PR gold/12898
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "object.h"
50 #include "reloc.h"
51 #include "descriptors.h"
52 #include "plugin.h"
53 #include "incremental.h"
54 #include "layout.h"
55
56 namespace gold
57 {
58
59 // Class Free_list.
60
61 // The total number of free lists used.
62 unsigned int Free_list::num_lists = 0;
63 // The total number of free list nodes used.
64 unsigned int Free_list::num_nodes = 0;
65 // The total number of calls to Free_list::remove.
66 unsigned int Free_list::num_removes = 0;
67 // The total number of nodes visited during calls to Free_list::remove.
68 unsigned int Free_list::num_remove_visits = 0;
69 // The total number of calls to Free_list::allocate.
70 unsigned int Free_list::num_allocates = 0;
71 // The total number of nodes visited during calls to Free_list::allocate.
72 unsigned int Free_list::num_allocate_visits = 0;
73
74 // Initialize the free list. Creates a single free list node that
75 // describes the entire region of length LEN. If EXTEND is true,
76 // allocate() is allowed to extend the region beyond its initial
77 // length.
78
79 void
80 Free_list::init(off_t len, bool extend)
81 {
82 this->list_.push_front(Free_list_node(0, len));
83 this->last_remove_ = this->list_.begin();
84 this->extend_ = extend;
85 this->length_ = len;
86 ++Free_list::num_lists;
87 ++Free_list::num_nodes;
88 }
89
90 // Remove a chunk from the free list. Because we start with a single
91 // node that covers the entire section, and remove chunks from it one
92 // at a time, we do not need to coalesce chunks or handle cases that
93 // span more than one free node. We expect to remove chunks from the
94 // free list in order, and we expect to have only a few chunks of free
95 // space left (corresponding to files that have changed since the last
96 // incremental link), so a simple linear list should provide sufficient
97 // performance.
98
99 void
100 Free_list::remove(off_t start, off_t end)
101 {
102 if (start == end)
103 return;
104 gold_assert(start < end);
105
106 ++Free_list::num_removes;
107
108 Iterator p = this->last_remove_;
109 if (p->start_ > start)
110 p = this->list_.begin();
111
112 for (; p != this->list_.end(); ++p)
113 {
114 ++Free_list::num_remove_visits;
115 // Find a node that wholly contains the indicated region.
116 if (p->start_ <= start && p->end_ >= end)
117 {
118 // Case 1: the indicated region spans the whole node.
119 // Add some fuzz to avoid creating tiny free chunks.
120 if (p->start_ + 3 >= start && p->end_ <= end + 3)
121 p = this->list_.erase(p);
122 // Case 2: remove a chunk from the start of the node.
123 else if (p->start_ + 3 >= start)
124 p->start_ = end;
125 // Case 3: remove a chunk from the end of the node.
126 else if (p->end_ <= end + 3)
127 p->end_ = start;
128 // Case 4: remove a chunk from the middle, and split
129 // the node into two.
130 else
131 {
132 Free_list_node newnode(p->start_, start);
133 p->start_ = end;
134 this->list_.insert(p, newnode);
135 ++Free_list::num_nodes;
136 }
137 this->last_remove_ = p;
138 return;
139 }
140 }
141
142 // Did not find a node containing the given chunk. This could happen
143 // because a small chunk was already removed due to the fuzz.
144 gold_debug(DEBUG_INCREMENTAL,
145 "Free_list::remove(%d,%d) not found",
146 static_cast<int>(start), static_cast<int>(end));
147 }
148
149 // Allocate a chunk of size LEN from the free list. Returns -1ULL
150 // if a sufficiently large chunk of free space is not found.
151 // We use a simple first-fit algorithm.
152
153 off_t
154 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
155 {
156 gold_debug(DEBUG_INCREMENTAL,
157 "Free_list::allocate(%08lx, %d, %08lx)",
158 static_cast<long>(len), static_cast<int>(align),
159 static_cast<long>(minoff));
160 if (len == 0)
161 return align_address(minoff, align);
162
163 ++Free_list::num_allocates;
164
165 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
166 {
167 ++Free_list::num_allocate_visits;
168 off_t start = p->start_ > minoff ? p->start_ : minoff;
169 start = align_address(start, align);
170 off_t end = start + len;
171 if (end <= p->end_)
172 {
173 if (p->start_ + 3 >= start && p->end_ <= end + 3)
174 this->list_.erase(p);
175 else if (p->start_ + 3 >= start)
176 p->start_ = end;
177 else if (p->end_ <= end + 3)
178 p->end_ = start;
179 else
180 {
181 Free_list_node newnode(p->start_, start);
182 p->start_ = end;
183 this->list_.insert(p, newnode);
184 ++Free_list::num_nodes;
185 }
186 return start;
187 }
188 }
189 return -1;
190 }
191
192 // Dump the free list (for debugging).
193 void
194 Free_list::dump()
195 {
196 gold_info("Free list:\n start end length\n");
197 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
198 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
199 static_cast<long>(p->end_),
200 static_cast<long>(p->end_ - p->start_));
201 }
202
203 // Print the statistics for the free lists.
204 void
205 Free_list::print_stats()
206 {
207 fprintf(stderr, _("%s: total free lists: %u\n"),
208 program_name, Free_list::num_lists);
209 fprintf(stderr, _("%s: total free list nodes: %u\n"),
210 program_name, Free_list::num_nodes);
211 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
212 program_name, Free_list::num_removes);
213 fprintf(stderr, _("%s: nodes visited: %u\n"),
214 program_name, Free_list::num_remove_visits);
215 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
216 program_name, Free_list::num_allocates);
217 fprintf(stderr, _("%s: nodes visited: %u\n"),
218 program_name, Free_list::num_allocate_visits);
219 }
220
221 // Layout::Relaxation_debug_check methods.
222
223 // Check that sections and special data are in reset states.
224 // We do not save states for Output_sections and special Output_data.
225 // So we check that they have not assigned any addresses or offsets.
226 // clean_up_after_relaxation simply resets their addresses and offsets.
227 void
228 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
229 const Layout::Section_list& sections,
230 const Layout::Data_list& special_outputs)
231 {
232 for(Layout::Section_list::const_iterator p = sections.begin();
233 p != sections.end();
234 ++p)
235 gold_assert((*p)->address_and_file_offset_have_reset_values());
236
237 for(Layout::Data_list::const_iterator p = special_outputs.begin();
238 p != special_outputs.end();
239 ++p)
240 gold_assert((*p)->address_and_file_offset_have_reset_values());
241 }
242
243 // Save information of SECTIONS for checking later.
244
245 void
246 Layout::Relaxation_debug_check::read_sections(
247 const Layout::Section_list& sections)
248 {
249 for(Layout::Section_list::const_iterator p = sections.begin();
250 p != sections.end();
251 ++p)
252 {
253 Output_section* os = *p;
254 Section_info info;
255 info.output_section = os;
256 info.address = os->is_address_valid() ? os->address() : 0;
257 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
258 info.offset = os->is_offset_valid()? os->offset() : -1 ;
259 this->section_infos_.push_back(info);
260 }
261 }
262
263 // Verify SECTIONS using previously recorded information.
264
265 void
266 Layout::Relaxation_debug_check::verify_sections(
267 const Layout::Section_list& sections)
268 {
269 size_t i = 0;
270 for(Layout::Section_list::const_iterator p = sections.begin();
271 p != sections.end();
272 ++p, ++i)
273 {
274 Output_section* os = *p;
275 uint64_t address = os->is_address_valid() ? os->address() : 0;
276 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
277 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
278
279 if (i >= this->section_infos_.size())
280 {
281 gold_fatal("Section_info of %s missing.\n", os->name());
282 }
283 const Section_info& info = this->section_infos_[i];
284 if (os != info.output_section)
285 gold_fatal("Section order changed. Expecting %s but see %s\n",
286 info.output_section->name(), os->name());
287 if (address != info.address
288 || data_size != info.data_size
289 || offset != info.offset)
290 gold_fatal("Section %s changed.\n", os->name());
291 }
292 }
293
294 // Layout_task_runner methods.
295
296 // Lay out the sections. This is called after all the input objects
297 // have been read.
298
299 void
300 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
301 {
302 Layout* layout = this->layout_;
303 off_t file_size = layout->finalize(this->input_objects_,
304 this->symtab_,
305 this->target_,
306 task);
307
308 // Now we know the final size of the output file and we know where
309 // each piece of information goes.
310
311 if (this->mapfile_ != NULL)
312 {
313 this->mapfile_->print_discarded_sections(this->input_objects_);
314 layout->print_to_mapfile(this->mapfile_);
315 }
316
317 Output_file* of;
318 if (layout->incremental_base() == NULL)
319 {
320 of = new Output_file(parameters->options().output_file_name());
321 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
322 of->set_is_temporary();
323 of->open(file_size);
324 }
325 else
326 {
327 of = layout->incremental_base()->output_file();
328
329 // Apply the incremental relocations for symbols whose values
330 // have changed. We do this before we resize the file and start
331 // writing anything else to it, so that we can read the old
332 // incremental information from the file before (possibly)
333 // overwriting it.
334 if (parameters->incremental_update())
335 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
336 this->layout_,
337 of);
338
339 of->resize(file_size);
340 }
341
342 // Queue up the final set of tasks.
343 gold::queue_final_tasks(this->options_, this->input_objects_,
344 this->symtab_, layout, workqueue, of);
345 }
346
347 // Layout methods.
348
349 Layout::Layout(int number_of_input_files, Script_options* script_options)
350 : number_of_input_files_(number_of_input_files),
351 script_options_(script_options),
352 namepool_(),
353 sympool_(),
354 dynpool_(),
355 signatures_(),
356 section_name_map_(),
357 segment_list_(),
358 section_list_(),
359 unattached_section_list_(),
360 special_output_list_(),
361 section_headers_(NULL),
362 tls_segment_(NULL),
363 relro_segment_(NULL),
364 interp_segment_(NULL),
365 increase_relro_(0),
366 symtab_section_(NULL),
367 symtab_xindex_(NULL),
368 dynsym_section_(NULL),
369 dynsym_xindex_(NULL),
370 dynamic_section_(NULL),
371 dynamic_symbol_(NULL),
372 dynamic_data_(NULL),
373 eh_frame_section_(NULL),
374 eh_frame_data_(NULL),
375 added_eh_frame_data_(false),
376 eh_frame_hdr_section_(NULL),
377 build_id_note_(NULL),
378 debug_abbrev_(NULL),
379 debug_info_(NULL),
380 group_signatures_(),
381 output_file_size_(-1),
382 have_added_input_section_(false),
383 sections_are_attached_(false),
384 input_requires_executable_stack_(false),
385 input_with_gnu_stack_note_(false),
386 input_without_gnu_stack_note_(false),
387 has_static_tls_(false),
388 any_postprocessing_sections_(false),
389 resized_signatures_(false),
390 have_stabstr_section_(false),
391 incremental_inputs_(NULL),
392 record_output_section_data_from_script_(false),
393 script_output_section_data_list_(),
394 segment_states_(NULL),
395 relaxation_debug_check_(NULL),
396 incremental_base_(NULL),
397 free_list_()
398 {
399 // Make space for more than enough segments for a typical file.
400 // This is just for efficiency--it's OK if we wind up needing more.
401 this->segment_list_.reserve(12);
402
403 // We expect two unattached Output_data objects: the file header and
404 // the segment headers.
405 this->special_output_list_.reserve(2);
406
407 // Initialize structure needed for an incremental build.
408 if (parameters->incremental())
409 this->incremental_inputs_ = new Incremental_inputs;
410
411 // The section name pool is worth optimizing in all cases, because
412 // it is small, but there are often overlaps due to .rel sections.
413 this->namepool_.set_optimize();
414 }
415
416 // For incremental links, record the base file to be modified.
417
418 void
419 Layout::set_incremental_base(Incremental_binary* base)
420 {
421 this->incremental_base_ = base;
422 this->free_list_.init(base->output_file()->filesize(), true);
423 }
424
425 // Hash a key we use to look up an output section mapping.
426
427 size_t
428 Layout::Hash_key::operator()(const Layout::Key& k) const
429 {
430 return k.first + k.second.first + k.second.second;
431 }
432
433 // Returns whether the given section is in the list of
434 // debug-sections-used-by-some-version-of-gdb. Currently,
435 // we've checked versions of gdb up to and including 6.7.1.
436
437 static const char* gdb_sections[] =
438 { ".debug_abbrev",
439 // ".debug_aranges", // not used by gdb as of 6.7.1
440 ".debug_frame",
441 ".debug_info",
442 ".debug_types",
443 ".debug_line",
444 ".debug_loc",
445 ".debug_macinfo",
446 // ".debug_pubnames", // not used by gdb as of 6.7.1
447 ".debug_ranges",
448 ".debug_str",
449 };
450
451 static const char* lines_only_debug_sections[] =
452 { ".debug_abbrev",
453 // ".debug_aranges", // not used by gdb as of 6.7.1
454 // ".debug_frame",
455 ".debug_info",
456 // ".debug_types",
457 ".debug_line",
458 // ".debug_loc",
459 // ".debug_macinfo",
460 // ".debug_pubnames", // not used by gdb as of 6.7.1
461 // ".debug_ranges",
462 ".debug_str",
463 };
464
465 static inline bool
466 is_gdb_debug_section(const char* str)
467 {
468 // We can do this faster: binary search or a hashtable. But why bother?
469 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
470 if (strcmp(str, gdb_sections[i]) == 0)
471 return true;
472 return false;
473 }
474
475 static inline bool
476 is_lines_only_debug_section(const char* str)
477 {
478 // We can do this faster: binary search or a hashtable. But why bother?
479 for (size_t i = 0;
480 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
481 ++i)
482 if (strcmp(str, lines_only_debug_sections[i]) == 0)
483 return true;
484 return false;
485 }
486
487 // Sometimes we compress sections. This is typically done for
488 // sections that are not part of normal program execution (such as
489 // .debug_* sections), and where the readers of these sections know
490 // how to deal with compressed sections. This routine doesn't say for
491 // certain whether we'll compress -- it depends on commandline options
492 // as well -- just whether this section is a candidate for compression.
493 // (The Output_compressed_section class decides whether to compress
494 // a given section, and picks the name of the compressed section.)
495
496 static bool
497 is_compressible_debug_section(const char* secname)
498 {
499 return (is_prefix_of(".debug", secname));
500 }
501
502 // We may see compressed debug sections in input files. Return TRUE
503 // if this is the name of a compressed debug section.
504
505 bool
506 is_compressed_debug_section(const char* secname)
507 {
508 return (is_prefix_of(".zdebug", secname));
509 }
510
511 // Whether to include this section in the link.
512
513 template<int size, bool big_endian>
514 bool
515 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
516 const elfcpp::Shdr<size, big_endian>& shdr)
517 {
518 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
519 return false;
520
521 switch (shdr.get_sh_type())
522 {
523 case elfcpp::SHT_NULL:
524 case elfcpp::SHT_SYMTAB:
525 case elfcpp::SHT_DYNSYM:
526 case elfcpp::SHT_HASH:
527 case elfcpp::SHT_DYNAMIC:
528 case elfcpp::SHT_SYMTAB_SHNDX:
529 return false;
530
531 case elfcpp::SHT_STRTAB:
532 // Discard the sections which have special meanings in the ELF
533 // ABI. Keep others (e.g., .stabstr). We could also do this by
534 // checking the sh_link fields of the appropriate sections.
535 return (strcmp(name, ".dynstr") != 0
536 && strcmp(name, ".strtab") != 0
537 && strcmp(name, ".shstrtab") != 0);
538
539 case elfcpp::SHT_RELA:
540 case elfcpp::SHT_REL:
541 case elfcpp::SHT_GROUP:
542 // If we are emitting relocations these should be handled
543 // elsewhere.
544 gold_assert(!parameters->options().relocatable()
545 && !parameters->options().emit_relocs());
546 return false;
547
548 case elfcpp::SHT_PROGBITS:
549 if (parameters->options().strip_debug()
550 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
551 {
552 if (is_debug_info_section(name))
553 return false;
554 }
555 if (parameters->options().strip_debug_non_line()
556 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
557 {
558 // Debugging sections can only be recognized by name.
559 if (is_prefix_of(".debug", name)
560 && !is_lines_only_debug_section(name))
561 return false;
562 }
563 if (parameters->options().strip_debug_gdb()
564 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
565 {
566 // Debugging sections can only be recognized by name.
567 if (is_prefix_of(".debug", name)
568 && !is_gdb_debug_section(name))
569 return false;
570 }
571 if (parameters->options().strip_lto_sections()
572 && !parameters->options().relocatable()
573 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
574 {
575 // Ignore LTO sections containing intermediate code.
576 if (is_prefix_of(".gnu.lto_", name))
577 return false;
578 }
579 // The GNU linker strips .gnu_debuglink sections, so we do too.
580 // This is a feature used to keep debugging information in
581 // separate files.
582 if (strcmp(name, ".gnu_debuglink") == 0)
583 return false;
584 return true;
585
586 default:
587 return true;
588 }
589 }
590
591 // Return an output section named NAME, or NULL if there is none.
592
593 Output_section*
594 Layout::find_output_section(const char* name) const
595 {
596 for (Section_list::const_iterator p = this->section_list_.begin();
597 p != this->section_list_.end();
598 ++p)
599 if (strcmp((*p)->name(), name) == 0)
600 return *p;
601 return NULL;
602 }
603
604 // Return an output segment of type TYPE, with segment flags SET set
605 // and segment flags CLEAR clear. Return NULL if there is none.
606
607 Output_segment*
608 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
609 elfcpp::Elf_Word clear) const
610 {
611 for (Segment_list::const_iterator p = this->segment_list_.begin();
612 p != this->segment_list_.end();
613 ++p)
614 if (static_cast<elfcpp::PT>((*p)->type()) == type
615 && ((*p)->flags() & set) == set
616 && ((*p)->flags() & clear) == 0)
617 return *p;
618 return NULL;
619 }
620
621 // When we put a .ctors or .dtors section with more than one word into
622 // a .init_array or .fini_array section, we need to reverse the words
623 // in the .ctors/.dtors section. This is because .init_array executes
624 // constructors front to back, where .ctors executes them back to
625 // front, and vice-versa for .fini_array/.dtors. Although we do want
626 // to remap .ctors/.dtors into .init_array/.fini_array because it can
627 // be more efficient, we don't want to change the order in which
628 // constructors/destructors are run. This set just keeps track of
629 // these sections which need to be reversed. It is only changed by
630 // Layout::layout. It should be a private member of Layout, but that
631 // would require layout.h to #include object.h to get the definition
632 // of Section_id.
633 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
634
635 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
636 // .init_array/.fini_array section.
637
638 bool
639 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
640 {
641 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
642 != ctors_sections_in_init_array.end());
643 }
644
645 // Return the output section to use for section NAME with type TYPE
646 // and section flags FLAGS. NAME must be canonicalized in the string
647 // pool, and NAME_KEY is the key. ORDER is where this should appear
648 // in the output sections. IS_RELRO is true for a relro section.
649
650 Output_section*
651 Layout::get_output_section(const char* name, Stringpool::Key name_key,
652 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
653 Output_section_order order, bool is_relro)
654 {
655 elfcpp::Elf_Word lookup_type = type;
656
657 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
658 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
659 // .init_array, .fini_array, and .preinit_array sections by name
660 // whatever their type in the input file. We do this because the
661 // types are not always right in the input files.
662 if (lookup_type == elfcpp::SHT_INIT_ARRAY
663 || lookup_type == elfcpp::SHT_FINI_ARRAY
664 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
665 lookup_type = elfcpp::SHT_PROGBITS;
666
667 elfcpp::Elf_Xword lookup_flags = flags;
668
669 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
670 // read-write with read-only sections. Some other ELF linkers do
671 // not do this. FIXME: Perhaps there should be an option
672 // controlling this.
673 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
674
675 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
676 const std::pair<Key, Output_section*> v(key, NULL);
677 std::pair<Section_name_map::iterator, bool> ins(
678 this->section_name_map_.insert(v));
679
680 if (!ins.second)
681 return ins.first->second;
682 else
683 {
684 // This is the first time we've seen this name/type/flags
685 // combination. For compatibility with the GNU linker, we
686 // combine sections with contents and zero flags with sections
687 // with non-zero flags. This is a workaround for cases where
688 // assembler code forgets to set section flags. FIXME: Perhaps
689 // there should be an option to control this.
