Add an option for Stringpools to not copy strings.
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "dynobj.h"
34 #include "ehframe.h"
35 #include "layout.h"
36
37 namespace gold
38 {
39
40 // Layout_task_runner methods.
41
42 // Lay out the sections. This is called after all the input objects
43 // have been read.
44
45 void
46 Layout_task_runner::run(Workqueue* workqueue)
47 {
48 off_t file_size = this->layout_->finalize(this->input_objects_,
49 this->symtab_);
50
51 // Now we know the final size of the output file and we know where
52 // each piece of information goes.
53 Output_file* of = new Output_file(this->options_,
54 this->input_objects_->target());
55 of->open(file_size);
56
57 // Queue up the final set of tasks.
58 gold::queue_final_tasks(this->options_, this->input_objects_,
59 this->symtab_, this->layout_, workqueue, of);
60 }
61
62 // Layout methods.
63
64 Layout::Layout(const General_options& options)
65 : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
66 section_name_map_(), segment_list_(), section_list_(),
67 unattached_section_list_(), special_output_list_(),
68 tls_segment_(NULL), symtab_section_(NULL),
69 dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
70 eh_frame_section_(NULL), output_file_size_(-1)
71 {
72 // Make space for more than enough segments for a typical file.
73 // This is just for efficiency--it's OK if we wind up needing more.
74 this->segment_list_.reserve(12);
75
76 // We expect three unattached Output_data objects: the file header,
77 // the segment headers, and the section headers.
78 this->special_output_list_.reserve(3);
79 }
80
81 // Hash a key we use to look up an output section mapping.
82
83 size_t
84 Layout::Hash_key::operator()(const Layout::Key& k) const
85 {
86 return k.first + k.second.first + k.second.second;
87 }
88
89 // Return whether PREFIX is a prefix of STR.
90
91 static inline bool
92 is_prefix_of(const char* prefix, const char* str)
93 {
94 return strncmp(prefix, str, strlen(prefix)) == 0;
95 }
96
97 // Whether to include this section in the link.
98
99 template<int size, bool big_endian>
100 bool
101 Layout::include_section(Object*, const char* name,
102 const elfcpp::Shdr<size, big_endian>& shdr)
103 {
104 // Some section types are never linked. Some are only linked when
105 // doing a relocateable link.
106 switch (shdr.get_sh_type())
107 {
108 case elfcpp::SHT_NULL:
109 case elfcpp::SHT_SYMTAB:
110 case elfcpp::SHT_DYNSYM:
111 case elfcpp::SHT_STRTAB:
112 case elfcpp::SHT_HASH:
113 case elfcpp::SHT_DYNAMIC:
114 case elfcpp::SHT_SYMTAB_SHNDX:
115 return false;
116
117 case elfcpp::SHT_RELA:
118 case elfcpp::SHT_REL:
119 case elfcpp::SHT_GROUP:
120 return parameters->output_is_object();
121
122 case elfcpp::SHT_PROGBITS:
123 if (parameters->strip_debug()
124 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
125 {
126 // Debugging sections can only be recognized by name.
127 if (is_prefix_of(".debug", name)
128 || is_prefix_of(".gnu.linkonce.wi.", name)
129 || is_prefix_of(".line", name)
130 || is_prefix_of(".stab", name))
131 return false;
132 }
133 return true;
134
135 default:
136 return true;
137 }
138 }
139
140 // Return an output section named NAME, or NULL if there is none.
141
142 Output_section*
143 Layout::find_output_section(const char* name) const
144 {
145 for (Section_name_map::const_iterator p = this->section_name_map_.begin();
146 p != this->section_name_map_.end();
147 ++p)
148 if (strcmp(p->second->name(), name) == 0)
149 return p->second;
150 return NULL;
151 }
152
153 // Return an output segment of type TYPE, with segment flags SET set
154 // and segment flags CLEAR clear. Return NULL if there is none.
155
156 Output_segment*
157 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
158 elfcpp::Elf_Word clear) const
159 {
160 for (Segment_list::const_iterator p = this->segment_list_.begin();
161 p != this->segment_list_.end();
162 ++p)
163 if (static_cast<elfcpp::PT>((*p)->type()) == type
164 && ((*p)->flags() & set) == set
165 && ((*p)->flags() & clear) == 0)
166 return *p;
167 return NULL;
168 }
169
170 // Return the output section to use for section NAME with type TYPE
171 // and section flags FLAGS.
172
173 Output_section*
174 Layout::get_output_section(const char* name, Stringpool::Key name_key,
175 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
176 {
177 // We should ignore some flags.
178 flags &= ~ (elfcpp::SHF_INFO_LINK
179 | elfcpp::SHF_LINK_ORDER
180 | elfcpp::SHF_GROUP
181 | elfcpp::SHF_MERGE
182 | elfcpp::SHF_STRINGS);
183
184 const Key key(name_key, std::make_pair(type, flags));
185 const std::pair<Key, Output_section*> v(key, NULL);
186 std::pair<Section_name_map::iterator, bool> ins(
187 this->section_name_map_.insert(v));
188
189 if (!ins.second)
190 return ins.first->second;
191 else
192 {
193 // This is the first time we've seen this name/type/flags
194 // combination.
195 Output_section* os = this->make_output_section(name, type, flags);
196 ins.first->second = os;
197 return os;
198 }
199 }
200
201 // Return the output section to use for input section SHNDX, with name
202 // NAME, with header HEADER, from object OBJECT. Set *OFF to the
203 // offset of this input section without the output section.
204
205 template<int size, bool big_endian>
206 Output_section*
207 Layout::layout(Relobj* object, unsigned int shndx, const char* name,
208 const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
209 {
210 if (!this->include_section(object, name, shdr))
211 return NULL;
212
213 // If we are not doing a relocateable link, choose the name to use
214 // for the output section.
215 size_t len = strlen(name);
216 if (!parameters->output_is_object())
217 name = Layout::output_section_name(name, &len);
218
219 // FIXME: Handle SHF_OS_NONCONFORMING here.
220
221 // Canonicalize the section name.
222 Stringpool::Key name_key;
223 name = this->namepool_.add_prefix(name, len, &name_key);
224
225 // Find the output section. The output section is selected based on
226 // the section name, type, and flags.
227 Output_section* os = this->get_output_section(name, name_key,
228 shdr.get_sh_type(),
229 shdr.get_sh_flags());
230
231 // Special GNU handling of sections named .eh_frame.
