2010-08-03 Ian Lance Taylor <iant@google.com>
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "reloc.h"
50 #include "descriptors.h"
51 #include "plugin.h"
52 #include "incremental.h"
53 #include "layout.h"
54
55 namespace gold
56 {
57
58 // Layout::Relaxation_debug_check methods.
59
60 // Check that sections and special data are in reset states.
61 // We do not save states for Output_sections and special Output_data.
62 // So we check that they have not assigned any addresses or offsets.
63 // clean_up_after_relaxation simply resets their addresses and offsets.
64 void
65 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
66 const Layout::Section_list& sections,
67 const Layout::Data_list& special_outputs)
68 {
69 for(Layout::Section_list::const_iterator p = sections.begin();
70 p != sections.end();
71 ++p)
72 gold_assert((*p)->address_and_file_offset_have_reset_values());
73
74 for(Layout::Data_list::const_iterator p = special_outputs.begin();
75 p != special_outputs.end();
76 ++p)
77 gold_assert((*p)->address_and_file_offset_have_reset_values());
78 }
79
80 // Save information of SECTIONS for checking later.
81
82 void
83 Layout::Relaxation_debug_check::read_sections(
84 const Layout::Section_list& sections)
85 {
86 for(Layout::Section_list::const_iterator p = sections.begin();
87 p != sections.end();
88 ++p)
89 {
90 Output_section* os = *p;
91 Section_info info;
92 info.output_section = os;
93 info.address = os->is_address_valid() ? os->address() : 0;
94 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
95 info.offset = os->is_offset_valid()? os->offset() : -1 ;
96 this->section_infos_.push_back(info);
97 }
98 }
99
100 // Verify SECTIONS using previously recorded information.
101
102 void
103 Layout::Relaxation_debug_check::verify_sections(
104 const Layout::Section_list& sections)
105 {
106 size_t i = 0;
107 for(Layout::Section_list::const_iterator p = sections.begin();
108 p != sections.end();
109 ++p, ++i)
110 {
111 Output_section* os = *p;
112 uint64_t address = os->is_address_valid() ? os->address() : 0;
113 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
114 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
115
116 if (i >= this->section_infos_.size())
117 {
118 gold_fatal("Section_info of %s missing.\n", os->name());
119 }
120 const Section_info& info = this->section_infos_[i];
121 if (os != info.output_section)
122 gold_fatal("Section order changed. Expecting %s but see %s\n",
123 info.output_section->name(), os->name());
124 if (address != info.address
125 || data_size != info.data_size
126 || offset != info.offset)
127 gold_fatal("Section %s changed.\n", os->name());
128 }
129 }
130
131 // Layout_task_runner methods.
132
133 // Lay out the sections. This is called after all the input objects
134 // have been read.
135
136 void
137 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
138 {
139 off_t file_size = this->layout_->finalize(this->input_objects_,
140 this->symtab_,
141 this->target_,
142 task);
143
144 // Now we know the final size of the output file and we know where
145 // each piece of information goes.
146
147 if (this->mapfile_ != NULL)
148 {
149 this->mapfile_->print_discarded_sections(this->input_objects_);
150 this->layout_->print_to_mapfile(this->mapfile_);
151 }
152
153 Output_file* of = new Output_file(parameters->options().output_file_name());
154 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
155 of->set_is_temporary();
156 of->open(file_size);
157
158 // Queue up the final set of tasks.
159 gold::queue_final_tasks(this->options_, this->input_objects_,
160 this->symtab_, this->layout_, workqueue, of);
161 }
162
163 // Layout methods.
164
165 Layout::Layout(int number_of_input_files, Script_options* script_options)
166 : number_of_input_files_(number_of_input_files),
167 script_options_(script_options),
168 namepool_(),
169 sympool_(),
170 dynpool_(),
171 signatures_(),
172 section_name_map_(),
173 segment_list_(),
174 section_list_(),
175 unattached_section_list_(),
176 special_output_list_(),
177 section_headers_(NULL),
178 tls_segment_(NULL),
179 relro_segment_(NULL),
180 increase_relro_(0),
181 symtab_section_(NULL),
182 symtab_xindex_(NULL),
183 dynsym_section_(NULL),
184 dynsym_xindex_(NULL),
185 dynamic_section_(NULL),
186 dynamic_symbol_(NULL),
187 dynamic_data_(NULL),
188 eh_frame_section_(NULL),
189 eh_frame_data_(NULL),
190 added_eh_frame_data_(false),
191 eh_frame_hdr_section_(NULL),
192 build_id_note_(NULL),
193 debug_abbrev_(NULL),
194 debug_info_(NULL),
195 group_signatures_(),
196 output_file_size_(-1),
197 have_added_input_section_(false),
198 sections_are_attached_(false),
199 input_requires_executable_stack_(false),
200 input_with_gnu_stack_note_(false),
201 input_without_gnu_stack_note_(false),
202 has_static_tls_(false),
203 any_postprocessing_sections_(false),
204 resized_signatures_(false),
205 have_stabstr_section_(false),
206 incremental_inputs_(NULL),
207 record_output_section_data_from_script_(false),
208 script_output_section_data_list_(),
209 segment_states_(NULL),
210 relaxation_debug_check_(NULL)
211 {
212 // Make space for more than enough segments for a typical file.
213 // This is just for efficiency--it's OK if we wind up needing more.
214 this->segment_list_.reserve(12);
215
216 // We expect two unattached Output_data objects: the file header and
217 // the segment headers.
218 this->special_output_list_.reserve(2);
219
220 // Initialize structure needed for an incremental build.
221 if (parameters->options().incremental())
222 this->incremental_inputs_ = new Incremental_inputs;
223
224 // The section name pool is worth optimizing in all cases, because
225 // it is small, but there are often overlaps due to .rel sections.
226 this->namepool_.set_optimize();
227 }
228
229 // Hash a key we use to look up an output section mapping.
230
231 size_t
232 Layout::Hash_key::operator()(const Layout::Key& k) const
233 {
234 return k.first + k.second.first + k.second.second;
235 }
236
237 // Returns whether the given section is in the list of
238 // debug-sections-used-by-some-version-of-gdb. Currently,
239 // we've checked versions of gdb up to and including 6.7.1.
240
241 static const char* gdb_sections[] =
242 { ".debug_abbrev",
243 // ".debug_aranges", // not used by gdb as of 6.7.1
244 ".debug_frame",
245 ".debug_info",
246 ".debug_types",
247 ".debug_line",
248 ".debug_loc",
249 ".debug_macinfo",
250 // ".debug_pubnames", // not used by gdb as of 6.7.1
251 ".debug_ranges",
252 ".debug_str",
253 };
254
255 static const char* lines_only_debug_sections[] =
256 { ".debug_abbrev",
257 // ".debug_aranges", // not used by gdb as of 6.7.1
258 // ".debug_frame",
259 ".debug_info",
260 // ".debug_types",
261 ".debug_line",
262 // ".debug_loc",
263 // ".debug_macinfo",
264 // ".debug_pubnames", // not used by gdb as of 6.7.1
265 // ".debug_ranges",
266 ".debug_str",
267 };
268
269 static inline bool
270 is_gdb_debug_section(const char* str)
271 {
272 // We can do this faster: binary search or a hashtable. But why bother?
273 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
274 if (strcmp(str, gdb_sections[i]) == 0)
275 return true;
276 return false;
277 }
278
279 static inline bool
280 is_lines_only_debug_section(const char* str)
281 {
282 // We can do this faster: binary search or a hashtable. But why bother?
283 for (size_t i = 0;
284 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
285 ++i)
286 if (strcmp(str, lines_only_debug_sections[i]) == 0)
287 return true;
288 return false;
289 }
290
291 // Whether to include this section in the link.
292
293 template<int size, bool big_endian>
294 bool
295 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
296 const elfcpp::Shdr<size, big_endian>& shdr)
297 {
298 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
299 return false;
300
301 switch (shdr.get_sh_type())
302 {
303 case elfcpp::SHT_NULL:
304 case elfcpp::SHT_SYMTAB:
305 case elfcpp::SHT_DYNSYM:
306 case elfcpp::SHT_HASH:
307 case elfcpp::SHT_DYNAMIC:
308 case elfcpp::SHT_SYMTAB_SHNDX:
309 return false;
310
311 case elfcpp::SHT_STRTAB:
312 // Discard the sections which have special meanings in the ELF
313 // ABI. Keep others (e.g., .stabstr). We could also do this by
314 // checking the sh_link fields of the appropriate sections.
315 return (strcmp(name, ".dynstr") != 0
316 && strcmp(name, ".strtab") != 0
317 && strcmp(name, ".shstrtab") != 0);
318
319 case elfcpp::SHT_RELA:
320 case elfcpp::SHT_REL:
321 case elfcpp::SHT_GROUP:
322 // If we are emitting relocations these should be handled
323 // elsewhere.
324 gold_assert(!parameters->options().relocatable()
325 && !parameters->options().emit_relocs());
326 return false;
327
328 case elfcpp::SHT_PROGBITS:
329 if (parameters->options().strip_debug()
330 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
331 {
332 if (is_debug_info_section(name))
333 return false;
334 }
335 if (parameters->options().strip_debug_non_line()
336 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
337 {
338 // Debugging sections can only be recognized by name.
339 if (is_prefix_of(".debug", name)
340 && !is_lines_only_debug_section(name))
341 return false;
342 }
343 if (parameters->options().strip_debug_gdb()
344 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
345 {
346 // Debugging sections can only be recognized by name.
347 if (is_prefix_of(".debug", name)
348 && !is_gdb_debug_section(name))
349 return false;
350 }
351 if (parameters->options().strip_lto_sections()
352 && !parameters->options().relocatable()
353 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
354 {
355 // Ignore LTO sections containing intermediate code.
356 if (is_prefix_of(".gnu.lto_", name))
357 return false;
358 }
359 // The GNU linker strips .gnu_debuglink sections, so we do too.
360 // This is a feature used to keep debugging information in
361 // separate files.
362 if (strcmp(name, ".gnu_debuglink") == 0)
363 return false;
364 return true;
365
366 default:
367 return true;
368 }
369 }
370
371 // Return an output section named NAME, or NULL if there is none.
372
373 Output_section*
374 Layout::find_output_section(const char* name) const
375 {
376 for (Section_list::const_iterator p = this->section_list_.begin();
377 p != this->section_list_.end();
378 ++p)
379 if (strcmp((*p)->name(), name) == 0)
380 return *p;
381 return NULL;
382 }
383
384 // Return an output segment of type TYPE, with segment flags SET set
385 // and segment flags CLEAR clear. Return NULL if there is none.
386
387 Output_segment*
388 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
389 elfcpp::Elf_Word clear) const
390 {
391 for (Segment_list::const_iterator p = this->segment_list_.begin();
392 p != this->segment_list_.end();
393 ++p)
394 if (static_cast<elfcpp::PT>((*p)->type()) == type
395 && ((*p)->flags() & set) == set
396 && ((*p)->flags() & clear) == 0)
397 return *p;
398 return NULL;
399 }
400
401 // Return the output section to use for section NAME with type TYPE
402 // and section flags FLAGS. NAME must be canonicalized in the string
403 // pool, and NAME_KEY is the key. IS_INTERP is true if this is the
404 // .interp section. IS_DYNAMIC_LINKER_SECTION is true if this section
405 // is used by the dynamic linker. IS_RELRO is true for a relro
406 // section. IS_LAST_RELRO is true for the last relro section.
407 // IS_FIRST_NON_RELRO is true for the first non-relro section.
408
409 Output_section*
410 Layout::get_output_section(const char* name, Stringpool::Key name_key,
411 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
412 Output_section_order order, bool is_relro)
413 {
414 elfcpp::Elf_Xword lookup_flags = flags;
415
416 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
417 // read-write with read-only sections. Some other ELF linkers do
418 // not do this. FIXME: Perhaps there should be an option
419 // controlling this.
420 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
421
422 const Key key(name_key, std::make_pair(type, lookup_flags));
423 const std::pair<Key, Output_section*> v(key, NULL);
424 std::pair<Section_name_map::iterator, bool> ins(
425 this->section_name_map_.insert(v));
426
427 if (!ins.second)
428 return ins.first->second;
429 else
430 {
431 // This is the first time we've seen this name/type/flags
432 // combination. For compatibility with the GNU linker, we
433 // combine sections with contents and zero flags with sections
434 // with non-zero flags. This is a workaround for cases where
435 // assembler code forgets to set section flags. FIXME: Perhaps
436 // there should be an option to control this.
437 Output_section* os = NULL;
438
439 if (type == elfcpp::SHT_PROGBITS)
440 {
441 if (flags == 0)
442 {
443 Output_section* same_name = this->find_output_section(name);
444 if (same_name != NULL
445 && same_name->type() == elfcpp::SHT_PROGBITS
446 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
447 os = same_name;
448 }
449 else if ((flags & elfcpp::SHF_TLS) == 0)
450 {
451 elfcpp::Elf_Xword zero_flags = 0;
452 const Key zero_key(name_key, std::make_pair(type, zero_flags));
453 Section_name_map::iterator p =
454 this->section_name_map_.find(zero_key);
455 if (p != this->section_name_map_.end())
456 os = p->second;
457 }
458 }
459
460 if (os == NULL)
461 os = this->make_output_section(name, type, flags, order, is_relro);
462
463 ins.first->second = os;
464 return os;
465 }
466 }
467
468 // Pick the output section to use for section NAME, in input file
469 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
470 // linker created section. IS_INPUT_SECTION is true if we are
471 // choosing an output section for an input section found in a input
472 // file. IS_INTERP is true if this is the .interp section.
473 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
474 // dynamic linker. IS_RELRO is true for a relro section.
475 // IS_LAST_RELRO is true for the last relro section.
476 // IS_FIRST_NON_RELRO is true for the first non-relro section. This
477 // will return NULL if the input section should be discarded.
478
479 Output_section*
480 Layout::choose_output_section(const Relobj* relobj, const char* name,
481 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
482 bool is_input_section, Output_section_order order,
483 bool is_relro)
484 {
485 // We should not see any input sections after we have attached
486 // sections to segments.
487 gold_assert(!is_input_section || !this->sections_are_attached_);
488
489 // Some flags in the input section should not be automatically
490 // copied to the output section.
491 flags &= ~ (elfcpp::SHF_INFO_LINK
492 | elfcpp::SHF_LINK_ORDER
493 | elfcpp::SHF_GROUP
494 | elfcpp::SHF_MERGE
495 | elfcpp::SHF_STRINGS);
496
497 if (this->script_options_->saw_sections_clause())
498 {
499 // We are using a SECTIONS clause, so the output section is
500 // chosen based only on the name.
501
502 Script_sections* ss = this->script_options_->script_sections();
503 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
504 Output_section** output_section_slot;
505 Script_sections::Section_type script_section_type;
506 name = ss->output_section_name(file_name, name, &output_section_slot,
507 &script_section_type);
508 if (name == NULL)
509 {
510 // The SECTIONS clause says to discard this input section.
511 return NULL;
512 }
513
514 // We can only handle script section types ST_NONE and ST_NOLOAD.
515 switch (script_section_type)
516 {
517 case Script_sections::ST_NONE:
518 break;
519 case Script_sections::ST_NOLOAD:
520 flags &= elfcpp::SHF_ALLOC;
521 break;
522 default:
523 gold_unreachable();
524 }
525
526 // If this is an orphan section--one not mentioned in the linker
527 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
528 // default processing below.
529
530 if (output_section_slot != NULL)
531 {
532 if (*output_section_slot != NULL)
533 {
534 (*output_section_slot)->update_flags_for_input_section(flags);
535 return *output_section_slot;
536 }
537
538 // We don't put sections found in the linker script into
539 // SECTION_NAME_MAP_. That keeps us from getting confused
540 // if an orphan section is mapped to a section with the same
541 // name as one in the linker script.
542
543 name = this->namepool_.add(name, false, NULL);
544
545 Output_section* os = this->make_output_section(name, type, flags,
546 order, is_relro);
547
548 os->set_found_in_sections_clause();
549
550 // Special handling for NOLOAD sections.
551 if (script_section_type == Script_sections::ST_NOLOAD)
552 {
553 os->set_is_noload();
554
555 // The constructor of Output_section sets addresses of non-ALLOC
556 // sections to 0 by default. We don't want that for NOLOAD
557 // sections even if they have no SHF_ALLOC flag.
558 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
559 && os->is_address_valid())
560 {
561 gold_assert(os->address() == 0
562 && !os->is_offset_valid()
563 && !os->is_data_size_valid());
564 os->reset_address_and_file_offset();
565 }
566 }
567
568 *output_section_slot = os;
569 return os;
570 }
571 }
572
573 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
574
575 // Turn NAME from the name of the input section into the name of the
576 // output section.
577
578 size_t len = strlen(name);
579 if (is_input_section
580 && !this->script_options_->saw_sections_clause()
581 && !parameters->options().relocatable())
582 name = Layout::output_section_name(name, &len);
583
584 Stringpool::Key name_key;
585 name = this->namepool_.add_with_length(name, len, true, &name_key);
586
587 // Find or make the output section. The output section is selected
588 // based on the section name, type, and flags.
589 return this->get_output_section(name, name_key, type, flags, order, is_relro);
590 }
591
592 // Return the output section to use for input section SHNDX, with name
593 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
594 // index of a relocation section which applies to this section, or 0
595 // if none, or -1U if more than one. RELOC_TYPE is the type of the
596 // relocation section if there is one. Set *OFF to the offset of this
597 // input section without the output section. Return NULL if the
598 // section should be discarded. Set *OFF to -1 if the section
599 // contents should not be written directly to the output file, but
600 // will instead receive special handling.
