420 && ((*p
)->flags() & clear
) == 0)
425 // Return the output section to use for section NAME with type TYPE
426 // and section flags FLAGS. NAME must be canonicalized in the string
427 // pool, and NAME_KEY is the key. IS_INTERP is true if this is the
428 // .interp section. IS_DYNAMIC_LINKER_SECTION is true if this section
429 // is used by the dynamic linker. IS_RELRO is true for a relro
430 // section. IS_LAST_RELRO is true for the last relro section.
431 // IS_FIRST_NON_RELRO is true for the first non-relro section.
434 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
435 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
436 Output_section_order order
, bool is_relro
)
438 elfcpp::Elf_Xword lookup_flags
= flags
;
440 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
441 // read-write with read-only sections. Some other ELF linkers do
442 // not do this. FIXME: Perhaps there should be an option
444 lookup_flags
&= ~(elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
446 const Key
key(name_key
, std::make_pair(type
, lookup_flags
));
447 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
448 std::pair
<Section_name_map::iterator
, bool> ins(
449 this->section_name_map_
.insert(v
));
452 return ins
.first
->second
;
455 // This is the first time we've seen this name/type/flags
456 // combination. For compatibility with the GNU linker, we
457 // combine sections with contents and zero flags with sections
458 // with non-zero flags. This is a workaround for cases where
459 // assembler code forgets to set section flags. FIXME: Perhaps
460 // there should be an option to control this.
461 Output_section
* os
= NULL
;
463 if (type
== elfcpp::SHT_PROGBITS
)
467 Output_section
* same_name
= this->find_output_section(name
);
468 if (same_name
!= NULL
469 && same_name
->type() == elfcpp::SHT_PROGBITS
470 && (same_name
->flags() & elfcpp::SHF_TLS
) == 0)
473 else if ((flags
& elfcpp::SHF_TLS
) == 0)
475 elfcpp::Elf_Xword zero_flags
= 0;
476 const Key
zero_key(name_key
, std::make_pair(type
, zero_flags
));
477 Section_name_map::iterator p
=
478 this->section_name_map_
.find(zero_key
);
479 if (p
!= this->section_name_map_
.end())
485 os
= this->make_output_section(name
, type
, flags
, order
, is_relro
);
487 ins
.first
->second
= os
;
492 // Pick the output section to use for section NAME, in input file
493 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
494 // linker created section. IS_INPUT_SECTION is true if we are
495 // choosing an output section for an input section found in a input
496 // file. IS_INTERP is true if this is the .interp section.
497 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
498 // dynamic linker. IS_RELRO is true for a relro section.
499 // IS_LAST_RELRO is true for the last relro section.
500 // IS_FIRST_NON_RELRO is true for the first non-relro section. This
501 // will return NULL if the input section should be discarded.
504 Layout::choose_output_section(const Relobj
* relobj
, const char* name
,
505 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
506 bool is_input_section
, Output_section_order order
,
509 // We should not see any input sections after we have attached
510 // sections to segments.
511 gold_assert(!is_input_section
|| !this->sections_are_attached_
);
513 // Some flags in the input section should not be automatically
514 // copied to the output section.
515 flags
&= ~ (elfcpp::SHF_INFO_LINK
518 | elfcpp::SHF_STRINGS
);
520 // We only clear the SHF_LINK_ORDER flag in for
521 // a non-relocatable link.
522 if (!parameters
->options().relocatable())
523 flags
&= ~elfcpp::SHF_LINK_ORDER
;
525 if (this->script_options_
->saw_sections_clause())
527 // We are using a SECTIONS clause, so the output section is
528 // chosen based only on the name.
530 Script_sections
* ss
= this->script_options_
->script_sections();
531 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
532 Output_section
** output_section_slot
;
533 Script_sections::Section_type script_section_type
;
534 const char* orig_name
= name
;
535 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
,
536 &script_section_type
);
539 gold_debug(DEBUG_SCRIPT
, _("Unable to create output section '%s' "
540 "because it is not allowed by the "
541 "SECTIONS clause of the linker script"),
543 // The SECTIONS clause says to discard this input section.
547 // We can only handle script section types ST_NONE and ST_NOLOAD.
548 switch (script_section_type
)
550 case Script_sections::ST_NONE
:
552 case Script_sections::ST_NOLOAD
:
553 flags
&= elfcpp::SHF_ALLOC
;
559 // If this is an orphan section--one not mentioned in the linker
560 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
561 // default processing below.
563 if (output_section_slot
!= NULL
)
565 if (*output_section_slot
!= NULL
)
567 (*output_section_slot
)->update_flags_for_input_section(flags
);
568 return *output_section_slot
;
571 // We don't put sections found in the linker script into
572 // SECTION_NAME_MAP_. That keeps us from getting confused
573 // if an orphan section is mapped to a section with the same
574 // name as one in the linker script.
576 name
= this->namepool_
.add(name
, false, NULL
);
578 Output_section
* os
= this->make_output_section(name
, type
, flags
,
581 os
->set_found_in_sections_clause();
583 // Special handling for NOLOAD sections.
584 if (script_section_type
== Script_sections::ST_NOLOAD
)
588 // The constructor of Output_section sets addresses of non-ALLOC
589 // sections to 0 by default. We don't want that for NOLOAD
590 // sections even if they have no SHF_ALLOC flag.
591 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0
592 && os
->is_address_valid())
594 gold_assert(os
->address() == 0
595 && !os
->is_offset_valid()
596 && !os
->is_data_size_valid());
597 os
->reset_address_and_file_offset();
601 *output_section_slot
= os
;
606 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
608 size_t len
= strlen(name
);
609 char* uncompressed_name
= NULL
;
611 // Compressed debug sections should be mapped to the corresponding
612 // uncompressed section.
613 if (is_compressed_debug_section(name
))
615 uncompressed_name
= new char[len
];
616 uncompressed_name
[0] = '.';
617 gold_assert(name
[0] == '.' && name
[1] == 'z');
618 strncpy(&uncompressed_name
[1], &name
[2], len
- 2);
619 uncompressed_name
[len
- 1] = '\0';
621 name
= uncompressed_name
;
624 // Turn NAME from the name of the input section into the name of the
627 && !this->script_options_
->saw_sections_clause()
628 && !parameters
->options().relocatable())
629 name
= Layout::output_section_name(name
, &len
);
631 Stringpool::Key name_key
;
632 name
= this->namepool_
.add_with_length(name
, len
, true, &name_key
);
634 if (uncompressed_name
!= NULL
)
635 delete[] uncompressed_name
;
637 // Find or make the output section. The output section is selected
638 // based on the section name, type, and flags.
639 return this->get_output_section(name
, name_key
, type
, flags
, order
, is_relro
);
642 // Return the output section to use for input section SHNDX, with name
643 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
644 // index of a relocation section which applies to this section, or 0
645 // if none, or -1U if more than one. RELOC_TYPE is the type of the
646 // relocation section if there is one. Set *OFF to the offset of this
647 // input section without the output section. Return NULL if the
648 // section should be discarded. Set *OFF to -1 if the section
649 // contents should not be written directly to the output file, but
650 // will instead receive special handling.
652 template<int size
, bool big_endian
>
654 Layout::layout(Sized_relobj
<size
, big_endian
>* object
, unsigned int shndx
,
655 const char* name
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
656 unsigned int reloc_shndx
, unsigned int, off_t
* off
)
660 if (!this->include_section(object
, name
, shdr
))
665 // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
666 // correct section types. Force them here.
667 elfcpp::Elf_Word sh_type
= shdr
.get_sh_type();
668 if (sh_type
== elfcpp::SHT_PROGBITS
)
670 static const char init_array_prefix
[] = ".init_array";
671 static const char preinit_array_prefix
[] = ".preinit_array";
672 static const char fini_array_prefix
[] = ".fini_array";
673 static size_t init_array_prefix_size
= sizeof(init_array_prefix
) - 1;
674 static size_t preinit_array_prefix_size
=
675 sizeof(preinit_array_prefix
) - 1;
676 static size_t fini_array_prefix_size
= sizeof(fini_array_prefix
) - 1;
678 if (strncmp(name
, init_array_prefix
, init_array_prefix_size
) == 0)
679 sh_type
= elfcpp::SHT_INIT_ARRAY
;
680 else if (strncmp(name
, preinit_array_prefix
, preinit_array_prefix_size
)
682 sh_type
= elfcpp::SHT_PREINIT_ARRAY
;
683 else if (strncmp(name
, fini_array_prefix
, fini_array_prefix_size
) == 0)
684 sh_type
= elfcpp::SHT_FINI_ARRAY
;
687 // In a relocatable link a grouped section must not be combined with
688 // any other sections.
689 if (parameters
->options().relocatable()
690 && (shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) != 0)
692 name
= this->namepool_
.add(name
, true, NULL
);
693 os
= this->make_output_section(name
, sh_type
, shdr
.get_sh_flags(),
694 ORDER_INVALID
, false);
698 os
= this->choose_output_section(object
, name
, sh_type
,
699 shdr
.get_sh_flags(), true,
700 ORDER_INVALID
, false);
705 // By default the GNU linker sorts input sections whose names match
706 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
707 // are sorted by name. This is used to implement constructor
708 // priority ordering. We are compatible.
709 if (!this->script_options_
->saw_sections_clause()
710 && (is_prefix_of(".ctors.", name
)
711 || is_prefix_of(".dtors.", name
)
712 || is_prefix_of(".init_array.", name
)
713 || is_prefix_of(".fini_array.", name
)))
714 os
->set_must_sort_attached_input_sections();
716 // FIXME: Handle SHF_LINK_ORDER somewhere.
718 *off
= os
->add_input_section(this, object
, shndx
, name
, shdr
, reloc_shndx
,
719 this->script_options_
->saw_sections_clause());
720 this->have_added_input_section_
= true;
725 // Handle a relocation section when doing a relocatable link.
727 template<int size
, bool big_endian
>
729 Layout::layout_reloc(Sized_relobj
<size
, big_endian
>* object
,
731 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
732 Output_section
* data_section
,
733 Relocatable_relocs
* rr
)
735 gold_assert(parameters
->options().relocatable()
736 || parameters
->options().emit_relocs());
738 int sh_type
= shdr
.get_sh_type();
741 if (sh_type
== elfcpp::SHT_REL
)
743 else if (sh_type
== elfcpp::SHT_RELA
)
747 name
+= data_section
->name();
749 // In a relocatable link relocs for a grouped section must not be
750 // combined with other reloc sections.
752 if (!parameters
->options().relocatable()
753 || (data_section
->flags() & elfcpp::SHF_GROUP
) == 0)
754 os
= this->choose_output_section(object
, name
.c_str(), sh_type
,
755 shdr
.get_sh_flags(), false,
756 ORDER_INVALID
, false);
759 const char* n
= this->namepool_
.add(name
.c_str(), true, NULL
);
760 os
= this->make_output_section(n
, sh_type
, shdr
.get_sh_flags(),
761 ORDER_INVALID
, false);
764 os
->set_should_link_to_symtab();
765 os
->set_info_section(data_section
);
767 Output_section_data
* posd
;
768 if (sh_type
== elfcpp::SHT_REL
)
770 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
771 posd
= new Output_relocatable_relocs
<elfcpp::SHT_REL
,
775 else if (sh_type
== elfcpp::SHT_RELA
)
777 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
778 posd
= new Output_relocatable_relocs
<elfcpp::SHT_RELA
,
785 os
->add_output_section_data(posd
);
786 rr
->set_output_data(posd
);
791 // Handle a group section when doing a relocatable link.
793 template<int size
, bool big_endian
>
795 Layout::layout_group(Symbol_table
* symtab
,
796 Sized_relobj
<size
, big_endian
>* object
,
798 const char* group_section_name
,
799 const char* signature
,
800 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
801 elfcpp::Elf_Word flags
,
802 std::vector
<unsigned int>* shndxes
)
804 gold_assert(parameters
->options().relocatable());
805 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_GROUP
);
806 group_section_name
= this->namepool_
.add(group_section_name
, true, NULL
);
807 Output_section
* os
= this->make_output_section(group_section_name
,
810 ORDER_INVALID
, false);
812 // We need to find a symbol with the signature in the symbol table.
813 // If we don't find one now, we need to look again later.
814 Symbol
* sym
= symtab
->lookup(signature
, NULL
);
816 os
->set_info_symndx(sym
);
819 // Reserve some space to minimize reallocations.
820 if (this->group_signatures_
.empty())
821 this->group_signatures_
.reserve(this->number_of_input_files_
* 16);
823 // We will wind up using a symbol whose name is the signature.
824 // So just put the signature in the symbol name pool to save it.
825 signature
= symtab
->canonicalize_name(signature
);
826 this->group_signatures_
.push_back(Group_signature(os
, signature
));
829 os
->set_should_link_to_symtab();
832 section_size_type entry_count
=
833 convert_to_section_size_type(shdr
.get_sh_size() / 4);
834 Output_section_data
* posd
=
835 new Output_data_group
<size
, big_endian
>(object
, entry_count
, flags
,
837 os
->add_output_section_data(posd
);
840 // Special GNU handling of sections name .eh_frame. They will
841 // normally hold exception frame data as defined by the C++ ABI
842 // (http://codesourcery.com/cxx-abi/).
844 template<int size
, bool big_endian
>
846 Layout::layout_eh_frame(Sized_relobj
<size
, big_endian
>* object
,
847 const unsigned char* symbols
,
849 const unsigned char* symbol_names
,
850 off_t symbol_names_size
,
852 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
853 unsigned int reloc_shndx
, unsigned int reloc_type
,
856 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
);
857 gold_assert((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
859 const char* const name
= ".eh_frame";
860 Output_section
* os
= this->choose_output_section(object
, name
,
861 elfcpp::SHT_PROGBITS
,
862 elfcpp::SHF_ALLOC
, false,
863 ORDER_EHFRAME
, false);
867 if (this->eh_frame_section_
== NULL
)
869 this->eh_frame_section_
= os
;
870 this->eh_frame_data_
= new Eh_frame();
872 if (parameters
->options().eh_frame_hdr())
874 Output_section
* hdr_os
=
875 this->choose_output_section(NULL
, ".eh_frame_hdr",
876 elfcpp::SHT_PROGBITS
,
877 elfcpp::SHF_ALLOC
, false,
878 ORDER_EHFRAME
, false);
882 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
,
883 this->eh_frame_data_
);
884 hdr_os
->add_output_section_data(hdr_posd
);
886 hdr_os
->set_after_input_sections();
888 if (!this->script_options_
->saw_phdrs_clause())
890 Output_segment
* hdr_oseg
;
891 hdr_oseg
= this->make_output_segment(elfcpp::PT_GNU_EH_FRAME
,
893 hdr_oseg
->add_output_section_to_nonload(hdr_os
,
897 this->eh_frame_data_
->set_eh_frame_hdr(hdr_posd
);
902 gold_assert(this->eh_frame_section_
== os
);
904 if (this->eh_frame_data_
->add_ehframe_input_section(object
,
913 os
->update_flags_for_input_section(shdr
.get_sh_flags());
915 // We found a .eh_frame section we are going to optimize, so now
916 // we can add the set of optimized sections to the output
917 // section. We need to postpone adding this until we've found a
918 // section we can optimize so that the .eh_frame section in
919 // crtbegin.o winds up at the start of the output section.
920 if (!this->added_eh_frame_data_
)
922 os
->add_output_section_data(this->eh_frame_data_
);
923 this->added_eh_frame_data_
= true;
929 // We couldn't handle this .eh_frame section for some reason.
930 // Add it as a normal section.