232 if (!parameters->output_is_object()
233 && strcmp(name, ".eh_frame") == 0
234 && shdr.get_sh_size() > 0
235 && shdr.get_sh_type() == elfcpp::SHT_PROGBITS
236 && shdr.get_sh_flags() == elfcpp::SHF_ALLOC)
237 {
238 this->layout_eh_frame(object, shndx, name, shdr, os, off);
239 return os;
240 }
241
242 // FIXME: Handle SHF_LINK_ORDER somewhere.
243
244 *off = os->add_input_section(object, shndx, name, shdr);
245
246 return os;
247 }
248
249 // Special GNU handling of sections named .eh_frame. They will
250 // normally hold exception frame data.
251
252 template<int size, bool big_endian>
253 void
254 Layout::layout_eh_frame(Relobj* object,
255 unsigned int shndx,
256 const char* name,
257 const elfcpp::Shdr<size, big_endian>& shdr,
258 Output_section* os, off_t* off)
259 {
260 if (this->eh_frame_section_ == NULL)
261 {
262 this->eh_frame_section_ = os;
263
264 if (this->options_.create_eh_frame_hdr())
265 {
266 Stringpool::Key hdr_name_key;
267 const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
268 false,
269 &hdr_name_key);
270 Output_section* hdr_os =
271 this->get_output_section(hdr_name, hdr_name_key,
272 elfcpp::SHT_PROGBITS,
273 elfcpp::SHF_ALLOC);
274
275 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os);
276 hdr_os->add_output_section_data(hdr_posd);
277
278 Output_segment* hdr_oseg =
279 new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
280 this->segment_list_.push_back(hdr_oseg);
281 hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
282 }
283 }
284
285 gold_assert(this->eh_frame_section_ == os);
286
287 *off = os->add_input_section(object, shndx, name, shdr);
288 }
289
290 // Add POSD to an output section using NAME, TYPE, and FLAGS.
291
292 void
293 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
294 elfcpp::Elf_Xword flags,
295 Output_section_data* posd)
296 {
297 // Canonicalize the name.
298 Stringpool::Key name_key;
299 name = this->namepool_.add(name, true, &name_key);
300
301 Output_section* os = this->get_output_section(name, name_key, type, flags);
302 os->add_output_section_data(posd);
303 }
304
305 // Map section flags to segment flags.
306
307 elfcpp::Elf_Word
308 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
309 {
310 elfcpp::Elf_Word ret = elfcpp::PF_R;
311 if ((flags & elfcpp::SHF_WRITE) != 0)
312 ret |= elfcpp::PF_W;
313 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
314 ret |= elfcpp::PF_X;
315 return ret;
316 }
317
318 // Make a new Output_section, and attach it to segments as
319 // appropriate.
320
321 Output_section*
322 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
323 elfcpp::Elf_Xword flags)
324 {
325 Output_section* os = new Output_section(name, type, flags);
326 this->section_list_.push_back(os);
327
328 if ((flags & elfcpp::SHF_ALLOC) == 0)
329 this->unattached_section_list_.push_back(os);
330 else
331 {
332 // This output section goes into a PT_LOAD segment.
333
334 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
335
336 // The only thing we really care about for PT_LOAD segments is
337 // whether or not they are writable, so that is how we search
338 // for them. People who need segments sorted on some other
339 // basis will have to wait until we implement a mechanism for
340 // them to describe the segments they want.
341
342 Segment_list::const_iterator p;
343 for (p = this->segment_list_.begin();
344 p != this->segment_list_.end();
345 ++p)
346 {
347 if ((*p)->type() == elfcpp::PT_LOAD
348 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
349 {
350 (*p)->add_output_section(os, seg_flags);
351 break;
352 }
353 }
354
355 if (p == this->segment_list_.end())
356 {
357 Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
358 seg_flags);
359 this->segment_list_.push_back(oseg);
360 oseg->add_output_section(os, seg_flags);
361 }
362
363 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
364 // segment.
365 if (type == elfcpp::SHT_NOTE)
366 {
367 // See if we already have an equivalent PT_NOTE segment.
368 for (p = this->segment_list_.begin();
369 p != segment_list_.end();
370 ++p)
371 {
372 if ((*p)->type() == elfcpp::PT_NOTE
373 && (((*p)->flags() & elfcpp::PF_W)
374 == (seg_flags & elfcpp::PF_W)))
375 {
376 (*p)->add_output_section(os, seg_flags);
377 break;
378 }
379 }
380
381 if (p == this->segment_list_.end())
382 {
383 Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
384 seg_flags);
385 this->segment_list_.push_back(oseg);
386 oseg->add_output_section(os, seg_flags);
387 }
388 }
389
390 // If we see a loadable SHF_TLS section, we create a PT_TLS
391 // segment. There can only be one such segment.
392 if ((flags & elfcpp::SHF_TLS) != 0)
393 {
394 if (this->tls_segment_ == NULL)
395 {
396 this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
397 seg_flags);
398 this->segment_list_.push_back(this->tls_segment_);
399 }
400 this->tls_segment_->add_output_section(os, seg_flags);
401 }
402 }
403
404 return os;
405 }
406
407 // Create the dynamic sections which are needed before we read the
408 // relocs.
409
410 void
411 Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
412 Symbol_table* symtab)
413 {
414 if (!input_objects->any_dynamic())
415 return;
416
417 const char* dynamic_name = this->namepool_.add(".dynamic", false, NULL);
418 this->dynamic_section_ = this->make_output_section(dynamic_name,
419 elfcpp::SHT_DYNAMIC,
420 (elfcpp::SHF_ALLOC
421 | elfcpp::SHF_WRITE));
422
423 symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
424 this->dynamic_section_, 0, 0,
425 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
426 elfcpp::STV_HIDDEN, 0, false, false);
427
428 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
429
430 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
431 }
432
433 // For each output section whose name can be represented as C symbol,
434 // define __start and __stop symbols for the section. This is a GNU
435 // extension.
436
437 void
438 Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
439 {
440 for (Section_list::const_iterator p = this->section_list_.begin();
441 p != this->section_list_.end();
442 ++p)
443 {
444 const char* const name = (*p)->name();
445 if (name[strspn(name,
446 ("0123456789"
447 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
448 "abcdefghijklmnopqrstuvwxyz"
449 "_"))]
450 == '\0')
451 {
452 const std::string name_string(name);
453 const std::string start_name("__start_" + name_string);
454 const std::string stop_name("__stop_" + name_string);
455
456 symtab->define_in_output_data(target,
457 start_name.c_str(),
458 NULL, // version
459 *p,
460 0, // value
461 0, // symsize
462 elfcpp::STT_NOTYPE,
463 elfcpp::STB_GLOBAL,
464 elfcpp::STV_DEFAULT,
465 0, // nonvis
466 false, // offset_is_from_end
467 false); // only_if_ref
468
469 symtab->define_in_output_data(target,
470 stop_name.c_str(),
471 NULL, // version
472 *p,
473 0, // value
474 0, // symsize
475 elfcpp::STT_NOTYPE,
476 elfcpp::STB_GLOBAL,
477 elfcpp::STV_DEFAULT,
478 0, // nonvis
479 true, // offset_is_from_end
480 false); // only_if_ref
481 }
482 }
483 }
484
485 // Find the first read-only PT_LOAD segment, creating one if
486 // necessary.