601
602 template<int size, bool big_endian>
603 Output_section*
604 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
605 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
606 unsigned int reloc_shndx, unsigned int, off_t* off)
607 {
608 *off = 0;
609
610 if (!this->include_section(object, name, shdr))
611 return NULL;
612
613 Output_section* os;
614
615 // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
616 // correct section types. Force them here.
617 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
618 if (sh_type == elfcpp::SHT_PROGBITS)
619 {
620 static const char init_array_prefix[] = ".init_array";
621 static const char preinit_array_prefix[] = ".preinit_array";
622 static const char fini_array_prefix[] = ".fini_array";
623 static size_t init_array_prefix_size = sizeof(init_array_prefix) - 1;
624 static size_t preinit_array_prefix_size =
625 sizeof(preinit_array_prefix) - 1;
626 static size_t fini_array_prefix_size = sizeof(fini_array_prefix) - 1;
627
628 if (strncmp(name, init_array_prefix, init_array_prefix_size) == 0)
629 sh_type = elfcpp::SHT_INIT_ARRAY;
630 else if (strncmp(name, preinit_array_prefix, preinit_array_prefix_size)
631 == 0)
632 sh_type = elfcpp::SHT_PREINIT_ARRAY;
633 else if (strncmp(name, fini_array_prefix, fini_array_prefix_size) == 0)
634 sh_type = elfcpp::SHT_FINI_ARRAY;
635 }
636
637 // In a relocatable link a grouped section must not be combined with
638 // any other sections.
639 if (parameters->options().relocatable()
640 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
641 {
642 name = this->namepool_.add(name, true, NULL);
643 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
644 ORDER_INVALID, false);
645 }
646 else
647 {
648 os = this->choose_output_section(object, name, sh_type,
649 shdr.get_sh_flags(), true,
650 ORDER_INVALID, false);
651 if (os == NULL)
652 return NULL;
653 }
654
655 // By default the GNU linker sorts input sections whose names match
656 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
657 // are sorted by name. This is used to implement constructor
658 // priority ordering. We are compatible.
659 if (!this->script_options_->saw_sections_clause()
660 && (is_prefix_of(".ctors.", name)
661 || is_prefix_of(".dtors.", name)
662 || is_prefix_of(".init_array.", name)
663 || is_prefix_of(".fini_array.", name)))
664 os->set_must_sort_attached_input_sections();
665
666 // FIXME: Handle SHF_LINK_ORDER somewhere.
667
668 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
669 this->script_options_->saw_sections_clause());
670 this->have_added_input_section_ = true;
671
672 return os;
673 }
674
675 // Handle a relocation section when doing a relocatable link.
676
677 template<int size, bool big_endian>
678 Output_section*
679 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
680 unsigned int,
681 const elfcpp::Shdr<size, big_endian>& shdr,
682 Output_section* data_section,
683 Relocatable_relocs* rr)
684 {
685 gold_assert(parameters->options().relocatable()
686 || parameters->options().emit_relocs());
687
688 int sh_type = shdr.get_sh_type();
689
690 std::string name;
691 if (sh_type == elfcpp::SHT_REL)
692 name = ".rel";
693 else if (sh_type == elfcpp::SHT_RELA)
694 name = ".rela";
695 else
696 gold_unreachable();
697 name += data_section->name();
698
699 // In a relocatable link relocs for a grouped section must not be
700 // combined with other reloc sections.
701 Output_section* os;
702 if (!parameters->options().relocatable()
703 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
704 os = this->choose_output_section(object, name.c_str(), sh_type,
705 shdr.get_sh_flags(), false,
706 ORDER_INVALID, false);
707 else
708 {
709 const char* n = this->namepool_.add(name.c_str(), true, NULL);
710 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
711 ORDER_INVALID, false);
712 }
713
714 os->set_should_link_to_symtab();
715 os->set_info_section(data_section);
716
717 Output_section_data* posd;
718 if (sh_type == elfcpp::SHT_REL)
719 {
720 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
721 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
722 size,
723 big_endian>(rr);
724 }
725 else if (sh_type == elfcpp::SHT_RELA)
726 {
727 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
728 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
729 size,
730 big_endian>(rr);
731 }
732 else
733 gold_unreachable();
734
735 os->add_output_section_data(posd);
736 rr->set_output_data(posd);
737
738 return os;
739 }
740
741 // Handle a group section when doing a relocatable link.
742
743 template<int size, bool big_endian>
744 void
745 Layout::layout_group(Symbol_table* symtab,
746 Sized_relobj<size, big_endian>* object,
747 unsigned int,
748 const char* group_section_name,
749 const char* signature,
750 const elfcpp::Shdr<size, big_endian>& shdr,
751 elfcpp::Elf_Word flags,
752 std::vector<unsigned int>* shndxes)
753 {
754 gold_assert(parameters->options().relocatable());
755 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
756 group_section_name = this->namepool_.add(group_section_name, true, NULL);
757 Output_section* os = this->make_output_section(group_section_name,
758 elfcpp::SHT_GROUP,
759 shdr.get_sh_flags(),
760 ORDER_INVALID, false);
761
762 // We need to find a symbol with the signature in the symbol table.
763 // If we don't find one now, we need to look again later.
764 Symbol* sym = symtab->lookup(signature, NULL);
765 if (sym != NULL)
766 os->set_info_symndx(sym);
767 else
768 {
769 // Reserve some space to minimize reallocations.
770 if (this->group_signatures_.empty())
771 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
772
773 // We will wind up using a symbol whose name is the signature.
774 // So just put the signature in the symbol name pool to save it.
775 signature = symtab->canonicalize_name(signature);
776 this->group_signatures_.push_back(Group_signature(os, signature));
777 }
778
779 os->set_should_link_to_symtab();
780 os->set_entsize(4);
781
782 section_size_type entry_count =
783 convert_to_section_size_type(shdr.get_sh_size() / 4);
784 Output_section_data* posd =
785 new Output_data_group<size, big_endian>(object, entry_count, flags,
786 shndxes);
787 os->add_output_section_data(posd);
788 }
789
790 // Special GNU handling of sections name .eh_frame. They will
791 // normally hold exception frame data as defined by the C++ ABI
792 // (http://codesourcery.com/cxx-abi/).
793
794 template<int size, bool big_endian>
795 Output_section*
796 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
797 const unsigned char* symbols,
798 off_t symbols_size,
799 const unsigned char* symbol_names,
800 off_t symbol_names_size,
801 unsigned int shndx,
802 const elfcpp::Shdr<size, big_endian>& shdr,
803 unsigned int reloc_shndx, unsigned int reloc_type,
804 off_t* off)
805 {
806 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
807 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
808
809 const char* const name = ".eh_frame";
810 Output_section* os = this->choose_output_section(object, name,
811 elfcpp::SHT_PROGBITS,
812 elfcpp::SHF_ALLOC, false,
813 ORDER_EHFRAME, false);
814 if (os == NULL)
815 return NULL;
816
817 if (this->eh_frame_section_ == NULL)
818 {
819 this->eh_frame_section_ = os;
820 this->eh_frame_data_ = new Eh_frame();
821
822 if (parameters->options().eh_frame_hdr())
823 {
824 Output_section* hdr_os =
825 this->choose_output_section(NULL, ".eh_frame_hdr",
826 elfcpp::SHT_PROGBITS,
827 elfcpp::SHF_ALLOC, false,
828 ORDER_EHFRAME, false);
829
830 if (hdr_os != NULL)
831 {
832 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
833 this->eh_frame_data_);
834 hdr_os->add_output_section_data(hdr_posd);
835
836 hdr_os->set_after_input_sections();
837
838 if (!this->script_options_->saw_phdrs_clause())
839 {
840 Output_segment* hdr_oseg;
841 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
842 elfcpp::PF_R);
843 hdr_oseg->add_output_section_to_nonload(hdr_os,
844 elfcpp::PF_R);
845 }
846
847 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
848 }
849 }
850 }
851
852 gold_assert(this->eh_frame_section_ == os);
853
854 if (this->eh_frame_data_->add_ehframe_input_section(object,
855 symbols,
856 symbols_size,
857 symbol_names,
858 symbol_names_size,
859 shndx,
860 reloc_shndx,
861 reloc_type))
862 {
863 os->update_flags_for_input_section(shdr.get_sh_flags());
864
865 // We found a .eh_frame section we are going to optimize, so now
866 // we can add the set of optimized sections to the output
867 // section. We need to postpone adding this until we've found a
868 // section we can optimize so that the .eh_frame section in
869 // crtbegin.o winds up at the start of the output section.
870 if (!this->added_eh_frame_data_)
871 {
872 os->add_output_section_data(this->eh_frame_data_);
873 this->added_eh_frame_data_ = true;
874 }
875 *off = -1;
876 }
877 else
878 {
879 // We couldn't handle this .eh_frame section for some reason.
880 // Add it as a normal section.
881 bool saw_sections_clause = this->script_options_->saw_sections_clause();
882 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
883 saw_sections_clause);
884 this->have_added_input_section_ = true;
885 }
886
887 return os;
888 }
889
890 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
891 // the output section.
892
893 Output_section*
894 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
895 elfcpp::Elf_Xword flags,
896 Output_section_data* posd,
897 Output_section_order order, bool is_relro)
898 {
899 Output_section* os = this->choose_output_section(NULL, name, type, flags,
900 false, order, is_relro);
901 if (os != NULL)
902 os->add_output_section_data(posd);
903 return os;
904 }
905
906 // Map section flags to segment flags.
907
908 elfcpp::Elf_Word
909 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
910 {
911 elfcpp::Elf_Word ret = elfcpp::PF_R;
912 if ((flags & elfcpp::SHF_WRITE) != 0)
913 ret |= elfcpp::PF_W;
914 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
915 ret |= elfcpp::PF_X;
916 return ret;
917 }
918
919 // Sometimes we compress sections. This is typically done for
920 // sections that are not part of normal program execution (such as
921 // .debug_* sections), and where the readers of these sections know
922 // how to deal with compressed sections. This routine doesn't say for
923 // certain whether we'll compress -- it depends on commandline options
924 // as well -- just whether this section is a candidate for compression.
925 // (The Output_compressed_section class decides whether to compress
926 // a given section, and picks the name of the compressed section.)
927
928 static bool
929 is_compressible_debug_section(const char* secname)
930 {
931 return (is_prefix_of(".debug", secname));
932 }
933
934 // We may see compressed debug sections in input files. Return TRUE
935 // if this is the name of a compressed debug section.
936
937 bool
938 is_compressed_debug_section(const char* secname)
939 {
940 return (is_prefix_of(".zdebug", secname));
941 }
942
943 // Make a new Output_section, and attach it to segments as
944 // appropriate. ORDER is the order in which this section should
945 // appear in the output segment. IS_RELRO is true if this is a relro
946 // (read-only after relocations) section.
947
948 Output_section*
949 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
950 elfcpp::Elf_Xword flags,
951 Output_section_order order, bool is_relro)
952 {
953 Output_section* os;
954 if ((flags & elfcpp::SHF_ALLOC) == 0
955 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
956 && is_compressible_debug_section(name))
957 os = new Output_compressed_section(&parameters->options(), name, type,
958 flags);
959 else if ((flags & elfcpp::SHF_ALLOC) == 0
960 && parameters->options().strip_debug_non_line()
961 && strcmp(".debug_abbrev", name) == 0)
962 {
963 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
964 name, type, flags);
965 if (this->debug_info_)
966 this->debug_info_->set_abbreviations(this->debug_abbrev_);
967 }
968 else if ((flags & elfcpp::SHF_ALLOC) == 0
969 && parameters->options().strip_debug_non_line()
970 && strcmp(".debug_info", name) == 0)
971 {
972 os = this->debug_info_ = new Output_reduced_debug_info_section(
973 name, type, flags);
974 if (this->debug_abbrev_)
975 this->debug_info_->set_abbreviations(this->debug_abbrev_);
976 }
977 else
978 {
979 // FIXME: const_cast is ugly.
980 Target* target = const_cast<Target*>(&parameters->target());
981 os = target->make_output_section(name, type, flags);
982 }
983
984 // With -z relro, we have to recognize the special sections by name.
985 // There is no other way.
986 bool is_relro_local = false;
987 if (!this->script_options_->saw_sections_clause()
988 && parameters->options().relro()
989 && type == elfcpp::SHT_PROGBITS
990 && (flags & elfcpp::SHF_ALLOC) != 0
991 && (flags & elfcpp::SHF_WRITE) != 0)
992 {
993 if (strcmp(name, ".data.rel.ro") == 0)
994 is_relro = true;
995 else if (strcmp(name, ".data.rel.ro.local") == 0)
996 {
997 is_relro = true;
998 is_relro_local = true;
999 }
1000 else if (type == elfcpp::SHT_INIT_ARRAY
1001 || type == elfcpp::SHT_FINI_ARRAY
1002 || type == elfcpp::SHT_PREINIT_ARRAY)
1003 is_relro = true;
1004 else if (strcmp(name, ".ctors") == 0
1005 || strcmp(name, ".dtors") == 0
1006 || strcmp(name, ".jcr") == 0)
1007 is_relro = true;
1008 }
1009
1010 if (is_relro)
1011 os->set_is_relro();
1012
1013 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1014 order = this->default_section_order(os, is_relro_local);
1015
1016 os->set_order(order);
1017
1018 parameters->target().new_output_section(os);
1019
1020 this->section_list_.push_back(os);
1021
1022 // The GNU linker by default sorts some sections by priority, so we
1023 // do the same. We need to know that this might happen before we
1024 // attach any input sections.
1025 if (!this->script_options_->saw_sections_clause()
1026 && (strcmp(name, ".ctors") == 0
1027 || strcmp(name, ".dtors") == 0
1028 || strcmp(name, ".init_array") == 0
1029 || strcmp(name, ".fini_array") == 0))
1030 os->set_may_sort_attached_input_sections();
1031
1032 // Check for .stab*str sections, as .stab* sections need to link to
1033 // them.
1034 if (type == elfcpp::SHT_STRTAB
1035 && !this->have_stabstr_section_
1036 && strncmp(name, ".stab", 5) == 0
1037 && strcmp(name + strlen(name) - 3, "str") == 0)
1038 this->have_stabstr_section_ = true;
1039
1040 // If we have already attached the sections to segments, then we
1041 // need to attach this one now. This happens for sections created
1042 // directly by the linker.
1043 if (this->sections_are_attached_)
1044 this->attach_section_to_segment(os);
1045
1046 return os;
1047 }
1048
1049 // Return the default order in which a section should be placed in an
1050 // output segment. This function captures a lot of the ideas in
1051 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1052 // linker created section is normally set when the section is created;
1053 // this function is used for input sections.
1054
1055 Output_section_order
1056 Layout::default_section_order(Output_section* os, bool is_relro_local)
1057 {
1058 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1059 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1060 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1061 bool is_bss = false;
1062
1063 switch (os->type())
1064 {
1065 default:
1066 case elfcpp::SHT_PROGBITS:
1067 break;
1068 case elfcpp::SHT_NOBITS:
1069 is_bss = true;
1070 break;
1071 case elfcpp::SHT_RELA:
1072 case elfcpp::SHT_REL:
1073 if (!is_write)
1074 return ORDER_DYNAMIC_RELOCS;
1075 break;
1076 case elfcpp::SHT_HASH:
1077 case elfcpp::SHT_DYNAMIC:
1078 case elfcpp::SHT_SHLIB:
1079 case elfcpp::SHT_DYNSYM:
1080 case elfcpp::SHT_GNU_HASH:
1081 case elfcpp::SHT_GNU_verdef:
1082 case elfcpp::SHT_GNU_verneed:
1083 case elfcpp::SHT_GNU_versym:
1084 if (!is_write)
1085 return ORDER_DYNAMIC_LINKER;
1086 break;
1087 case elfcpp::SHT_NOTE:
1088 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1089 }
1090
1091 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1092 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1093
1094 if (!is_bss && !is_write)
1095 {
1096 if (is_execinstr)
1097 {
1098 if (strcmp(os->name(), ".init") == 0)
1099 return ORDER_INIT;
1100 else if (strcmp(os->name(), ".fini") == 0)
1101 return ORDER_FINI;
1102 }
1103 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1104 }
1105
1106 if (os->is_relro())
1107 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1108
1109 if (os->is_small_section())
1110 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1111 if (os->is_large_section())
1112 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1113
1114 return is_bss ? ORDER_BSS : ORDER_DATA;
1115 }
1116
1117 // Attach output sections to segments. This is called after we have
1118 // seen all the input sections.
1119
1120 void
1121 Layout::attach_sections_to_segments()
1122 {
1123 for (Section_list::iterator p = this->section_list_.begin();
1124 p != this->section_list_.end();
1125 ++p)
1126 this->attach_section_to_segment(*p);
1127
1128 this->sections_are_attached_ = true;
1129 }
1130
1131 // Attach an output section to a segment.
1132
1133 void
1134 Layout::attach_section_to_segment(Output_section* os)
1135 {
1136 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1137 this->unattached_section_list_.push_back(os);
1138 else
1139 this->attach_allocated_section_to_segment(os);
1140 }
1141
1142 // Attach an allocated output section to a segment.
1143
1144 void
1145 Layout::attach_allocated_section_to_segment(Output_section* os)
1146 {
1147 elfcpp::Elf_Xword flags = os->flags();
1148 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1149
1150 if (parameters->options().relocatable())
1151 return;
1152
1153 // If we have a SECTIONS clause, we can't handle the attachment to
1154 // segments until after we've seen all the sections.