931 bool saw_sections_clause
= this->script_options_
->saw_sections_clause();
932 *off
= os
->add_input_section(this, object
, shndx
, name
, shdr
, reloc_shndx
,
933 saw_sections_clause
);
934 this->have_added_input_section_
= true;
940 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
941 // the output section.
944 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
945 elfcpp::Elf_Xword flags
,
946 Output_section_data
* posd
,
947 Output_section_order order
, bool is_relro
)
949 Output_section
* os
= this->choose_output_section(NULL
, name
, type
, flags
,
950 false, order
, is_relro
);
952 os
->add_output_section_data(posd
);
956 // Map section flags to segment flags.
959 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
961 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
962 if ((flags
& elfcpp::SHF_WRITE
) != 0)
964 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
969 // Make a new Output_section, and attach it to segments as
970 // appropriate. ORDER is the order in which this section should
971 // appear in the output segment. IS_RELRO is true if this is a relro
972 // (read-only after relocations) section.
975 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
976 elfcpp::Elf_Xword flags
,
977 Output_section_order order
, bool is_relro
)
980 if ((flags
& elfcpp::SHF_ALLOC
) == 0
981 && strcmp(parameters
->options().compress_debug_sections(), "none") != 0
982 && is_compressible_debug_section(name
))
983 os
= new Output_compressed_section(¶meters
->options(), name
, type
,
985 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
986 && parameters
->options().strip_debug_non_line()
987 && strcmp(".debug_abbrev", name
) == 0)
989 os
= this->debug_abbrev_
= new Output_reduced_debug_abbrev_section(
991 if (this->debug_info_
)
992 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
994 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
995 && parameters
->options().strip_debug_non_line()
996 && strcmp(".debug_info", name
) == 0)
998 os
= this->debug_info_
= new Output_reduced_debug_info_section(
1000 if (this->debug_abbrev_
)
1001 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
1005 // FIXME: const_cast is ugly.
1006 Target
* target
= const_cast<Target
*>(¶meters
->target());
1007 os
= target
->make_output_section(name
, type
, flags
);
1010 // With -z relro, we have to recognize the special sections by name.
1011 // There is no other way.
1012 bool is_relro_local
= false;
1013 if (!this->script_options_
->saw_sections_clause()
1014 && parameters
->options().relro()
1015 && type
== elfcpp::SHT_PROGBITS
1016 && (flags
& elfcpp::SHF_ALLOC
) != 0
1017 && (flags
& elfcpp::SHF_WRITE
) != 0)
1019 if (strcmp(name
, ".data.rel.ro") == 0)
1021 else if (strcmp(name
, ".data.rel.ro.local") == 0)
1024 is_relro_local
= true;
1026 else if (type
== elfcpp::SHT_INIT_ARRAY
1027 || type
== elfcpp::SHT_FINI_ARRAY
1028 || type
== elfcpp::SHT_PREINIT_ARRAY
)
1030 else if (strcmp(name
, ".ctors") == 0
1031 || strcmp(name
, ".dtors") == 0
1032 || strcmp(name
, ".jcr") == 0)
1039 if (order
== ORDER_INVALID
&& (flags
& elfcpp::SHF_ALLOC
) != 0)
1040 order
= this->default_section_order(os
, is_relro_local
);
1042 os
->set_order(order
);
1044 parameters
->target().new_output_section(os
);
1046 this->section_list_
.push_back(os
);
1048 // The GNU linker by default sorts some sections by priority, so we
1049 // do the same. We need to know that this might happen before we
1050 // attach any input sections.
1051 if (!this->script_options_
->saw_sections_clause()
1052 && (strcmp(name
, ".ctors") == 0
1053 || strcmp(name
, ".dtors") == 0
1054 || strcmp(name
, ".init_array") == 0
1055 || strcmp(name
, ".fini_array") == 0))
1056 os
->set_may_sort_attached_input_sections();
1058 // Check for .stab*str sections, as .stab* sections need to link to
1060 if (type
== elfcpp::SHT_STRTAB
1061 && !this->have_stabstr_section_
1062 && strncmp(name
, ".stab", 5) == 0
1063 && strcmp(name
+ strlen(name
) - 3, "str") == 0)
1064 this->have_stabstr_section_
= true;
1066 // If we have already attached the sections to segments, then we
1067 // need to attach this one now. This happens for sections created
1068 // directly by the linker.
1069 if (this->sections_are_attached_
)
1070 this->attach_section_to_segment(os
);
1075 // Return the default order in which a section should be placed in an
1076 // output segment. This function captures a lot of the ideas in
1077 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1078 // linker created section is normally set when the section is created;
1079 // this function is used for input sections.
1081 Output_section_order
1082 Layout::default_section_order(Output_section
* os
, bool is_relro_local
)
1084 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
1085 bool is_write
= (os
->flags() & elfcpp::SHF_WRITE
) != 0;
1086 bool is_execinstr
= (os
->flags() & elfcpp::SHF_EXECINSTR
) != 0;
1087 bool is_bss
= false;
1092 case elfcpp::SHT_PROGBITS
:
1094 case elfcpp::SHT_NOBITS
:
1097 case elfcpp::SHT_RELA
:
1098 case elfcpp::SHT_REL
:
1100 return ORDER_DYNAMIC_RELOCS
;
1102 case elfcpp::SHT_HASH
:
1103 case elfcpp::SHT_DYNAMIC
:
1104 case elfcpp::SHT_SHLIB
:
1105 case elfcpp::SHT_DYNSYM
:
1106 case elfcpp::SHT_GNU_HASH
:
1107 case elfcpp::SHT_GNU_verdef
:
1108 case elfcpp::SHT_GNU_verneed
:
1109 case elfcpp::SHT_GNU_versym
:
1111 return ORDER_DYNAMIC_LINKER
;
1113 case elfcpp::SHT_NOTE
:
1114 return is_write
? ORDER_RW_NOTE
: ORDER_RO_NOTE
;
1117 if ((os
->flags() & elfcpp::SHF_TLS
) != 0)
1118 return is_bss
? ORDER_TLS_BSS
: ORDER_TLS_DATA
;
1120 if (!is_bss
&& !is_write
)
1124 if (strcmp(os
->name(), ".init") == 0)
1126 else if (strcmp(os
->name(), ".fini") == 0)
1129 return is_execinstr
? ORDER_TEXT
: ORDER_READONLY
;
1133 return is_relro_local
? ORDER_RELRO_LOCAL
: ORDER_RELRO
;
1135 if (os
->is_small_section())
1136 return is_bss
? ORDER_SMALL_BSS
: ORDER_SMALL_DATA
;
1137 if (os
->is_large_section())
1138 return is_bss
? ORDER_LARGE_BSS
: ORDER_LARGE_DATA
;
1140 return is_bss
? ORDER_BSS
: ORDER_DATA
;
1143 // Attach output sections to segments. This is called after we have
1144 // seen all the input sections.
1147 Layout::attach_sections_to_segments()
1149 for (Section_list::iterator p
= this->section_list_
.begin();
1150 p
!= this->section_list_
.end();
1152 this->attach_section_to_segment(*p
);
1154 this->sections_are_attached_
= true;
1157 // Attach an output section to a segment.
1160 Layout::attach_section_to_segment(Output_section
* os
)
1162 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0)
1163 this->unattached_section_list_
.push_back(os
);
1165 this->attach_allocated_section_to_segment(os
);
1168 // Attach an allocated output section to a segment.
1171 Layout::attach_allocated_section_to_segment(Output_section
* os
)
1173 elfcpp::Elf_Xword flags
= os
->flags();
1174 gold_assert((flags
& elfcpp::SHF_ALLOC
) != 0);
1176 if (parameters
->options().relocatable())
1179 // If we have a SECTIONS clause, we can't handle the attachment to
1180 // segments until after we've seen all the sections.
1181 if (this->script_options_
->saw_sections_clause())
1184 gold_assert(!this->script_options_
->saw_phdrs_clause());
1186 // This output section goes into a PT_LOAD segment.
1188 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
1190 // Check for --section-start.
1192 bool is_address_set
= parameters
->options().section_start(os
->name(), &addr
);
1194 // In general the only thing we really care about for PT_LOAD
1195 // segments is whether or not they are writable or executable,
1196 // so that is how we search for them.
1197 // Large data sections also go into their own PT_LOAD segment.
1198 // People who need segments sorted on some other basis will
1199 // have to use a linker script.
1201 Segment_list::const_iterator p
;
1202 for (p
= this->segment_list_
.begin();
1203 p
!= this->segment_list_
.end();
1206 if ((*p
)->type() != elfcpp::PT_LOAD
)
1208 if (!parameters
->options().omagic()
1209 && ((*p
)->flags() & elfcpp::PF_W
) != (seg_flags
& elfcpp::PF_W
))
1211 if (parameters
->options().rosegment()
1212 && ((*p
)->flags() & elfcpp::PF_X
) != (seg_flags
& elfcpp::PF_X
))
1214 // If -Tbss was specified, we need to separate the data and BSS
1216 if (parameters
->options().user_set_Tbss())
1218 if ((os
->type() == elfcpp::SHT_NOBITS
)
1219 == (*p
)->has_any_data_sections())
1222 if (os
->is_large_data_section() && !(*p
)->is_large_data_segment())
1227 if ((*p
)->are_addresses_set())
1230 (*p
)->add_initial_output_data(os
);
1231 (*p
)->update_flags_for_output_section(seg_flags
);
1232 (*p
)->set_addresses(addr
, addr
);
1236 (*p
)->add_output_section_to_load(this, os
, seg_flags
);
1240 if (p
== this->segment_list_
.end())
1242 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_LOAD
,
1244 if (os
->is_large_data_section())
1245 oseg
->set_is_large_data_segment();
1246 oseg
->add_output_section_to_load(this, os
, seg_flags
);
1248 oseg
->set_addresses(addr
, addr
);
1251 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1253 if (os
->type() == elfcpp::SHT_NOTE
)
1255 // See if we already have an equivalent PT_NOTE segment.
1256 for (p
= this->segment_list_
.begin();
1257 p
!= segment_list_
.end();
1260 if ((*p
)->type() == elfcpp::PT_NOTE
1261 && (((*p
)->flags() & elfcpp::PF_W
)
1262 == (seg_flags
& elfcpp::PF_W
)))
1264 (*p
)->add_output_section_to_nonload(os
, seg_flags
);
1269 if (p
== this->segment_list_
.end())
1271 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_NOTE
,
1273 oseg
->add_output_section_to_nonload(os
, seg_flags
);
1277 // If we see a loadable SHF_TLS section, we create a PT_TLS
1278 // segment. There can only be one such segment.
1279 if ((flags
& elfcpp::SHF_TLS
) != 0)
1281 if (this->tls_segment_
== NULL
)
1282 this->make_output_segment(elfcpp::PT_TLS
, seg_flags
);
1283 this->tls_segment_
->add_output_section_to_nonload(os
, seg_flags
);
1286 // If -z relro is in effect, and we see a relro section, we create a
1287 // PT_GNU_RELRO segment. There can only be one such segment.
1288 if (os
->is_relro() && parameters
->options().relro())
1290 gold_assert(seg_flags
== (elfcpp::PF_R
| elfcpp::PF_W
));
1291 if (this->relro_segment_
== NULL
)
1292 this->make_output_segment(elfcpp::PT_GNU_RELRO
, seg_flags
);
1293 this->relro_segment_
->add_output_section_to_nonload(os
, seg_flags
);
1297 // Make an output section for a script.
1300 Layout::make_output_section_for_script(
1302 Script_sections::Section_type section_type
)
1304 name
= this->namepool_
.add(name
, false, NULL
);
1305 elfcpp::Elf_Xword sh_flags
= elfcpp::SHF_ALLOC
;
1306 if (section_type
== Script_sections::ST_NOLOAD
)
1308 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_PROGBITS
,
1309 sh_flags
, ORDER_INVALID
,
1311 os
->set_found_in_sections_clause();
1312 if (section_type
== Script_sections::ST_NOLOAD
)
1313 os
->set_is_noload();
1317 // Return the number of segments we expect to see.
1320 Layout::expected_segment_count() const
1322 size_t ret
= this->segment_list_
.size();
1324 // If we didn't see a SECTIONS clause in a linker script, we should
1325 // already have the complete list of segments. Otherwise we ask the
1326 // SECTIONS clause how many segments it expects, and add in the ones
1327 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1329 if (!this->script_options_
->saw_sections_clause())
1333 const Script_sections
* ss
= this->script_options_
->script_sections();
1334 return ret
+ ss
->expected_segment_count(this);
1338 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1339 // is whether we saw a .note.GNU-stack section in the object file.
1340 // GNU_STACK_FLAGS is the section flags. The flags give the
1341 // protection required for stack memory. We record this in an
1342 // executable as a PT_GNU_STACK segment. If an object file does not
1343 // have a .note.GNU-stack segment, we must assume that it is an old
1344 // object. On some targets that will force an executable stack.
1347 Layout::layout_gnu_stack(bool seen_gnu_stack
, uint64_t gnu_stack_flags
,
1350 if (!seen_gnu_stack
)
1352 this->input_without_gnu_stack_note_
= true;
1353 if (parameters
->options().warn_execstack()
1354 && parameters
->target().is_default_stack_executable())
1355 gold_warning(_("%s: missing .note.GNU-stack section"
1356 " implies executable stack"),
1357 obj
->name().c_str());
1361 this->input_with_gnu_stack_note_
= true;
1362 if ((gnu_stack_flags
& elfcpp::SHF_EXECINSTR
) != 0)
1364 this->input_requires_executable_stack_
= true;
1365 if (parameters
->options().warn_execstack()
1366 || parameters
->options().is_stack_executable())
1367 gold_warning(_("%s: requires executable stack"),
1368 obj
->name().c_str());
1373 // Create automatic note sections.
1376 Layout::create_notes()
1378 this->create_gold_note();
1379 this->create_executable_stack_info();
1380 this->create_build_id();
1383 // Create the dynamic sections which are needed before we read the
1387 Layout::create_initial_dynamic_sections(Symbol_table
* symtab
)
1389 if (parameters
->doing_static_link())
1392 this->dynamic_section_
= this->choose_output_section(NULL
, ".dynamic",
1393 elfcpp::SHT_DYNAMIC
,
1395 | elfcpp::SHF_WRITE
),
1399 this->dynamic_symbol_
=
1400 symtab
->define_in_output_data("_DYNAMIC", NULL
, Symbol_table::PREDEFINED
,
1401 this->dynamic_section_
, 0, 0,
1402 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
1403 elfcpp::STV_HIDDEN
, 0, false, false);
1405 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
1407 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
1410 // For each output section whose name can be represented as C symbol,
1411 // define __start and __stop symbols for the section. This is a GNU
1415 Layout::define_section_symbols(Symbol_table
* symtab
)
1417 for (Section_list::const_iterator p
= this->section_list_
.begin();
1418 p
!= this->section_list_
.end();
1421 const char* const name
= (*p
)->name();
1422 if (is_cident(name
))
1424 const std::string
name_string(name
);
1425 const std::string
start_name(cident_section_start_prefix
1427 const std::string
stop_name(cident_section_stop_prefix
1430 symtab
->define_in_output_data(start_name
.c_str(),
1432 Symbol_table::PREDEFINED
,
1438 elfcpp::STV_DEFAULT
,
1440 false, // offset_is_from_end
1441 true); // only_if_ref
1443 symtab
->define_in_output_data(stop_name
.c_str(),
1445 Symbol_table::PREDEFINED
,
1451 elfcpp::STV_DEFAULT
,
1453 true, // offset_is_from_end
1454 true); // only_if_ref
1459 // Define symbols for group signatures.