487
488 Output_segment*
489 Layout::find_first_load_seg()
490 {
491 for (Segment_list::const_iterator p = this->segment_list_.begin();
492 p != this->segment_list_.end();
493 ++p)
494 {
495 if ((*p)->type() == elfcpp::PT_LOAD
496 && ((*p)->flags() & elfcpp::PF_R) != 0
497 && ((*p)->flags() & elfcpp::PF_W) == 0)
498 return *p;
499 }
500
501 Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
502 this->segment_list_.push_back(load_seg);
503 return load_seg;
504 }
505
506 // Finalize the layout. When this is called, we have created all the
507 // output sections and all the output segments which are based on
508 // input sections. We have several things to do, and we have to do
509 // them in the right order, so that we get the right results correctly
510 // and efficiently.
511
512 // 1) Finalize the list of output segments and create the segment
513 // table header.
514
515 // 2) Finalize the dynamic symbol table and associated sections.
516
517 // 3) Determine the final file offset of all the output segments.
518
519 // 4) Determine the final file offset of all the SHF_ALLOC output
520 // sections.
521
522 // 5) Create the symbol table sections and the section name table
523 // section.
524
525 // 6) Finalize the symbol table: set symbol values to their final
526 // value and make a final determination of which symbols are going
527 // into the output symbol table.
528
529 // 7) Create the section table header.
530
531 // 8) Determine the final file offset of all the output sections which
532 // are not SHF_ALLOC, including the section table header.
533
534 // 9) Finalize the ELF file header.
535
536 // This function returns the size of the output file.
537
538 off_t
539 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
540 {
541 Target* const target = input_objects->target();
542
543 target->finalize_sections(this);
544
545 this->create_note_section();
546
547 Output_segment* phdr_seg = NULL;
548 if (input_objects->any_dynamic())
549 {
550 // There was a dynamic object in the link. We need to create
551 // some information for the dynamic linker.
552
553 // Create the PT_PHDR segment which will hold the program
554 // headers.
555 phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
556 this->segment_list_.push_back(phdr_seg);
557
558 // Create the dynamic symbol table, including the hash table.
559 Output_section* dynstr;
560 std::vector<Symbol*> dynamic_symbols;
561 unsigned int local_dynamic_count;
562 Versions versions;
563 this->create_dynamic_symtab(target, symtab, &dynstr,
564 &local_dynamic_count, &dynamic_symbols,
565 &versions);
566
567 // Create the .interp section to hold the name of the
568 // interpreter, and put it in a PT_INTERP segment.
569 this->create_interp(target);
570
571 // Finish the .dynamic section to hold the dynamic data, and put
572 // it in a PT_DYNAMIC segment.
573 this->finish_dynamic_section(input_objects, symtab);
574
575 // We should have added everything we need to the dynamic string
576 // table.
577 this->dynpool_.set_string_offsets();
578
579 // Create the version sections. We can't do this until the
580 // dynamic string table is complete.
581 this->create_version_sections(&versions, local_dynamic_count,
582 dynamic_symbols, dynstr);
583 }
584
585 // FIXME: Handle PT_GNU_STACK.
586
587 Output_segment* load_seg = this->find_first_load_seg();
588
589 // Lay out the segment headers.
590 Output_segment_headers* segment_headers;
591 segment_headers = new Output_segment_headers(this->segment_list_);
592 load_seg->add_initial_output_data(segment_headers);
593 this->special_output_list_.push_back(segment_headers);
594 if (phdr_seg != NULL)
595 phdr_seg->add_initial_output_data(segment_headers);
596
597 // Lay out the file header.
598 Output_file_header* file_header;
599 file_header = new Output_file_header(target, symtab, segment_headers);
600 load_seg->add_initial_output_data(file_header);
601 this->special_output_list_.push_back(file_header);
602
603 // We set the output section indexes in set_segment_offsets and
604 // set_section_offsets.
605 unsigned int shndx = 1;
606
607 // Set the file offsets of all the segments, and all the sections
608 // they contain.
609 off_t off = this->set_segment_offsets(target, load_seg, &shndx);
610
611 // Create the symbol table sections.
612 this->create_symtab_sections(input_objects, symtab, &off);
613
614 // Create the .shstrtab section.
615 Output_section* shstrtab_section = this->create_shstrtab();
616
617 // Set the file offsets of all the sections not associated with
618 // segments.
619 off = this->set_section_offsets(off, &shndx);
620
621 // Create the section table header.
622 Output_section_headers* oshdrs = this->create_shdrs(&off);
623
624 file_header->set_section_info(oshdrs, shstrtab_section);
625
626 // Now we know exactly where everything goes in the output file.
627 Output_data::layout_complete();
628
629 this->output_file_size_ = off;
630
631 return off;
632 }
633
634 // Create a .note section for an executable or shared library. This
635 // records the version of gold used to create the binary.
636
637 void
638 Layout::create_note_section()
639 {
640 if (parameters->output_is_object())
641 return;
642
643 const int size = parameters->get_size();
644
645 // The contents of the .note section.
646 const char* name = "GNU";
647 std::string desc(std::string("gold ") + gold::get_version_string());
648 size_t namesz = strlen(name) + 1;
649 size_t aligned_namesz = align_address(namesz, size / 8);
650 size_t descsz = desc.length() + 1;
651 size_t aligned_descsz = align_address(descsz, size / 8);
652 const int note_type = 4;
653
654 size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
655
656 unsigned char buffer[128];
657 gold_assert(sizeof buffer >= notesz);
658 memset(buffer, 0, notesz);
659
660 bool is_big_endian = parameters->is_big_endian();
661
662 if (size == 32)
663 {
664 if (!is_big_endian)
665 {
666 elfcpp::Swap<32, false>::writeval(buffer, namesz);
667 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
668 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
669 }
670 else
671 {
672 elfcpp::Swap<32, true>::writeval(buffer, namesz);
673 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
674 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
675 }
676 }
677 else if (size == 64)
678 {
679 if (!is_big_endian)
680 {
681 elfcpp::Swap<64, false>::writeval(buffer, namesz);
682 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
683 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
684 }
685 else
686 {
687 elfcpp::Swap<64, true>::writeval(buffer, namesz);
688 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
689 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
690 }
691 }
692 else
693 gold_unreachable();
694
695 memcpy(buffer + 3 * (size / 8), name, namesz);
696 memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
697
698 const char* note_name = this->namepool_.add(".note", false, NULL);
699 Output_section* os = this->make_output_section(note_name,
700 elfcpp::SHT_NOTE,
701 0);
702 Output_section_data* posd = new Output_data_const(buffer, notesz,
703 size / 8);
704 os->add_output_section_data(posd);
705 }
706
707 // Return whether SEG1 should be before SEG2 in the output file. This
708 // is based entirely on the segment type and flags. When this is
709 // called the segment addresses has normally not yet been set.
