* output.h (Output_segment::set_section_addresses): Change function
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "reloc.h"
50 #include "descriptors.h"
51 #include "plugin.h"
52 #include "incremental.h"
53 #include "layout.h"
54
55 namespace gold
56 {
57
58 // Layout::Relaxation_debug_check methods.
59
60 // Check that sections and special data are in reset states.
61 // We do not save states for Output_sections and special Output_data.
62 // So we check that they have not assigned any addresses or offsets.
63 // clean_up_after_relaxation simply resets their addresses and offsets.
64 void
65 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
66 const Layout::Section_list& sections,
67 const Layout::Data_list& special_outputs)
68 {
69 for(Layout::Section_list::const_iterator p = sections.begin();
70 p != sections.end();
71 ++p)
72 gold_assert((*p)->address_and_file_offset_have_reset_values());
73
74 for(Layout::Data_list::const_iterator p = special_outputs.begin();
75 p != special_outputs.end();
76 ++p)
77 gold_assert((*p)->address_and_file_offset_have_reset_values());
78 }
79
80 // Save information of SECTIONS for checking later.
81
82 void
83 Layout::Relaxation_debug_check::read_sections(
84 const Layout::Section_list& sections)
85 {
86 for(Layout::Section_list::const_iterator p = sections.begin();
87 p != sections.end();
88 ++p)
89 {
90 Output_section* os = *p;
91 Section_info info;
92 info.output_section = os;
93 info.address = os->is_address_valid() ? os->address() : 0;
94 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
95 info.offset = os->is_offset_valid()? os->offset() : -1 ;
96 this->section_infos_.push_back(info);
97 }
98 }
99
100 // Verify SECTIONS using previously recorded information.
101
102 void
103 Layout::Relaxation_debug_check::verify_sections(
104 const Layout::Section_list& sections)
105 {
106 size_t i = 0;
107 for(Layout::Section_list::const_iterator p = sections.begin();
108 p != sections.end();
109 ++p, ++i)
110 {
111 Output_section* os = *p;
112 uint64_t address = os->is_address_valid() ? os->address() : 0;
113 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
114 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
115
116 if (i >= this->section_infos_.size())
117 {
118 gold_fatal("Section_info of %s missing.\n", os->name());
119 }
120 const Section_info& info = this->section_infos_[i];
121 if (os != info.output_section)
122 gold_fatal("Section order changed. Expecting %s but see %s\n",
123 info.output_section->name(), os->name());
124 if (address != info.address
125 || data_size != info.data_size
126 || offset != info.offset)
127 gold_fatal("Section %s changed.\n", os->name());
128 }
129 }
130
131 // Layout_task_runner methods.
132
133 // Lay out the sections. This is called after all the input objects
134 // have been read.
135
136 void
137 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
138 {
139 off_t file_size = this->layout_->finalize(this->input_objects_,
140 this->symtab_,
141 this->target_,
142 task);
143
144 // Now we know the final size of the output file and we know where
145 // each piece of information goes.
146
147 if (this->mapfile_ != NULL)
148 {
149 this->mapfile_->print_discarded_sections(this->input_objects_);
150 this->layout_->print_to_mapfile(this->mapfile_);
151 }
152
153 Output_file* of = new Output_file(parameters->options().output_file_name());
154 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
155 of->set_is_temporary();
156 of->open(file_size);
157
158 // Queue up the final set of tasks.
159 gold::queue_final_tasks(this->options_, this->input_objects_,
160 this->symtab_, this->layout_, workqueue, of);
161 }
162
163 // Layout methods.
164
165 Layout::Layout(int number_of_input_files, Script_options* script_options)
166 : number_of_input_files_(number_of_input_files),
167 script_options_(script_options),
168 namepool_(),
169 sympool_(),
170 dynpool_(),
171 signatures_(),
172 section_name_map_(),
173 segment_list_(),
174 section_list_(),
175 unattached_section_list_(),
176 special_output_list_(),
177 section_headers_(NULL),
178 tls_segment_(NULL),
179 relro_segment_(NULL),
180 increase_relro_(0),
181 symtab_section_(NULL),
182 symtab_xindex_(NULL),
183 dynsym_section_(NULL),
184 dynsym_xindex_(NULL),
185 dynamic_section_(NULL),
186 dynamic_symbol_(NULL),
187 dynamic_data_(NULL),
188 eh_frame_section_(NULL),
189 eh_frame_data_(NULL),
190 added_eh_frame_data_(false),
191 eh_frame_hdr_section_(NULL),
192 build_id_note_(NULL),
193 debug_abbrev_(NULL),
194 debug_info_(NULL),
195 group_signatures_(),
196 output_file_size_(-1),
197 have_added_input_section_(false),
198 sections_are_attached_(false),
199 input_requires_executable_stack_(false),
200 input_with_gnu_stack_note_(false),
201 input_without_gnu_stack_note_(false),
202 has_static_tls_(false),
203 any_postprocessing_sections_(false),
204 resized_signatures_(false),
205 have_stabstr_section_(false),
206 incremental_inputs_(NULL),
207 record_output_section_data_from_script_(false),
208 script_output_section_data_list_(),
209 segment_states_(NULL),
210 relaxation_debug_check_(NULL)
211 {
212 // Make space for more than enough segments for a typical file.
213 // This is just for efficiency--it's OK if we wind up needing more.
214 this->segment_list_.reserve(12);
215
216 // We expect two unattached Output_data objects: the file header and
217 // the segment headers.
218 this->special_output_list_.reserve(2);
219
220 // Initialize structure needed for an incremental build.
221 if (parameters->incremental())
222 this->incremental_inputs_ = new Incremental_inputs;
223
224 // The section name pool is worth optimizing in all cases, because
225 // it is small, but there are often overlaps due to .rel sections.
226 this->namepool_.set_optimize();
227 }
228
229 // Hash a key we use to look up an output section mapping.
230
231 size_t
232 Layout::Hash_key::operator()(const Layout::Key& k) const
233 {
234 return k.first + k.second.first + k.second.second;
235 }
236
237 // Returns whether the given section is in the list of
238 // debug-sections-used-by-some-version-of-gdb. Currently,
239 // we've checked versions of gdb up to and including 6.7.1.
240
241 static const char* gdb_sections[] =
242 { ".debug_abbrev",
243 // ".debug_aranges", // not used by gdb as of 6.7.1
244 ".debug_frame",
245 ".debug_info",
246 ".debug_types",
247 ".debug_line",
248 ".debug_loc",
249 ".debug_macinfo",
250 // ".debug_pubnames", // not used by gdb as of 6.7.1
251 ".debug_ranges",
252 ".debug_str",
253 };
254
255 static const char* lines_only_debug_sections[] =
256 { ".debug_abbrev",
257 // ".debug_aranges", // not used by gdb as of 6.7.1
258 // ".debug_frame",
259 ".debug_info",
260 // ".debug_types",
261 ".debug_line",
262 // ".debug_loc",
263 // ".debug_macinfo",
264 // ".debug_pubnames", // not used by gdb as of 6.7.1
265 // ".debug_ranges",
266 ".debug_str",
267 };
268
269 static inline bool
270 is_gdb_debug_section(const char* str)
271 {
272 // We can do this faster: binary search or a hashtable. But why bother?
273 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
274 if (strcmp(str, gdb_sections[i]) == 0)
275 return true;
276 return false;
277 }
278
279 static inline bool
280 is_lines_only_debug_section(const char* str)
281 {
282 // We can do this faster: binary search or a hashtable. But why bother?
283 for (size_t i = 0;
284 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
285 ++i)
286 if (strcmp(str, lines_only_debug_sections[i]) == 0)
287 return true;
288 return false;
289 }
290
291 // Whether to include this section in the link.
292
293 template<int size, bool big_endian>
294 bool
295 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
296 const elfcpp::Shdr<size, big_endian>& shdr)
297 {
298 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
299 return false;
300
301 switch (shdr.get_sh_type())
302 {
303 case elfcpp::SHT_NULL:
304 case elfcpp::SHT_SYMTAB:
305 case elfcpp::SHT_DYNSYM:
306 case elfcpp::SHT_HASH:
307 case elfcpp::SHT_DYNAMIC:
308 case elfcpp::SHT_SYMTAB_SHNDX:
309 return false;
310
311 case elfcpp::SHT_STRTAB:
312 // Discard the sections which have special meanings in the ELF
313 // ABI. Keep others (e.g., .stabstr). We could also do this by
314 // checking the sh_link fields of the appropriate sections.
315 return (strcmp(name, ".dynstr") != 0
316 && strcmp(name, ".strtab") != 0
317 && strcmp(name, ".shstrtab") != 0);
318
319 case elfcpp::SHT_RELA:
320 case elfcpp::SHT_REL:
321 case elfcpp::SHT_GROUP:
322 // If we are emitting relocations these should be handled
323 // elsewhere.
324 gold_assert(!parameters->options().relocatable()
325 && !parameters->options().emit_relocs());
326 return false;
327
328 case elfcpp::SHT_PROGBITS:
329 if (parameters->options().strip_debug()
330 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
331 {
332 if (is_debug_info_section(name))
333 return false;
334 }
335 if (parameters->options().strip_debug_non_line()
336 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
337 {
338 // Debugging sections can only be recognized by name.
339 if (is_prefix_of(".debug", name)
340 && !is_lines_only_debug_section(name))
341 return false;
342 }
343 if (parameters->options().strip_debug_gdb()
344 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
345 {
346 // Debugging sections can only be recognized by name.
347 if (is_prefix_of(".debug", name)
348 && !is_gdb_debug_section(name))
349 return false;
350 }
351 if (parameters->options().strip_lto_sections()
352 && !parameters->options().relocatable()
353 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
354 {
355 // Ignore LTO sections containing intermediate code.
356 if (is_prefix_of(".gnu.lto_", name))
357 return false;
358 }
359 // The GNU linker strips .gnu_debuglink sections, so we do too.
360 // This is a feature used to keep debugging information in
361 // separate files.
362 if (strcmp(name, ".gnu_debuglink") == 0)
363 return false;
364 return true;
365
366 default:
367 return true;
368 }
369 }
370
371 // Return an output section named NAME, or NULL if there is none.
372
373 Output_section*
374 Layout::find_output_section(const char* name) const
375 {
376 for (Section_list::const_iterator p = this->section_list_.begin();
377 p != this->section_list_.end();
378 ++p)
379 if (strcmp((*p)->name(), name) == 0)
380 return *p;
381 return NULL;
382 }
383
384 // Return an output segment of type TYPE, with segment flags SET set
385 // and segment flags CLEAR clear. Return NULL if there is none.
386
387 Output_segment*
388 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
389 elfcpp::Elf_Word clear) const
390 {
391 for (Segment_list::const_iterator p = this->segment_list_.begin();
392 p != this->segment_list_.end();
393 ++p)
394 if (static_cast<elfcpp::PT>((*p)->type()) == type
395 && ((*p)->flags() & set) == set
396 && ((*p)->flags() & clear) == 0)
397 return *p;
398 return NULL;
399 }
400
401 // Return the output section to use for section NAME with type TYPE
402 // and section flags FLAGS. NAME must be canonicalized in the string
403 // pool, and NAME_KEY is the key. IS_INTERP is true if this is the
404 // .interp section. IS_DYNAMIC_LINKER_SECTION is true if this section
405 // is used by the dynamic linker. IS_RELRO is true for a relro
406 // section. IS_LAST_RELRO is true for the last relro section.
407 // IS_FIRST_NON_RELRO is true for the first non-relro section.
408
409 Output_section*
410 Layout::get_output_section(const char* name, Stringpool::Key name_key,
411 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
412 Output_section_order order, bool is_relro)
413 {
414 elfcpp::Elf_Xword lookup_flags = flags;
415
416 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
417 // read-write with read-only sections. Some other ELF linkers do
418 // not do this. FIXME: Perhaps there should be an option
419 // controlling this.
420 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
421
422 const Key key(name_key, std::make_pair(type, lookup_flags));
423 const std::pair<Key, Output_section*> v(key, NULL);
424 std::pair<Section_name_map::iterator, bool> ins(
425 this->section_name_map_.insert(v));
426
427 if (!ins.second)
428 return ins.first->second;
429 else
430 {
431 // This is the first time we've seen this name/type/flags
432 // combination. For compatibility with the GNU linker, we
433 // combine sections with contents and zero flags with sections
434 // with non-zero flags. This is a workaround for cases where
435 // assembler code forgets to set section flags. FIXME: Perhaps
436 // there should be an option to control this.
437 Output_section* os = NULL;
438
439 if (type == elfcpp::SHT_PROGBITS)
440 {
441 if (flags == 0)
442 {
443 Output_section* same_name = this->find_output_section(name);
444 if (same_name != NULL
445 && same_name->type() == elfcpp::SHT_PROGBITS
446 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
447 os = same_name;
448 }
449 else if ((flags & elfcpp::SHF_TLS) == 0)
450 {
451 elfcpp::Elf_Xword zero_flags = 0;
452 const Key zero_key(name_key, std::make_pair(type, zero_flags));
453 Section_name_map::iterator p =
454 this->section_name_map_.find(zero_key);
455 if (p != this->section_name_map_.end())
456 os = p->second;
457 }
458 }
459
460 if (os == NULL)
461 os = this->make_output_section(name, type, flags, order, is_relro);
462
463 ins.first->second = os;
464 return os;
465 }
466 }
467
468 // Pick the output section to use for section NAME, in input file
469 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
470 // linker created section. IS_INPUT_SECTION is true if we are
471 // choosing an output section for an input section found in a input
472 // file. IS_INTERP is true if this is the .interp section.
473 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
474 // dynamic linker. IS_RELRO is true for a relro section.
475 // IS_LAST_RELRO is true for the last relro section.
476 // IS_FIRST_NON_RELRO is true for the first non-relro section. This
477 // will return NULL if the input section should be discarded.
478
479 Output_section*
480 Layout::choose_output_section(const Relobj* relobj, const char* name,
481 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
482 bool is_input_section, Output_section_order order,
483 bool is_relro)
484 {
485 // We should not see any input sections after we have attached
486 // sections to segments.
487 gold_assert(!is_input_section || !this->sections_are_attached_);
488
489 // Some flags in the input section should not be automatically
490 // copied to the output section.
491 flags &= ~ (elfcpp::SHF_INFO_LINK
492 | elfcpp::SHF_LINK_ORDER
493 | elfcpp::SHF_GROUP
494 | elfcpp::SHF_MERGE
495 | elfcpp::SHF_STRINGS);
496
497 if (this->script_options_->saw_sections_clause())
498 {
499 // We are using a SECTIONS clause, so the output section is
500 // chosen based only on the name.
501
502 Script_sections* ss = this->script_options_->script_sections();
503 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
504 Output_section** output_section_slot;
505 Script_sections::Section_type script_section_type;
506 const char* orig_name = name;
507 name = ss->output_section_name(file_name, name, &output_section_slot,
508 &script_section_type);
509 if (name == NULL)
510 {
511 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
512 "because it is not allowed by the "
513 "SECTIONS clause of the linker script"),
514 orig_name);
515 // The SECTIONS clause says to discard this input section.
516 return NULL;
517 }
518
519 // We can only handle script section types ST_NONE and ST_NOLOAD.
520 switch (script_section_type)
521 {
522 case Script_sections::ST_NONE:
523 break;
524 case Script_sections::ST_NOLOAD:
525 flags &= elfcpp::SHF_ALLOC;
526 break;
527 default:
528 gold_unreachable();
529 }
530
531 // If this is an orphan section--one not mentioned in the linker
532 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
533 // default processing below.
534
535 if (output_section_slot != NULL)
536 {
537 if (*output_section_slot != NULL)
538 {
539 (*output_section_slot)->update_flags_for_input_section(flags);
540 return *output_section_slot;
541 }
542
543 // We don't put sections found in the linker script into
544 // SECTION_NAME_MAP_. That keeps us from getting confused
545 // if an orphan section is mapped to a section with the same
546 // name as one in the linker script.
547
548 name = this->namepool_.add(name, false, NULL);
549
550 Output_section* os = this->make_output_section(name, type, flags,
551 order, is_relro);
552
553 os->set_found_in_sections_clause();
554
555 // Special handling for NOLOAD sections.
556 if (script_section_type == Script_sections::ST_NOLOAD)
557 {
558 os->set_is_noload();
559
560 // The constructor of Output_section sets addresses of non-ALLOC
561 // sections to 0 by default. We don't want that for NOLOAD
562 // sections even if they have no SHF_ALLOC flag.
563 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
564 && os->is_address_valid())
565 {
566 gold_assert(os->address() == 0
567 && !os->is_offset_valid()
568 && !os->is_data_size_valid());
569 os->reset_address_and_file_offset();
570 }
571 }
572
573 *output_section_slot = os;
574 return os;
575 }
576 }
577
578 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
579
580 // Turn NAME from the name of the input section into the name of the
581 // output section.
582
583 size_t len = strlen(name);
584 if (is_input_section
585 && !this->script_options_->saw_sections_clause()
586 && !parameters->options().relocatable())
587 name = Layout::output_section_name(name, &len);
588
589 Stringpool::Key name_key;
590 name = this->namepool_.add_with_length(name, len, true, &name_key);
591
592 // Find or make the output section. The output section is selected
593 // based on the section name, type, and flags.
594 return this->get_output_section(name, name_key, type, flags, order, is_relro);
595 }
596
597 // Return the output section to use for input section SHNDX, with name
598 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
599 // index of a relocation section which applies to this section, or 0
600 // if none, or -1U if more than one. RELOC_TYPE is the type of the
601 // relocation section if there is one. Set *OFF to the offset of this
602 // input section without the output section. Return NULL if the
603 // section should be discarded. Set *OFF to -1 if the section
604 // contents should not be written directly to the output file, but
605 // will instead receive special handling.
606
607 template<int size, bool big_endian>
608 Output_section*
609 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
610 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
611 unsigned int reloc_shndx, unsigned int, off_t* off)
612 {
613 *off = 0;
614
615 if (!this->include_section(object, name, shdr))
616 return NULL;
617
618 Output_section* os;
619
620 // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
621 // correct section types. Force them here.
