From Craig Silverstein and Cary Coutant: fix assignment of section
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "dynobj.h"
34 #include "ehframe.h"
35 #include "layout.h"
36
37 namespace gold
38 {
39
40 // Layout_task_runner methods.
41
42 // Lay out the sections. This is called after all the input objects
43 // have been read.
44
45 void
46 Layout_task_runner::run(Workqueue* workqueue)
47 {
48 off_t file_size = this->layout_->finalize(this->input_objects_,
49 this->symtab_);
50
51 // Now we know the final size of the output file and we know where
52 // each piece of information goes.
53 Output_file* of = new Output_file(this->options_,
54 this->input_objects_->target());
55 of->open(file_size);
56
57 // Queue up the final set of tasks.
58 gold::queue_final_tasks(this->options_, this->input_objects_,
59 this->symtab_, this->layout_, workqueue, of);
60 }
61
62 // Layout methods.
63
64 Layout::Layout(const General_options& options)
65 : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
66 section_name_map_(), segment_list_(), section_list_(),
67 unattached_section_list_(), special_output_list_(),
68 tls_segment_(NULL), symtab_section_(NULL),
69 dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
70 eh_frame_section_(NULL), output_file_size_(-1),
71 input_requires_executable_stack_(false),
72 input_with_gnu_stack_note_(false),
73 input_without_gnu_stack_note_(false)
74 {
75 // Make space for more than enough segments for a typical file.
76 // This is just for efficiency--it's OK if we wind up needing more.
77 this->segment_list_.reserve(12);
78
79 // We expect three unattached Output_data objects: the file header,
80 // the segment headers, and the section headers.
81 this->special_output_list_.reserve(3);
82 }
83
84 // Hash a key we use to look up an output section mapping.
85
86 size_t
87 Layout::Hash_key::operator()(const Layout::Key& k) const
88 {
89 return k.first + k.second.first + k.second.second;
90 }
91
92 // Return whether PREFIX is a prefix of STR.
93
94 static inline bool
95 is_prefix_of(const char* prefix, const char* str)
96 {
97 return strncmp(prefix, str, strlen(prefix)) == 0;
98 }
99
100 // Whether to include this section in the link.
101
102 template<int size, bool big_endian>
103 bool
104 Layout::include_section(Object*, const char* name,
105 const elfcpp::Shdr<size, big_endian>& shdr)
106 {
107 // Some section types are never linked. Some are only linked when
108 // doing a relocateable link.
109 switch (shdr.get_sh_type())
110 {
111 case elfcpp::SHT_NULL:
112 case elfcpp::SHT_SYMTAB:
113 case elfcpp::SHT_DYNSYM:
114 case elfcpp::SHT_STRTAB:
115 case elfcpp::SHT_HASH:
116 case elfcpp::SHT_DYNAMIC:
117 case elfcpp::SHT_SYMTAB_SHNDX:
118 return false;
119
120 case elfcpp::SHT_RELA:
121 case elfcpp::SHT_REL:
122 case elfcpp::SHT_GROUP:
123 return parameters->output_is_object();
124
125 case elfcpp::SHT_PROGBITS:
126 if (parameters->strip_debug()
127 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
128 {
129 // Debugging sections can only be recognized by name.
130 if (is_prefix_of(".debug", name)
131 || is_prefix_of(".gnu.linkonce.wi.", name)
132 || is_prefix_of(".line", name)
133 || is_prefix_of(".stab", name))
134 return false;
135 }
136 return true;
137
138 default:
139 return true;
140 }
141 }
142
143 // Return an output section named NAME, or NULL if there is none.
144
145 Output_section*
146 Layout::find_output_section(const char* name) const
147 {
148 for (Section_name_map::const_iterator p = this->section_name_map_.begin();
149 p != this->section_name_map_.end();
150 ++p)
151 if (strcmp(p->second->name(), name) == 0)
152 return p->second;
153 return NULL;
154 }
155
156 // Return an output segment of type TYPE, with segment flags SET set
157 // and segment flags CLEAR clear. Return NULL if there is none.
158
159 Output_segment*
160 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
161 elfcpp::Elf_Word clear) const
162 {
163 for (Segment_list::const_iterator p = this->segment_list_.begin();
164 p != this->segment_list_.end();
165 ++p)
166 if (static_cast<elfcpp::PT>((*p)->type()) == type
167 && ((*p)->flags() & set) == set
168 && ((*p)->flags() & clear) == 0)
169 return *p;
170 return NULL;
171 }
172
173 // Return the output section to use for section NAME with type TYPE
174 // and section flags FLAGS.
175
176 Output_section*
177 Layout::get_output_section(const char* name, Stringpool::Key name_key,
178 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
179 {
180 // We should ignore some flags.
181 flags &= ~ (elfcpp::SHF_INFO_LINK
182 | elfcpp::SHF_LINK_ORDER
183 | elfcpp::SHF_GROUP
184 | elfcpp::SHF_MERGE
185 | elfcpp::SHF_STRINGS);
186
187 const Key key(name_key, std::make_pair(type, flags));
188 const std::pair<Key, Output_section*> v(key, NULL);
189 std::pair<Section_name_map::iterator, bool> ins(
190 this->section_name_map_.insert(v));
191
192 if (!ins.second)
193 return ins.first->second;
194 else
195 {
196 // This is the first time we've seen this name/type/flags
197 // combination.
198 Output_section* os = this->make_output_section(name, type, flags);
199 ins.first->second = os;
200 return os;
201 }
202 }
203
204 // Return the output section to use for input section SHNDX, with name
205 // NAME, with header HEADER, from object OBJECT. Set *OFF to the
206 // offset of this input section without the output section.
207
208 template<int size, bool big_endian>
209 Output_section*
210 Layout::layout(Relobj* object, unsigned int shndx, const char* name,
211 const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
212 {
213 if (!this->include_section(object, name, shdr))
214 return NULL;
215
216 // If we are not doing a relocateable link, choose the name to use
217 // for the output section.
218 size_t len = strlen(name);
219 if (!parameters->output_is_object())
220 name = Layout::output_section_name(name, &len);
221
222 // FIXME: Handle SHF_OS_NONCONFORMING here.
223
224 // Canonicalize the section name.
225 Stringpool::Key name_key;
226 name = this->namepool_.add_prefix(name, len, &name_key);
227
228 // Find the output section. The output section is selected based on
229 // the section name, type, and flags.
230 Output_section* os = this->get_output_section(name, name_key,
231 shdr.get_sh_type(),
232 shdr.get_sh_flags());
233
234 // Special GNU handling of sections named .eh_frame.
235 if (!parameters->output_is_object()
236 && strcmp(name, ".eh_frame") == 0
237 && shdr.get_sh_size() > 0
238 && shdr.get_sh_type() == elfcpp::SHT_PROGBITS
239 && shdr.get_sh_flags() == elfcpp::SHF_ALLOC)
240 {
241 this->layout_eh_frame(object, shndx, name, shdr, os, off);
242 return os;
243 }
244
245 // FIXME: Handle SHF_LINK_ORDER somewhere.
246
247 *off = os->add_input_section(object, shndx, name, shdr);
248
249 return os;
250 }
251
252 // Special GNU handling of sections named .eh_frame. They will
253 // normally hold exception frame data.