710
711 bool
712 Layout::segment_precedes(const Output_segment* seg1,
713 const Output_segment* seg2)
714 {
715 elfcpp::Elf_Word type1 = seg1->type();
716 elfcpp::Elf_Word type2 = seg2->type();
717
718 // The single PT_PHDR segment is required to precede any loadable
719 // segment. We simply make it always first.
720 if (type1 == elfcpp::PT_PHDR)
721 {
722 gold_assert(type2 != elfcpp::PT_PHDR);
723 return true;
724 }
725 if (type2 == elfcpp::PT_PHDR)
726 return false;
727
728 // The single PT_INTERP segment is required to precede any loadable
729 // segment. We simply make it always second.
730 if (type1 == elfcpp::PT_INTERP)
731 {
732 gold_assert(type2 != elfcpp::PT_INTERP);
733 return true;
734 }
735 if (type2 == elfcpp::PT_INTERP)
736 return false;
737
738 // We then put PT_LOAD segments before any other segments.
739 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
740 return true;
741 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
742 return false;
743
744 // We put the PT_TLS segment last, because that is where the dynamic
745 // linker expects to find it (this is just for efficiency; other
746 // positions would also work correctly).
747 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
748 return false;
749 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
750 return true;
751
752 const elfcpp::Elf_Word flags1 = seg1->flags();
753 const elfcpp::Elf_Word flags2 = seg2->flags();
754
755 // The order of non-PT_LOAD segments is unimportant. We simply sort
756 // by the numeric segment type and flags values. There should not
757 // be more than one segment with the same type and flags.
758 if (type1 != elfcpp::PT_LOAD)
759 {
760 if (type1 != type2)
761 return type1 < type2;
762 gold_assert(flags1 != flags2);
763 return flags1 < flags2;
764 }
765
766 // We sort PT_LOAD segments based on the flags. Readonly segments
767 // come before writable segments. Then executable segments come
768 // before non-executable segments. Then the unlikely case of a
769 // non-readable segment comes before the normal case of a readable
770 // segment. If there are multiple segments with the same type and
771 // flags, we require that the address be set, and we sort by
772 // virtual address and then physical address.
773 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
774 return (flags1 & elfcpp::PF_W) == 0;
775 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
776 return (flags1 & elfcpp::PF_X) != 0;
777 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
778 return (flags1 & elfcpp::PF_R) == 0;
779
780 uint64_t vaddr1 = seg1->vaddr();
781 uint64_t vaddr2 = seg2->vaddr();
782 if (vaddr1 != vaddr2)
783 return vaddr1 < vaddr2;
784
785 uint64_t paddr1 = seg1->paddr();
786 uint64_t paddr2 = seg2->paddr();
787 gold_assert(paddr1 != paddr2);
788 return paddr1 < paddr2;
789 }
790
791 // Set the file offsets of all the segments, and all the sections they
792 // contain. They have all been created. LOAD_SEG must be be laid out
793 // first. Return the offset of the data to follow.
794
795 off_t
796 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
797 unsigned int *pshndx)
798 {
799 // Sort them into the final order.
800 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
801 Layout::Compare_segments());
802
803 // Find the PT_LOAD segments, and set their addresses and offsets
804 // and their section's addresses and offsets.
805 uint64_t addr = target->text_segment_address();
806 off_t off = 0;
807 bool was_readonly = false;
808 for (Segment_list::iterator p = this->segment_list_.begin();
809 p != this->segment_list_.end();
810 ++p)
811 {
812 if ((*p)->type() == elfcpp::PT_LOAD)
813 {
814 if (load_seg != NULL && load_seg != *p)
815 gold_unreachable();
816 load_seg = NULL;
817
818 // If the last segment was readonly, and this one is not,
819 // then skip the address forward one page, maintaining the
820 // same position within the page. This lets us store both
821 // segments overlapping on a single page in the file, but
822 // the loader will put them on different pages in memory.
823
824 uint64_t orig_addr = addr;
825 uint64_t orig_off = off;
826
827 uint64_t aligned_addr = addr;
828 uint64_t abi_pagesize = target->abi_pagesize();
829
830 // FIXME: This should depend on the -n and -N options.
831 (*p)->set_minimum_addralign(target->common_pagesize());
832
833 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
834 {
835 uint64_t align = (*p)->addralign();
836
837 addr = align_address(addr, align);
838 aligned_addr = addr;
839 if ((addr & (abi_pagesize - 1)) != 0)
840 addr = addr + abi_pagesize;
841 }
842
843 unsigned int shndx_hold = *pshndx;
844 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
845 uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
846
847 // Now that we know the size of this segment, we may be able
848 // to save a page in memory, at the cost of wasting some
849 // file space, by instead aligning to the start of a new
850 // page. Here we use the real machine page size rather than
851 // the ABI mandated page size.
852
853 if (aligned_addr != addr)
854 {
855 uint64_t common_pagesize = target->common_pagesize();
856 uint64_t first_off = (common_pagesize
857 - (aligned_addr
858 & (common_pagesize - 1)));
859 uint64_t last_off = new_addr & (common_pagesize - 1);
860 if (first_off > 0
861 && last_off > 0
862 && ((aligned_addr & ~ (common_pagesize - 1))
863 != (new_addr & ~ (common_pagesize - 1)))
864 && first_off + last_off <= common_pagesize)
865 {
866 *pshndx = shndx_hold;
867 addr = align_address(aligned_addr, common_pagesize);
868 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
869 new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
870 }
871 }
872
873 addr = new_addr;
874
875 if (((*p)->flags() & elfcpp::PF_W) == 0)
876 was_readonly = true;
877 }
878 }
879
880 // Handle the non-PT_LOAD segments, setting their offsets from their
881 // section's offsets.
882 for (Segment_list::iterator p = this->segment_list_.begin();
883 p != this->segment_list_.end();
884 ++p)
885 {
886 if ((*p)->type() != elfcpp::PT_LOAD)
887 (*p)->set_offset();
888 }
889
890 return off;
891 }
892
893 // Set the file offset of all the sections not associated with a
894 // segment.