1155 if (this->script_options_->saw_sections_clause())
1156 return;
1157
1158 gold_assert(!this->script_options_->saw_phdrs_clause());
1159
1160 // This output section goes into a PT_LOAD segment.
1161
1162 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1163
1164 // Check for --section-start.
1165 uint64_t addr;
1166 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1167
1168 // In general the only thing we really care about for PT_LOAD
1169 // segments is whether or not they are writable, so that is how we
1170 // search for them. Large data sections also go into their own
1171 // PT_LOAD segment. People who need segments sorted on some other
1172 // basis will have to use a linker script.
1173
1174 Segment_list::const_iterator p;
1175 for (p = this->segment_list_.begin();
1176 p != this->segment_list_.end();
1177 ++p)
1178 {
1179 if ((*p)->type() != elfcpp::PT_LOAD)
1180 continue;
1181 if (!parameters->options().omagic()
1182 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1183 continue;
1184 // If -Tbss was specified, we need to separate the data and BSS
1185 // segments.
1186 if (parameters->options().user_set_Tbss())
1187 {
1188 if ((os->type() == elfcpp::SHT_NOBITS)
1189 == (*p)->has_any_data_sections())
1190 continue;
1191 }
1192 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1193 continue;
1194
1195 if (is_address_set)
1196 {
1197 if ((*p)->are_addresses_set())
1198 continue;
1199
1200 (*p)->add_initial_output_data(os);
1201 (*p)->update_flags_for_output_section(seg_flags);
1202 (*p)->set_addresses(addr, addr);
1203 break;
1204 }
1205
1206 (*p)->add_output_section_to_load(this, os, seg_flags);
1207 break;
1208 }
1209
1210 if (p == this->segment_list_.end())
1211 {
1212 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1213 seg_flags);
1214 if (os->is_large_data_section())
1215 oseg->set_is_large_data_segment();
1216 oseg->add_output_section_to_load(this, os, seg_flags);
1217 if (is_address_set)
1218 oseg->set_addresses(addr, addr);
1219 }
1220
1221 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1222 // segment.
1223 if (os->type() == elfcpp::SHT_NOTE)
1224 {
1225 // See if we already have an equivalent PT_NOTE segment.
1226 for (p = this->segment_list_.begin();
1227 p != segment_list_.end();
1228 ++p)
1229 {
1230 if ((*p)->type() == elfcpp::PT_NOTE
1231 && (((*p)->flags() & elfcpp::PF_W)
1232 == (seg_flags & elfcpp::PF_W)))
1233 {
1234 (*p)->add_output_section_to_nonload(os, seg_flags);
1235 break;
1236 }
1237 }
1238
1239 if (p == this->segment_list_.end())
1240 {
1241 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1242 seg_flags);
1243 oseg->add_output_section_to_nonload(os, seg_flags);
1244 }
1245 }
1246
1247 // If we see a loadable SHF_TLS section, we create a PT_TLS
1248 // segment. There can only be one such segment.
1249 if ((flags & elfcpp::SHF_TLS) != 0)
1250 {
1251 if (this->tls_segment_ == NULL)
1252 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1253 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1254 }
1255
1256 // If -z relro is in effect, and we see a relro section, we create a
1257 // PT_GNU_RELRO segment. There can only be one such segment.
1258 if (os->is_relro() && parameters->options().relro())
1259 {
1260 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1261 if (this->relro_segment_ == NULL)
1262 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1263 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1264 }
1265 }
1266
1267 // Make an output section for a script.
1268
1269 Output_section*
1270 Layout::make_output_section_for_script(
1271 const char* name,
1272 Script_sections::Section_type section_type)
1273 {
1274 name = this->namepool_.add(name, false, NULL);
1275 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1276 if (section_type == Script_sections::ST_NOLOAD)
1277 sh_flags = 0;
1278 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1279 sh_flags, ORDER_INVALID,
1280 false);
1281 os->set_found_in_sections_clause();
1282 if (section_type == Script_sections::ST_NOLOAD)
1283 os->set_is_noload();
1284 return os;
1285 }
1286
1287 // Return the number of segments we expect to see.
1288
1289 size_t
1290 Layout::expected_segment_count() const
1291 {
1292 size_t ret = this->segment_list_.size();
1293
1294 // If we didn't see a SECTIONS clause in a linker script, we should
1295 // already have the complete list of segments. Otherwise we ask the
1296 // SECTIONS clause how many segments it expects, and add in the ones
1297 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1298
1299 if (!this->script_options_->saw_sections_clause())
1300 return ret;
1301 else
1302 {
1303 const Script_sections* ss = this->script_options_->script_sections();
1304 return ret + ss->expected_segment_count(this);
1305 }
1306 }
1307
1308 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1309 // is whether we saw a .note.GNU-stack section in the object file.
1310 // GNU_STACK_FLAGS is the section flags. The flags give the
1311 // protection required for stack memory. We record this in an
1312 // executable as a PT_GNU_STACK segment. If an object file does not
1313 // have a .note.GNU-stack segment, we must assume that it is an old
1314 // object. On some targets that will force an executable stack.
1315
1316 void
1317 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
1318 {
1319 if (!seen_gnu_stack)
1320 this->input_without_gnu_stack_note_ = true;
1321 else
1322 {
1323 this->input_with_gnu_stack_note_ = true;
1324 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1325 this->input_requires_executable_stack_ = true;
1326 }
1327 }
1328
1329 // Create automatic note sections.
1330
1331 void
1332 Layout::create_notes()
1333 {
1334 this->create_gold_note();
1335 this->create_executable_stack_info();
1336 this->create_build_id();
1337 }
1338
1339 // Create the dynamic sections which are needed before we read the
1340 // relocs.
1341
1342 void
1343 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1344 {
1345 if (parameters->doing_static_link())
1346 return;
1347
1348 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1349 elfcpp::SHT_DYNAMIC,
1350 (elfcpp::SHF_ALLOC
1351 | elfcpp::SHF_WRITE),
1352 false, ORDER_RELRO,
1353 true);
1354
1355 this->dynamic_symbol_ =
1356 symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1357 this->dynamic_section_, 0, 0,
1358 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1359 elfcpp::STV_HIDDEN, 0, false, false);
1360
1361 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1362
1363 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1364 }
1365
1366 // For each output section whose name can be represented as C symbol,
1367 // define __start and __stop symbols for the section. This is a GNU
1368 // extension.
1369
1370 void
1371 Layout::define_section_symbols(Symbol_table* symtab)
1372 {
1373 for (Section_list::const_iterator p = this->section_list_.begin();
1374 p != this->section_list_.end();
1375 ++p)
1376 {
1377 const char* const name = (*p)->name();
1378 if (is_cident(name))
1379 {
1380 const std::string name_string(name);
1381 const std::string start_name(cident_section_start_prefix
1382 + name_string);
1383 const std::string stop_name(cident_section_stop_prefix
1384 + name_string);
1385
1386 symtab->define_in_output_data(start_name.c_str(),
1387 NULL, // version
1388 Symbol_table::PREDEFINED,
1389 *p,
1390 0, // value
1391 0, // symsize
1392 elfcpp::STT_NOTYPE,
1393 elfcpp::STB_GLOBAL,
1394 elfcpp::STV_DEFAULT,
1395 0, // nonvis
1396 false, // offset_is_from_end
1397 true); // only_if_ref
1398
1399 symtab->define_in_output_data(stop_name.c_str(),
1400 NULL, // version
1401 Symbol_table::PREDEFINED,
1402 *p,
1403 0, // value
1404 0, // symsize
1405 elfcpp::STT_NOTYPE,
1406 elfcpp::STB_GLOBAL,
1407 elfcpp::STV_DEFAULT,
1408 0, // nonvis
1409 true, // offset_is_from_end
1410 true); // only_if_ref
1411 }
1412 }
1413 }
1414
1415 // Define symbols for group signatures.
1416
1417 void
1418 Layout::define_group_signatures(Symbol_table* symtab)
1419 {
1420 for (Group_signatures::iterator p = this->group_signatures_.begin();
1421 p != this->group_signatures_.end();
1422 ++p)
1423 {
1424 Symbol* sym = symtab->lookup(p->signature, NULL);
1425 if (sym != NULL)
1426 p->section->set_info_symndx(sym);
1427 else
1428 {
1429 // Force the name of the group section to the group
1430 // signature, and use the group's section symbol as the
1431 // signature symbol.
1432 if (strcmp(p->section->name(), p->signature) != 0)
1433 {
1434 const char* name = this->namepool_.add(p->signature,
1435 true, NULL);
1436 p->section->set_name(name);
1437 }
1438 p->section->set_needs_symtab_index();
1439 p->section->set_info_section_symndx(p->section);
1440 }
1441 }
1442
1443 this->group_signatures_.clear();
1444 }
1445
1446 // Find the first read-only PT_LOAD segment, creating one if
1447 // necessary.
1448
1449 Output_segment*
1450 Layout::find_first_load_seg()
1451 {
1452 for (Segment_list::const_iterator p = this->segment_list_.begin();
1453 p != this->segment_list_.end();
1454 ++p)
1455 {
1456 if ((*p)->type() == elfcpp::PT_LOAD
1457 && ((*p)->flags() & elfcpp::PF_R) != 0
1458 && (parameters->options().omagic()
1459 || ((*p)->flags() & elfcpp::PF_W) == 0))
1460 return *p;
1461 }
1462
1463 gold_assert(!this->script_options_->saw_phdrs_clause());
1464
1465 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1466 elfcpp::PF_R);
1467 return load_seg;
1468 }
1469
1470 // Save states of all current output segments. Store saved states
1471 // in SEGMENT_STATES.
1472
1473 void
1474 Layout::save_segments(Segment_states* segment_states)
1475 {
1476 for (Segment_list::const_iterator p = this->segment_list_.begin();
1477 p != this->segment_list_.end();
1478 ++p)
1479 {
1480 Output_segment* segment = *p;
1481 // Shallow copy.
1482 Output_segment* copy = new Output_segment(*segment);
1483 (*segment_states)[segment] = copy;
1484 }
1485 }
1486
1487 // Restore states of output segments and delete any segment not found in
1488 // SEGMENT_STATES.
1489
1490 void
1491 Layout::restore_segments(const Segment_states* segment_states)
1492 {
1493 // Go through the segment list and remove any segment added in the
1494 // relaxation loop.
1495 this->tls_segment_ = NULL;
1496 this->relro_segment_ = NULL;
1497 Segment_list::iterator list_iter = this->segment_list_.begin();
1498 while (list_iter != this->segment_list_.end())
1499 {
1500 Output_segment* segment = *list_iter;
1501 Segment_states::const_iterator states_iter =
1502 segment_states->find(segment);
1503 if (states_iter != segment_states->end())
1504 {
1505 const Output_segment* copy = states_iter->second;
1506 // Shallow copy to restore states.
1507 *segment = *copy;
1508
1509 // Also fix up TLS and RELRO segment pointers as appropriate.
1510 if (segment->type() == elfcpp::PT_TLS)
1511 this->tls_segment_ = segment;
1512 else if (segment->type() == elfcpp::PT_GNU_RELRO)
1513 this->relro_segment_ = segment;
1514
1515 ++list_iter;
1516 }
1517 else
1518 {
1519 list_iter = this->segment_list_.erase(list_iter);
1520 // This is a segment created during section layout. It should be
1521 // safe to remove it since we should have removed all pointers to it.
1522 delete segment;
1523 }
1524 }
1525 }
1526
1527 // Clean up after relaxation so that sections can be laid out again.
1528
1529 void
1530 Layout::clean_up_after_relaxation()
1531 {
1532 // Restore the segments to point state just prior to the relaxation loop.
1533 Script_sections* script_section = this->script_options_->script_sections();
1534 script_section->release_segments();
1535 this->restore_segments(this->segment_states_);
1536
1537 // Reset section addresses and file offsets
1538 for (Section_list::iterator p = this->section_list_.begin();
1539 p != this->section_list_.end();
1540 ++p)
1541 {
1542 (*p)->restore_states();
1543
1544 // If an input section changes size because of relaxation,
1545 // we need to adjust the section offsets of all input sections.
1546 // after such a section.
1547 if ((*p)->section_offsets_need_adjustment())
1548 (*p)->adjust_section_offsets();
1549
1550 (*p)->reset_address_and_file_offset();
1551 }
1552
1553 // Reset special output object address and file offsets.
1554 for (Data_list::iterator p = this->special_output_list_.begin();
1555 p != this->special_output_list_.end();
1556 ++p)
1557 (*p)->reset_address_and_file_offset();
1558
1559 // A linker script may have created some output section data objects.
1560 // They are useless now.
1561 for (Output_section_data_list::const_iterator p =
1562 this->script_output_section_data_list_.begin();
1563 p != this->script_output_section_data_list_.end();
1564 ++p)
1565 delete *p;
1566 this->script_output_section_data_list_.clear();
1567 }
1568
1569 // Prepare for relaxation.
1570
1571 void
1572 Layout::prepare_for_relaxation()
1573 {
1574 // Create an relaxation debug check if in debugging mode.
1575 if (is_debugging_enabled(DEBUG_RELAXATION))
1576 this->relaxation_debug_check_ = new Relaxation_debug_check();
1577
1578 // Save segment states.
1579 this->segment_states_ = new Segment_states();
1580 this->save_segments(this->segment_states_);
1581
1582 for(Section_list::const_iterator p = this->section_list_.begin();
1583 p != this->section_list_.end();
1584 ++p)
1585 (*p)->save_states();
1586
1587 if (is_debugging_enabled(DEBUG_RELAXATION))
1588 this->relaxation_debug_check_->check_output_data_for_reset_values(
1589 this->section_list_, this->special_output_list_);
1590
1591 // Also enable recording of output section data from scripts.
1592 this->record_output_section_data_from_script_ = true;
1593 }
1594
1595 // Relaxation loop body: If target has no relaxation, this runs only once
1596 // Otherwise, the target relaxation hook is called at the end of
1597 // each iteration. If the hook returns true, it means re-layout of
1598 // section is required.
1599 //
1600 // The number of segments created by a linking script without a PHDRS
1601 // clause may be affected by section sizes and alignments. There is
1602 // a remote chance that relaxation causes different number of PT_LOAD
1603 // segments are created and sections are attached to different segments.
1604 // Therefore, we always throw away all segments created during section
1605 // layout. In order to be able to restart the section layout, we keep
1606 // a copy of the segment list right before the relaxation loop and use
1607 // that to restore the segments.
1608 //
1609 // PASS is the current relaxation pass number.
1610 // SYMTAB is a symbol table.
1611 // PLOAD_SEG is the address of a pointer for the load segment.
1612 // PHDR_SEG is a pointer to the PHDR segment.
1613 // SEGMENT_HEADERS points to the output segment header.
1614 // FILE_HEADER points to the output file header.
1615 // PSHNDX is the address to store the output section index.
1616
1617 off_t inline
1618 Layout::relaxation_loop_body(
1619 int pass,
1620 Target* target,
1621 Symbol_table* symtab,
1622 Output_segment** pload_seg,
1623 Output_segment* phdr_seg,
1624 Output_segment_headers* segment_headers,
1625 Output_file_header* file_header,
1626 unsigned int* pshndx)
1627 {
1628 // If this is not the first iteration, we need to clean up after
1629 // relaxation so that we can lay out the sections again.
1630 if (pass != 0)
1631 this->clean_up_after_relaxation();
1632
1633 // If there is a SECTIONS clause, put all the input sections into
1634 // the required order.
1635 Output_segment* load_seg;
1636 if (this->script_options_->saw_sections_clause())
1637 load_seg = this->set_section_addresses_from_script(symtab);
1638 else if (parameters->options().relocatable())
1639 load_seg = NULL;
1640 else
1641 load_seg = this->find_first_load_seg();
1642
1643 if (parameters->options().oformat_enum()
1644 != General_options::OBJECT_FORMAT_ELF)
1645 load_seg = NULL;
1646
1647 // If the user set the address of the text segment, that may not be
1648 // compatible with putting the segment headers and file headers into
1649 // that segment.
1650 if (parameters->options().user_set_Ttext())
1651 load_seg = NULL;
1652
1653 gold_assert(phdr_seg == NULL
1654 || load_seg != NULL
1655 || this->script_options_->saw_sections_clause());
1656
1657 // If the address of the load segment we found has been set by
1658 // --section-start rather than by a script, then we don't want to
1659 // use it for the file and segment headers.
1660 if (load_seg != NULL
1661 && load_seg->are_addresses_set()
1662 && !this->script_options_->saw_sections_clause())
1663 load_seg = NULL;
1664
1665 // Lay out the segment headers.
1666 if (!parameters->options().relocatable())
1667 {
1668 gold_assert(segment_headers != NULL);
1669 if (load_seg != NULL)
1670 load_seg->add_initial_output_data(segment_headers);
1671 if (phdr_seg != NULL)
1672 phdr_seg->add_initial_output_data(segment_headers);
1673 }
1674
1675 // Lay out the file header.
1676 if (load_seg != NULL)
1677 load_seg->add_initial_output_data(file_header);
1678
1679 if (this->script_options_->saw_phdrs_clause()
1680 && !parameters->options().relocatable())
1681 {
1682 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1683 // clause in a linker script.
1684 Script_sections* ss = this->script_options_->script_sections();
1685 ss->put_headers_in_phdrs(file_header, segment_headers);
1686 }
1687
1688 // We set the output section indexes in set_segment_offsets and
1689 // set_section_indexes.
1690 *pshndx = 1;
1691
1692 // Set the file offsets of all the segments, and all the sections
1693 // they contain.
1694 off_t off;
1695 if (!parameters->options().relocatable())
1696 off = this->set_segment_offsets(target, load_seg, pshndx);
1697 else
1698 off = this->set_relocatable_section_offsets(file_header, pshndx);
1699
1700 // Verify that the dummy relaxation does not change anything.