1462 Layout::define_group_signatures(Symbol_table
* symtab
)
1464 for (Group_signatures::iterator p
= this->group_signatures_
.begin();
1465 p
!= this->group_signatures_
.end();
1468 Symbol
* sym
= symtab
->lookup(p
->signature
, NULL
);
1470 p
->section
->set_info_symndx(sym
);
1473 // Force the name of the group section to the group
1474 // signature, and use the group's section symbol as the
1475 // signature symbol.
1476 if (strcmp(p
->section
->name(), p
->signature
) != 0)
1478 const char* name
= this->namepool_
.add(p
->signature
,
1480 p
->section
->set_name(name
);
1482 p
->section
->set_needs_symtab_index();
1483 p
->section
->set_info_section_symndx(p
->section
);
1487 this->group_signatures_
.clear();
1490 // Find the first read-only PT_LOAD segment, creating one if
1494 Layout::find_first_load_seg()
1496 Output_segment
* best
= NULL
;
1497 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1498 p
!= this->segment_list_
.end();
1501 if ((*p
)->type() == elfcpp::PT_LOAD
1502 && ((*p
)->flags() & elfcpp::PF_R
) != 0
1503 && (parameters
->options().omagic()
1504 || ((*p
)->flags() & elfcpp::PF_W
) == 0))
1506 if (best
== NULL
|| this->segment_precedes(*p
, best
))
1513 gold_assert(!this->script_options_
->saw_phdrs_clause());
1515 Output_segment
* load_seg
= this->make_output_segment(elfcpp::PT_LOAD
,
1520 // Save states of all current output segments. Store saved states
1521 // in SEGMENT_STATES.
1524 Layout::save_segments(Segment_states
* segment_states
)
1526 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1527 p
!= this->segment_list_
.end();
1530 Output_segment
* segment
= *p
;
1532 Output_segment
* copy
= new Output_segment(*segment
);
1533 (*segment_states
)[segment
] = copy
;
1537 // Restore states of output segments and delete any segment not found in
1541 Layout::restore_segments(const Segment_states
* segment_states
)
1543 // Go through the segment list and remove any segment added in the
1545 this->tls_segment_
= NULL
;
1546 this->relro_segment_
= NULL
;
1547 Segment_list::iterator list_iter
= this->segment_list_
.begin();
1548 while (list_iter
!= this->segment_list_
.end())
1550 Output_segment
* segment
= *list_iter
;
1551 Segment_states::const_iterator states_iter
=
1552 segment_states
->find(segment
);
1553 if (states_iter
!= segment_states
->end())
1555 const Output_segment
* copy
= states_iter
->second
;
1556 // Shallow copy to restore states.
1559 // Also fix up TLS and RELRO segment pointers as appropriate.
1560 if (segment
->type() == elfcpp::PT_TLS
)
1561 this->tls_segment_
= segment
;
1562 else if (segment
->type() == elfcpp::PT_GNU_RELRO
)
1563 this->relro_segment_
= segment
;
1569 list_iter
= this->segment_list_
.erase(list_iter
);
1570 // This is a segment created during section layout. It should be
1571 // safe to remove it since we should have removed all pointers to it.
1577 // Clean up after relaxation so that sections can be laid out again.
1580 Layout::clean_up_after_relaxation()
1582 // Restore the segments to point state just prior to the relaxation loop.
1583 Script_sections
* script_section
= this->script_options_
->script_sections();
1584 script_section
->release_segments();
1585 this->restore_segments(this->segment_states_
);
1587 // Reset section addresses and file offsets
1588 for (Section_list::iterator p
= this->section_list_
.begin();
1589 p
!= this->section_list_
.end();
1592 (*p
)->restore_states();
1594 // If an input section changes size because of relaxation,
1595 // we need to adjust the section offsets of all input sections.
1596 // after such a section.
1597 if ((*p
)->section_offsets_need_adjustment())
1598 (*p
)->adjust_section_offsets();
1600 (*p
)->reset_address_and_file_offset();
1603 // Reset special output object address and file offsets.
1604 for (Data_list::iterator p
= this->special_output_list_
.begin();
1605 p
!= this->special_output_list_
.end();
1607 (*p
)->reset_address_and_file_offset();
1609 // A linker script may have created some output section data objects.
1610 // They are useless now.
1611 for (Output_section_data_list::const_iterator p
=
1612 this->script_output_section_data_list_
.begin();
1613 p
!= this->script_output_section_data_list_
.end();
1616 this->script_output_section_data_list_
.clear();
1619 // Prepare for relaxation.
1622 Layout::prepare_for_relaxation()
1624 // Create an relaxation debug check if in debugging mode.
1625 if (is_debugging_enabled(DEBUG_RELAXATION
))
1626 this->relaxation_debug_check_
= new Relaxation_debug_check();
1628 // Save segment states.
1629 this->segment_states_
= new Segment_states();
1630 this->save_segments(this->segment_states_
);
1632 for(Section_list::const_iterator p
= this->section_list_
.begin();
1633 p
!= this->section_list_
.end();
1635 (*p
)->save_states();
1637 if (is_debugging_enabled(DEBUG_RELAXATION
))
1638 this->relaxation_debug_check_
->check_output_data_for_reset_values(
1639 this->section_list_
, this->special_output_list_
);
1641 // Also enable recording of output section data from scripts.
1642 this->record_output_section_data_from_script_
= true;
1645 // Relaxation loop body: If target has no relaxation, this runs only once
1646 // Otherwise, the target relaxation hook is called at the end of
1647 // each iteration. If the hook returns true, it means re-layout of
1648 // section is required.
1650 // The number of segments created by a linking script without a PHDRS
1651 // clause may be affected by section sizes and alignments. There is
1652 // a remote chance that relaxation causes different number of PT_LOAD
1653 // segments are created and sections are attached to different segments.
1654 // Therefore, we always throw away all segments created during section
1655 // layout. In order to be able to restart the section layout, we keep
1656 // a copy of the segment list right before the relaxation loop and use
1657 // that to restore the segments.
1659 // PASS is the current relaxation pass number.
1660 // SYMTAB is a symbol table.
1661 // PLOAD_SEG is the address of a pointer for the load segment.
1662 // PHDR_SEG is a pointer to the PHDR segment.
1663 // SEGMENT_HEADERS points to the output segment header.
1664 // FILE_HEADER points to the output file header.
1665 // PSHNDX is the address to store the output section index.
1668 Layout::relaxation_loop_body(
1671 Symbol_table
* symtab
,
1672 Output_segment
** pload_seg
,
1673 Output_segment
* phdr_seg
,
1674 Output_segment_headers
* segment_headers
,
1675 Output_file_header
* file_header
,
1676 unsigned int* pshndx
)
1678 // If this is not the first iteration, we need to clean up after
1679 // relaxation so that we can lay out the sections again.
1681 this->clean_up_after_relaxation();
1683 // If there is a SECTIONS clause, put all the input sections into
1684 // the required order.
1685 Output_segment
* load_seg
;
1686 if (this->script_options_
->saw_sections_clause())
1687 load_seg
= this->set_section_addresses_from_script(symtab
);
1688 else if (parameters
->options().relocatable())
1691 load_seg
= this->find_first_load_seg();
1693 if (parameters
->options().oformat_enum()
1694 != General_options::OBJECT_FORMAT_ELF
)
1697 // If the user set the address of the text segment, that may not be
1698 // compatible with putting the segment headers and file headers into
1700 if (parameters
->options().user_set_Ttext())
1703 gold_assert(phdr_seg
== NULL
1705 || this->script_options_
->saw_sections_clause());
1707 // If the address of the load segment we found has been set by
1708 // --section-start rather than by a script, then adjust the VMA and
1709 // LMA downward if possible to include the file and section headers.
1710 uint64_t header_gap
= 0;
1711 if (load_seg
!= NULL
1712 && load_seg
->are_addresses_set()
1713 && !this->script_options_
->saw_sections_clause()
1714 && !parameters
->options().relocatable())
1716 file_header
->finalize_data_size();
1717 segment_headers
->finalize_data_size();
1718 size_t sizeof_headers
= (file_header
->data_size()
1719 + segment_headers
->data_size());
1720 const uint64_t abi_pagesize
= target
->abi_pagesize();
1721 uint64_t hdr_paddr
= load_seg
->paddr() - sizeof_headers
;
1722 hdr_paddr
&= ~(abi_pagesize
- 1);
1723 uint64_t subtract
= load_seg
->paddr() - hdr_paddr
;
1724 if (load_seg
->paddr() < subtract
|| load_seg
->vaddr() < subtract
)
1728 load_seg
->set_addresses(load_seg
->vaddr() - subtract
,
1729 load_seg
->paddr() - subtract
);
1730 header_gap
= subtract
- sizeof_headers
;
1734 // Lay out the segment headers.
1735 if (!parameters
->options().relocatable())
1737 gold_assert(segment_headers
!= NULL
);
1738 if (header_gap
!= 0 && load_seg
!= NULL
)
1740 Output_data_zero_fill
* z
= new Output_data_zero_fill(header_gap
, 1);
1741 load_seg
->add_initial_output_data(z
);
1743 if (load_seg
!= NULL
)
1744 load_seg
->add_initial_output_data(segment_headers
);
1745 if (phdr_seg
!= NULL
)
1746 phdr_seg
->add_initial_output_data(segment_headers
);
1749 // Lay out the file header.
1750 if (load_seg
!= NULL
)
1751 load_seg
->add_initial_output_data(file_header
);
1753 if (this->script_options_
->saw_phdrs_clause()
1754 && !parameters
->options().relocatable())
1756 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1757 // clause in a linker script.
1758 Script_sections
* ss
= this->script_options_
->script_sections();
1759 ss
->put_headers_in_phdrs(file_header
, segment_headers
);
1762 // We set the output section indexes in set_segment_offsets and
1763 // set_section_indexes.
1766 // Set the file offsets of all the segments, and all the sections
1769 if (!parameters
->options().relocatable())
1770 off
= this->set_segment_offsets(target
, load_seg
, pshndx
);
1772 off
= this->set_relocatable_section_offsets(file_header
, pshndx
);
1774 // Verify that the dummy relaxation does not change anything.
1775 if (is_debugging_enabled(DEBUG_RELAXATION
))
1778 this->relaxation_debug_check_
->read_sections(this->section_list_
);
1780 this->relaxation_debug_check_
->verify_sections(this->section_list_
);
1783 *pload_seg
= load_seg
;
1787 // Search the list of patterns and find the postion of the given section
1788 // name in the output section. If the section name matches a glob
1789 // pattern and a non-glob name, then the non-glob position takes
1790 // precedence. Return 0 if no match is found.
1793 Layout::find_section_order_index(const std::string
& section_name
)
1795 Unordered_map
<std::string
, unsigned int>::iterator map_it
;
1796 map_it
= this->input_section_position_
.find(section_name
);
1797 if (map_it
!= this->input_section_position_
.end())
1798 return map_it
->second
;
1800 // Absolute match failed. Linear search the glob patterns.
1801 std::vector
<std::string
>::iterator it
;
1802 for (it
= this->input_section_glob_
.begin();
1803 it
!= this->input_section_glob_
.end();
1806 if (fnmatch((*it
).c_str(), section_name
.c_str(), FNM_NOESCAPE
) == 0)
1808 map_it
= this->input_section_position_
.find(*it
);
1809 gold_assert(map_it
!= this->input_section_position_
.end());
1810 return map_it
->second
;
1816 // Read the sequence of input sections from the file specified with
1817 // --section-ordering-file.
1820 Layout::read_layout_from_file()
1822 const char* filename
= parameters
->options().section_ordering_file();
1828 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
1829 filename
, strerror(errno
));
1831 std::getline(in
, line
); // this chops off the trailing \n, if any
1832 unsigned int position
= 1;
1836 if (!line
.empty() && line
[line
.length() - 1] == '\r') // Windows
1837 line
.resize(line
.length() - 1);
1838 // Ignore comments, beginning with '#'
1841 std::getline(in
, line
);
1844 this->input_section_position_
[line
] = position
;
1845 // Store all glob patterns in a vector.
1846 if (is_wildcard_string(line
.c_str()))
1847 this->input_section_glob_
.push_back(line
);
1849 std::getline(in
, line
);
1853 // Finalize the layout. When this is called, we have created all the
1854 // output sections and all the output segments which are based on
1855 // input sections. We have several things to do, and we have to do
1856 // them in the right order, so that we get the right results correctly
1859 // 1) Finalize the list of output segments and create the segment
1862 // 2) Finalize the dynamic symbol table and associated sections.
1864 // 3) Determine the final file offset of all the output segments.
1866 // 4) Determine the final file offset of all the SHF_ALLOC output
1869 // 5) Create the symbol table sections and the section name table
1872 // 6) Finalize the symbol table: set symbol values to their final
1873 // value and make a final determination of which symbols are going
1874 // into the output symbol table.
1876 // 7) Create the section table header.
1878 // 8) Determine the final file offset of all the output sections which
1879 // are not SHF_ALLOC, including the section table header.
1881 // 9) Finalize the ELF file header.
1883 // This function returns the size of the output file.
1886 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
,
1887 Target
* target
, const Task
* task
)
1889 target
->finalize_sections(this, input_objects
, symtab
);
1891 this->count_local_symbols(task
, input_objects
);
1893 this->link_stabs_sections();
1895 Output_segment
* phdr_seg
= NULL
;
1896 if (!parameters
->options().relocatable() && !parameters
->doing_static_link())
1898 // There was a dynamic object in the link. We need to create
1899 // some information for the dynamic linker.
1901 // Create the PT_PHDR segment which will hold the program
1903 if (!this->script_options_
->saw_phdrs_clause())
1904 phdr_seg
= this->make_output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
1906 // Create the dynamic symbol table, including the hash table.
1907 Output_section
* dynstr
;
1908 std::vector
<Symbol
*> dynamic_symbols
;
1909 unsigned int local_dynamic_count
;
1910 Versions
versions(*this->script_options()->version_script_info(),
1912 this->create_dynamic_symtab(input_objects
, symtab
, &dynstr
,
1913 &local_dynamic_count
, &dynamic_symbols
,
1916 // Create the .interp section to hold the name of the
1917 // interpreter, and put it in a PT_INTERP segment.
1918 if (!parameters
->options().shared())
1919 this->create_interp(target
);
1921 // Finish the .dynamic section to hold the dynamic data, and put
1922 // it in a PT_DYNAMIC segment.
1923 this->finish_dynamic_section(input_objects
, symtab
);
1925 // We should have added everything we need to the dynamic string
1927 this->dynpool_
.set_string_offsets();
1929 // Create the version sections. We can't do this until the
1930 // dynamic string table is complete.
1931 this->create_version_sections(&versions
, symtab
, local_dynamic_count
,
1932 dynamic_symbols
, dynstr
);
1934 // Set the size of the _DYNAMIC symbol. We can't do this until
1935 // after we call create_version_sections.
1936 this->set_dynamic_symbol_size(symtab
);
1939 // Create segment headers.
1940 Output_segment_headers
* segment_headers
=
1941 (parameters
->options().relocatable()
1943 : new Output_segment_headers(this->segment_list_
));
1945 // Lay out the file header.