254
255 template<int size, bool big_endian>
256 void
257 Layout::layout_eh_frame(Relobj* object,
258 unsigned int shndx,
259 const char* name,
260 const elfcpp::Shdr<size, big_endian>& shdr,
261 Output_section* os, off_t* off)
262 {
263 if (this->eh_frame_section_ == NULL)
264 {
265 this->eh_frame_section_ = os;
266
267 if (this->options_.create_eh_frame_hdr())
268 {
269 Stringpool::Key hdr_name_key;
270 const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
271 false,
272 &hdr_name_key);
273 Output_section* hdr_os =
274 this->get_output_section(hdr_name, hdr_name_key,
275 elfcpp::SHT_PROGBITS,
276 elfcpp::SHF_ALLOC);
277
278 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os);
279 hdr_os->add_output_section_data(hdr_posd);
280
281 Output_segment* hdr_oseg =
282 new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
283 this->segment_list_.push_back(hdr_oseg);
284 hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
285 }
286 }
287
288 gold_assert(this->eh_frame_section_ == os);
289
290 *off = os->add_input_section(object, shndx, name, shdr);
291 }
292
293 // Add POSD to an output section using NAME, TYPE, and FLAGS.
294
295 void
296 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
297 elfcpp::Elf_Xword flags,
298 Output_section_data* posd)
299 {
300 // Canonicalize the name.
301 Stringpool::Key name_key;
302 name = this->namepool_.add(name, true, &name_key);
303
304 Output_section* os = this->get_output_section(name, name_key, type, flags);
305 os->add_output_section_data(posd);
306 }
307
308 // Map section flags to segment flags.
309
310 elfcpp::Elf_Word
311 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
312 {
313 elfcpp::Elf_Word ret = elfcpp::PF_R;
314 if ((flags & elfcpp::SHF_WRITE) != 0)
315 ret |= elfcpp::PF_W;
316 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
317 ret |= elfcpp::PF_X;
318 return ret;
319 }
320
321 // Make a new Output_section, and attach it to segments as
322 // appropriate.
323
324 Output_section*
325 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
326 elfcpp::Elf_Xword flags)
327 {
328 Output_section* os = new Output_section(name, type, flags);
329 this->section_list_.push_back(os);
330
331 if ((flags & elfcpp::SHF_ALLOC) == 0)
332 this->unattached_section_list_.push_back(os);
333 else
334 {
335 // This output section goes into a PT_LOAD segment.
336
337 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
338
339 // The only thing we really care about for PT_LOAD segments is
340 // whether or not they are writable, so that is how we search
341 // for them. People who need segments sorted on some other
342 // basis will have to wait until we implement a mechanism for
343 // them to describe the segments they want.
344
345 Segment_list::const_iterator p;
346 for (p = this->segment_list_.begin();
347 p != this->segment_list_.end();
348 ++p)
349 {
350 if ((*p)->type() == elfcpp::PT_LOAD
351 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
352 {
353 (*p)->add_output_section(os, seg_flags);
354 break;
355 }
356 }
357
358 if (p == this->segment_list_.end())
359 {
360 Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
361 seg_flags);
362 this->segment_list_.push_back(oseg);
363 oseg->add_output_section(os, seg_flags);
364 }
365
366 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
367 // segment.
368 if (type == elfcpp::SHT_NOTE)
369 {
370 // See if we already have an equivalent PT_NOTE segment.
371 for (p = this->segment_list_.begin();
372 p != segment_list_.end();
373 ++p)
374 {
375 if ((*p)->type() == elfcpp::PT_NOTE
376 && (((*p)->flags() & elfcpp::PF_W)
377 == (seg_flags & elfcpp::PF_W)))
378 {
379 (*p)->add_output_section(os, seg_flags);
380 break;
381 }
382 }
383
384 if (p == this->segment_list_.end())
385 {
386 Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
387 seg_flags);
388 this->segment_list_.push_back(oseg);
389 oseg->add_output_section(os, seg_flags);
390 }
391 }
392
393 // If we see a loadable SHF_TLS section, we create a PT_TLS
394 // segment. There can only be one such segment.
395 if ((flags & elfcpp::SHF_TLS) != 0)
396 {
397 if (this->tls_segment_ == NULL)
398 {
399 this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
400 seg_flags);
401 this->segment_list_.push_back(this->tls_segment_);
402 }
403 this->tls_segment_->add_output_section(os, seg_flags);
404 }
405 }
406
407 return os;
408 }
409
410 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
411 // is whether we saw a .note.GNU-stack section in the object file.
412 // GNU_STACK_FLAGS is the section flags. The flags give the
413 // protection required for stack memory. We record this in an
414 // executable as a PT_GNU_STACK segment. If an object file does not
415 // have a .note.GNU-stack segment, we must assume that it is an old
416 // object. On some targets that will force an executable stack.
417
418 void
419 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
420 {
421 if (!seen_gnu_stack)
422 this->input_without_gnu_stack_note_ = true;
423 else
424 {
425 this->input_with_gnu_stack_note_ = true;
426 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
427 this->input_requires_executable_stack_ = true;
428 }
429 }
430
431 // Create the dynamic sections which are needed before we read the
432 // relocs.
433
434 void
435 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
436 Symbol_table* symtab)
437 {
438 if (parameters->doing_static_link())
439 return;
440
441 const char* dynamic_name = this->namepool_.add(".dynamic", false, NULL);
442 this->dynamic_section_ = this->make_output_section(dynamic_name,
443 elfcpp::SHT_DYNAMIC,
444 (elfcpp::SHF_ALLOC
445 | elfcpp::SHF_WRITE));
446
447 symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
448 this->dynamic_section_, 0, 0,
449 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
450 elfcpp::STV_HIDDEN, 0, false, false);
451
452 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
453
454 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
455 }
456
457 // For each output section whose name can be represented as C symbol,
458 // define __start and __stop symbols for the section. This is a GNU
459 // extension.
460
461 void
462 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
463 {
464 for (Section_list::const_iterator p = this->section_list_.begin();
465 p != this->section_list_.end();
466 ++p)
467 {
468 const char* const name = (*p)->name();
469 if (name[strspn(name,
470 ("0123456789"
471 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
472 "abcdefghijklmnopqrstuvwxyz"
473 "_"))]
474 == '\0')
475 {
476 const std::string name_string(name);
477 const std::string start_name("__start_" + name_string);
478 const std::string stop_name("__stop_" + name_string);
479
480 symtab->define_in_output_data(target,
481 start_name.c_str(),
482 NULL, // version
483 *p,
484 0, // value
485 0, // symsize
486 elfcpp::STT_NOTYPE,
487 elfcpp::STB_GLOBAL,
488 elfcpp::STV_DEFAULT,
489 0, // nonvis
490 false, // offset_is_from_end
491 false); // only_if_ref
492
493 symtab->define_in_output_data(target,
494 stop_name.c_str(),
495 NULL, // version
496 *p,
497 0, // value
498 0, // symsize
499 elfcpp::STT_NOTYPE,
500 elfcpp::STB_GLOBAL,
501 elfcpp::STV_DEFAULT,
502 0, // nonvis
503 true, // offset_is_from_end
504 false); // only_if_ref
505 }
506 }
507 }
508
509 // Find the first read-only PT_LOAD segment, creating one if
510 // necessary.