1701 if (is_debugging_enabled(DEBUG_RELAXATION))
1702 {
1703 if (pass == 0)
1704 this->relaxation_debug_check_->read_sections(this->section_list_);
1705 else
1706 this->relaxation_debug_check_->verify_sections(this->section_list_);
1707 }
1708
1709 *pload_seg = load_seg;
1710 return off;
1711 }
1712
1713 // Search the list of patterns and find the postion of the given section
1714 // name in the output section. If the section name matches a glob
1715 // pattern and a non-glob name, then the non-glob position takes
1716 // precedence. Return 0 if no match is found.
1717
1718 unsigned int
1719 Layout::find_section_order_index(const std::string& section_name)
1720 {
1721 Unordered_map<std::string, unsigned int>::iterator map_it;
1722 map_it = this->input_section_position_.find(section_name);
1723 if (map_it != this->input_section_position_.end())
1724 return map_it->second;
1725
1726 // Absolute match failed. Linear search the glob patterns.
1727 std::vector<std::string>::iterator it;
1728 for (it = this->input_section_glob_.begin();
1729 it != this->input_section_glob_.end();
1730 ++it)
1731 {
1732 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
1733 {
1734 map_it = this->input_section_position_.find(*it);
1735 gold_assert(map_it != this->input_section_position_.end());
1736 return map_it->second;
1737 }
1738 }
1739 return 0;
1740 }
1741
1742 // Read the sequence of input sections from the file specified with
1743 // --section-ordering-file.
1744
1745 void
1746 Layout::read_layout_from_file()
1747 {
1748 const char* filename = parameters->options().section_ordering_file();
1749 std::ifstream in;
1750 std::string line;
1751
1752 in.open(filename);
1753 if (!in)
1754 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
1755 filename, strerror(errno));
1756
1757 std::getline(in, line); // this chops off the trailing \n, if any
1758 unsigned int position = 1;
1759
1760 while (in)
1761 {
1762 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
1763 line.resize(line.length() - 1);
1764 // Ignore comments, beginning with '#'
1765 if (line[0] == '#')
1766 {
1767 std::getline(in, line);
1768 continue;
1769 }
1770 this->input_section_position_[line] = position;
1771 // Store all glob patterns in a vector.
1772 if (is_wildcard_string(line.c_str()))
1773 this->input_section_glob_.push_back(line);
1774 position++;
1775 std::getline(in, line);
1776 }
1777 }
1778
1779 // Finalize the layout. When this is called, we have created all the
1780 // output sections and all the output segments which are based on
1781 // input sections. We have several things to do, and we have to do
1782 // them in the right order, so that we get the right results correctly
1783 // and efficiently.
1784
1785 // 1) Finalize the list of output segments and create the segment
1786 // table header.
1787
1788 // 2) Finalize the dynamic symbol table and associated sections.
1789
1790 // 3) Determine the final file offset of all the output segments.
1791
1792 // 4) Determine the final file offset of all the SHF_ALLOC output
1793 // sections.
1794
1795 // 5) Create the symbol table sections and the section name table
1796 // section.
1797
1798 // 6) Finalize the symbol table: set symbol values to their final
1799 // value and make a final determination of which symbols are going
1800 // into the output symbol table.
1801
1802 // 7) Create the section table header.
1803
1804 // 8) Determine the final file offset of all the output sections which
1805 // are not SHF_ALLOC, including the section table header.
1806
1807 // 9) Finalize the ELF file header.
1808
1809 // This function returns the size of the output file.
1810
1811 off_t
1812 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1813 Target* target, const Task* task)
1814 {
1815 target->finalize_sections(this, input_objects, symtab);
1816
1817 this->count_local_symbols(task, input_objects);
1818
1819 this->link_stabs_sections();
1820
1821 Output_segment* phdr_seg = NULL;
1822 if (!parameters->options().relocatable() && !parameters->doing_static_link())
1823 {
1824 // There was a dynamic object in the link. We need to create
1825 // some information for the dynamic linker.
1826
1827 // Create the PT_PHDR segment which will hold the program
1828 // headers.
1829 if (!this->script_options_->saw_phdrs_clause())
1830 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1831
1832 // Create the dynamic symbol table, including the hash table.
1833 Output_section* dynstr;
1834 std::vector<Symbol*> dynamic_symbols;
1835 unsigned int local_dynamic_count;
1836 Versions versions(*this->script_options()->version_script_info(),
1837 &this->dynpool_);
1838 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1839 &local_dynamic_count, &dynamic_symbols,
1840 &versions);
1841
1842 // Create the .interp section to hold the name of the
1843 // interpreter, and put it in a PT_INTERP segment.
1844 if (!parameters->options().shared())
1845 this->create_interp(target);
1846
1847 // Finish the .dynamic section to hold the dynamic data, and put
1848 // it in a PT_DYNAMIC segment.
1849 this->finish_dynamic_section(input_objects, symtab);
1850
1851 // We should have added everything we need to the dynamic string
1852 // table.
1853 this->dynpool_.set_string_offsets();
1854
1855 // Create the version sections. We can't do this until the
1856 // dynamic string table is complete.
1857 this->create_version_sections(&versions, symtab, local_dynamic_count,
1858 dynamic_symbols, dynstr);
1859
1860 // Set the size of the _DYNAMIC symbol. We can't do this until
1861 // after we call create_version_sections.
1862 this->set_dynamic_symbol_size(symtab);
1863 }
1864
1865 if (this->incremental_inputs_)
1866 {
1867 this->incremental_inputs_->finalize();
1868 this->create_incremental_info_sections();
1869 }
1870
1871 // Create segment headers.
1872 Output_segment_headers* segment_headers =
1873 (parameters->options().relocatable()
1874 ? NULL
1875 : new Output_segment_headers(this->segment_list_));
1876
1877 // Lay out the file header.
1878 Output_file_header* file_header
1879 = new Output_file_header(target, symtab, segment_headers,
1880 parameters->options().entry());
1881
1882 this->special_output_list_.push_back(file_header);
1883 if (segment_headers != NULL)
1884 this->special_output_list_.push_back(segment_headers);
1885
1886 // Find approriate places for orphan output sections if we are using
1887 // a linker script.
1888 if (this->script_options_->saw_sections_clause())
1889 this->place_orphan_sections_in_script();
1890
1891 Output_segment* load_seg;
1892 off_t off;
1893 unsigned int shndx;
1894 int pass = 0;
1895
1896 // Take a snapshot of the section layout as needed.
1897 if (target->may_relax())
1898 this->prepare_for_relaxation();
1899
1900 // Run the relaxation loop to lay out sections.
1901 do
1902 {
1903 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
1904 phdr_seg, segment_headers, file_header,
1905 &shndx);
1906 pass++;
1907 }
1908 while (target->may_relax()
1909 && target->relax(pass, input_objects, symtab, this));
1910
1911 // Set the file offsets of all the non-data sections we've seen so
1912 // far which don't have to wait for the input sections. We need
1913 // this in order to finalize local symbols in non-allocated
1914 // sections.
1915 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1916
1917 // Set the section indexes of all unallocated sections seen so far,
1918 // in case any of them are somehow referenced by a symbol.
1919 shndx = this->set_section_indexes(shndx);
1920
1921 // Create the symbol table sections.
1922 this->create_symtab_sections(input_objects, symtab, shndx, &off);
1923 if (!parameters->doing_static_link())
1924 this->assign_local_dynsym_offsets(input_objects);
1925
1926 // Process any symbol assignments from a linker script. This must
1927 // be called after the symbol table has been finalized.
1928 this->script_options_->finalize_symbols(symtab, this);
1929
1930 // Create the .shstrtab section.
1931 Output_section* shstrtab_section = this->create_shstrtab();
1932
1933 // Set the file offsets of the rest of the non-data sections which
1934 // don't have to wait for the input sections.
1935 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1936
1937 // Now that all sections have been created, set the section indexes
1938 // for any sections which haven't been done yet.
1939 shndx = this->set_section_indexes(shndx);
1940
1941 // Create the section table header.
1942 this->create_shdrs(shstrtab_section, &off);
1943
1944 // If there are no sections which require postprocessing, we can
1945 // handle the section names now, and avoid a resize later.
1946 if (!this->any_postprocessing_sections_)
1947 off = this->set_section_offsets(off,
1948 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1949
1950 file_header->set_section_info(this->section_headers_, shstrtab_section);
1951
1952 // Now we know exactly where everything goes in the output file
1953 // (except for non-allocated sections which require postprocessing).
1954 Output_data::layout_complete();
1955
1956 this->output_file_size_ = off;
1957
1958 return off;
1959 }
1960
1961 // Create a note header following the format defined in the ELF ABI.
1962 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1963 // of the section to create, DESCSZ is the size of the descriptor.
1964 // ALLOCATE is true if the section should be allocated in memory.
1965 // This returns the new note section. It sets *TRAILING_PADDING to
1966 // the number of trailing zero bytes required.
1967
1968 Output_section*
1969 Layout::create_note(const char* name, int note_type,
1970 const char* section_name, size_t descsz,
1971 bool allocate, size_t* trailing_padding)
1972 {
1973 // Authorities all agree that the values in a .note field should
1974 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1975 // they differ on what the alignment is for 64-bit binaries.
1976 // The GABI says unambiguously they take 8-byte alignment:
1977 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1978 // Other documentation says alignment should always be 4 bytes:
1979 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1980 // GNU ld and GNU readelf both support the latter (at least as of
1981 // version 2.16.91), and glibc always generates the latter for
1982 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1983 // here.
1984 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1985 const int size = parameters->target().get_size();
1986 #else
1987 const int size = 32;
1988 #endif
1989
1990 // The contents of the .note section.
1991 size_t namesz = strlen(name) + 1;
1992 size_t aligned_namesz = align_address(namesz, size / 8);
1993 size_t aligned_descsz = align_address(descsz, size / 8);
1994
1995 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1996
1997 unsigned char* buffer = new unsigned char[notehdrsz];
1998 memset(buffer, 0, notehdrsz);
1999
2000 bool is_big_endian = parameters->target().is_big_endian();
2001
2002 if (size == 32)
2003 {
2004 if (!is_big_endian)
2005 {
2006 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2007 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2008 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2009 }
2010 else
2011 {
2012 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2013 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2014 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2015 }
2016 }
2017 else if (size == 64)
2018 {
2019 if (!is_big_endian)
2020 {
2021 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2022 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2023 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2024 }
2025 else
2026 {
2027 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2028 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2029 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2030 }
2031 }
2032 else
2033 gold_unreachable();
2034
2035 memcpy(buffer + 3 * (size / 8), name, namesz);
2036
2037 elfcpp::Elf_Xword flags = 0;
2038 Output_section_order order = ORDER_INVALID;
2039 if (allocate)
2040 {
2041 flags = elfcpp::SHF_ALLOC;
2042 order = ORDER_RO_NOTE;
2043 }
2044 Output_section* os = this->choose_output_section(NULL, section_name,
2045 elfcpp::SHT_NOTE,
2046 flags, false, order, false);
2047 if (os == NULL)
2048 return NULL;
2049
2050 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2051 size / 8,
2052 "** note header");
2053 os->add_output_section_data(posd);
2054
2055 *trailing_padding = aligned_descsz - descsz;
2056
2057 return os;
2058 }
2059
2060 // For an executable or shared library, create a note to record the
2061 // version of gold used to create the binary.
2062
2063 void
2064 Layout::create_gold_note()
2065 {
2066 if (parameters->options().relocatable())
2067 return;
2068
2069 std::string desc = std::string("gold ") + gold::get_version_string();
2070
2071 size_t trailing_padding;
2072 Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2073 ".note.gnu.gold-version", desc.size(),
2074 false, &trailing_padding);
2075 if (os == NULL)
2076 return;
2077
2078 Output_section_data* posd = new Output_data_const(desc, 4);
2079 os->add_output_section_data(posd);
2080
2081 if (trailing_padding > 0)
2082 {
2083 posd = new Output_data_zero_fill(trailing_padding, 0);
2084 os->add_output_section_data(posd);
2085 }
2086 }
2087
2088 // Record whether the stack should be executable. This can be set
2089 // from the command line using the -z execstack or -z noexecstack
2090 // options. Otherwise, if any input file has a .note.GNU-stack
2091 // section with the SHF_EXECINSTR flag set, the stack should be
2092 // executable. Otherwise, if at least one input file a
2093 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2094 // section, we use the target default for whether the stack should be
2095 // executable. Otherwise, we don't generate a stack note. When
2096 // generating a object file, we create a .note.GNU-stack section with
2097 // the appropriate marking. When generating an executable or shared
2098 // library, we create a PT_GNU_STACK segment.
2099
2100 void
2101 Layout::create_executable_stack_info()
2102 {
2103 bool is_stack_executable;
2104 if (parameters->options().is_execstack_set())
2105 is_stack_executable = parameters->options().is_stack_executable();
2106 else if (!this->input_with_gnu_stack_note_)
2107 return;
2108 else
2109 {
2110 if (this->input_requires_executable_stack_)
2111 is_stack_executable = true;
2112 else if (this->input_without_gnu_stack_note_)
2113 is_stack_executable =
2114 parameters->target().is_default_stack_executable();
2115 else
2116 is_stack_executable = false;
2117 }
2118
2119 if (parameters->options().relocatable())
2120 {
2121 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2122 elfcpp::Elf_Xword flags = 0;
2123 if (is_stack_executable)
2124 flags |= elfcpp::SHF_EXECINSTR;
2125 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2126 ORDER_INVALID, false);
2127 }
2128 else
2129 {
2130 if (this->script_options_->saw_phdrs_clause())
2131 return;
2132 int flags = elfcpp::PF_R | elfcpp::PF_W;
2133 if (is_stack_executable)
2134 flags |= elfcpp::PF_X;
2135 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2136 }
2137 }
2138
2139 // If --build-id was used, set up the build ID note.
2140
2141 void
2142 Layout::create_build_id()
2143 {
2144 if (!parameters->options().user_set_build_id())
2145 return;
2146
2147 const char* style = parameters->options().build_id();
2148 if (strcmp(style, "none") == 0)
2149 return;
2150
2151 // Set DESCSZ to the size of the note descriptor. When possible,
2152 // set DESC to the note descriptor contents.
2153 size_t descsz;
2154 std::string desc;
2155 if (strcmp(style, "md5") == 0)
2156 descsz = 128 / 8;
2157 else if (strcmp(style, "sha1") == 0)
2158 descsz = 160 / 8;
2159 else if (strcmp(style, "uuid") == 0)
2160 {
2161 const size_t uuidsz = 128 / 8;
2162
2163 char buffer[uuidsz];
2164 memset(buffer, 0, uuidsz);
2165
2166 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2167 if (descriptor < 0)
2168 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2169 strerror(errno));
2170 else
2171 {
2172 ssize_t got = ::read(descriptor, buffer, uuidsz);
2173 release_descriptor(descriptor, true);
2174 if (got < 0)
2175 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2176 else if (static_cast<size_t>(got) != uuidsz)
2177 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2178 uuidsz, got);
2179 }
2180
2181 desc.assign(buffer, uuidsz);
2182 descsz = uuidsz;
2183 }
2184 else if (strncmp(style, "0x", 2) == 0)
2185 {
2186 hex_init();
2187 const char* p = style + 2;
2188 while (*p != '\0')
2189 {
2190 if (hex_p(p[0]) && hex_p(p[1]))
2191 {
2192 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2193 desc += c;
2194 p += 2;
2195 }
2196 else if (*p == '-' || *p == ':')
2197 ++p;
2198 else
2199 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2200 style);
2201 }
2202 descsz = desc.size();
2203 }
2204 else
2205 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2206
2207 // Create the note.
2208 size_t trailing_padding;
2209 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2210 ".note.gnu.build-id", descsz, true,
2211 &trailing_padding);
2212 if (os == NULL)
2213 return;
2214
2215 if (!desc.empty())
2216 {
2217 // We know the value already, so we fill it in now.
2218 gold_assert(desc.size() == descsz);
2219
2220 Output_section_data* posd = new Output_data_const(desc, 4);
2221 os->add_output_section_data(posd);
2222
2223 if (trailing_padding != 0)
2224 {
2225 posd = new Output_data_zero_fill(trailing_padding, 0);
2226 os->add_output_section_data(posd);
2227 }
2228 }
2229 else
2230 {
2231 // We need to compute a checksum after we have completed the
2232 // link.
2233 gold_assert(trailing_padding == 0);
2234 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2235 os->add_output_section_data(this->build_id_note_);
2236 }
2237 }
2238
2239 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2240 // field of the former should point to the latter. I'm not sure who
2241 // started this, but the GNU linker does it, and some tools depend
2242 // upon it.
2243
2244 void
2245 Layout::link_stabs_sections()
2246 {
2247 if (!this->have_stabstr_section_)
2248 return;
2249
2250 for (Section_list::iterator p = this->section_list_.begin();
2251 p != this->section_list_.end();
2252 ++p)
2253 {
2254 if ((*p)->type() != elfcpp::SHT_STRTAB)
2255 continue;
2256
2257 const char* name = (*p)->name();
2258 if (strncmp(name, ".stab", 5) != 0)
2259 continue;
2260
2261 size_t len = strlen(name);
2262 if (strcmp(name + len - 3, "str") != 0)
2263 continue;
2264
2265 std::string stab_name(name, len - 3);
2266 Output_section* stab_sec;
2267 stab_sec = this->find_output_section(stab_name.c_str());
2268 if (stab_sec != NULL)
2269 stab_sec->set_link_section(*p);
2270 }
2271 }
2272
2273 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
2274 // for the next run of incremental linking to check what has changed.