1946 Output_file_header
* file_header
1947 = new Output_file_header(target
, symtab
, segment_headers
,
1948 parameters
->options().entry());
1950 this->special_output_list_
.push_back(file_header
);
1951 if (segment_headers
!= NULL
)
1952 this->special_output_list_
.push_back(segment_headers
);
1954 // Find approriate places for orphan output sections if we are using
1956 if (this->script_options_
->saw_sections_clause())
1957 this->place_orphan_sections_in_script();
1959 Output_segment
* load_seg
;
1964 // Take a snapshot of the section layout as needed.
1965 if (target
->may_relax())
1966 this->prepare_for_relaxation();
1968 // Run the relaxation loop to lay out sections.
1971 off
= this->relaxation_loop_body(pass
, target
, symtab
, &load_seg
,
1972 phdr_seg
, segment_headers
, file_header
,
1976 while (target
->may_relax()
1977 && target
->relax(pass
, input_objects
, symtab
, this, task
));
1979 // Set the file offsets of all the non-data sections we've seen so
1980 // far which don't have to wait for the input sections. We need
1981 // this in order to finalize local symbols in non-allocated
1983 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1985 // Set the section indexes of all unallocated sections seen so far,
1986 // in case any of them are somehow referenced by a symbol.
1987 shndx
= this->set_section_indexes(shndx
);
1989 // Create the symbol table sections.
1990 this->create_symtab_sections(input_objects
, symtab
, shndx
, &off
);
1991 if (!parameters
->doing_static_link())
1992 this->assign_local_dynsym_offsets(input_objects
);
1994 // Process any symbol assignments from a linker script. This must
1995 // be called after the symbol table has been finalized.
1996 this->script_options_
->finalize_symbols(symtab
, this);
1998 // Create the incremental inputs sections.
1999 if (this->incremental_inputs_
)
2001 this->incremental_inputs_
->finalize();
2002 this->create_incremental_info_sections(symtab
);
2005 // Create the .shstrtab section.
2006 Output_section
* shstrtab_section
= this->create_shstrtab();
2008 // Set the file offsets of the rest of the non-data sections which
2009 // don't have to wait for the input sections.
2010 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
2012 // Now that all sections have been created, set the section indexes
2013 // for any sections which haven't been done yet.
2014 shndx
= this->set_section_indexes(shndx
);
2016 // Create the section table header.
2017 this->create_shdrs(shstrtab_section
, &off
);
2019 // If there are no sections which require postprocessing, we can
2020 // handle the section names now, and avoid a resize later.
2021 if (!this->any_postprocessing_sections_
)
2023 off
= this->set_section_offsets(off
,
2024 POSTPROCESSING_SECTIONS_PASS
);
2026 this->set_section_offsets(off
,
2027 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
2030 file_header
->set_section_info(this->section_headers_
, shstrtab_section
);
2032 // Now we know exactly where everything goes in the output file
2033 // (except for non-allocated sections which require postprocessing).
2034 Output_data::layout_complete();
2036 this->output_file_size_
= off
;
2041 // Create a note header following the format defined in the ELF ABI.
2042 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2043 // of the section to create, DESCSZ is the size of the descriptor.
2044 // ALLOCATE is true if the section should be allocated in memory.
2045 // This returns the new note section. It sets *TRAILING_PADDING to
2046 // the number of trailing zero bytes required.
2049 Layout::create_note(const char* name
, int note_type
,
2050 const char* section_name
, size_t descsz
,
2051 bool allocate
, size_t* trailing_padding
)
2053 // Authorities all agree that the values in a .note field should
2054 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2055 // they differ on what the alignment is for 64-bit binaries.
2056 // The GABI says unambiguously they take 8-byte alignment:
2057 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2058 // Other documentation says alignment should always be 4 bytes:
2059 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2060 // GNU ld and GNU readelf both support the latter (at least as of
2061 // version 2.16.91), and glibc always generates the latter for
2062 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2064 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2065 const int size
= parameters
->target().get_size();
2067 const int size
= 32;
2070 // The contents of the .note section.
2071 size_t namesz
= strlen(name
) + 1;
2072 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
2073 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
2075 size_t notehdrsz
= 3 * (size
/ 8) + aligned_namesz
;
2077 unsigned char* buffer
= new unsigned char[notehdrsz
];
2078 memset(buffer
, 0, notehdrsz
);
2080 bool is_big_endian
= parameters
->target().is_big_endian();
2086 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
2087 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
2088 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
2092 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
2093 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
2094 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
2097 else if (size
== 64)
2101 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
2102 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
2103 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
2107 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
2108 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
2109 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
2115 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
2117 elfcpp::Elf_Xword flags
= 0;
2118 Output_section_order order
= ORDER_INVALID
;
2121 flags
= elfcpp::SHF_ALLOC
;
2122 order
= ORDER_RO_NOTE
;
2124 Output_section
* os
= this->choose_output_section(NULL
, section_name
,
2126 flags
, false, order
, false);
2130 Output_section_data
* posd
= new Output_data_const_buffer(buffer
, notehdrsz
,
2133 os
->add_output_section_data(posd
);
2135 *trailing_padding
= aligned_descsz
- descsz
;
2140 // For an executable or shared library, create a note to record the
2141 // version of gold used to create the binary.
2144 Layout::create_gold_note()
2146 if (parameters
->options().relocatable())
2149 std::string desc
= std::string("gold ") + gold::get_version_string();
2151 size_t trailing_padding
;
2152 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION
,
2153 ".note.gnu.gold-version", desc
.size(),
2154 false, &trailing_padding
);
2158 Output_section_data
* posd
= new Output_data_const(desc
, 4);
2159 os
->add_output_section_data(posd
);
2161 if (trailing_padding
> 0)
2163 posd
= new Output_data_zero_fill(trailing_padding
, 0);
2164 os
->add_output_section_data(posd
);
2168 // Record whether the stack should be executable. This can be set
2169 // from the command line using the -z execstack or -z noexecstack
2170 // options. Otherwise, if any input file has a .note.GNU-stack
2171 // section with the SHF_EXECINSTR flag set, the stack should be
2172 // executable. Otherwise, if at least one input file a
2173 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2174 // section, we use the target default for whether the stack should be
2175 // executable. Otherwise, we don't generate a stack note. When
2176 // generating a object file, we create a .note.GNU-stack section with
2177 // the appropriate marking. When generating an executable or shared
2178 // library, we create a PT_GNU_STACK segment.
2181 Layout::create_executable_stack_info()
2183 bool is_stack_executable
;
2184 if (parameters
->options().is_execstack_set())
2185 is_stack_executable
= parameters
->options().is_stack_executable();
2186 else if (!this->input_with_gnu_stack_note_
)
2190 if (this->input_requires_executable_stack_
)
2191 is_stack_executable
= true;
2192 else if (this->input_without_gnu_stack_note_
)
2193 is_stack_executable
=
2194 parameters
->target().is_default_stack_executable();
2196 is_stack_executable
= false;
2199 if (parameters
->options().relocatable())
2201 const char* name
= this->namepool_
.add(".note.GNU-stack", false, NULL
);
2202 elfcpp::Elf_Xword flags
= 0;
2203 if (is_stack_executable
)
2204 flags
|= elfcpp::SHF_EXECINSTR
;
2205 this->make_output_section(name
, elfcpp::SHT_PROGBITS
, flags
,
2206 ORDER_INVALID
, false);
2210 if (this->script_options_
->saw_phdrs_clause())
2212 int flags
= elfcpp::PF_R
| elfcpp::PF_W
;
2213 if (is_stack_executable
)
2214 flags
|= elfcpp::PF_X
;
2215 this->make_output_segment(elfcpp::PT_GNU_STACK
, flags
);
2219 // If --build-id was used, set up the build ID note.
2222 Layout::create_build_id()
2224 if (!parameters
->options().user_set_build_id())
2227 const char* style
= parameters
->options().build_id();
2228 if (strcmp(style
, "none") == 0)
2231 // Set DESCSZ to the size of the note descriptor. When possible,
2232 // set DESC to the note descriptor contents.
2235 if (strcmp(style
, "md5") == 0)
2237 else if (strcmp(style
, "sha1") == 0)
2239 else if (strcmp(style
, "uuid") == 0)
2241 const size_t uuidsz
= 128 / 8;
2243 char buffer
[uuidsz
];
2244 memset(buffer
, 0, uuidsz
);
2246 int descriptor
= open_descriptor(-1, "/dev/urandom", O_RDONLY
);
2248 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2252 ssize_t got
= ::read(descriptor
, buffer
, uuidsz
);
2253 release_descriptor(descriptor
, true);
2255 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno
));
2256 else if (static_cast<size_t>(got
) != uuidsz
)
2257 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2261 desc
.assign(buffer
, uuidsz
);
2264 else if (strncmp(style
, "0x", 2) == 0)
2267 const char* p
= style
+ 2;
2270 if (hex_p(p
[0]) && hex_p(p
[1]))
2272 char c
= (hex_value(p
[0]) << 4) | hex_value(p
[1]);
2276 else if (*p
== '-' || *p
== ':')
2279 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2282 descsz
= desc
.size();
2285 gold_fatal(_("unrecognized --build-id argument '%s'"), style
);
2288 size_t trailing_padding
;
2289 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID
,
2290 ".note.gnu.build-id", descsz
, true,
2297 // We know the value already, so we fill it in now.
2298 gold_assert(desc
.size() == descsz
);
2300 Output_section_data
* posd
= new Output_data_const(desc
, 4);
2301 os
->add_output_section_data(posd
);
2303 if (trailing_padding
!= 0)
2305 posd
= new Output_data_zero_fill(trailing_padding
, 0);
2306 os
->add_output_section_data(posd
);
2311 // We need to compute a checksum after we have completed the
2313 gold_assert(trailing_padding
== 0);
2314 this->build_id_note_
= new Output_data_zero_fill(descsz
, 4);
2315 os
->add_output_section_data(this->build_id_note_
);
2319 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2320 // field of the former should point to the latter. I'm not sure who
2321 // started this, but the GNU linker does it, and some tools depend
2325 Layout::link_stabs_sections()
2327 if (!this->have_stabstr_section_
)
2330 for (Section_list::iterator p
= this->section_list_
.begin();
2331 p
!= this->section_list_
.end();
2334 if ((*p
)->type() != elfcpp::SHT_STRTAB
)
2337 const char* name
= (*p
)->name();
2338 if (strncmp(name
, ".stab", 5) != 0)
2341 size_t len
= strlen(name
);
2342 if (strcmp(name
+ len
- 3, "str") != 0)
2345 std::string
stab_name(name
, len
- 3);
2346 Output_section
* stab_sec
;
2347 stab_sec
= this->find_output_section(stab_name
.c_str());
2348 if (stab_sec
!= NULL
)
2349 stab_sec
->set_link_section(*p
);
2353 // Create .gnu_incremental_inputs and related sections needed
2354 // for the next run of incremental linking to check what has changed.
2357 Layout::create_incremental_info_sections(Symbol_table
* symtab
)
2359 Incremental_inputs
* incr
= this->incremental_inputs_
;
2361 gold_assert(incr
!= NULL
);
2363 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2364 incr
->create_data_sections(symtab
);
2366 // Add the .gnu_incremental_inputs section.
2367 const char* incremental_inputs_name
=
2368 this->namepool_
.add(".gnu_incremental_inputs", false, NULL
);
2369 Output_section
* incremental_inputs_os
=
2370 this->make_output_section(incremental_inputs_name
,
2371 elfcpp::SHT_GNU_INCREMENTAL_INPUTS
, 0,
2372 ORDER_INVALID
, false);
2373 incremental_inputs_os
->add_output_section_data(incr
->inputs_section());
2375 // Add the .gnu_incremental_symtab section.
2376 const char* incremental_symtab_name
=
2377 this->namepool_
.add(".gnu_incremental_symtab", false, NULL
);
2378 Output_section
* incremental_symtab_os
=
2379 this->make_output_section(incremental_symtab_name
,
2380 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB
, 0,
2381 ORDER_INVALID
, false);
2382 incremental_symtab_os
->add_output_section_data(incr
->symtab_section());
2383 incremental_symtab_os
->set_entsize(4);
2385 // Add the .gnu_incremental_relocs section.
2386 const char* incremental_relocs_name
=
2387 this->namepool_
.add(".gnu_incremental_relocs", false, NULL
);
2388 Output_section
* incremental_relocs_os
=
2389 this->make_output_section(incremental_relocs_name
,
2390 elfcpp::SHT_GNU_INCREMENTAL_RELOCS
, 0,
2391 ORDER_INVALID
, false);
2392 incremental_relocs_os
->add_output_section_data(incr
->relocs_section());
2393 incremental_relocs_os
->set_entsize(incr
->relocs_entsize());
2395 // Add the .gnu_incremental_got_plt section.
2396 const char* incremental_got_plt_name
=
2397 this->namepool_
.add(".gnu_incremental_got_plt", false, NULL
);
2398 Output_section
* incremental_got_plt_os
=
2399 this->make_output_section(incremental_got_plt_name
,
2400 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT
, 0,
2401 ORDER_INVALID
, false);
2402 incremental_got_plt_os
->add_output_section_data(incr
->got_plt_section());
2404 // Add the .gnu_incremental_strtab section.
2405 const char* incremental_strtab_name
=
2406 this->namepool_
.add(".gnu_incremental_strtab", false, NULL
);
2407 Output_section
* incremental_strtab_os
= this->make_output_section(incremental_strtab_name
,
2408 elfcpp::SHT_STRTAB
, 0,
2409 ORDER_INVALID
, false);
2410 Output_data_strtab
* strtab_data
=
2411 new Output_data_strtab(incr
->get_stringpool());
2412 incremental_strtab_os
->add_output_section_data(strtab_data
);
2414 incremental_inputs_os
->set_after_input_sections();
2415 incremental_symtab_os
->set_after_input_sections();
2416 incremental_relocs_os
->set_after_input_sections();
2417 incremental_got_plt_os
->set_after_input_sections();
2419 incremental_inputs_os
->set_link_section(incremental_strtab_os
);
2420 incremental_symtab_os
->set_link_section(incremental_inputs_os
);
2421 incremental_relocs_os
->set_link_section(incremental_inputs_os
);
2422 incremental_got_plt_os
->set_link_section(incremental_inputs_os
);
2425 // Return whether SEG1 should be before SEG2 in the output file. This
2426 // is based entirely on the segment type and flags. When this is
2427 // called the segment addresses has normally not yet been set.
2430 Layout::segment_precedes(const Output_segment
* seg1
,
2431 const Output_segment
* seg2
)
2433 elfcpp::Elf_Word type1
= seg1
->type();
2434 elfcpp::Elf_Word type2
= seg2
->type();
2436 // The single PT_PHDR segment is required to precede any loadable
2437 // segment. We simply make it always first.
2438 if (type1
== elfcpp::PT_PHDR
)
2440 gold_assert(type2
!= elfcpp::PT_PHDR
);
2443 if (type2
== elfcpp::PT_PHDR
)
2446 // The single PT_INTERP segment is required to precede any loadable
2447 // segment. We simply make it always second.
2448 if (type1
== elfcpp::PT_INTERP
)
2450 gold_assert(type2
!= elfcpp::PT_INTERP
);
2453 if (type2
== elfcpp::PT_INTERP
)
2456 // We then put PT_LOAD segments before any other segments.