622 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
623 if (sh_type == elfcpp::SHT_PROGBITS)
624 {
625 static const char init_array_prefix[] = ".init_array";
626 static const char preinit_array_prefix[] = ".preinit_array";
627 static const char fini_array_prefix[] = ".fini_array";
628 static size_t init_array_prefix_size = sizeof(init_array_prefix) - 1;
629 static size_t preinit_array_prefix_size =
630 sizeof(preinit_array_prefix) - 1;
631 static size_t fini_array_prefix_size = sizeof(fini_array_prefix) - 1;
632
633 if (strncmp(name, init_array_prefix, init_array_prefix_size) == 0)
634 sh_type = elfcpp::SHT_INIT_ARRAY;
635 else if (strncmp(name, preinit_array_prefix, preinit_array_prefix_size)
636 == 0)
637 sh_type = elfcpp::SHT_PREINIT_ARRAY;
638 else if (strncmp(name, fini_array_prefix, fini_array_prefix_size) == 0)
639 sh_type = elfcpp::SHT_FINI_ARRAY;
640 }
641
642 // In a relocatable link a grouped section must not be combined with
643 // any other sections.
644 if (parameters->options().relocatable()
645 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
646 {
647 name = this->namepool_.add(name, true, NULL);
648 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
649 ORDER_INVALID, false);
650 }
651 else
652 {
653 os = this->choose_output_section(object, name, sh_type,
654 shdr.get_sh_flags(), true,
655 ORDER_INVALID, false);
656 if (os == NULL)
657 return NULL;
658 }
659
660 // By default the GNU linker sorts input sections whose names match
661 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
662 // are sorted by name. This is used to implement constructor
663 // priority ordering. We are compatible.
664 if (!this->script_options_->saw_sections_clause()
665 && (is_prefix_of(".ctors.", name)
666 || is_prefix_of(".dtors.", name)
667 || is_prefix_of(".init_array.", name)
668 || is_prefix_of(".fini_array.", name)))
669 os->set_must_sort_attached_input_sections();
670
671 // FIXME: Handle SHF_LINK_ORDER somewhere.
672
673 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
674 this->script_options_->saw_sections_clause());
675 this->have_added_input_section_ = true;
676
677 return os;
678 }
679
680 // Handle a relocation section when doing a relocatable link.
681
682 template<int size, bool big_endian>
683 Output_section*
684 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
685 unsigned int,
686 const elfcpp::Shdr<size, big_endian>& shdr,
687 Output_section* data_section,
688 Relocatable_relocs* rr)
689 {
690 gold_assert(parameters->options().relocatable()
691 || parameters->options().emit_relocs());
692
693 int sh_type = shdr.get_sh_type();
694
695 std::string name;
696 if (sh_type == elfcpp::SHT_REL)
697 name = ".rel";
698 else if (sh_type == elfcpp::SHT_RELA)
699 name = ".rela";
700 else
701 gold_unreachable();
702 name += data_section->name();
703
704 // In a relocatable link relocs for a grouped section must not be
705 // combined with other reloc sections.
706 Output_section* os;
707 if (!parameters->options().relocatable()
708 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
709 os = this->choose_output_section(object, name.c_str(), sh_type,
710 shdr.get_sh_flags(), false,
711 ORDER_INVALID, false);
712 else
713 {
714 const char* n = this->namepool_.add(name.c_str(), true, NULL);
715 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
716 ORDER_INVALID, false);
717 }
718
719 os->set_should_link_to_symtab();
720 os->set_info_section(data_section);
721
722 Output_section_data* posd;
723 if (sh_type == elfcpp::SHT_REL)
724 {
725 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
726 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
727 size,
728 big_endian>(rr);
729 }
730 else if (sh_type == elfcpp::SHT_RELA)
731 {
732 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
733 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
734 size,
735 big_endian>(rr);
736 }
737 else
738 gold_unreachable();
739
740 os->add_output_section_data(posd);
741 rr->set_output_data(posd);
742
743 return os;
744 }
745
746 // Handle a group section when doing a relocatable link.
747
748 template<int size, bool big_endian>
749 void
750 Layout::layout_group(Symbol_table* symtab,
751 Sized_relobj<size, big_endian>* object,
752 unsigned int,
753 const char* group_section_name,
754 const char* signature,
755 const elfcpp::Shdr<size, big_endian>& shdr,
756 elfcpp::Elf_Word flags,
757 std::vector<unsigned int>* shndxes)
758 {
759 gold_assert(parameters->options().relocatable());
760 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
761 group_section_name = this->namepool_.add(group_section_name, true, NULL);
762 Output_section* os = this->make_output_section(group_section_name,
763 elfcpp::SHT_GROUP,
764 shdr.get_sh_flags(),
765 ORDER_INVALID, false);
766
767 // We need to find a symbol with the signature in the symbol table.
768 // If we don't find one now, we need to look again later.
769 Symbol* sym = symtab->lookup(signature, NULL);
770 if (sym != NULL)
771 os->set_info_symndx(sym);
772 else
773 {
774 // Reserve some space to minimize reallocations.
775 if (this->group_signatures_.empty())
776 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
777
778 // We will wind up using a symbol whose name is the signature.
779 // So just put the signature in the symbol name pool to save it.
780 signature = symtab->canonicalize_name(signature);
781 this->group_signatures_.push_back(Group_signature(os, signature));
782 }
783
784 os->set_should_link_to_symtab();
785 os->set_entsize(4);
786
787 section_size_type entry_count =
788 convert_to_section_size_type(shdr.get_sh_size() / 4);
789 Output_section_data* posd =
790 new Output_data_group<size, big_endian>(object, entry_count, flags,
791 shndxes);
792 os->add_output_section_data(posd);
793 }
794
795 // Special GNU handling of sections name .eh_frame. They will
796 // normally hold exception frame data as defined by the C++ ABI
797 // (http://codesourcery.com/cxx-abi/).
798
799 template<int size, bool big_endian>
800 Output_section*
801 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
802 const unsigned char* symbols,
803 off_t symbols_size,
804 const unsigned char* symbol_names,
805 off_t symbol_names_size,
806 unsigned int shndx,
807 const elfcpp::Shdr<size, big_endian>& shdr,
808 unsigned int reloc_shndx, unsigned int reloc_type,
809 off_t* off)
810 {
811 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
812 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
813
814 const char* const name = ".eh_frame";
815 Output_section* os = this->choose_output_section(object, name,
816 elfcpp::SHT_PROGBITS,
817 elfcpp::SHF_ALLOC, false,
818 ORDER_EHFRAME, false);
819 if (os == NULL)
820 return NULL;
821
822 if (this->eh_frame_section_ == NULL)
823 {
824 this->eh_frame_section_ = os;
825 this->eh_frame_data_ = new Eh_frame();
826
827 if (parameters->options().eh_frame_hdr())
828 {
829 Output_section* hdr_os =
830 this->choose_output_section(NULL, ".eh_frame_hdr",
831 elfcpp::SHT_PROGBITS,
832 elfcpp::SHF_ALLOC, false,
833 ORDER_EHFRAME, false);
834
835 if (hdr_os != NULL)
836 {
837 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
838 this->eh_frame_data_);
839 hdr_os->add_output_section_data(hdr_posd);
840
841 hdr_os->set_after_input_sections();
842
843 if (!this->script_options_->saw_phdrs_clause())
844 {
845 Output_segment* hdr_oseg;
846 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
847 elfcpp::PF_R);
848 hdr_oseg->add_output_section_to_nonload(hdr_os,
849 elfcpp::PF_R);
850 }
851
852 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
853 }
854 }
855 }
856
857 gold_assert(this->eh_frame_section_ == os);
858
859 if (this->eh_frame_data_->add_ehframe_input_section(object,
860 symbols,
861 symbols_size,
862 symbol_names,
863 symbol_names_size,
864 shndx,
865 reloc_shndx,
866 reloc_type))
867 {
868 os->update_flags_for_input_section(shdr.get_sh_flags());
869
870 // We found a .eh_frame section we are going to optimize, so now
871 // we can add the set of optimized sections to the output
872 // section. We need to postpone adding this until we've found a
873 // section we can optimize so that the .eh_frame section in
874 // crtbegin.o winds up at the start of the output section.
875 if (!this->added_eh_frame_data_)
876 {
877 os->add_output_section_data(this->eh_frame_data_);
878 this->added_eh_frame_data_ = true;
879 }
880 *off = -1;
881 }
882 else
883 {
884 // We couldn't handle this .eh_frame section for some reason.
885 // Add it as a normal section.
886 bool saw_sections_clause = this->script_options_->saw_sections_clause();
887 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
888 saw_sections_clause);
889 this->have_added_input_section_ = true;
890 }
891
892 return os;
893 }
894
895 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
896 // the output section.
897
898 Output_section*
899 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
900 elfcpp::Elf_Xword flags,
901 Output_section_data* posd,
902 Output_section_order order, bool is_relro)
903 {
904 Output_section* os = this->choose_output_section(NULL, name, type, flags,
905 false, order, is_relro);
906 if (os != NULL)
907 os->add_output_section_data(posd);
908 return os;
909 }
910
911 // Map section flags to segment flags.
912
913 elfcpp::Elf_Word
914 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
915 {
916 elfcpp::Elf_Word ret = elfcpp::PF_R;
917 if ((flags & elfcpp::SHF_WRITE) != 0)
918 ret |= elfcpp::PF_W;
919 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
920 ret |= elfcpp::PF_X;
921 return ret;
922 }
923
924 // Sometimes we compress sections. This is typically done for
925 // sections that are not part of normal program execution (such as
926 // .debug_* sections), and where the readers of these sections know
927 // how to deal with compressed sections. This routine doesn't say for
928 // certain whether we'll compress -- it depends on commandline options
929 // as well -- just whether this section is a candidate for compression.
930 // (The Output_compressed_section class decides whether to compress
931 // a given section, and picks the name of the compressed section.)
932
933 static bool
934 is_compressible_debug_section(const char* secname)
935 {
936 return (is_prefix_of(".debug", secname));
937 }
938
939 // We may see compressed debug sections in input files. Return TRUE
940 // if this is the name of a compressed debug section.
941
942 bool
943 is_compressed_debug_section(const char* secname)
944 {
945 return (is_prefix_of(".zdebug", secname));
946 }
947
948 // Make a new Output_section, and attach it to segments as
949 // appropriate. ORDER is the order in which this section should
950 // appear in the output segment. IS_RELRO is true if this is a relro
951 // (read-only after relocations) section.
952
953 Output_section*
954 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
955 elfcpp::Elf_Xword flags,
956 Output_section_order order, bool is_relro)
957 {
958 Output_section* os;
959 if ((flags & elfcpp::SHF_ALLOC) == 0
960 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
961 && is_compressible_debug_section(name))
962 os = new Output_compressed_section(&parameters->options(), name, type,
963 flags);
964 else if ((flags & elfcpp::SHF_ALLOC) == 0
965 && parameters->options().strip_debug_non_line()
966 && strcmp(".debug_abbrev", name) == 0)
967 {
968 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
969 name, type, flags);
970 if (this->debug_info_)
971 this->debug_info_->set_abbreviations(this->debug_abbrev_);
972 }
973 else if ((flags & elfcpp::SHF_ALLOC) == 0
974 && parameters->options().strip_debug_non_line()
975 && strcmp(".debug_info", name) == 0)
976 {
977 os = this->debug_info_ = new Output_reduced_debug_info_section(
978 name, type, flags);
979 if (this->debug_abbrev_)
980 this->debug_info_->set_abbreviations(this->debug_abbrev_);
981 }
982 else
983 {
984 // FIXME: const_cast is ugly.
985 Target* target = const_cast<Target*>(&parameters->target());
986 os = target->make_output_section(name, type, flags);
987 }
988
989 // With -z relro, we have to recognize the special sections by name.
990 // There is no other way.
991 bool is_relro_local = false;
992 if (!this->script_options_->saw_sections_clause()
993 && parameters->options().relro()
994 && type == elfcpp::SHT_PROGBITS
995 && (flags & elfcpp::SHF_ALLOC) != 0
996 && (flags & elfcpp::SHF_WRITE) != 0)
997 {
998 if (strcmp(name, ".data.rel.ro") == 0)
999 is_relro = true;
1000 else if (strcmp(name, ".data.rel.ro.local") == 0)
1001 {
1002 is_relro = true;
1003 is_relro_local = true;
1004 }
1005 else if (type == elfcpp::SHT_INIT_ARRAY
1006 || type == elfcpp::SHT_FINI_ARRAY
1007 || type == elfcpp::SHT_PREINIT_ARRAY)
1008 is_relro = true;
1009 else if (strcmp(name, ".ctors") == 0
1010 || strcmp(name, ".dtors") == 0
1011 || strcmp(name, ".jcr") == 0)
1012 is_relro = true;
1013 }
1014
1015 if (is_relro)
1016 os->set_is_relro();
1017
1018 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1019 order = this->default_section_order(os, is_relro_local);
1020
1021 os->set_order(order);
1022
1023 parameters->target().new_output_section(os);
1024
1025 this->section_list_.push_back(os);
1026
1027 // The GNU linker by default sorts some sections by priority, so we
1028 // do the same. We need to know that this might happen before we
1029 // attach any input sections.
1030 if (!this->script_options_->saw_sections_clause()
1031 && (strcmp(name, ".ctors") == 0
1032 || strcmp(name, ".dtors") == 0
1033 || strcmp(name, ".init_array") == 0
1034 || strcmp(name, ".fini_array") == 0))
1035 os->set_may_sort_attached_input_sections();
1036
1037 // Check for .stab*str sections, as .stab* sections need to link to
1038 // them.
1039 if (type == elfcpp::SHT_STRTAB
1040 && !this->have_stabstr_section_
1041 && strncmp(name, ".stab", 5) == 0
1042 && strcmp(name + strlen(name) - 3, "str") == 0)
1043 this->have_stabstr_section_ = true;
1044
1045 // If we have already attached the sections to segments, then we
1046 // need to attach this one now. This happens for sections created
1047 // directly by the linker.
1048 if (this->sections_are_attached_)
1049 this->attach_section_to_segment(os);
1050
1051 return os;
1052 }
1053
1054 // Return the default order in which a section should be placed in an
1055 // output segment. This function captures a lot of the ideas in
1056 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1057 // linker created section is normally set when the section is created;
1058 // this function is used for input sections.
1059
1060 Output_section_order
1061 Layout::default_section_order(Output_section* os, bool is_relro_local)
1062 {
1063 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1064 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1065 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1066 bool is_bss = false;
1067
1068 switch (os->type())
1069 {
1070 default:
1071 case elfcpp::SHT_PROGBITS:
1072 break;
1073 case elfcpp::SHT_NOBITS:
1074 is_bss = true;
1075 break;
1076 case elfcpp::SHT_RELA:
1077 case elfcpp::SHT_REL:
1078 if (!is_write)
1079 return ORDER_DYNAMIC_RELOCS;
1080 break;
1081 case elfcpp::SHT_HASH:
1082 case elfcpp::SHT_DYNAMIC:
1083 case elfcpp::SHT_SHLIB:
1084 case elfcpp::SHT_DYNSYM:
1085 case elfcpp::SHT_GNU_HASH:
1086 case elfcpp::SHT_GNU_verdef:
1087 case elfcpp::SHT_GNU_verneed:
1088 case elfcpp::SHT_GNU_versym:
1089 if (!is_write)
1090 return ORDER_DYNAMIC_LINKER;
1091 break;
1092 case elfcpp::SHT_NOTE:
1093 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1094 }
1095
1096 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1097 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1098
1099 if (!is_bss && !is_write)
1100 {
1101 if (is_execinstr)
1102 {
1103 if (strcmp(os->name(), ".init") == 0)
1104 return ORDER_INIT;
1105 else if (strcmp(os->name(), ".fini") == 0)
1106 return ORDER_FINI;
1107 }
1108 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1109 }
1110
1111 if (os->is_relro())
1112 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1113
1114 if (os->is_small_section())
1115 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1116 if (os->is_large_section())
1117 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1118
1119 return is_bss ? ORDER_BSS : ORDER_DATA;
1120 }
1121
1122 // Attach output sections to segments. This is called after we have
1123 // seen all the input sections.
1124
1125 void
1126 Layout::attach_sections_to_segments()
1127 {
1128 for (Section_list::iterator p = this->section_list_.begin();
1129 p != this->section_list_.end();
1130 ++p)
1131 this->attach_section_to_segment(*p);
1132
1133 this->sections_are_attached_ = true;
1134 }
1135
1136 // Attach an output section to a segment.
1137
1138 void
1139 Layout::attach_section_to_segment(Output_section* os)
1140 {
1141 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1142 this->unattached_section_list_.push_back(os);
1143 else
1144 this->attach_allocated_section_to_segment(os);
1145 }
1146
1147 // Attach an allocated output section to a segment.
1148
1149 void
1150 Layout::attach_allocated_section_to_segment(Output_section* os)
1151 {
1152 elfcpp::Elf_Xword flags = os->flags();
1153 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1154
1155 if (parameters->options().relocatable())
1156 return;
1157
1158 // If we have a SECTIONS clause, we can't handle the attachment to
1159 // segments until after we've seen all the sections.
1160 if (this->script_options_->saw_sections_clause())
1161 return;
1162
1163 gold_assert(!this->script_options_->saw_phdrs_clause());
1164
1165 // This output section goes into a PT_LOAD segment.
1166
1167 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1168
1169 // Check for --section-start.
1170 uint64_t addr;
1171 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1172
1173 // In general the only thing we really care about for PT_LOAD
1174 // segments is whether or not they are writable or executable,
1175 // so that is how we search for them.
1176 // Large data sections also go into their own PT_LOAD segment.
1177 // People who need segments sorted on some other basis will
1178 // have to use a linker script.