511
512 Output_segment*
513 Layout::find_first_load_seg()
514 {
515 for (Segment_list::const_iterator p = this->segment_list_.begin();
516 p != this->segment_list_.end();
517 ++p)
518 {
519 if ((*p)->type() == elfcpp::PT_LOAD
520 && ((*p)->flags() & elfcpp::PF_R) != 0
521 && ((*p)->flags() & elfcpp::PF_W) == 0)
522 return *p;
523 }
524
525 Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
526 this->segment_list_.push_back(load_seg);
527 return load_seg;
528 }
529
530 // Finalize the layout. When this is called, we have created all the
531 // output sections and all the output segments which are based on
532 // input sections. We have several things to do, and we have to do
533 // them in the right order, so that we get the right results correctly
534 // and efficiently.
535
536 // 1) Finalize the list of output segments and create the segment
537 // table header.
538
539 // 2) Finalize the dynamic symbol table and associated sections.
540
541 // 3) Determine the final file offset of all the output segments.
542
543 // 4) Determine the final file offset of all the SHF_ALLOC output
544 // sections.
545
546 // 5) Create the symbol table sections and the section name table
547 // section.
548
549 // 6) Finalize the symbol table: set symbol values to their final
550 // value and make a final determination of which symbols are going
551 // into the output symbol table.
552
553 // 7) Create the section table header.
554
555 // 8) Determine the final file offset of all the output sections which
556 // are not SHF_ALLOC, including the section table header.
557
558 // 9) Finalize the ELF file header.
559
560 // This function returns the size of the output file.
561
562 off_t
563 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
564 {
565 Target* const target = input_objects->target();
566
567 target->finalize_sections(this);
568
569 this->create_gold_note();
570 this->create_executable_stack_info(target);
571
572 Output_segment* phdr_seg = NULL;
573 if (!parameters->doing_static_link())
574 {
575 // There was a dynamic object in the link. We need to create
576 // some information for the dynamic linker.
577
578 // Create the PT_PHDR segment which will hold the program
579 // headers.
580 phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
581 this->segment_list_.push_back(phdr_seg);
582
583 // Create the dynamic symbol table, including the hash table.
584 Output_section* dynstr;
585 std::vector<Symbol*> dynamic_symbols;
586 unsigned int local_dynamic_count;
587 Versions versions;
588 this->create_dynamic_symtab(target, symtab, &dynstr,
589 &local_dynamic_count, &dynamic_symbols,
590 &versions);
591
592 // Create the .interp section to hold the name of the
593 // interpreter, and put it in a PT_INTERP segment.
594 if (!parameters->output_is_shared())
595 this->create_interp(target);
596
597 // Finish the .dynamic section to hold the dynamic data, and put
598 // it in a PT_DYNAMIC segment.
599 this->finish_dynamic_section(input_objects, symtab);
600
601 // We should have added everything we need to the dynamic string
602 // table.
603 this->dynpool_.set_string_offsets();
604
605 // Create the version sections. We can't do this until the
606 // dynamic string table is complete.
607 this->create_version_sections(&versions, symtab, local_dynamic_count,
608 dynamic_symbols, dynstr);
609 }
610
611 // FIXME: Handle PT_GNU_STACK.
612
613 Output_segment* load_seg = this->find_first_load_seg();
614
615 // Lay out the segment headers.
616 Output_segment_headers* segment_headers;
617 segment_headers = new Output_segment_headers(this->segment_list_);
618 load_seg->add_initial_output_data(segment_headers);
619 this->special_output_list_.push_back(segment_headers);
620 if (phdr_seg != NULL)
621 phdr_seg->add_initial_output_data(segment_headers);
622
623 // Lay out the file header.
624 Output_file_header* file_header;
625 file_header = new Output_file_header(target, symtab, segment_headers);
626 load_seg->add_initial_output_data(file_header);
627 this->special_output_list_.push_back(file_header);
628
629 // We set the output section indexes in set_segment_offsets and
630 // set_section_offsets.
631 unsigned int shndx = 1;
632
633 // Set the file offsets of all the segments, and all the sections
634 // they contain.
635 off_t off = this->set_segment_offsets(target, load_seg, &shndx);
636
637 // Set the file offsets of all the data sections not associated with
638 // segments. This makes sure that debug sections have their offsets
639 // before symbols are finalized.
640 off = this->set_section_offsets(off, true);
641
642 // Create the symbol table sections.
643 this->create_symtab_sections(input_objects, symtab, &off);
644
645 // Create the .shstrtab section.
646 Output_section* shstrtab_section = this->create_shstrtab();
647
648 // Set the file offsets of all the non-data sections not associated with
649 // segments.
650 off = this->set_section_offsets(off, false);
651
652 // Now that all sections have been created, set the section indexes.
653 shndx = this->set_section_indexes(shndx);
654
655 // Create the section table header.
656 Output_section_headers* oshdrs = this->create_shdrs(&off);
657
658 file_header->set_section_info(oshdrs, shstrtab_section);
659
660 // Now we know exactly where everything goes in the output file.
661 Output_data::layout_complete();
662
663 this->output_file_size_ = off;
664
665 return off;
666 }
667
668 // Create a .note section for an executable or shared library. This
669 // records the version of gold used to create the binary.
670
671 void
672 Layout::create_gold_note()
673 {
674 if (parameters->output_is_object())
675 return;
676
677 // Authorities all agree that the values in a .note field should
678 // be aligned on 4-byte boundaries for 32-bit binaries. However,
679 // they differ on what the alignment is for 64-bit binaries.
680 // The GABI says unambiguously they take 8-byte alignment:
681 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
682 // Other documentation says alignment should always be 4 bytes:
683 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
684 // GNU ld and GNU readelf both support the latter (at least as of
685 // version 2.16.91), and glibc always generates the latter for
686 // .note.ABI-tag (as of version 1.6), so that's the one we go with
687 // here.
688 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
689 const int size = parameters->get_size();
690 #else
691 const int size = 32;
692 #endif
693
694 // The contents of the .note section.
695 const char* name = "GNU";
696 std::string desc(std::string("gold ") + gold::get_version_string());
697 size_t namesz = strlen(name) + 1;
698 size_t aligned_namesz = align_address(namesz, size / 8);
699 size_t descsz = desc.length() + 1;
700 size_t aligned_descsz = align_address(descsz, size / 8);
701 const int note_type = 4;
702
703 size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
704
705 unsigned char buffer[128];
706 gold_assert(sizeof buffer >= notesz);
707 memset(buffer, 0, notesz);
708
709 bool is_big_endian = parameters->is_big_endian();
710
711 if (size == 32)
712 {
713 if (!is_big_endian)
714 {
715 elfcpp::Swap<32, false>::writeval(buffer, namesz);
716 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
717 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
718 }
719 else
720 {
721 elfcpp::Swap<32, true>::writeval(buffer, namesz);
722 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
723 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
724 }
725 }
726 else if (size == 64)
727 {
728 if (!is_big_endian)
729 {
730 elfcpp::Swap<64, false>::writeval(buffer, namesz);
731 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
732 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
733 }
734 else
735 {
736 elfcpp::Swap<64, true>::writeval(buffer, namesz);
737 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
738 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
739 }
740 }
741 else
742 gold_unreachable();
743
744 memcpy(buffer + 3 * (size / 8), name, namesz);
745 memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
746
747 const char* note_name = this->namepool_.add(".note", false, NULL);
748 Output_section* os = this->make_output_section(note_name,
749 elfcpp::SHT_NOTE,
750 0);
751 Output_section_data* posd = new Output_data_const(buffer, notesz,
752 size / 8);
753 os->add_output_section_data(posd);
754 }
755
756 // Record whether the stack should be executable. This can be set
757 // from the command line using the -z execstack or -z noexecstack
758 // options. Otherwise, if any input file has a .note.GNU-stack
759 // section with the SHF_EXECINSTR flag set, the stack should be
760 // executable. Otherwise, if at least one input file a
761 // .note.GNU-stack section, and some input file has no .note.GNU-stack
762 // section, we use the target default for whether the stack should be
763 // executable. Otherwise, we don't generate a stack note. When
764 // generating a object file, we create a .note.GNU-stack section with
765 // the appropriate marking. When generating an executable or shared
766 // library, we create a PT_GNU_STACK segment.