690 Output_section* os = NULL;
691
692 if (lookup_type == elfcpp::SHT_PROGBITS)
693 {
694 if (flags == 0)
695 {
696 Output_section* same_name = this->find_output_section(name);
697 if (same_name != NULL
698 && (same_name->type() == elfcpp::SHT_PROGBITS
699 || same_name->type() == elfcpp::SHT_INIT_ARRAY
700 || same_name->type() == elfcpp::SHT_FINI_ARRAY
701 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
702 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
703 os = same_name;
704 }
705 else if ((flags & elfcpp::SHF_TLS) == 0)
706 {
707 elfcpp::Elf_Xword zero_flags = 0;
708 const Key zero_key(name_key, std::make_pair(lookup_type,
709 zero_flags));
710 Section_name_map::iterator p =
711 this->section_name_map_.find(zero_key);
712 if (p != this->section_name_map_.end())
713 os = p->second;
714 }
715 }
716
717 if (os == NULL)
718 os = this->make_output_section(name, type, flags, order, is_relro);
719
720 ins.first->second = os;
721 return os;
722 }
723 }
724
725 // Pick the output section to use for section NAME, in input file
726 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
727 // linker created section. IS_INPUT_SECTION is true if we are
728 // choosing an output section for an input section found in a input
729 // file. ORDER is where this section should appear in the output
730 // sections. IS_RELRO is true for a relro section. This will return
731 // NULL if the input section should be discarded.
732
733 Output_section*
734 Layout::choose_output_section(const Relobj* relobj, const char* name,
735 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
736 bool is_input_section, Output_section_order order,
737 bool is_relro)
738 {
739 // We should not see any input sections after we have attached
740 // sections to segments.
741 gold_assert(!is_input_section || !this->sections_are_attached_);
742
743 // Some flags in the input section should not be automatically
744 // copied to the output section.
745 flags &= ~ (elfcpp::SHF_INFO_LINK
746 | elfcpp::SHF_GROUP
747 | elfcpp::SHF_MERGE
748 | elfcpp::SHF_STRINGS);
749
750 // We only clear the SHF_LINK_ORDER flag in for
751 // a non-relocatable link.
752 if (!parameters->options().relocatable())
753 flags &= ~elfcpp::SHF_LINK_ORDER;
754
755 if (this->script_options_->saw_sections_clause())
756 {
757 // We are using a SECTIONS clause, so the output section is
758 // chosen based only on the name.
759
760 Script_sections* ss = this->script_options_->script_sections();
761 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
762 Output_section** output_section_slot;
763 Script_sections::Section_type script_section_type;
764 const char* orig_name = name;
765 name = ss->output_section_name(file_name, name, &output_section_slot,
766 &script_section_type);
767 if (name == NULL)
768 {
769 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
770 "because it is not allowed by the "
771 "SECTIONS clause of the linker script"),
772 orig_name);
773 // The SECTIONS clause says to discard this input section.
774 return NULL;
775 }
776
777 // We can only handle script section types ST_NONE and ST_NOLOAD.
778 switch (script_section_type)
779 {
780 case Script_sections::ST_NONE:
781 break;
782 case Script_sections::ST_NOLOAD:
783 flags &= elfcpp::SHF_ALLOC;
784 break;
785 default:
786 gold_unreachable();
787 }
788
789 // If this is an orphan section--one not mentioned in the linker
790 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
791 // default processing below.
792
793 if (output_section_slot != NULL)
794 {
795 if (*output_section_slot != NULL)
796 {
797 (*output_section_slot)->update_flags_for_input_section(flags);
798 return *output_section_slot;
799 }
800
801 // We don't put sections found in the linker script into
802 // SECTION_NAME_MAP_. That keeps us from getting confused
803 // if an orphan section is mapped to a section with the same
804 // name as one in the linker script.
805
806 name = this->namepool_.add(name, false, NULL);
807
808 Output_section* os = this->make_output_section(name, type, flags,
809 order, is_relro);
810
811 os->set_found_in_sections_clause();
812
813 // Special handling for NOLOAD sections.
814 if (script_section_type == Script_sections::ST_NOLOAD)
815 {
816 os->set_is_noload();
817
818 // The constructor of Output_section sets addresses of non-ALLOC
819 // sections to 0 by default. We don't want that for NOLOAD
820 // sections even if they have no SHF_ALLOC flag.
821 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
822 && os->is_address_valid())
823 {
824 gold_assert(os->address() == 0
825 && !os->is_offset_valid()
826 && !os->is_data_size_valid());
827 os->reset_address_and_file_offset();
828 }
829 }
830
831 *output_section_slot = os;
832 return os;
833 }
834 }
835
836 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
837
838 size_t len = strlen(name);
839 char* uncompressed_name = NULL;
840
841 // Compressed debug sections should be mapped to the corresponding
842 // uncompressed section.
843 if (is_compressed_debug_section(name))
844 {
845 uncompressed_name = new char[len];
846 uncompressed_name[0] = '.';
847 gold_assert(name[0] == '.' && name[1] == 'z');
848 strncpy(&uncompressed_name[1], &name[2], len - 2);
849 uncompressed_name[len - 1] = '\0';
850 len -= 1;
851 name = uncompressed_name;
852 }
853
854 // Turn NAME from the name of the input section into the name of the
855 // output section.
856 if (is_input_section
857 && !this->script_options_->saw_sections_clause()
858 && !parameters->options().relocatable())
859 name = Layout::output_section_name(relobj, name, &len);
860
861 Stringpool::Key name_key;
862 name = this->namepool_.add_with_length(name, len, true, &name_key);
863
864 if (uncompressed_name != NULL)
865 delete[] uncompressed_name;
866
867 // Find or make the output section. The output section is selected
868 // based on the section name, type, and flags.
869 return this->get_output_section(name, name_key, type, flags, order, is_relro);
870 }
871
872 // For incremental links, record the initial fixed layout of a section
873 // from the base file, and return a pointer to the Output_section.
874
875 template<int size, bool big_endian>
876 Output_section*
877 Layout::init_fixed_output_section(const char* name,
878 elfcpp::Shdr<size, big_endian>& shdr)
879 {
880 unsigned int sh_type = shdr.get_sh_type();
881
882 // We preserve the layout of PROGBITS, NOBITS, and NOTE sections.
883 // All others will be created from scratch and reallocated.
884 if (sh_type != elfcpp::SHT_PROGBITS
885 && sh_type != elfcpp::SHT_NOBITS
886 && sh_type != elfcpp::SHT_NOTE)
887 return NULL;
888
889 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
890 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
891 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
892 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
893 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
894 shdr.get_sh_addralign();
895
896 // Make the output section.
897 Stringpool::Key name_key;
898 name = this->namepool_.add(name, true, &name_key);
899 Output_section* os = this->get_output_section(name, name_key, sh_type,
900 sh_flags, ORDER_INVALID, false);
901 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
902 if (sh_type != elfcpp::SHT_NOBITS)
903 this->free_list_.remove(sh_offset, sh_offset + sh_size);
904 return os;
905 }
906
907 // Return the output section to use for input section SHNDX, with name
908 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
909 // index of a relocation section which applies to this section, or 0
910 // if none, or -1U if more than one. RELOC_TYPE is the type of the
911 // relocation section if there is one. Set *OFF to the offset of this
912 // input section without the output section. Return NULL if the
913 // section should be discarded. Set *OFF to -1 if the section
914 // contents should not be written directly to the output file, but
915 // will instead receive special handling.
916
917 template<int size, bool big_endian>
918 Output_section*
919 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
920 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
921 unsigned int reloc_shndx, unsigned int, off_t* off)
922 {
923 *off = 0;
924
925 if (!this->include_section(object, name, shdr))
926 return NULL;
927
928 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
929
930 // In a relocatable link a grouped section must not be combined with
931 // any other sections.
932 Output_section* os;
933 if (parameters->options().relocatable()
934 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
935 {
936 name = this->namepool_.add(name, true, NULL);
937 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
938 ORDER_INVALID, false);
939 }
940 else
941 {
942 os = this->choose_output_section(object, name, sh_type,
943 shdr.get_sh_flags(), true,
944 ORDER_INVALID, false);
945 if (os == NULL)
946 return NULL;
947 }
948
949 // By default the GNU linker sorts input sections whose names match
950 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
951 // sections are sorted by name. This is used to implement
952 // constructor priority ordering. We are compatible. When we put
953 // .ctor sections in .init_array and .dtor sections in .fini_array,
954 // we must also sort plain .ctor and .dtor sections.
955 if (!this->script_options_->saw_sections_clause()
956 && !parameters->options().relocatable()
957 && (is_prefix_of(".ctors.", name)
958 || is_prefix_of(".dtors.", name)
959 || is_prefix_of(".init_array.", name)
960 || is_prefix_of(".fini_array.", name)
961 || (parameters->options().ctors_in_init_array()
962 && (strcmp(name, ".ctors") == 0
963 || strcmp(name, ".dtors") == 0))))
964 os->set_must_sort_attached_input_sections();
965
966 // If this is a .ctors or .ctors.* section being mapped to a
967 // .init_array section, or a .dtors or .dtors.* section being mapped
968 // to a .fini_array section, we will need to reverse the words if
969 // there is more than one. Record this section for later. See
970 // ctors_sections_in_init_array above.
971 if (!this->script_options_->saw_sections_clause()
972 && !parameters->options().relocatable()
973 && shdr.get_sh_size() > size / 8
974 && (((strcmp(name, ".ctors") == 0
975 || is_prefix_of(".ctors.", name))
976 && strcmp(os->name(), ".init_array") == 0)
977 || ((strcmp(name, ".dtors") == 0
978 || is_prefix_of(".dtors.", name))
979 && strcmp(os->name(), ".fini_array") == 0)))
980 ctors_sections_in_init_array.insert(Section_id(object, shndx));
981
982 // FIXME: Handle SHF_LINK_ORDER somewhere.
983
984 elfcpp::Elf_Xword orig_flags = os->flags();
985
986 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
987 this->script_options_->saw_sections_clause());
988
989 // If the flags changed, we may have to change the order.
990 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
991 {
992 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
993 elfcpp::Elf_Xword new_flags =
994 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
995 if (orig_flags != new_flags)
996 os->set_order(this->default_section_order(os, false));
997 }
998
999 this->have_added_input_section_ = true;
1000
1001 return os;
1002 }
1003
1004 // Handle a relocation section when doing a relocatable link.
1005
1006 template<int size, bool big_endian>
1007 Output_section*
1008 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1009 unsigned int,
1010 const elfcpp::Shdr<size, big_endian>& shdr,
1011 Output_section* data_section,
1012 Relocatable_relocs* rr)
1013 {
1014 gold_assert(parameters->options().relocatable()
1015 || parameters->options().emit_relocs());
1016
1017 int sh_type = shdr.get_sh_type();
1018
1019 std::string name;
1020 if (sh_type == elfcpp::SHT_REL)
1021 name = ".rel";
1022 else if (sh_type == elfcpp::SHT_RELA)
1023 name = ".rela";
1024 else
1025 gold_unreachable();
1026 name += data_section->name();
1027
1028 // In a relocatable link relocs for a grouped section must not be
1029 // combined with other reloc sections.
1030 Output_section* os;
1031 if (!parameters->options().relocatable()
1032 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1033 os = this->choose_output_section(object, name.c_str(), sh_type,
1034 shdr.get_sh_flags(), false,
1035 ORDER_INVALID, false);
1036 else
1037 {
1038 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1039 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1040 ORDER_INVALID, false);
1041 }
1042
1043 os->set_should_link_to_symtab();
1044 os->set_info_section(data_section);
1045
1046 Output_section_data* posd;
1047 if (sh_type == elfcpp::SHT_REL)
1048 {
1049 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1050 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1051 size,
1052 big_endian>(rr);
1053 }
1054 else if (sh_type == elfcpp::SHT_RELA)
1055 {
1056 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1057 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1058 size,
1059 big_endian>(rr);
1060 }
1061 else
1062 gold_unreachable();
1063
1064 os->add_output_section_data(posd);
1065 rr->set_output_data(posd);
1066
1067 return os;
1068 }
1069
1070 // Handle a group section when doing a relocatable link.
1071
1072 template<int size, bool big_endian>
1073 void
1074 Layout::layout_group(Symbol_table* symtab,
1075 Sized_relobj_file<size, big_endian>* object,
1076 unsigned int,
1077 const char* group_section_name,
1078 const char* signature,
1079 const elfcpp::Shdr<size, big_endian>& shdr,
1080 elfcpp::Elf_Word flags,
1081 std::vector<unsigned int>* shndxes)
1082 {
1083 gold_assert(parameters->options().relocatable());
1084 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1085 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1086 Output_section* os = this->make_output_section(group_section_name,
1087 elfcpp::SHT_GROUP,
1088 shdr.get_sh_flags(),
1089 ORDER_INVALID, false);
1090
1091 // We need to find a symbol with the signature in the symbol table.
1092 // If we don't find one now, we need to look again later.
1093 Symbol* sym = symtab->lookup(signature, NULL);
1094 if (sym != NULL)
1095 os->set_info_symndx(sym);
1096 else
1097 {
1098 // Reserve some space to minimize reallocations.
1099 if (this->group_signatures_.empty())
1100 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1101
1102 // We will wind up using a symbol whose name is the signature.
1103 // So just put the signature in the symbol name pool to save it.
1104 signature = symtab->canonicalize_name(signature);
1105 this->group_signatures_.push_back(Group_signature(os, signature));
1106 }
1107
1108 os->set_should_link_to_symtab();
1109 os->set_entsize(4);
1110
1111 section_size_type entry_count =
1112 convert_to_section_size_type(shdr.get_sh_size() / 4);
1113 Output_section_data* posd =
1114 new Output_data_group<size, big_endian>(object, entry_count, flags,
1115 shndxes);
1116 os->add_output_section_data(posd);
1117 }
1118
1119 // Special GNU handling of sections name .eh_frame. They will
1120 // normally hold exception frame data as defined by the C++ ABI
1121 // (http://codesourcery.com/cxx-abi/).
1122
1123 template<int size, bool big_endian>
1124 Output_section*
1125 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1126 const unsigned char* symbols,
1127 off_t symbols_size,
1128 const unsigned char* symbol_names,
1129 off_t symbol_names_size,
1130 unsigned int shndx,
1131 const elfcpp::Shdr<size, big_endian>& shdr,
1132 unsigned int reloc_shndx, unsigned int reloc_type,
1133 off_t* off)
1134 {
1135 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
1136 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1137
1138 const char* const name = ".eh_frame";
1139 Output_section* os = this->choose_output_section(object, name,
1140 elfcpp::SHT_PROGBITS,
1141 elfcpp::SHF_ALLOC, false,
1142 ORDER_EHFRAME, false);
1143 if (os == NULL)
1144 return NULL;
1145
1146 if (this->eh_frame_section_ == NULL)
1147 {
1148 this->eh_frame_section_ = os;
1149 this->eh_frame_data_ = new Eh_frame();
1150
1151 // For incremental linking, we do not optimize .eh_frame sections
1152 // or create a .eh_frame_hdr section.
1153 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1154 {
1155 Output_section* hdr_os =
1156 this->choose_output_section(NULL, ".eh_frame_hdr",
1157 elfcpp::SHT_PROGBITS,
1158 elfcpp::SHF_ALLOC, false,
1159 ORDER_EHFRAME, false);
1160
1161 if (hdr_os != NULL)
1162 {
1163 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1164 this->eh_frame_data_);
1165 hdr_os->add_output_section_data(hdr_posd);
1166
1167 hdr_os->set_after_input_sections();
1168
1169 if (!this->script_options_->saw_phdrs_clause())
1170 {
1171 Output_segment* hdr_oseg;
1172 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1173 elfcpp::PF_R);
1174 hdr_oseg->add_output_section_to_nonload(hdr_os,
1175 elfcpp::PF_R);
1176 }
1177
1178 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1179 }
1180 }
1181 }
1182
1183 gold_assert(this->eh_frame_section_ == os);
1184
1185 elfcpp::Elf_Xword orig_flags = os->flags();
1186
1187 if (!parameters->incremental()
1188 && this->eh_frame_data_->add_ehframe_input_section(object,
1189 symbols,
1190 symbols_size,
1191 symbol_names,
1192 symbol_names_size,
1193 shndx,
1194 reloc_shndx,
1195 reloc_type))
1196 {
1197 os->update_flags_for_input_section(shdr.get_sh_flags());
1198
1199 // A writable .eh_frame section is a RELRO section.
1200 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1201 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1202 {
1203 os->set_is_relro();
1204 os->set_order(ORDER_RELRO);
1205 }
1206
1207 // We found a .eh_frame section we are going to optimize, so now
1208 // we can add the set of optimized sections to the output
1209 // section. We need to postpone adding this until we've found a
1210 // section we can optimize so that the .eh_frame section in
1211 // crtbegin.o winds up at the start of the output section.
1212 if (!this->added_eh_frame_data_)
1213 {
1214 os->add_output_section_data(this->eh_frame_data_);
1215 this->added_eh_frame_data_ = true;
1216 }
1217 *off = -1;
1218 }
1219 else
1220 {
1221 // We couldn't handle this .eh_frame section for some reason.
1222 // Add it as a normal section.
1223 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1224 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1225 saw_sections_clause);
1226 this->have_added_input_section_ = true;
1227
1228 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1229 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1230 os->set_order(this->default_section_order(os, false));
1231 }
1232
1233 return os;
1234 }
1235
1236 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1237 // the output section.
1238
1239 Output_section*
1240 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1241 elfcpp::Elf_Xword flags,
1242 Output_section_data* posd,
1243 Output_section_order order, bool is_relro)
1244 {
1245 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1246 false, order, is_relro);
1247 if (os != NULL)
1248 os->add_output_section_data(posd);
1249 return os;
1250 }
1251
1252 // Map section flags to segment flags.
1253
1254 elfcpp::Elf_Word
1255 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1256 {
1257 elfcpp::Elf_Word ret = elfcpp::PF_R;
1258 if ((flags & elfcpp::SHF_WRITE) != 0)
1259 ret |= elfcpp::PF_W;
1260 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1261 ret |= elfcpp::PF_X;
1262 return ret;
1263 }
1264
1265 // Make a new Output_section, and attach it to segments as
1266 // appropriate. ORDER is the order in which this section should
1267 // appear in the output segment. IS_RELRO is true if this is a relro
1268 // (read-only after relocations) section.
1269
1270 Output_section*
1271 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1272 elfcpp::Elf_Xword flags,
1273 Output_section_order order, bool is_relro)
1274 {
1275 Output_section* os;
1276 if ((flags & elfcpp::SHF_ALLOC) == 0
1277 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1278 && is_compressible_debug_section(name))
1279 os = new Output_compressed_section(&parameters->options(), name, type,
1280 flags);
1281 else if ((flags & elfcpp::SHF_ALLOC) == 0
1282 && parameters->options().strip_debug_non_line()
1283 && strcmp(".debug_abbrev", name) == 0)
1284 {
1285 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1286 name, type, flags);
1287 if (this->debug_info_)
1288 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1289 }
1290 else if ((flags & elfcpp::SHF_ALLOC) == 0
1291 && parameters->options().strip_debug_non_line()
1292 && strcmp(".debug_info", name) == 0)
1293 {
1294 os = this->debug_info_ = new Output_reduced_debug_info_section(
1295 name, type, flags);
1296 if (this->debug_abbrev_)
1297 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1298 }
1299 else
1300 {
1301 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1302 // not have correct section types. Force them here.
1303 if (type == elfcpp::SHT_PROGBITS)
1304 {
1305 if (is_prefix_of(".init_array", name))
1306 type = elfcpp::SHT_INIT_ARRAY;
1307 else if (is_prefix_of(".preinit_array", name))
1308 type = elfcpp::SHT_PREINIT_ARRAY;
1309 else if (is_prefix_of(".fini_array", name))
1310 type = elfcpp::SHT_FINI_ARRAY;
1311 }
1312
1313 // FIXME: const_cast is ugly.