2457 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
2459 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
2462 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2463 // segment, because that is where the dynamic linker expects to find
2464 // it (this is just for efficiency; other positions would also work
2466 if (type1
== elfcpp::PT_TLS
2467 && type2
!= elfcpp::PT_TLS
2468 && type2
!= elfcpp::PT_GNU_RELRO
)
2470 if (type2
== elfcpp::PT_TLS
2471 && type1
!= elfcpp::PT_TLS
2472 && type1
!= elfcpp::PT_GNU_RELRO
)
2475 // We put the PT_GNU_RELRO segment last, because that is where the
2476 // dynamic linker expects to find it (as with PT_TLS, this is just
2478 if (type1
== elfcpp::PT_GNU_RELRO
&& type2
!= elfcpp::PT_GNU_RELRO
)
2480 if (type2
== elfcpp::PT_GNU_RELRO
&& type1
!= elfcpp::PT_GNU_RELRO
)
2483 const elfcpp::Elf_Word flags1
= seg1
->flags();
2484 const elfcpp::Elf_Word flags2
= seg2
->flags();
2486 // The order of non-PT_LOAD segments is unimportant. We simply sort
2487 // by the numeric segment type and flags values. There should not
2488 // be more than one segment with the same type and flags.
2489 if (type1
!= elfcpp::PT_LOAD
)
2492 return type1
< type2
;
2493 gold_assert(flags1
!= flags2
);
2494 return flags1
< flags2
;
2497 // If the addresses are set already, sort by load address.
2498 if (seg1
->are_addresses_set())
2500 if (!seg2
->are_addresses_set())
2503 unsigned int section_count1
= seg1
->output_section_count();
2504 unsigned int section_count2
= seg2
->output_section_count();
2505 if (section_count1
== 0 && section_count2
> 0)
2507 if (section_count1
> 0 && section_count2
== 0)
2510 uint64_t paddr1
= (seg1
->are_addresses_set()
2512 : seg1
->first_section_load_address());
2513 uint64_t paddr2
= (seg2
->are_addresses_set()
2515 : seg2
->first_section_load_address());
2517 if (paddr1
!= paddr2
)
2518 return paddr1
< paddr2
;
2520 else if (seg2
->are_addresses_set())
2523 // A segment which holds large data comes after a segment which does
2524 // not hold large data.
2525 if (seg1
->is_large_data_segment())
2527 if (!seg2
->is_large_data_segment())
2530 else if (seg2
->is_large_data_segment())
2533 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2534 // segments come before writable segments. Then writable segments
2535 // with data come before writable segments without data. Then
2536 // executable segments come before non-executable segments. Then
2537 // the unlikely case of a non-readable segment comes before the
2538 // normal case of a readable segment. If there are multiple
2539 // segments with the same type and flags, we require that the
2540 // address be set, and we sort by virtual address and then physical
2542 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
2543 return (flags1
& elfcpp::PF_W
) == 0;
2544 if ((flags1
& elfcpp::PF_W
) != 0
2545 && seg1
->has_any_data_sections() != seg2
->has_any_data_sections())
2546 return seg1
->has_any_data_sections();
2547 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
2548 return (flags1
& elfcpp::PF_X
) != 0;
2549 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
2550 return (flags1
& elfcpp::PF_R
) == 0;
2552 // We shouldn't get here--we shouldn't create segments which we
2553 // can't distinguish.
2557 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2560 align_file_offset(off_t off
, uint64_t addr
, uint64_t abi_pagesize
)
2562 uint64_t unsigned_off
= off
;
2563 uint64_t aligned_off
= ((unsigned_off
& ~(abi_pagesize
- 1))
2564 | (addr
& (abi_pagesize
- 1)));
2565 if (aligned_off
< unsigned_off
)
2566 aligned_off
+= abi_pagesize
;
2570 // Set the file offsets of all the segments, and all the sections they
2571 // contain. They have all been created. LOAD_SEG must be be laid out
2572 // first. Return the offset of the data to follow.
2575 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
2576 unsigned int* pshndx
)
2578 // Sort them into the final order.
2579 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
2580 Layout::Compare_segments());
2582 // Find the PT_LOAD segments, and set their addresses and offsets
2583 // and their section's addresses and offsets.
2585 if (parameters
->options().user_set_Ttext())
2586 addr
= parameters
->options().Ttext();
2587 else if (parameters
->options().output_is_position_independent())
2590 addr
= target
->default_text_segment_address();
2593 // If LOAD_SEG is NULL, then the file header and segment headers
2594 // will not be loadable. But they still need to be at offset 0 in
2595 // the file. Set their offsets now.
2596 if (load_seg
== NULL
)
2598 for (Data_list::iterator p
= this->special_output_list_
.begin();
2599 p
!= this->special_output_list_
.end();
2602 off
= align_address(off
, (*p
)->addralign());
2603 (*p
)->set_address_and_file_offset(0, off
);
2604 off
+= (*p
)->data_size();
2608 unsigned int increase_relro
= this->increase_relro_
;
2609 if (this->script_options_
->saw_sections_clause())
2612 const bool check_sections
= parameters
->options().check_sections();
2613 Output_segment
* last_load_segment
= NULL
;
2615 for (Segment_list::iterator p
= this->segment_list_
.begin();
2616 p
!= this->segment_list_
.end();
2619 if ((*p
)->type() == elfcpp::PT_LOAD
)
2621 if (load_seg
!= NULL
&& load_seg
!= *p
)
2625 bool are_addresses_set
= (*p
)->are_addresses_set();
2626 if (are_addresses_set
)
2628 // When it comes to setting file offsets, we care about
2629 // the physical address.
2630 addr
= (*p
)->paddr();
2632 else if (parameters
->options().user_set_Tdata()
2633 && ((*p
)->flags() & elfcpp::PF_W
) != 0
2634 && (!parameters
->options().user_set_Tbss()
2635 || (*p
)->has_any_data_sections()))
2637 addr
= parameters
->options().Tdata();
2638 are_addresses_set
= true;
2640 else if (parameters
->options().user_set_Tbss()
2641 && ((*p
)->flags() & elfcpp::PF_W
) != 0
2642 && !(*p
)->has_any_data_sections())
2644 addr
= parameters
->options().Tbss();
2645 are_addresses_set
= true;
2648 uint64_t orig_addr
= addr
;
2649 uint64_t orig_off
= off
;
2651 uint64_t aligned_addr
= 0;
2652 uint64_t abi_pagesize
= target
->abi_pagesize();
2653 uint64_t common_pagesize
= target
->common_pagesize();
2655 if (!parameters
->options().nmagic()
2656 && !parameters
->options().omagic())
2657 (*p
)->set_minimum_p_align(common_pagesize
);
2659 if (!are_addresses_set
)
2661 // Skip the address forward one page, maintaining the same
2662 // position within the page. This lets us store both segments
2663 // overlapping on a single page in the file, but the loader will
2664 // put them on different pages in memory. We will revisit this
2665 // decision once we know the size of the segment.
2667 addr
= align_address(addr
, (*p
)->maximum_alignment());
2668 aligned_addr
= addr
;
2670 if ((addr
& (abi_pagesize
- 1)) != 0)
2671 addr
= addr
+ abi_pagesize
;
2673 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
2676 if (!parameters
->options().nmagic()
2677 && !parameters
->options().omagic())
2678 off
= align_file_offset(off
, addr
, abi_pagesize
);
2679 else if (load_seg
== NULL
)
2681 // This is -N or -n with a section script which prevents
2682 // us from using a load segment. We need to ensure that
2683 // the file offset is aligned to the alignment of the
2684 // segment. This is because the linker script
2685 // implicitly assumed a zero offset. If we don't align
2686 // here, then the alignment of the sections in the
2687 // linker script may not match the alignment of the
2688 // sections in the set_section_addresses call below,
2689 // causing an error about dot moving backward.
2690 off
= align_address(off
, (*p
)->maximum_alignment());
2693 unsigned int shndx_hold
= *pshndx
;
2694 bool has_relro
= false;
2695 uint64_t new_addr
= (*p
)->set_section_addresses(this, false, addr
,
2700 // Now that we know the size of this segment, we may be able
2701 // to save a page in memory, at the cost of wasting some
2702 // file space, by instead aligning to the start of a new
2703 // page. Here we use the real machine page size rather than
2704 // the ABI mandated page size. If the segment has been
2705 // aligned so that the relro data ends at a page boundary,
2706 // we do not try to realign it.
2708 if (!are_addresses_set
&& !has_relro
&& aligned_addr
!= addr
)
2710 uint64_t first_off
= (common_pagesize
2712 & (common_pagesize
- 1)));
2713 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
2716 && ((aligned_addr
& ~ (common_pagesize
- 1))
2717 != (new_addr
& ~ (common_pagesize
- 1)))
2718 && first_off
+ last_off
<= common_pagesize
)
2720 *pshndx
= shndx_hold
;
2721 addr
= align_address(aligned_addr
, common_pagesize
);
2722 addr
= align_address(addr
, (*p
)->maximum_alignment());
2723 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
2724 off
= align_file_offset(off
, addr
, abi_pagesize
);
2725 new_addr
= (*p
)->set_section_addresses(this, true, addr
,
2734 // Implement --check-sections. We know that the segments
2735 // are sorted by LMA.
2736 if (check_sections
&& last_load_segment
!= NULL
)
2738 gold_assert(last_load_segment
->paddr() <= (*p
)->paddr());
2739 if (last_load_segment
->paddr() + last_load_segment
->memsz()
2742 unsigned long long lb1
= last_load_segment
->paddr();
2743 unsigned long long le1
= lb1
+ last_load_segment
->memsz();
2744 unsigned long long lb2
= (*p
)->paddr();
2745 unsigned long long le2
= lb2
+ (*p
)->memsz();
2746 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2747 "[0x%llx -> 0x%llx]"),
2748 lb1
, le1
, lb2
, le2
);
2751 last_load_segment
= *p
;
2755 // Handle the non-PT_LOAD segments, setting their offsets from their
2756 // section's offsets.
2757 for (Segment_list::iterator p
= this->segment_list_
.begin();
2758 p
!= this->segment_list_
.end();
2761 if ((*p
)->type() != elfcpp::PT_LOAD
)
2762 (*p
)->set_offset((*p
)->type() == elfcpp::PT_GNU_RELRO
2767 // Set the TLS offsets for each section in the PT_TLS segment.
2768 if (this->tls_segment_
!= NULL
)
2769 this->tls_segment_
->set_tls_offsets();
2774 // Set the offsets of all the allocated sections when doing a
2775 // relocatable link. This does the same jobs as set_segment_offsets,
2776 // only for a relocatable link.
2779 Layout::set_relocatable_section_offsets(Output_data
* file_header
,
2780 unsigned int* pshndx
)
2784 file_header
->set_address_and_file_offset(0, 0);
2785 off
+= file_header
->data_size();
2787 for (Section_list::iterator p
= this->section_list_
.begin();
2788 p
!= this->section_list_
.end();
2791 // We skip unallocated sections here, except that group sections
2792 // have to come first.
2793 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
2794 && (*p
)->type() != elfcpp::SHT_GROUP
)
2797 off
= align_address(off
, (*p
)->addralign());
2799 // The linker script might have set the address.
2800 if (!(*p
)->is_address_valid())
2801 (*p
)->set_address(0);
2802 (*p
)->set_file_offset(off
);
2803 (*p
)->finalize_data_size();
2804 off
+= (*p
)->data_size();
2806 (*p
)->set_out_shndx(*pshndx
);
2813 // Set the file offset of all the sections not associated with a
2817 Layout::set_section_offsets(off_t off
, Layout::Section_offset_pass pass
)
2819 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
2820 p
!= this->unattached_section_list_
.end();
2823 // The symtab section is handled in create_symtab_sections.
2824 if (*p
== this->symtab_section_
)
2827 // If we've already set the data size, don't set it again.
2828 if ((*p
)->is_offset_valid() && (*p
)->is_data_size_valid())
2831 if (pass
== BEFORE_INPUT_SECTIONS_PASS
2832 && (*p
)->requires_postprocessing())
2834 (*p
)->create_postprocessing_buffer();
2835 this->any_postprocessing_sections_
= true;
2838 if (pass
== BEFORE_INPUT_SECTIONS_PASS
2839 && (*p
)->after_input_sections())
2841 else if (pass
== POSTPROCESSING_SECTIONS_PASS
2842 && (!(*p
)->after_input_sections()
2843 || (*p
)->type() == elfcpp::SHT_STRTAB
))
2845 else if (pass
== STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2846 && (!(*p
)->after_input_sections()
2847 || (*p
)->type() != elfcpp::SHT_STRTAB
))
2850 off
= align_address(off
, (*p
)->addralign());
2851 (*p
)->set_file_offset(off
);
2852 (*p
)->finalize_data_size();
2853 off
+= (*p
)->data_size();
2855 // At this point the name must be set.
2856 if (pass
!= STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
)
2857 this->namepool_
.add((*p
)->name(), false, NULL
);
2862 // Set the section indexes of all the sections not associated with a
2866 Layout::set_section_indexes(unsigned int shndx
)
2868 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
2869 p
!= this->unattached_section_list_
.end();
2872 if (!(*p
)->has_out_shndx())
2874 (*p
)->set_out_shndx(shndx
);
2881 // Set the section addresses according to the linker script. This is
2882 // only called when we see a SECTIONS clause. This returns the
2883 // program segment which should hold the file header and segment
2884 // headers, if any. It will return NULL if they should not be in a
2888 Layout::set_section_addresses_from_script(Symbol_table
* symtab
)
2890 Script_sections
* ss
= this->script_options_
->script_sections();
2891 gold_assert(ss
->saw_sections_clause());
2892 return this->script_options_
->set_section_addresses(symtab
, this);
2895 // Place the orphan sections in the linker script.
2898 Layout::place_orphan_sections_in_script()
2900 Script_sections
* ss
= this->script_options_
->script_sections();
2901 gold_assert(ss
->saw_sections_clause());
2903 // Place each orphaned output section in the script.
2904 for (Section_list::iterator p
= this->section_list_
.begin();
2905 p
!= this->section_list_
.end();
2908 if (!(*p
)->found_in_sections_clause())
2909 ss
->place_orphan(*p
);
2913 // Count the local symbols in the regular symbol table and the dynamic
2914 // symbol table, and build the respective string pools.
2917 Layout::count_local_symbols(const Task
* task
,
2918 const Input_objects
* input_objects
)
2920 // First, figure out an upper bound on the number of symbols we'll
2921 // be inserting into each pool. This helps us create the pools with
2922 // the right size, to avoid unnecessary hashtable resizing.
2923 unsigned int symbol_count
= 0;
2924 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2925 p
!= input_objects
->relobj_end();
2927 symbol_count
+= (*p
)->local_symbol_count();
2929 // Go from "upper bound" to "estimate." We overcount for two
2930 // reasons: we double-count symbols that occur in more than one
2931 // object file, and we count symbols that are dropped from the
2932 // output. Add it all together and assume we overcount by 100%.
2935 // We assume all symbols will go into both the sympool and dynpool.
2936 this->sympool_
.reserve(symbol_count
);
2937 this->dynpool_
.reserve(symbol_count
);
2939 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2940 p
!= input_objects
->relobj_end();
2943 Task_lock_obj
<Object
> tlo(task
, *p
);
2944 (*p
)->count_local_symbols(&this->sympool_
, &this->dynpool_
);
2948 // Create the symbol table sections. Here we also set the final
2949 // values of the symbols. At this point all the loadable sections are
2950 // fully laid out. SHNUM is the number of sections so far.
2953 Layout::create_symtab_sections(const Input_objects
* input_objects
,
2954 Symbol_table
* symtab
,
2960 if (parameters
->target().get_size() == 32)
2962 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2965 else if (parameters
->target().get_size() == 64)
2967 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2974 off
= align_address(off
, align
);
2975 off_t startoff
= off
;
2977 // Save space for the dummy symbol at the start of the section. We
2978 // never bother to write this out--it will just be left as zero.