767
768 void
769 Layout::create_executable_stack_info(const Target* target)
770 {
771 bool is_stack_executable;
772 if (this->options_.is_execstack_set())
773 is_stack_executable = this->options_.is_stack_executable();
774 else if (!this->input_with_gnu_stack_note_)
775 return;
776 else
777 {
778 if (this->input_requires_executable_stack_)
779 is_stack_executable = true;
780 else if (this->input_without_gnu_stack_note_)
781 is_stack_executable = target->is_default_stack_executable();
782 else
783 is_stack_executable = false;
784 }
785
786 if (parameters->output_is_object())
787 {
788 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
789 elfcpp::Elf_Xword flags = 0;
790 if (is_stack_executable)
791 flags |= elfcpp::SHF_EXECINSTR;
792 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
793 }
794 else
795 {
796 int flags = elfcpp::PF_R | elfcpp::PF_W;
797 if (is_stack_executable)
798 flags |= elfcpp::PF_X;
799 Output_segment* oseg = new Output_segment(elfcpp::PT_GNU_STACK, flags);
800 this->segment_list_.push_back(oseg);
801 }
802 }
803
804 // Return whether SEG1 should be before SEG2 in the output file. This
805 // is based entirely on the segment type and flags. When this is
806 // called the segment addresses has normally not yet been set.
807
808 bool
809 Layout::segment_precedes(const Output_segment* seg1,
810 const Output_segment* seg2)
811 {
812 elfcpp::Elf_Word type1 = seg1->type();
813 elfcpp::Elf_Word type2 = seg2->type();
814
815 // The single PT_PHDR segment is required to precede any loadable
816 // segment. We simply make it always first.
817 if (type1 == elfcpp::PT_PHDR)
818 {
819 gold_assert(type2 != elfcpp::PT_PHDR);
820 return true;
821 }
822 if (type2 == elfcpp::PT_PHDR)
823 return false;
824
825 // The single PT_INTERP segment is required to precede any loadable
826 // segment. We simply make it always second.
827 if (type1 == elfcpp::PT_INTERP)
828 {
829 gold_assert(type2 != elfcpp::PT_INTERP);
830 return true;
831 }
832 if (type2 == elfcpp::PT_INTERP)
833 return false;
834
835 // We then put PT_LOAD segments before any other segments.
836 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
837 return true;
838 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
839 return false;
840
841 // We put the PT_TLS segment last, because that is where the dynamic
842 // linker expects to find it (this is just for efficiency; other
843 // positions would also work correctly).
844 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
845 return false;
846 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
847 return true;
848
849 const elfcpp::Elf_Word flags1 = seg1->flags();
850 const elfcpp::Elf_Word flags2 = seg2->flags();
851
852 // The order of non-PT_LOAD segments is unimportant. We simply sort
853 // by the numeric segment type and flags values. There should not
854 // be more than one segment with the same type and flags.
855 if (type1 != elfcpp::PT_LOAD)
856 {
857 if (type1 != type2)
858 return type1 < type2;
859 gold_assert(flags1 != flags2);
860 return flags1 < flags2;
861 }
862
863 // We sort PT_LOAD segments based on the flags. Readonly segments
864 // come before writable segments. Then executable segments come
865 // before non-executable segments. Then the unlikely case of a
866 // non-readable segment comes before the normal case of a readable
867 // segment. If there are multiple segments with the same type and
868 // flags, we require that the address be set, and we sort by
869 // virtual address and then physical address.
870 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
871 return (flags1 & elfcpp::PF_W) == 0;
872 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
873 return (flags1 & elfcpp::PF_X) != 0;
874 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
875 return (flags1 & elfcpp::PF_R) == 0;
876
877 uint64_t vaddr1 = seg1->vaddr();
878 uint64_t vaddr2 = seg2->vaddr();
879 if (vaddr1 != vaddr2)
880 return vaddr1 < vaddr2;
881
882 uint64_t paddr1 = seg1->paddr();
883 uint64_t paddr2 = seg2->paddr();
884 gold_assert(paddr1 != paddr2);
885 return paddr1 < paddr2;
886 }
887
888 // Set the file offsets of all the segments, and all the sections they
889 // contain. They have all been created. LOAD_SEG must be be laid out
890 // first. Return the offset of the data to follow.
891
892 off_t
893 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
894 unsigned int *pshndx)
895 {
896 // Sort them into the final order.
897 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
898 Layout::Compare_segments());
899
900 // Find the PT_LOAD segments, and set their addresses and offsets
901 // and their section's addresses and offsets.
902 uint64_t addr;
903 if (options_.user_set_text_segment_address())
904 addr = options_.text_segment_address();
905 else
906 addr = target->default_text_segment_address();
907 off_t off = 0;
908 bool was_readonly = false;
909 for (Segment_list::iterator p = this->segment_list_.begin();
910 p != this->segment_list_.end();
911 ++p)
912 {
913 if ((*p)->type() == elfcpp::PT_LOAD)
914 {
915 if (load_seg != NULL && load_seg != *p)
916 gold_unreachable();
917 load_seg = NULL;
918
919 // If the last segment was readonly, and this one is not,
920 // then skip the address forward one page, maintaining the
921 // same position within the page. This lets us store both
922 // segments overlapping on a single page in the file, but
923 // the loader will put them on different pages in memory.
924
925 uint64_t orig_addr = addr;
926 uint64_t orig_off = off;
927
928 uint64_t aligned_addr = addr;
929 uint64_t abi_pagesize = target->abi_pagesize();
930
931 // FIXME: This should depend on the -n and -N options.
932 (*p)->set_minimum_addralign(target->common_pagesize());
933
934 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
935 {
936 uint64_t align = (*p)->addralign();
937
938 addr = align_address(addr, align);
939 aligned_addr = addr;
940 if ((addr & (abi_pagesize - 1)) != 0)
941 addr = addr + abi_pagesize;
942 }
943
944 unsigned int shndx_hold = *pshndx;
945 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
946 uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
947
948 // Now that we know the size of this segment, we may be able
949 // to save a page in memory, at the cost of wasting some
950 // file space, by instead aligning to the start of a new
951 // page. Here we use the real machine page size rather than
952 // the ABI mandated page size.