2275
2276 void
2277 Layout::create_incremental_info_sections()
2278 {
2279 gold_assert(this->incremental_inputs_ != NULL);
2280
2281 // Add the .gnu_incremental_inputs section.
2282 const char *incremental_inputs_name =
2283 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2284 Output_section* inputs_os =
2285 this->make_output_section(incremental_inputs_name,
2286 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2287 ORDER_INVALID, false);
2288 Output_section_data* posd =
2289 this->incremental_inputs_->create_incremental_inputs_section_data();
2290 inputs_os->add_output_section_data(posd);
2291
2292 // Add the .gnu_incremental_strtab section.
2293 const char *incremental_strtab_name =
2294 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2295 Output_section* strtab_os = this->make_output_section(incremental_strtab_name,
2296 elfcpp::SHT_STRTAB,
2297 0, ORDER_INVALID,
2298 false);
2299 Output_data_strtab* strtab_data =
2300 new Output_data_strtab(this->incremental_inputs_->get_stringpool());
2301 strtab_os->add_output_section_data(strtab_data);
2302
2303 inputs_os->set_link_section(strtab_data);
2304 }
2305
2306 // Return whether SEG1 should be before SEG2 in the output file. This
2307 // is based entirely on the segment type and flags. When this is
2308 // called the segment addresses has normally not yet been set.
2309
2310 bool
2311 Layout::segment_precedes(const Output_segment* seg1,
2312 const Output_segment* seg2)
2313 {
2314 elfcpp::Elf_Word type1 = seg1->type();
2315 elfcpp::Elf_Word type2 = seg2->type();
2316
2317 // The single PT_PHDR segment is required to precede any loadable
2318 // segment. We simply make it always first.
2319 if (type1 == elfcpp::PT_PHDR)
2320 {
2321 gold_assert(type2 != elfcpp::PT_PHDR);
2322 return true;
2323 }
2324 if (type2 == elfcpp::PT_PHDR)
2325 return false;
2326
2327 // The single PT_INTERP segment is required to precede any loadable
2328 // segment. We simply make it always second.
2329 if (type1 == elfcpp::PT_INTERP)
2330 {
2331 gold_assert(type2 != elfcpp::PT_INTERP);
2332 return true;
2333 }
2334 if (type2 == elfcpp::PT_INTERP)
2335 return false;
2336
2337 // We then put PT_LOAD segments before any other segments.
2338 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2339 return true;
2340 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2341 return false;
2342
2343 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2344 // segment, because that is where the dynamic linker expects to find
2345 // it (this is just for efficiency; other positions would also work
2346 // correctly).
2347 if (type1 == elfcpp::PT_TLS
2348 && type2 != elfcpp::PT_TLS
2349 && type2 != elfcpp::PT_GNU_RELRO)
2350 return false;
2351 if (type2 == elfcpp::PT_TLS
2352 && type1 != elfcpp::PT_TLS
2353 && type1 != elfcpp::PT_GNU_RELRO)
2354 return true;
2355
2356 // We put the PT_GNU_RELRO segment last, because that is where the
2357 // dynamic linker expects to find it (as with PT_TLS, this is just
2358 // for efficiency).
2359 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2360 return false;
2361 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2362 return true;
2363
2364 const elfcpp::Elf_Word flags1 = seg1->flags();
2365 const elfcpp::Elf_Word flags2 = seg2->flags();
2366
2367 // The order of non-PT_LOAD segments is unimportant. We simply sort
2368 // by the numeric segment type and flags values. There should not
2369 // be more than one segment with the same type and flags.
2370 if (type1 != elfcpp::PT_LOAD)
2371 {
2372 if (type1 != type2)
2373 return type1 < type2;
2374 gold_assert(flags1 != flags2);
2375 return flags1 < flags2;
2376 }
2377
2378 // If the addresses are set already, sort by load address.
2379 if (seg1->are_addresses_set())
2380 {
2381 if (!seg2->are_addresses_set())
2382 return true;
2383
2384 unsigned int section_count1 = seg1->output_section_count();
2385 unsigned int section_count2 = seg2->output_section_count();
2386 if (section_count1 == 0 && section_count2 > 0)
2387 return true;
2388 if (section_count1 > 0 && section_count2 == 0)
2389 return false;
2390
2391 uint64_t paddr1 = seg1->first_section_load_address();
2392 uint64_t paddr2 = seg2->first_section_load_address();
2393 if (paddr1 != paddr2)
2394 return paddr1 < paddr2;
2395 }
2396 else if (seg2->are_addresses_set())
2397 return false;
2398
2399 // A segment which holds large data comes after a segment which does
2400 // not hold large data.
2401 if (seg1->is_large_data_segment())
2402 {
2403 if (!seg2->is_large_data_segment())
2404 return false;
2405 }
2406 else if (seg2->is_large_data_segment())
2407 return true;
2408
2409 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2410 // segments come before writable segments. Then writable segments
2411 // with data come before writable segments without data. Then
2412 // executable segments come before non-executable segments. Then
2413 // the unlikely case of a non-readable segment comes before the
2414 // normal case of a readable segment. If there are multiple
2415 // segments with the same type and flags, we require that the
2416 // address be set, and we sort by virtual address and then physical
2417 // address.
2418 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2419 return (flags1 & elfcpp::PF_W) == 0;
2420 if ((flags1 & elfcpp::PF_W) != 0
2421 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2422 return seg1->has_any_data_sections();
2423 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2424 return (flags1 & elfcpp::PF_X) != 0;
2425 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2426 return (flags1 & elfcpp::PF_R) == 0;
2427
2428 // We shouldn't get here--we shouldn't create segments which we
2429 // can't distinguish.
2430 gold_unreachable();
2431 }
2432
2433 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2434
2435 static off_t
2436 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2437 {
2438 uint64_t unsigned_off = off;
2439 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2440 | (addr & (abi_pagesize - 1)));
2441 if (aligned_off < unsigned_off)
2442 aligned_off += abi_pagesize;
2443 return aligned_off;
2444 }
2445
2446 // Set the file offsets of all the segments, and all the sections they
2447 // contain. They have all been created. LOAD_SEG must be be laid out
2448 // first. Return the offset of the data to follow.
2449
2450 off_t
2451 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2452 unsigned int *pshndx)
2453 {
2454 // Sort them into the final order.
2455 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2456 Layout::Compare_segments());
2457
2458 // Find the PT_LOAD segments, and set their addresses and offsets
2459 // and their section's addresses and offsets.
2460 uint64_t addr;
2461 if (parameters->options().user_set_Ttext())
2462 addr = parameters->options().Ttext();
2463 else if (parameters->options().output_is_position_independent())
2464 addr = 0;
2465 else
2466 addr = target->default_text_segment_address();
2467 off_t off = 0;
2468
2469 // If LOAD_SEG is NULL, then the file header and segment headers
2470 // will not be loadable. But they still need to be at offset 0 in
2471 // the file. Set their offsets now.
2472 if (load_seg == NULL)
2473 {
2474 for (Data_list::iterator p = this->special_output_list_.begin();
2475 p != this->special_output_list_.end();
2476 ++p)
2477 {
2478 off = align_address(off, (*p)->addralign());
2479 (*p)->set_address_and_file_offset(0, off);
2480 off += (*p)->data_size();
2481 }
2482 }
2483
2484 unsigned int increase_relro = this->increase_relro_;
2485 if (this->script_options_->saw_sections_clause())
2486 increase_relro = 0;
2487
2488 const bool check_sections = parameters->options().check_sections();
2489 Output_segment* last_load_segment = NULL;
2490
2491 bool was_readonly = false;
2492 for (Segment_list::iterator p = this->segment_list_.begin();
2493 p != this->segment_list_.end();
2494 ++p)
2495 {
2496 if ((*p)->type() == elfcpp::PT_LOAD)
2497 {
2498 if (load_seg != NULL && load_seg != *p)
2499 gold_unreachable();
2500 load_seg = NULL;
2501
2502 bool are_addresses_set = (*p)->are_addresses_set();
2503 if (are_addresses_set)
2504 {
2505 // When it comes to setting file offsets, we care about
2506 // the physical address.
2507 addr = (*p)->paddr();
2508 }
2509 else if (parameters->options().user_set_Tdata()
2510 && ((*p)->flags() & elfcpp::PF_W) != 0
2511 && (!parameters->options().user_set_Tbss()
2512 || (*p)->has_any_data_sections()))
2513 {
2514 addr = parameters->options().Tdata();
2515 are_addresses_set = true;
2516 }
2517 else if (parameters->options().user_set_Tbss()
2518 && ((*p)->flags() & elfcpp::PF_W) != 0
2519 && !(*p)->has_any_data_sections())
2520 {
2521 addr = parameters->options().Tbss();
2522 are_addresses_set = true;
2523 }
2524
2525 uint64_t orig_addr = addr;
2526 uint64_t orig_off = off;
2527
2528 uint64_t aligned_addr = 0;
2529 uint64_t abi_pagesize = target->abi_pagesize();
2530 uint64_t common_pagesize = target->common_pagesize();
2531
2532 if (!parameters->options().nmagic()
2533 && !parameters->options().omagic())
2534 (*p)->set_minimum_p_align(common_pagesize);
2535
2536 if (!are_addresses_set)
2537 {
2538 // If the last segment was readonly, and this one is
2539 // not, then skip the address forward one page,
2540 // maintaining the same position within the page. This
2541 // lets us store both segments overlapping on a single
2542 // page in the file, but the loader will put them on
2543 // different pages in memory.
2544
2545 addr = align_address(addr, (*p)->maximum_alignment());
2546 aligned_addr = addr;
2547
2548 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
2549 {
2550 if ((addr & (abi_pagesize - 1)) != 0)
2551 addr = addr + abi_pagesize;
2552 }
2553
2554 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2555 }
2556
2557 if (!parameters->options().nmagic()
2558 && !parameters->options().omagic())
2559 off = align_file_offset(off, addr, abi_pagesize);
2560 else if (load_seg == NULL)
2561 {
2562 // This is -N or -n with a section script which prevents
2563 // us from using a load segment. We need to ensure that
2564 // the file offset is aligned to the alignment of the
2565 // segment. This is because the linker script
2566 // implicitly assumed a zero offset. If we don't align
2567 // here, then the alignment of the sections in the
2568 // linker script may not match the alignment of the
2569 // sections in the set_section_addresses call below,
2570 // causing an error about dot moving backward.
2571 off = align_address(off, (*p)->maximum_alignment());
2572 }
2573
2574 unsigned int shndx_hold = *pshndx;
2575 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2576 increase_relro,
2577 &off, pshndx);
2578
2579 // Now that we know the size of this segment, we may be able
2580 // to save a page in memory, at the cost of wasting some
2581 // file space, by instead aligning to the start of a new
2582 // page. Here we use the real machine page size rather than
2583 // the ABI mandated page size.
2584
2585 if (!are_addresses_set && aligned_addr != addr)
2586 {
2587 uint64_t first_off = (common_pagesize
2588 - (aligned_addr
2589 & (common_pagesize - 1)));
2590 uint64_t last_off = new_addr & (common_pagesize - 1);
2591 if (first_off > 0
2592 && last_off > 0
2593 && ((aligned_addr & ~ (common_pagesize - 1))
2594 != (new_addr & ~ (common_pagesize - 1)))
2595 && first_off + last_off <= common_pagesize)
2596 {
2597 *pshndx = shndx_hold;
2598 addr = align_address(aligned_addr, common_pagesize);
2599 addr = align_address(addr, (*p)->maximum_alignment());
2600 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2601 off = align_file_offset(off, addr, abi_pagesize);
2602 new_addr = (*p)->set_section_addresses(this, true, addr,
2603 increase_relro,
2604 &off, pshndx);
2605 }
2606 }
2607
2608 addr = new_addr;
2609
2610 if (((*p)->flags() & elfcpp::PF_W) == 0)
2611 was_readonly = true;
2612
2613 // Implement --check-sections. We know that the segments
2614 // are sorted by LMA.
2615 if (check_sections && last_load_segment != NULL)
2616 {
2617 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2618 if (last_load_segment->paddr() + last_load_segment->memsz()
2619 > (*p)->paddr())
2620 {
2621 unsigned long long lb1 = last_load_segment->paddr();
2622 unsigned long long le1 = lb1 + last_load_segment->memsz();
2623 unsigned long long lb2 = (*p)->paddr();
2624 unsigned long long le2 = lb2 + (*p)->memsz();
2625 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2626 "[0x%llx -> 0x%llx]"),
2627 lb1, le1, lb2, le2);
2628 }
2629 }
2630 last_load_segment = *p;
2631 }
2632 }
2633
2634 // Handle the non-PT_LOAD segments, setting their offsets from their
2635 // section's offsets.
2636 for (Segment_list::iterator p = this->segment_list_.begin();
2637 p != this->segment_list_.end();
2638 ++p)
2639 {
2640 if ((*p)->type() != elfcpp::PT_LOAD)
2641 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
2642 ? increase_relro
2643 : 0);
2644 }
2645
2646 // Set the TLS offsets for each section in the PT_TLS segment.
2647 if (this->tls_segment_ != NULL)
2648 this->tls_segment_->set_tls_offsets();
2649
2650 return off;
2651 }
2652
2653 // Set the offsets of all the allocated sections when doing a
2654 // relocatable link. This does the same jobs as set_segment_offsets,
2655 // only for a relocatable link.
2656
2657 off_t
2658 Layout::set_relocatable_section_offsets(Output_data* file_header,
2659 unsigned int *pshndx)
2660 {
2661 off_t off = 0;
2662
2663 file_header->set_address_and_file_offset(0, 0);
2664 off += file_header->data_size();
2665
2666 for (Section_list::iterator p = this->section_list_.begin();
2667 p != this->section_list_.end();
2668 ++p)
2669 {
2670 // We skip unallocated sections here, except that group sections
2671 // have to come first.
2672 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
2673 && (*p)->type() != elfcpp::SHT_GROUP)
2674 continue;
2675
2676 off = align_address(off, (*p)->addralign());
2677
2678 // The linker script might have set the address.
2679 if (!(*p)->is_address_valid())
2680 (*p)->set_address(0);
2681 (*p)->set_file_offset(off);
2682 (*p)->finalize_data_size();
2683 off += (*p)->data_size();
2684
2685 (*p)->set_out_shndx(*pshndx);
2686 ++*pshndx;
2687 }
2688
2689 return off;
2690 }
2691
2692 // Set the file offset of all the sections not associated with a
2693 // segment.
2694
2695 off_t
2696 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
2697 {
2698 for (Section_list::iterator p = this->unattached_section_list_.begin();
2699 p != this->unattached_section_list_.end();
2700 ++p)
2701 {
2702 // The symtab section is handled in create_symtab_sections.
2703 if (*p == this->symtab_section_)
2704 continue;
2705
2706 // If we've already set the data size, don't set it again.
2707 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
2708 continue;
2709
2710 if (pass == BEFORE_INPUT_SECTIONS_PASS
2711 && (*p)->requires_postprocessing())
2712 {
2713 (*p)->create_postprocessing_buffer();
2714 this->any_postprocessing_sections_ = true;
2715 }
2716
2717 if (pass == BEFORE_INPUT_SECTIONS_PASS
2718 && (*p)->after_input_sections())
2719 continue;
2720 else if (pass == POSTPROCESSING_SECTIONS_PASS
2721 && (!(*p)->after_input_sections()
2722 || (*p)->type() == elfcpp::SHT_STRTAB))
2723 continue;
2724 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2725 && (!(*p)->after_input_sections()
2726 || (*p)->type() != elfcpp::SHT_STRTAB))
2727 continue;
2728
2729 off = align_address(off, (*p)->addralign());
2730 (*p)->set_file_offset(off);
2731 (*p)->finalize_data_size();
2732 off += (*p)->data_size();
2733
2734 // At this point the name must be set.
2735 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
2736 this->namepool_.add((*p)->name(), false, NULL);
2737 }
2738 return off;
2739 }
2740
2741 // Set the section indexes of all the sections not associated with a
2742 // segment.
2743
2744 unsigned int
2745 Layout::set_section_indexes(unsigned int shndx)
2746 {
2747 for (Section_list::iterator p = this->unattached_section_list_.begin();
2748 p != this->unattached_section_list_.end();
2749 ++p)
2750 {
2751 if (!(*p)->has_out_shndx())
2752 {
2753 (*p)->set_out_shndx(shndx);
2754 ++shndx;
2755 }
2756 }
2757 return shndx;
2758 }
2759
2760 // Set the section addresses according to the linker script. This is
2761 // only called when we see a SECTIONS clause. This returns the
2762 // program segment which should hold the file header and segment
2763 // headers, if any. It will return NULL if they should not be in a
2764 // segment.
2765
2766 Output_segment*
2767 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2768 {
2769 Script_sections* ss = this->script_options_->script_sections();
2770 gold_assert(ss->saw_sections_clause());
2771 return this->script_options_->set_section_addresses(symtab, this);
2772 }
2773
2774 // Place the orphan sections in the linker script.
2775
2776 void
2777 Layout::place_orphan_sections_in_script()
2778 {
2779 Script_sections* ss = this->script_options_->script_sections();
2780 gold_assert(ss->saw_sections_clause());
2781
2782 // Place each orphaned output section in the script.
2783 for (Section_list::iterator p = this->section_list_.begin();
2784 p != this->section_list_.end();
2785 ++p)
2786 {
2787 if (!(*p)->found_in_sections_clause())
2788 ss->place_orphan(*p);
2789 }
2790 }
2791
2792 // Count the local symbols in the regular symbol table and the dynamic
2793 // symbol table, and build the respective string pools.