1314 Target* target = const_cast<Target*>(&parameters->target());
1315 os = target->make_output_section(name, type, flags);
1316 }
1317
1318 // With -z relro, we have to recognize the special sections by name.
1319 // There is no other way.
1320 bool is_relro_local = false;
1321 if (!this->script_options_->saw_sections_clause()
1322 && parameters->options().relro()
1323 && type == elfcpp::SHT_PROGBITS
1324 && (flags & elfcpp::SHF_ALLOC) != 0
1325 && (flags & elfcpp::SHF_WRITE) != 0)
1326 {
1327 if (strcmp(name, ".data.rel.ro") == 0)
1328 is_relro = true;
1329 else if (strcmp(name, ".data.rel.ro.local") == 0)
1330 {
1331 is_relro = true;
1332 is_relro_local = true;
1333 }
1334 else if (type == elfcpp::SHT_INIT_ARRAY
1335 || type == elfcpp::SHT_FINI_ARRAY
1336 || type == elfcpp::SHT_PREINIT_ARRAY)
1337 is_relro = true;
1338 else if (strcmp(name, ".ctors") == 0
1339 || strcmp(name, ".dtors") == 0
1340 || strcmp(name, ".jcr") == 0)
1341 is_relro = true;
1342 }
1343
1344 if (is_relro)
1345 os->set_is_relro();
1346
1347 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1348 order = this->default_section_order(os, is_relro_local);
1349
1350 os->set_order(order);
1351
1352 parameters->target().new_output_section(os);
1353
1354 this->section_list_.push_back(os);
1355
1356 // The GNU linker by default sorts some sections by priority, so we
1357 // do the same. We need to know that this might happen before we
1358 // attach any input sections.
1359 if (!this->script_options_->saw_sections_clause()
1360 && !parameters->options().relocatable()
1361 && (strcmp(name, ".init_array") == 0
1362 || strcmp(name, ".fini_array") == 0
1363 || (!parameters->options().ctors_in_init_array()
1364 && (strcmp(name, ".ctors") == 0
1365 || strcmp(name, ".dtors") == 0))))
1366 os->set_may_sort_attached_input_sections();
1367
1368 // Check for .stab*str sections, as .stab* sections need to link to
1369 // them.
1370 if (type == elfcpp::SHT_STRTAB
1371 && !this->have_stabstr_section_
1372 && strncmp(name, ".stab", 5) == 0
1373 && strcmp(name + strlen(name) - 3, "str") == 0)
1374 this->have_stabstr_section_ = true;
1375
1376 // If we have already attached the sections to segments, then we
1377 // need to attach this one now. This happens for sections created
1378 // directly by the linker.
1379 if (this->sections_are_attached_)
1380 this->attach_section_to_segment(os);
1381
1382 return os;
1383 }
1384
1385 // Return the default order in which a section should be placed in an
1386 // output segment. This function captures a lot of the ideas in
1387 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1388 // linker created section is normally set when the section is created;
1389 // this function is used for input sections.
1390
1391 Output_section_order
1392 Layout::default_section_order(Output_section* os, bool is_relro_local)
1393 {
1394 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1395 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1396 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1397 bool is_bss = false;
1398
1399 switch (os->type())
1400 {
1401 default:
1402 case elfcpp::SHT_PROGBITS:
1403 break;
1404 case elfcpp::SHT_NOBITS:
1405 is_bss = true;
1406 break;
1407 case elfcpp::SHT_RELA:
1408 case elfcpp::SHT_REL:
1409 if (!is_write)
1410 return ORDER_DYNAMIC_RELOCS;
1411 break;
1412 case elfcpp::SHT_HASH:
1413 case elfcpp::SHT_DYNAMIC:
1414 case elfcpp::SHT_SHLIB:
1415 case elfcpp::SHT_DYNSYM:
1416 case elfcpp::SHT_GNU_HASH:
1417 case elfcpp::SHT_GNU_verdef:
1418 case elfcpp::SHT_GNU_verneed:
1419 case elfcpp::SHT_GNU_versym:
1420 if (!is_write)
1421 return ORDER_DYNAMIC_LINKER;
1422 break;
1423 case elfcpp::SHT_NOTE:
1424 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1425 }
1426
1427 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1428 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1429
1430 if (!is_bss && !is_write)
1431 {
1432 if (is_execinstr)
1433 {
1434 if (strcmp(os->name(), ".init") == 0)
1435 return ORDER_INIT;
1436 else if (strcmp(os->name(), ".fini") == 0)
1437 return ORDER_FINI;
1438 }
1439 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1440 }
1441
1442 if (os->is_relro())
1443 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1444
1445 if (os->is_small_section())
1446 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1447 if (os->is_large_section())
1448 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1449
1450 return is_bss ? ORDER_BSS : ORDER_DATA;
1451 }
1452
1453 // Attach output sections to segments. This is called after we have
1454 // seen all the input sections.
1455
1456 void
1457 Layout::attach_sections_to_segments()
1458 {
1459 for (Section_list::iterator p = this->section_list_.begin();
1460 p != this->section_list_.end();
1461 ++p)
1462 this->attach_section_to_segment(*p);
1463
1464 this->sections_are_attached_ = true;
1465 }
1466
1467 // Attach an output section to a segment.
1468
1469 void
1470 Layout::attach_section_to_segment(Output_section* os)
1471 {
1472 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1473 this->unattached_section_list_.push_back(os);
1474 else
1475 this->attach_allocated_section_to_segment(os);
1476 }
1477
1478 // Attach an allocated output section to a segment.
1479
1480 void
1481 Layout::attach_allocated_section_to_segment(Output_section* os)
1482 {
1483 elfcpp::Elf_Xword flags = os->flags();
1484 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1485
1486 if (parameters->options().relocatable())
1487 return;
1488
1489 // If we have a SECTIONS clause, we can't handle the attachment to
1490 // segments until after we've seen all the sections.
1491 if (this->script_options_->saw_sections_clause())
1492 return;
1493
1494 gold_assert(!this->script_options_->saw_phdrs_clause());
1495
1496 // This output section goes into a PT_LOAD segment.
1497
1498 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1499
1500 // Check for --section-start.
1501 uint64_t addr;
1502 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1503
1504 // In general the only thing we really care about for PT_LOAD
1505 // segments is whether or not they are writable or executable,
1506 // so that is how we search for them.
1507 // Large data sections also go into their own PT_LOAD segment.
1508 // People who need segments sorted on some other basis will
1509 // have to use a linker script.
1510
1511 Segment_list::const_iterator p;
1512 for (p = this->segment_list_.begin();
1513 p != this->segment_list_.end();
1514 ++p)
1515 {
1516 if ((*p)->type() != elfcpp::PT_LOAD)
1517 continue;
1518 if (!parameters->options().omagic()
1519 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1520 continue;
1521 if (parameters->options().rosegment()
1522 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1523 continue;
1524 // If -Tbss was specified, we need to separate the data and BSS
1525 // segments.
1526 if (parameters->options().user_set_Tbss())
1527 {
1528 if ((os->type() == elfcpp::SHT_NOBITS)
1529 == (*p)->has_any_data_sections())
1530 continue;
1531 }
1532 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1533 continue;
1534
1535 if (is_address_set)
1536 {
1537 if ((*p)->are_addresses_set())
1538 continue;
1539
1540 (*p)->add_initial_output_data(os);
1541 (*p)->update_flags_for_output_section(seg_flags);
1542 (*p)->set_addresses(addr, addr);
1543 break;
1544 }
1545
1546 (*p)->add_output_section_to_load(this, os, seg_flags);
1547 break;
1548 }
1549
1550 if (p == this->segment_list_.end())
1551 {
1552 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1553 seg_flags);
1554 if (os->is_large_data_section())
1555 oseg->set_is_large_data_segment();
1556 oseg->add_output_section_to_load(this, os, seg_flags);
1557 if (is_address_set)
1558 oseg->set_addresses(addr, addr);
1559 }
1560
1561 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1562 // segment.
1563 if (os->type() == elfcpp::SHT_NOTE)
1564 {
1565 // See if we already have an equivalent PT_NOTE segment.
1566 for (p = this->segment_list_.begin();
1567 p != segment_list_.end();
1568 ++p)
1569 {
1570 if ((*p)->type() == elfcpp::PT_NOTE
1571 && (((*p)->flags() & elfcpp::PF_W)
1572 == (seg_flags & elfcpp::PF_W)))
1573 {
1574 (*p)->add_output_section_to_nonload(os, seg_flags);
1575 break;
1576 }
1577 }
1578
1579 if (p == this->segment_list_.end())
1580 {
1581 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1582 seg_flags);
1583 oseg->add_output_section_to_nonload(os, seg_flags);
1584 }
1585 }
1586
1587 // If we see a loadable SHF_TLS section, we create a PT_TLS
1588 // segment. There can only be one such segment.
1589 if ((flags & elfcpp::SHF_TLS) != 0)
1590 {
1591 if (this->tls_segment_ == NULL)
1592 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1593 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1594 }
1595
1596 // If -z relro is in effect, and we see a relro section, we create a
1597 // PT_GNU_RELRO segment. There can only be one such segment.
1598 if (os->is_relro() && parameters->options().relro())
1599 {
1600 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1601 if (this->relro_segment_ == NULL)
1602 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1603 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1604 }
1605
1606 // If we see a section named .interp, put it into a PT_INTERP
1607 // segment. This seems broken to me, but this is what GNU ld does,
1608 // and glibc expects it.
1609 if (strcmp(os->name(), ".interp") == 0
1610 && !this->script_options_->saw_phdrs_clause())
1611 {
1612 if (this->interp_segment_ == NULL)
1613 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1614 else
1615 gold_warning(_("multiple '.interp' sections in input files "
1616 "may cause confusing PT_INTERP segment"));
1617 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1618 }
1619 }
1620
1621 // Make an output section for a script.
1622
1623 Output_section*
1624 Layout::make_output_section_for_script(
1625 const char* name,
1626 Script_sections::Section_type section_type)
1627 {
1628 name = this->namepool_.add(name, false, NULL);
1629 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1630 if (section_type == Script_sections::ST_NOLOAD)
1631 sh_flags = 0;
1632 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1633 sh_flags, ORDER_INVALID,
1634 false);
1635 os->set_found_in_sections_clause();
1636 if (section_type == Script_sections::ST_NOLOAD)
1637 os->set_is_noload();
1638 return os;
1639 }
1640
1641 // Return the number of segments we expect to see.
1642
1643 size_t
1644 Layout::expected_segment_count() const
1645 {
1646 size_t ret = this->segment_list_.size();
1647
1648 // If we didn't see a SECTIONS clause in a linker script, we should
1649 // already have the complete list of segments. Otherwise we ask the
1650 // SECTIONS clause how many segments it expects, and add in the ones
1651 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1652
1653 if (!this->script_options_->saw_sections_clause())
1654 return ret;
1655 else
1656 {
1657 const Script_sections* ss = this->script_options_->script_sections();
1658 return ret + ss->expected_segment_count(this);
1659 }
1660 }
1661
1662 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1663 // is whether we saw a .note.GNU-stack section in the object file.
1664 // GNU_STACK_FLAGS is the section flags. The flags give the
1665 // protection required for stack memory. We record this in an
1666 // executable as a PT_GNU_STACK segment. If an object file does not
1667 // have a .note.GNU-stack segment, we must assume that it is an old
1668 // object. On some targets that will force an executable stack.
1669
1670 void
1671 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1672 const Object* obj)
1673 {
1674 if (!seen_gnu_stack)
1675 {
1676 this->input_without_gnu_stack_note_ = true;
1677 if (parameters->options().warn_execstack()
1678 && parameters->target().is_default_stack_executable())
1679 gold_warning(_("%s: missing .note.GNU-stack section"
1680 " implies executable stack"),
1681 obj->name().c_str());
1682 }
1683 else
1684 {
1685 this->input_with_gnu_stack_note_ = true;
1686 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1687 {
1688 this->input_requires_executable_stack_ = true;
1689 if (parameters->options().warn_execstack()
1690 || parameters->options().is_stack_executable())
1691 gold_warning(_("%s: requires executable stack"),
1692 obj->name().c_str());
1693 }
1694 }
1695 }
1696
1697 // Create automatic note sections.
1698
1699 void
1700 Layout::create_notes()
1701 {
1702 this->create_gold_note();
1703 this->create_executable_stack_info();
1704 this->create_build_id();
1705 }
1706
1707 // Create the dynamic sections which are needed before we read the
1708 // relocs.
1709
1710 void
1711 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1712 {
1713 if (parameters->doing_static_link())
1714 return;
1715
1716 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1717 elfcpp::SHT_DYNAMIC,
1718 (elfcpp::SHF_ALLOC
1719 | elfcpp::SHF_WRITE),
1720 false, ORDER_RELRO,
1721 true);
1722
1723 this->dynamic_symbol_ =
1724 symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1725 this->dynamic_section_, 0, 0,
1726 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1727 elfcpp::STV_HIDDEN, 0, false, false);
1728
1729 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1730
1731 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1732 }
1733
1734 // For each output section whose name can be represented as C symbol,
1735 // define __start and __stop symbols for the section. This is a GNU
1736 // extension.
1737
1738 void
1739 Layout::define_section_symbols(Symbol_table* symtab)
1740 {
1741 for (Section_list::const_iterator p = this->section_list_.begin();
1742 p != this->section_list_.end();
1743 ++p)
1744 {
1745 const char* const name = (*p)->name();
1746 if (is_cident(name))
1747 {
1748 const std::string name_string(name);
1749 const std::string start_name(cident_section_start_prefix
1750 + name_string);
1751 const std::string stop_name(cident_section_stop_prefix
1752 + name_string);
1753
1754 symtab->define_in_output_data(start_name.c_str(),
1755 NULL, // version
1756 Symbol_table::PREDEFINED,
1757 *p,
1758 0, // value
1759 0, // symsize
1760 elfcpp::STT_NOTYPE,
1761 elfcpp::STB_GLOBAL,
1762 elfcpp::STV_DEFAULT,
1763 0, // nonvis
1764 false, // offset_is_from_end
1765 true); // only_if_ref
1766
1767 symtab->define_in_output_data(stop_name.c_str(),
1768 NULL, // version
1769 Symbol_table::PREDEFINED,
1770 *p,
1771 0, // value
1772 0, // symsize
1773 elfcpp::STT_NOTYPE,
1774 elfcpp::STB_GLOBAL,
1775 elfcpp::STV_DEFAULT,
1776 0, // nonvis
1777 true, // offset_is_from_end
1778 true); // only_if_ref
1779 }
1780 }
1781 }
1782
1783 // Define symbols for group signatures.
1784
1785 void
1786 Layout::define_group_signatures(Symbol_table* symtab)
1787 {
1788 for (Group_signatures::iterator p = this->group_signatures_.begin();
1789 p != this->group_signatures_.end();
1790 ++p)
1791 {
1792 Symbol* sym = symtab->lookup(p->signature, NULL);
1793 if (sym != NULL)
1794 p->section->set_info_symndx(sym);
1795 else
1796 {
1797 // Force the name of the group section to the group
1798 // signature, and use the group's section symbol as the
1799 // signature symbol.
1800 if (strcmp(p->section->name(), p->signature) != 0)
1801 {
1802 const char* name = this->namepool_.add(p->signature,
1803 true, NULL);
1804 p->section->set_name(name);
1805 }
1806 p->section->set_needs_symtab_index();
1807 p->section->set_info_section_symndx(p->section);
1808 }
1809 }
1810
1811 this->group_signatures_.clear();
1812 }
1813
1814 // Find the first read-only PT_LOAD segment, creating one if
1815 // necessary.
1816
1817 Output_segment*
1818 Layout::find_first_load_seg()
1819 {
1820 Output_segment* best = NULL;
1821 for (Segment_list::const_iterator p = this->segment_list_.begin();
1822 p != this->segment_list_.end();
1823 ++p)
1824 {
1825 if ((*p)->type() == elfcpp::PT_LOAD
1826 && ((*p)->flags() & elfcpp::PF_R) != 0
1827 && (parameters->options().omagic()
1828 || ((*p)->flags() & elfcpp::PF_W) == 0))
1829 {
1830 if (best == NULL || this->segment_precedes(*p, best))
1831 best = *p;
1832 }
1833 }
1834 if (best != NULL)
1835 return best;
1836
1837 gold_assert(!this->script_options_->saw_phdrs_clause());
1838
1839 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1840 elfcpp::PF_R);
1841 return load_seg;
1842 }
1843
1844 // Save states of all current output segments. Store saved states
1845 // in SEGMENT_STATES.
1846
1847 void
1848 Layout::save_segments(Segment_states* segment_states)
1849 {
1850 for (Segment_list::const_iterator p = this->segment_list_.begin();
1851 p != this->segment_list_.end();
1852 ++p)
1853 {
1854 Output_segment* segment = *p;
1855 // Shallow copy.
1856 Output_segment* copy = new Output_segment(*segment);
1857 (*segment_states)[segment] = copy;
1858 }
1859 }
1860
1861 // Restore states of output segments and delete any segment not found in
1862 // SEGMENT_STATES.
1863
1864 void
1865 Layout::restore_segments(const Segment_states* segment_states)
1866 {
1867 // Go through the segment list and remove any segment added in the
1868 // relaxation loop.
1869 this->tls_segment_ = NULL;
1870 this->relro_segment_ = NULL;
1871 Segment_list::iterator list_iter = this->segment_list_.begin();
1872 while (list_iter != this->segment_list_.end())
1873 {
1874 Output_segment* segment = *list_iter;
1875 Segment_states::const_iterator states_iter =
1876 segment_states->find(segment);
1877 if (states_iter != segment_states->end())
1878 {
1879 const Output_segment* copy = states_iter->second;
1880 // Shallow copy to restore states.
1881 *segment = *copy;
1882
1883 // Also fix up TLS and RELRO segment pointers as appropriate.
1884 if (segment->type() == elfcpp::PT_TLS)
1885 this->tls_segment_ = segment;
1886 else if (segment->type() == elfcpp::PT_GNU_RELRO)
1887 this->relro_segment_ = segment;
1888
1889 ++list_iter;
1890 }
1891 else
1892 {
1893 list_iter = this->segment_list_.erase(list_iter);
1894 // This is a segment created during section layout. It should be
1895 // safe to remove it since we should have removed all pointers to it.
1896 delete segment;
1897 }
1898 }
1899 }
1900
1901 // Clean up after relaxation so that sections can be laid out again.
1902
1903 void
1904 Layout::clean_up_after_relaxation()
1905 {
1906 // Restore the segments to point state just prior to the relaxation loop.
1907 Script_sections* script_section = this->script_options_->script_sections();
1908 script_section->release_segments();
1909 this->restore_segments(this->segment_states_);
1910
1911 // Reset section addresses and file offsets
1912 for (Section_list::iterator p = this->section_list_.begin();
1913 p != this->section_list_.end();
1914 ++p)
1915 {
1916 (*p)->restore_states();
1917
1918 // If an input section changes size because of relaxation,
1919 // we need to adjust the section offsets of all input sections.
1920 // after such a section.
1921 if ((*p)->section_offsets_need_adjustment())
1922 (*p)->adjust_section_offsets();
1923
1924 (*p)->reset_address_and_file_offset();
1925 }
1926
1927 // Reset special output object address and file offsets.
1928 for (Data_list::iterator p = this->special_output_list_.begin();
1929 p != this->special_output_list_.end();
1930 ++p)
1931 (*p)->reset_address_and_file_offset();
1932
1933 // A linker script may have created some output section data objects.
1934 // They are useless now.
1935 for (Output_section_data_list::const_iterator p =
1936 this->script_output_section_data_list_.begin();
1937 p != this->script_output_section_data_list_.end();
1938 ++p)
1939 delete *p;
1940 this->script_output_section_data_list_.clear();
1941 }
1942
1943 // Prepare for relaxation.
1944
1945 void
1946 Layout::prepare_for_relaxation()
1947 {
1948 // Create an relaxation debug check if in debugging mode.