953
954 if (aligned_addr != addr)
955 {
956 uint64_t common_pagesize = target->common_pagesize();
957 uint64_t first_off = (common_pagesize
958 - (aligned_addr
959 & (common_pagesize - 1)));
960 uint64_t last_off = new_addr & (common_pagesize - 1);
961 if (first_off > 0
962 && last_off > 0
963 && ((aligned_addr & ~ (common_pagesize - 1))
964 != (new_addr & ~ (common_pagesize - 1)))
965 && first_off + last_off <= common_pagesize)
966 {
967 *pshndx = shndx_hold;
968 addr = align_address(aligned_addr, common_pagesize);
969 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
970 new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
971 }
972 }
973
974 addr = new_addr;
975
976 if (((*p)->flags() & elfcpp::PF_W) == 0)
977 was_readonly = true;
978 }
979 }
980
981 // Handle the non-PT_LOAD segments, setting their offsets from their
982 // section's offsets.
983 for (Segment_list::iterator p = this->segment_list_.begin();
984 p != this->segment_list_.end();
985 ++p)
986 {
987 if ((*p)->type() != elfcpp::PT_LOAD)
988 (*p)->set_offset();
989 }
990
991 return off;
992 }
993
994 // Set the file offset of all the sections not associated with a
995 // segment.
996
997 off_t
998 Layout::set_section_offsets(off_t off,
999 bool do_bits_sections)
1000 {
1001 for (Section_list::iterator p = this->unattached_section_list_.begin();
1002 p != this->unattached_section_list_.end();
1003 ++p)
1004 {
1005 bool is_bits_section = ((*p)->type() == elfcpp::SHT_PROGBITS
1006 || (*p)->type() == elfcpp::SHT_NOBITS);
1007 if (is_bits_section != do_bits_sections)
1008 continue;
1009 if ((*p)->offset() != -1)
1010 continue;
1011 off = align_address(off, (*p)->addralign());
1012 (*p)->set_address(0, off);
1013 off += (*p)->data_size();
1014 }
1015 return off;
1016 }
1017
1018 // Set the section indexes of all the sections not associated with a
1019 // segment.
1020
1021 unsigned int
1022 Layout::set_section_indexes(unsigned int shndx)
1023 {
1024 for (Section_list::iterator p = this->unattached_section_list_.begin();
1025 p != this->unattached_section_list_.end();
1026 ++p)
1027 {
1028 (*p)->set_out_shndx(shndx);
1029 ++shndx;
1030 }
1031 return shndx;
1032 }
1033
1034 // Create the symbol table sections. Here we also set the final
1035 // values of the symbols. At this point all the loadable sections are
1036 // fully laid out.
1037
1038 void
1039 Layout::create_symtab_sections(const Input_objects* input_objects,
1040 Symbol_table* symtab,
1041 off_t* poff)
1042 {
1043 int symsize;
1044 unsigned int align;
1045 if (parameters->get_size() == 32)
1046 {
1047 symsize = elfcpp::Elf_sizes<32>::sym_size;
1048 align = 4;
1049 }
1050 else if (parameters->get_size() == 64)
1051 {
1052 symsize = elfcpp::Elf_sizes<64>::sym_size;
1053 align = 8;
1054 }
1055 else
1056 gold_unreachable();
1057
1058 off_t off = *poff;
1059 off = align_address(off, align);
1060 off_t startoff = off;
1061
1062 // Save space for the dummy symbol at the start of the section. We
1063 // never bother to write this out--it will just be left as zero.
1064 off += symsize;
1065 unsigned int local_symbol_index = 1;
1066
1067 // Add STT_SECTION symbols for each Output section which needs one.
1068 for (Section_list::iterator p = this->section_list_.begin();
1069 p != this->section_list_.end();
1070 ++p)
1071 {
1072 if (!(*p)->needs_symtab_index())
1073 (*p)->set_symtab_index(-1U);
1074 else
1075 {
1076 (*p)->set_symtab_index(local_symbol_index);
1077 ++local_symbol_index;
1078 off += symsize;
1079 }
1080 }
1081
1082 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1083 p != input_objects->relobj_end();
1084 ++p)
1085 {
1086 Task_lock_obj<Object> tlo(**p);
1087 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1088 off,
1089 &this->sympool_);
1090 off += (index - local_symbol_index) * symsize;
1091 local_symbol_index = index;
1092 }
1093
1094 unsigned int local_symcount = local_symbol_index;
1095 gold_assert(local_symcount * symsize == off - startoff);
1096
1097 off_t dynoff;
1098 size_t dyn_global_index;
1099 size_t dyncount;
1100 if (this->dynsym_section_ == NULL)
1101 {
1102 dynoff = 0;
1103 dyn_global_index = 0;
1104 dyncount = 0;
1105 }
1106 else
1107 {
1108 dyn_global_index = this->dynsym_section_->info();
1109 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1110 dynoff = this->dynsym_section_->offset() + locsize;
1111 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1112 gold_assert(static_cast<off_t>(dyncount * symsize)
1113 == this->dynsym_section_->data_size() - locsize);
1114 }
1115
1116 off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
1117 dyncount, &this->sympool_);
1118
1119 if (!parameters->strip_all())
1120 {
1121 this->sympool_.set_string_offsets();
1122
1123 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1124 Output_section* osymtab = this->make_output_section(symtab_name,
1125 elfcpp::SHT_SYMTAB,
1126 0);
1127 this->symtab_section_ = osymtab;
1128
1129 Output_section_data* pos = new Output_data_space(off - startoff,
1130 align);
1131 osymtab->add_output_section_data(pos);
1132
1133 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1134 Output_section* ostrtab = this->make_output_section(strtab_name,
1135 elfcpp::SHT_STRTAB,
1136 0);
1137
1138 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1139 ostrtab->add_output_section_data(pstr);
1140
1141 osymtab->set_address(0, startoff);
1142 osymtab->set_link_section(ostrtab);
1143 osymtab->set_info(local_symcount);
1144 osymtab->set_entsize(symsize);
1145
1146 *poff = off;
1147 }
1148 }
1149
1150 // Create the .shstrtab section, which holds the names of the
1151 // sections. At the time this is called, we have created all the
1152 // output sections except .shstrtab itself.
1153
1154 Output_section*
1155 Layout::create_shstrtab()
1156 {
1157 // FIXME: We don't need to create a .shstrtab section if we are
1158 // stripping everything.
1159
1160 const char* name = this->namepool_.add(".shstrtab", false, NULL);
1161
1162 this->namepool_.set_string_offsets();
1163
1164 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1165
1166 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1167 os->add_output_section_data(posd);
1168
1169 return os;
1170 }
1171
1172 // Create the section headers. SIZE is 32 or 64. OFF is the file
1173 // offset.
1174
1175 Output_section_headers*
1176 Layout::create_shdrs(off_t* poff)
1177 {
1178 Output_section_headers* oshdrs;
1179 oshdrs = new Output_section_headers(this,
1180 &this->segment_list_,
1181 &this->unattached_section_list_,
1182 &this->namepool_);
1183 off_t off = align_address(*poff, oshdrs->addralign());
1184 oshdrs->set_address(0, off);
1185 off += oshdrs->data_size();
1186 *poff = off;
1187 this->special_output_list_.push_back(oshdrs);
1188 return oshdrs;
1189 }
1190
1191 // Create the dynamic symbol table.
1192
1193 void
1194 Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
1195 Output_section **pdynstr,
1196 unsigned int* plocal_dynamic_count,
1197 std::vector<Symbol*>* pdynamic_symbols,
1198 Versions* pversions)
1199 {
1200 // Count all the symbols in the dynamic symbol table, and set the
1201 // dynamic symbol indexes.