2794
2795 void
2796 Layout::count_local_symbols(const Task* task,
2797 const Input_objects* input_objects)
2798 {
2799 // First, figure out an upper bound on the number of symbols we'll
2800 // be inserting into each pool. This helps us create the pools with
2801 // the right size, to avoid unnecessary hashtable resizing.
2802 unsigned int symbol_count = 0;
2803 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2804 p != input_objects->relobj_end();
2805 ++p)
2806 symbol_count += (*p)->local_symbol_count();
2807
2808 // Go from "upper bound" to "estimate." We overcount for two
2809 // reasons: we double-count symbols that occur in more than one
2810 // object file, and we count symbols that are dropped from the
2811 // output. Add it all together and assume we overcount by 100%.
2812 symbol_count /= 2;
2813
2814 // We assume all symbols will go into both the sympool and dynpool.
2815 this->sympool_.reserve(symbol_count);
2816 this->dynpool_.reserve(symbol_count);
2817
2818 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2819 p != input_objects->relobj_end();
2820 ++p)
2821 {
2822 Task_lock_obj<Object> tlo(task, *p);
2823 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2824 }
2825 }
2826
2827 // Create the symbol table sections. Here we also set the final
2828 // values of the symbols. At this point all the loadable sections are
2829 // fully laid out. SHNUM is the number of sections so far.
2830
2831 void
2832 Layout::create_symtab_sections(const Input_objects* input_objects,
2833 Symbol_table* symtab,
2834 unsigned int shnum,
2835 off_t* poff)
2836 {
2837 int symsize;
2838 unsigned int align;
2839 if (parameters->target().get_size() == 32)
2840 {
2841 symsize = elfcpp::Elf_sizes<32>::sym_size;
2842 align = 4;
2843 }
2844 else if (parameters->target().get_size() == 64)
2845 {
2846 symsize = elfcpp::Elf_sizes<64>::sym_size;
2847 align = 8;
2848 }
2849 else
2850 gold_unreachable();
2851
2852 off_t off = *poff;
2853 off = align_address(off, align);
2854 off_t startoff = off;
2855
2856 // Save space for the dummy symbol at the start of the section. We
2857 // never bother to write this out--it will just be left as zero.
2858 off += symsize;
2859 unsigned int local_symbol_index = 1;
2860
2861 // Add STT_SECTION symbols for each Output section which needs one.
2862 for (Section_list::iterator p = this->section_list_.begin();
2863 p != this->section_list_.end();
2864 ++p)
2865 {
2866 if (!(*p)->needs_symtab_index())
2867 (*p)->set_symtab_index(-1U);
2868 else
2869 {
2870 (*p)->set_symtab_index(local_symbol_index);
2871 ++local_symbol_index;
2872 off += symsize;
2873 }
2874 }
2875
2876 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2877 p != input_objects->relobj_end();
2878 ++p)
2879 {
2880 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2881 off, symtab);
2882 off += (index - local_symbol_index) * symsize;
2883 local_symbol_index = index;
2884 }
2885
2886 unsigned int local_symcount = local_symbol_index;
2887 gold_assert(static_cast<off_t>(local_symcount * symsize) == off - startoff);
2888
2889 off_t dynoff;
2890 size_t dyn_global_index;
2891 size_t dyncount;
2892 if (this->dynsym_section_ == NULL)
2893 {
2894 dynoff = 0;
2895 dyn_global_index = 0;
2896 dyncount = 0;
2897 }
2898 else
2899 {
2900 dyn_global_index = this->dynsym_section_->info();
2901 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2902 dynoff = this->dynsym_section_->offset() + locsize;
2903 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2904 gold_assert(static_cast<off_t>(dyncount * symsize)
2905 == this->dynsym_section_->data_size() - locsize);
2906 }
2907
2908 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2909 &this->sympool_, &local_symcount);
2910
2911 if (!parameters->options().strip_all())
2912 {
2913 this->sympool_.set_string_offsets();
2914
2915 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2916 Output_section* osymtab = this->make_output_section(symtab_name,
2917 elfcpp::SHT_SYMTAB,
2918 0, ORDER_INVALID,
2919 false);
2920 this->symtab_section_ = osymtab;
2921
2922 Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2923 align,
2924 "** symtab");
2925 osymtab->add_output_section_data(pos);
2926
2927 // We generate a .symtab_shndx section if we have more than
2928 // SHN_LORESERVE sections. Technically it is possible that we
2929 // don't need one, because it is possible that there are no
2930 // symbols in any of sections with indexes larger than
2931 // SHN_LORESERVE. That is probably unusual, though, and it is
2932 // easier to always create one than to compute section indexes
2933 // twice (once here, once when writing out the symbols).
2934 if (shnum >= elfcpp::SHN_LORESERVE)
2935 {
2936 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2937 false, NULL);
2938 Output_section* osymtab_xindex =
2939 this->make_output_section(symtab_xindex_name,
2940 elfcpp::SHT_SYMTAB_SHNDX, 0,
2941 ORDER_INVALID, false);
2942
2943 size_t symcount = (off - startoff) / symsize;
2944 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2945
2946 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2947
2948 osymtab_xindex->set_link_section(osymtab);
2949 osymtab_xindex->set_addralign(4);
2950 osymtab_xindex->set_entsize(4);
2951
2952 osymtab_xindex->set_after_input_sections();
2953
2954 // This tells the driver code to wait until the symbol table
2955 // has written out before writing out the postprocessing
2956 // sections, including the .symtab_shndx section.
2957 this->any_postprocessing_sections_ = true;
2958 }
2959
2960 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2961 Output_section* ostrtab = this->make_output_section(strtab_name,
2962 elfcpp::SHT_STRTAB,
2963 0, ORDER_INVALID,
2964 false);
2965
2966 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2967 ostrtab->add_output_section_data(pstr);
2968
2969 osymtab->set_file_offset(startoff);
2970 osymtab->finalize_data_size();
2971 osymtab->set_link_section(ostrtab);
2972 osymtab->set_info(local_symcount);
2973 osymtab->set_entsize(symsize);
2974
2975 *poff = off;
2976 }
2977 }
2978
2979 // Create the .shstrtab section, which holds the names of the
2980 // sections. At the time this is called, we have created all the
2981 // output sections except .shstrtab itself.
2982
2983 Output_section*
2984 Layout::create_shstrtab()
2985 {
2986 // FIXME: We don't need to create a .shstrtab section if we are
2987 // stripping everything.
2988
2989 const char* name = this->namepool_.add(".shstrtab", false, NULL);
2990
2991 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
2992 ORDER_INVALID, false);
2993
2994 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
2995 {
2996 // We can't write out this section until we've set all the
2997 // section names, and we don't set the names of compressed
2998 // output sections until relocations are complete. FIXME: With
2999 // the current names we use, this is unnecessary.
3000 os->set_after_input_sections();
3001 }
3002
3003 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3004 os->add_output_section_data(posd);
3005
3006 return os;
3007 }
3008
3009 // Create the section headers. SIZE is 32 or 64. OFF is the file
3010 // offset.
3011
3012 void
3013 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3014 {
3015 Output_section_headers* oshdrs;
3016 oshdrs = new Output_section_headers(this,
3017 &this->segment_list_,
3018 &this->section_list_,
3019 &this->unattached_section_list_,
3020 &this->namepool_,
3021 shstrtab_section);
3022 off_t off = align_address(*poff, oshdrs->addralign());
3023 oshdrs->set_address_and_file_offset(0, off);
3024 off += oshdrs->data_size();
3025 *poff = off;
3026 this->section_headers_ = oshdrs;
3027 }
3028
3029 // Count the allocated sections.
3030
3031 size_t
3032 Layout::allocated_output_section_count() const
3033 {
3034 size_t section_count = 0;
3035 for (Segment_list::const_iterator p = this->segment_list_.begin();
3036 p != this->segment_list_.end();
3037 ++p)
3038 section_count += (*p)->output_section_count();
3039 return section_count;
3040 }
3041
3042 // Create the dynamic symbol table.
3043
3044 void
3045 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3046 Symbol_table* symtab,
3047 Output_section **pdynstr,
3048 unsigned int* plocal_dynamic_count,
3049 std::vector<Symbol*>* pdynamic_symbols,
3050 Versions* pversions)
3051 {
3052 // Count all the symbols in the dynamic symbol table, and set the
3053 // dynamic symbol indexes.
3054
3055 // Skip symbol 0, which is always all zeroes.
3056 unsigned int index = 1;
3057
3058 // Add STT_SECTION symbols for each Output section which needs one.
3059 for (Section_list::iterator p = this->section_list_.begin();
3060 p != this->section_list_.end();
3061 ++p)
3062 {
3063 if (!(*p)->needs_dynsym_index())
3064 (*p)->set_dynsym_index(-1U);
3065 else
3066 {
3067 (*p)->set_dynsym_index(index);
3068 ++index;
3069 }
3070 }
3071
3072 // Count the local symbols that need to go in the dynamic symbol table,
3073 // and set the dynamic symbol indexes.
3074 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3075 p != input_objects->relobj_end();
3076 ++p)
3077 {
3078 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3079 index = new_index;
3080 }
3081
3082 unsigned int local_symcount = index;
3083 *plocal_dynamic_count = local_symcount;
3084
3085 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3086 &this->dynpool_, pversions);
3087
3088 int symsize;
3089 unsigned int align;
3090 const int size = parameters->target().get_size();
3091 if (size == 32)
3092 {
3093 symsize = elfcpp::Elf_sizes<32>::sym_size;
3094 align = 4;
3095 }
3096 else if (size == 64)
3097 {
3098 symsize = elfcpp::Elf_sizes<64>::sym_size;
3099 align = 8;
3100 }
3101 else
3102 gold_unreachable();
3103
3104 // Create the dynamic symbol table section.
3105
3106 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3107 elfcpp::SHT_DYNSYM,
3108 elfcpp::SHF_ALLOC,
3109 false,
3110 ORDER_DYNAMIC_LINKER,
3111 false);
3112
3113 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3114 align,
3115 "** dynsym");
3116 dynsym->add_output_section_data(odata);
3117
3118 dynsym->set_info(local_symcount);
3119 dynsym->set_entsize(symsize);
3120 dynsym->set_addralign(align);
3121
3122 this->dynsym_section_ = dynsym;
3123
3124 Output_data_dynamic* const odyn = this->dynamic_data_;
3125 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3126 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3127
3128 // If there are more than SHN_LORESERVE allocated sections, we
3129 // create a .dynsym_shndx section. It is possible that we don't
3130 // need one, because it is possible that there are no dynamic
3131 // symbols in any of the sections with indexes larger than
3132 // SHN_LORESERVE. This is probably unusual, though, and at this
3133 // time we don't know the actual section indexes so it is
3134 // inconvenient to check.
3135 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3136 {
3137 Output_section* dynsym_xindex =
3138 this->choose_output_section(NULL, ".dynsym_shndx",
3139 elfcpp::SHT_SYMTAB_SHNDX,
3140 elfcpp::SHF_ALLOC,
3141 false, ORDER_DYNAMIC_LINKER, false);
3142
3143 this->dynsym_xindex_ = new Output_symtab_xindex(index);
3144
3145 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3146
3147 dynsym_xindex->set_link_section(dynsym);
3148 dynsym_xindex->set_addralign(4);
3149 dynsym_xindex->set_entsize(4);
3150
3151 dynsym_xindex->set_after_input_sections();
3152
3153 // This tells the driver code to wait until the symbol table has
3154 // written out before writing out the postprocessing sections,
3155 // including the .dynsym_shndx section.
3156 this->any_postprocessing_sections_ = true;
3157 }
3158
3159 // Create the dynamic string table section.
3160
3161 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3162 elfcpp::SHT_STRTAB,
3163 elfcpp::SHF_ALLOC,
3164 false,
3165 ORDER_DYNAMIC_LINKER,
3166 false);
3167
3168 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3169 dynstr->add_output_section_data(strdata);
3170
3171 dynsym->set_link_section(dynstr);
3172 this->dynamic_section_->set_link_section(dynstr);
3173
3174 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3175 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3176
3177 *pdynstr = dynstr;
3178
3179 // Create the hash tables.
3180
3181 if (strcmp(parameters->options().hash_style(), "sysv") == 0
3182 || strcmp(parameters->options().hash_style(), "both") == 0)
3183 {
3184 unsigned char* phash;
3185 unsigned int hashlen;
3186 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3187 &phash, &hashlen);
3188
3189 Output_section* hashsec =
3190 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3191 elfcpp::SHF_ALLOC, false,
3192 ORDER_DYNAMIC_LINKER, false);
3193
3194 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3195 hashlen,
3196 align,
3197 "** hash");
3198 hashsec->add_output_section_data(hashdata);
3199
3200 hashsec->set_link_section(dynsym);
3201 hashsec->set_entsize(4);
3202
3203 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3204 }
3205
3206 if (strcmp(parameters->options().hash_style(), "gnu") == 0
3207 || strcmp(parameters->options().hash_style(), "both") == 0)
3208 {
3209 unsigned char* phash;
3210 unsigned int hashlen;
3211 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3212 &phash, &hashlen);
3213
3214 Output_section* hashsec =
3215 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3216 elfcpp::SHF_ALLOC, false,
3217 ORDER_DYNAMIC_LINKER, false);
3218
3219 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3220 hashlen,
3221 align,
3222 "** hash");
3223 hashsec->add_output_section_data(hashdata);
3224
3225 hashsec->set_link_section(dynsym);
3226
3227 // For a 64-bit target, the entries in .gnu.hash do not have a
3228 // uniform size, so we only set the entry size for a 32-bit
3229 // target.
3230 if (parameters->target().get_size() == 32)
3231 hashsec->set_entsize(4);
3232
3233 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3234 }
3235 }
3236
3237 // Assign offsets to each local portion of the dynamic symbol table.
3238
3239 void
3240 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3241 {
3242 Output_section* dynsym = this->dynsym_section_;
3243 gold_assert(dynsym != NULL);
3244
3245 off_t off = dynsym->offset();
3246
3247 // Skip the dummy symbol at the start of the section.
3248 off += dynsym->entsize();
3249
3250 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3251 p != input_objects->relobj_end();
3252 ++p)
3253 {
3254 unsigned int count = (*p)->set_local_dynsym_offset(off);
3255 off += count * dynsym->entsize();
3256 }
3257 }
3258
3259 // Create the version sections.
3260
3261 void
3262 Layout::create_version_sections(const Versions* versions,
3263 const Symbol_table* symtab,
3264 unsigned int local_symcount,
3265 const std::vector<Symbol*>& dynamic_symbols,
3266 const Output_section* dynstr)
3267 {
3268 if (!versions->any_defs() && !versions->any_needs())
3269 return;
3270
3271 switch (parameters->size_and_endianness())
3272 {
3273 #ifdef HAVE_TARGET_32_LITTLE
3274 case Parameters::TARGET_32_LITTLE:
3275 this->sized_create_version_sections<32, false>(versions, symtab,
3276 local_symcount,
3277 dynamic_symbols, dynstr);
3278 break;
3279 #endif
3280 #ifdef HAVE_TARGET_32_BIG
3281 case Parameters::TARGET_32_BIG:
3282 this->sized_create_version_sections<32, true>(versions, symtab,
3283 local_symcount,
3284 dynamic_symbols, dynstr);
3285 break;
3286 #endif
3287 #ifdef HAVE_TARGET_64_LITTLE
3288 case Parameters::TARGET_64_LITTLE:
3289 this->sized_create_version_sections<64, false>(versions, symtab,
3290 local_symcount,
3291 dynamic_symbols, dynstr);
3292 break;
3293 #endif
3294 #ifdef HAVE_TARGET_64_BIG
3295 case Parameters::TARGET_64_BIG:
3296 this->sized_create_version_sections<64, true>(versions, symtab,
3297 local_symcount,
3298 dynamic_symbols, dynstr);
3299 break;
3300 #endif
3301 default:
3302 gold_unreachable();
3303 }
3304 }
3305
3306 // Create the version sections, sized version.
3307
3308 template<int size, bool big_endian>
3309 void
3310 Layout::sized_create_version_sections(
3311 const Versions* versions,
3312 const Symbol_table* symtab,
3313 unsigned int local_symcount,
3314 const std::vector<Symbol*>& dynamic_symbols,
3315 const Output_section* dynstr)
3316 {
3317 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3318 elfcpp::SHT_GNU_versym,
3319 elfcpp::SHF_ALLOC,
3320 false,
3321 ORDER_DYNAMIC_LINKER,
3322 false);
3323
3324 unsigned char* vbuf;
3325 unsigned int vsize;
3326 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3327 local_symcount,
3328 dynamic_symbols,
3329 &vbuf, &vsize);
3330
3331 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3332 "** versions");
3333
3334 vsec->add_output_section_data(vdata);
3335 vsec->set_entsize(2);
3336 vsec->set_link_section(this->dynsym_section_);
3337
3338 Output_data_dynamic* const odyn = this->dynamic_data_;
3339 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3340
3341 if (versions->any_defs())
3342 {
3343 Output_section* vdsec;
3344 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3345 elfcpp::SHT_GNU_verdef,
3346 elfcpp::SHF_ALLOC,
3347 false, ORDER_DYNAMIC_LINKER, false);
3348
3349 unsigned char* vdbuf;
3350 unsigned int vdsize;
3351 unsigned int vdentries;
3352 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3353 &vdsize, &vdentries);
3354
3355 Output_section_data* vddata =
3356 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3357
3358 vdsec->add_output_section_data(vddata);
3359 vdsec->set_link_section(dynstr);
3360 vdsec->set_info(vdentries);
3361
3362 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3363 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3364 }
3365
3366 if (versions->any_needs())
3367 {
3368 Output_section* vnsec;
3369 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3370 elfcpp::SHT_GNU_verneed,
3371 elfcpp::SHF_ALLOC,
3372 false, ORDER_DYNAMIC_LINKER, false);
3373
3374 unsigned char* vnbuf;
3375 unsigned int vnsize;
3376 unsigned int vnentries;
3377 versions->need_section_contents<size, big_endian>(&this->dynpool_,
3378 &vnbuf, &vnsize,
3379 &vnentries);
3380
3381 Output_section_data* vndata =
3382 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3383
3384 vnsec->add_output_section_data(vndata);
3385 vnsec->set_link_section(dynstr);
3386 vnsec->set_info(vnentries);
3387
3388 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3389 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3390 }
3391 }
3392
3393 // Create the .interp section and PT_INTERP segment.