1949 if (is_debugging_enabled(DEBUG_RELAXATION))
1950 this->relaxation_debug_check_ = new Relaxation_debug_check();
1951
1952 // Save segment states.
1953 this->segment_states_ = new Segment_states();
1954 this->save_segments(this->segment_states_);
1955
1956 for(Section_list::const_iterator p = this->section_list_.begin();
1957 p != this->section_list_.end();
1958 ++p)
1959 (*p)->save_states();
1960
1961 if (is_debugging_enabled(DEBUG_RELAXATION))
1962 this->relaxation_debug_check_->check_output_data_for_reset_values(
1963 this->section_list_, this->special_output_list_);
1964
1965 // Also enable recording of output section data from scripts.
1966 this->record_output_section_data_from_script_ = true;
1967 }
1968
1969 // Relaxation loop body: If target has no relaxation, this runs only once
1970 // Otherwise, the target relaxation hook is called at the end of
1971 // each iteration. If the hook returns true, it means re-layout of
1972 // section is required.
1973 //
1974 // The number of segments created by a linking script without a PHDRS
1975 // clause may be affected by section sizes and alignments. There is
1976 // a remote chance that relaxation causes different number of PT_LOAD
1977 // segments are created and sections are attached to different segments.
1978 // Therefore, we always throw away all segments created during section
1979 // layout. In order to be able to restart the section layout, we keep
1980 // a copy of the segment list right before the relaxation loop and use
1981 // that to restore the segments.
1982 //
1983 // PASS is the current relaxation pass number.
1984 // SYMTAB is a symbol table.
1985 // PLOAD_SEG is the address of a pointer for the load segment.
1986 // PHDR_SEG is a pointer to the PHDR segment.
1987 // SEGMENT_HEADERS points to the output segment header.
1988 // FILE_HEADER points to the output file header.
1989 // PSHNDX is the address to store the output section index.
1990
1991 off_t inline
1992 Layout::relaxation_loop_body(
1993 int pass,
1994 Target* target,
1995 Symbol_table* symtab,
1996 Output_segment** pload_seg,
1997 Output_segment* phdr_seg,
1998 Output_segment_headers* segment_headers,
1999 Output_file_header* file_header,
2000 unsigned int* pshndx)
2001 {
2002 // If this is not the first iteration, we need to clean up after
2003 // relaxation so that we can lay out the sections again.
2004 if (pass != 0)
2005 this->clean_up_after_relaxation();
2006
2007 // If there is a SECTIONS clause, put all the input sections into
2008 // the required order.
2009 Output_segment* load_seg;
2010 if (this->script_options_->saw_sections_clause())
2011 load_seg = this->set_section_addresses_from_script(symtab);
2012 else if (parameters->options().relocatable())
2013 load_seg = NULL;
2014 else
2015 load_seg = this->find_first_load_seg();
2016
2017 if (parameters->options().oformat_enum()
2018 != General_options::OBJECT_FORMAT_ELF)
2019 load_seg = NULL;
2020
2021 // If the user set the address of the text segment, that may not be
2022 // compatible with putting the segment headers and file headers into
2023 // that segment.
2024 if (parameters->options().user_set_Ttext())
2025 load_seg = NULL;
2026
2027 gold_assert(phdr_seg == NULL
2028 || load_seg != NULL
2029 || this->script_options_->saw_sections_clause());
2030
2031 // If the address of the load segment we found has been set by
2032 // --section-start rather than by a script, then adjust the VMA and
2033 // LMA downward if possible to include the file and section headers.
2034 uint64_t header_gap = 0;
2035 if (load_seg != NULL
2036 && load_seg->are_addresses_set()
2037 && !this->script_options_->saw_sections_clause()
2038 && !parameters->options().relocatable())
2039 {
2040 file_header->finalize_data_size();
2041 segment_headers->finalize_data_size();
2042 size_t sizeof_headers = (file_header->data_size()
2043 + segment_headers->data_size());
2044 const uint64_t abi_pagesize = target->abi_pagesize();
2045 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2046 hdr_paddr &= ~(abi_pagesize - 1);
2047 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2048 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2049 load_seg = NULL;
2050 else
2051 {
2052 load_seg->set_addresses(load_seg->vaddr() - subtract,
2053 load_seg->paddr() - subtract);
2054 header_gap = subtract - sizeof_headers;
2055 }
2056 }
2057
2058 // Lay out the segment headers.
2059 if (!parameters->options().relocatable())
2060 {
2061 gold_assert(segment_headers != NULL);
2062 if (header_gap != 0 && load_seg != NULL)
2063 {
2064 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2065 load_seg->add_initial_output_data(z);
2066 }
2067 if (load_seg != NULL)
2068 load_seg->add_initial_output_data(segment_headers);
2069 if (phdr_seg != NULL)
2070 phdr_seg->add_initial_output_data(segment_headers);
2071 }
2072
2073 // Lay out the file header.
2074 if (load_seg != NULL)
2075 load_seg->add_initial_output_data(file_header);
2076
2077 if (this->script_options_->saw_phdrs_clause()
2078 && !parameters->options().relocatable())
2079 {
2080 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2081 // clause in a linker script.
2082 Script_sections* ss = this->script_options_->script_sections();
2083 ss->put_headers_in_phdrs(file_header, segment_headers);
2084 }
2085
2086 // We set the output section indexes in set_segment_offsets and
2087 // set_section_indexes.
2088 *pshndx = 1;
2089
2090 // Set the file offsets of all the segments, and all the sections
2091 // they contain.
2092 off_t off;
2093 if (!parameters->options().relocatable())
2094 off = this->set_segment_offsets(target, load_seg, pshndx);
2095 else
2096 off = this->set_relocatable_section_offsets(file_header, pshndx);
2097
2098 // Verify that the dummy relaxation does not change anything.
2099 if (is_debugging_enabled(DEBUG_RELAXATION))
2100 {
2101 if (pass == 0)
2102 this->relaxation_debug_check_->read_sections(this->section_list_);
2103 else
2104 this->relaxation_debug_check_->verify_sections(this->section_list_);
2105 }
2106
2107 *pload_seg = load_seg;
2108 return off;
2109 }
2110
2111 // Search the list of patterns and find the postion of the given section
2112 // name in the output section. If the section name matches a glob
2113 // pattern and a non-glob name, then the non-glob position takes
2114 // precedence. Return 0 if no match is found.
2115
2116 unsigned int
2117 Layout::find_section_order_index(const std::string& section_name)
2118 {
2119 Unordered_map<std::string, unsigned int>::iterator map_it;
2120 map_it = this->input_section_position_.find(section_name);
2121 if (map_it != this->input_section_position_.end())
2122 return map_it->second;
2123
2124 // Absolute match failed. Linear search the glob patterns.
2125 std::vector<std::string>::iterator it;
2126 for (it = this->input_section_glob_.begin();
2127 it != this->input_section_glob_.end();
2128 ++it)
2129 {
2130 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2131 {
2132 map_it = this->input_section_position_.find(*it);
2133 gold_assert(map_it != this->input_section_position_.end());
2134 return map_it->second;
2135 }
2136 }
2137 return 0;
2138 }
2139
2140 // Read the sequence of input sections from the file specified with
2141 // --section-ordering-file.
2142
2143 void
2144 Layout::read_layout_from_file()
2145 {
2146 const char* filename = parameters->options().section_ordering_file();
2147 std::ifstream in;
2148 std::string line;
2149
2150 in.open(filename);
2151 if (!in)
2152 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2153 filename, strerror(errno));
2154
2155 std::getline(in, line); // this chops off the trailing \n, if any
2156 unsigned int position = 1;
2157
2158 while (in)
2159 {
2160 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2161 line.resize(line.length() - 1);
2162 // Ignore comments, beginning with '#'
2163 if (line[0] == '#')
2164 {
2165 std::getline(in, line);
2166 continue;
2167 }
2168 this->input_section_position_[line] = position;
2169 // Store all glob patterns in a vector.
2170 if (is_wildcard_string(line.c_str()))
2171 this->input_section_glob_.push_back(line);
2172 position++;
2173 std::getline(in, line);
2174 }
2175 }
2176
2177 // Finalize the layout. When this is called, we have created all the
2178 // output sections and all the output segments which are based on
2179 // input sections. We have several things to do, and we have to do
2180 // them in the right order, so that we get the right results correctly
2181 // and efficiently.
2182
2183 // 1) Finalize the list of output segments and create the segment
2184 // table header.
2185
2186 // 2) Finalize the dynamic symbol table and associated sections.
2187
2188 // 3) Determine the final file offset of all the output segments.
2189
2190 // 4) Determine the final file offset of all the SHF_ALLOC output
2191 // sections.
2192
2193 // 5) Create the symbol table sections and the section name table
2194 // section.
2195
2196 // 6) Finalize the symbol table: set symbol values to their final
2197 // value and make a final determination of which symbols are going
2198 // into the output symbol table.
2199
2200 // 7) Create the section table header.
2201
2202 // 8) Determine the final file offset of all the output sections which
2203 // are not SHF_ALLOC, including the section table header.
2204
2205 // 9) Finalize the ELF file header.
2206
2207 // This function returns the size of the output file.
2208
2209 off_t
2210 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2211 Target* target, const Task* task)
2212 {
2213 target->finalize_sections(this, input_objects, symtab);
2214
2215 this->count_local_symbols(task, input_objects);
2216
2217 this->link_stabs_sections();
2218
2219 Output_segment* phdr_seg = NULL;
2220 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2221 {
2222 // There was a dynamic object in the link. We need to create
2223 // some information for the dynamic linker.
2224
2225 // Create the PT_PHDR segment which will hold the program
2226 // headers.
2227 if (!this->script_options_->saw_phdrs_clause())
2228 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2229
2230 // Create the dynamic symbol table, including the hash table.
2231 Output_section* dynstr;
2232 std::vector<Symbol*> dynamic_symbols;
2233 unsigned int local_dynamic_count;
2234 Versions versions(*this->script_options()->version_script_info(),
2235 &this->dynpool_);
2236 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2237 &local_dynamic_count, &dynamic_symbols,
2238 &versions);
2239
2240 // Create the .interp section to hold the name of the
2241 // interpreter, and put it in a PT_INTERP segment. Don't do it
2242 // if we saw a .interp section in an input file.
2243 if ((!parameters->options().shared()
2244 || parameters->options().dynamic_linker() != NULL)
2245 && this->interp_segment_ == NULL)
2246 this->create_interp(target);
2247
2248 // Finish the .dynamic section to hold the dynamic data, and put
2249 // it in a PT_DYNAMIC segment.
2250 this->finish_dynamic_section(input_objects, symtab);
2251
2252 // We should have added everything we need to the dynamic string
2253 // table.
2254 this->dynpool_.set_string_offsets();
2255
2256 // Create the version sections. We can't do this until the
2257 // dynamic string table is complete.
2258 this->create_version_sections(&versions, symtab, local_dynamic_count,
2259 dynamic_symbols, dynstr);
2260
2261 // Set the size of the _DYNAMIC symbol. We can't do this until
2262 // after we call create_version_sections.
2263 this->set_dynamic_symbol_size(symtab);
2264 }
2265
2266 // Create segment headers.
2267 Output_segment_headers* segment_headers =
2268 (parameters->options().relocatable()
2269 ? NULL
2270 : new Output_segment_headers(this->segment_list_));
2271
2272 // Lay out the file header.
2273 Output_file_header* file_header = new Output_file_header(target, symtab,
2274 segment_headers);
2275
2276 this->special_output_list_.push_back(file_header);
2277 if (segment_headers != NULL)
2278 this->special_output_list_.push_back(segment_headers);
2279
2280 // Find approriate places for orphan output sections if we are using
2281 // a linker script.
2282 if (this->script_options_->saw_sections_clause())
2283 this->place_orphan_sections_in_script();
2284
2285 Output_segment* load_seg;
2286 off_t off;
2287 unsigned int shndx;
2288 int pass = 0;
2289
2290 // Take a snapshot of the section layout as needed.
2291 if (target->may_relax())
2292 this->prepare_for_relaxation();
2293
2294 // Run the relaxation loop to lay out sections.
2295 do
2296 {
2297 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2298 phdr_seg, segment_headers, file_header,
2299 &shndx);
2300 pass++;
2301 }
2302 while (target->may_relax()
2303 && target->relax(pass, input_objects, symtab, this, task));
2304
2305 // Set the file offsets of all the non-data sections we've seen so
2306 // far which don't have to wait for the input sections. We need
2307 // this in order to finalize local symbols in non-allocated
2308 // sections.
2309 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2310
2311 // Set the section indexes of all unallocated sections seen so far,
2312 // in case any of them are somehow referenced by a symbol.
2313 shndx = this->set_section_indexes(shndx);
2314
2315 // Create the symbol table sections.
2316 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2317 if (!parameters->doing_static_link())
2318 this->assign_local_dynsym_offsets(input_objects);
2319
2320 // Process any symbol assignments from a linker script. This must
2321 // be called after the symbol table has been finalized.
2322 this->script_options_->finalize_symbols(symtab, this);
2323
2324 // Create the incremental inputs sections.
2325 if (this->incremental_inputs_)
2326 {
2327 this->incremental_inputs_->finalize();
2328 this->create_incremental_info_sections(symtab);
2329 }
2330
2331 // Create the .shstrtab section.
2332 Output_section* shstrtab_section = this->create_shstrtab();
2333
2334 // Set the file offsets of the rest of the non-data sections which
2335 // don't have to wait for the input sections.
2336 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2337
2338 // Now that all sections have been created, set the section indexes
2339 // for any sections which haven't been done yet.
2340 shndx = this->set_section_indexes(shndx);
2341
2342 // Create the section table header.
2343 this->create_shdrs(shstrtab_section, &off);
2344
2345 // If there are no sections which require postprocessing, we can
2346 // handle the section names now, and avoid a resize later.
2347 if (!this->any_postprocessing_sections_)
2348 {
2349 off = this->set_section_offsets(off,
2350 POSTPROCESSING_SECTIONS_PASS);
2351 off =
2352 this->set_section_offsets(off,
2353 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2354 }
2355
2356 file_header->set_section_info(this->section_headers_, shstrtab_section);
2357
2358 // Now we know exactly where everything goes in the output file
2359 // (except for non-allocated sections which require postprocessing).
2360 Output_data::layout_complete();
2361
2362 this->output_file_size_ = off;
2363
2364 return off;
2365 }
2366
2367 // Create a note header following the format defined in the ELF ABI.
2368 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2369 // of the section to create, DESCSZ is the size of the descriptor.
2370 // ALLOCATE is true if the section should be allocated in memory.
2371 // This returns the new note section. It sets *TRAILING_PADDING to
2372 // the number of trailing zero bytes required.
2373
2374 Output_section*
2375 Layout::create_note(const char* name, int note_type,
2376 const char* section_name, size_t descsz,
2377 bool allocate, size_t* trailing_padding)
2378 {
2379 // Authorities all agree that the values in a .note field should
2380 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2381 // they differ on what the alignment is for 64-bit binaries.
2382 // The GABI says unambiguously they take 8-byte alignment:
2383 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2384 // Other documentation says alignment should always be 4 bytes:
2385 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2386 // GNU ld and GNU readelf both support the latter (at least as of
2387 // version 2.16.91), and glibc always generates the latter for
2388 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2389 // here.
2390 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2391 const int size = parameters->target().get_size();
2392 #else
2393 const int size = 32;
2394 #endif
2395
2396 // The contents of the .note section.
2397 size_t namesz = strlen(name) + 1;
2398 size_t aligned_namesz = align_address(namesz, size / 8);
2399 size_t aligned_descsz = align_address(descsz, size / 8);
2400
2401 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2402
2403 unsigned char* buffer = new unsigned char[notehdrsz];
2404 memset(buffer, 0, notehdrsz);
2405
2406 bool is_big_endian = parameters->target().is_big_endian();
2407
2408 if (size == 32)
2409 {
2410 if (!is_big_endian)
2411 {
2412 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2413 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2414 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2415 }
2416 else
2417 {
2418 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2419 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2420 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2421 }
2422 }
2423 else if (size == 64)
2424 {
2425 if (!is_big_endian)
2426 {
2427 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2428 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2429 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2430 }
2431 else
2432 {
2433 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2434 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2435 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2436 }
2437 }
2438 else
2439 gold_unreachable();
2440
2441 memcpy(buffer + 3 * (size / 8), name, namesz);
2442
2443 elfcpp::Elf_Xword flags = 0;
2444 Output_section_order order = ORDER_INVALID;
2445 if (allocate)
2446 {
2447 flags = elfcpp::SHF_ALLOC;
2448 order = ORDER_RO_NOTE;
2449 }
2450 Output_section* os = this->choose_output_section(NULL, section_name,
2451 elfcpp::SHT_NOTE,
2452 flags, false, order, false);
2453 if (os == NULL)
2454 return NULL;
2455
2456 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2457 size / 8,
2458 "** note header");
2459 os->add_output_section_data(posd);
2460
2461 *trailing_padding = aligned_descsz - descsz;
2462
2463 return os;
2464 }
2465
2466 // For an executable or shared library, create a note to record the
2467 // version of gold used to create the binary.
2468
2469 void
2470 Layout::create_gold_note()
2471 {
2472 if (parameters->options().relocatable()
2473 || parameters->incremental_update())
2474 return;
2475
2476 std::string desc = std::string("gold ") + gold::get_version_string();
2477
2478 size_t trailing_padding;
2479 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2480 ".note.gnu.gold-version", desc.size(),
2481 false, &trailing_padding);
2482 if (os == NULL)
2483 return;
2484
2485 Output_section_data* posd = new Output_data_const(desc, 4);
2486 os->add_output_section_data(posd);
2487
2488 if (trailing_padding > 0)
2489 {
2490 posd = new Output_data_zero_fill(trailing_padding, 0);
2491 os->add_output_section_data(posd);
2492 }
2493 }
2494
2495 // Record whether the stack should be executable. This can be set
2496 // from the command line using the -z execstack or -z noexecstack
2497 // options. Otherwise, if any input file has a .note.GNU-stack
2498 // section with the SHF_EXECINSTR flag set, the stack should be
2499 // executable. Otherwise, if at least one input file a
2500 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2501 // section, we use the target default for whether the stack should be
2502 // executable. Otherwise, we don't generate a stack note. When
2503 // generating a object file, we create a .note.GNU-stack section with
2504 // the appropriate marking. When generating an executable or shared
2505 // library, we create a PT_GNU_STACK segment.
2506
2507 void
2508 Layout::create_executable_stack_info()
2509 {
2510 bool is_stack_executable;
2511 if (parameters->options().is_execstack_set())
2512 is_stack_executable = parameters->options().is_stack_executable();
2513 else if (!this->input_with_gnu_stack_note_)
2514 return;
2515 else
2516 {
2517 if (this->input_requires_executable_stack_)
2518 is_stack_executable = true;
2519 else if (this->input_without_gnu_stack_note_)
2520 is_stack_executable =
2521 parameters->target().is_default_stack_executable();
2522 else
2523 is_stack_executable = false;
2524 }
2525
2526 if (parameters->options().relocatable())
2527 {
2528 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2529 elfcpp::Elf_Xword flags = 0;
2530 if (is_stack_executable)
2531 flags |= elfcpp::SHF_EXECINSTR;
2532 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2533 ORDER_INVALID, false);
2534 }
2535 else
2536 {
2537 if (this->script_options_->saw_phdrs_clause())
2538 return;
2539 int flags = elfcpp::PF_R | elfcpp::PF_W;
2540 if (is_stack_executable)
2541 flags |= elfcpp::PF_X;
2542 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2543 }
2544 }
2545
2546 // If --build-id was used, set up the build ID note.
2547
2548 void
2549 Layout::create_build_id()
2550 {
2551 if (!parameters->options().user_set_build_id())
2552 return;
2553
2554 const char* style = parameters->options().build_id();
2555 if (strcmp(style, "none") == 0)
2556 return;
2557
2558 // Set DESCSZ to the size of the note descriptor. When possible,
2559 // set DESC to the note descriptor contents.