1202
1203 // Skip symbol 0, which is always all zeroes.
1204 unsigned int index = 1;
1205
1206 // Add STT_SECTION symbols for each Output section which needs one.
1207 for (Section_list::iterator p = this->section_list_.begin();
1208 p != this->section_list_.end();
1209 ++p)
1210 {
1211 if (!(*p)->needs_dynsym_index())
1212 (*p)->set_dynsym_index(-1U);
1213 else
1214 {
1215 (*p)->set_dynsym_index(index);
1216 ++index;
1217 }
1218 }
1219
1220 // FIXME: Some targets apparently require local symbols in the
1221 // dynamic symbol table. Here is where we will have to count them,
1222 // and set the dynamic symbol indexes, and add the names to
1223 // this->dynpool_.
1224
1225 unsigned int local_symcount = index;
1226 *plocal_dynamic_count = local_symcount;
1227
1228 // FIXME: We have to tell set_dynsym_indexes whether the
1229 // -E/--export-dynamic option was used.
1230 index = symtab->set_dynsym_indexes(target, index, pdynamic_symbols,
1231 &this->dynpool_, pversions);
1232
1233 int symsize;
1234 unsigned int align;
1235 const int size = parameters->get_size();
1236 if (size == 32)
1237 {
1238 symsize = elfcpp::Elf_sizes<32>::sym_size;
1239 align = 4;
1240 }
1241 else if (size == 64)
1242 {
1243 symsize = elfcpp::Elf_sizes<64>::sym_size;
1244 align = 8;
1245 }
1246 else
1247 gold_unreachable();
1248
1249 // Create the dynamic symbol table section.
1250
1251 const char* dynsym_name = this->namepool_.add(".dynsym", false, NULL);
1252 Output_section* dynsym = this->make_output_section(dynsym_name,
1253 elfcpp::SHT_DYNSYM,
1254 elfcpp::SHF_ALLOC);
1255
1256 Output_section_data* odata = new Output_data_space(index * symsize,
1257 align);
1258 dynsym->add_output_section_data(odata);
1259
1260 dynsym->set_info(local_symcount);
1261 dynsym->set_entsize(symsize);
1262 dynsym->set_addralign(align);
1263
1264 this->dynsym_section_ = dynsym;
1265
1266 Output_data_dynamic* const odyn = this->dynamic_data_;
1267 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1268 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1269
1270 // Create the dynamic string table section.
1271
1272 const char* dynstr_name = this->namepool_.add(".dynstr", false, NULL);
1273 Output_section* dynstr = this->make_output_section(dynstr_name,
1274 elfcpp::SHT_STRTAB,
1275 elfcpp::SHF_ALLOC);
1276
1277 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1278 dynstr->add_output_section_data(strdata);
1279
1280 dynsym->set_link_section(dynstr);
1281 this->dynamic_section_->set_link_section(dynstr);
1282
1283 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1284 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1285
1286 *pdynstr = dynstr;
1287
1288 // Create the hash tables.
1289
1290 // FIXME: We need an option to create a GNU hash table.
1291
1292 unsigned char* phash;
1293 unsigned int hashlen;
1294 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1295 &phash, &hashlen);
1296
1297 const char* hash_name = this->namepool_.add(".hash", false, NULL);
1298 Output_section* hashsec = this->make_output_section(hash_name,
1299 elfcpp::SHT_HASH,
1300 elfcpp::SHF_ALLOC);
1301
1302 Output_section_data* hashdata = new Output_data_const_buffer(phash,
1303 hashlen,
1304 align);
1305 hashsec->add_output_section_data(hashdata);
1306
1307 hashsec->set_link_section(dynsym);
1308 hashsec->set_entsize(4);
1309
1310 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1311 }
1312
1313 // Create the version sections.
1314
1315 void
1316 Layout::create_version_sections(const Versions* versions,
1317 const Symbol_table* symtab,
1318 unsigned int local_symcount,
1319 const std::vector<Symbol*>& dynamic_symbols,
1320 const Output_section* dynstr)
1321 {
1322 if (!versions->any_defs() && !versions->any_needs())
1323 return;
1324
1325 if (parameters->get_size() == 32)
1326 {
1327 if (parameters->is_big_endian())
1328 {
1329 #ifdef HAVE_TARGET_32_BIG
1330 this->sized_create_version_sections
1331 SELECT_SIZE_ENDIAN_NAME(32, true)(
1332 versions, symtab, local_symcount, dynamic_symbols, dynstr
1333 SELECT_SIZE_ENDIAN(32, true));
1334 #else
1335 gold_unreachable();
1336 #endif
1337 }
1338 else
1339 {
1340 #ifdef HAVE_TARGET_32_LITTLE
1341 this->sized_create_version_sections
1342 SELECT_SIZE_ENDIAN_NAME(32, false)(
1343 versions, symtab, local_symcount, dynamic_symbols, dynstr
1344 SELECT_SIZE_ENDIAN(32, false));
1345 #else
1346 gold_unreachable();
1347 #endif
1348 }
1349 }
1350 else if (parameters->get_size() == 64)
1351 {
1352 if (parameters->is_big_endian())
1353 {
1354 #ifdef HAVE_TARGET_64_BIG
1355 this->sized_create_version_sections
1356 SELECT_SIZE_ENDIAN_NAME(64, true)(
1357 versions, symtab, local_symcount, dynamic_symbols, dynstr
1358 SELECT_SIZE_ENDIAN(64, true));
1359 #else
1360 gold_unreachable();
1361 #endif
1362 }
1363 else
1364 {
1365 #ifdef HAVE_TARGET_64_LITTLE
1366 this->sized_create_version_sections
1367 SELECT_SIZE_ENDIAN_NAME(64, false)(
1368 versions, symtab, local_symcount, dynamic_symbols, dynstr
1369 SELECT_SIZE_ENDIAN(64, false));
1370 #else
1371 gold_unreachable();
1372 #endif
1373 }
1374 }
1375 else
1376 gold_unreachable();
1377 }
1378
1379 // Create the version sections, sized version.