1179
1180 Segment_list::const_iterator p;
1181 for (p = this->segment_list_.begin();
1182 p != this->segment_list_.end();
1183 ++p)
1184 {
1185 if ((*p)->type() != elfcpp::PT_LOAD)
1186 continue;
1187 if (!parameters->options().omagic()
1188 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1189 continue;
1190 if (parameters->options().rosegment()
1191 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1192 continue;
1193 // If -Tbss was specified, we need to separate the data and BSS
1194 // segments.
1195 if (parameters->options().user_set_Tbss())
1196 {
1197 if ((os->type() == elfcpp::SHT_NOBITS)
1198 == (*p)->has_any_data_sections())
1199 continue;
1200 }
1201 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1202 continue;
1203
1204 if (is_address_set)
1205 {
1206 if ((*p)->are_addresses_set())
1207 continue;
1208
1209 (*p)->add_initial_output_data(os);
1210 (*p)->update_flags_for_output_section(seg_flags);
1211 (*p)->set_addresses(addr, addr);
1212 break;
1213 }
1214
1215 (*p)->add_output_section_to_load(this, os, seg_flags);
1216 break;
1217 }
1218
1219 if (p == this->segment_list_.end())
1220 {
1221 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1222 seg_flags);
1223 if (os->is_large_data_section())
1224 oseg->set_is_large_data_segment();
1225 oseg->add_output_section_to_load(this, os, seg_flags);
1226 if (is_address_set)
1227 oseg->set_addresses(addr, addr);
1228 }
1229
1230 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1231 // segment.
1232 if (os->type() == elfcpp::SHT_NOTE)
1233 {
1234 // See if we already have an equivalent PT_NOTE segment.
1235 for (p = this->segment_list_.begin();
1236 p != segment_list_.end();
1237 ++p)
1238 {
1239 if ((*p)->type() == elfcpp::PT_NOTE
1240 && (((*p)->flags() & elfcpp::PF_W)
1241 == (seg_flags & elfcpp::PF_W)))
1242 {
1243 (*p)->add_output_section_to_nonload(os, seg_flags);
1244 break;
1245 }
1246 }
1247
1248 if (p == this->segment_list_.end())
1249 {
1250 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1251 seg_flags);
1252 oseg->add_output_section_to_nonload(os, seg_flags);
1253 }
1254 }
1255
1256 // If we see a loadable SHF_TLS section, we create a PT_TLS
1257 // segment. There can only be one such segment.
1258 if ((flags & elfcpp::SHF_TLS) != 0)
1259 {
1260 if (this->tls_segment_ == NULL)
1261 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1262 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1263 }
1264
1265 // If -z relro is in effect, and we see a relro section, we create a
1266 // PT_GNU_RELRO segment. There can only be one such segment.
1267 if (os->is_relro() && parameters->options().relro())
1268 {
1269 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1270 if (this->relro_segment_ == NULL)
1271 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1272 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1273 }
1274 }
1275
1276 // Make an output section for a script.
1277
1278 Output_section*
1279 Layout::make_output_section_for_script(
1280 const char* name,
1281 Script_sections::Section_type section_type)
1282 {
1283 name = this->namepool_.add(name, false, NULL);
1284 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1285 if (section_type == Script_sections::ST_NOLOAD)
1286 sh_flags = 0;
1287 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1288 sh_flags, ORDER_INVALID,
1289 false);
1290 os->set_found_in_sections_clause();
1291 if (section_type == Script_sections::ST_NOLOAD)
1292 os->set_is_noload();
1293 return os;
1294 }
1295
1296 // Return the number of segments we expect to see.
1297
1298 size_t
1299 Layout::expected_segment_count() const
1300 {
1301 size_t ret = this->segment_list_.size();
1302
1303 // If we didn't see a SECTIONS clause in a linker script, we should
1304 // already have the complete list of segments. Otherwise we ask the
1305 // SECTIONS clause how many segments it expects, and add in the ones
1306 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1307
1308 if (!this->script_options_->saw_sections_clause())
1309 return ret;
1310 else
1311 {
1312 const Script_sections* ss = this->script_options_->script_sections();
1313 return ret + ss->expected_segment_count(this);
1314 }
1315 }
1316
1317 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1318 // is whether we saw a .note.GNU-stack section in the object file.
1319 // GNU_STACK_FLAGS is the section flags. The flags give the
1320 // protection required for stack memory. We record this in an
1321 // executable as a PT_GNU_STACK segment. If an object file does not
1322 // have a .note.GNU-stack segment, we must assume that it is an old
1323 // object. On some targets that will force an executable stack.
1324
1325 void
1326 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
1327 {
1328 if (!seen_gnu_stack)
1329 this->input_without_gnu_stack_note_ = true;
1330 else
1331 {
1332 this->input_with_gnu_stack_note_ = true;
1333 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1334 this->input_requires_executable_stack_ = true;
1335 }
1336 }
1337
1338 // Create automatic note sections.
1339
1340 void
1341 Layout::create_notes()
1342 {
1343 this->create_gold_note();
1344 this->create_executable_stack_info();
1345 this->create_build_id();
1346 }
1347
1348 // Create the dynamic sections which are needed before we read the
1349 // relocs.
1350
1351 void
1352 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1353 {
1354 if (parameters->doing_static_link())
1355 return;
1356
1357 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1358 elfcpp::SHT_DYNAMIC,
1359 (elfcpp::SHF_ALLOC
1360 | elfcpp::SHF_WRITE),
1361 false, ORDER_RELRO,
1362 true);
1363
1364 this->dynamic_symbol_ =
1365 symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1366 this->dynamic_section_, 0, 0,
1367 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1368 elfcpp::STV_HIDDEN, 0, false, false);
1369
1370 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1371
1372 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1373 }
1374
1375 // For each output section whose name can be represented as C symbol,
1376 // define __start and __stop symbols for the section. This is a GNU
1377 // extension.
1378
1379 void
1380 Layout::define_section_symbols(Symbol_table* symtab)
1381 {
1382 for (Section_list::const_iterator p = this->section_list_.begin();
1383 p != this->section_list_.end();
1384 ++p)
1385 {
1386 const char* const name = (*p)->name();
1387 if (is_cident(name))
1388 {
1389 const std::string name_string(name);
1390 const std::string start_name(cident_section_start_prefix
1391 + name_string);
1392 const std::string stop_name(cident_section_stop_prefix
1393 + name_string);
1394
1395 symtab->define_in_output_data(start_name.c_str(),
1396 NULL, // version
1397 Symbol_table::PREDEFINED,
1398 *p,
1399 0, // value
1400 0, // symsize
1401 elfcpp::STT_NOTYPE,
1402 elfcpp::STB_GLOBAL,
1403 elfcpp::STV_DEFAULT,
1404 0, // nonvis
1405 false, // offset_is_from_end
1406 true); // only_if_ref
1407
1408 symtab->define_in_output_data(stop_name.c_str(),
1409 NULL, // version
1410 Symbol_table::PREDEFINED,
1411 *p,
1412 0, // value
1413 0, // symsize
1414 elfcpp::STT_NOTYPE,
1415 elfcpp::STB_GLOBAL,
1416 elfcpp::STV_DEFAULT,
1417 0, // nonvis
1418 true, // offset_is_from_end
1419 true); // only_if_ref
1420 }
1421 }
1422 }
1423
1424 // Define symbols for group signatures.
1425
1426 void
1427 Layout::define_group_signatures(Symbol_table* symtab)
1428 {
1429 for (Group_signatures::iterator p = this->group_signatures_.begin();
1430 p != this->group_signatures_.end();
1431 ++p)
1432 {
1433 Symbol* sym = symtab->lookup(p->signature, NULL);
1434 if (sym != NULL)
1435 p->section->set_info_symndx(sym);
1436 else
1437 {
1438 // Force the name of the group section to the group
1439 // signature, and use the group's section symbol as the
1440 // signature symbol.
1441 if (strcmp(p->section->name(), p->signature) != 0)
1442 {
1443 const char* name = this->namepool_.add(p->signature,
1444 true, NULL);
1445 p->section->set_name(name);
1446 }
1447 p->section->set_needs_symtab_index();
1448 p->section->set_info_section_symndx(p->section);
1449 }
1450 }
1451
1452 this->group_signatures_.clear();
1453 }
1454
1455 // Find the first read-only PT_LOAD segment, creating one if
1456 // necessary.
1457
1458 Output_segment*
1459 Layout::find_first_load_seg()
1460 {
1461 Output_segment* best = NULL;
1462 for (Segment_list::const_iterator p = this->segment_list_.begin();
1463 p != this->segment_list_.end();
1464 ++p)
1465 {
1466 if ((*p)->type() == elfcpp::PT_LOAD
1467 && ((*p)->flags() & elfcpp::PF_R) != 0
1468 && (parameters->options().omagic()
1469 || ((*p)->flags() & elfcpp::PF_W) == 0))
1470 {
1471 if (best == NULL || this->segment_precedes(*p, best))
1472 best = *p;
1473 }
1474 }
1475 if (best != NULL)
1476 return best;
1477
1478 gold_assert(!this->script_options_->saw_phdrs_clause());
1479
1480 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1481 elfcpp::PF_R);
1482 return load_seg;
1483 }
1484
1485 // Save states of all current output segments. Store saved states
1486 // in SEGMENT_STATES.
1487
1488 void
1489 Layout::save_segments(Segment_states* segment_states)
1490 {
1491 for (Segment_list::const_iterator p = this->segment_list_.begin();
1492 p != this->segment_list_.end();
1493 ++p)
1494 {
1495 Output_segment* segment = *p;
1496 // Shallow copy.
1497 Output_segment* copy = new Output_segment(*segment);
1498 (*segment_states)[segment] = copy;
1499 }
1500 }
1501
1502 // Restore states of output segments and delete any segment not found in
1503 // SEGMENT_STATES.
1504
1505 void
1506 Layout::restore_segments(const Segment_states* segment_states)
1507 {
1508 // Go through the segment list and remove any segment added in the
1509 // relaxation loop.
1510 this->tls_segment_ = NULL;
1511 this->relro_segment_ = NULL;
1512 Segment_list::iterator list_iter = this->segment_list_.begin();
1513 while (list_iter != this->segment_list_.end())
1514 {
1515 Output_segment* segment = *list_iter;
1516 Segment_states::const_iterator states_iter =
1517 segment_states->find(segment);
1518 if (states_iter != segment_states->end())
1519 {
1520 const Output_segment* copy = states_iter->second;
1521 // Shallow copy to restore states.
1522 *segment = *copy;
1523
1524 // Also fix up TLS and RELRO segment pointers as appropriate.
1525 if (segment->type() == elfcpp::PT_TLS)
1526 this->tls_segment_ = segment;
1527 else if (segment->type() == elfcpp::PT_GNU_RELRO)
1528 this->relro_segment_ = segment;
1529
1530 ++list_iter;
1531 }
1532 else
1533 {
1534 list_iter = this->segment_list_.erase(list_iter);
1535 // This is a segment created during section layout. It should be
1536 // safe to remove it since we should have removed all pointers to it.
1537 delete segment;
1538 }
1539 }
1540 }
1541
1542 // Clean up after relaxation so that sections can be laid out again.
1543
1544 void
1545 Layout::clean_up_after_relaxation()
1546 {
1547 // Restore the segments to point state just prior to the relaxation loop.
1548 Script_sections* script_section = this->script_options_->script_sections();
1549 script_section->release_segments();
1550 this->restore_segments(this->segment_states_);
1551
1552 // Reset section addresses and file offsets
1553 for (Section_list::iterator p = this->section_list_.begin();
1554 p != this->section_list_.end();
1555 ++p)
1556 {
1557 (*p)->restore_states();
1558
1559 // If an input section changes size because of relaxation,
1560 // we need to adjust the section offsets of all input sections.
1561 // after such a section.
1562 if ((*p)->section_offsets_need_adjustment())
1563 (*p)->adjust_section_offsets();
1564
1565 (*p)->reset_address_and_file_offset();
1566 }
1567
1568 // Reset special output object address and file offsets.
1569 for (Data_list::iterator p = this->special_output_list_.begin();
1570 p != this->special_output_list_.end();
1571 ++p)
1572 (*p)->reset_address_and_file_offset();
1573
1574 // A linker script may have created some output section data objects.
1575 // They are useless now.
1576 for (Output_section_data_list::const_iterator p =
1577 this->script_output_section_data_list_.begin();
1578 p != this->script_output_section_data_list_.end();
1579 ++p)
1580 delete *p;
1581 this->script_output_section_data_list_.clear();
1582 }
1583
1584 // Prepare for relaxation.
1585
1586 void
1587 Layout::prepare_for_relaxation()
1588 {
1589 // Create an relaxation debug check if in debugging mode.
1590 if (is_debugging_enabled(DEBUG_RELAXATION))
1591 this->relaxation_debug_check_ = new Relaxation_debug_check();
1592
1593 // Save segment states.
1594 this->segment_states_ = new Segment_states();
1595 this->save_segments(this->segment_states_);
1596
1597 for(Section_list::const_iterator p = this->section_list_.begin();
1598 p != this->section_list_.end();
1599 ++p)
1600 (*p)->save_states();
1601
1602 if (is_debugging_enabled(DEBUG_RELAXATION))
1603 this->relaxation_debug_check_->check_output_data_for_reset_values(
1604 this->section_list_, this->special_output_list_);
1605
1606 // Also enable recording of output section data from scripts.
1607 this->record_output_section_data_from_script_ = true;
1608 }
1609
1610 // Relaxation loop body: If target has no relaxation, this runs only once
1611 // Otherwise, the target relaxation hook is called at the end of
1612 // each iteration. If the hook returns true, it means re-layout of
1613 // section is required.
1614 //
1615 // The number of segments created by a linking script without a PHDRS
1616 // clause may be affected by section sizes and alignments. There is
1617 // a remote chance that relaxation causes different number of PT_LOAD
1618 // segments are created and sections are attached to different segments.
1619 // Therefore, we always throw away all segments created during section
1620 // layout. In order to be able to restart the section layout, we keep
1621 // a copy of the segment list right before the relaxation loop and use
1622 // that to restore the segments.
1623 //
1624 // PASS is the current relaxation pass number.
1625 // SYMTAB is a symbol table.
1626 // PLOAD_SEG is the address of a pointer for the load segment.
1627 // PHDR_SEG is a pointer to the PHDR segment.
1628 // SEGMENT_HEADERS points to the output segment header.
1629 // FILE_HEADER points to the output file header.
1630 // PSHNDX is the address to store the output section index.
1631
1632 off_t inline
1633 Layout::relaxation_loop_body(
1634 int pass,
1635 Target* target,
1636 Symbol_table* symtab,
1637 Output_segment** pload_seg,
1638 Output_segment* phdr_seg,
1639 Output_segment_headers* segment_headers,
1640 Output_file_header* file_header,
1641 unsigned int* pshndx)
1642 {
1643 // If this is not the first iteration, we need to clean up after
1644 // relaxation so that we can lay out the sections again.
1645 if (pass != 0)
1646 this->clean_up_after_relaxation();
1647
1648 // If there is a SECTIONS clause, put all the input sections into
1649 // the required order.
1650 Output_segment* load_seg;
1651 if (this->script_options_->saw_sections_clause())
1652 load_seg = this->set_section_addresses_from_script(symtab);
1653 else if (parameters->options().relocatable())
1654 load_seg = NULL;
1655 else
1656 load_seg = this->find_first_load_seg();
1657
1658 if (parameters->options().oformat_enum()
1659 != General_options::OBJECT_FORMAT_ELF)
1660 load_seg = NULL;
1661
1662 // If the user set the address of the text segment, that may not be
1663 // compatible with putting the segment headers and file headers into
1664 // that segment.
1665 if (parameters->options().user_set_Ttext())
1666 load_seg = NULL;
1667
1668 gold_assert(phdr_seg == NULL
1669 || load_seg != NULL
1670 || this->script_options_->saw_sections_clause());
1671
1672 // If the address of the load segment we found has been set by
1673 // --section-start rather than by a script, then adjust the VMA and
1674 // LMA downward if possible to include the file and section headers.
1675 uint64_t header_gap = 0;
1676 if (load_seg != NULL
1677 && load_seg->are_addresses_set()
1678 && !this->script_options_->saw_sections_clause()
1679 && !parameters->options().relocatable())
1680 {
1681 file_header->finalize_data_size();
1682 segment_headers->finalize_data_size();
1683 size_t sizeof_headers = (file_header->data_size()
1684 + segment_headers->data_size());
1685 const uint64_t abi_pagesize = target->abi_pagesize();
1686 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
1687 hdr_paddr &= ~(abi_pagesize - 1);
1688 uint64_t subtract = load_seg->paddr() - hdr_paddr;
1689 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
1690 load_seg = NULL;
1691 else
1692 {
1693 load_seg->set_addresses(load_seg->vaddr() - subtract,
1694 load_seg->paddr() - subtract);
1695 header_gap = subtract - sizeof_headers;
1696 }
1697 }
1698
1699 // Lay out the segment headers.
1700 if (!parameters->options().relocatable())
1701 {
1702 gold_assert(segment_headers != NULL);
1703 if (header_gap != 0 && load_seg != NULL)
1704 {
1705 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
1706 load_seg->add_initial_output_data(z);
1707 }
1708 if (load_seg != NULL)
1709 load_seg->add_initial_output_data(segment_headers);
1710 if (phdr_seg != NULL)
1711 phdr_seg->add_initial_output_data(segment_headers);
1712 }
1713
1714 // Lay out the file header.
1715 if (load_seg != NULL)
1716 load_seg->add_initial_output_data(file_header);
1717
1718 if (this->script_options_->saw_phdrs_clause()
1719 && !parameters->options().relocatable())
1720 {
1721 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1722 // clause in a linker script.
1723 Script_sections* ss = this->script_options_->script_sections();
1724 ss->put_headers_in_phdrs(file_header, segment_headers);
1725 }
1726
1727 // We set the output section indexes in set_segment_offsets and
1728 // set_section_indexes.
1729 *pshndx = 1;
1730
1731 // Set the file offsets of all the segments, and all the sections
1732 // they contain.