2980 unsigned int local_symbol_index
= 1;
2982 // Add STT_SECTION symbols for each Output section which needs one.
2983 for (Section_list::iterator p
= this->section_list_
.begin();
2984 p
!= this->section_list_
.end();
2987 if (!(*p
)->needs_symtab_index())
2988 (*p
)->set_symtab_index(-1U);
2991 (*p
)->set_symtab_index(local_symbol_index
);
2992 ++local_symbol_index
;
2997 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2998 p
!= input_objects
->relobj_end();
3001 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
3003 off
+= (index
- local_symbol_index
) * symsize
;
3004 local_symbol_index
= index
;
3007 unsigned int local_symcount
= local_symbol_index
;
3008 gold_assert(static_cast<off_t
>(local_symcount
* symsize
) == off
- startoff
);
3011 size_t dyn_global_index
;
3013 if (this->dynsym_section_
== NULL
)
3016 dyn_global_index
= 0;
3021 dyn_global_index
= this->dynsym_section_
->info();
3022 off_t locsize
= dyn_global_index
* this->dynsym_section_
->entsize();
3023 dynoff
= this->dynsym_section_
->offset() + locsize
;
3024 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
3025 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
3026 == this->dynsym_section_
->data_size() - locsize
);
3029 off
= symtab
->finalize(off
, dynoff
, dyn_global_index
, dyncount
,
3030 &this->sympool_
, &local_symcount
);
3032 if (!parameters
->options().strip_all())
3034 this->sympool_
.set_string_offsets();
3036 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
3037 Output_section
* osymtab
= this->make_output_section(symtab_name
,
3041 this->symtab_section_
= osymtab
;
3043 Output_section_data
* pos
= new Output_data_fixed_space(off
- startoff
,
3046 osymtab
->add_output_section_data(pos
);
3048 // We generate a .symtab_shndx section if we have more than
3049 // SHN_LORESERVE sections. Technically it is possible that we
3050 // don't need one, because it is possible that there are no
3051 // symbols in any of sections with indexes larger than
3052 // SHN_LORESERVE. That is probably unusual, though, and it is
3053 // easier to always create one than to compute section indexes
3054 // twice (once here, once when writing out the symbols).
3055 if (shnum
>= elfcpp::SHN_LORESERVE
)
3057 const char* symtab_xindex_name
= this->namepool_
.add(".symtab_shndx",
3059 Output_section
* osymtab_xindex
=
3060 this->make_output_section(symtab_xindex_name
,
3061 elfcpp::SHT_SYMTAB_SHNDX
, 0,
3062 ORDER_INVALID
, false);
3064 size_t symcount
= (off
- startoff
) / symsize
;
3065 this->symtab_xindex_
= new Output_symtab_xindex(symcount
);
3067 osymtab_xindex
->add_output_section_data(this->symtab_xindex_
);
3069 osymtab_xindex
->set_link_section(osymtab
);
3070 osymtab_xindex
->set_addralign(4);
3071 osymtab_xindex
->set_entsize(4);
3073 osymtab_xindex
->set_after_input_sections();
3075 // This tells the driver code to wait until the symbol table
3076 // has written out before writing out the postprocessing
3077 // sections, including the .symtab_shndx section.
3078 this->any_postprocessing_sections_
= true;
3081 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
3082 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
3087 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
3088 ostrtab
->add_output_section_data(pstr
);
3090 osymtab
->set_file_offset(startoff
);
3091 osymtab
->finalize_data_size();
3092 osymtab
->set_link_section(ostrtab
);
3093 osymtab
->set_info(local_symcount
);
3094 osymtab
->set_entsize(symsize
);
3100 // Create the .shstrtab section, which holds the names of the
3101 // sections. At the time this is called, we have created all the
3102 // output sections except .shstrtab itself.
3105 Layout::create_shstrtab()
3107 // FIXME: We don't need to create a .shstrtab section if we are
3108 // stripping everything.
3110 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
3112 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0,
3113 ORDER_INVALID
, false);
3115 if (strcmp(parameters
->options().compress_debug_sections(), "none") != 0)
3117 // We can't write out this section until we've set all the
3118 // section names, and we don't set the names of compressed
3119 // output sections until relocations are complete. FIXME: With
3120 // the current names we use, this is unnecessary.
3121 os
->set_after_input_sections();
3124 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
3125 os
->add_output_section_data(posd
);
3130 // Create the section headers. SIZE is 32 or 64. OFF is the file
3134 Layout::create_shdrs(const Output_section
* shstrtab_section
, off_t
* poff
)
3136 Output_section_headers
* oshdrs
;
3137 oshdrs
= new Output_section_headers(this,
3138 &this->segment_list_
,
3139 &this->section_list_
,
3140 &this->unattached_section_list_
,
3143 off_t off
= align_address(*poff
, oshdrs
->addralign());
3144 oshdrs
->set_address_and_file_offset(0, off
);
3145 off
+= oshdrs
->data_size();
3147 this->section_headers_
= oshdrs
;
3150 // Count the allocated sections.
3153 Layout::allocated_output_section_count() const
3155 size_t section_count
= 0;
3156 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3157 p
!= this->segment_list_
.end();
3159 section_count
+= (*p
)->output_section_count();
3160 return section_count
;
3163 // Create the dynamic symbol table.
3166 Layout::create_dynamic_symtab(const Input_objects
* input_objects
,
3167 Symbol_table
* symtab
,
3168 Output_section
** pdynstr
,
3169 unsigned int* plocal_dynamic_count
,
3170 std::vector
<Symbol
*>* pdynamic_symbols
,
3171 Versions
* pversions
)
3173 // Count all the symbols in the dynamic symbol table, and set the
3174 // dynamic symbol indexes.
3176 // Skip symbol 0, which is always all zeroes.
3177 unsigned int index
= 1;
3179 // Add STT_SECTION symbols for each Output section which needs one.
3180 for (Section_list::iterator p
= this->section_list_
.begin();
3181 p
!= this->section_list_
.end();
3184 if (!(*p
)->needs_dynsym_index())
3185 (*p
)->set_dynsym_index(-1U);
3188 (*p
)->set_dynsym_index(index
);
3193 // Count the local symbols that need to go in the dynamic symbol table,
3194 // and set the dynamic symbol indexes.
3195 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
3196 p
!= input_objects
->relobj_end();
3199 unsigned int new_index
= (*p
)->set_local_dynsym_indexes(index
);
3203 unsigned int local_symcount
= index
;
3204 *plocal_dynamic_count
= local_symcount
;
3206 index
= symtab
->set_dynsym_indexes(index
, pdynamic_symbols
,
3207 &this->dynpool_
, pversions
);
3211 const int size
= parameters
->target().get_size();
3214 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
3217 else if (size
== 64)
3219 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
3225 // Create the dynamic symbol table section.
3227 Output_section
* dynsym
= this->choose_output_section(NULL
, ".dynsym",
3231 ORDER_DYNAMIC_LINKER
,
3234 Output_section_data
* odata
= new Output_data_fixed_space(index
* symsize
,
3237 dynsym
->add_output_section_data(odata
);
3239 dynsym
->set_info(local_symcount
);
3240 dynsym
->set_entsize(symsize
);
3241 dynsym
->set_addralign(align
);
3243 this->dynsym_section_
= dynsym
;
3245 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3246 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
3247 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
3249 // If there are more than SHN_LORESERVE allocated sections, we
3250 // create a .dynsym_shndx section. It is possible that we don't
3251 // need one, because it is possible that there are no dynamic
3252 // symbols in any of the sections with indexes larger than
3253 // SHN_LORESERVE. This is probably unusual, though, and at this
3254 // time we don't know the actual section indexes so it is
3255 // inconvenient to check.
3256 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE
)
3258 Output_section
* dynsym_xindex
=
3259 this->choose_output_section(NULL
, ".dynsym_shndx",
3260 elfcpp::SHT_SYMTAB_SHNDX
,
3262 false, ORDER_DYNAMIC_LINKER
, false);
3264 this->dynsym_xindex_
= new Output_symtab_xindex(index
);
3266 dynsym_xindex
->add_output_section_data(this->dynsym_xindex_
);
3268 dynsym_xindex
->set_link_section(dynsym
);
3269 dynsym_xindex
->set_addralign(4);
3270 dynsym_xindex
->set_entsize(4);
3272 dynsym_xindex
->set_after_input_sections();
3274 // This tells the driver code to wait until the symbol table has
3275 // written out before writing out the postprocessing sections,
3276 // including the .dynsym_shndx section.
3277 this->any_postprocessing_sections_
= true;
3280 // Create the dynamic string table section.
3282 Output_section
* dynstr
= this->choose_output_section(NULL
, ".dynstr",
3286 ORDER_DYNAMIC_LINKER
,
3289 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
3290 dynstr
->add_output_section_data(strdata
);
3292 dynsym
->set_link_section(dynstr
);
3293 this->dynamic_section_
->set_link_section(dynstr
);
3295 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
3296 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
3300 // Create the hash tables.
3302 if (strcmp(parameters
->options().hash_style(), "sysv") == 0
3303 || strcmp(parameters
->options().hash_style(), "both") == 0)
3305 unsigned char* phash
;
3306 unsigned int hashlen
;
3307 Dynobj::create_elf_hash_table(*pdynamic_symbols
, local_symcount
,
3310 Output_section
* hashsec
=
3311 this->choose_output_section(NULL
, ".hash", elfcpp::SHT_HASH
,
3312 elfcpp::SHF_ALLOC
, false,
3313 ORDER_DYNAMIC_LINKER
, false);
3315 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
3319 hashsec
->add_output_section_data(hashdata
);
3321 hashsec
->set_link_section(dynsym
);
3322 hashsec
->set_entsize(4);
3324 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
3327 if (strcmp(parameters
->options().hash_style(), "gnu") == 0
3328 || strcmp(parameters
->options().hash_style(), "both") == 0)
3330 unsigned char* phash
;
3331 unsigned int hashlen
;
3332 Dynobj::create_gnu_hash_table(*pdynamic_symbols
, local_symcount
,
3335 Output_section
* hashsec
=
3336 this->choose_output_section(NULL
, ".gnu.hash", elfcpp::SHT_GNU_HASH
,
3337 elfcpp::SHF_ALLOC
, false,
3338 ORDER_DYNAMIC_LINKER
, false);
3340 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
3344 hashsec
->add_output_section_data(hashdata
);
3346 hashsec
->set_link_section(dynsym
);
3348 // For a 64-bit target, the entries in .gnu.hash do not have a
3349 // uniform size, so we only set the entry size for a 32-bit
3351 if (parameters
->target().get_size() == 32)
3352 hashsec
->set_entsize(4);
3354 odyn
->add_section_address(elfcpp::DT_GNU_HASH
, hashsec
);
3358 // Assign offsets to each local portion of the dynamic symbol table.
3361 Layout::assign_local_dynsym_offsets(const Input_objects
* input_objects
)
3363 Output_section
* dynsym
= this->dynsym_section_
;
3364 gold_assert(dynsym
!= NULL
);
3366 off_t off
= dynsym
->offset();
3368 // Skip the dummy symbol at the start of the section.
3369 off
+= dynsym
->entsize();
3371 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
3372 p
!= input_objects
->relobj_end();
3375 unsigned int count
= (*p
)->set_local_dynsym_offset(off
);
3376 off
+= count
* dynsym
->entsize();
3380 // Create the version sections.
3383 Layout::create_version_sections(const Versions
* versions
,
3384 const Symbol_table
* symtab
,
3385 unsigned int local_symcount
,
3386 const std::vector
<Symbol
*>& dynamic_symbols
,
3387 const Output_section
* dynstr
)
3389 if (!versions
->any_defs() && !versions
->any_needs())
3392 switch (parameters
->size_and_endianness())
3394 #ifdef HAVE_TARGET_32_LITTLE
3395 case Parameters::TARGET_32_LITTLE
:
3396 this->sized_create_version_sections
<32, false>(versions
, symtab
,
3398 dynamic_symbols
, dynstr
);
3401 #ifdef HAVE_TARGET_32_BIG
3402 case Parameters::TARGET_32_BIG
:
3403 this->sized_create_version_sections
<32, true>(versions
, symtab
,
3405 dynamic_symbols
, dynstr
);
3408 #ifdef HAVE_TARGET_64_LITTLE
3409 case Parameters::TARGET_64_LITTLE
:
3410 this->sized_create_version_sections
<64, false>(versions
, symtab
,
3412 dynamic_symbols
, dynstr
);
3415 #ifdef HAVE_TARGET_64_BIG
3416 case Parameters::TARGET_64_BIG
:
3417 this->sized_create_version_sections
<64, true>(versions
, symtab
,
3419 dynamic_symbols
, dynstr
);
3427 // Create the version sections, sized version.
3429 template<int size
, bool big_endian
>
3431 Layout::sized_create_version_sections(
3432 const Versions
* versions
,
3433 const Symbol_table
* symtab
,
3434 unsigned int local_symcount
,
3435 const std::vector
<Symbol
*>& dynamic_symbols
,
3436 const Output_section
* dynstr
)
3438 Output_section
* vsec
= this->choose_output_section(NULL
, ".gnu.version",
3439 elfcpp::SHT_GNU_versym
,
3442 ORDER_DYNAMIC_LINKER
,
3445 unsigned char* vbuf
;
3447 versions
->symbol_section_contents
<size
, big_endian
>(symtab
, &this->dynpool_
,
3452 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2,
3455 vsec
->add_output_section_data(vdata
);
3456 vsec
->set_entsize(2);
3457 vsec
->set_link_section(this->dynsym_section_
);
3459 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3460 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
3462 if (versions
->any_defs())
3464 Output_section
* vdsec
;
3465 vdsec
= this->choose_output_section(NULL
, ".gnu.version_d",
3466 elfcpp::SHT_GNU_verdef
,
3468 false, ORDER_DYNAMIC_LINKER
, false);
3470 unsigned char* vdbuf
;
3471 unsigned int vdsize
;
3472 unsigned int vdentries
;
3473 versions
->def_section_contents
<size
, big_endian
>(&this->dynpool_
, &vdbuf
,
3474 &vdsize
, &vdentries
);
3476 Output_section_data
* vddata
=
3477 new Output_data_const_buffer(vdbuf
, vdsize
, 4, "** version defs");
3479 vdsec
->add_output_section_data(vddata
);
3480 vdsec
->set_link_section(dynstr
);
3481 vdsec
->set_info(vdentries
);
3483 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
3484 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
3487 if (versions
->any_needs())
3489 Output_section
* vnsec
;
3490 vnsec
= this->choose_output_section(NULL
, ".gnu.version_r",
3491 elfcpp::SHT_GNU_verneed
,
3493 false, ORDER_DYNAMIC_LINKER
, false);
3495 unsigned char* vnbuf
;
3496 unsigned int vnsize
;
3497 unsigned int vnentries
;
3498 versions
->need_section_contents
<size
, big_endian
>(&this->dynpool_
,
3502 Output_section_data
* vndata
=
3503 new Output_data_const_buffer(vnbuf
, vnsize
, 4, "** version refs");
3505 vnsec
->add_output_section_data(vndata
);
3506 vnsec
->set_link_section(dynstr
);
3507 vnsec
->set_info(vnentries
);
3509 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
3510 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
3514 // Create the .interp section and PT_INTERP segment.