895
896 off_t
897 Layout::set_section_offsets(off_t off, unsigned int* pshndx)
898 {
899 for (Section_list::iterator p = this->unattached_section_list_.begin();
900 p != this->unattached_section_list_.end();
901 ++p)
902 {
903 (*p)->set_out_shndx(*pshndx);
904 ++*pshndx;
905 if ((*p)->offset() != -1)
906 continue;
907 off = align_address(off, (*p)->addralign());
908 (*p)->set_address(0, off);
909 off += (*p)->data_size();
910 }
911 return off;
912 }
913
914 // Create the symbol table sections. Here we also set the final
915 // values of the symbols. At this point all the loadable sections are
916 // fully laid out.
917
918 void
919 Layout::create_symtab_sections(const Input_objects* input_objects,
920 Symbol_table* symtab,
921 off_t* poff)
922 {
923 int symsize;
924 unsigned int align;
925 if (parameters->get_size() == 32)
926 {
927 symsize = elfcpp::Elf_sizes<32>::sym_size;
928 align = 4;
929 }
930 else if (parameters->get_size() == 64)
931 {
932 symsize = elfcpp::Elf_sizes<64>::sym_size;
933 align = 8;
934 }
935 else
936 gold_unreachable();
937
938 off_t off = *poff;
939 off = align_address(off, align);
940 off_t startoff = off;
941
942 // Save space for the dummy symbol at the start of the section. We
943 // never bother to write this out--it will just be left as zero.
944 off += symsize;
945 unsigned int local_symbol_index = 1;
946
947 // Add STT_SECTION symbols for each Output section which needs one.
948 for (Section_list::iterator p = this->section_list_.begin();
949 p != this->section_list_.end();
950 ++p)
951 {
952 if (!(*p)->needs_symtab_index())
953 (*p)->set_symtab_index(-1U);
954 else
955 {
956 (*p)->set_symtab_index(local_symbol_index);
957 ++local_symbol_index;
958 off += symsize;
959 }
960 }
961
962 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
963 p != input_objects->relobj_end();
964 ++p)
965 {
966 Task_lock_obj<Object> tlo(**p);
967 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
968 off,
969 &this->sympool_);
970 off += (index - local_symbol_index) * symsize;
971 local_symbol_index = index;
972 }
973
974 unsigned int local_symcount = local_symbol_index;
975 gold_assert(local_symcount * symsize == off - startoff);
976
977 off_t dynoff;
978 size_t dyn_global_index;
979 size_t dyncount;
980 if (this->dynsym_section_ == NULL)
981 {
982 dynoff = 0;
983 dyn_global_index = 0;
984 dyncount = 0;
985 }
986 else
987 {
988 dyn_global_index = this->dynsym_section_->info();
989 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
990 dynoff = this->dynsym_section_->offset() + locsize;
991 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
992 gold_assert(static_cast<off_t>(dyncount * symsize)
993 == this->dynsym_section_->data_size() - locsize);
994 }
995
996 off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
997 dyncount, &this->sympool_);
998
999 if (!parameters->strip_all())
1000 {
1001 this->sympool_.set_string_offsets();
1002
1003 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1004 Output_section* osymtab = this->make_output_section(symtab_name,
1005 elfcpp::SHT_SYMTAB,
1006 0);
1007 this->symtab_section_ = osymtab;
1008
1009 Output_section_data* pos = new Output_data_space(off - startoff,
1010 align);
1011 osymtab->add_output_section_data(pos);
1012
1013 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1014 Output_section* ostrtab = this->make_output_section(strtab_name,
1015 elfcpp::SHT_STRTAB,
1016 0);
1017
1018 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1019 ostrtab->add_output_section_data(pstr);
1020
1021 osymtab->set_address(0, startoff);
1022 osymtab->set_link_section(ostrtab);
1023 osymtab->set_info(local_symcount);
1024 osymtab->set_entsize(symsize);
1025
1026 *poff = off;
1027 }
1028 }
1029
1030 // Create the .shstrtab section, which holds the names of the
1031 // sections. At the time this is called, we have created all the
1032 // output sections except .shstrtab itself.
1033
1034 Output_section*
1035 Layout::create_shstrtab()
1036 {
1037 // FIXME: We don't need to create a .shstrtab section if we are
1038 // stripping everything.
1039
1040 const char* name = this->namepool_.add(".shstrtab", false, NULL);
1041
1042 this->namepool_.set_string_offsets();
1043
1044 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1045
1046 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1047 os->add_output_section_data(posd);
1048
1049 return os;
1050 }
1051
1052 // Create the section headers. SIZE is 32 or 64. OFF is the file
1053 // offset.
1054
1055 Output_section_headers*
1056 Layout::create_shdrs(off_t* poff)
1057 {
1058 Output_section_headers* oshdrs;
1059 oshdrs = new Output_section_headers(this,
1060 &this->segment_list_,
1061 &this->unattached_section_list_,
1062 &this->namepool_);
1063 off_t off = align_address(*poff, oshdrs->addralign());
1064 oshdrs->set_address(0, off);
1065 off += oshdrs->data_size();
1066 *poff = off;
1067 this->special_output_list_.push_back(oshdrs);
1068 return oshdrs;
1069 }
1070
1071 // Create the dynamic symbol table.
1072
1073 void
1074 Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
1075 Output_section **pdynstr,
1076 unsigned int* plocal_dynamic_count,
1077 std::vector<Symbol*>* pdynamic_symbols,
1078 Versions* pversions)
1079 {
1080 // Count all the symbols in the dynamic symbol table, and set the
1081 // dynamic symbol indexes.
1082
1083 // Skip symbol 0, which is always all zeroes.
1084 unsigned int index = 1;
1085
1086 // Add STT_SECTION symbols for each Output section which needs one.
1087 for (Section_list::iterator p = this->section_list_.begin();
1088 p != this->section_list_.end();
1089 ++p)
1090 {
1091 if (!(*p)->needs_dynsym_index())
1092 (*p)->set_dynsym_index(-1U);
1093 else
1094 {
1095 (*p)->set_dynsym_index(index);
1096 ++index;
1097 }
1098 }
1099
1100 // FIXME: Some targets apparently require local symbols in the
1101 // dynamic symbol table. Here is where we will have to count them,
1102 // and set the dynamic symbol indexes, and add the names to
1103 // this->dynpool_.
1104
1105 unsigned int local_symcount = index;
1106 *plocal_dynamic_count = local_symcount;
1107
1108 // FIXME: We have to tell set_dynsym_indexes whether the
1109 // -E/--export-dynamic option was used.