2560 size_t descsz;
2561 std::string desc;
2562 if (strcmp(style, "md5") == 0)
2563 descsz = 128 / 8;
2564 else if (strcmp(style, "sha1") == 0)
2565 descsz = 160 / 8;
2566 else if (strcmp(style, "uuid") == 0)
2567 {
2568 const size_t uuidsz = 128 / 8;
2569
2570 char buffer[uuidsz];
2571 memset(buffer, 0, uuidsz);
2572
2573 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2574 if (descriptor < 0)
2575 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2576 strerror(errno));
2577 else
2578 {
2579 ssize_t got = ::read(descriptor, buffer, uuidsz);
2580 release_descriptor(descriptor, true);
2581 if (got < 0)
2582 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2583 else if (static_cast<size_t>(got) != uuidsz)
2584 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2585 uuidsz, got);
2586 }
2587
2588 desc.assign(buffer, uuidsz);
2589 descsz = uuidsz;
2590 }
2591 else if (strncmp(style, "0x", 2) == 0)
2592 {
2593 hex_init();
2594 const char* p = style + 2;
2595 while (*p != '\0')
2596 {
2597 if (hex_p(p[0]) && hex_p(p[1]))
2598 {
2599 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2600 desc += c;
2601 p += 2;
2602 }
2603 else if (*p == '-' || *p == ':')
2604 ++p;
2605 else
2606 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2607 style);
2608 }
2609 descsz = desc.size();
2610 }
2611 else
2612 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2613
2614 // Create the note.
2615 size_t trailing_padding;
2616 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2617 ".note.gnu.build-id", descsz, true,
2618 &trailing_padding);
2619 if (os == NULL)
2620 return;
2621
2622 if (!desc.empty())
2623 {
2624 // We know the value already, so we fill it in now.
2625 gold_assert(desc.size() == descsz);
2626
2627 Output_section_data* posd = new Output_data_const(desc, 4);
2628 os->add_output_section_data(posd);
2629
2630 if (trailing_padding != 0)
2631 {
2632 posd = new Output_data_zero_fill(trailing_padding, 0);
2633 os->add_output_section_data(posd);
2634 }
2635 }
2636 else
2637 {
2638 // We need to compute a checksum after we have completed the
2639 // link.
2640 gold_assert(trailing_padding == 0);
2641 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2642 os->add_output_section_data(this->build_id_note_);
2643 }
2644 }
2645
2646 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2647 // field of the former should point to the latter. I'm not sure who
2648 // started this, but the GNU linker does it, and some tools depend
2649 // upon it.
2650
2651 void
2652 Layout::link_stabs_sections()
2653 {
2654 if (!this->have_stabstr_section_)
2655 return;
2656
2657 for (Section_list::iterator p = this->section_list_.begin();
2658 p != this->section_list_.end();
2659 ++p)
2660 {
2661 if ((*p)->type() != elfcpp::SHT_STRTAB)
2662 continue;
2663
2664 const char* name = (*p)->name();
2665 if (strncmp(name, ".stab", 5) != 0)
2666 continue;
2667
2668 size_t len = strlen(name);
2669 if (strcmp(name + len - 3, "str") != 0)
2670 continue;
2671
2672 std::string stab_name(name, len - 3);
2673 Output_section* stab_sec;
2674 stab_sec = this->find_output_section(stab_name.c_str());
2675 if (stab_sec != NULL)
2676 stab_sec->set_link_section(*p);
2677 }
2678 }
2679
2680 // Create .gnu_incremental_inputs and related sections needed
2681 // for the next run of incremental linking to check what has changed.
2682
2683 void
2684 Layout::create_incremental_info_sections(Symbol_table* symtab)
2685 {
2686 Incremental_inputs* incr = this->incremental_inputs_;
2687
2688 gold_assert(incr != NULL);
2689
2690 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2691 incr->create_data_sections(symtab);
2692
2693 // Add the .gnu_incremental_inputs section.
2694 const char* incremental_inputs_name =
2695 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2696 Output_section* incremental_inputs_os =
2697 this->make_output_section(incremental_inputs_name,
2698 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2699 ORDER_INVALID, false);
2700 incremental_inputs_os->add_output_section_data(incr->inputs_section());
2701
2702 // Add the .gnu_incremental_symtab section.
2703 const char* incremental_symtab_name =
2704 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2705 Output_section* incremental_symtab_os =
2706 this->make_output_section(incremental_symtab_name,
2707 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2708 ORDER_INVALID, false);
2709 incremental_symtab_os->add_output_section_data(incr->symtab_section());
2710 incremental_symtab_os->set_entsize(4);
2711
2712 // Add the .gnu_incremental_relocs section.
2713 const char* incremental_relocs_name =
2714 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2715 Output_section* incremental_relocs_os =
2716 this->make_output_section(incremental_relocs_name,
2717 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2718 ORDER_INVALID, false);
2719 incremental_relocs_os->add_output_section_data(incr->relocs_section());
2720 incremental_relocs_os->set_entsize(incr->relocs_entsize());
2721
2722 // Add the .gnu_incremental_got_plt section.
2723 const char* incremental_got_plt_name =
2724 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2725 Output_section* incremental_got_plt_os =
2726 this->make_output_section(incremental_got_plt_name,
2727 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2728 ORDER_INVALID, false);
2729 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2730
2731 // Add the .gnu_incremental_strtab section.
2732 const char* incremental_strtab_name =
2733 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2734 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2735 elfcpp::SHT_STRTAB, 0,
2736 ORDER_INVALID, false);
2737 Output_data_strtab* strtab_data =
2738 new Output_data_strtab(incr->get_stringpool());
2739 incremental_strtab_os->add_output_section_data(strtab_data);
2740
2741 incremental_inputs_os->set_after_input_sections();
2742 incremental_symtab_os->set_after_input_sections();
2743 incremental_relocs_os->set_after_input_sections();
2744 incremental_got_plt_os->set_after_input_sections();
2745
2746 incremental_inputs_os->set_link_section(incremental_strtab_os);
2747 incremental_symtab_os->set_link_section(incremental_inputs_os);
2748 incremental_relocs_os->set_link_section(incremental_inputs_os);
2749 incremental_got_plt_os->set_link_section(incremental_inputs_os);
2750 }
2751
2752 // Return whether SEG1 should be before SEG2 in the output file. This
2753 // is based entirely on the segment type and flags. When this is
2754 // called the segment addresses have normally not yet been set.
2755
2756 bool
2757 Layout::segment_precedes(const Output_segment* seg1,
2758 const Output_segment* seg2)
2759 {
2760 elfcpp::Elf_Word type1 = seg1->type();
2761 elfcpp::Elf_Word type2 = seg2->type();
2762
2763 // The single PT_PHDR segment is required to precede any loadable
2764 // segment. We simply make it always first.
2765 if (type1 == elfcpp::PT_PHDR)
2766 {
2767 gold_assert(type2 != elfcpp::PT_PHDR);
2768 return true;
2769 }
2770 if (type2 == elfcpp::PT_PHDR)
2771 return false;
2772
2773 // The single PT_INTERP segment is required to precede any loadable
2774 // segment. We simply make it always second.
2775 if (type1 == elfcpp::PT_INTERP)
2776 {
2777 gold_assert(type2 != elfcpp::PT_INTERP);
2778 return true;
2779 }
2780 if (type2 == elfcpp::PT_INTERP)
2781 return false;
2782
2783 // We then put PT_LOAD segments before any other segments.
2784 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2785 return true;
2786 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2787 return false;
2788
2789 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2790 // segment, because that is where the dynamic linker expects to find
2791 // it (this is just for efficiency; other positions would also work
2792 // correctly).
2793 if (type1 == elfcpp::PT_TLS
2794 && type2 != elfcpp::PT_TLS
2795 && type2 != elfcpp::PT_GNU_RELRO)
2796 return false;
2797 if (type2 == elfcpp::PT_TLS
2798 && type1 != elfcpp::PT_TLS
2799 && type1 != elfcpp::PT_GNU_RELRO)
2800 return true;
2801
2802 // We put the PT_GNU_RELRO segment last, because that is where the
2803 // dynamic linker expects to find it (as with PT_TLS, this is just
2804 // for efficiency).
2805 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2806 return false;
2807 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2808 return true;
2809
2810 const elfcpp::Elf_Word flags1 = seg1->flags();
2811 const elfcpp::Elf_Word flags2 = seg2->flags();
2812
2813 // The order of non-PT_LOAD segments is unimportant. We simply sort
2814 // by the numeric segment type and flags values. There should not
2815 // be more than one segment with the same type and flags.
2816 if (type1 != elfcpp::PT_LOAD)
2817 {
2818 if (type1 != type2)
2819 return type1 < type2;
2820 gold_assert(flags1 != flags2);
2821 return flags1 < flags2;
2822 }
2823
2824 // If the addresses are set already, sort by load address.
2825 if (seg1->are_addresses_set())
2826 {
2827 if (!seg2->are_addresses_set())
2828 return true;
2829
2830 unsigned int section_count1 = seg1->output_section_count();
2831 unsigned int section_count2 = seg2->output_section_count();
2832 if (section_count1 == 0 && section_count2 > 0)
2833 return true;
2834 if (section_count1 > 0 && section_count2 == 0)
2835 return false;
2836
2837 uint64_t paddr1 = (seg1->are_addresses_set()
2838 ? seg1->paddr()
2839 : seg1->first_section_load_address());
2840 uint64_t paddr2 = (seg2->are_addresses_set()
2841 ? seg2->paddr()
2842 : seg2->first_section_load_address());
2843
2844 if (paddr1 != paddr2)
2845 return paddr1 < paddr2;
2846 }
2847 else if (seg2->are_addresses_set())
2848 return false;
2849
2850 // A segment which holds large data comes after a segment which does
2851 // not hold large data.
2852 if (seg1->is_large_data_segment())
2853 {
2854 if (!seg2->is_large_data_segment())
2855 return false;
2856 }
2857 else if (seg2->is_large_data_segment())
2858 return true;
2859
2860 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2861 // segments come before writable segments. Then writable segments
2862 // with data come before writable segments without data. Then
2863 // executable segments come before non-executable segments. Then
2864 // the unlikely case of a non-readable segment comes before the
2865 // normal case of a readable segment. If there are multiple
2866 // segments with the same type and flags, we require that the
2867 // address be set, and we sort by virtual address and then physical
2868 // address.
2869 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2870 return (flags1 & elfcpp::PF_W) == 0;
2871 if ((flags1 & elfcpp::PF_W) != 0
2872 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2873 return seg1->has_any_data_sections();
2874 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2875 return (flags1 & elfcpp::PF_X) != 0;
2876 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2877 return (flags1 & elfcpp::PF_R) == 0;
2878
2879 // We shouldn't get here--we shouldn't create segments which we
2880 // can't distinguish. Unless of course we are using a weird linker
2881 // script.
2882 gold_assert(this->script_options_->saw_phdrs_clause());
2883 return false;
2884 }
2885
2886 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2887
2888 static off_t
2889 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2890 {
2891 uint64_t unsigned_off = off;
2892 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2893 | (addr & (abi_pagesize - 1)));
2894 if (aligned_off < unsigned_off)
2895 aligned_off += abi_pagesize;
2896 return aligned_off;
2897 }
2898
2899 // Set the file offsets of all the segments, and all the sections they
2900 // contain. They have all been created. LOAD_SEG must be be laid out
2901 // first. Return the offset of the data to follow.
2902
2903 off_t
2904 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2905 unsigned int* pshndx)
2906 {
2907 // Sort them into the final order. We use a stable sort so that we
2908 // don't randomize the order of indistinguishable segments created
2909 // by linker scripts.
2910 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
2911 Layout::Compare_segments(this));
2912
2913 // Find the PT_LOAD segments, and set their addresses and offsets
2914 // and their section's addresses and offsets.
2915 uint64_t addr;
2916 if (parameters->options().user_set_Ttext())
2917 addr = parameters->options().Ttext();
2918 else if (parameters->options().output_is_position_independent())
2919 addr = 0;
2920 else
2921 addr = target->default_text_segment_address();
2922 off_t off = 0;
2923
2924 // If LOAD_SEG is NULL, then the file header and segment headers
2925 // will not be loadable. But they still need to be at offset 0 in
2926 // the file. Set their offsets now.
2927 if (load_seg == NULL)
2928 {
2929 for (Data_list::iterator p = this->special_output_list_.begin();
2930 p != this->special_output_list_.end();
2931 ++p)
2932 {
2933 off = align_address(off, (*p)->addralign());
2934 (*p)->set_address_and_file_offset(0, off);
2935 off += (*p)->data_size();
2936 }
2937 }
2938
2939 unsigned int increase_relro = this->increase_relro_;
2940 if (this->script_options_->saw_sections_clause())
2941 increase_relro = 0;
2942
2943 const bool check_sections = parameters->options().check_sections();
2944 Output_segment* last_load_segment = NULL;
2945
2946 for (Segment_list::iterator p = this->segment_list_.begin();
2947 p != this->segment_list_.end();
2948 ++p)
2949 {
2950 if ((*p)->type() == elfcpp::PT_LOAD)
2951 {
2952 if (load_seg != NULL && load_seg != *p)
2953 gold_unreachable();
2954 load_seg = NULL;
2955
2956 bool are_addresses_set = (*p)->are_addresses_set();
2957 if (are_addresses_set)
2958 {
2959 // When it comes to setting file offsets, we care about
2960 // the physical address.
2961 addr = (*p)->paddr();
2962 }
2963 else if (parameters->options().user_set_Tdata()
2964 && ((*p)->flags() & elfcpp::PF_W) != 0
2965 && (!parameters->options().user_set_Tbss()
2966 || (*p)->has_any_data_sections()))
2967 {
2968 addr = parameters->options().Tdata();
2969 are_addresses_set = true;
2970 }
2971 else if (parameters->options().user_set_Tbss()
2972 && ((*p)->flags() & elfcpp::PF_W) != 0
2973 && !(*p)->has_any_data_sections())
2974 {
2975 addr = parameters->options().Tbss();
2976 are_addresses_set = true;
2977 }
2978
2979 uint64_t orig_addr = addr;
2980 uint64_t orig_off = off;
2981
2982 uint64_t aligned_addr = 0;
2983 uint64_t abi_pagesize = target->abi_pagesize();
2984 uint64_t common_pagesize = target->common_pagesize();
2985
2986 if (!parameters->options().nmagic()
2987 && !parameters->options().omagic())
2988 (*p)->set_minimum_p_align(common_pagesize);
2989
2990 if (!are_addresses_set)
2991 {
2992 // Skip the address forward one page, maintaining the same
2993 // position within the page. This lets us store both segments
2994 // overlapping on a single page in the file, but the loader will
2995 // put them on different pages in memory. We will revisit this
2996 // decision once we know the size of the segment.
2997
2998 addr = align_address(addr, (*p)->maximum_alignment());
2999 aligned_addr = addr;
3000
3001 if ((addr & (abi_pagesize - 1)) != 0)
3002 addr = addr + abi_pagesize;
3003
3004 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3005 }
3006
3007 if (!parameters->options().nmagic()
3008 && !parameters->options().omagic())
3009 off = align_file_offset(off, addr, abi_pagesize);
3010 else if (load_seg == NULL)
3011 {
3012 // This is -N or -n with a section script which prevents
3013 // us from using a load segment. We need to ensure that
3014 // the file offset is aligned to the alignment of the
3015 // segment. This is because the linker script
3016 // implicitly assumed a zero offset. If we don't align
3017 // here, then the alignment of the sections in the
3018 // linker script may not match the alignment of the
3019 // sections in the set_section_addresses call below,
3020 // causing an error about dot moving backward.
3021 off = align_address(off, (*p)->maximum_alignment());
3022 }
3023
3024 unsigned int shndx_hold = *pshndx;
3025 bool has_relro = false;
3026 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3027 &increase_relro,
3028 &has_relro,
3029 &off, pshndx);
3030
3031 // Now that we know the size of this segment, we may be able
3032 // to save a page in memory, at the cost of wasting some
3033 // file space, by instead aligning to the start of a new
3034 // page. Here we use the real machine page size rather than
3035 // the ABI mandated page size. If the segment has been
3036 // aligned so that the relro data ends at a page boundary,
3037 // we do not try to realign it.
3038
3039 if (!are_addresses_set
3040 && !has_relro
3041 && aligned_addr != addr
3042 && !parameters->incremental())
3043 {
3044 uint64_t first_off = (common_pagesize
3045 - (aligned_addr
3046 & (common_pagesize - 1)));
3047 uint64_t last_off = new_addr & (common_pagesize - 1);
3048 if (first_off > 0
3049 && last_off > 0
3050 && ((aligned_addr & ~ (common_pagesize - 1))
3051 != (new_addr & ~ (common_pagesize - 1)))
3052 && first_off + last_off <= common_pagesize)
3053 {
3054 *pshndx = shndx_hold;
3055 addr = align_address(aligned_addr, common_pagesize);
3056 addr = align_address(addr, (*p)->maximum_alignment());
3057 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3058 off = align_file_offset(off, addr, abi_pagesize);
3059
3060 increase_relro = this->increase_relro_;
3061 if (this->script_options_->saw_sections_clause())
3062 increase_relro = 0;
3063 has_relro = false;
3064
3065 new_addr = (*p)->set_section_addresses(this, true, addr,
3066 &increase_relro,
3067 &has_relro,
3068 &off, pshndx);
3069 }
3070 }
3071
3072 addr = new_addr;
3073
3074 // Implement --check-sections. We know that the segments
3075 // are sorted by LMA.
3076 if (check_sections && last_load_segment != NULL)
3077 {
3078 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3079 if (last_load_segment->paddr() + last_load_segment->memsz()
3080 > (*p)->paddr())
3081 {
3082 unsigned long long lb1 = last_load_segment->paddr();
3083 unsigned long long le1 = lb1 + last_load_segment->memsz();
3084 unsigned long long lb2 = (*p)->paddr();
3085 unsigned long long le2 = lb2 + (*p)->memsz();
3086 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3087 "[0x%llx -> 0x%llx]"),
3088 lb1, le1, lb2, le2);
3089 }
3090 }
3091 last_load_segment = *p;
3092 }
3093 }
3094
3095 // Handle the non-PT_LOAD segments, setting their offsets from their
3096 // section's offsets.
3097 for (Segment_list::iterator p = this->segment_list_.begin();
3098 p != this->segment_list_.end();
3099 ++p)
3100 {
3101 if ((*p)->type() != elfcpp::PT_LOAD)
3102 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3103 ? increase_relro
3104 : 0);
3105 }
3106
3107 // Set the TLS offsets for each section in the PT_TLS segment.
3108 if (this->tls_segment_ != NULL)
3109 this->tls_segment_->set_tls_offsets();
3110
3111 return off;
3112 }
3113
3114 // Set the offsets of all the allocated sections when doing a
3115 // relocatable link. This does the same jobs as set_segment_offsets,
3116 // only for a relocatable link.
3117
3118 off_t
3119 Layout::set_relocatable_section_offsets(Output_data* file_header,
3120 unsigned int* pshndx)
3121 {
3122 off_t off = 0;
3123
3124 file_header->set_address_and_file_offset(0, 0);
3125 off += file_header->data_size();
3126
3127 for (Section_list::iterator p = this->section_list_.begin();
3128 p != this->section_list_.end();
3129 ++p)
3130 {
3131 // We skip unallocated sections here, except that group sections
3132 // have to come first.
3133 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3134 && (*p)->type() != elfcpp::SHT_GROUP)
3135 continue;
3136
3137 off = align_address(off, (*p)->addralign());
3138
3139 // The linker script might have set the address.
3140 if (!(*p)->is_address_valid())
3141 (*p)->set_address(0);
3142 (*p)->set_file_offset(off);
3143 (*p)->finalize_data_size();
3144 off += (*p)->data_size();
3145
3146 (*p)->set_out_shndx(*pshndx);
3147 ++*pshndx;
3148 }
3149
3150 return off;
3151 }
3152
3153 // Set the file offset of all the sections not associated with a
3154 // segment.
3155
3156 off_t
3157 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3158 {
3159 off_t startoff = off;
3160 off_t maxoff = off;
3161
3162 for (Section_list::iterator p = this->unattached_section_list_.begin();
3163 p != this->unattached_section_list_.end();
3164 ++p)
3165 {
3166 // The symtab section is handled in create_symtab_sections.