1733 off_t off;
1734 if (!parameters->options().relocatable())
1735 off = this->set_segment_offsets(target, load_seg, pshndx);
1736 else
1737 off = this->set_relocatable_section_offsets(file_header, pshndx);
1738
1739 // Verify that the dummy relaxation does not change anything.
1740 if (is_debugging_enabled(DEBUG_RELAXATION))
1741 {
1742 if (pass == 0)
1743 this->relaxation_debug_check_->read_sections(this->section_list_);
1744 else
1745 this->relaxation_debug_check_->verify_sections(this->section_list_);
1746 }
1747
1748 *pload_seg = load_seg;
1749 return off;
1750 }
1751
1752 // Search the list of patterns and find the postion of the given section
1753 // name in the output section. If the section name matches a glob
1754 // pattern and a non-glob name, then the non-glob position takes
1755 // precedence. Return 0 if no match is found.
1756
1757 unsigned int
1758 Layout::find_section_order_index(const std::string& section_name)
1759 {
1760 Unordered_map<std::string, unsigned int>::iterator map_it;
1761 map_it = this->input_section_position_.find(section_name);
1762 if (map_it != this->input_section_position_.end())
1763 return map_it->second;
1764
1765 // Absolute match failed. Linear search the glob patterns.
1766 std::vector<std::string>::iterator it;
1767 for (it = this->input_section_glob_.begin();
1768 it != this->input_section_glob_.end();
1769 ++it)
1770 {
1771 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
1772 {
1773 map_it = this->input_section_position_.find(*it);
1774 gold_assert(map_it != this->input_section_position_.end());
1775 return map_it->second;
1776 }
1777 }
1778 return 0;
1779 }
1780
1781 // Read the sequence of input sections from the file specified with
1782 // --section-ordering-file.
1783
1784 void
1785 Layout::read_layout_from_file()
1786 {
1787 const char* filename = parameters->options().section_ordering_file();
1788 std::ifstream in;
1789 std::string line;
1790
1791 in.open(filename);
1792 if (!in)
1793 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
1794 filename, strerror(errno));
1795
1796 std::getline(in, line); // this chops off the trailing \n, if any
1797 unsigned int position = 1;
1798
1799 while (in)
1800 {
1801 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
1802 line.resize(line.length() - 1);
1803 // Ignore comments, beginning with '#'
1804 if (line[0] == '#')
1805 {
1806 std::getline(in, line);
1807 continue;
1808 }
1809 this->input_section_position_[line] = position;
1810 // Store all glob patterns in a vector.
1811 if (is_wildcard_string(line.c_str()))
1812 this->input_section_glob_.push_back(line);
1813 position++;
1814 std::getline(in, line);
1815 }
1816 }
1817
1818 // Finalize the layout. When this is called, we have created all the
1819 // output sections and all the output segments which are based on
1820 // input sections. We have several things to do, and we have to do
1821 // them in the right order, so that we get the right results correctly
1822 // and efficiently.
1823
1824 // 1) Finalize the list of output segments and create the segment
1825 // table header.
1826
1827 // 2) Finalize the dynamic symbol table and associated sections.
1828
1829 // 3) Determine the final file offset of all the output segments.
1830
1831 // 4) Determine the final file offset of all the SHF_ALLOC output
1832 // sections.
1833
1834 // 5) Create the symbol table sections and the section name table
1835 // section.
1836
1837 // 6) Finalize the symbol table: set symbol values to their final
1838 // value and make a final determination of which symbols are going
1839 // into the output symbol table.
1840
1841 // 7) Create the section table header.
1842
1843 // 8) Determine the final file offset of all the output sections which
1844 // are not SHF_ALLOC, including the section table header.
1845
1846 // 9) Finalize the ELF file header.
1847
1848 // This function returns the size of the output file.
1849
1850 off_t
1851 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1852 Target* target, const Task* task)
1853 {
1854 target->finalize_sections(this, input_objects, symtab);
1855
1856 this->count_local_symbols(task, input_objects);
1857
1858 this->link_stabs_sections();
1859
1860 Output_segment* phdr_seg = NULL;
1861 if (!parameters->options().relocatable() && !parameters->doing_static_link())
1862 {
1863 // There was a dynamic object in the link. We need to create
1864 // some information for the dynamic linker.
1865
1866 // Create the PT_PHDR segment which will hold the program
1867 // headers.
1868 if (!this->script_options_->saw_phdrs_clause())
1869 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1870
1871 // Create the dynamic symbol table, including the hash table.
1872 Output_section* dynstr;
1873 std::vector<Symbol*> dynamic_symbols;
1874 unsigned int local_dynamic_count;
1875 Versions versions(*this->script_options()->version_script_info(),
1876 &this->dynpool_);
1877 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1878 &local_dynamic_count, &dynamic_symbols,
1879 &versions);
1880
1881 // Create the .interp section to hold the name of the
1882 // interpreter, and put it in a PT_INTERP segment.
1883 if (!parameters->options().shared())
1884 this->create_interp(target);
1885
1886 // Finish the .dynamic section to hold the dynamic data, and put
1887 // it in a PT_DYNAMIC segment.
1888 this->finish_dynamic_section(input_objects, symtab);
1889
1890 // We should have added everything we need to the dynamic string
1891 // table.
1892 this->dynpool_.set_string_offsets();
1893
1894 // Create the version sections. We can't do this until the
1895 // dynamic string table is complete.
1896 this->create_version_sections(&versions, symtab, local_dynamic_count,
1897 dynamic_symbols, dynstr);
1898
1899 // Set the size of the _DYNAMIC symbol. We can't do this until
1900 // after we call create_version_sections.
1901 this->set_dynamic_symbol_size(symtab);
1902 }
1903
1904 // Create segment headers.
1905 Output_segment_headers* segment_headers =
1906 (parameters->options().relocatable()
1907 ? NULL
1908 : new Output_segment_headers(this->segment_list_));
1909
1910 // Lay out the file header.
1911 Output_file_header* file_header
1912 = new Output_file_header(target, symtab, segment_headers,
1913 parameters->options().entry());
1914
1915 this->special_output_list_.push_back(file_header);
1916 if (segment_headers != NULL)
1917 this->special_output_list_.push_back(segment_headers);
1918
1919 // Find approriate places for orphan output sections if we are using
1920 // a linker script.
1921 if (this->script_options_->saw_sections_clause())
1922 this->place_orphan_sections_in_script();
1923
1924 Output_segment* load_seg;
1925 off_t off;
1926 unsigned int shndx;
1927 int pass = 0;
1928
1929 // Take a snapshot of the section layout as needed.
1930 if (target->may_relax())
1931 this->prepare_for_relaxation();
1932
1933 // Run the relaxation loop to lay out sections.
1934 do
1935 {
1936 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
1937 phdr_seg, segment_headers, file_header,
1938 &shndx);
1939 pass++;
1940 }
1941 while (target->may_relax()
1942 && target->relax(pass, input_objects, symtab, this));
1943
1944 // Set the file offsets of all the non-data sections we've seen so
1945 // far which don't have to wait for the input sections. We need
1946 // this in order to finalize local symbols in non-allocated
1947 // sections.
1948 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1949
1950 // Set the section indexes of all unallocated sections seen so far,
1951 // in case any of them are somehow referenced by a symbol.
1952 shndx = this->set_section_indexes(shndx);
1953
1954 // Create the symbol table sections.
1955 this->create_symtab_sections(input_objects, symtab, shndx, &off);
1956 if (!parameters->doing_static_link())
1957 this->assign_local_dynsym_offsets(input_objects);
1958
1959 // Process any symbol assignments from a linker script. This must
1960 // be called after the symbol table has been finalized.
1961 this->script_options_->finalize_symbols(symtab, this);
1962
1963 // Create the incremental inputs sections.
1964 if (this->incremental_inputs_)
1965 {
1966 this->incremental_inputs_->finalize();
1967 this->create_incremental_info_sections(symtab);
1968 }
1969
1970 // Create the .shstrtab section.
1971 Output_section* shstrtab_section = this->create_shstrtab();
1972
1973 // Set the file offsets of the rest of the non-data sections which
1974 // don't have to wait for the input sections.
1975 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1976
1977 // Now that all sections have been created, set the section indexes
1978 // for any sections which haven't been done yet.
1979 shndx = this->set_section_indexes(shndx);
1980
1981 // Create the section table header.
1982 this->create_shdrs(shstrtab_section, &off);
1983
1984 // If there are no sections which require postprocessing, we can
1985 // handle the section names now, and avoid a resize later.
1986 if (!this->any_postprocessing_sections_)
1987 {
1988 off = this->set_section_offsets(off,
1989 POSTPROCESSING_SECTIONS_PASS);
1990 off =
1991 this->set_section_offsets(off,
1992 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1993 }
1994
1995 file_header->set_section_info(this->section_headers_, shstrtab_section);
1996
1997 // Now we know exactly where everything goes in the output file
1998 // (except for non-allocated sections which require postprocessing).
1999 Output_data::layout_complete();
2000
2001 this->output_file_size_ = off;
2002
2003 return off;
2004 }
2005
2006 // Create a note header following the format defined in the ELF ABI.
2007 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2008 // of the section to create, DESCSZ is the size of the descriptor.
2009 // ALLOCATE is true if the section should be allocated in memory.
2010 // This returns the new note section. It sets *TRAILING_PADDING to
2011 // the number of trailing zero bytes required.
2012
2013 Output_section*
2014 Layout::create_note(const char* name, int note_type,
2015 const char* section_name, size_t descsz,
2016 bool allocate, size_t* trailing_padding)
2017 {
2018 // Authorities all agree that the values in a .note field should
2019 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2020 // they differ on what the alignment is for 64-bit binaries.
2021 // The GABI says unambiguously they take 8-byte alignment:
2022 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2023 // Other documentation says alignment should always be 4 bytes:
2024 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2025 // GNU ld and GNU readelf both support the latter (at least as of
2026 // version 2.16.91), and glibc always generates the latter for
2027 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2028 // here.
2029 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2030 const int size = parameters->target().get_size();
2031 #else
2032 const int size = 32;
2033 #endif
2034
2035 // The contents of the .note section.
2036 size_t namesz = strlen(name) + 1;
2037 size_t aligned_namesz = align_address(namesz, size / 8);
2038 size_t aligned_descsz = align_address(descsz, size / 8);
2039
2040 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2041
2042 unsigned char* buffer = new unsigned char[notehdrsz];
2043 memset(buffer, 0, notehdrsz);
2044
2045 bool is_big_endian = parameters->target().is_big_endian();
2046
2047 if (size == 32)
2048 {
2049 if (!is_big_endian)
2050 {
2051 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2052 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2053 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2054 }
2055 else
2056 {
2057 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2058 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2059 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2060 }
2061 }
2062 else if (size == 64)
2063 {
2064 if (!is_big_endian)
2065 {
2066 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2067 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2068 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2069 }
2070 else
2071 {
2072 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2073 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2074 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2075 }
2076 }
2077 else
2078 gold_unreachable();
2079
2080 memcpy(buffer + 3 * (size / 8), name, namesz);
2081
2082 elfcpp::Elf_Xword flags = 0;
2083 Output_section_order order = ORDER_INVALID;
2084 if (allocate)
2085 {
2086 flags = elfcpp::SHF_ALLOC;
2087 order = ORDER_RO_NOTE;
2088 }
2089 Output_section* os = this->choose_output_section(NULL, section_name,
2090 elfcpp::SHT_NOTE,
2091 flags, false, order, false);
2092 if (os == NULL)
2093 return NULL;
2094
2095 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2096 size / 8,
2097 "** note header");
2098 os->add_output_section_data(posd);
2099
2100 *trailing_padding = aligned_descsz - descsz;
2101
2102 return os;
2103 }
2104
2105 // For an executable or shared library, create a note to record the
2106 // version of gold used to create the binary.
2107
2108 void
2109 Layout::create_gold_note()
2110 {
2111 if (parameters->options().relocatable())
2112 return;
2113
2114 std::string desc = std::string("gold ") + gold::get_version_string();
2115
2116 size_t trailing_padding;
2117 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2118 ".note.gnu.gold-version", desc.size(),
2119 false, &trailing_padding);
2120 if (os == NULL)
2121 return;
2122
2123 Output_section_data* posd = new Output_data_const(desc, 4);
2124 os->add_output_section_data(posd);
2125
2126 if (trailing_padding > 0)
2127 {
2128 posd = new Output_data_zero_fill(trailing_padding, 0);
2129 os->add_output_section_data(posd);
2130 }
2131 }
2132
2133 // Record whether the stack should be executable. This can be set
2134 // from the command line using the -z execstack or -z noexecstack
2135 // options. Otherwise, if any input file has a .note.GNU-stack
2136 // section with the SHF_EXECINSTR flag set, the stack should be
2137 // executable. Otherwise, if at least one input file a
2138 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2139 // section, we use the target default for whether the stack should be
2140 // executable. Otherwise, we don't generate a stack note. When
2141 // generating a object file, we create a .note.GNU-stack section with
2142 // the appropriate marking. When generating an executable or shared
2143 // library, we create a PT_GNU_STACK segment.
2144
2145 void
2146 Layout::create_executable_stack_info()
2147 {
2148 bool is_stack_executable;
2149 if (parameters->options().is_execstack_set())
2150 is_stack_executable = parameters->options().is_stack_executable();
2151 else if (!this->input_with_gnu_stack_note_)
2152 return;
2153 else
2154 {
2155 if (this->input_requires_executable_stack_)
2156 is_stack_executable = true;
2157 else if (this->input_without_gnu_stack_note_)
2158 is_stack_executable =
2159 parameters->target().is_default_stack_executable();
2160 else
2161 is_stack_executable = false;
2162 }
2163
2164 if (parameters->options().relocatable())
2165 {
2166 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2167 elfcpp::Elf_Xword flags = 0;
2168 if (is_stack_executable)
2169 flags |= elfcpp::SHF_EXECINSTR;
2170 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2171 ORDER_INVALID, false);
2172 }
2173 else
2174 {
2175 if (this->script_options_->saw_phdrs_clause())
2176 return;
2177 int flags = elfcpp::PF_R | elfcpp::PF_W;
2178 if (is_stack_executable)
2179 flags |= elfcpp::PF_X;
2180 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2181 }
2182 }
2183
2184 // If --build-id was used, set up the build ID note.
2185
2186 void
2187 Layout::create_build_id()
2188 {
2189 if (!parameters->options().user_set_build_id())
2190 return;
2191
2192 const char* style = parameters->options().build_id();
2193 if (strcmp(style, "none") == 0)
2194 return;
2195
2196 // Set DESCSZ to the size of the note descriptor. When possible,
2197 // set DESC to the note descriptor contents.
2198 size_t descsz;
2199 std::string desc;
2200 if (strcmp(style, "md5") == 0)
2201 descsz = 128 / 8;
2202 else if (strcmp(style, "sha1") == 0)
2203 descsz = 160 / 8;
2204 else if (strcmp(style, "uuid") == 0)
2205 {
2206 const size_t uuidsz = 128 / 8;
2207
2208 char buffer[uuidsz];
2209 memset(buffer, 0, uuidsz);
2210
2211 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2212 if (descriptor < 0)
2213 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2214 strerror(errno));
2215 else
2216 {
2217 ssize_t got = ::read(descriptor, buffer, uuidsz);
2218 release_descriptor(descriptor, true);
2219 if (got < 0)
2220 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2221 else if (static_cast<size_t>(got) != uuidsz)
2222 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2223 uuidsz, got);
2224 }
2225
2226 desc.assign(buffer, uuidsz);
2227 descsz = uuidsz;
2228 }
2229 else if (strncmp(style, "0x", 2) == 0)
2230 {
2231 hex_init();
2232 const char* p = style + 2;
2233 while (*p != '\0')
2234 {
2235 if (hex_p(p[0]) && hex_p(p[1]))
2236 {
2237 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2238 desc += c;
2239 p += 2;
2240 }
2241 else if (*p == '-' || *p == ':')
2242 ++p;
2243 else
2244 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2245 style);
2246 }
2247 descsz = desc.size();
2248 }
2249 else
2250 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2251
2252 // Create the note.
2253 size_t trailing_padding;
2254 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2255 ".note.gnu.build-id", descsz, true,
2256 &trailing_padding);
2257 if (os == NULL)
2258 return;
2259
2260 if (!desc.empty())
2261 {
2262 // We know the value already, so we fill it in now.
2263 gold_assert(desc.size() == descsz);
2264
2265 Output_section_data* posd = new Output_data_const(desc, 4);
2266 os->add_output_section_data(posd);
2267
2268 if (trailing_padding != 0)
2269 {
2270 posd = new Output_data_zero_fill(trailing_padding, 0);
2271 os->add_output_section_data(posd);
2272 }
2273 }
2274 else
2275 {
2276 // We need to compute a checksum after we have completed the
2277 // link.
2278 gold_assert(trailing_padding == 0);
2279 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2280 os->add_output_section_data(this->build_id_note_);
2281 }
2282 }
2283
2284 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2285 // field of the former should point to the latter. I'm not sure who
2286 // started this, but the GNU linker does it, and some tools depend
2287 // upon it.
2288
2289 void
2290 Layout::link_stabs_sections()
2291 {
2292 if (!this->have_stabstr_section_)
2293 return;
2294
2295 for (Section_list::iterator p = this->section_list_.begin();
2296 p != this->section_list_.end();
2297 ++p)
2298 {
2299 if ((*p)->type() != elfcpp::SHT_STRTAB)
2300 continue;
2301
2302 const char* name = (*p)->name();
2303 if (strncmp(name, ".stab", 5) != 0)
2304 continue;
2305
2306 size_t len = strlen(name);
2307 if (strcmp(name + len - 3, "str") != 0)
2308 continue;
2309
2310 std::string stab_name(name, len - 3);
2311 Output_section* stab_sec;
2312 stab_sec = this->find_output_section(stab_name.c_str());
2313 if (stab_sec != NULL)
2314 stab_sec->set_link_section(*p);
2315 }
2316 }
2317
2318 // Create .gnu_incremental_inputs and related sections needed
2319 // for the next run of incremental linking to check what has changed.