1110 index = symtab->set_dynsym_indexes(&this->options_, target, index,
1111 pdynamic_symbols, &this->dynpool_,
1112 pversions);
1113
1114 int symsize;
1115 unsigned int align;
1116 const int size = parameters->get_size();
1117 if (size == 32)
1118 {
1119 symsize = elfcpp::Elf_sizes<32>::sym_size;
1120 align = 4;
1121 }
1122 else if (size == 64)
1123 {
1124 symsize = elfcpp::Elf_sizes<64>::sym_size;
1125 align = 8;
1126 }
1127 else
1128 gold_unreachable();
1129
1130 // Create the dynamic symbol table section.
1131
1132 const char* dynsym_name = this->namepool_.add(".dynsym", false, NULL);
1133 Output_section* dynsym = this->make_output_section(dynsym_name,
1134 elfcpp::SHT_DYNSYM,
1135 elfcpp::SHF_ALLOC);
1136
1137 Output_section_data* odata = new Output_data_space(index * symsize,
1138 align);
1139 dynsym->add_output_section_data(odata);
1140
1141 dynsym->set_info(local_symcount);
1142 dynsym->set_entsize(symsize);
1143 dynsym->set_addralign(align);
1144
1145 this->dynsym_section_ = dynsym;
1146
1147 Output_data_dynamic* const odyn = this->dynamic_data_;
1148 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1149 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1150
1151 // Create the dynamic string table section.
1152
1153 const char* dynstr_name = this->namepool_.add(".dynstr", false, NULL);
1154 Output_section* dynstr = this->make_output_section(dynstr_name,
1155 elfcpp::SHT_STRTAB,
1156 elfcpp::SHF_ALLOC);
1157
1158 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1159 dynstr->add_output_section_data(strdata);
1160
1161 dynsym->set_link_section(dynstr);
1162 this->dynamic_section_->set_link_section(dynstr);
1163
1164 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1165 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1166
1167 *pdynstr = dynstr;
1168
1169 // Create the hash tables.
1170
1171 // FIXME: We need an option to create a GNU hash table.
1172
1173 unsigned char* phash;
1174 unsigned int hashlen;
1175 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1176 &phash, &hashlen);
1177
1178 const char* hash_name = this->namepool_.add(".hash", false, NULL);
1179 Output_section* hashsec = this->make_output_section(hash_name,
1180 elfcpp::SHT_HASH,
1181 elfcpp::SHF_ALLOC);
1182
1183 Output_section_data* hashdata = new Output_data_const_buffer(phash,
1184 hashlen,
1185 align);
1186 hashsec->add_output_section_data(hashdata);
1187
1188 hashsec->set_link_section(dynsym);
1189 hashsec->set_entsize(4);
1190
1191 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1192 }
1193
1194 // Create the version sections.
1195
1196 void
1197 Layout::create_version_sections(const Versions* versions,
1198 unsigned int local_symcount,
1199 const std::vector<Symbol*>& dynamic_symbols,
1200 const Output_section* dynstr)
1201 {
1202 if (!versions->any_defs() && !versions->any_needs())
1203 return;
1204
1205 if (parameters->get_size() == 32)
1206 {
1207 if (parameters->is_big_endian())
1208 {
1209 #ifdef HAVE_TARGET_32_BIG
1210 this->sized_create_version_sections
1211 SELECT_SIZE_ENDIAN_NAME(32, true)(
1212 versions, local_symcount, dynamic_symbols, dynstr
1213 SELECT_SIZE_ENDIAN(32, true));
1214 #else
1215 gold_unreachable();
1216 #endif
1217 }
1218 else
1219 {
1220 #ifdef HAVE_TARGET_32_LITTLE
1221 this->sized_create_version_sections
1222 SELECT_SIZE_ENDIAN_NAME(32, false)(
1223 versions, local_symcount, dynamic_symbols, dynstr
1224 SELECT_SIZE_ENDIAN(32, false));
1225 #else
1226 gold_unreachable();
1227 #endif
1228 }
1229 }
1230 else if (parameters->get_size() == 64)
1231 {
1232 if (parameters->is_big_endian())
1233 {
1234 #ifdef HAVE_TARGET_64_BIG
1235 this->sized_create_version_sections
1236 SELECT_SIZE_ENDIAN_NAME(64, true)(
1237 versions, local_symcount, dynamic_symbols, dynstr
1238 SELECT_SIZE_ENDIAN(64, true));
1239 #else
1240 gold_unreachable();
1241 #endif
1242 }
1243 else
1244 {
1245 #ifdef HAVE_TARGET_64_LITTLE
1246 this->sized_create_version_sections
1247 SELECT_SIZE_ENDIAN_NAME(64, false)(
1248 versions, local_symcount, dynamic_symbols, dynstr
1249 SELECT_SIZE_ENDIAN(64, false));
1250 #else
1251 gold_unreachable();
1252 #endif
1253 }
1254 }
1255 else
1256 gold_unreachable();
1257 }
1258
1259 // Create the version sections, sized version.
1260
1261 template<int size, bool big_endian>
1262 void
1263 Layout::sized_create_version_sections(
1264 const Versions* versions,
1265 unsigned int local_symcount,
1266 const std::vector<Symbol*>& dynamic_symbols,
1267 const Output_section* dynstr
1268 ACCEPT_SIZE_ENDIAN)
1269 {
1270 const char* vname = this->namepool_.add(".gnu.version", false, NULL);
1271 Output_section* vsec = this->make_output_section(vname,
1272 elfcpp::SHT_GNU_versym,
1273 elfcpp::SHF_ALLOC);
1274
1275 unsigned char* vbuf;
1276 unsigned int vsize;
1277 versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1278 &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1279 SELECT_SIZE_ENDIAN(size, big_endian));
1280
1281 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1282
1283 vsec->add_output_section_data(vdata);
1284 vsec->set_entsize(2);
1285 vsec->set_link_section(this->dynsym_section_);
1286
1287 Output_data_dynamic* const odyn = this->dynamic_data_;
1288 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1289
1290 if (versions->any_defs())
1291 {
1292 const char* vdname = this->namepool_.add(".gnu.version_d", false, NULL);
1293 Output_section *vdsec;
1294 vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1295 elfcpp::SHF_ALLOC);
1296
1297 unsigned char* vdbuf;
1298 unsigned int vdsize;
1299 unsigned int vdentries;
1300 versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1301 &this->dynpool_, &vdbuf, &vdsize, &vdentries
1302 SELECT_SIZE_ENDIAN(size, big_endian));
1303
1304 Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1305 vdsize,
1306 4);
1307
1308 vdsec->add_output_section_data(vddata);
1309 vdsec->set_link_section(dynstr);
1310 vdsec->set_info(vdentries);
1311
1312 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1313 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1314 }
1315
1316 if (versions->any_needs())
1317 {
1318 const char* vnname = this->namepool_.add(".gnu.version_r", false, NULL);
1319 Output_section* vnsec;
1320 vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1321 elfcpp::SHF_ALLOC);
1322
1323 unsigned char* vnbuf;
1324 unsigned int vnsize;
1325 unsigned int vnentries;
1326 versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1327 (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1328 SELECT_SIZE_ENDIAN(size, big_endian));
1329
1330 Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1331 vnsize,
1332 4);
1333
1334 vnsec->add_output_section_data(vndata);
1335 vnsec->set_link_section(dynstr);
1336 vnsec->set_info(vnentries);
1337
1338 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1339 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1340 }
1341 }
1342
1343 // Create the .interp section and PT_INTERP segment.