3167 if (*p == this->symtab_section_)
3168 continue;
3169
3170 // If we've already set the data size, don't set it again.
3171 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3172 continue;
3173
3174 if (pass == BEFORE_INPUT_SECTIONS_PASS
3175 && (*p)->requires_postprocessing())
3176 {
3177 (*p)->create_postprocessing_buffer();
3178 this->any_postprocessing_sections_ = true;
3179 }
3180
3181 if (pass == BEFORE_INPUT_SECTIONS_PASS
3182 && (*p)->after_input_sections())
3183 continue;
3184 else if (pass == POSTPROCESSING_SECTIONS_PASS
3185 && (!(*p)->after_input_sections()
3186 || (*p)->type() == elfcpp::SHT_STRTAB))
3187 continue;
3188 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3189 && (!(*p)->after_input_sections()
3190 || (*p)->type() != elfcpp::SHT_STRTAB))
3191 continue;
3192
3193 if (!parameters->incremental_update())
3194 {
3195 off = align_address(off, (*p)->addralign());
3196 (*p)->set_file_offset(off);
3197 (*p)->finalize_data_size();
3198 }
3199 else
3200 {
3201 // Incremental update: allocate file space from free list.
3202 (*p)->pre_finalize_data_size();
3203 off_t current_size = (*p)->current_data_size();
3204 off = this->allocate(current_size, (*p)->addralign(), startoff);
3205 if (off == -1)
3206 {
3207 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3208 this->free_list_.dump();
3209 gold_assert((*p)->output_section() != NULL);
3210 gold_fallback(_("out of patch space for section %s; "
3211 "relink with --incremental-full"),
3212 (*p)->output_section()->name());
3213 }
3214 (*p)->set_file_offset(off);
3215 (*p)->finalize_data_size();
3216 if ((*p)->data_size() > current_size)
3217 {
3218 gold_assert((*p)->output_section() != NULL);
3219 gold_fallback(_("%s: section changed size; "
3220 "relink with --incremental-full"),
3221 (*p)->output_section()->name());
3222 }
3223 gold_debug(DEBUG_INCREMENTAL,
3224 "set_section_offsets: %08lx %08lx %s",
3225 static_cast<long>(off),
3226 static_cast<long>((*p)->data_size()),
3227 ((*p)->output_section() != NULL
3228 ? (*p)->output_section()->name() : "(special)"));
3229 }
3230
3231 off += (*p)->data_size();
3232 if (off > maxoff)
3233 maxoff = off;
3234
3235 // At this point the name must be set.
3236 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3237 this->namepool_.add((*p)->name(), false, NULL);
3238 }
3239 return maxoff;
3240 }
3241
3242 // Set the section indexes of all the sections not associated with a
3243 // segment.
3244
3245 unsigned int
3246 Layout::set_section_indexes(unsigned int shndx)
3247 {
3248 for (Section_list::iterator p = this->unattached_section_list_.begin();
3249 p != this->unattached_section_list_.end();
3250 ++p)
3251 {
3252 if (!(*p)->has_out_shndx())
3253 {
3254 (*p)->set_out_shndx(shndx);
3255 ++shndx;
3256 }
3257 }
3258 return shndx;
3259 }
3260
3261 // Set the section addresses according to the linker script. This is
3262 // only called when we see a SECTIONS clause. This returns the
3263 // program segment which should hold the file header and segment
3264 // headers, if any. It will return NULL if they should not be in a
3265 // segment.
3266
3267 Output_segment*
3268 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3269 {
3270 Script_sections* ss = this->script_options_->script_sections();
3271 gold_assert(ss->saw_sections_clause());
3272 return this->script_options_->set_section_addresses(symtab, this);
3273 }
3274
3275 // Place the orphan sections in the linker script.
3276
3277 void
3278 Layout::place_orphan_sections_in_script()
3279 {
3280 Script_sections* ss = this->script_options_->script_sections();
3281 gold_assert(ss->saw_sections_clause());
3282
3283 // Place each orphaned output section in the script.
3284 for (Section_list::iterator p = this->section_list_.begin();
3285 p != this->section_list_.end();
3286 ++p)
3287 {
3288 if (!(*p)->found_in_sections_clause())
3289 ss->place_orphan(*p);
3290 }
3291 }
3292
3293 // Count the local symbols in the regular symbol table and the dynamic
3294 // symbol table, and build the respective string pools.
3295
3296 void
3297 Layout::count_local_symbols(const Task* task,
3298 const Input_objects* input_objects)
3299 {
3300 // First, figure out an upper bound on the number of symbols we'll
3301 // be inserting into each pool. This helps us create the pools with
3302 // the right size, to avoid unnecessary hashtable resizing.
3303 unsigned int symbol_count = 0;
3304 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3305 p != input_objects->relobj_end();
3306 ++p)
3307 symbol_count += (*p)->local_symbol_count();
3308
3309 // Go from "upper bound" to "estimate." We overcount for two
3310 // reasons: we double-count symbols that occur in more than one
3311 // object file, and we count symbols that are dropped from the
3312 // output. Add it all together and assume we overcount by 100%.
3313 symbol_count /= 2;
3314
3315 // We assume all symbols will go into both the sympool and dynpool.
3316 this->sympool_.reserve(symbol_count);
3317 this->dynpool_.reserve(symbol_count);
3318
3319 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3320 p != input_objects->relobj_end();
3321 ++p)
3322 {
3323 Task_lock_obj<Object> tlo(task, *p);
3324 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3325 }
3326 }
3327
3328 // Create the symbol table sections. Here we also set the final
3329 // values of the symbols. At this point all the loadable sections are
3330 // fully laid out. SHNUM is the number of sections so far.
3331
3332 void
3333 Layout::create_symtab_sections(const Input_objects* input_objects,
3334 Symbol_table* symtab,
3335 unsigned int shnum,
3336 off_t* poff)
3337 {
3338 int symsize;
3339 unsigned int align;
3340 if (parameters->target().get_size() == 32)
3341 {
3342 symsize = elfcpp::Elf_sizes<32>::sym_size;
3343 align = 4;
3344 }
3345 else if (parameters->target().get_size() == 64)
3346 {
3347 symsize = elfcpp::Elf_sizes<64>::sym_size;
3348 align = 8;
3349 }
3350 else
3351 gold_unreachable();
3352
3353 // Compute file offsets relative to the start of the symtab section.
3354 off_t off = 0;
3355
3356 // Save space for the dummy symbol at the start of the section. We
3357 // never bother to write this out--it will just be left as zero.
3358 off += symsize;
3359 unsigned int local_symbol_index = 1;
3360
3361 // Add STT_SECTION symbols for each Output section which needs one.
3362 for (Section_list::iterator p = this->section_list_.begin();
3363 p != this->section_list_.end();
3364 ++p)
3365 {
3366 if (!(*p)->needs_symtab_index())
3367 (*p)->set_symtab_index(-1U);
3368 else
3369 {
3370 (*p)->set_symtab_index(local_symbol_index);
3371 ++local_symbol_index;
3372 off += symsize;
3373 }
3374 }
3375
3376 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3377 p != input_objects->relobj_end();
3378 ++p)
3379 {
3380 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3381 off, symtab);
3382 off += (index - local_symbol_index) * symsize;
3383 local_symbol_index = index;
3384 }
3385
3386 unsigned int local_symcount = local_symbol_index;
3387 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3388
3389 off_t dynoff;
3390 size_t dyn_global_index;
3391 size_t dyncount;
3392 if (this->dynsym_section_ == NULL)
3393 {
3394 dynoff = 0;
3395 dyn_global_index = 0;
3396 dyncount = 0;
3397 }
3398 else
3399 {
3400 dyn_global_index = this->dynsym_section_->info();
3401 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3402 dynoff = this->dynsym_section_->offset() + locsize;
3403 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3404 gold_assert(static_cast<off_t>(dyncount * symsize)
3405 == this->dynsym_section_->data_size() - locsize);
3406 }
3407
3408 off_t global_off = off;
3409 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3410 &this->sympool_, &local_symcount);
3411
3412 if (!parameters->options().strip_all())
3413 {
3414 this->sympool_.set_string_offsets();
3415
3416 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3417 Output_section* osymtab = this->make_output_section(symtab_name,
3418 elfcpp::SHT_SYMTAB,
3419 0, ORDER_INVALID,
3420 false);
3421 this->symtab_section_ = osymtab;
3422
3423 Output_section_data* pos = new Output_data_fixed_space(off, align,
3424 "** symtab");
3425 osymtab->add_output_section_data(pos);
3426
3427 // We generate a .symtab_shndx section if we have more than
3428 // SHN_LORESERVE sections. Technically it is possible that we
3429 // don't need one, because it is possible that there are no
3430 // symbols in any of sections with indexes larger than
3431 // SHN_LORESERVE. That is probably unusual, though, and it is
3432 // easier to always create one than to compute section indexes
3433 // twice (once here, once when writing out the symbols).
3434 if (shnum >= elfcpp::SHN_LORESERVE)
3435 {
3436 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3437 false, NULL);
3438 Output_section* osymtab_xindex =
3439 this->make_output_section(symtab_xindex_name,
3440 elfcpp::SHT_SYMTAB_SHNDX, 0,
3441 ORDER_INVALID, false);
3442
3443 size_t symcount = off / symsize;
3444 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3445
3446 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3447
3448 osymtab_xindex->set_link_section(osymtab);
3449 osymtab_xindex->set_addralign(4);
3450 osymtab_xindex->set_entsize(4);
3451
3452 osymtab_xindex->set_after_input_sections();
3453
3454 // This tells the driver code to wait until the symbol table
3455 // has written out before writing out the postprocessing
3456 // sections, including the .symtab_shndx section.
3457 this->any_postprocessing_sections_ = true;
3458 }
3459
3460 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3461 Output_section* ostrtab = this->make_output_section(strtab_name,
3462 elfcpp::SHT_STRTAB,
3463 0, ORDER_INVALID,
3464 false);
3465
3466 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3467 ostrtab->add_output_section_data(pstr);
3468
3469 off_t symtab_off;
3470 if (!parameters->incremental_update())
3471 symtab_off = align_address(*poff, align);
3472 else
3473 {
3474 symtab_off = this->allocate(off, align, *poff);
3475 if (off == -1)
3476 gold_fallback(_("out of patch space for symbol table; "
3477 "relink with --incremental-full"));
3478 gold_debug(DEBUG_INCREMENTAL,
3479 "create_symtab_sections: %08lx %08lx .symtab",
3480 static_cast<long>(symtab_off),
3481 static_cast<long>(off));
3482 }
3483
3484 symtab->set_file_offset(symtab_off + global_off);
3485 osymtab->set_file_offset(symtab_off);
3486 osymtab->finalize_data_size();
3487 osymtab->set_link_section(ostrtab);
3488 osymtab->set_info(local_symcount);
3489 osymtab->set_entsize(symsize);
3490
3491 if (symtab_off + off > *poff)
3492 *poff = symtab_off + off;
3493 }
3494 }
3495
3496 // Create the .shstrtab section, which holds the names of the
3497 // sections. At the time this is called, we have created all the
3498 // output sections except .shstrtab itself.
3499
3500 Output_section*
3501 Layout::create_shstrtab()
3502 {
3503 // FIXME: We don't need to create a .shstrtab section if we are
3504 // stripping everything.
3505
3506 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3507
3508 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3509 ORDER_INVALID, false);
3510
3511 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3512 {
3513 // We can't write out this section until we've set all the
3514 // section names, and we don't set the names of compressed
3515 // output sections until relocations are complete. FIXME: With
3516 // the current names we use, this is unnecessary.
3517 os->set_after_input_sections();
3518 }
3519
3520 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3521 os->add_output_section_data(posd);
3522
3523 return os;
3524 }
3525
3526 // Create the section headers. SIZE is 32 or 64. OFF is the file
3527 // offset.
3528
3529 void
3530 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3531 {
3532 Output_section_headers* oshdrs;
3533 oshdrs = new Output_section_headers(this,
3534 &this->segment_list_,
3535 &this->section_list_,
3536 &this->unattached_section_list_,
3537 &this->namepool_,
3538 shstrtab_section);
3539 off_t off;
3540 if (!parameters->incremental_update())
3541 off = align_address(*poff, oshdrs->addralign());
3542 else
3543 {
3544 oshdrs->pre_finalize_data_size();
3545 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3546 if (off == -1)
3547 gold_fallback(_("out of patch space for section header table; "
3548 "relink with --incremental-full"));
3549 gold_debug(DEBUG_INCREMENTAL,
3550 "create_shdrs: %08lx %08lx (section header table)",
3551 static_cast<long>(off),
3552 static_cast<long>(off + oshdrs->data_size()));
3553 }
3554 oshdrs->set_address_and_file_offset(0, off);
3555 off += oshdrs->data_size();
3556 if (off > *poff)
3557 *poff = off;
3558 this->section_headers_ = oshdrs;
3559 }
3560
3561 // Count the allocated sections.
3562
3563 size_t
3564 Layout::allocated_output_section_count() const
3565 {
3566 size_t section_count = 0;
3567 for (Segment_list::const_iterator p = this->segment_list_.begin();
3568 p != this->segment_list_.end();
3569 ++p)
3570 section_count += (*p)->output_section_count();
3571 return section_count;
3572 }
3573
3574 // Create the dynamic symbol table.
3575
3576 void
3577 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3578 Symbol_table* symtab,
3579 Output_section** pdynstr,
3580 unsigned int* plocal_dynamic_count,
3581 std::vector<Symbol*>* pdynamic_symbols,
3582 Versions* pversions)
3583 {
3584 // Count all the symbols in the dynamic symbol table, and set the
3585 // dynamic symbol indexes.
3586
3587 // Skip symbol 0, which is always all zeroes.
3588 unsigned int index = 1;
3589
3590 // Add STT_SECTION symbols for each Output section which needs one.
3591 for (Section_list::iterator p = this->section_list_.begin();
3592 p != this->section_list_.end();
3593 ++p)
3594 {
3595 if (!(*p)->needs_dynsym_index())
3596 (*p)->set_dynsym_index(-1U);
3597 else
3598 {
3599 (*p)->set_dynsym_index(index);
3600 ++index;
3601 }
3602 }
3603
3604 // Count the local symbols that need to go in the dynamic symbol table,
3605 // and set the dynamic symbol indexes.
3606 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3607 p != input_objects->relobj_end();
3608 ++p)
3609 {
3610 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3611 index = new_index;
3612 }
3613
3614 unsigned int local_symcount = index;
3615 *plocal_dynamic_count = local_symcount;
3616
3617 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3618 &this->dynpool_, pversions);
3619
3620 int symsize;
3621 unsigned int align;
3622 const int size = parameters->target().get_size();
3623 if (size == 32)
3624 {
3625 symsize = elfcpp::Elf_sizes<32>::sym_size;
3626 align = 4;
3627 }
3628 else if (size == 64)
3629 {
3630 symsize = elfcpp::Elf_sizes<64>::sym_size;
3631 align = 8;
3632 }
3633 else
3634 gold_unreachable();
3635
3636 // Create the dynamic symbol table section.
3637
3638 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3639 elfcpp::SHT_DYNSYM,
3640 elfcpp::SHF_ALLOC,
3641 false,
3642 ORDER_DYNAMIC_LINKER,
3643 false);
3644
3645 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3646 align,
3647 "** dynsym");
3648 dynsym->add_output_section_data(odata);
3649
3650 dynsym->set_info(local_symcount);
3651 dynsym->set_entsize(symsize);
3652 dynsym->set_addralign(align);
3653
3654 this->dynsym_section_ = dynsym;
3655
3656 Output_data_dynamic* const odyn = this->dynamic_data_;
3657 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3658 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3659
3660 // If there are more than SHN_LORESERVE allocated sections, we
3661 // create a .dynsym_shndx section. It is possible that we don't
3662 // need one, because it is possible that there are no dynamic
3663 // symbols in any of the sections with indexes larger than
3664 // SHN_LORESERVE. This is probably unusual, though, and at this
3665 // time we don't know the actual section indexes so it is
3666 // inconvenient to check.
3667 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3668 {
3669 Output_section* dynsym_xindex =
3670 this->choose_output_section(NULL, ".dynsym_shndx",
3671 elfcpp::SHT_SYMTAB_SHNDX,
3672 elfcpp::SHF_ALLOC,
3673 false, ORDER_DYNAMIC_LINKER, false);
3674
3675 this->dynsym_xindex_ = new Output_symtab_xindex(index);
3676
3677 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3678
3679 dynsym_xindex->set_link_section(dynsym);
3680 dynsym_xindex->set_addralign(4);
3681 dynsym_xindex->set_entsize(4);
3682
3683 dynsym_xindex->set_after_input_sections();
3684
3685 // This tells the driver code to wait until the symbol table has
3686 // written out before writing out the postprocessing sections,
3687 // including the .dynsym_shndx section.
3688 this->any_postprocessing_sections_ = true;
3689 }
3690
3691 // Create the dynamic string table section.
3692
3693 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3694 elfcpp::SHT_STRTAB,
3695 elfcpp::SHF_ALLOC,
3696 false,
3697 ORDER_DYNAMIC_LINKER,
3698 false);
3699
3700 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3701 dynstr->add_output_section_data(strdata);
3702
3703 dynsym->set_link_section(dynstr);
3704 this->dynamic_section_->set_link_section(dynstr);
3705
3706 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3707 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3708
3709 *pdynstr = dynstr;
3710
3711 // Create the hash tables.
3712
3713 if (strcmp(parameters->options().hash_style(), "sysv") == 0
3714 || strcmp(parameters->options().hash_style(), "both") == 0)
3715 {
3716 unsigned char* phash;
3717 unsigned int hashlen;
3718 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3719 &phash, &hashlen);
3720
3721 Output_section* hashsec =
3722 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3723 elfcpp::SHF_ALLOC, false,
3724 ORDER_DYNAMIC_LINKER, false);
3725
3726 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3727 hashlen,
3728 align,
3729 "** hash");
3730 hashsec->add_output_section_data(hashdata);
3731
3732 hashsec->set_link_section(dynsym);
3733 hashsec->set_entsize(4);
3734
3735 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3736 }
3737
3738 if (strcmp(parameters->options().hash_style(), "gnu") == 0
3739 || strcmp(parameters->options().hash_style(), "both") == 0)
3740 {
3741 unsigned char* phash;
3742 unsigned int hashlen;
3743 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3744 &phash, &hashlen);
3745
3746 Output_section* hashsec =
3747 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3748 elfcpp::SHF_ALLOC, false,
3749 ORDER_DYNAMIC_LINKER, false);
3750
3751 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3752 hashlen,
3753 align,
3754 "** hash");
3755 hashsec->add_output_section_data(hashdata);
3756
3757 hashsec->set_link_section(dynsym);
3758
3759 // For a 64-bit target, the entries in .gnu.hash do not have a
3760 // uniform size, so we only set the entry size for a 32-bit
3761 // target.
3762 if (parameters->target().get_size() == 32)
3763 hashsec->set_entsize(4);
3764
3765 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3766 }
3767 }
3768
3769 // Assign offsets to each local portion of the dynamic symbol table.
3770
3771 void
3772 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3773 {
3774 Output_section* dynsym = this->dynsym_section_;
3775 gold_assert(dynsym != NULL);
3776
3777 off_t off = dynsym->offset();
3778
3779 // Skip the dummy symbol at the start of the section.
3780 off += dynsym->entsize();
3781
3782 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3783 p != input_objects->relobj_end();
3784 ++p)
3785 {
3786 unsigned int count = (*p)->set_local_dynsym_offset(off);
3787 off += count * dynsym->entsize();
3788 }
3789 }
3790
3791 // Create the version sections.