3517 Layout::create_interp(const Target
* target
)
3519 const char* interp
= parameters
->options().dynamic_linker();
3522 interp
= target
->dynamic_linker();
3523 gold_assert(interp
!= NULL
);
3526 size_t len
= strlen(interp
) + 1;
3528 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
3530 Output_section
* osec
= this->choose_output_section(NULL
, ".interp",
3531 elfcpp::SHT_PROGBITS
,
3533 false, ORDER_INTERP
,
3535 osec
->add_output_section_data(odata
);
3537 if (!this->script_options_
->saw_phdrs_clause())
3539 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_INTERP
,
3541 oseg
->add_output_section_to_nonload(osec
, elfcpp::PF_R
);
3545 // Add dynamic tags for the PLT and the dynamic relocs. This is
3546 // called by the target-specific code. This does nothing if not doing
3549 // USE_REL is true for REL relocs rather than RELA relocs.
3551 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3553 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3554 // and we also set DT_PLTREL. We use PLT_REL's output section, since
3555 // some targets have multiple reloc sections in PLT_REL.
3557 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3558 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3560 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3564 Layout::add_target_dynamic_tags(bool use_rel
, const Output_data
* plt_got
,
3565 const Output_data
* plt_rel
,
3566 const Output_data_reloc_generic
* dyn_rel
,
3567 bool add_debug
, bool dynrel_includes_plt
)
3569 Output_data_dynamic
* odyn
= this->dynamic_data_
;
3573 if (plt_got
!= NULL
&& plt_got
->output_section() != NULL
)
3574 odyn
->add_section_address(elfcpp::DT_PLTGOT
, plt_got
);
3576 if (plt_rel
!= NULL
&& plt_rel
->output_section() != NULL
)
3578 odyn
->add_section_size(elfcpp::DT_PLTRELSZ
, plt_rel
->output_section());
3579 odyn
->add_section_address(elfcpp::DT_JMPREL
, plt_rel
->output_section());
3580 odyn
->add_constant(elfcpp::DT_PLTREL
,
3581 use_rel
? elfcpp::DT_REL
: elfcpp::DT_RELA
);
3584 if (dyn_rel
!= NULL
&& dyn_rel
->output_section() != NULL
)
3586 odyn
->add_section_address(use_rel
? elfcpp::DT_REL
: elfcpp::DT_RELA
,
3588 if (plt_rel
!= NULL
&& dynrel_includes_plt
)
3589 odyn
->add_section_size(use_rel
? elfcpp::DT_RELSZ
: elfcpp::DT_RELASZ
,
3592 odyn
->add_section_size(use_rel
? elfcpp::DT_RELSZ
: elfcpp::DT_RELASZ
,
3594 const int size
= parameters
->target().get_size();
3599 rel_tag
= elfcpp::DT_RELENT
;
3601 rel_size
= Reloc_types
<elfcpp::SHT_REL
, 32, false>::reloc_size
;
3602 else if (size
== 64)
3603 rel_size
= Reloc_types
<elfcpp::SHT_REL
, 64, false>::reloc_size
;
3609 rel_tag
= elfcpp::DT_RELAENT
;
3611 rel_size
= Reloc_types
<elfcpp::SHT_RELA
, 32, false>::reloc_size
;
3612 else if (size
== 64)
3613 rel_size
= Reloc_types
<elfcpp::SHT_RELA
, 64, false>::reloc_size
;
3617 odyn
->add_constant(rel_tag
, rel_size
);
3619 if (parameters
->options().combreloc())
3621 size_t c
= dyn_rel
->relative_reloc_count();
3623 odyn
->add_constant((use_rel
3624 ? elfcpp::DT_RELCOUNT
3625 : elfcpp::DT_RELACOUNT
),
3630 if (add_debug
&& !parameters
->options().shared())
3632 // The value of the DT_DEBUG tag is filled in by the dynamic
3633 // linker at run time, and used by the debugger.
3634 odyn
->add_constant(elfcpp::DT_DEBUG
, 0);
3638 // Finish the .dynamic section and PT_DYNAMIC segment.
3641 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
3642 const Symbol_table
* symtab
)
3644 if (!this->script_options_
->saw_phdrs_clause())
3646 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_DYNAMIC
,
3649 oseg
->add_output_section_to_nonload(this->dynamic_section_
,
3650 elfcpp::PF_R
| elfcpp::PF_W
);
3653 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3655 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
3656 p
!= input_objects
->dynobj_end();
3659 if (!(*p
)->is_needed()
3660 && (*p
)->input_file()->options().as_needed())
3662 // This dynamic object was linked with --as-needed, but it
3667 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
3670 if (parameters
->options().shared())
3672 const char* soname
= parameters
->options().soname();
3674 odyn
->add_string(elfcpp::DT_SONAME
, soname
);
3677 Symbol
* sym
= symtab
->lookup(parameters
->options().init());
3678 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
3679 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
3681 sym
= symtab
->lookup(parameters
->options().fini());
3682 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
3683 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
3685 // Look for .init_array, .preinit_array and .fini_array by checking
3687 for(Layout::Section_list::const_iterator p
= this->section_list_
.begin();
3688 p
!= this->section_list_
.end();
3690 switch((*p
)->type())
3692 case elfcpp::SHT_FINI_ARRAY
:
3693 odyn
->add_section_address(elfcpp::DT_FINI_ARRAY
, *p
);
3694 odyn
->add_section_size(elfcpp::DT_FINI_ARRAYSZ
, *p
);
3696 case elfcpp::SHT_INIT_ARRAY
:
3697 odyn
->add_section_address(elfcpp::DT_INIT_ARRAY
, *p
);
3698 odyn
->add_section_size(elfcpp::DT_INIT_ARRAYSZ
, *p
);
3700 case elfcpp::SHT_PREINIT_ARRAY
:
3701 odyn
->add_section_address(elfcpp::DT_PREINIT_ARRAY
, *p
);
3702 odyn
->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ
, *p
);
3708 // Add a DT_RPATH entry if needed.
3709 const General_options::Dir_list
& rpath(parameters
->options().rpath());
3712 std::string rpath_val
;
3713 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
3717 if (rpath_val
.empty())
3718 rpath_val
= p
->name();
3721 // Eliminate duplicates.
3722 General_options::Dir_list::const_iterator q
;
3723 for (q
= rpath
.begin(); q
!= p
; ++q
)
3724 if (q
->name() == p
->name())
3729 rpath_val
+= p
->name();
3734 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
3735 if (parameters
->options().enable_new_dtags())
3736 odyn
->add_string(elfcpp::DT_RUNPATH
, rpath_val
);
3739 // Look for text segments that have dynamic relocations.
3740 bool have_textrel
= false;
3741 if (!this->script_options_
->saw_sections_clause())
3743 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3744 p
!= this->segment_list_
.end();
3747 if (((*p
)->flags() & elfcpp::PF_W
) == 0
3748 && (*p
)->has_dynamic_reloc())
3750 have_textrel
= true;
3757 // We don't know the section -> segment mapping, so we are
3758 // conservative and just look for readonly sections with
3759 // relocations. If those sections wind up in writable segments,
3760 // then we have created an unnecessary DT_TEXTREL entry.
3761 for (Section_list::const_iterator p
= this->section_list_
.begin();
3762 p
!= this->section_list_
.end();
3765 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0
3766 && ((*p
)->flags() & elfcpp::SHF_WRITE
) == 0
3767 && ((*p
)->has_dynamic_reloc()))
3769 have_textrel
= true;
3775 // Add a DT_FLAGS entry. We add it even if no flags are set so that
3776 // post-link tools can easily modify these flags if desired.
3777 unsigned int flags
= 0;
3780 // Add a DT_TEXTREL for compatibility with older loaders.
3781 odyn
->add_constant(elfcpp::DT_TEXTREL
, 0);
3782 flags
|= elfcpp::DF_TEXTREL
;
3784 if (parameters
->options().text())
3785 gold_error(_("read-only segment has dynamic relocations"));
3786 else if (parameters
->options().warn_shared_textrel()
3787 && parameters
->options().shared())
3788 gold_warning(_("shared library text segment is not shareable"));
3790 if (parameters
->options().shared() && this->has_static_tls())
3791 flags
|= elfcpp::DF_STATIC_TLS
;
3792 if (parameters
->options().origin())
3793 flags
|= elfcpp::DF_ORIGIN
;
3794 if (parameters
->options().Bsymbolic())
3796 flags
|= elfcpp::DF_SYMBOLIC
;
3797 // Add DT_SYMBOLIC for compatibility with older loaders.
3798 odyn
->add_constant(elfcpp::DT_SYMBOLIC
, 0);
3800 if (parameters
->options().now())
3801 flags
|= elfcpp::DF_BIND_NOW
;
3802 odyn
->add_constant(elfcpp::DT_FLAGS
, flags
);
3805 if (parameters
->options().initfirst())
3806 flags
|= elfcpp::DF_1_INITFIRST
;
3807 if (parameters
->options().interpose())
3808 flags
|= elfcpp::DF_1_INTERPOSE
;
3809 if (parameters
->options().loadfltr())
3810 flags
|= elfcpp::DF_1_LOADFLTR
;
3811 if (parameters
->options().nodefaultlib())
3812 flags
|= elfcpp::DF_1_NODEFLIB
;
3813 if (parameters
->options().nodelete())
3814 flags
|= elfcpp::DF_1_NODELETE
;
3815 if (parameters
->options().nodlopen())
3816 flags
|= elfcpp::DF_1_NOOPEN
;
3817 if (parameters
->options().nodump())
3818 flags
|= elfcpp::DF_1_NODUMP
;
3819 if (!parameters
->options().shared())
3820 flags
&= ~(elfcpp::DF_1_INITFIRST
3821 | elfcpp::DF_1_NODELETE
3822 | elfcpp::DF_1_NOOPEN
);
3823 if (parameters
->options().origin())
3824 flags
|= elfcpp::DF_1_ORIGIN
;
3825 if (parameters
->options().now())
3826 flags
|= elfcpp::DF_1_NOW
;
3828 odyn
->add_constant(elfcpp::DT_FLAGS_1
, flags
);
3831 // Set the size of the _DYNAMIC symbol table to be the size of the
3835 Layout::set_dynamic_symbol_size(const Symbol_table
* symtab
)
3837 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3838 odyn
->finalize_data_size();
3839 off_t data_size
= odyn
->data_size();
3840 const int size
= parameters
->target().get_size();
3842 symtab
->get_sized_symbol
<32>(this->dynamic_symbol_
)->set_symsize(data_size
);
3843 else if (size
== 64)
3844 symtab
->get_sized_symbol
<64>(this->dynamic_symbol_
)->set_symsize(data_size
);
3849 // The mapping of input section name prefixes to output section names.
3850 // In some cases one prefix is itself a prefix of another prefix; in
3851 // such a case the longer prefix must come first. These prefixes are
3852 // based on the GNU linker default ELF linker script.
3854 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3855 const Layout::Section_name_mapping
Layout::section_name_mapping
[] =
3857 MAPPING_INIT(".text.", ".text"),
3858 MAPPING_INIT(".ctors.", ".ctors"),
3859 MAPPING_INIT(".dtors.", ".dtors"),
3860 MAPPING_INIT(".rodata.", ".rodata"),
3861 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3862 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3863 MAPPING_INIT(".data.", ".data"),
3864 MAPPING_INIT(".bss.", ".bss"),
3865 MAPPING_INIT(".tdata.", ".tdata"),
3866 MAPPING_INIT(".tbss.", ".tbss"),
3867 MAPPING_INIT(".init_array.", ".init_array"),
3868 MAPPING_INIT(".fini_array.", ".fini_array"),
3869 MAPPING_INIT(".sdata.", ".sdata"),
3870 MAPPING_INIT(".sbss.", ".sbss"),
3871 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3872 // differently depending on whether it is creating a shared library.
3873 MAPPING_INIT(".sdata2.", ".sdata"),
3874 MAPPING_INIT(".sbss2.", ".sbss"),
3875 MAPPING_INIT(".lrodata.", ".lrodata"),
3876 MAPPING_INIT(".ldata.", ".ldata"),
3877 MAPPING_INIT(".lbss.", ".lbss"),
3878 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3879 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3880 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3881 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3882 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3883 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3884 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3885 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3886 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3887 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3888 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3889 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3890 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3891 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3892 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3893 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3894 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3895 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
3896 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3897 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
3898 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3902 const int Layout::section_name_mapping_count
=
3903 (sizeof(Layout::section_name_mapping
)
3904 / sizeof(Layout::section_name_mapping
[0]));
3906 // Choose the output section name to use given an input section name.
3907 // Set *PLEN to the length of the name. *PLEN is initialized to the
3911 Layout::output_section_name(const char* name
, size_t* plen
)
3913 // gcc 4.3 generates the following sorts of section names when it
3914 // needs a section name specific to a function:
3920 // .data.rel.local.FN
3922 // .data.rel.ro.local.FN
3929 // The GNU linker maps all of those to the part before the .FN,
3930 // except that .data.rel.local.FN is mapped to .data, and
3931 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
3932 // beginning with .data.rel.ro.local are grouped together.
3934 // For an anonymous namespace, the string FN can contain a '.'.
3936 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3937 // GNU linker maps to .rodata.
3939 // The .data.rel.ro sections are used with -z relro. The sections
3940 // are recognized by name. We use the same names that the GNU
3941 // linker does for these sections.
3943 // It is hard to handle this in a principled way, so we don't even
3944 // try. We use a table of mappings. If the input section name is
3945 // not found in the table, we simply use it as the output section
3948 const Section_name_mapping
* psnm
= section_name_mapping
;
3949 for (int i
= 0; i
< section_name_mapping_count
; ++i
, ++psnm
)
3951 if (strncmp(name
, psnm
->from
, psnm
->fromlen
) == 0)
3953 *plen
= psnm
->tolen
;
3961 // Check if a comdat group or .gnu.linkonce section with the given
3962 // NAME is selected for the link. If there is already a section,
3963 // *KEPT_SECTION is set to point to the existing section and the
3964 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3965 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3966 // *KEPT_SECTION is set to the internal copy and the function returns
3970 Layout::find_or_add_kept_section(const std::string
& name
,
3975 Kept_section
** kept_section
)
3977 // It's normal to see a couple of entries here, for the x86 thunk
3978 // sections. If we see more than a few, we're linking a C++
3979 // program, and we resize to get more space to minimize rehashing.
3980 if (this->signatures_
.size() > 4
3981 && !this->resized_signatures_
)
3983 reserve_unordered_map(&this->signatures_
,
3984 this->number_of_input_files_
* 64);
3985 this->resized_signatures_
= true;
3988 Kept_section candidate
;
3989 std::pair
<Signatures::iterator
, bool> ins
=
3990 this->signatures_
.insert(std::make_pair(name
, candidate
));
3992 if (kept_section
!= NULL
)
3993 *kept_section
= &ins
.first
->second
;
3996 // This is the first time we've seen this signature.
3997 ins
.first
->second
.set_object(object
);
3998 ins
.first
->second
.set_shndx(shndx
);
4000 ins
.first
->second
.set_is_comdat();
4002 ins
.first
->second
.set_is_group_name();
4006 // We have already seen this signature.
4008 if (ins
.first
->second
.is_group_name())
4010 // We've already seen a real section group with this signature.
4011 // If the kept group is from a plugin object, and we're in the
4012 // replacement phase, accept the new one as a replacement.
4013 if (ins
.first
->second
.object() == NULL
4014 && parameters
->options().plugins()->in_replacement_phase())
4016 ins
.first
->second
.set_object(object
);
4017 ins
.first
->second
.set_shndx(shndx
);
4022 else if (is_group_name
)
4024 // This is a real section group, and we've already seen a
4025 // linkonce section with this signature. Record that we've seen
4026 // a section group, and don't include this section group.