1344
1345 void
1346 Layout::create_interp(const Target* target)
1347 {
1348 const char* interp = this->options_.dynamic_linker();
1349 if (interp == NULL)
1350 {
1351 interp = target->dynamic_linker();
1352 gold_assert(interp != NULL);
1353 }
1354
1355 size_t len = strlen(interp) + 1;
1356
1357 Output_section_data* odata = new Output_data_const(interp, len, 1);
1358
1359 const char* interp_name = this->namepool_.add(".interp", false, NULL);
1360 Output_section* osec = this->make_output_section(interp_name,
1361 elfcpp::SHT_PROGBITS,
1362 elfcpp::SHF_ALLOC);
1363 osec->add_output_section_data(odata);
1364
1365 Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1366 this->segment_list_.push_back(oseg);
1367 oseg->add_initial_output_section(osec, elfcpp::PF_R);
1368 }
1369
1370 // Finish the .dynamic section and PT_DYNAMIC segment.
1371
1372 void
1373 Layout::finish_dynamic_section(const Input_objects* input_objects,
1374 const Symbol_table* symtab)
1375 {
1376 Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1377 elfcpp::PF_R | elfcpp::PF_W);
1378 this->segment_list_.push_back(oseg);
1379 oseg->add_initial_output_section(this->dynamic_section_,
1380 elfcpp::PF_R | elfcpp::PF_W);
1381
1382 Output_data_dynamic* const odyn = this->dynamic_data_;
1383
1384 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1385 p != input_objects->dynobj_end();
1386 ++p)
1387 {
1388 // FIXME: Handle --as-needed.
1389 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1390 }
1391
1392 // FIXME: Support --init and --fini.
1393 Symbol* sym = symtab->lookup("_init");
1394 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1395 odyn->add_symbol(elfcpp::DT_INIT, sym);
1396
1397 sym = symtab->lookup("_fini");
1398 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1399 odyn->add_symbol(elfcpp::DT_FINI, sym);
1400
1401 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1402
1403 // Add a DT_RPATH entry if needed.
1404 const General_options::Dir_list& rpath(this->options_.rpath());
1405 if (!rpath.empty())
1406 {
1407 std::string rpath_val;
1408 for (General_options::Dir_list::const_iterator p = rpath.begin();
1409 p != rpath.end();
1410 ++p)
1411 {
1412 if (rpath_val.empty())
1413 rpath_val = p->name();
1414 else
1415 {
1416 // Eliminate duplicates.
1417 General_options::Dir_list::const_iterator q;
1418 for (q = rpath.begin(); q != p; ++q)
1419 if (q->name() == p->name())
1420 break;
1421 if (q == p)
1422 {
1423 rpath_val += ':';
1424 rpath_val += p->name();
1425 }
1426 }
1427 }
1428
1429 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1430 }
1431 }
1432
1433 // The mapping of .gnu.linkonce section names to real section names.
1434
1435 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1436 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1437 {
1438 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
1439 MAPPING_INIT("t", ".text"),
1440 MAPPING_INIT("r", ".rodata"),
1441 MAPPING_INIT("d", ".data"),
1442 MAPPING_INIT("b", ".bss"),
1443 MAPPING_INIT("s", ".sdata"),
1444 MAPPING_INIT("sb", ".sbss"),
1445 MAPPING_INIT("s2", ".sdata2"),
1446 MAPPING_INIT("sb2", ".sbss2"),
1447 MAPPING_INIT("wi", ".debug_info"),
1448 MAPPING_INIT("td", ".tdata"),
1449 MAPPING_INIT("tb", ".tbss"),
1450 MAPPING_INIT("lr", ".lrodata"),
1451 MAPPING_INIT("l", ".ldata"),
1452 MAPPING_INIT("lb", ".lbss"),
1453 };
1454 #undef MAPPING_INIT
1455
1456 const int Layout::linkonce_mapping_count =
1457 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1458
1459 // Return the name of the output section to use for a .gnu.linkonce
1460 // section. This is based on the default ELF linker script of the old
1461 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
1462 // to ".text". Set *PLEN to the length of the name. *PLEN is
1463 // initialized to the length of NAME.
1464
1465 const char*
1466 Layout::linkonce_output_name(const char* name, size_t *plen)
1467 {
1468 const char* s = name + sizeof(".gnu.linkonce") - 1;
1469 if (*s != '.')
1470 return name;
1471 ++s;
1472 const Linkonce_mapping* plm = linkonce_mapping;
1473 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1474 {
1475 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
1476 {
1477 *plen = plm->tolen;
1478 return plm->to;
1479 }
1480 }
1481 return name;
1482 }
1483
1484 // Choose the output section name to use given an input section name.
1485 // Set *PLEN to the length of the name. *PLEN is initialized to the
1486 // length of NAME.
1487
1488 const char*
1489 Layout::output_section_name(const char* name, size_t* plen)
1490 {
1491 if (Layout::is_linkonce(name))
1492 {
1493 // .gnu.linkonce sections are laid out as though they were named
1494 // for the sections are placed into.
1495 return Layout::linkonce_output_name(name, plen);
1496 }
1497
1498 // If the section name has no '.', or only an initial '.', we use
1499 // the name unchanged (i.e., ".text" is unchanged).
1500
1501 // Otherwise, if the section name does not include ".rel", we drop
1502 // the last '.' and everything that follows (i.e., ".text.XXX"
1503 // becomes ".text").
1504
1505 // Otherwise, if the section name has zero or one '.' after the
1506 // ".rel", we use the name unchanged (i.e., ".rel.text" is
1507 // unchanged).
1508
1509 // Otherwise, we drop the last '.' and everything that follows
1510 // (i.e., ".rel.text.XXX" becomes ".rel.text").
1511
1512 const char* s = name;
1513 if (*s == '.')