2320
2321 void
2322 Layout::create_incremental_info_sections(Symbol_table* symtab)
2323 {
2324 Incremental_inputs* incr = this->incremental_inputs_;
2325
2326 gold_assert(incr != NULL);
2327
2328 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2329 incr->create_data_sections(symtab);
2330
2331 // Add the .gnu_incremental_inputs section.
2332 const char* incremental_inputs_name =
2333 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2334 Output_section* incremental_inputs_os =
2335 this->make_output_section(incremental_inputs_name,
2336 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2337 ORDER_INVALID, false);
2338 incremental_inputs_os->add_output_section_data(incr->inputs_section());
2339
2340 // Add the .gnu_incremental_symtab section.
2341 const char* incremental_symtab_name =
2342 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2343 Output_section* incremental_symtab_os =
2344 this->make_output_section(incremental_symtab_name,
2345 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2346 ORDER_INVALID, false);
2347 incremental_symtab_os->add_output_section_data(incr->symtab_section());
2348 incremental_symtab_os->set_entsize(4);
2349
2350 // Add the .gnu_incremental_relocs section.
2351 const char* incremental_relocs_name =
2352 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2353 Output_section* incremental_relocs_os =
2354 this->make_output_section(incremental_relocs_name,
2355 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2356 ORDER_INVALID, false);
2357 incremental_relocs_os->add_output_section_data(incr->relocs_section());
2358 incremental_relocs_os->set_entsize(incr->relocs_entsize());
2359
2360 // Add the .gnu_incremental_got_plt section.
2361 const char* incremental_got_plt_name =
2362 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2363 Output_section* incremental_got_plt_os =
2364 this->make_output_section(incremental_got_plt_name,
2365 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2366 ORDER_INVALID, false);
2367 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2368
2369 // Add the .gnu_incremental_strtab section.
2370 const char* incremental_strtab_name =
2371 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2372 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2373 elfcpp::SHT_STRTAB, 0,
2374 ORDER_INVALID, false);
2375 Output_data_strtab* strtab_data =
2376 new Output_data_strtab(incr->get_stringpool());
2377 incremental_strtab_os->add_output_section_data(strtab_data);
2378
2379 incremental_inputs_os->set_after_input_sections();
2380 incremental_symtab_os->set_after_input_sections();
2381 incremental_relocs_os->set_after_input_sections();
2382 incremental_got_plt_os->set_after_input_sections();
2383
2384 incremental_inputs_os->set_link_section(incremental_strtab_os);
2385 incremental_symtab_os->set_link_section(incremental_inputs_os);
2386 incremental_relocs_os->set_link_section(incremental_inputs_os);
2387 incremental_got_plt_os->set_link_section(incremental_inputs_os);
2388 }
2389
2390 // Return whether SEG1 should be before SEG2 in the output file. This
2391 // is based entirely on the segment type and flags. When this is
2392 // called the segment addresses has normally not yet been set.
2393
2394 bool
2395 Layout::segment_precedes(const Output_segment* seg1,
2396 const Output_segment* seg2)
2397 {
2398 elfcpp::Elf_Word type1 = seg1->type();
2399 elfcpp::Elf_Word type2 = seg2->type();
2400
2401 // The single PT_PHDR segment is required to precede any loadable
2402 // segment. We simply make it always first.
2403 if (type1 == elfcpp::PT_PHDR)
2404 {
2405 gold_assert(type2 != elfcpp::PT_PHDR);
2406 return true;
2407 }
2408 if (type2 == elfcpp::PT_PHDR)
2409 return false;
2410
2411 // The single PT_INTERP segment is required to precede any loadable
2412 // segment. We simply make it always second.
2413 if (type1 == elfcpp::PT_INTERP)
2414 {
2415 gold_assert(type2 != elfcpp::PT_INTERP);
2416 return true;
2417 }
2418 if (type2 == elfcpp::PT_INTERP)
2419 return false;
2420
2421 // We then put PT_LOAD segments before any other segments.
2422 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2423 return true;
2424 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2425 return false;
2426
2427 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2428 // segment, because that is where the dynamic linker expects to find
2429 // it (this is just for efficiency; other positions would also work
2430 // correctly).
2431 if (type1 == elfcpp::PT_TLS
2432 && type2 != elfcpp::PT_TLS
2433 && type2 != elfcpp::PT_GNU_RELRO)
2434 return false;
2435 if (type2 == elfcpp::PT_TLS
2436 && type1 != elfcpp::PT_TLS
2437 && type1 != elfcpp::PT_GNU_RELRO)
2438 return true;
2439
2440 // We put the PT_GNU_RELRO segment last, because that is where the
2441 // dynamic linker expects to find it (as with PT_TLS, this is just
2442 // for efficiency).
2443 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2444 return false;
2445 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2446 return true;
2447
2448 const elfcpp::Elf_Word flags1 = seg1->flags();
2449 const elfcpp::Elf_Word flags2 = seg2->flags();
2450
2451 // The order of non-PT_LOAD segments is unimportant. We simply sort
2452 // by the numeric segment type and flags values. There should not
2453 // be more than one segment with the same type and flags.
2454 if (type1 != elfcpp::PT_LOAD)
2455 {
2456 if (type1 != type2)
2457 return type1 < type2;
2458 gold_assert(flags1 != flags2);
2459 return flags1 < flags2;
2460 }
2461
2462 // If the addresses are set already, sort by load address.
2463 if (seg1->are_addresses_set())
2464 {
2465 if (!seg2->are_addresses_set())
2466 return true;
2467
2468 unsigned int section_count1 = seg1->output_section_count();
2469 unsigned int section_count2 = seg2->output_section_count();
2470 if (section_count1 == 0 && section_count2 > 0)
2471 return true;
2472 if (section_count1 > 0 && section_count2 == 0)
2473 return false;
2474
2475 uint64_t paddr1 = (seg1->are_addresses_set()
2476 ? seg1->paddr()
2477 : seg1->first_section_load_address());
2478 uint64_t paddr2 = (seg2->are_addresses_set()
2479 ? seg2->paddr()
2480 : seg2->first_section_load_address());
2481
2482 if (paddr1 != paddr2)
2483 return paddr1 < paddr2;
2484 }
2485 else if (seg2->are_addresses_set())
2486 return false;
2487
2488 // A segment which holds large data comes after a segment which does
2489 // not hold large data.
2490 if (seg1->is_large_data_segment())
2491 {
2492 if (!seg2->is_large_data_segment())
2493 return false;
2494 }
2495 else if (seg2->is_large_data_segment())
2496 return true;
2497
2498 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2499 // segments come before writable segments. Then writable segments
2500 // with data come before writable segments without data. Then
2501 // executable segments come before non-executable segments. Then
2502 // the unlikely case of a non-readable segment comes before the
2503 // normal case of a readable segment. If there are multiple
2504 // segments with the same type and flags, we require that the
2505 // address be set, and we sort by virtual address and then physical
2506 // address.
2507 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2508 return (flags1 & elfcpp::PF_W) == 0;
2509 if ((flags1 & elfcpp::PF_W) != 0
2510 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2511 return seg1->has_any_data_sections();
2512 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2513 return (flags1 & elfcpp::PF_X) != 0;
2514 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2515 return (flags1 & elfcpp::PF_R) == 0;
2516
2517 // We shouldn't get here--we shouldn't create segments which we
2518 // can't distinguish.
2519 gold_unreachable();
2520 }
2521
2522 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2523
2524 static off_t
2525 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2526 {
2527 uint64_t unsigned_off = off;
2528 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2529 | (addr & (abi_pagesize - 1)));
2530 if (aligned_off < unsigned_off)
2531 aligned_off += abi_pagesize;
2532 return aligned_off;
2533 }
2534
2535 // Set the file offsets of all the segments, and all the sections they
2536 // contain. They have all been created. LOAD_SEG must be be laid out
2537 // first. Return the offset of the data to follow.
2538
2539 off_t
2540 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2541 unsigned int* pshndx)
2542 {
2543 // Sort them into the final order.
2544 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2545 Layout::Compare_segments());
2546
2547 // Find the PT_LOAD segments, and set their addresses and offsets
2548 // and their section's addresses and offsets.
2549 uint64_t addr;
2550 if (parameters->options().user_set_Ttext())
2551 addr = parameters->options().Ttext();
2552 else if (parameters->options().output_is_position_independent())
2553 addr = 0;
2554 else
2555 addr = target->default_text_segment_address();
2556 off_t off = 0;
2557
2558 // If LOAD_SEG is NULL, then the file header and segment headers
2559 // will not be loadable. But they still need to be at offset 0 in
2560 // the file. Set their offsets now.
2561 if (load_seg == NULL)
2562 {
2563 for (Data_list::iterator p = this->special_output_list_.begin();
2564 p != this->special_output_list_.end();
2565 ++p)
2566 {
2567 off = align_address(off, (*p)->addralign());
2568 (*p)->set_address_and_file_offset(0, off);
2569 off += (*p)->data_size();
2570 }
2571 }
2572
2573 unsigned int increase_relro = this->increase_relro_;
2574 if (this->script_options_->saw_sections_clause())
2575 increase_relro = 0;
2576
2577 const bool check_sections = parameters->options().check_sections();
2578 Output_segment* last_load_segment = NULL;
2579
2580 for (Segment_list::iterator p = this->segment_list_.begin();
2581 p != this->segment_list_.end();
2582 ++p)
2583 {
2584 if ((*p)->type() == elfcpp::PT_LOAD)
2585 {
2586 if (load_seg != NULL && load_seg != *p)
2587 gold_unreachable();
2588 load_seg = NULL;
2589
2590 bool are_addresses_set = (*p)->are_addresses_set();
2591 if (are_addresses_set)
2592 {
2593 // When it comes to setting file offsets, we care about
2594 // the physical address.
2595 addr = (*p)->paddr();
2596 }
2597 else if (parameters->options().user_set_Tdata()
2598 && ((*p)->flags() & elfcpp::PF_W) != 0
2599 && (!parameters->options().user_set_Tbss()
2600 || (*p)->has_any_data_sections()))
2601 {
2602 addr = parameters->options().Tdata();
2603 are_addresses_set = true;
2604 }
2605 else if (parameters->options().user_set_Tbss()
2606 && ((*p)->flags() & elfcpp::PF_W) != 0
2607 && !(*p)->has_any_data_sections())
2608 {
2609 addr = parameters->options().Tbss();
2610 are_addresses_set = true;
2611 }
2612
2613 uint64_t orig_addr = addr;
2614 uint64_t orig_off = off;
2615
2616 uint64_t aligned_addr = 0;
2617 uint64_t abi_pagesize = target->abi_pagesize();
2618 uint64_t common_pagesize = target->common_pagesize();
2619
2620 if (!parameters->options().nmagic()
2621 && !parameters->options().omagic())
2622 (*p)->set_minimum_p_align(common_pagesize);
2623
2624 if (!are_addresses_set)
2625 {
2626 // Skip the address forward one page, maintaining the same
2627 // position within the page. This lets us store both segments
2628 // overlapping on a single page in the file, but the loader will
2629 // put them on different pages in memory. We will revisit this
2630 // decision once we know the size of the segment.
2631
2632 addr = align_address(addr, (*p)->maximum_alignment());
2633 aligned_addr = addr;
2634
2635 if ((addr & (abi_pagesize - 1)) != 0)
2636 addr = addr + abi_pagesize;
2637
2638 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2639 }
2640
2641 if (!parameters->options().nmagic()
2642 && !parameters->options().omagic())
2643 off = align_file_offset(off, addr, abi_pagesize);
2644 else if (load_seg == NULL)
2645 {
2646 // This is -N or -n with a section script which prevents
2647 // us from using a load segment. We need to ensure that
2648 // the file offset is aligned to the alignment of the
2649 // segment. This is because the linker script
2650 // implicitly assumed a zero offset. If we don't align
2651 // here, then the alignment of the sections in the
2652 // linker script may not match the alignment of the
2653 // sections in the set_section_addresses call below,
2654 // causing an error about dot moving backward.
2655 off = align_address(off, (*p)->maximum_alignment());
2656 }
2657
2658 unsigned int shndx_hold = *pshndx;
2659 bool has_relro = false;
2660 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2661 increase_relro,
2662 &has_relro,
2663 &off, pshndx);
2664
2665 // Now that we know the size of this segment, we may be able
2666 // to save a page in memory, at the cost of wasting some
2667 // file space, by instead aligning to the start of a new
2668 // page. Here we use the real machine page size rather than
2669 // the ABI mandated page size. If the segment has been
2670 // aligned so that the relro data ends at a page boundary,
2671 // we do not try to realign it.
2672
2673 if (!are_addresses_set && !has_relro && aligned_addr != addr)
2674 {
2675 uint64_t first_off = (common_pagesize
2676 - (aligned_addr
2677 & (common_pagesize - 1)));
2678 uint64_t last_off = new_addr & (common_pagesize - 1);
2679 if (first_off > 0
2680 && last_off > 0
2681 && ((aligned_addr & ~ (common_pagesize - 1))
2682 != (new_addr & ~ (common_pagesize - 1)))
2683 && first_off + last_off <= common_pagesize)
2684 {
2685 *pshndx = shndx_hold;
2686 addr = align_address(aligned_addr, common_pagesize);
2687 addr = align_address(addr, (*p)->maximum_alignment());
2688 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2689 off = align_file_offset(off, addr, abi_pagesize);
2690 new_addr = (*p)->set_section_addresses(this, true, addr,
2691 increase_relro,
2692 &has_relro,
2693 &off, pshndx);
2694 }
2695 }
2696
2697 addr = new_addr;
2698
2699 // Implement --check-sections. We know that the segments
2700 // are sorted by LMA.
2701 if (check_sections && last_load_segment != NULL)
2702 {
2703 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2704 if (last_load_segment->paddr() + last_load_segment->memsz()
2705 > (*p)->paddr())
2706 {
2707 unsigned long long lb1 = last_load_segment->paddr();
2708 unsigned long long le1 = lb1 + last_load_segment->memsz();
2709 unsigned long long lb2 = (*p)->paddr();
2710 unsigned long long le2 = lb2 + (*p)->memsz();
2711 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2712 "[0x%llx -> 0x%llx]"),
2713 lb1, le1, lb2, le2);
2714 }
2715 }
2716 last_load_segment = *p;
2717 }
2718 }
2719
2720 // Handle the non-PT_LOAD segments, setting their offsets from their
2721 // section's offsets.
2722 for (Segment_list::iterator p = this->segment_list_.begin();
2723 p != this->segment_list_.end();
2724 ++p)
2725 {
2726 if ((*p)->type() != elfcpp::PT_LOAD)
2727 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
2728 ? increase_relro
2729 : 0);
2730 }
2731
2732 // Set the TLS offsets for each section in the PT_TLS segment.
2733 if (this->tls_segment_ != NULL)
2734 this->tls_segment_->set_tls_offsets();
2735
2736 return off;
2737 }
2738
2739 // Set the offsets of all the allocated sections when doing a
2740 // relocatable link. This does the same jobs as set_segment_offsets,
2741 // only for a relocatable link.
2742
2743 off_t
2744 Layout::set_relocatable_section_offsets(Output_data* file_header,
2745 unsigned int* pshndx)
2746 {
2747 off_t off = 0;
2748
2749 file_header->set_address_and_file_offset(0, 0);
2750 off += file_header->data_size();
2751
2752 for (Section_list::iterator p = this->section_list_.begin();
2753 p != this->section_list_.end();
2754 ++p)
2755 {
2756 // We skip unallocated sections here, except that group sections
2757 // have to come first.
2758 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
2759 && (*p)->type() != elfcpp::SHT_GROUP)
2760 continue;
2761
2762 off = align_address(off, (*p)->addralign());
2763
2764 // The linker script might have set the address.
2765 if (!(*p)->is_address_valid())
2766 (*p)->set_address(0);
2767 (*p)->set_file_offset(off);
2768 (*p)->finalize_data_size();
2769 off += (*p)->data_size();
2770
2771 (*p)->set_out_shndx(*pshndx);
2772 ++*pshndx;
2773 }
2774
2775 return off;
2776 }
2777
2778 // Set the file offset of all the sections not associated with a
2779 // segment.
2780
2781 off_t
2782 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
2783 {
2784 for (Section_list::iterator p = this->unattached_section_list_.begin();
2785 p != this->unattached_section_list_.end();
2786 ++p)
2787 {
2788 // The symtab section is handled in create_symtab_sections.
2789 if (*p == this->symtab_section_)
2790 continue;
2791
2792 // If we've already set the data size, don't set it again.
2793 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
2794 continue;
2795
2796 if (pass == BEFORE_INPUT_SECTIONS_PASS
2797 && (*p)->requires_postprocessing())
2798 {
2799 (*p)->create_postprocessing_buffer();
2800 this->any_postprocessing_sections_ = true;
2801 }
2802
2803 if (pass == BEFORE_INPUT_SECTIONS_PASS
2804 && (*p)->after_input_sections())
2805 continue;
2806 else if (pass == POSTPROCESSING_SECTIONS_PASS
2807 && (!(*p)->after_input_sections()
2808 || (*p)->type() == elfcpp::SHT_STRTAB))
2809 continue;
2810 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2811 && (!(*p)->after_input_sections()
2812 || (*p)->type() != elfcpp::SHT_STRTAB))
2813 continue;
2814
2815 off = align_address(off, (*p)->addralign());
2816 (*p)->set_file_offset(off);
2817 (*p)->finalize_data_size();
2818 off += (*p)->data_size();
2819
2820 // At this point the name must be set.
2821 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
2822 this->namepool_.add((*p)->name(), false, NULL);
2823 }
2824 return off;
2825 }
2826
2827 // Set the section indexes of all the sections not associated with a
2828 // segment.