3394
3395 void
3396 Layout::create_interp(const Target* target)
3397 {
3398 const char* interp = parameters->options().dynamic_linker();
3399 if (interp == NULL)
3400 {
3401 interp = target->dynamic_linker();
3402 gold_assert(interp != NULL);
3403 }
3404
3405 size_t len = strlen(interp) + 1;
3406
3407 Output_section_data* odata = new Output_data_const(interp, len, 1);
3408
3409 Output_section* osec = this->choose_output_section(NULL, ".interp",
3410 elfcpp::SHT_PROGBITS,
3411 elfcpp::SHF_ALLOC,
3412 false, ORDER_INTERP,
3413 false);
3414 osec->add_output_section_data(odata);
3415
3416 if (!this->script_options_->saw_phdrs_clause())
3417 {
3418 Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3419 elfcpp::PF_R);
3420 oseg->add_output_section_to_nonload(osec, elfcpp::PF_R);
3421 }
3422 }
3423
3424 // Add dynamic tags for the PLT and the dynamic relocs. This is
3425 // called by the target-specific code. This does nothing if not doing
3426 // a dynamic link.
3427
3428 // USE_REL is true for REL relocs rather than RELA relocs.
3429
3430 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3431
3432 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3433 // and we also set DT_PLTREL. We use PLT_REL's output section, since
3434 // some targets have multiple reloc sections in PLT_REL.
3435
3436 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3437 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3438
3439 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3440 // executable.
3441
3442 void
3443 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
3444 const Output_data* plt_rel,
3445 const Output_data_reloc_generic* dyn_rel,
3446 bool add_debug, bool dynrel_includes_plt)
3447 {
3448 Output_data_dynamic* odyn = this->dynamic_data_;
3449 if (odyn == NULL)
3450 return;
3451
3452 if (plt_got != NULL && plt_got->output_section() != NULL)
3453 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
3454
3455 if (plt_rel != NULL && plt_rel->output_section() != NULL)
3456 {
3457 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
3458 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
3459 odyn->add_constant(elfcpp::DT_PLTREL,
3460 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
3461 }
3462
3463 if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
3464 {
3465 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
3466 dyn_rel);
3467 if (plt_rel != NULL && dynrel_includes_plt)
3468 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3469 dyn_rel, plt_rel);
3470 else
3471 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3472 dyn_rel);
3473 const int size = parameters->target().get_size();
3474 elfcpp::DT rel_tag;
3475 int rel_size;
3476 if (use_rel)
3477 {
3478 rel_tag = elfcpp::DT_RELENT;
3479 if (size == 32)
3480 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
3481 else if (size == 64)
3482 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
3483 else
3484 gold_unreachable();
3485 }
3486 else
3487 {
3488 rel_tag = elfcpp::DT_RELAENT;
3489 if (size == 32)
3490 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
3491 else if (size == 64)
3492 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
3493 else
3494 gold_unreachable();
3495 }
3496 odyn->add_constant(rel_tag, rel_size);
3497
3498 if (parameters->options().combreloc())
3499 {
3500 size_t c = dyn_rel->relative_reloc_count();
3501 if (c > 0)
3502 odyn->add_constant((use_rel
3503 ? elfcpp::DT_RELCOUNT
3504 : elfcpp::DT_RELACOUNT),
3505 c);
3506 }
3507 }
3508
3509 if (add_debug && !parameters->options().shared())
3510 {
3511 // The value of the DT_DEBUG tag is filled in by the dynamic
3512 // linker at run time, and used by the debugger.
3513 odyn->add_constant(elfcpp::DT_DEBUG, 0);
3514 }
3515 }
3516
3517 // Finish the .dynamic section and PT_DYNAMIC segment.
3518
3519 void
3520 Layout::finish_dynamic_section(const Input_objects* input_objects,
3521 const Symbol_table* symtab)
3522 {
3523 if (!this->script_options_->saw_phdrs_clause())
3524 {
3525 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
3526 (elfcpp::PF_R
3527 | elfcpp::PF_W));
3528 oseg->add_output_section_to_nonload(this->dynamic_section_,
3529 elfcpp::PF_R | elfcpp::PF_W);
3530 }
3531
3532 Output_data_dynamic* const odyn = this->dynamic_data_;
3533
3534 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
3535 p != input_objects->dynobj_end();
3536 ++p)
3537 {
3538 if (!(*p)->is_needed()
3539 && (*p)->input_file()->options().as_needed())
3540 {
3541 // This dynamic object was linked with --as-needed, but it
3542 // is not needed.
3543 continue;
3544 }
3545
3546 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
3547 }
3548
3549 if (parameters->options().shared())
3550 {
3551 const char* soname = parameters->options().soname();
3552 if (soname != NULL)
3553 odyn->add_string(elfcpp::DT_SONAME, soname);
3554 }
3555
3556 Symbol* sym = symtab->lookup(parameters->options().init());
3557 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3558 odyn->add_symbol(elfcpp::DT_INIT, sym);
3559
3560 sym = symtab->lookup(parameters->options().fini());
3561 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3562 odyn->add_symbol(elfcpp::DT_FINI, sym);
3563
3564 // Look for .init_array, .preinit_array and .fini_array by checking
3565 // section types.
3566 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
3567 p != this->section_list_.end();
3568 ++p)
3569 switch((*p)->type())
3570 {
3571 case elfcpp::SHT_FINI_ARRAY:
3572 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
3573 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
3574 break;
3575 case elfcpp::SHT_INIT_ARRAY:
3576 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
3577 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
3578 break;
3579 case elfcpp::SHT_PREINIT_ARRAY:
3580 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
3581 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
3582 break;
3583 default:
3584 break;
3585 }
3586
3587 // Add a DT_RPATH entry if needed.
3588 const General_options::Dir_list& rpath(parameters->options().rpath());
3589 if (!rpath.empty())
3590 {
3591 std::string rpath_val;
3592 for (General_options::Dir_list::const_iterator p = rpath.begin();
3593 p != rpath.end();
3594 ++p)
3595 {
3596 if (rpath_val.empty())
3597 rpath_val = p->name();
3598 else
3599 {
3600 // Eliminate duplicates.
3601 General_options::Dir_list::const_iterator q;
3602 for (q = rpath.begin(); q != p; ++q)
3603 if (q->name() == p->name())
3604 break;
3605 if (q == p)
3606 {
3607 rpath_val += ':';
3608 rpath_val += p->name();
3609 }
3610 }
3611 }
3612
3613 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
3614 if (parameters->options().enable_new_dtags())
3615 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
3616 }
3617
3618 // Look for text segments that have dynamic relocations.
3619 bool have_textrel = false;
3620 if (!this->script_options_->saw_sections_clause())
3621 {
3622 for (Segment_list::const_iterator p = this->segment_list_.begin();
3623 p != this->segment_list_.end();
3624 ++p)
3625 {
3626 if (((*p)->flags() & elfcpp::PF_W) == 0
3627 && (*p)->has_dynamic_reloc())
3628 {
3629 have_textrel = true;
3630 break;
3631 }
3632 }
3633 }
3634 else
3635 {
3636 // We don't know the section -> segment mapping, so we are
3637 // conservative and just look for readonly sections with
3638 // relocations. If those sections wind up in writable segments,
3639 // then we have created an unnecessary DT_TEXTREL entry.
3640 for (Section_list::const_iterator p = this->section_list_.begin();
3641 p != this->section_list_.end();
3642 ++p)
3643 {
3644 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
3645 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
3646 && ((*p)->has_dynamic_reloc()))
3647 {
3648 have_textrel = true;
3649 break;
3650 }
3651 }
3652 }
3653
3654 // Add a DT_FLAGS entry. We add it even if no flags are set so that
3655 // post-link tools can easily modify these flags if desired.
3656 unsigned int flags = 0;
3657 if (have_textrel)
3658 {
3659 // Add a DT_TEXTREL for compatibility with older loaders.
3660 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
3661 flags |= elfcpp::DF_TEXTREL;
3662
3663 if (parameters->options().text())
3664 gold_error(_("read-only segment has dynamic relocations"));
3665 else if (parameters->options().warn_shared_textrel()
3666 && parameters->options().shared())
3667 gold_warning(_("shared library text segment is not shareable"));
3668 }
3669 if (parameters->options().shared() && this->has_static_tls())
3670 flags |= elfcpp::DF_STATIC_TLS;
3671 if (parameters->options().origin())
3672 flags |= elfcpp::DF_ORIGIN;
3673 if (parameters->options().Bsymbolic())
3674 {
3675 flags |= elfcpp::DF_SYMBOLIC;
3676 // Add DT_SYMBOLIC for compatibility with older loaders.
3677 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
3678 }
3679 if (parameters->options().now())
3680 flags |= elfcpp::DF_BIND_NOW;
3681 odyn->add_constant(elfcpp::DT_FLAGS, flags);
3682
3683 flags = 0;
3684 if (parameters->options().initfirst())
3685 flags |= elfcpp::DF_1_INITFIRST;
3686 if (parameters->options().interpose())
3687 flags |= elfcpp::DF_1_INTERPOSE;
3688 if (parameters->options().loadfltr())
3689 flags |= elfcpp::DF_1_LOADFLTR;
3690 if (parameters->options().nodefaultlib())
3691 flags |= elfcpp::DF_1_NODEFLIB;
3692 if (parameters->options().nodelete())
3693 flags |= elfcpp::DF_1_NODELETE;
3694 if (parameters->options().nodlopen())
3695 flags |= elfcpp::DF_1_NOOPEN;
3696 if (parameters->options().nodump())
3697 flags |= elfcpp::DF_1_NODUMP;
3698 if (!parameters->options().shared())
3699 flags &= ~(elfcpp::DF_1_INITFIRST
3700 | elfcpp::DF_1_NODELETE
3701 | elfcpp::DF_1_NOOPEN);
3702 if (parameters->options().origin())
3703 flags |= elfcpp::DF_1_ORIGIN;
3704 if (parameters->options().now())
3705 flags |= elfcpp::DF_1_NOW;
3706 if (flags)
3707 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
3708 }
3709
3710 // Set the size of the _DYNAMIC symbol table to be the size of the
3711 // dynamic data.
3712
3713 void
3714 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
3715 {
3716 Output_data_dynamic* const odyn = this->dynamic_data_;
3717 odyn->finalize_data_size();
3718 off_t data_size = odyn->data_size();
3719 const int size = parameters->target().get_size();
3720 if (size == 32)
3721 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
3722 else if (size == 64)
3723 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
3724 else
3725 gold_unreachable();
3726 }
3727
3728 // The mapping of input section name prefixes to output section names.
3729 // In some cases one prefix is itself a prefix of another prefix; in
3730 // such a case the longer prefix must come first. These prefixes are
3731 // based on the GNU linker default ELF linker script.
3732
3733 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3734 const Layout::Section_name_mapping Layout::section_name_mapping[] =
3735 {
3736 MAPPING_INIT(".text.", ".text"),
3737 MAPPING_INIT(".ctors.", ".ctors"),
3738 MAPPING_INIT(".dtors.", ".dtors"),
3739 MAPPING_INIT(".rodata.", ".rodata"),
3740 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3741 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3742 MAPPING_INIT(".data.", ".data"),
3743 MAPPING_INIT(".bss.", ".bss"),
3744 MAPPING_INIT(".tdata.", ".tdata"),
3745 MAPPING_INIT(".tbss.", ".tbss"),
3746 MAPPING_INIT(".init_array.", ".init_array"),
3747 MAPPING_INIT(".fini_array.", ".fini_array"),
3748 MAPPING_INIT(".sdata.", ".sdata"),
3749 MAPPING_INIT(".sbss.", ".sbss"),
3750 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3751 // differently depending on whether it is creating a shared library.
3752 MAPPING_INIT(".sdata2.", ".sdata"),
3753 MAPPING_INIT(".sbss2.", ".sbss"),
3754 MAPPING_INIT(".lrodata.", ".lrodata"),
3755 MAPPING_INIT(".ldata.", ".ldata"),
3756 MAPPING_INIT(".lbss.", ".lbss"),
3757 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3758 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3759 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3760 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3761 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3762 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3763 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3764 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3765 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3766 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3767 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3768 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3769 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3770 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3771 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3772 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3773 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3774 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
3775 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3776 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
3777 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3778 };
3779 #undef MAPPING_INIT
3780
3781 const int Layout::section_name_mapping_count =
3782 (sizeof(Layout::section_name_mapping)
3783 / sizeof(Layout::section_name_mapping[0]));
3784
3785 // Choose the output section name to use given an input section name.
3786 // Set *PLEN to the length of the name. *PLEN is initialized to the
3787 // length of NAME.
3788
3789 const char*
3790 Layout::output_section_name(const char* name, size_t* plen)
3791 {
3792 // gcc 4.3 generates the following sorts of section names when it
3793 // needs a section name specific to a function:
3794 // .text.FN
3795 // .rodata.FN
3796 // .sdata2.FN
3797 // .data.FN
3798 // .data.rel.FN
3799 // .data.rel.local.FN
3800 // .data.rel.ro.FN
3801 // .data.rel.ro.local.FN
3802 // .sdata.FN
3803 // .bss.FN
3804 // .sbss.FN
3805 // .tdata.FN
3806 // .tbss.FN
3807
3808 // The GNU linker maps all of those to the part before the .FN,
3809 // except that .data.rel.local.FN is mapped to .data, and
3810 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
3811 // beginning with .data.rel.ro.local are grouped together.
3812
3813 // For an anonymous namespace, the string FN can contain a '.'.
3814
3815 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3816 // GNU linker maps to .rodata.
3817
3818 // The .data.rel.ro sections are used with -z relro. The sections
3819 // are recognized by name. We use the same names that the GNU
3820 // linker does for these sections.
3821
3822 // It is hard to handle this in a principled way, so we don't even
3823 // try. We use a table of mappings. If the input section name is
3824 // not found in the table, we simply use it as the output section
3825 // name.
3826
3827 const Section_name_mapping* psnm = section_name_mapping;
3828 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
3829 {
3830 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
3831 {
3832 *plen = psnm->tolen;
3833 return psnm->to;
3834 }
3835 }
3836
3837 // Compressed debug sections should be mapped to the corresponding
3838 // uncompressed section.
3839 if (is_compressed_debug_section(name))
3840 {
3841 size_t len = strlen(name);
3842 char *uncompressed_name = new char[len];
3843 uncompressed_name[0] = '.';
3844 gold_assert(name[0] == '.' && name[1] == 'z');
3845 strncpy(&uncompressed_name[1], &name[2], len - 2);
3846 uncompressed_name[len - 1] = '\0';
3847 *plen = len - 1;
3848 return uncompressed_name;
3849 }
3850
3851 return name;
3852 }
3853
3854 // Check if a comdat group or .gnu.linkonce section with the given
3855 // NAME is selected for the link. If there is already a section,
3856 // *KEPT_SECTION is set to point to the existing section and the
3857 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3858 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3859 // *KEPT_SECTION is set to the internal copy and the function returns
3860 // true.
3861
3862 bool
3863 Layout::find_or_add_kept_section(const std::string& name,
3864 Relobj* object,
3865 unsigned int shndx,
3866 bool is_comdat,
3867 bool is_group_name,
3868 Kept_section** kept_section)
3869 {
3870 // It's normal to see a couple of entries here, for the x86 thunk
3871 // sections. If we see more than a few, we're linking a C++
3872 // program, and we resize to get more space to minimize rehashing.
3873 if (this->signatures_.size() > 4
3874 && !this->resized_signatures_)
3875 {
3876 reserve_unordered_map(&this->signatures_,
3877 this->number_of_input_files_ * 64);
3878 this->resized_signatures_ = true;
3879 }
3880
3881 Kept_section candidate;
3882 std::pair<Signatures::iterator, bool> ins =
3883 this->signatures_.insert(std::make_pair(name, candidate));
3884
3885 if (kept_section != NULL)
3886 *kept_section = &ins.first->second;
3887 if (ins.second)
3888 {
3889 // This is the first time we've seen this signature.
3890 ins.first->second.set_object(object);
3891 ins.first->second.set_shndx(shndx);
3892 if (is_comdat)
3893 ins.first->second.set_is_comdat();
3894 if (is_group_name)
3895 ins.first->second.set_is_group_name();
3896 return true;
3897 }
3898
3899 // We have already seen this signature.
3900
3901 if (ins.first->second.is_group_name())
3902 {
3903 // We've already seen a real section group with this signature.
3904 // If the kept group is from a plugin object, and we're in the
3905 // replacement phase, accept the new one as a replacement.