3792
3793 void
3794 Layout::create_version_sections(const Versions* versions,
3795 const Symbol_table* symtab,
3796 unsigned int local_symcount,
3797 const std::vector<Symbol*>& dynamic_symbols,
3798 const Output_section* dynstr)
3799 {
3800 if (!versions->any_defs() && !versions->any_needs())
3801 return;
3802
3803 switch (parameters->size_and_endianness())
3804 {
3805 #ifdef HAVE_TARGET_32_LITTLE
3806 case Parameters::TARGET_32_LITTLE:
3807 this->sized_create_version_sections<32, false>(versions, symtab,
3808 local_symcount,
3809 dynamic_symbols, dynstr);
3810 break;
3811 #endif
3812 #ifdef HAVE_TARGET_32_BIG
3813 case Parameters::TARGET_32_BIG:
3814 this->sized_create_version_sections<32, true>(versions, symtab,
3815 local_symcount,
3816 dynamic_symbols, dynstr);
3817 break;
3818 #endif
3819 #ifdef HAVE_TARGET_64_LITTLE
3820 case Parameters::TARGET_64_LITTLE:
3821 this->sized_create_version_sections<64, false>(versions, symtab,
3822 local_symcount,
3823 dynamic_symbols, dynstr);
3824 break;
3825 #endif
3826 #ifdef HAVE_TARGET_64_BIG
3827 case Parameters::TARGET_64_BIG:
3828 this->sized_create_version_sections<64, true>(versions, symtab,
3829 local_symcount,
3830 dynamic_symbols, dynstr);
3831 break;
3832 #endif
3833 default:
3834 gold_unreachable();
3835 }
3836 }
3837
3838 // Create the version sections, sized version.
3839
3840 template<int size, bool big_endian>
3841 void
3842 Layout::sized_create_version_sections(
3843 const Versions* versions,
3844 const Symbol_table* symtab,
3845 unsigned int local_symcount,
3846 const std::vector<Symbol*>& dynamic_symbols,
3847 const Output_section* dynstr)
3848 {
3849 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3850 elfcpp::SHT_GNU_versym,
3851 elfcpp::SHF_ALLOC,
3852 false,
3853 ORDER_DYNAMIC_LINKER,
3854 false);
3855
3856 unsigned char* vbuf;
3857 unsigned int vsize;
3858 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3859 local_symcount,
3860 dynamic_symbols,
3861 &vbuf, &vsize);
3862
3863 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3864 "** versions");
3865
3866 vsec->add_output_section_data(vdata);
3867 vsec->set_entsize(2);
3868 vsec->set_link_section(this->dynsym_section_);
3869
3870 Output_data_dynamic* const odyn = this->dynamic_data_;
3871 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3872
3873 if (versions->any_defs())
3874 {
3875 Output_section* vdsec;
3876 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3877 elfcpp::SHT_GNU_verdef,
3878 elfcpp::SHF_ALLOC,
3879 false, ORDER_DYNAMIC_LINKER, false);
3880
3881 unsigned char* vdbuf;
3882 unsigned int vdsize;
3883 unsigned int vdentries;
3884 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3885 &vdsize, &vdentries);
3886
3887 Output_section_data* vddata =
3888 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3889
3890 vdsec->add_output_section_data(vddata);
3891 vdsec->set_link_section(dynstr);
3892 vdsec->set_info(vdentries);
3893
3894 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3895 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3896 }
3897
3898 if (versions->any_needs())
3899 {
3900 Output_section* vnsec;
3901 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3902 elfcpp::SHT_GNU_verneed,
3903 elfcpp::SHF_ALLOC,
3904 false, ORDER_DYNAMIC_LINKER, false);
3905
3906 unsigned char* vnbuf;
3907 unsigned int vnsize;
3908 unsigned int vnentries;
3909 versions->need_section_contents<size, big_endian>(&this->dynpool_,
3910 &vnbuf, &vnsize,
3911 &vnentries);
3912
3913 Output_section_data* vndata =
3914 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3915
3916 vnsec->add_output_section_data(vndata);
3917 vnsec->set_link_section(dynstr);
3918 vnsec->set_info(vnentries);
3919
3920 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3921 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3922 }
3923 }
3924
3925 // Create the .interp section and PT_INTERP segment.
3926
3927 void
3928 Layout::create_interp(const Target* target)
3929 {
3930 gold_assert(this->interp_segment_ == NULL);
3931
3932 const char* interp = parameters->options().dynamic_linker();
3933 if (interp == NULL)
3934 {
3935 interp = target->dynamic_linker();
3936 gold_assert(interp != NULL);
3937 }
3938
3939 size_t len = strlen(interp) + 1;
3940
3941 Output_section_data* odata = new Output_data_const(interp, len, 1);
3942
3943 Output_section* osec = this->choose_output_section(NULL, ".interp",
3944 elfcpp::SHT_PROGBITS,
3945 elfcpp::SHF_ALLOC,
3946 false, ORDER_INTERP,
3947 false);
3948 osec->add_output_section_data(odata);
3949 }
3950
3951 // Add dynamic tags for the PLT and the dynamic relocs. This is
3952 // called by the target-specific code. This does nothing if not doing
3953 // a dynamic link.
3954
3955 // USE_REL is true for REL relocs rather than RELA relocs.
3956
3957 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3958
3959 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3960 // and we also set DT_PLTREL. We use PLT_REL's output section, since
3961 // some targets have multiple reloc sections in PLT_REL.
3962
3963 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3964 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3965
3966 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3967 // executable.
3968
3969 void
3970 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
3971 const Output_data* plt_rel,
3972 const Output_data_reloc_generic* dyn_rel,
3973 bool add_debug, bool dynrel_includes_plt)
3974 {
3975 Output_data_dynamic* odyn = this->dynamic_data_;
3976 if (odyn == NULL)
3977 return;
3978
3979 if (plt_got != NULL && plt_got->output_section() != NULL)
3980 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
3981
3982 if (plt_rel != NULL && plt_rel->output_section() != NULL)
3983 {
3984 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
3985 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
3986 odyn->add_constant(elfcpp::DT_PLTREL,
3987 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
3988 }
3989
3990 if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
3991 {
3992 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
3993 dyn_rel);
3994 if (plt_rel != NULL && dynrel_includes_plt)
3995 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3996 dyn_rel, plt_rel);
3997 else
3998 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3999 dyn_rel);
4000 const int size = parameters->target().get_size();
4001 elfcpp::DT rel_tag;
4002 int rel_size;
4003 if (use_rel)
4004 {
4005 rel_tag = elfcpp::DT_RELENT;
4006 if (size == 32)
4007 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4008 else if (size == 64)
4009 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4010 else
4011 gold_unreachable();
4012 }
4013 else
4014 {
4015 rel_tag = elfcpp::DT_RELAENT;
4016 if (size == 32)
4017 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4018 else if (size == 64)
4019 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4020 else
4021 gold_unreachable();
4022 }
4023 odyn->add_constant(rel_tag, rel_size);
4024
4025 if (parameters->options().combreloc())
4026 {
4027 size_t c = dyn_rel->relative_reloc_count();
4028 if (c > 0)
4029 odyn->add_constant((use_rel
4030 ? elfcpp::DT_RELCOUNT
4031 : elfcpp::DT_RELACOUNT),
4032 c);
4033 }
4034 }
4035
4036 if (add_debug && !parameters->options().shared())
4037 {
4038 // The value of the DT_DEBUG tag is filled in by the dynamic
4039 // linker at run time, and used by the debugger.
4040 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4041 }
4042 }
4043
4044 // Finish the .dynamic section and PT_DYNAMIC segment.
4045
4046 void
4047 Layout::finish_dynamic_section(const Input_objects* input_objects,
4048 const Symbol_table* symtab)
4049 {
4050 if (!this->script_options_->saw_phdrs_clause())
4051 {
4052 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4053 (elfcpp::PF_R
4054 | elfcpp::PF_W));
4055 oseg->add_output_section_to_nonload(this->dynamic_section_,
4056 elfcpp::PF_R | elfcpp::PF_W);
4057 }
4058
4059 Output_data_dynamic* const odyn = this->dynamic_data_;
4060
4061 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4062 p != input_objects->dynobj_end();
4063 ++p)
4064 {
4065 if (!(*p)->is_needed() && (*p)->as_needed())
4066 {
4067 // This dynamic object was linked with --as-needed, but it
4068 // is not needed.
4069 continue;
4070 }
4071
4072 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4073 }
4074
4075 if (parameters->options().shared())
4076 {
4077 const char* soname = parameters->options().soname();
4078 if (soname != NULL)
4079 odyn->add_string(elfcpp::DT_SONAME, soname);
4080 }
4081
4082 Symbol* sym = symtab->lookup(parameters->options().init());
4083 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4084 odyn->add_symbol(elfcpp::DT_INIT, sym);
4085
4086 sym = symtab->lookup(parameters->options().fini());
4087 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4088 odyn->add_symbol(elfcpp::DT_FINI, sym);
4089
4090 // Look for .init_array, .preinit_array and .fini_array by checking
4091 // section types.
4092 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4093 p != this->section_list_.end();
4094 ++p)
4095 switch((*p)->type())
4096 {
4097 case elfcpp::SHT_FINI_ARRAY:
4098 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4099 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4100 break;
4101 case elfcpp::SHT_INIT_ARRAY:
4102 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4103 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4104 break;
4105 case elfcpp::SHT_PREINIT_ARRAY:
4106 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4107 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4108 break;
4109 default:
4110 break;
4111 }
4112
4113 // Add a DT_RPATH entry if needed.
4114 const General_options::Dir_list& rpath(parameters->options().rpath());
4115 if (!rpath.empty())
4116 {
4117 std::string rpath_val;
4118 for (General_options::Dir_list::const_iterator p = rpath.begin();
4119 p != rpath.end();
4120 ++p)
4121 {
4122 if (rpath_val.empty())
4123 rpath_val = p->name();
4124 else
4125 {
4126 // Eliminate duplicates.
4127 General_options::Dir_list::const_iterator q;
4128 for (q = rpath.begin(); q != p; ++q)
4129 if (q->name() == p->name())
4130 break;
4131 if (q == p)
4132 {
4133 rpath_val += ':';
4134 rpath_val += p->name();
4135 }
4136 }
4137 }
4138
4139 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4140 if (parameters->options().enable_new_dtags())
4141 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4142 }
4143
4144 // Look for text segments that have dynamic relocations.
4145 bool have_textrel = false;
4146 if (!this->script_options_->saw_sections_clause())
4147 {
4148 for (Segment_list::const_iterator p = this->segment_list_.begin();
4149 p != this->segment_list_.end();
4150 ++p)
4151 {
4152 if ((*p)->type() == elfcpp::PT_LOAD
4153 && ((*p)->flags() & elfcpp::PF_W) == 0
4154 && (*p)->has_dynamic_reloc())
4155 {
4156 have_textrel = true;
4157 break;
4158 }
4159 }
4160 }
4161 else
4162 {
4163 // We don't know the section -> segment mapping, so we are
4164 // conservative and just look for readonly sections with
4165 // relocations. If those sections wind up in writable segments,
4166 // then we have created an unnecessary DT_TEXTREL entry.
4167 for (Section_list::const_iterator p = this->section_list_.begin();
4168 p != this->section_list_.end();
4169 ++p)
4170 {
4171 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4172 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4173 && (*p)->has_dynamic_reloc())
4174 {
4175 have_textrel = true;
4176 break;
4177 }
4178 }
4179 }
4180
4181 // Add a DT_FLAGS entry. We add it even if no flags are set so that
4182 // post-link tools can easily modify these flags if desired.
4183 unsigned int flags = 0;
4184 if (have_textrel)
4185 {
4186 // Add a DT_TEXTREL for compatibility with older loaders.
4187 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4188 flags |= elfcpp::DF_TEXTREL;
4189
4190 if (parameters->options().text())
4191 gold_error(_("read-only segment has dynamic relocations"));
4192 else if (parameters->options().warn_shared_textrel()
4193 && parameters->options().shared())
4194 gold_warning(_("shared library text segment is not shareable"));
4195 }
4196 if (parameters->options().shared() && this->has_static_tls())
4197 flags |= elfcpp::DF_STATIC_TLS;
4198 if (parameters->options().origin())
4199 flags |= elfcpp::DF_ORIGIN;
4200 if (parameters->options().Bsymbolic())
4201 {
4202 flags |= elfcpp::DF_SYMBOLIC;
4203 // Add DT_SYMBOLIC for compatibility with older loaders.
4204 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4205 }
4206 if (parameters->options().now())
4207 flags |= elfcpp::DF_BIND_NOW;
4208 if (flags != 0)
4209 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4210
4211 flags = 0;
4212 if (parameters->options().initfirst())
4213 flags |= elfcpp::DF_1_INITFIRST;
4214 if (parameters->options().interpose())
4215 flags |= elfcpp::DF_1_INTERPOSE;
4216 if (parameters->options().loadfltr())
4217 flags |= elfcpp::DF_1_LOADFLTR;
4218 if (parameters->options().nodefaultlib())
4219 flags |= elfcpp::DF_1_NODEFLIB;
4220 if (parameters->options().nodelete())
4221 flags |= elfcpp::DF_1_NODELETE;
4222 if (parameters->options().nodlopen())
4223 flags |= elfcpp::DF_1_NOOPEN;
4224 if (parameters->options().nodump())
4225 flags |= elfcpp::DF_1_NODUMP;
4226 if (!parameters->options().shared())
4227 flags &= ~(elfcpp::DF_1_INITFIRST
4228 | elfcpp::DF_1_NODELETE
4229 | elfcpp::DF_1_NOOPEN);
4230 if (parameters->options().origin())
4231 flags |= elfcpp::DF_1_ORIGIN;
4232 if (parameters->options().now())
4233 flags |= elfcpp::DF_1_NOW;
4234 if (flags != 0)
4235 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4236 }
4237
4238 // Set the size of the _DYNAMIC symbol table to be the size of the
4239 // dynamic data.
4240
4241 void
4242 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4243 {
4244 Output_data_dynamic* const odyn = this->dynamic_data_;
4245 odyn->finalize_data_size();
4246 off_t data_size = odyn->data_size();
4247 const int size = parameters->target().get_size();
4248 if (size == 32)
4249 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4250 else if (size == 64)
4251 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4252 else
4253 gold_unreachable();
4254 }
4255
4256 // The mapping of input section name prefixes to output section names.
4257 // In some cases one prefix is itself a prefix of another prefix; in
4258 // such a case the longer prefix must come first. These prefixes are
4259 // based on the GNU linker default ELF linker script.
4260
4261 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4262 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4263 {
4264 MAPPING_INIT(".text.", ".text"),
4265 MAPPING_INIT(".rodata.", ".rodata"),
4266 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4267 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4268 MAPPING_INIT(".data.", ".data"),
4269 MAPPING_INIT(".bss.", ".bss"),
4270 MAPPING_INIT(".tdata.", ".tdata"),
4271 MAPPING_INIT(".tbss.", ".tbss"),
4272 MAPPING_INIT(".init_array.", ".init_array"),
4273 MAPPING_INIT(".fini_array.", ".fini_array"),
4274 MAPPING_INIT(".sdata.", ".sdata"),
4275 MAPPING_INIT(".sbss.", ".sbss"),
4276 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4277 // differently depending on whether it is creating a shared library.
4278 MAPPING_INIT(".sdata2.", ".sdata"),
4279 MAPPING_INIT(".sbss2.", ".sbss"),
4280 MAPPING_INIT(".lrodata.", ".lrodata"),
4281 MAPPING_INIT(".ldata.", ".ldata"),
4282 MAPPING_INIT(".lbss.", ".lbss"),
4283 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4284 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4285 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4286 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4287 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4288 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4289 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4290 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4291 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4292 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4293 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4294 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4295 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4296 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4297 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4298 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4299 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4300 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4301 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4302 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4303 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4304 };
4305 #undef MAPPING_INIT
4306
4307 const int Layout::section_name_mapping_count =
4308 (sizeof(Layout::section_name_mapping)
4309 / sizeof(Layout::section_name_mapping[0]));
4310
4311 // Choose the output section name to use given an input section name.
4312 // Set *PLEN to the length of the name. *PLEN is initialized to the
4313 // length of NAME.
4314
4315 const char*
4316 Layout::output_section_name(const Relobj* relobj, const char* name,
4317 size_t* plen)
4318 {
4319 // gcc 4.3 generates the following sorts of section names when it
4320 // needs a section name specific to a function:
4321 // .text.FN
4322 // .rodata.FN
4323 // .sdata2.FN
4324 // .data.FN
4325 // .data.rel.FN
4326 // .data.rel.local.FN
4327 // .data.rel.ro.FN
4328 // .data.rel.ro.local.FN
4329 // .sdata.FN
4330 // .bss.FN
4331 // .sbss.FN
4332 // .tdata.FN
4333 // .tbss.FN
4334
4335 // The GNU linker maps all of those to the part before the .FN,
4336 // except that .data.rel.local.FN is mapped to .data, and
4337 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4338 // beginning with .data.rel.ro.local are grouped together.
4339
4340 // For an anonymous namespace, the string FN can contain a '.'.
4341
4342 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4343 // GNU linker maps to .rodata.
4344
4345 // The .data.rel.ro sections are used with -z relro. The sections
4346 // are recognized by name. We use the same names that the GNU
4347 // linker does for these sections.
4348
4349 // It is hard to handle this in a principled way, so we don't even
4350 // try. We use a table of mappings. If the input section name is
4351 // not found in the table, we simply use it as the output section
4352 // name.
4353
4354 const Section_name_mapping* psnm = section_name_mapping;
4355 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4356 {
4357 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4358 {
4359 *plen = psnm->tolen;
4360 return psnm->to;
4361 }
4362 }
4363
4364 // As an additional complication, .ctors sections are output in
4365 // either .ctors or .init_array sections, and .dtors sections are
4366 // output in either .dtors or .fini_array sections.
4367 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4368 {
4369 if (parameters->options().ctors_in_init_array())
4370 {
4371 *plen = 11;
4372 return name[1] == 'c' ? ".init_array" : ".fini_array";
4373 }
4374 else
4375 {
4376 *plen = 6;
4377 return name[1] == 'c' ? ".ctors" : ".dtors";
4378 }
4379 }
4380 if (parameters->options().ctors_in_init_array()
4381 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4382 {
4383 // To make .init_array/.fini_array work with gcc we must exclude
4384 // .ctors and .dtors sections from the crtbegin and crtend
4385 // files.
4386 if (relobj == NULL
4387 || (!Layout::match_file_name(relobj, "crtbegin")
4388 && !Layout::match_file_name(relobj, "crtend")))
4389 {
4390 *plen = 11;
4391 return name[1] == 'c' ? ".init_array" : ".fini_array";
4392 }
4393 }
4394
4395 return name;
4396 }
4397
4398 // Return true if RELOBJ is an input file whose base name matches
4399 // FILE_NAME. The base name must have an extension of ".o", and must
4400 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
4401 // to match crtbegin.o as well as crtbeginS.o without getting confused
4402 // by other possibilities. Overall matching the file name this way is
4403 // a dreadful hack, but the GNU linker does it in order to better
4404 // support gcc, and we need to be compatible.
4405
4406 bool
4407 Layout::match_file_name(const Relobj* relobj, const char* match)
4408 {
4409 const std::string& file_name(relobj->name());
4410 const char* base_name = lbasename(file_name.c_str());
4411 size_t match_len = strlen(match);
4412 if (strncmp(base_name, match, match_len) != 0)
4413 return false;
4414 size_t base_len = strlen(base_name);
4415 if (base_len != match_len + 2 && base_len != match_len + 3)
4416 return false;
4417 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4418 }
4419
4420 // Check if a comdat group or .gnu.linkonce section with the given
4421 // NAME is selected for the link. If there is already a section,
4422 // *KEPT_SECTION is set to point to the existing section and the
4423 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4424 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4425 // *KEPT_SECTION is set to the internal copy and the function returns
4426 // true.
4427
4428 bool
4429 Layout::find_or_add_kept_section(const std::string& name,
4430 Relobj* object,
4431 unsigned int shndx,
4432 bool is_comdat,
4433 bool is_group_name,
4434 Kept_section** kept_section)
4435 {
4436 // It's normal to see a couple of entries here, for the x86 thunk
4437 // sections. If we see more than a few, we're linking a C++
4438 // program, and we resize to get more space to minimize rehashing.