2829
2830 unsigned int
2831 Layout::set_section_indexes(unsigned int shndx)
2832 {
2833 for (Section_list::iterator p = this->unattached_section_list_.begin();
2834 p != this->unattached_section_list_.end();
2835 ++p)
2836 {
2837 if (!(*p)->has_out_shndx())
2838 {
2839 (*p)->set_out_shndx(shndx);
2840 ++shndx;
2841 }
2842 }
2843 return shndx;
2844 }
2845
2846 // Set the section addresses according to the linker script. This is
2847 // only called when we see a SECTIONS clause. This returns the
2848 // program segment which should hold the file header and segment
2849 // headers, if any. It will return NULL if they should not be in a
2850 // segment.
2851
2852 Output_segment*
2853 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2854 {
2855 Script_sections* ss = this->script_options_->script_sections();
2856 gold_assert(ss->saw_sections_clause());
2857 return this->script_options_->set_section_addresses(symtab, this);
2858 }
2859
2860 // Place the orphan sections in the linker script.
2861
2862 void
2863 Layout::place_orphan_sections_in_script()
2864 {
2865 Script_sections* ss = this->script_options_->script_sections();
2866 gold_assert(ss->saw_sections_clause());
2867
2868 // Place each orphaned output section in the script.
2869 for (Section_list::iterator p = this->section_list_.begin();
2870 p != this->section_list_.end();
2871 ++p)
2872 {
2873 if (!(*p)->found_in_sections_clause())
2874 ss->place_orphan(*p);
2875 }
2876 }
2877
2878 // Count the local symbols in the regular symbol table and the dynamic
2879 // symbol table, and build the respective string pools.
2880
2881 void
2882 Layout::count_local_symbols(const Task* task,
2883 const Input_objects* input_objects)
2884 {
2885 // First, figure out an upper bound on the number of symbols we'll
2886 // be inserting into each pool. This helps us create the pools with
2887 // the right size, to avoid unnecessary hashtable resizing.
2888 unsigned int symbol_count = 0;
2889 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2890 p != input_objects->relobj_end();
2891 ++p)
2892 symbol_count += (*p)->local_symbol_count();
2893
2894 // Go from "upper bound" to "estimate." We overcount for two
2895 // reasons: we double-count symbols that occur in more than one
2896 // object file, and we count symbols that are dropped from the
2897 // output. Add it all together and assume we overcount by 100%.
2898 symbol_count /= 2;
2899
2900 // We assume all symbols will go into both the sympool and dynpool.
2901 this->sympool_.reserve(symbol_count);
2902 this->dynpool_.reserve(symbol_count);
2903
2904 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2905 p != input_objects->relobj_end();
2906 ++p)
2907 {
2908 Task_lock_obj<Object> tlo(task, *p);
2909 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2910 }
2911 }
2912
2913 // Create the symbol table sections. Here we also set the final
2914 // values of the symbols. At this point all the loadable sections are
2915 // fully laid out. SHNUM is the number of sections so far.
2916
2917 void
2918 Layout::create_symtab_sections(const Input_objects* input_objects,
2919 Symbol_table* symtab,
2920 unsigned int shnum,
2921 off_t* poff)
2922 {
2923 int symsize;
2924 unsigned int align;
2925 if (parameters->target().get_size() == 32)
2926 {
2927 symsize = elfcpp::Elf_sizes<32>::sym_size;
2928 align = 4;
2929 }
2930 else if (parameters->target().get_size() == 64)
2931 {
2932 symsize = elfcpp::Elf_sizes<64>::sym_size;
2933 align = 8;
2934 }
2935 else
2936 gold_unreachable();
2937
2938 off_t off = *poff;
2939 off = align_address(off, align);
2940 off_t startoff = off;
2941
2942 // Save space for the dummy symbol at the start of the section. We
2943 // never bother to write this out--it will just be left as zero.
2944 off += symsize;
2945 unsigned int local_symbol_index = 1;
2946
2947 // Add STT_SECTION symbols for each Output section which needs one.
2948 for (Section_list::iterator p = this->section_list_.begin();
2949 p != this->section_list_.end();
2950 ++p)
2951 {
2952 if (!(*p)->needs_symtab_index())
2953 (*p)->set_symtab_index(-1U);
2954 else
2955 {
2956 (*p)->set_symtab_index(local_symbol_index);
2957 ++local_symbol_index;
2958 off += symsize;
2959 }
2960 }
2961
2962 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2963 p != input_objects->relobj_end();
2964 ++p)
2965 {
2966 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2967 off, symtab);
2968 off += (index - local_symbol_index) * symsize;
2969 local_symbol_index = index;
2970 }
2971
2972 unsigned int local_symcount = local_symbol_index;
2973 gold_assert(static_cast<off_t>(local_symcount * symsize) == off - startoff);
2974
2975 off_t dynoff;
2976 size_t dyn_global_index;
2977 size_t dyncount;
2978 if (this->dynsym_section_ == NULL)
2979 {
2980 dynoff = 0;
2981 dyn_global_index = 0;
2982 dyncount = 0;
2983 }
2984 else
2985 {
2986 dyn_global_index = this->dynsym_section_->info();
2987 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2988 dynoff = this->dynsym_section_->offset() + locsize;
2989 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2990 gold_assert(static_cast<off_t>(dyncount * symsize)
2991 == this->dynsym_section_->data_size() - locsize);
2992 }
2993
2994 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2995 &this->sympool_, &local_symcount);
2996
2997 if (!parameters->options().strip_all())
2998 {
2999 this->sympool_.set_string_offsets();
3000
3001 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3002 Output_section* osymtab = this->make_output_section(symtab_name,
3003 elfcpp::SHT_SYMTAB,
3004 0, ORDER_INVALID,
3005 false);
3006 this->symtab_section_ = osymtab;
3007
3008 Output_section_data* pos = new Output_data_fixed_space(off - startoff,
3009 align,
3010 "** symtab");
3011 osymtab->add_output_section_data(pos);
3012
3013 // We generate a .symtab_shndx section if we have more than
3014 // SHN_LORESERVE sections. Technically it is possible that we
3015 // don't need one, because it is possible that there are no
3016 // symbols in any of sections with indexes larger than
3017 // SHN_LORESERVE. That is probably unusual, though, and it is
3018 // easier to always create one than to compute section indexes
3019 // twice (once here, once when writing out the symbols).
3020 if (shnum >= elfcpp::SHN_LORESERVE)
3021 {
3022 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3023 false, NULL);
3024 Output_section* osymtab_xindex =
3025 this->make_output_section(symtab_xindex_name,
3026 elfcpp::SHT_SYMTAB_SHNDX, 0,
3027 ORDER_INVALID, false);
3028
3029 size_t symcount = (off - startoff) / symsize;
3030 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3031
3032 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3033
3034 osymtab_xindex->set_link_section(osymtab);
3035 osymtab_xindex->set_addralign(4);
3036 osymtab_xindex->set_entsize(4);
3037
3038 osymtab_xindex->set_after_input_sections();
3039
3040 // This tells the driver code to wait until the symbol table
3041 // has written out before writing out the postprocessing
3042 // sections, including the .symtab_shndx section.
3043 this->any_postprocessing_sections_ = true;
3044 }
3045
3046 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3047 Output_section* ostrtab = this->make_output_section(strtab_name,
3048 elfcpp::SHT_STRTAB,
3049 0, ORDER_INVALID,
3050 false);
3051
3052 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3053 ostrtab->add_output_section_data(pstr);
3054
3055 osymtab->set_file_offset(startoff);
3056 osymtab->finalize_data_size();
3057 osymtab->set_link_section(ostrtab);
3058 osymtab->set_info(local_symcount);
3059 osymtab->set_entsize(symsize);
3060
3061 *poff = off;
3062 }
3063 }
3064
3065 // Create the .shstrtab section, which holds the names of the
3066 // sections. At the time this is called, we have created all the
3067 // output sections except .shstrtab itself.
3068
3069 Output_section*
3070 Layout::create_shstrtab()
3071 {
3072 // FIXME: We don't need to create a .shstrtab section if we are
3073 // stripping everything.
3074
3075 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3076
3077 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3078 ORDER_INVALID, false);
3079
3080 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3081 {
3082 // We can't write out this section until we've set all the
3083 // section names, and we don't set the names of compressed
3084 // output sections until relocations are complete. FIXME: With
3085 // the current names we use, this is unnecessary.
3086 os->set_after_input_sections();
3087 }
3088
3089 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3090 os->add_output_section_data(posd);
3091
3092 return os;
3093 }
3094
3095 // Create the section headers. SIZE is 32 or 64. OFF is the file
3096 // offset.
3097
3098 void
3099 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3100 {
3101 Output_section_headers* oshdrs;
3102 oshdrs = new Output_section_headers(this,
3103 &this->segment_list_,
3104 &this->section_list_,
3105 &this->unattached_section_list_,
3106 &this->namepool_,
3107 shstrtab_section);
3108 off_t off = align_address(*poff, oshdrs->addralign());
3109 oshdrs->set_address_and_file_offset(0, off);
3110 off += oshdrs->data_size();
3111 *poff = off;
3112 this->section_headers_ = oshdrs;
3113 }
3114
3115 // Count the allocated sections.
3116
3117 size_t
3118 Layout::allocated_output_section_count() const
3119 {
3120 size_t section_count = 0;
3121 for (Segment_list::const_iterator p = this->segment_list_.begin();
3122 p != this->segment_list_.end();
3123 ++p)
3124 section_count += (*p)->output_section_count();
3125 return section_count;
3126 }
3127
3128 // Create the dynamic symbol table.
3129
3130 void
3131 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3132 Symbol_table* symtab,
3133 Output_section** pdynstr,
3134 unsigned int* plocal_dynamic_count,
3135 std::vector<Symbol*>* pdynamic_symbols,
3136 Versions* pversions)
3137 {
3138 // Count all the symbols in the dynamic symbol table, and set the
3139 // dynamic symbol indexes.
3140
3141 // Skip symbol 0, which is always all zeroes.
3142 unsigned int index = 1;
3143
3144 // Add STT_SECTION symbols for each Output section which needs one.
3145 for (Section_list::iterator p = this->section_list_.begin();
3146 p != this->section_list_.end();
3147 ++p)
3148 {
3149 if (!(*p)->needs_dynsym_index())
3150 (*p)->set_dynsym_index(-1U);
3151 else
3152 {
3153 (*p)->set_dynsym_index(index);
3154 ++index;
3155 }
3156 }
3157
3158 // Count the local symbols that need to go in the dynamic symbol table,
3159 // and set the dynamic symbol indexes.
3160 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3161 p != input_objects->relobj_end();
3162 ++p)
3163 {
3164 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3165 index = new_index;
3166 }
3167
3168 unsigned int local_symcount = index;
3169 *plocal_dynamic_count = local_symcount;
3170
3171 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3172 &this->dynpool_, pversions);
3173
3174 int symsize;
3175 unsigned int align;
3176 const int size = parameters->target().get_size();
3177 if (size == 32)
3178 {
3179 symsize = elfcpp::Elf_sizes<32>::sym_size;
3180 align = 4;
3181 }
3182 else if (size == 64)
3183 {
3184 symsize = elfcpp::Elf_sizes<64>::sym_size;
3185 align = 8;
3186 }
3187 else
3188 gold_unreachable();
3189
3190 // Create the dynamic symbol table section.
3191
3192 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3193 elfcpp::SHT_DYNSYM,
3194 elfcpp::SHF_ALLOC,
3195 false,
3196 ORDER_DYNAMIC_LINKER,
3197 false);
3198
3199 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3200 align,
3201 "** dynsym");
3202 dynsym->add_output_section_data(odata);
3203
3204 dynsym->set_info(local_symcount);
3205 dynsym->set_entsize(symsize);
3206 dynsym->set_addralign(align);
3207
3208 this->dynsym_section_ = dynsym;
3209
3210 Output_data_dynamic* const odyn = this->dynamic_data_;
3211 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3212 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3213
3214 // If there are more than SHN_LORESERVE allocated sections, we
3215 // create a .dynsym_shndx section. It is possible that we don't
3216 // need one, because it is possible that there are no dynamic
3217 // symbols in any of the sections with indexes larger than
3218 // SHN_LORESERVE. This is probably unusual, though, and at this
3219 // time we don't know the actual section indexes so it is
3220 // inconvenient to check.
3221 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3222 {
3223 Output_section* dynsym_xindex =
3224 this->choose_output_section(NULL, ".dynsym_shndx",
3225 elfcpp::SHT_SYMTAB_SHNDX,
3226 elfcpp::SHF_ALLOC,
3227 false, ORDER_DYNAMIC_LINKER, false);
3228
3229 this->dynsym_xindex_ = new Output_symtab_xindex(index);
3230
3231 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3232
3233 dynsym_xindex->set_link_section(dynsym);
3234 dynsym_xindex->set_addralign(4);
3235 dynsym_xindex->set_entsize(4);
3236
3237 dynsym_xindex->set_after_input_sections();
3238
3239 // This tells the driver code to wait until the symbol table has
3240 // written out before writing out the postprocessing sections,
3241 // including the .dynsym_shndx section.
3242 this->any_postprocessing_sections_ = true;
3243 }
3244
3245 // Create the dynamic string table section.
3246
3247 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3248 elfcpp::SHT_STRTAB,
3249 elfcpp::SHF_ALLOC,
3250 false,
3251 ORDER_DYNAMIC_LINKER,
3252 false);
3253
3254 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3255 dynstr->add_output_section_data(strdata);
3256
3257 dynsym->set_link_section(dynstr);
3258 this->dynamic_section_->set_link_section(dynstr);
3259
3260 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3261 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3262
3263 *pdynstr = dynstr;
3264
3265 // Create the hash tables.
3266
3267 if (strcmp(parameters->options().hash_style(), "sysv") == 0
3268 || strcmp(parameters->options().hash_style(), "both") == 0)
3269 {
3270 unsigned char* phash;
3271 unsigned int hashlen;
3272 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3273 &phash, &hashlen);
3274
3275 Output_section* hashsec =
3276 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3277 elfcpp::SHF_ALLOC, false,
3278 ORDER_DYNAMIC_LINKER, false);
3279
3280 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3281 hashlen,
3282 align,
3283 "** hash");
3284 hashsec->add_output_section_data(hashdata);
3285
3286 hashsec->set_link_section(dynsym);
3287 hashsec->set_entsize(4);
3288
3289 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3290 }
3291
3292 if (strcmp(parameters->options().hash_style(), "gnu") == 0
3293 || strcmp(parameters->options().hash_style(), "both") == 0)
3294 {
3295 unsigned char* phash;
3296 unsigned int hashlen;
3297 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3298 &phash, &hashlen);
3299
3300 Output_section* hashsec =
3301 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3302 elfcpp::SHF_ALLOC, false,
3303 ORDER_DYNAMIC_LINKER, false);
3304
3305 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3306 hashlen,
3307 align,
3308 "** hash");
3309 hashsec->add_output_section_data(hashdata);
3310
3311 hashsec->set_link_section(dynsym);
3312
3313 // For a 64-bit target, the entries in .gnu.hash do not have a
3314 // uniform size, so we only set the entry size for a 32-bit
3315 // target.
3316 if (parameters->target().get_size() == 32)
3317 hashsec->set_entsize(4);
3318
3319 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3320 }
3321 }
3322
3323 // Assign offsets to each local portion of the dynamic symbol table.
3324
3325 void
3326 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3327 {
3328 Output_section* dynsym = this->dynsym_section_;
3329 gold_assert(dynsym != NULL);
3330
3331 off_t off = dynsym->offset();
3332
3333 // Skip the dummy symbol at the start of the section.
3334 off += dynsym->entsize();
3335
3336 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3337 p != input_objects->relobj_end();
3338 ++p)
3339 {
3340 unsigned int count = (*p)->set_local_dynsym_offset(off);
3341 off += count * dynsym->entsize();
3342 }
3343 }
3344
3345 // Create the version sections.
3346
3347 void
3348 Layout::create_version_sections(const Versions* versions,
3349 const Symbol_table* symtab,
3350 unsigned int local_symcount,
3351 const std::vector<Symbol*>& dynamic_symbols,
3352 const Output_section* dynstr)
3353 {
3354 if (!versions->any_defs() && !versions->any_needs())
3355 return;
3356
3357 switch (parameters->size_and_endianness())
3358 {
3359 #ifdef HAVE_TARGET_32_LITTLE
3360 case Parameters::TARGET_32_LITTLE:
3361 this->sized_create_version_sections<32, false>(versions, symtab,
3362 local_symcount,
3363 dynamic_symbols, dynstr);
3364 break;
3365 #endif
3366 #ifdef HAVE_TARGET_32_BIG
3367 case Parameters::TARGET_32_BIG:
3368 this->sized_create_version_sections<32, true>(versions, symtab,
3369 local_symcount,
3370 dynamic_symbols, dynstr);
3371 break;
3372 #endif
3373 #ifdef HAVE_TARGET_64_LITTLE
3374 case Parameters::TARGET_64_LITTLE:
3375 this->sized_create_version_sections<64, false>(versions, symtab,
3376 local_symcount,
3377 dynamic_symbols, dynstr);
3378 break;
3379 #endif
3380 #ifdef HAVE_TARGET_64_BIG
3381 case Parameters::TARGET_64_BIG:
3382 this->sized_create_version_sections<64, true>(versions, symtab,
3383 local_symcount,
3384 dynamic_symbols, dynstr);
3385 break;
3386 #endif
3387 default:
3388 gold_unreachable();
3389 }
3390 }
3391
3392 // Create the version sections, sized version.