3906 if (ins.first->second.object() == NULL
3907 && parameters->options().plugins()->in_replacement_phase())
3908 {
3909 ins.first->second.set_object(object);
3910 ins.first->second.set_shndx(shndx);
3911 return true;
3912 }
3913 return false;
3914 }
3915 else if (is_group_name)
3916 {
3917 // This is a real section group, and we've already seen a
3918 // linkonce section with this signature. Record that we've seen
3919 // a section group, and don't include this section group.
3920 ins.first->second.set_is_group_name();
3921 return false;
3922 }
3923 else
3924 {
3925 // We've already seen a linkonce section and this is a linkonce
3926 // section. These don't block each other--this may be the same
3927 // symbol name with different section types.
3928 return true;
3929 }
3930 }
3931
3932 // Store the allocated sections into the section list.
3933
3934 void
3935 Layout::get_allocated_sections(Section_list* section_list) const
3936 {
3937 for (Section_list::const_iterator p = this->section_list_.begin();
3938 p != this->section_list_.end();
3939 ++p)
3940 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3941 section_list->push_back(*p);
3942 }
3943
3944 // Create an output segment.
3945
3946 Output_segment*
3947 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3948 {
3949 gold_assert(!parameters->options().relocatable());
3950 Output_segment* oseg = new Output_segment(type, flags);
3951 this->segment_list_.push_back(oseg);
3952
3953 if (type == elfcpp::PT_TLS)
3954 this->tls_segment_ = oseg;
3955 else if (type == elfcpp::PT_GNU_RELRO)
3956 this->relro_segment_ = oseg;
3957
3958 return oseg;
3959 }
3960
3961 // Write out the Output_sections. Most won't have anything to write,
3962 // since most of the data will come from input sections which are
3963 // handled elsewhere. But some Output_sections do have Output_data.
3964
3965 void
3966 Layout::write_output_sections(Output_file* of) const
3967 {
3968 for (Section_list::const_iterator p = this->section_list_.begin();
3969 p != this->section_list_.end();
3970 ++p)
3971 {
3972 if (!(*p)->after_input_sections())
3973 (*p)->write(of);
3974 }
3975 }
3976
3977 // Write out data not associated with a section or the symbol table.
3978
3979 void
3980 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3981 {
3982 if (!parameters->options().strip_all())
3983 {
3984 const Output_section* symtab_section = this->symtab_section_;
3985 for (Section_list::const_iterator p = this->section_list_.begin();
3986 p != this->section_list_.end();
3987 ++p)
3988 {
3989 if ((*p)->needs_symtab_index())
3990 {
3991 gold_assert(symtab_section != NULL);
3992 unsigned int index = (*p)->symtab_index();
3993 gold_assert(index > 0 && index != -1U);
3994 off_t off = (symtab_section->offset()
3995 + index * symtab_section->entsize());
3996 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3997 }
3998 }
3999 }
4000
4001 const Output_section* dynsym_section = this->dynsym_section_;
4002 for (Section_list::const_iterator p = this->section_list_.begin();
4003 p != this->section_list_.end();
4004 ++p)
4005 {
4006 if ((*p)->needs_dynsym_index())
4007 {
4008 gold_assert(dynsym_section != NULL);
4009 unsigned int index = (*p)->dynsym_index();
4010 gold_assert(index > 0 && index != -1U);
4011 off_t off = (dynsym_section->offset()
4012 + index * dynsym_section->entsize());
4013 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4014 }
4015 }
4016
4017 // Write out the Output_data which are not in an Output_section.
4018 for (Data_list::const_iterator p = this->special_output_list_.begin();
4019 p != this->special_output_list_.end();
4020 ++p)
4021 (*p)->write(of);
4022 }
4023
4024 // Write out the Output_sections which can only be written after the
4025 // input sections are complete.
4026
4027 void
4028 Layout::write_sections_after_input_sections(Output_file* of)
4029 {
4030 // Determine the final section offsets, and thus the final output
4031 // file size. Note we finalize the .shstrab last, to allow the
4032 // after_input_section sections to modify their section-names before
4033 // writing.
4034 if (this->any_postprocessing_sections_)
4035 {
4036 off_t off = this->output_file_size_;
4037 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4038
4039 // Now that we've finalized the names, we can finalize the shstrab.
4040 off =
4041 this->set_section_offsets(off,
4042 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4043
4044 if (off > this->output_file_size_)
4045 {
4046 of->resize(off);
4047 this->output_file_size_ = off;
4048 }
4049 }
4050
4051 for (Section_list::const_iterator p = this->section_list_.begin();
4052 p != this->section_list_.end();
4053 ++p)
4054 {
4055 if ((*p)->after_input_sections())
4056 (*p)->write(of);
4057 }
4058
4059 this->section_headers_->write(of);
4060 }
4061
4062 // If the build ID requires computing a checksum, do so here, and
4063 // write it out. We compute a checksum over the entire file because
4064 // that is simplest.
4065
4066 void
4067 Layout::write_build_id(Output_file* of) const
4068 {
4069 if (this->build_id_note_ == NULL)
4070 return;
4071
4072 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4073
4074 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4075 this->build_id_note_->data_size());
4076
4077 const char* style = parameters->options().build_id();
4078 if (strcmp(style, "sha1") == 0)
4079 {
4080 sha1_ctx ctx;
4081 sha1_init_ctx(&ctx);
4082 sha1_process_bytes(iv, this->output_file_size_, &ctx);
4083 sha1_finish_ctx(&ctx, ov);
4084 }
4085 else if (strcmp(style, "md5") == 0)
4086 {
4087 md5_ctx ctx;
4088 md5_init_ctx(&ctx);
4089 md5_process_bytes(iv, this->output_file_size_, &ctx);
4090 md5_finish_ctx(&ctx, ov);
4091 }
4092 else
4093 gold_unreachable();
4094
4095 of->write_output_view(this->build_id_note_->offset(),
4096 this->build_id_note_->data_size(),
4097 ov);
4098
4099 of->free_input_view(0, this->output_file_size_, iv);
4100 }
4101
4102 // Write out a binary file. This is called after the link is
4103 // complete. IN is the temporary output file we used to generate the
4104 // ELF code. We simply walk through the segments, read them from
4105 // their file offset in IN, and write them to their load address in
4106 // the output file. FIXME: with a bit more work, we could support
4107 // S-records and/or Intel hex format here.
4108
4109 void
4110 Layout::write_binary(Output_file* in) const
4111 {
4112 gold_assert(parameters->options().oformat_enum()
4113 == General_options::OBJECT_FORMAT_BINARY);
4114
4115 // Get the size of the binary file.
4116 uint64_t max_load_address = 0;
4117 for (Segment_list::const_iterator p = this->segment_list_.begin();
4118 p != this->segment_list_.end();
4119 ++p)
4120 {
4121 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4122 {
4123 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4124 if (max_paddr > max_load_address)
4125 max_load_address = max_paddr;
4126 }
4127 }
4128
4129 Output_file out(parameters->options().output_file_name());
4130 out.open(max_load_address);
4131
4132 for (Segment_list::const_iterator p = this->segment_list_.begin();
4133 p != this->segment_list_.end();
4134 ++p)
4135 {
4136 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4137 {
4138 const unsigned char* vin = in->get_input_view((*p)->offset(),
4139 (*p)->filesz());
4140 unsigned char* vout = out.get_output_view((*p)->paddr(),
4141 (*p)->filesz());
4142 memcpy(vout, vin, (*p)->filesz());
4143 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4144 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4145 }
4146 }
4147
4148 out.close();
4149 }
4150
4151 // Print the output sections to the map file.
4152
4153 void
4154 Layout::print_to_mapfile(Mapfile* mapfile) const
4155 {
4156 for (Segment_list::const_iterator p = this->segment_list_.begin();
4157 p != this->segment_list_.end();
4158 ++p)
4159 (*p)->print_sections_to_mapfile(mapfile);
4160 }
4161
4162 // Print statistical information to stderr. This is used for --stats.
4163
4164 void
4165 Layout::print_stats() const
4166 {
4167 this->namepool_.print_stats("section name pool");
4168 this->sympool_.print_stats("output symbol name pool");
4169 this->dynpool_.print_stats("dynamic name pool");
4170
4171 for (Section_list::const_iterator p = this->section_list_.begin();
4172 p != this->section_list_.end();
4173 ++p)
4174 (*p)->print_merge_stats();
4175 }
4176
4177 // Write_sections_task methods.
4178
4179 // We can always run this task.
4180
4181 Task_token*
4182 Write_sections_task::is_runnable()
4183 {
4184 return NULL;
4185 }
4186
4187 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4188 // when finished.
4189
4190 void
4191 Write_sections_task::locks(Task_locker* tl)
4192 {
4193 tl->add(this, this->output_sections_blocker_);
4194 tl->add(this, this->final_blocker_);
4195 }
4196
4197 // Run the task--write out the data.
4198
4199 void
4200 Write_sections_task::run(Workqueue*)
4201 {
4202 this->layout_->write_output_sections(this->of_);
4203 }
4204
4205 // Write_data_task methods.
4206
4207 // We can always run this task.
4208
4209 Task_token*
4210 Write_data_task::is_runnable()
4211 {
4212 return NULL;
4213 }
4214
4215 // We need to unlock FINAL_BLOCKER when finished.
4216
4217 void
4218 Write_data_task::locks(Task_locker* tl)
4219 {
4220 tl->add(this, this->final_blocker_);
4221 }
4222
4223 // Run the task--write out the data.
4224
4225 void
4226 Write_data_task::run(Workqueue*)
4227 {
4228 this->layout_->write_data(this->symtab_, this->of_);
4229 }
4230
4231 // Write_symbols_task methods.
4232
4233 // We can always run this task.
4234
4235 Task_token*
4236 Write_symbols_task::is_runnable()
4237 {
4238 return NULL;
4239 }
4240
4241 // We need to unlock FINAL_BLOCKER when finished.
4242
4243 void
4244 Write_symbols_task::locks(Task_locker* tl)
4245 {
4246 tl->add(this, this->final_blocker_);
4247 }
4248
4249 // Run the task--write out the symbols.
4250
4251 void
4252 Write_symbols_task::run(Workqueue*)
4253 {
4254 this->symtab_->write_globals(this->sympool_, this->dynpool_,
4255 this->layout_->symtab_xindex(),
4256 this->layout_->dynsym_xindex(), this->of_);
4257 }
4258
4259 // Write_after_input_sections_task methods.
4260
4261 // We can only run this task after the input sections have completed.
4262
4263 Task_token*
4264 Write_after_input_sections_task::is_runnable()
4265 {
4266 if (this->input_sections_blocker_->is_blocked())
4267 return this->input_sections_blocker_;
4268 return NULL;
4269 }
4270
4271 // We need to unlock FINAL_BLOCKER when finished.
4272
4273 void
4274 Write_after_input_sections_task::locks(Task_locker* tl)
4275 {
4276 tl->add(this, this->final_blocker_);
4277 }
4278
4279 // Run the task.
4280
4281 void
4282 Write_after_input_sections_task::run(Workqueue*)
4283 {
4284 this->layout_->write_sections_after_input_sections(this->of_);
4285 }
4286
4287 // Close_task_runner methods.
4288
4289 // Run the task--close the file.
4290
4291 void
4292 Close_task_runner::run(Workqueue*, const Task*)
4293 {
4294 // If we need to compute a checksum for the BUILD if, we do so here.
4295 this->layout_->write_build_id(this->of_);
4296
4297 // If we've been asked to create a binary file, we do so here.
4298 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4299 this->layout_->write_binary(this->of_);
4300
4301 this->of_->close();
4302 }
4303
4304 // Instantiate the templates we need. We could use the configure
4305 // script to restrict this to only the ones for implemented targets.
4306
4307 #ifdef HAVE_TARGET_32_LITTLE
4308 template
4309 Output_section*
4310 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
4311 const char* name,
4312 const elfcpp::Shdr<32, false>& shdr,
4313 unsigned int, unsigned int, off_t*);
4314 #endif
4315
4316 #ifdef HAVE_TARGET_32_BIG
4317 template
4318 Output_section*
4319 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
4320 const char* name,
4321 const elfcpp::Shdr<32, true>& shdr,
4322 unsigned int, unsigned int, off_t*);
4323 #endif
4324
4325 #ifdef HAVE_TARGET_64_LITTLE
4326 template
4327 Output_section*
4328 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
4329 const char* name,
4330 const elfcpp::Shdr<64, false>& shdr,
4331 unsigned int, unsigned int, off_t*);
4332 #endif
4333
4334 #ifdef HAVE_TARGET_64_BIG
4335 template
4336 Output_section*
4337 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
4338 const char* name,
4339 const elfcpp::Shdr<64, true>& shdr,
4340 unsigned int, unsigned int, off_t*);
4341 #endif
4342
4343 #ifdef HAVE_TARGET_32_LITTLE
4344 template
4345 Output_section*
4346 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
4347 unsigned int reloc_shndx,
4348 const elfcpp::Shdr<32, false>& shdr,
4349 Output_section* data_section,
4350 Relocatable_relocs* rr);
4351 #endif
4352
4353 #ifdef HAVE_TARGET_32_BIG
4354 template
4355 Output_section*
4356 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
4357 unsigned int reloc_shndx,
4358 const elfcpp::Shdr<32, true>& shdr,
4359 Output_section* data_section,
4360 Relocatable_relocs* rr);
4361 #endif
4362
4363 #ifdef HAVE_TARGET_64_LITTLE
4364 template
4365 Output_section*
4366 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
4367 unsigned int reloc_shndx,
4368 const elfcpp::Shdr<64, false>& shdr,
4369 Output_section* data_section,
4370 Relocatable_relocs* rr);
4371 #endif
4372
4373 #ifdef HAVE_TARGET_64_BIG
4374 template
4375 Output_section*
4376 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
4377 unsigned int reloc_shndx,
4378 const elfcpp::Shdr<64, true>& shdr,
4379 Output_section* data_section,
4380 Relocatable_relocs* rr);
4381 #endif
4382
4383 #ifdef HAVE_TARGET_32_LITTLE
4384 template
4385 void
4386 Layout::layout_group<32, false>(Symbol_table* symtab,
4387 Sized_relobj<32, false>* object,
4388 unsigned int,
4389 const char* group_section_name,
4390 const char* signature,
4391 const elfcpp::Shdr<32, false>& shdr,
4392 elfcpp::Elf_Word flags,
4393 std::vector<unsigned int>* shndxes);
4394 #endif
4395
4396 #ifdef HAVE_TARGET_32_BIG
4397 template
4398 void
4399 Layout::layout_group<32, true>(Symbol_table* symtab,
4400 Sized_relobj<32, true>* object,
4401 unsigned int,
4402 const char* group_section_name,
4403 const char* signature,
4404 const elfcpp::Shdr<32, true>& shdr,
4405 elfcpp::Elf_Word flags,
4406 std::vector<unsigned int>* shndxes);
4407 #endif
4408
4409 #ifdef HAVE_TARGET_64_LITTLE
4410 template
4411 void
4412 Layout::layout_group<64, false>(Symbol_table* symtab,
4413 Sized_relobj<64, false>* object,
4414 unsigned int,
4415 const char* group_section_name,
4416 const char* signature,
4417 const elfcpp::Shdr<64, false>& shdr,
4418 elfcpp::Elf_Word flags,
4419 std::vector<unsigned int>* shndxes);
4420 #endif
4421
4422 #ifdef HAVE_TARGET_64_BIG
4423 template
4424 void
4425 Layout::layout_group<64, true>(Symbol_table* symtab,
4426 Sized_relobj<64, true>* object,
4427 unsigned int,
4428 const char* group_section_name,
4429 const char* signature,
4430 const elfcpp::Shdr<64, true>& shdr,
4431 elfcpp::Elf_Word flags,
4432 std::vector<unsigned int>* shndxes);
4433 #endif
4434
4435 #ifdef HAVE_TARGET_32_LITTLE
4436 template
4437 Output_section*
4438 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
4439 const unsigned char* symbols,
4440 off_t symbols_size,
4441 const unsigned char* symbol_names,
4442 off_t symbol_names_size,
4443 unsigned int shndx,
4444 const elfcpp::Shdr<32, false>& shdr,
4445 unsigned int reloc_shndx,
4446 unsigned int reloc_type,
4447 off_t* off);
4448 #endif
4449
4450 #ifdef HAVE_TARGET_32_BIG
4451 template
4452 Output_section*
4453 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
4454 const unsigned char* symbols,
4455 off_t symbols_size,
4456 const unsigned char* symbol_names,
4457 off_t symbol_names_size,
4458 unsigned int shndx,
4459 const elfcpp::Shdr<32, true>& shdr,
4460 unsigned int reloc_shndx,
4461 unsigned int reloc_type,
4462 off_t* off);
4463 #endif
4464
4465 #ifdef HAVE_TARGET_64_LITTLE
4466 template
4467 Output_section*
4468 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
4469 const unsigned char* symbols,
4470 off_t symbols_size,
4471 const unsigned char* symbol_names,
4472 off_t symbol_names_size,
4473 unsigned int shndx,
4474 const elfcpp::Shdr<64, false>& shdr,
4475 unsigned int reloc_shndx,
4476 unsigned int reloc_type,
4477 off_t* off);
4478 #endif
4479
4480 #ifdef HAVE_TARGET_64_BIG
4481 template
4482 Output_section*
4483 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
4484 const unsigned char* symbols,
4485 off_t symbols_size,
4486 const unsigned char* symbol_names,
4487 off_t symbol_names_size,
4488 unsigned int shndx,
4489 const elfcpp::Shdr<64, true>& shdr,
4490 unsigned int reloc_shndx,
4491 unsigned int reloc_type,
4492 off_t* off);
4493 #endif
4494
4495 } // End namespace gold.
This page took 0.152662 seconds and 5 git commands to generate.