1380
1381 template<int size, bool big_endian>
1382 void
1383 Layout::sized_create_version_sections(
1384 const Versions* versions,
1385 const Symbol_table* symtab,
1386 unsigned int local_symcount,
1387 const std::vector<Symbol*>& dynamic_symbols,
1388 const Output_section* dynstr
1389 ACCEPT_SIZE_ENDIAN)
1390 {
1391 const char* vname = this->namepool_.add(".gnu.version", false, NULL);
1392 Output_section* vsec = this->make_output_section(vname,
1393 elfcpp::SHT_GNU_versym,
1394 elfcpp::SHF_ALLOC);
1395
1396 unsigned char* vbuf;
1397 unsigned int vsize;
1398 versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1399 symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1400 SELECT_SIZE_ENDIAN(size, big_endian));
1401
1402 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1403
1404 vsec->add_output_section_data(vdata);
1405 vsec->set_entsize(2);
1406 vsec->set_link_section(this->dynsym_section_);
1407
1408 Output_data_dynamic* const odyn = this->dynamic_data_;
1409 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1410
1411 if (versions->any_defs())
1412 {
1413 const char* vdname = this->namepool_.add(".gnu.version_d", false, NULL);
1414 Output_section *vdsec;
1415 vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1416 elfcpp::SHF_ALLOC);
1417
1418 unsigned char* vdbuf;
1419 unsigned int vdsize;
1420 unsigned int vdentries;
1421 versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1422 &this->dynpool_, &vdbuf, &vdsize, &vdentries
1423 SELECT_SIZE_ENDIAN(size, big_endian));
1424
1425 Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1426 vdsize,
1427 4);
1428
1429 vdsec->add_output_section_data(vddata);
1430 vdsec->set_link_section(dynstr);
1431 vdsec->set_info(vdentries);
1432
1433 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1434 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1435 }
1436
1437 if (versions->any_needs())
1438 {
1439 const char* vnname = this->namepool_.add(".gnu.version_r", false, NULL);
1440 Output_section* vnsec;
1441 vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1442 elfcpp::SHF_ALLOC);
1443
1444 unsigned char* vnbuf;
1445 unsigned int vnsize;
1446 unsigned int vnentries;
1447 versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1448 (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1449 SELECT_SIZE_ENDIAN(size, big_endian));
1450
1451 Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1452 vnsize,
1453 4);
1454
1455 vnsec->add_output_section_data(vndata);
1456 vnsec->set_link_section(dynstr);
1457 vnsec->set_info(vnentries);
1458
1459 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1460 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1461 }
1462 }
1463
1464 // Create the .interp section and PT_INTERP segment.
1465
1466 void
1467 Layout::create_interp(const Target* target)
1468 {
1469 const char* interp = this->options_.dynamic_linker();
1470 if (interp == NULL)
1471 {
1472 interp = target->dynamic_linker();
1473 gold_assert(interp != NULL);
1474 }
1475
1476 size_t len = strlen(interp) + 1;
1477
1478 Output_section_data* odata = new Output_data_const(interp, len, 1);
1479
1480 const char* interp_name = this->namepool_.add(".interp", false, NULL);
1481 Output_section* osec = this->make_output_section(interp_name,
1482 elfcpp::SHT_PROGBITS,
1483 elfcpp::SHF_ALLOC);
1484 osec->add_output_section_data(odata);
1485
1486 Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1487 this->segment_list_.push_back(oseg);
1488 oseg->add_initial_output_section(osec, elfcpp::PF_R);
1489 }
1490
1491 // Finish the .dynamic section and PT_DYNAMIC segment.
1492
1493 void
1494 Layout::finish_dynamic_section(const Input_objects* input_objects,
1495 const Symbol_table* symtab)
1496 {
1497 Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1498 elfcpp::PF_R | elfcpp::PF_W);
1499 this->segment_list_.push_back(oseg);
1500 oseg->add_initial_output_section(this->dynamic_section_,
1501 elfcpp::PF_R | elfcpp::PF_W);
1502
1503 Output_data_dynamic* const odyn = this->dynamic_data_;
1504
1505 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1506 p != input_objects->dynobj_end();
1507 ++p)
1508 {
1509 // FIXME: Handle --as-needed.
1510 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1511 }
1512
1513 // FIXME: Support --init and --fini.
1514 Symbol* sym = symtab->lookup("_init");
1515 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1516 odyn->add_symbol(elfcpp::DT_INIT, sym);
1517
1518 sym = symtab->lookup("_fini");
1519 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1520 odyn->add_symbol(elfcpp::DT_FINI, sym);
1521
1522 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1523
1524 // Add a DT_RPATH entry if needed.
1525 const General_options::Dir_list& rpath(this->options_.rpath());
1526 if (!rpath.empty())
1527 {
1528 std::string rpath_val;
1529 for (General_options::Dir_list::const_iterator p = rpath.begin();
1530 p != rpath.end();
1531 ++p)
1532 {
1533 if (rpath_val.empty())
1534 rpath_val = p->name();
1535 else
1536 {
1537 // Eliminate duplicates.
1538 General_options::Dir_list::const_iterator q;
1539 for (q = rpath.begin(); q != p; ++q)
1540 if (q->name() == p->name())
1541 break;
1542 if (q == p)
1543 {
1544 rpath_val += ':';
1545 rpath_val += p->name();
1546 }
1547 }
1548 }
1549
1550 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1551 }
1552 }
1553
1554 // The mapping of .gnu.linkonce section names to real section names.
1555
1556 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1557 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1558 {
1559 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
1560 MAPPING_INIT("t", ".text"),
1561 MAPPING_INIT("r", ".rodata"),
1562 MAPPING_INIT("d", ".data"),
1563 MAPPING_INIT("b", ".bss"),
1564 MAPPING_INIT("s", ".sdata"),
1565 MAPPING_INIT("sb", ".sbss"),
1566 MAPPING_INIT("s2", ".sdata2"),
1567 MAPPING_INIT("sb2", ".sbss2"),
1568 MAPPING_INIT("wi", ".debug_info"),
1569 MAPPING_INIT("td", ".tdata"),
1570 MAPPING_INIT("tb", ".tbss"),
1571 MAPPING_INIT("lr", ".lrodata"),
1572 MAPPING_INIT("l", ".ldata"),
1573 MAPPING_INIT("lb", ".lbss"),
1574 };
1575 #undef MAPPING_INIT
1576
1577 const int Layout::linkonce_mapping_count =
1578 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1579
1580 // Return the name of the output section to use for a .gnu.linkonce
1581 // section. This is based on the default ELF linker script of the old
1582 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
1583 // to ".text". Set *PLEN to the length of the name. *PLEN is
1584 // initialized to the length of NAME.
1585
1586 const char*
1587 Layout::linkonce_output_name(const char* name, size_t *plen)
1588 {
1589 const char* s = name + sizeof(".gnu.linkonce") - 1;
1590 if (*s != '.')
1591 return name;
1592 ++s;
1593 const Linkonce_mapping* plm = linkonce_mapping;
1594 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1595 {
1596 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1597 {
1598 *plen = plm->tolen;
1599 return plm->to;
1600 }
1601 }
1602 return name;
1603 }
1604
1605 // Choose the output section name to use given an input section name.
1606 // Set *PLEN to the length of the name. *PLEN is initialized to the
1607 // length of NAME.
1608
1609 const char*
1610 Layout::output_section_name(const char* name, size_t* plen)
1611 {
1612 if (Layout::is_linkonce(name))
1613 {
1614 // .gnu.linkonce sections are laid out as though they were named
1615 // for the sections are placed into.
1616 return Layout::linkonce_output_name(name, plen);
1617 }
1618
1619 // gcc 4.3 generates the following sorts of section names when it
1620 // needs a section name specific to a function:
1621 // .text.FN
1622 // .rodata.FN
1623 // .sdata2.FN
1624 // .data.FN
1625 // .data.rel.FN
1626 // .data.rel.local.FN
1627 // .data.rel.ro.FN
1628 // .data.rel.ro.local.FN
1629 // .sdata.FN
1630 // .bss.FN
1631 // .sbss.FN
1632 // .tdata.FN
1633 // .tbss.FN
1634
1635 // The GNU linker maps all of those to the part before the .FN,
1636 // except that .data.rel.local.FN is mapped to .data, and
1637 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
1638 // beginning with .data.rel.ro.local are grouped together.
1639
1640 // For an anonymous namespace, the string FN can contain a '.'.
1641
1642 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
1643 // GNU linker maps to .rodata.