4027 ins
.first
->second
.set_is_group_name();
4032 // We've already seen a linkonce section and this is a linkonce
4033 // section. These don't block each other--this may be the same
4034 // symbol name with different section types.
4039 // Store the allocated sections into the section list.
4042 Layout::get_allocated_sections(Section_list
* section_list
) const
4044 for (Section_list::const_iterator p
= this->section_list_
.begin();
4045 p
!= this->section_list_
.end();
4047 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
4048 section_list
->push_back(*p
);
4051 // Create an output segment.
4054 Layout::make_output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
4056 gold_assert(!parameters
->options().relocatable());
4057 Output_segment
* oseg
= new Output_segment(type
, flags
);
4058 this->segment_list_
.push_back(oseg
);
4060 if (type
== elfcpp::PT_TLS
)
4061 this->tls_segment_
= oseg
;
4062 else if (type
== elfcpp::PT_GNU_RELRO
)
4063 this->relro_segment_
= oseg
;
4068 // Write out the Output_sections. Most won't have anything to write,
4069 // since most of the data will come from input sections which are
4070 // handled elsewhere. But some Output_sections do have Output_data.
4073 Layout::write_output_sections(Output_file
* of
) const
4075 for (Section_list::const_iterator p
= this->section_list_
.begin();
4076 p
!= this->section_list_
.end();
4079 if (!(*p
)->after_input_sections())
4084 // Write out data not associated with a section or the symbol table.
4087 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
4089 if (!parameters
->options().strip_all())
4091 const Output_section
* symtab_section
= this->symtab_section_
;
4092 for (Section_list::const_iterator p
= this->section_list_
.begin();
4093 p
!= this->section_list_
.end();
4096 if ((*p
)->needs_symtab_index())
4098 gold_assert(symtab_section
!= NULL
);
4099 unsigned int index
= (*p
)->symtab_index();
4100 gold_assert(index
> 0 && index
!= -1U);
4101 off_t off
= (symtab_section
->offset()
4102 + index
* symtab_section
->entsize());
4103 symtab
->write_section_symbol(*p
, this->symtab_xindex_
, of
, off
);
4108 const Output_section
* dynsym_section
= this->dynsym_section_
;
4109 for (Section_list::const_iterator p
= this->section_list_
.begin();
4110 p
!= this->section_list_
.end();
4113 if ((*p
)->needs_dynsym_index())
4115 gold_assert(dynsym_section
!= NULL
);
4116 unsigned int index
= (*p
)->dynsym_index();
4117 gold_assert(index
> 0 && index
!= -1U);
4118 off_t off
= (dynsym_section
->offset()
4119 + index
* dynsym_section
->entsize());
4120 symtab
->write_section_symbol(*p
, this->dynsym_xindex_
, of
, off
);
4124 // Write out the Output_data which are not in an Output_section.
4125 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
4126 p
!= this->special_output_list_
.end();
4131 // Write out the Output_sections which can only be written after the
4132 // input sections are complete.
4135 Layout::write_sections_after_input_sections(Output_file
* of
)
4137 // Determine the final section offsets, and thus the final output
4138 // file size. Note we finalize the .shstrab last, to allow the
4139 // after_input_section sections to modify their section-names before
4141 if (this->any_postprocessing_sections_
)
4143 off_t off
= this->output_file_size_
;
4144 off
= this->set_section_offsets(off
, POSTPROCESSING_SECTIONS_PASS
);
4146 // Now that we've finalized the names, we can finalize the shstrab.
4148 this->set_section_offsets(off
,
4149 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
4151 if (off
> this->output_file_size_
)
4154 this->output_file_size_
= off
;
4158 for (Section_list::const_iterator p
= this->section_list_
.begin();
4159 p
!= this->section_list_
.end();
4162 if ((*p
)->after_input_sections())
4166 this->section_headers_
->write(of
);
4169 // If the build ID requires computing a checksum, do so here, and
4170 // write it out. We compute a checksum over the entire file because
4171 // that is simplest.
4174 Layout::write_build_id(Output_file
* of
) const
4176 if (this->build_id_note_
== NULL
)
4179 const unsigned char* iv
= of
->get_input_view(0, this->output_file_size_
);
4181 unsigned char* ov
= of
->get_output_view(this->build_id_note_
->offset(),
4182 this->build_id_note_
->data_size());
4184 const char* style
= parameters
->options().build_id();
4185 if (strcmp(style
, "sha1") == 0)
4188 sha1_init_ctx(&ctx
);
4189 sha1_process_bytes(iv
, this->output_file_size_
, &ctx
);
4190 sha1_finish_ctx(&ctx
, ov
);
4192 else if (strcmp(style
, "md5") == 0)
4196 md5_process_bytes(iv
, this->output_file_size_
, &ctx
);
4197 md5_finish_ctx(&ctx
, ov
);
4202 of
->write_output_view(this->build_id_note_
->offset(),
4203 this->build_id_note_
->data_size(),
4206 of
->free_input_view(0, this->output_file_size_
, iv
);
4209 // Write out a binary file. This is called after the link is
4210 // complete. IN is the temporary output file we used to generate the
4211 // ELF code. We simply walk through the segments, read them from
4212 // their file offset in IN, and write them to their load address in
4213 // the output file. FIXME: with a bit more work, we could support
4214 // S-records and/or Intel hex format here.
4217 Layout::write_binary(Output_file
* in
) const
4219 gold_assert(parameters
->options().oformat_enum()
4220 == General_options::OBJECT_FORMAT_BINARY
);
4222 // Get the size of the binary file.
4223 uint64_t max_load_address
= 0;
4224 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4225 p
!= this->segment_list_
.end();
4228 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
4230 uint64_t max_paddr
= (*p
)->paddr() + (*p
)->filesz();
4231 if (max_paddr
> max_load_address
)
4232 max_load_address
= max_paddr
;
4236 Output_file
out(parameters
->options().output_file_name());
4237 out
.open(max_load_address
);
4239 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4240 p
!= this->segment_list_
.end();
4243 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
4245 const unsigned char* vin
= in
->get_input_view((*p
)->offset(),
4247 unsigned char* vout
= out
.get_output_view((*p
)->paddr(),
4249 memcpy(vout
, vin
, (*p
)->filesz());
4250 out
.write_output_view((*p
)->paddr(), (*p
)->filesz(), vout
);
4251 in
->free_input_view((*p
)->offset(), (*p
)->filesz(), vin
);
4258 // Print the output sections to the map file.
4261 Layout::print_to_mapfile(Mapfile
* mapfile
) const
4263 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4264 p
!= this->segment_list_
.end();
4266 (*p
)->print_sections_to_mapfile(mapfile
);
4269 // Print statistical information to stderr. This is used for --stats.
4272 Layout::print_stats() const
4274 this->namepool_
.print_stats("section name pool");
4275 this->sympool_
.print_stats("output symbol name pool");
4276 this->dynpool_
.print_stats("dynamic name pool");
4278 for (Section_list::const_iterator p
= this->section_list_
.begin();
4279 p
!= this->section_list_
.end();
4281 (*p
)->print_merge_stats();
4284 // Write_sections_task methods.
4286 // We can always run this task.
4289 Write_sections_task::is_runnable()
4294 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4298 Write_sections_task::locks(Task_locker
* tl
)
4300 tl
->add(this, this->output_sections_blocker_
);
4301 tl
->add(this, this->final_blocker_
);
4304 // Run the task--write out the data.
4307 Write_sections_task::run(Workqueue
*)
4309 this->layout_
->write_output_sections(this->of_
);
4312 // Write_data_task methods.
4314 // We can always run this task.
4317 Write_data_task::is_runnable()
4322 // We need to unlock FINAL_BLOCKER when finished.
4325 Write_data_task::locks(Task_locker
* tl
)
4327 tl
->add(this, this->final_blocker_
);
4330 // Run the task--write out the data.
4333 Write_data_task::run(Workqueue
*)
4335 this->layout_
->write_data(this->symtab_
, this->of_
);
4338 // Write_symbols_task methods.
4340 // We can always run this task.
4343 Write_symbols_task::is_runnable()
4348 // We need to unlock FINAL_BLOCKER when finished.
4351 Write_symbols_task::locks(Task_locker
* tl
)
4353 tl
->add(this, this->final_blocker_
);
4356 // Run the task--write out the symbols.
4359 Write_symbols_task::run(Workqueue
*)
4361 this->symtab_
->write_globals(this->sympool_
, this->dynpool_
,
4362 this->layout_
->symtab_xindex(),
4363 this->layout_
->dynsym_xindex(), this->of_
);
4366 // Write_after_input_sections_task methods.
4368 // We can only run this task after the input sections have completed.
4371 Write_after_input_sections_task::is_runnable()
4373 if (this->input_sections_blocker_
->is_blocked())
4374 return this->input_sections_blocker_
;
4378 // We need to unlock FINAL_BLOCKER when finished.
4381 Write_after_input_sections_task::locks(Task_locker
* tl
)
4383 tl
->add(this, this->final_blocker_
);
4389 Write_after_input_sections_task::run(Workqueue
*)
4391 this->layout_
->write_sections_after_input_sections(this->of_
);
4394 // Close_task_runner methods.
4396 // Run the task--close the file.
4399 Close_task_runner::run(Workqueue
*, const Task
*)
4401 // If we need to compute a checksum for the BUILD if, we do so here.
4402 this->layout_
->write_build_id(this->of_
);
4404 // If we've been asked to create a binary file, we do so here.
4405 if (this->options_
->oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
4406 this->layout_
->write_binary(this->of_
);
4411 // Instantiate the templates we need. We could use the configure
4412 // script to restrict this to only the ones for implemented targets.
4414 #ifdef HAVE_TARGET_32_LITTLE
4417 Layout::layout
<32, false>(Sized_relobj
<32, false>* object
, unsigned int shndx
,
4419 const elfcpp::Shdr
<32, false>& shdr
,
4420 unsigned int, unsigned int, off_t
*);
4423 #ifdef HAVE_TARGET_32_BIG
4426 Layout::layout
<32, true>(Sized_relobj
<32, true>* object
, unsigned int shndx
,
4428 const elfcpp::Shdr
<32, true>& shdr
,
4429 unsigned int, unsigned int, off_t
*);
4432 #ifdef HAVE_TARGET_64_LITTLE
4435 Layout::layout
<64, false>(Sized_relobj
<64, false>* object
, unsigned int shndx
,
4437 const elfcpp::Shdr
<64, false>& shdr
,
4438 unsigned int, unsigned int, off_t
*);
4441 #ifdef HAVE_TARGET_64_BIG
4444 Layout::layout
<64, true>(Sized_relobj
<64, true>* object
, unsigned int shndx
,
4446 const elfcpp::Shdr
<64, true>& shdr
,
4447 unsigned int, unsigned int, off_t
*);
4450 #ifdef HAVE_TARGET_32_LITTLE
4453 Layout::layout_reloc
<32, false>(Sized_relobj
<32, false>* object
,
4454 unsigned int reloc_shndx
,
4455 const elfcpp::Shdr
<32, false>& shdr
,
4456 Output_section
* data_section
,
4457 Relocatable_relocs
* rr
);
4460 #ifdef HAVE_TARGET_32_BIG
4463 Layout::layout_reloc
<32, true>(Sized_relobj
<32, true>* object
,
4464 unsigned int reloc_shndx
,
4465 const elfcpp::Shdr
<32, true>& shdr
,
4466 Output_section
* data_section
,
4467 Relocatable_relocs
* rr
);
4470 #ifdef HAVE_TARGET_64_LITTLE
4473 Layout::layout_reloc
<64, false>(Sized_relobj
<64, false>* object
,
4474 unsigned int reloc_shndx
,
4475 const elfcpp::Shdr
<64, false>& shdr
,
4476 Output_section
* data_section
,
4477 Relocatable_relocs
* rr
);
4480 #ifdef HAVE_TARGET_64_BIG
4483 Layout::layout_reloc
<64, true>(Sized_relobj
<64, true>* object
,
4484 unsigned int reloc_shndx
,
4485 const elfcpp::Shdr
<64, true>& shdr
,
4486 Output_section
* data_section
,
4487 Relocatable_relocs
* rr
);
4490 #ifdef HAVE_TARGET_32_LITTLE
4493 Layout::layout_group
<32, false>(Symbol_table
* symtab
,
4494 Sized_relobj
<32, false>* object
,
4496 const char* group_section_name
,
4497 const char* signature
,
4498 const elfcpp::Shdr
<32, false>& shdr
,
4499 elfcpp::Elf_Word flags
,
4500 std::vector
<unsigned int>* shndxes
);
4503 #ifdef HAVE_TARGET_32_BIG
4506 Layout::layout_group
<32, true>(Symbol_table
* symtab
,
4507 Sized_relobj
<32, true>* object
,
4509 const char* group_section_name
,
4510 const char* signature
,
4511 const elfcpp::Shdr
<32, true>& shdr
,
4512 elfcpp::Elf_Word flags
,
4513 std::vector
<unsigned int>* shndxes
);
4516 #ifdef HAVE_TARGET_64_LITTLE
4519 Layout::layout_group
<64, false>(Symbol_table
* symtab
,
4520 Sized_relobj
<64, false>* object
,
4522 const char* group_section_name
,
4523 const char* signature
,
4524 const elfcpp::Shdr
<64, false>& shdr
,
4525 elfcpp::Elf_Word flags
,
4526 std::vector
<unsigned int>* shndxes
);
4529 #ifdef HAVE_TARGET_64_BIG
4532 Layout::layout_group
<64, true>(Symbol_table
* symtab
,
4533 Sized_relobj
<64, true>* object
,
4535 const char* group_section_name
,
4536 const char* signature
,
4537 const elfcpp::Shdr
<64, true>& shdr
,
4538 elfcpp::Elf_Word flags
,
4539 std::vector
<unsigned int>* shndxes
);
4542 #ifdef HAVE_TARGET_32_LITTLE
4545 Layout::layout_eh_frame
<32, false>(Sized_relobj
<32, false>* object
,
4546 const unsigned char* symbols
,
4548 const unsigned char* symbol_names
,
4549 off_t symbol_names_size
,
4551 const elfcpp::Shdr
<32, false>& shdr
,
4552 unsigned int reloc_shndx
,
4553 unsigned int reloc_type
,
4557 #ifdef HAVE_TARGET_32_BIG
4560 Layout::layout_eh_frame
<32, true>(Sized_relobj
<32, true>* object
,
4561 const unsigned char* symbols
,
4563 const unsigned char* symbol_names
,
4564 off_t symbol_names_size
,
4566 const elfcpp::Shdr
<32, true>& shdr
,
4567 unsigned int reloc_shndx
,
4568 unsigned int reloc_type
,
4572 #ifdef HAVE_TARGET_64_LITTLE
4575 Layout::layout_eh_frame
<64, false>(Sized_relobj
<64, false>* object
,
4576 const unsigned char* symbols
,
4578 const unsigned char* symbol_names
,
4579 off_t symbol_names_size
,
4581 const elfcpp::Shdr
<64, false>& shdr
,
4582 unsigned int reloc_shndx
,
4583 unsigned int reloc_type
,
4587 #ifdef HAVE_TARGET_64_BIG
4590 Layout::layout_eh_frame
<64, true>(Sized_relobj
<64, true>* object
,
4591 const unsigned char* symbols
,
4593 const unsigned char* symbol_names
,
4594 off_t symbol_names_size
,
4596 const elfcpp::Shdr
<64, true>& shdr
,
4597 unsigned int reloc_shndx
,
4598 unsigned int reloc_type
,
4602 } // End namespace gold.