3393
3394 template<int size, bool big_endian>
3395 void
3396 Layout::sized_create_version_sections(
3397 const Versions* versions,
3398 const Symbol_table* symtab,
3399 unsigned int local_symcount,
3400 const std::vector<Symbol*>& dynamic_symbols,
3401 const Output_section* dynstr)
3402 {
3403 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3404 elfcpp::SHT_GNU_versym,
3405 elfcpp::SHF_ALLOC,
3406 false,
3407 ORDER_DYNAMIC_LINKER,
3408 false);
3409
3410 unsigned char* vbuf;
3411 unsigned int vsize;
3412 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3413 local_symcount,
3414 dynamic_symbols,
3415 &vbuf, &vsize);
3416
3417 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3418 "** versions");
3419
3420 vsec->add_output_section_data(vdata);
3421 vsec->set_entsize(2);
3422 vsec->set_link_section(this->dynsym_section_);
3423
3424 Output_data_dynamic* const odyn = this->dynamic_data_;
3425 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3426
3427 if (versions->any_defs())
3428 {
3429 Output_section* vdsec;
3430 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3431 elfcpp::SHT_GNU_verdef,
3432 elfcpp::SHF_ALLOC,
3433 false, ORDER_DYNAMIC_LINKER, false);
3434
3435 unsigned char* vdbuf;
3436 unsigned int vdsize;
3437 unsigned int vdentries;
3438 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3439 &vdsize, &vdentries);
3440
3441 Output_section_data* vddata =
3442 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3443
3444 vdsec->add_output_section_data(vddata);
3445 vdsec->set_link_section(dynstr);
3446 vdsec->set_info(vdentries);
3447
3448 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3449 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3450 }
3451
3452 if (versions->any_needs())
3453 {
3454 Output_section* vnsec;
3455 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3456 elfcpp::SHT_GNU_verneed,
3457 elfcpp::SHF_ALLOC,
3458 false, ORDER_DYNAMIC_LINKER, false);
3459
3460 unsigned char* vnbuf;
3461 unsigned int vnsize;
3462 unsigned int vnentries;
3463 versions->need_section_contents<size, big_endian>(&this->dynpool_,
3464 &vnbuf, &vnsize,
3465 &vnentries);
3466
3467 Output_section_data* vndata =
3468 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3469
3470 vnsec->add_output_section_data(vndata);
3471 vnsec->set_link_section(dynstr);
3472 vnsec->set_info(vnentries);
3473
3474 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3475 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3476 }
3477 }
3478
3479 // Create the .interp section and PT_INTERP segment.
3480
3481 void
3482 Layout::create_interp(const Target* target)
3483 {
3484 const char* interp = parameters->options().dynamic_linker();
3485 if (interp == NULL)
3486 {
3487 interp = target->dynamic_linker();
3488 gold_assert(interp != NULL);
3489 }
3490
3491 size_t len = strlen(interp) + 1;
3492
3493 Output_section_data* odata = new Output_data_const(interp, len, 1);
3494
3495 Output_section* osec = this->choose_output_section(NULL, ".interp",
3496 elfcpp::SHT_PROGBITS,
3497 elfcpp::SHF_ALLOC,
3498 false, ORDER_INTERP,
3499 false);
3500 osec->add_output_section_data(odata);
3501
3502 if (!this->script_options_->saw_phdrs_clause())
3503 {
3504 Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3505 elfcpp::PF_R);
3506 oseg->add_output_section_to_nonload(osec, elfcpp::PF_R);
3507 }
3508 }
3509
3510 // Add dynamic tags for the PLT and the dynamic relocs. This is
3511 // called by the target-specific code. This does nothing if not doing
3512 // a dynamic link.
3513
3514 // USE_REL is true for REL relocs rather than RELA relocs.
3515
3516 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3517
3518 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3519 // and we also set DT_PLTREL. We use PLT_REL's output section, since
3520 // some targets have multiple reloc sections in PLT_REL.
3521
3522 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3523 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3524
3525 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3526 // executable.
3527
3528 void
3529 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
3530 const Output_data* plt_rel,
3531 const Output_data_reloc_generic* dyn_rel,
3532 bool add_debug, bool dynrel_includes_plt)
3533 {
3534 Output_data_dynamic* odyn = this->dynamic_data_;
3535 if (odyn == NULL)
3536 return;
3537
3538 if (plt_got != NULL && plt_got->output_section() != NULL)
3539 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
3540
3541 if (plt_rel != NULL && plt_rel->output_section() != NULL)
3542 {
3543 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
3544 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
3545 odyn->add_constant(elfcpp::DT_PLTREL,
3546 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
3547 }
3548
3549 if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
3550 {
3551 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
3552 dyn_rel);
3553 if (plt_rel != NULL && dynrel_includes_plt)
3554 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3555 dyn_rel, plt_rel);
3556 else
3557 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3558 dyn_rel);
3559 const int size = parameters->target().get_size();
3560 elfcpp::DT rel_tag;
3561 int rel_size;
3562 if (use_rel)
3563 {
3564 rel_tag = elfcpp::DT_RELENT;
3565 if (size == 32)
3566 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
3567 else if (size == 64)
3568 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
3569 else
3570 gold_unreachable();
3571 }
3572 else
3573 {
3574 rel_tag = elfcpp::DT_RELAENT;
3575 if (size == 32)
3576 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
3577 else if (size == 64)
3578 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
3579 else
3580 gold_unreachable();
3581 }
3582 odyn->add_constant(rel_tag, rel_size);
3583
3584 if (parameters->options().combreloc())
3585 {
3586 size_t c = dyn_rel->relative_reloc_count();
3587 if (c > 0)
3588 odyn->add_constant((use_rel
3589 ? elfcpp::DT_RELCOUNT
3590 : elfcpp::DT_RELACOUNT),
3591 c);
3592 }
3593 }
3594
3595 if (add_debug && !parameters->options().shared())
3596 {
3597 // The value of the DT_DEBUG tag is filled in by the dynamic
3598 // linker at run time, and used by the debugger.
3599 odyn->add_constant(elfcpp::DT_DEBUG, 0);
3600 }
3601 }
3602
3603 // Finish the .dynamic section and PT_DYNAMIC segment.
3604
3605 void
3606 Layout::finish_dynamic_section(const Input_objects* input_objects,
3607 const Symbol_table* symtab)
3608 {
3609 if (!this->script_options_->saw_phdrs_clause())
3610 {
3611 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
3612 (elfcpp::PF_R
3613 | elfcpp::PF_W));
3614 oseg->add_output_section_to_nonload(this->dynamic_section_,
3615 elfcpp::PF_R | elfcpp::PF_W);
3616 }
3617
3618 Output_data_dynamic* const odyn = this->dynamic_data_;
3619
3620 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
3621 p != input_objects->dynobj_end();
3622 ++p)
3623 {
3624 if (!(*p)->is_needed()
3625 && (*p)->input_file()->options().as_needed())
3626 {
3627 // This dynamic object was linked with --as-needed, but it
3628 // is not needed.
3629 continue;
3630 }
3631
3632 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
3633 }
3634
3635 if (parameters->options().shared())
3636 {
3637 const char* soname = parameters->options().soname();
3638 if (soname != NULL)
3639 odyn->add_string(elfcpp::DT_SONAME, soname);
3640 }
3641
3642 Symbol* sym = symtab->lookup(parameters->options().init());
3643 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3644 odyn->add_symbol(elfcpp::DT_INIT, sym);
3645
3646 sym = symtab->lookup(parameters->options().fini());
3647 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3648 odyn->add_symbol(elfcpp::DT_FINI, sym);
3649
3650 // Look for .init_array, .preinit_array and .fini_array by checking
3651 // section types.
3652 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
3653 p != this->section_list_.end();
3654 ++p)
3655 switch((*p)->type())
3656 {
3657 case elfcpp::SHT_FINI_ARRAY:
3658 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
3659 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
3660 break;
3661 case elfcpp::SHT_INIT_ARRAY:
3662 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
3663 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
3664 break;
3665 case elfcpp::SHT_PREINIT_ARRAY:
3666 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
3667 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
3668 break;
3669 default:
3670 break;
3671 }
3672
3673 // Add a DT_RPATH entry if needed.
3674 const General_options::Dir_list& rpath(parameters->options().rpath());
3675 if (!rpath.empty())
3676 {
3677 std::string rpath_val;
3678 for (General_options::Dir_list::const_iterator p = rpath.begin();
3679 p != rpath.end();
3680 ++p)
3681 {
3682 if (rpath_val.empty())
3683 rpath_val = p->name();
3684 else
3685 {
3686 // Eliminate duplicates.
3687 General_options::Dir_list::const_iterator q;
3688 for (q = rpath.begin(); q != p; ++q)
3689 if (q->name() == p->name())
3690 break;
3691 if (q == p)
3692 {
3693 rpath_val += ':';
3694 rpath_val += p->name();
3695 }
3696 }
3697 }
3698
3699 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
3700 if (parameters->options().enable_new_dtags())
3701 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
3702 }
3703
3704 // Look for text segments that have dynamic relocations.
3705 bool have_textrel = false;
3706 if (!this->script_options_->saw_sections_clause())
3707 {
3708 for (Segment_list::const_iterator p = this->segment_list_.begin();
3709 p != this->segment_list_.end();
3710 ++p)
3711 {
3712 if (((*p)->flags() & elfcpp::PF_W) == 0
3713 && (*p)->has_dynamic_reloc())
3714 {
3715 have_textrel = true;
3716 break;
3717 }
3718 }
3719 }
3720 else
3721 {
3722 // We don't know the section -> segment mapping, so we are
3723 // conservative and just look for readonly sections with
3724 // relocations. If those sections wind up in writable segments,
3725 // then we have created an unnecessary DT_TEXTREL entry.
3726 for (Section_list::const_iterator p = this->section_list_.begin();
3727 p != this->section_list_.end();
3728 ++p)
3729 {
3730 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
3731 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
3732 && ((*p)->has_dynamic_reloc()))
3733 {
3734 have_textrel = true;
3735 break;
3736 }
3737 }
3738 }
3739
3740 // Add a DT_FLAGS entry. We add it even if no flags are set so that
3741 // post-link tools can easily modify these flags if desired.
3742 unsigned int flags = 0;
3743 if (have_textrel)
3744 {
3745 // Add a DT_TEXTREL for compatibility with older loaders.
3746 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
3747 flags |= elfcpp::DF_TEXTREL;
3748
3749 if (parameters->options().text())
3750 gold_error(_("read-only segment has dynamic relocations"));
3751 else if (parameters->options().warn_shared_textrel()
3752 && parameters->options().shared())
3753 gold_warning(_("shared library text segment is not shareable"));
3754 }
3755 if (parameters->options().shared() && this->has_static_tls())
3756 flags |= elfcpp::DF_STATIC_TLS;
3757 if (parameters->options().origin())
3758 flags |= elfcpp::DF_ORIGIN;
3759 if (parameters->options().Bsymbolic())
3760 {
3761 flags |= elfcpp::DF_SYMBOLIC;
3762 // Add DT_SYMBOLIC for compatibility with older loaders.
3763 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
3764 }
3765 if (parameters->options().now())
3766 flags |= elfcpp::DF_BIND_NOW;
3767 odyn->add_constant(elfcpp::DT_FLAGS, flags);
3768
3769 flags = 0;
3770 if (parameters->options().initfirst())
3771 flags |= elfcpp::DF_1_INITFIRST;
3772 if (parameters->options().interpose())
3773 flags |= elfcpp::DF_1_INTERPOSE;
3774 if (parameters->options().loadfltr())
3775 flags |= elfcpp::DF_1_LOADFLTR;
3776 if (parameters->options().nodefaultlib())
3777 flags |= elfcpp::DF_1_NODEFLIB;
3778 if (parameters->options().nodelete())
3779 flags |= elfcpp::DF_1_NODELETE;
3780 if (parameters->options().nodlopen())
3781 flags |= elfcpp::DF_1_NOOPEN;
3782 if (parameters->options().nodump())
3783 flags |= elfcpp::DF_1_NODUMP;
3784 if (!parameters->options().shared())
3785 flags &= ~(elfcpp::DF_1_INITFIRST
3786 | elfcpp::DF_1_NODELETE
3787 | elfcpp::DF_1_NOOPEN);
3788 if (parameters->options().origin())
3789 flags |= elfcpp::DF_1_ORIGIN;
3790 if (parameters->options().now())
3791 flags |= elfcpp::DF_1_NOW;
3792 if (flags)
3793 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
3794 }
3795
3796 // Set the size of the _DYNAMIC symbol table to be the size of the
3797 // dynamic data.
3798
3799 void
3800 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
3801 {
3802 Output_data_dynamic* const odyn = this->dynamic_data_;
3803 odyn->finalize_data_size();
3804 off_t data_size = odyn->data_size();
3805 const int size = parameters->target().get_size();
3806 if (size == 32)
3807 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
3808 else if (size == 64)
3809 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
3810 else
3811 gold_unreachable();
3812 }
3813
3814 // The mapping of input section name prefixes to output section names.
3815 // In some cases one prefix is itself a prefix of another prefix; in
3816 // such a case the longer prefix must come first. These prefixes are
3817 // based on the GNU linker default ELF linker script.
3818
3819 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3820 const Layout::Section_name_mapping Layout::section_name_mapping[] =
3821 {
3822 MAPPING_INIT(".text.", ".text"),
3823 MAPPING_INIT(".ctors.", ".ctors"),
3824 MAPPING_INIT(".dtors.", ".dtors"),
3825 MAPPING_INIT(".rodata.", ".rodata"),
3826 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3827 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3828 MAPPING_INIT(".data.", ".data"),
3829 MAPPING_INIT(".bss.", ".bss"),
3830 MAPPING_INIT(".tdata.", ".tdata"),
3831 MAPPING_INIT(".tbss.", ".tbss"),
3832 MAPPING_INIT(".init_array.", ".init_array"),
3833 MAPPING_INIT(".fini_array.", ".fini_array"),
3834 MAPPING_INIT(".sdata.", ".sdata"),
3835 MAPPING_INIT(".sbss.", ".sbss"),
3836 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3837 // differently depending on whether it is creating a shared library.
3838 MAPPING_INIT(".sdata2.", ".sdata"),
3839 MAPPING_INIT(".sbss2.", ".sbss"),
3840 MAPPING_INIT(".lrodata.", ".lrodata"),
3841 MAPPING_INIT(".ldata.", ".ldata"),
3842 MAPPING_INIT(".lbss.", ".lbss"),
3843 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3844 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3845 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3846 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3847 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3848 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3849 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3850 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3851 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3852 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3853 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3854 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3855 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3856 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3857 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3858 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3859 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3860 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
3861 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3862 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
3863 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3864 };
3865 #undef MAPPING_INIT
3866
3867 const int Layout::section_name_mapping_count =
3868 (sizeof(Layout::section_name_mapping)
3869 / sizeof(Layout::section_name_mapping[0]));
3870
3871 // Choose the output section name to use given an input section name.
3872 // Set *PLEN to the length of the name. *PLEN is initialized to the
3873 // length of NAME.
3874
3875 const char*
3876 Layout::output_section_name(const char* name, size_t* plen)
3877 {
3878 // gcc 4.3 generates the following sorts of section names when it
3879 // needs a section name specific to a function:
3880 // .text.FN
3881 // .rodata.FN
3882 // .sdata2.FN
3883 // .data.FN
3884 // .data.rel.FN
3885 // .data.rel.local.FN
3886 // .data.rel.ro.FN
3887 // .data.rel.ro.local.FN
3888 // .sdata.FN
3889 // .bss.FN
3890 // .sbss.FN
3891 // .tdata.FN
3892 // .tbss.FN
3893
3894 // The GNU linker maps all of those to the part before the .FN,
3895 // except that .data.rel.local.FN is mapped to .data, and
3896 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
3897 // beginning with .data.rel.ro.local are grouped together.
3898
3899 // For an anonymous namespace, the string FN can contain a '.'.
3900
3901 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3902 // GNU linker maps to .rodata.
3903
3904 // The .data.rel.ro sections are used with -z relro. The sections
3905 // are recognized by name. We use the same names that the GNU
3906 // linker does for these sections.
3907
3908 // It is hard to handle this in a principled way, so we don't even
3909 // try. We use a table of mappings. If the input section name is
3910 // not found in the table, we simply use it as the output section
3911 // name.
3912
3913 const Section_name_mapping* psnm = section_name_mapping;
3914 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
3915 {
3916 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
3917 {
3918 *plen = psnm->tolen;
3919 return psnm->to;
3920 }
3921 }
3922
3923 // Compressed debug sections should be mapped to the corresponding
3924 // uncompressed section.
3925 if (is_compressed_debug_section(name))
3926 {
3927 size_t len = strlen(name);
3928 char* uncompressed_name = new char[len];
3929 uncompressed_name[0] = '.';
3930 gold_assert(name[0] == '.' && name[1] == 'z');
3931 strncpy(&uncompressed_name[1], &name[2], len - 2);
3932 uncompressed_name[len - 1] = '\0';
3933 *plen = len - 1;
3934 return uncompressed_name;
3935 }
3936
3937 return name;
3938 }
3939
3940 // Check if a comdat group or .gnu.linkonce section with the given
3941 // NAME is selected for the link. If there is already a section,
3942 // *KEPT_SECTION is set to point to the existing section and the
3943 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3944 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3945 // *KEPT_SECTION is set to the internal copy and the function returns
3946 // true.
3947
3948 bool
3949 Layout::find_or_add_kept_section(const std::string& name,
3950 Relobj* object,
3951 unsigned int shndx,
3952 bool is_comdat,
3953 bool is_group_name,
3954 Kept_section** kept_section)
3955 {
3956 // It's normal to see a couple of entries here, for the x86 thunk
3957 // sections. If we see more than a few, we're linking a C++
3958 // program, and we resize to get more space to minimize rehashing.
3959 if (this->signatures_.size() > 4
3960 && !this->resized_signatures_)
3961 {
3962 reserve_unordered_map(&this->signatures_,
3963 this->number_of_input_files_ * 64);
3964 this->resized_signatures_ = true;
3965 }
3966
3967 Kept_section candidate;
3968 std::pair<Signatures::iterator, bool> ins =
3969 this->signatures_.insert(std::make_pair(name, candidate));
3970
3971 if (kept_section != NULL)
3972 *kept_section = &ins.first->second;
3973 if (ins.second)
3974 {
3975 // This is the first time we've seen this signature.
3976 ins.first->second.set_object(object);
3977 ins.first->second.set_shndx(shndx);
3978 if (is_comdat)
3979 ins.first->second.set_is_comdat();
3980 if (is_group_name)
3981 ins.first->second.set_is_group_name();
3982 return true;
3983 }
3984
3985 // We have already seen this signature.