1514 ++s;
1515 const char* sdot = strchr(s, '.');
1516 if (sdot == NULL)
1517 return name;
1518
1519 const char* srel = strstr(s, ".rel");
1520 if (srel == NULL)
1521 {
1522 *plen = sdot - name;
1523 return name;
1524 }
1525
1526 sdot = strchr(srel + 1, '.');
1527 if (sdot == NULL)
1528 return name;
1529 sdot = strchr(sdot + 1, '.');
1530 if (sdot == NULL)
1531 return name;
1532
1533 *plen = sdot - name;
1534 return name;
1535 }
1536
1537 // Record the signature of a comdat section, and return whether to
1538 // include it in the link. If GROUP is true, this is a regular
1539 // section group. If GROUP is false, this is a group signature
1540 // derived from the name of a linkonce section. We want linkonce
1541 // signatures and group signatures to block each other, but we don't
1542 // want a linkonce signature to block another linkonce signature.
1543
1544 bool
1545 Layout::add_comdat(const char* signature, bool group)
1546 {
1547 std::string sig(signature);
1548 std::pair<Signatures::iterator, bool> ins(
1549 this->signatures_.insert(std::make_pair(sig, group)));
1550
1551 if (ins.second)
1552 {
1553 // This is the first time we've seen this signature.
1554 return true;
1555 }
1556
1557 if (ins.first->second)
1558 {
1559 // We've already seen a real section group with this signature.
1560 return false;
1561 }
1562 else if (group)
1563 {
1564 // This is a real section group, and we've already seen a
1565 // linkonce section with this signature. Record that we've seen
1566 // a section group, and don't include this section group.
1567 ins.first->second = true;
1568 return false;
1569 }
1570 else
1571 {
1572 // We've already seen a linkonce section and this is a linkonce
1573 // section. These don't block each other--this may be the same
1574 // symbol name with different section types.
1575 return true;
1576 }
1577 }
1578
1579 // Write out data not associated with a section or the symbol table.
1580
1581 void
1582 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
1583 {
1584 if (!parameters->strip_all())
1585 {
1586 const Output_section* symtab_section = this->symtab_section_;
1587 for (Section_list::const_iterator p = this->section_list_.begin();
1588 p != this->section_list_.end();
1589 ++p)
1590 {
1591 if ((*p)->needs_symtab_index())
1592 {
1593 gold_assert(symtab_section != NULL);
1594 unsigned int index = (*p)->symtab_index();
1595 gold_assert(index > 0 && index != -1U);
1596 off_t off = (symtab_section->offset()
1597 + index * symtab_section->entsize());
1598 symtab->write_section_symbol(*p, of, off);
1599 }
1600 }
1601 }
1602
1603 const Output_section* dynsym_section = this->dynsym_section_;
1604 for (Section_list::const_iterator p = this->section_list_.begin();
1605 p != this->section_list_.end();
1606 ++p)
1607 {
1608 if ((*p)->needs_dynsym_index())
1609 {
1610 gold_assert(dynsym_section != NULL);
1611 unsigned int index = (*p)->dynsym_index();
1612 gold_assert(index > 0 && index != -1U);
1613 off_t off = (dynsym_section->offset()
1614 + index * dynsym_section->entsize());
1615 symtab->write_section_symbol(*p, of, off);
1616 }
1617 }
1618
1619 // Write out the Output_sections. Most won't have anything to
1620 // write, since most of the data will come from input sections which
1621 // are handled elsewhere. But some Output_sections do have
1622 // Output_data.
1623 for (Section_list::const_iterator p = this->section_list_.begin();
1624 p != this->section_list_.end();
1625 ++p)
1626 (*p)->write(of);
1627
1628 // Write out the Output_data which are not in an Output_section.
1629 for (Data_list::const_iterator p = this->special_output_list_.begin();
1630 p != this->special_output_list_.end();
1631 ++p)
1632 (*p)->write(of);
1633 }
1634
1635 // Write_data_task methods.
1636
1637 // We can always run this task.
1638
1639 Task::Is_runnable_type
1640 Write_data_task::is_runnable(Workqueue*)
1641 {
1642 return IS_RUNNABLE;
1643 }
1644
1645 // We need to unlock FINAL_BLOCKER when finished.
1646
1647 Task_locker*
1648 Write_data_task::locks(Workqueue* workqueue)
1649 {
1650 return new Task_locker_block(*this->final_blocker_, workqueue);
1651 }
1652
1653 // Run the task--write out the data.
1654
1655 void
1656 Write_data_task::run(Workqueue*)
1657 {
1658 this->layout_->write_data(this->symtab_, this->of_);
1659 }
1660
1661 // Write_symbols_task methods.
1662
1663 // We can always run this task.
1664
1665 Task::Is_runnable_type
1666 Write_symbols_task::is_runnable(Workqueue*)
1667 {
1668 return IS_RUNNABLE;
1669 }
1670
1671 // We need to unlock FINAL_BLOCKER when finished.
1672
1673 Task_locker*
1674 Write_symbols_task::locks(Workqueue* workqueue)
1675 {
1676 return new Task_locker_block(*this->final_blocker_, workqueue);
1677 }
1678
1679 // Run the task--write out the symbols.
1680
1681 void
1682 Write_symbols_task::run(Workqueue*)
1683 {
1684 this->symtab_->write_globals(this->target_, this->sympool_, this->dynpool_,
1685 this->of_);
1686 }
1687
1688 // Close_task_runner methods.
1689
1690 // Run the task--close the file.
1691
1692 void
1693 Close_task_runner::run(Workqueue*)
1694 {
1695 this->of_->close();
1696 }
1697
1698 // Instantiate the templates we need. We could use the configure
1699 // script to restrict this to only the ones for implemented targets.
1700
1701 #ifdef HAVE_TARGET_32_LITTLE
1702 template
1703 Output_section*
1704 Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
1705 const elfcpp::Shdr<32, false>& shdr, off_t*);
1706 #endif
1707
1708 #ifdef HAVE_TARGET_32_BIG
1709 template
1710 Output_section*
1711 Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
1712 const elfcpp::Shdr<32, true>& shdr, off_t*);
1713 #endif
1714
1715 #ifdef HAVE_TARGET_64_LITTLE
1716 template
1717 Output_section*
1718 Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
1719 const elfcpp::Shdr<64, false>& shdr, off_t*);
1720 #endif
1721
1722 #ifdef HAVE_TARGET_64_BIG
1723 template
1724 Output_section*
1725 Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
1726 const elfcpp::Shdr<64, true>& shdr, off_t*);
1727 #endif
1728
1729
1730 } // End namespace gold.
This page took 0.067741 seconds and 5 git commands to generate.