4439 if (this->signatures_.size() > 4
4440 && !this->resized_signatures_)
4441 {
4442 reserve_unordered_map(&this->signatures_,
4443 this->number_of_input_files_ * 64);
4444 this->resized_signatures_ = true;
4445 }
4446
4447 Kept_section candidate;
4448 std::pair<Signatures::iterator, bool> ins =
4449 this->signatures_.insert(std::make_pair(name, candidate));
4450
4451 if (kept_section != NULL)
4452 *kept_section = &ins.first->second;
4453 if (ins.second)
4454 {
4455 // This is the first time we've seen this signature.
4456 ins.first->second.set_object(object);
4457 ins.first->second.set_shndx(shndx);
4458 if (is_comdat)
4459 ins.first->second.set_is_comdat();
4460 if (is_group_name)
4461 ins.first->second.set_is_group_name();
4462 return true;
4463 }
4464
4465 // We have already seen this signature.
4466
4467 if (ins.first->second.is_group_name())
4468 {
4469 // We've already seen a real section group with this signature.
4470 // If the kept group is from a plugin object, and we're in the
4471 // replacement phase, accept the new one as a replacement.
4472 if (ins.first->second.object() == NULL
4473 && parameters->options().plugins()->in_replacement_phase())
4474 {
4475 ins.first->second.set_object(object);
4476 ins.first->second.set_shndx(shndx);
4477 return true;
4478 }
4479 return false;
4480 }
4481 else if (is_group_name)
4482 {
4483 // This is a real section group, and we've already seen a
4484 // linkonce section with this signature. Record that we've seen
4485 // a section group, and don't include this section group.
4486 ins.first->second.set_is_group_name();
4487 return false;
4488 }
4489 else
4490 {
4491 // We've already seen a linkonce section and this is a linkonce
4492 // section. These don't block each other--this may be the same
4493 // symbol name with different section types.
4494 return true;
4495 }
4496 }
4497
4498 // Store the allocated sections into the section list.
4499
4500 void
4501 Layout::get_allocated_sections(Section_list* section_list) const
4502 {
4503 for (Section_list::const_iterator p = this->section_list_.begin();
4504 p != this->section_list_.end();
4505 ++p)
4506 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4507 section_list->push_back(*p);
4508 }
4509
4510 // Create an output segment.
4511
4512 Output_segment*
4513 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4514 {
4515 gold_assert(!parameters->options().relocatable());
4516 Output_segment* oseg = new Output_segment(type, flags);
4517 this->segment_list_.push_back(oseg);
4518
4519 if (type == elfcpp::PT_TLS)
4520 this->tls_segment_ = oseg;
4521 else if (type == elfcpp::PT_GNU_RELRO)
4522 this->relro_segment_ = oseg;
4523 else if (type == elfcpp::PT_INTERP)
4524 this->interp_segment_ = oseg;
4525
4526 return oseg;
4527 }
4528
4529 // Return the file offset of the normal symbol table.
4530
4531 off_t
4532 Layout::symtab_section_offset() const
4533 {
4534 if (this->symtab_section_ != NULL)
4535 return this->symtab_section_->offset();
4536 return 0;
4537 }
4538
4539 // Write out the Output_sections. Most won't have anything to write,
4540 // since most of the data will come from input sections which are
4541 // handled elsewhere. But some Output_sections do have Output_data.
4542
4543 void
4544 Layout::write_output_sections(Output_file* of) const
4545 {
4546 for (Section_list::const_iterator p = this->section_list_.begin();
4547 p != this->section_list_.end();
4548 ++p)
4549 {
4550 if (!(*p)->after_input_sections())
4551 (*p)->write(of);
4552 }
4553 }
4554
4555 // Write out data not associated with a section or the symbol table.
4556
4557 void
4558 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4559 {
4560 if (!parameters->options().strip_all())
4561 {
4562 const Output_section* symtab_section = this->symtab_section_;
4563 for (Section_list::const_iterator p = this->section_list_.begin();
4564 p != this->section_list_.end();
4565 ++p)
4566 {
4567 if ((*p)->needs_symtab_index())
4568 {
4569 gold_assert(symtab_section != NULL);
4570 unsigned int index = (*p)->symtab_index();
4571 gold_assert(index > 0 && index != -1U);
4572 off_t off = (symtab_section->offset()
4573 + index * symtab_section->entsize());
4574 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4575 }
4576 }
4577 }
4578
4579 const Output_section* dynsym_section = this->dynsym_section_;
4580 for (Section_list::const_iterator p = this->section_list_.begin();
4581 p != this->section_list_.end();
4582 ++p)
4583 {
4584 if ((*p)->needs_dynsym_index())
4585 {
4586 gold_assert(dynsym_section != NULL);
4587 unsigned int index = (*p)->dynsym_index();
4588 gold_assert(index > 0 && index != -1U);
4589 off_t off = (dynsym_section->offset()
4590 + index * dynsym_section->entsize());
4591 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4592 }
4593 }
4594
4595 // Write out the Output_data which are not in an Output_section.
4596 for (Data_list::const_iterator p = this->special_output_list_.begin();
4597 p != this->special_output_list_.end();
4598 ++p)
4599 (*p)->write(of);
4600 }
4601
4602 // Write out the Output_sections which can only be written after the
4603 // input sections are complete.
4604
4605 void
4606 Layout::write_sections_after_input_sections(Output_file* of)
4607 {
4608 // Determine the final section offsets, and thus the final output
4609 // file size. Note we finalize the .shstrab last, to allow the
4610 // after_input_section sections to modify their section-names before
4611 // writing.
4612 if (this->any_postprocessing_sections_)
4613 {
4614 off_t off = this->output_file_size_;
4615 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4616
4617 // Now that we've finalized the names, we can finalize the shstrab.
4618 off =
4619 this->set_section_offsets(off,
4620 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4621
4622 if (off > this->output_file_size_)
4623 {
4624 of->resize(off);
4625 this->output_file_size_ = off;
4626 }
4627 }
4628
4629 for (Section_list::const_iterator p = this->section_list_.begin();
4630 p != this->section_list_.end();
4631 ++p)
4632 {
4633 if ((*p)->after_input_sections())
4634 (*p)->write(of);
4635 }
4636
4637 this->section_headers_->write(of);
4638 }
4639
4640 // If the build ID requires computing a checksum, do so here, and
4641 // write it out. We compute a checksum over the entire file because
4642 // that is simplest.
4643
4644 void
4645 Layout::write_build_id(Output_file* of) const
4646 {
4647 if (this->build_id_note_ == NULL)
4648 return;
4649
4650 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4651
4652 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4653 this->build_id_note_->data_size());
4654
4655 const char* style = parameters->options().build_id();
4656 if (strcmp(style, "sha1") == 0)
4657 {
4658 sha1_ctx ctx;
4659 sha1_init_ctx(&ctx);
4660 sha1_process_bytes(iv, this->output_file_size_, &ctx);
4661 sha1_finish_ctx(&ctx, ov);
4662 }
4663 else if (strcmp(style, "md5") == 0)
4664 {
4665 md5_ctx ctx;
4666 md5_init_ctx(&ctx);
4667 md5_process_bytes(iv, this->output_file_size_, &ctx);
4668 md5_finish_ctx(&ctx, ov);
4669 }
4670 else
4671 gold_unreachable();
4672
4673 of->write_output_view(this->build_id_note_->offset(),
4674 this->build_id_note_->data_size(),
4675 ov);
4676
4677 of->free_input_view(0, this->output_file_size_, iv);
4678 }
4679
4680 // Write out a binary file. This is called after the link is
4681 // complete. IN is the temporary output file we used to generate the
4682 // ELF code. We simply walk through the segments, read them from
4683 // their file offset in IN, and write them to their load address in
4684 // the output file. FIXME: with a bit more work, we could support
4685 // S-records and/or Intel hex format here.
4686
4687 void
4688 Layout::write_binary(Output_file* in) const
4689 {
4690 gold_assert(parameters->options().oformat_enum()
4691 == General_options::OBJECT_FORMAT_BINARY);
4692
4693 // Get the size of the binary file.
4694 uint64_t max_load_address = 0;
4695 for (Segment_list::const_iterator p = this->segment_list_.begin();
4696 p != this->segment_list_.end();
4697 ++p)
4698 {
4699 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4700 {
4701 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4702 if (max_paddr > max_load_address)
4703 max_load_address = max_paddr;
4704 }
4705 }
4706
4707 Output_file out(parameters->options().output_file_name());
4708 out.open(max_load_address);
4709
4710 for (Segment_list::const_iterator p = this->segment_list_.begin();
4711 p != this->segment_list_.end();
4712 ++p)
4713 {
4714 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4715 {
4716 const unsigned char* vin = in->get_input_view((*p)->offset(),
4717 (*p)->filesz());
4718 unsigned char* vout = out.get_output_view((*p)->paddr(),
4719 (*p)->filesz());
4720 memcpy(vout, vin, (*p)->filesz());
4721 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4722 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4723 }
4724 }
4725
4726 out.close();
4727 }
4728
4729 // Print the output sections to the map file.
4730
4731 void
4732 Layout::print_to_mapfile(Mapfile* mapfile) const
4733 {
4734 for (Segment_list::const_iterator p = this->segment_list_.begin();
4735 p != this->segment_list_.end();
4736 ++p)
4737 (*p)->print_sections_to_mapfile(mapfile);
4738 }
4739
4740 // Print statistical information to stderr. This is used for --stats.
4741
4742 void
4743 Layout::print_stats() const
4744 {
4745 this->namepool_.print_stats("section name pool");
4746 this->sympool_.print_stats("output symbol name pool");
4747 this->dynpool_.print_stats("dynamic name pool");
4748
4749 for (Section_list::const_iterator p = this->section_list_.begin();
4750 p != this->section_list_.end();
4751 ++p)
4752 (*p)->print_merge_stats();
4753 }
4754
4755 // Write_sections_task methods.
4756
4757 // We can always run this task.
4758
4759 Task_token*
4760 Write_sections_task::is_runnable()
4761 {
4762 return NULL;
4763 }
4764
4765 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4766 // when finished.
4767
4768 void
4769 Write_sections_task::locks(Task_locker* tl)
4770 {
4771 tl->add(this, this->output_sections_blocker_);
4772 tl->add(this, this->final_blocker_);
4773 }
4774
4775 // Run the task--write out the data.
4776
4777 void
4778 Write_sections_task::run(Workqueue*)
4779 {
4780 this->layout_->write_output_sections(this->of_);
4781 }
4782
4783 // Write_data_task methods.
4784
4785 // We can always run this task.
4786
4787 Task_token*
4788 Write_data_task::is_runnable()
4789 {
4790 return NULL;
4791 }
4792
4793 // We need to unlock FINAL_BLOCKER when finished.
4794
4795 void
4796 Write_data_task::locks(Task_locker* tl)
4797 {
4798 tl->add(this, this->final_blocker_);
4799 }
4800
4801 // Run the task--write out the data.
4802
4803 void
4804 Write_data_task::run(Workqueue*)
4805 {
4806 this->layout_->write_data(this->symtab_, this->of_);
4807 }
4808
4809 // Write_symbols_task methods.
4810
4811 // We can always run this task.
4812
4813 Task_token*
4814 Write_symbols_task::is_runnable()
4815 {
4816 return NULL;
4817 }
4818
4819 // We need to unlock FINAL_BLOCKER when finished.
4820
4821 void
4822 Write_symbols_task::locks(Task_locker* tl)
4823 {
4824 tl->add(this, this->final_blocker_);
4825 }
4826
4827 // Run the task--write out the symbols.
4828
4829 void
4830 Write_symbols_task::run(Workqueue*)
4831 {
4832 this->symtab_->write_globals(this->sympool_, this->dynpool_,
4833 this->layout_->symtab_xindex(),
4834 this->layout_->dynsym_xindex(), this->of_);
4835 }
4836
4837 // Write_after_input_sections_task methods.
4838
4839 // We can only run this task after the input sections have completed.
4840
4841 Task_token*
4842 Write_after_input_sections_task::is_runnable()
4843 {
4844 if (this->input_sections_blocker_->is_blocked())
4845 return this->input_sections_blocker_;
4846 return NULL;
4847 }
4848
4849 // We need to unlock FINAL_BLOCKER when finished.
4850
4851 void
4852 Write_after_input_sections_task::locks(Task_locker* tl)
4853 {
4854 tl->add(this, this->final_blocker_);
4855 }
4856
4857 // Run the task.
4858
4859 void
4860 Write_after_input_sections_task::run(Workqueue*)
4861 {
4862 this->layout_->write_sections_after_input_sections(this->of_);
4863 }
4864
4865 // Close_task_runner methods.
4866
4867 // Run the task--close the file.
4868
4869 void
4870 Close_task_runner::run(Workqueue*, const Task*)
4871 {
4872 // If we need to compute a checksum for the BUILD if, we do so here.
4873 this->layout_->write_build_id(this->of_);
4874
4875 // If we've been asked to create a binary file, we do so here.
4876 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4877 this->layout_->write_binary(this->of_);
4878
4879 this->of_->close();
4880 }
4881
4882 // Instantiate the templates we need. We could use the configure
4883 // script to restrict this to only the ones for implemented targets.
4884
4885 #ifdef HAVE_TARGET_32_LITTLE
4886 template
4887 Output_section*
4888 Layout::init_fixed_output_section<32, false>(
4889 const char* name,
4890 elfcpp::Shdr<32, false>& shdr);
4891 #endif
4892
4893 #ifdef HAVE_TARGET_32_BIG
4894 template
4895 Output_section*
4896 Layout::init_fixed_output_section<32, true>(
4897 const char* name,
4898 elfcpp::Shdr<32, true>& shdr);
4899 #endif
4900
4901 #ifdef HAVE_TARGET_64_LITTLE
4902 template
4903 Output_section*
4904 Layout::init_fixed_output_section<64, false>(
4905 const char* name,
4906 elfcpp::Shdr<64, false>& shdr);
4907 #endif
4908
4909 #ifdef HAVE_TARGET_64_BIG
4910 template
4911 Output_section*
4912 Layout::init_fixed_output_section<64, true>(
4913 const char* name,
4914 elfcpp::Shdr<64, true>& shdr);
4915 #endif
4916
4917 #ifdef HAVE_TARGET_32_LITTLE
4918 template
4919 Output_section*
4920 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
4921 unsigned int shndx,
4922 const char* name,
4923 const elfcpp::Shdr<32, false>& shdr,
4924 unsigned int, unsigned int, off_t*);
4925 #endif
4926
4927 #ifdef HAVE_TARGET_32_BIG
4928 template
4929 Output_section*
4930 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
4931 unsigned int shndx,
4932 const char* name,
4933 const elfcpp::Shdr<32, true>& shdr,
4934 unsigned int, unsigned int, off_t*);
4935 #endif
4936
4937 #ifdef HAVE_TARGET_64_LITTLE
4938 template
4939 Output_section*
4940 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
4941 unsigned int shndx,
4942 const char* name,
4943 const elfcpp::Shdr<64, false>& shdr,
4944 unsigned int, unsigned int, off_t*);
4945 #endif
4946
4947 #ifdef HAVE_TARGET_64_BIG
4948 template
4949 Output_section*
4950 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
4951 unsigned int shndx,
4952 const char* name,
4953 const elfcpp::Shdr<64, true>& shdr,
4954 unsigned int, unsigned int, off_t*);
4955 #endif
4956
4957 #ifdef HAVE_TARGET_32_LITTLE
4958 template
4959 Output_section*
4960 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
4961 unsigned int reloc_shndx,
4962 const elfcpp::Shdr<32, false>& shdr,
4963 Output_section* data_section,
4964 Relocatable_relocs* rr);
4965 #endif
4966
4967 #ifdef HAVE_TARGET_32_BIG
4968 template
4969 Output_section*
4970 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
4971 unsigned int reloc_shndx,
4972 const elfcpp::Shdr<32, true>& shdr,
4973 Output_section* data_section,
4974 Relocatable_relocs* rr);
4975 #endif
4976
4977 #ifdef HAVE_TARGET_64_LITTLE
4978 template
4979 Output_section*
4980 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
4981 unsigned int reloc_shndx,
4982 const elfcpp::Shdr<64, false>& shdr,
4983 Output_section* data_section,
4984 Relocatable_relocs* rr);
4985 #endif
4986
4987 #ifdef HAVE_TARGET_64_BIG
4988 template
4989 Output_section*
4990 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
4991 unsigned int reloc_shndx,
4992 const elfcpp::Shdr<64, true>& shdr,
4993 Output_section* data_section,
4994 Relocatable_relocs* rr);
4995 #endif
4996
4997 #ifdef HAVE_TARGET_32_LITTLE
4998 template
4999 void
5000 Layout::layout_group<32, false>(Symbol_table* symtab,
5001 Sized_relobj_file<32, false>* object,
5002 unsigned int,
5003 const char* group_section_name,
5004 const char* signature,
5005 const elfcpp::Shdr<32, false>& shdr,
5006 elfcpp::Elf_Word flags,
5007 std::vector<unsigned int>* shndxes);
5008 #endif
5009
5010 #ifdef HAVE_TARGET_32_BIG
5011 template
5012 void
5013 Layout::layout_group<32, true>(Symbol_table* symtab,
5014 Sized_relobj_file<32, true>* object,
5015 unsigned int,
5016 const char* group_section_name,
5017 const char* signature,
5018 const elfcpp::Shdr<32, true>& shdr,
5019 elfcpp::Elf_Word flags,
5020 std::vector<unsigned int>* shndxes);
5021 #endif
5022
5023 #ifdef HAVE_TARGET_64_LITTLE
5024 template
5025 void
5026 Layout::layout_group<64, false>(Symbol_table* symtab,
5027 Sized_relobj_file<64, false>* object,
5028 unsigned int,
5029 const char* group_section_name,
5030 const char* signature,
5031 const elfcpp::Shdr<64, false>& shdr,
5032 elfcpp::Elf_Word flags,
5033 std::vector<unsigned int>* shndxes);
5034 #endif
5035
5036 #ifdef HAVE_TARGET_64_BIG
5037 template
5038 void
5039 Layout::layout_group<64, true>(Symbol_table* symtab,
5040 Sized_relobj_file<64, true>* object,
5041 unsigned int,
5042 const char* group_section_name,
5043 const char* signature,
5044 const elfcpp::Shdr<64, true>& shdr,
5045 elfcpp::Elf_Word flags,
5046 std::vector<unsigned int>* shndxes);
5047 #endif
5048
5049 #ifdef HAVE_TARGET_32_LITTLE
5050 template
5051 Output_section*
5052 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5053 const unsigned char* symbols,
5054 off_t symbols_size,
5055 const unsigned char* symbol_names,
5056 off_t symbol_names_size,
5057 unsigned int shndx,
5058 const elfcpp::Shdr<32, false>& shdr,
5059 unsigned int reloc_shndx,
5060 unsigned int reloc_type,
5061 off_t* off);
5062 #endif
5063
5064 #ifdef HAVE_TARGET_32_BIG
5065 template
5066 Output_section*
5067 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5068 const unsigned char* symbols,
5069 off_t symbols_size,
5070 const unsigned char* symbol_names,
5071 off_t symbol_names_size,
5072 unsigned int shndx,
5073 const elfcpp::Shdr<32, true>& shdr,
5074 unsigned int reloc_shndx,
5075 unsigned int reloc_type,
5076 off_t* off);
5077 #endif
5078
5079 #ifdef HAVE_TARGET_64_LITTLE
5080 template
5081 Output_section*
5082 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5083 const unsigned char* symbols,
5084 off_t symbols_size,
5085 const unsigned char* symbol_names,
5086 off_t symbol_names_size,
5087 unsigned int shndx,
5088 const elfcpp::Shdr<64, false>& shdr,
5089 unsigned int reloc_shndx,
5090 unsigned int reloc_type,
5091 off_t* off);
5092 #endif
5093
5094 #ifdef HAVE_TARGET_64_BIG
5095 template
5096 Output_section*
5097 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5098 const unsigned char* symbols,
5099 off_t symbols_size,
5100 const unsigned char* symbol_names,
5101 off_t symbol_names_size,
5102 unsigned int shndx,
5103 const elfcpp::Shdr<64, true>& shdr,
5104 unsigned int reloc_shndx,
5105 unsigned int reloc_type,
5106 off_t* off);
5107 #endif
5108
5109 } // End namespace gold.
This page took 0.133237 seconds and 5 git commands to generate.