1644
1645 // The .data.rel.ro sections enable a security feature triggered by
1646 // the -z relro option. Section which need to be relocated at
1647 // program startup time but which may be readonly after startup are
1648 // grouped into .data.rel.ro. They are then put into a PT_GNU_RELRO
1649 // segment. The dynamic linker will make that segment writable,
1650 // perform relocations, and then make it read-only. FIXME: We do
1651 // not yet implement this optimization.
1652
1653 // It is hard to handle this in a principled way.
1654
1655 // These are the rules we follow:
1656
1657 // If the section name has no initial '.', or no dot other than an
1658 // initial '.', we use the name unchanged (i.e., "mysection" and
1659 // ".text" are unchanged).
1660
1661 // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
1662
1663 // Otherwise, we drop the second '.' and everything that comes after
1664 // it (i.e., ".text.XXX" becomes ".text").
1665
1666 const char* s = name;
1667 if (*s != '.')
1668 return name;
1669 ++s;
1670 const char* sdot = strchr(s, '.');
1671 if (sdot == NULL)
1672 return name;
1673
1674 const char* const data_rel_ro = ".data.rel.ro";
1675 if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
1676 {
1677 *plen = strlen(data_rel_ro);
1678 return data_rel_ro;
1679 }
1680
1681 *plen = sdot - name;
1682 return name;
1683 }
1684
1685 // Record the signature of a comdat section, and return whether to
1686 // include it in the link. If GROUP is true, this is a regular
1687 // section group. If GROUP is false, this is a group signature
1688 // derived from the name of a linkonce section. We want linkonce
1689 // signatures and group signatures to block each other, but we don't
1690 // want a linkonce signature to block another linkonce signature.
1691
1692 bool
1693 Layout::add_comdat(const char* signature, bool group)
1694 {
1695 std::string sig(signature);
1696 std::pair<Signatures::iterator, bool> ins(
1697 this->signatures_.insert(std::make_pair(sig, group)));
1698
1699 if (ins.second)
1700 {
1701 // This is the first time we've seen this signature.
1702 return true;
1703 }
1704
1705 if (ins.first->second)
1706 {
1707 // We've already seen a real section group with this signature.
1708 return false;
1709 }
1710 else if (group)
1711 {
1712 // This is a real section group, and we've already seen a
1713 // linkonce section with this signature. Record that we've seen
1714 // a section group, and don't include this section group.
1715 ins.first->second = true;
1716 return false;
1717 }
1718 else
1719 {
1720 // We've already seen a linkonce section and this is a linkonce
1721 // section. These don't block each other--this may be the same
1722 // symbol name with different section types.
1723 return true;
1724 }
1725 }
1726
1727 // Write out data not associated with a section or the symbol table.
1728
1729 void
1730 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
1731 {
1732 if (!parameters->strip_all())
1733 {
1734 const Output_section* symtab_section = this->symtab_section_;
1735 for (Section_list::const_iterator p = this->section_list_.begin();
1736 p != this->section_list_.end();
1737 ++p)
1738 {
1739 if ((*p)->needs_symtab_index())
1740 {
1741 gold_assert(symtab_section != NULL);
1742 unsigned int index = (*p)->symtab_index();
1743 gold_assert(index > 0 && index != -1U);
1744 off_t off = (symtab_section->offset()
1745 + index * symtab_section->entsize());
1746 symtab->write_section_symbol(*p, of, off);
1747 }
1748 }
1749 }
1750
1751 const Output_section* dynsym_section = this->dynsym_section_;
1752 for (Section_list::const_iterator p = this->section_list_.begin();
1753 p != this->section_list_.end();
1754 ++p)
1755 {
1756 if ((*p)->needs_dynsym_index())
1757 {
1758 gold_assert(dynsym_section != NULL);
1759 unsigned int index = (*p)->dynsym_index();
1760 gold_assert(index > 0 && index != -1U);
1761 off_t off = (dynsym_section->offset()
1762 + index * dynsym_section->entsize());
1763 symtab->write_section_symbol(*p, of, off);
1764 }
1765 }
1766
1767 // Write out the Output_sections. Most won't have anything to
1768 // write, since most of the data will come from input sections which
1769 // are handled elsewhere. But some Output_sections do have
1770 // Output_data.
1771 for (Section_list::const_iterator p = this->section_list_.begin();
1772 p != this->section_list_.end();
1773 ++p)
1774 (*p)->write(of);
1775
1776 // Write out the Output_data which are not in an Output_section.
1777 for (Data_list::const_iterator p = this->special_output_list_.begin();
1778 p != this->special_output_list_.end();
1779 ++p)
1780 (*p)->write(of);
1781 }
1782
1783 // Write_data_task methods.
1784
1785 // We can always run this task.
1786
1787 Task::Is_runnable_type
1788 Write_data_task::is_runnable(Workqueue*)
1789 {
1790 return IS_RUNNABLE;
1791 }
1792
1793 // We need to unlock FINAL_BLOCKER when finished.
1794
1795 Task_locker*
1796 Write_data_task::locks(Workqueue* workqueue)
1797 {
1798 return new Task_locker_block(*this->final_blocker_, workqueue);
1799 }
1800
1801 // Run the task--write out the data.
1802
1803 void
1804 Write_data_task::run(Workqueue*)
1805 {
1806 this->layout_->write_data(this->symtab_, this->of_);
1807 }
1808
1809 // Write_symbols_task methods.
1810
1811 // We can always run this task.
1812
1813 Task::Is_runnable_type
1814 Write_symbols_task::is_runnable(Workqueue*)
1815 {
1816 return IS_RUNNABLE;
1817 }
1818
1819 // We need to unlock FINAL_BLOCKER when finished.
1820
1821 Task_locker*
1822 Write_symbols_task::locks(Workqueue* workqueue)
1823 {
1824 return new Task_locker_block(*this->final_blocker_, workqueue);
1825 }
1826
1827 // Run the task--write out the symbols.
1828
1829 void
1830 Write_symbols_task::run(Workqueue*)
1831 {
1832 this->symtab_->write_globals(this->target_, this->sympool_, this->dynpool_,
1833 this->of_);
1834 }
1835
1836 // Close_task_runner methods.
1837
1838 // Run the task--close the file.
1839
1840 void
1841 Close_task_runner::run(Workqueue*)
1842 {
1843 this->of_->close();
1844 }
1845
1846 // Instantiate the templates we need. We could use the configure
1847 // script to restrict this to only the ones for implemented targets.
1848
1849 #ifdef HAVE_TARGET_32_LITTLE
1850 template
1851 Output_section*
1852 Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
1853 const elfcpp::Shdr<32, false>& shdr, off_t*);
1854 #endif
1855
1856 #ifdef HAVE_TARGET_32_BIG
1857 template
1858 Output_section*
1859 Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
1860 const elfcpp::Shdr<32, true>& shdr, off_t*);
1861 #endif
1862
1863 #ifdef HAVE_TARGET_64_LITTLE
1864 template
1865 Output_section*
1866 Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
1867 const elfcpp::Shdr<64, false>& shdr, off_t*);
1868 #endif
1869
1870 #ifdef HAVE_TARGET_64_BIG
1871 template
1872 Output_section*
1873 Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
1874 const elfcpp::Shdr<64, true>& shdr, off_t*);
1875 #endif
1876
1877
1878 } // End namespace gold.
This page took 0.07845 seconds and 5 git commands to generate.