3986
3987 if (ins.first->second.is_group_name())
3988 {
3989 // We've already seen a real section group with this signature.
3990 // If the kept group is from a plugin object, and we're in the
3991 // replacement phase, accept the new one as a replacement.
3992 if (ins.first->second.object() == NULL
3993 && parameters->options().plugins()->in_replacement_phase())
3994 {
3995 ins.first->second.set_object(object);
3996 ins.first->second.set_shndx(shndx);
3997 return true;
3998 }
3999 return false;
4000 }
4001 else if (is_group_name)
4002 {
4003 // This is a real section group, and we've already seen a
4004 // linkonce section with this signature. Record that we've seen
4005 // a section group, and don't include this section group.
4006 ins.first->second.set_is_group_name();
4007 return false;
4008 }
4009 else
4010 {
4011 // We've already seen a linkonce section and this is a linkonce
4012 // section. These don't block each other--this may be the same
4013 // symbol name with different section types.
4014 return true;
4015 }
4016 }
4017
4018 // Store the allocated sections into the section list.
4019
4020 void
4021 Layout::get_allocated_sections(Section_list* section_list) const
4022 {
4023 for (Section_list::const_iterator p = this->section_list_.begin();
4024 p != this->section_list_.end();
4025 ++p)
4026 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4027 section_list->push_back(*p);
4028 }
4029
4030 // Create an output segment.
4031
4032 Output_segment*
4033 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4034 {
4035 gold_assert(!parameters->options().relocatable());
4036 Output_segment* oseg = new Output_segment(type, flags);
4037 this->segment_list_.push_back(oseg);
4038
4039 if (type == elfcpp::PT_TLS)
4040 this->tls_segment_ = oseg;
4041 else if (type == elfcpp::PT_GNU_RELRO)
4042 this->relro_segment_ = oseg;
4043
4044 return oseg;
4045 }
4046
4047 // Write out the Output_sections. Most won't have anything to write,
4048 // since most of the data will come from input sections which are
4049 // handled elsewhere. But some Output_sections do have Output_data.
4050
4051 void
4052 Layout::write_output_sections(Output_file* of) const
4053 {
4054 for (Section_list::const_iterator p = this->section_list_.begin();
4055 p != this->section_list_.end();
4056 ++p)
4057 {
4058 if (!(*p)->after_input_sections())
4059 (*p)->write(of);
4060 }
4061 }
4062
4063 // Write out data not associated with a section or the symbol table.
4064
4065 void
4066 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4067 {
4068 if (!parameters->options().strip_all())
4069 {
4070 const Output_section* symtab_section = this->symtab_section_;
4071 for (Section_list::const_iterator p = this->section_list_.begin();
4072 p != this->section_list_.end();
4073 ++p)
4074 {
4075 if ((*p)->needs_symtab_index())
4076 {
4077 gold_assert(symtab_section != NULL);
4078 unsigned int index = (*p)->symtab_index();
4079 gold_assert(index > 0 && index != -1U);
4080 off_t off = (symtab_section->offset()
4081 + index * symtab_section->entsize());
4082 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4083 }
4084 }
4085 }
4086
4087 const Output_section* dynsym_section = this->dynsym_section_;
4088 for (Section_list::const_iterator p = this->section_list_.begin();
4089 p != this->section_list_.end();
4090 ++p)
4091 {
4092 if ((*p)->needs_dynsym_index())
4093 {
4094 gold_assert(dynsym_section != NULL);
4095 unsigned int index = (*p)->dynsym_index();
4096 gold_assert(index > 0 && index != -1U);
4097 off_t off = (dynsym_section->offset()
4098 + index * dynsym_section->entsize());
4099 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4100 }
4101 }
4102
4103 // Write out the Output_data which are not in an Output_section.
4104 for (Data_list::const_iterator p = this->special_output_list_.begin();
4105 p != this->special_output_list_.end();
4106 ++p)
4107 (*p)->write(of);
4108 }
4109
4110 // Write out the Output_sections which can only be written after the
4111 // input sections are complete.
4112
4113 void
4114 Layout::write_sections_after_input_sections(Output_file* of)
4115 {
4116 // Determine the final section offsets, and thus the final output
4117 // file size. Note we finalize the .shstrab last, to allow the
4118 // after_input_section sections to modify their section-names before
4119 // writing.
4120 if (this->any_postprocessing_sections_)
4121 {
4122 off_t off = this->output_file_size_;
4123 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4124
4125 // Now that we've finalized the names, we can finalize the shstrab.
4126 off =
4127 this->set_section_offsets(off,
4128 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4129
4130 if (off > this->output_file_size_)
4131 {
4132 of->resize(off);
4133 this->output_file_size_ = off;
4134 }
4135 }
4136
4137 for (Section_list::const_iterator p = this->section_list_.begin();
4138 p != this->section_list_.end();
4139 ++p)
4140 {
4141 if ((*p)->after_input_sections())
4142 (*p)->write(of);
4143 }
4144
4145 this->section_headers_->write(of);
4146 }
4147
4148 // If the build ID requires computing a checksum, do so here, and
4149 // write it out. We compute a checksum over the entire file because
4150 // that is simplest.
4151
4152 void
4153 Layout::write_build_id(Output_file* of) const
4154 {
4155 if (this->build_id_note_ == NULL)
4156 return;
4157
4158 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4159
4160 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4161 this->build_id_note_->data_size());
4162
4163 const char* style = parameters->options().build_id();
4164 if (strcmp(style, "sha1") == 0)
4165 {
4166 sha1_ctx ctx;
4167 sha1_init_ctx(&ctx);
4168 sha1_process_bytes(iv, this->output_file_size_, &ctx);
4169 sha1_finish_ctx(&ctx, ov);
4170 }
4171 else if (strcmp(style, "md5") == 0)
4172 {
4173 md5_ctx ctx;
4174 md5_init_ctx(&ctx);
4175 md5_process_bytes(iv, this->output_file_size_, &ctx);
4176 md5_finish_ctx(&ctx, ov);
4177 }
4178 else
4179 gold_unreachable();
4180
4181 of->write_output_view(this->build_id_note_->offset(),
4182 this->build_id_note_->data_size(),
4183 ov);
4184
4185 of->free_input_view(0, this->output_file_size_, iv);
4186 }
4187
4188 // Write out a binary file. This is called after the link is
4189 // complete. IN is the temporary output file we used to generate the
4190 // ELF code. We simply walk through the segments, read them from
4191 // their file offset in IN, and write them to their load address in
4192 // the output file. FIXME: with a bit more work, we could support
4193 // S-records and/or Intel hex format here.
4194
4195 void
4196 Layout::write_binary(Output_file* in) const
4197 {
4198 gold_assert(parameters->options().oformat_enum()
4199 == General_options::OBJECT_FORMAT_BINARY);
4200
4201 // Get the size of the binary file.
4202 uint64_t max_load_address = 0;
4203 for (Segment_list::const_iterator p = this->segment_list_.begin();
4204 p != this->segment_list_.end();
4205 ++p)
4206 {
4207 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4208 {
4209 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4210 if (max_paddr > max_load_address)
4211 max_load_address = max_paddr;
4212 }
4213 }
4214
4215 Output_file out(parameters->options().output_file_name());
4216 out.open(max_load_address);
4217
4218 for (Segment_list::const_iterator p = this->segment_list_.begin();
4219 p != this->segment_list_.end();
4220 ++p)
4221 {
4222 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4223 {
4224 const unsigned char* vin = in->get_input_view((*p)->offset(),
4225 (*p)->filesz());
4226 unsigned char* vout = out.get_output_view((*p)->paddr(),
4227 (*p)->filesz());
4228 memcpy(vout, vin, (*p)->filesz());
4229 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4230 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4231 }
4232 }
4233
4234 out.close();
4235 }
4236
4237 // Print the output sections to the map file.
4238
4239 void
4240 Layout::print_to_mapfile(Mapfile* mapfile) const
4241 {
4242 for (Segment_list::const_iterator p = this->segment_list_.begin();
4243 p != this->segment_list_.end();
4244 ++p)
4245 (*p)->print_sections_to_mapfile(mapfile);
4246 }
4247
4248 // Print statistical information to stderr. This is used for --stats.
4249
4250 void
4251 Layout::print_stats() const
4252 {
4253 this->namepool_.print_stats("section name pool");
4254 this->sympool_.print_stats("output symbol name pool");
4255 this->dynpool_.print_stats("dynamic name pool");
4256
4257 for (Section_list::const_iterator p = this->section_list_.begin();
4258 p != this->section_list_.end();
4259 ++p)
4260 (*p)->print_merge_stats();
4261 }
4262
4263 // Write_sections_task methods.
4264
4265 // We can always run this task.
4266
4267 Task_token*
4268 Write_sections_task::is_runnable()
4269 {
4270 return NULL;
4271 }
4272
4273 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4274 // when finished.
4275
4276 void
4277 Write_sections_task::locks(Task_locker* tl)
4278 {
4279 tl->add(this, this->output_sections_blocker_);
4280 tl->add(this, this->final_blocker_);
4281 }
4282
4283 // Run the task--write out the data.
4284
4285 void
4286 Write_sections_task::run(Workqueue*)
4287 {
4288 this->layout_->write_output_sections(this->of_);
4289 }
4290
4291 // Write_data_task methods.
4292
4293 // We can always run this task.
4294
4295 Task_token*
4296 Write_data_task::is_runnable()
4297 {
4298 return NULL;
4299 }
4300
4301 // We need to unlock FINAL_BLOCKER when finished.
4302
4303 void
4304 Write_data_task::locks(Task_locker* tl)
4305 {
4306 tl->add(this, this->final_blocker_);
4307 }
4308
4309 // Run the task--write out the data.
4310
4311 void
4312 Write_data_task::run(Workqueue*)
4313 {
4314 this->layout_->write_data(this->symtab_, this->of_);
4315 }
4316
4317 // Write_symbols_task methods.
4318
4319 // We can always run this task.
4320
4321 Task_token*
4322 Write_symbols_task::is_runnable()
4323 {
4324 return NULL;
4325 }
4326
4327 // We need to unlock FINAL_BLOCKER when finished.
4328
4329 void
4330 Write_symbols_task::locks(Task_locker* tl)
4331 {
4332 tl->add(this, this->final_blocker_);
4333 }
4334
4335 // Run the task--write out the symbols.
4336
4337 void
4338 Write_symbols_task::run(Workqueue*)
4339 {
4340 this->symtab_->write_globals(this->sympool_, this->dynpool_,
4341 this->layout_->symtab_xindex(),
4342 this->layout_->dynsym_xindex(), this->of_);
4343 }
4344
4345 // Write_after_input_sections_task methods.
4346
4347 // We can only run this task after the input sections have completed.
4348
4349 Task_token*
4350 Write_after_input_sections_task::is_runnable()
4351 {
4352 if (this->input_sections_blocker_->is_blocked())
4353 return this->input_sections_blocker_;
4354 return NULL;
4355 }
4356
4357 // We need to unlock FINAL_BLOCKER when finished.
4358
4359 void
4360 Write_after_input_sections_task::locks(Task_locker* tl)
4361 {
4362 tl->add(this, this->final_blocker_);
4363 }
4364
4365 // Run the task.
4366
4367 void
4368 Write_after_input_sections_task::run(Workqueue*)
4369 {
4370 this->layout_->write_sections_after_input_sections(this->of_);
4371 }
4372
4373 // Close_task_runner methods.
4374
4375 // Run the task--close the file.
4376
4377 void
4378 Close_task_runner::run(Workqueue*, const Task*)
4379 {
4380 // If we need to compute a checksum for the BUILD if, we do so here.
4381 this->layout_->write_build_id(this->of_);
4382
4383 // If we've been asked to create a binary file, we do so here.
4384 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4385 this->layout_->write_binary(this->of_);
4386
4387 this->of_->close();
4388 }
4389
4390 // Instantiate the templates we need. We could use the configure
4391 // script to restrict this to only the ones for implemented targets.
4392
4393 #ifdef HAVE_TARGET_32_LITTLE
4394 template
4395 Output_section*
4396 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
4397 const char* name,
4398 const elfcpp::Shdr<32, false>& shdr,
4399 unsigned int, unsigned int, off_t*);
4400 #endif
4401
4402 #ifdef HAVE_TARGET_32_BIG
4403 template
4404 Output_section*
4405 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
4406 const char* name,
4407 const elfcpp::Shdr<32, true>& shdr,
4408 unsigned int, unsigned int, off_t*);
4409 #endif
4410
4411 #ifdef HAVE_TARGET_64_LITTLE
4412 template
4413 Output_section*
4414 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
4415 const char* name,
4416 const elfcpp::Shdr<64, false>& shdr,
4417 unsigned int, unsigned int, off_t*);
4418 #endif
4419
4420 #ifdef HAVE_TARGET_64_BIG
4421 template
4422 Output_section*
4423 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
4424 const char* name,
4425 const elfcpp::Shdr<64, true>& shdr,
4426 unsigned int, unsigned int, off_t*);
4427 #endif
4428
4429 #ifdef HAVE_TARGET_32_LITTLE
4430 template
4431 Output_section*
4432 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
4433 unsigned int reloc_shndx,
4434 const elfcpp::Shdr<32, false>& shdr,
4435 Output_section* data_section,
4436 Relocatable_relocs* rr);
4437 #endif
4438
4439 #ifdef HAVE_TARGET_32_BIG
4440 template
4441 Output_section*
4442 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
4443 unsigned int reloc_shndx,
4444 const elfcpp::Shdr<32, true>& shdr,
4445 Output_section* data_section,
4446 Relocatable_relocs* rr);
4447 #endif
4448
4449 #ifdef HAVE_TARGET_64_LITTLE
4450 template
4451 Output_section*
4452 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
4453 unsigned int reloc_shndx,
4454 const elfcpp::Shdr<64, false>& shdr,
4455 Output_section* data_section,
4456 Relocatable_relocs* rr);
4457 #endif
4458
4459 #ifdef HAVE_TARGET_64_BIG
4460 template
4461 Output_section*
4462 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
4463 unsigned int reloc_shndx,
4464 const elfcpp::Shdr<64, true>& shdr,
4465 Output_section* data_section,
4466 Relocatable_relocs* rr);
4467 #endif
4468
4469 #ifdef HAVE_TARGET_32_LITTLE
4470 template
4471 void
4472 Layout::layout_group<32, false>(Symbol_table* symtab,
4473 Sized_relobj<32, false>* object,
4474 unsigned int,
4475 const char* group_section_name,
4476 const char* signature,
4477 const elfcpp::Shdr<32, false>& shdr,
4478 elfcpp::Elf_Word flags,
4479 std::vector<unsigned int>* shndxes);
4480 #endif
4481
4482 #ifdef HAVE_TARGET_32_BIG
4483 template
4484 void
4485 Layout::layout_group<32, true>(Symbol_table* symtab,
4486 Sized_relobj<32, true>* object,
4487 unsigned int,
4488 const char* group_section_name,
4489 const char* signature,
4490 const elfcpp::Shdr<32, true>& shdr,
4491 elfcpp::Elf_Word flags,
4492 std::vector<unsigned int>* shndxes);
4493 #endif
4494
4495 #ifdef HAVE_TARGET_64_LITTLE
4496 template
4497 void
4498 Layout::layout_group<64, false>(Symbol_table* symtab,
4499 Sized_relobj<64, false>* object,
4500 unsigned int,
4501 const char* group_section_name,
4502 const char* signature,
4503 const elfcpp::Shdr<64, false>& shdr,
4504 elfcpp::Elf_Word flags,
4505 std::vector<unsigned int>* shndxes);
4506 #endif
4507
4508 #ifdef HAVE_TARGET_64_BIG
4509 template
4510 void
4511 Layout::layout_group<64, true>(Symbol_table* symtab,
4512 Sized_relobj<64, true>* object,
4513 unsigned int,
4514 const char* group_section_name,
4515 const char* signature,
4516 const elfcpp::Shdr<64, true>& shdr,
4517 elfcpp::Elf_Word flags,
4518 std::vector<unsigned int>* shndxes);
4519 #endif
4520
4521 #ifdef HAVE_TARGET_32_LITTLE
4522 template
4523 Output_section*
4524 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
4525 const unsigned char* symbols,
4526 off_t symbols_size,
4527 const unsigned char* symbol_names,
4528 off_t symbol_names_size,
4529 unsigned int shndx,
4530 const elfcpp::Shdr<32, false>& shdr,
4531 unsigned int reloc_shndx,
4532 unsigned int reloc_type,
4533 off_t* off);
4534 #endif
4535
4536 #ifdef HAVE_TARGET_32_BIG
4537 template
4538 Output_section*
4539 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
4540 const unsigned char* symbols,
4541 off_t symbols_size,
4542 const unsigned char* symbol_names,
4543 off_t symbol_names_size,
4544 unsigned int shndx,
4545 const elfcpp::Shdr<32, true>& shdr,
4546 unsigned int reloc_shndx,
4547 unsigned int reloc_type,
4548 off_t* off);
4549 #endif
4550
4551 #ifdef HAVE_TARGET_64_LITTLE
4552 template
4553 Output_section*
4554 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
4555 const unsigned char* symbols,
4556 off_t symbols_size,
4557 const unsigned char* symbol_names,
4558 off_t symbol_names_size,
4559 unsigned int shndx,
4560 const elfcpp::Shdr<64, false>& shdr,
4561 unsigned int reloc_shndx,
4562 unsigned int reloc_type,
4563 off_t* off);
4564 #endif
4565
4566 #ifdef HAVE_TARGET_64_BIG
4567 template
4568 Output_section*
4569 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
4570 const unsigned char* symbols,
4571 off_t symbols_size,
4572 const unsigned char* symbol_names,
4573 off_t symbol_names_size,
4574 unsigned int shndx,
4575 const elfcpp::Shdr<64, true>& shdr,
4576 unsigned int reloc_shndx,
4577 unsigned int reloc_type,
4578 off_t* off);
4579 #endif
4580
4581 } // End namespace gold.
This page took 0.131252 seconds and 5 git commands to generate.