1 // object.cc -- support for an object file for linking in gold
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
7 // This file is part of gold.
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
30 #include "libiberty.h"
33 #include "target-select.h"
34 #include "dwarf_reader.h"
43 #include "compressed_output.h"
44 #include "incremental.h"
49 // Struct Read_symbols_data.
51 // Destroy any remaining File_view objects.
53 Read_symbols_data::~Read_symbols_data()
55 if (this->section_headers
!= NULL
)
56 delete this->section_headers
;
57 if (this->section_names
!= NULL
)
58 delete this->section_names
;
59 if (this->symbols
!= NULL
)
61 if (this->symbol_names
!= NULL
)
62 delete this->symbol_names
;
63 if (this->versym
!= NULL
)
65 if (this->verdef
!= NULL
)
67 if (this->verneed
!= NULL
)
73 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
74 // section and read it in. SYMTAB_SHNDX is the index of the symbol
75 // table we care about.
77 template<int size
, bool big_endian
>
79 Xindex::initialize_symtab_xindex(Object
* object
, unsigned int symtab_shndx
)
81 if (!this->symtab_xindex_
.empty())
84 gold_assert(symtab_shndx
!= 0);
86 // Look through the sections in reverse order, on the theory that it
87 // is more likely to be near the end than the beginning.
88 unsigned int i
= object
->shnum();
92 if (object
->section_type(i
) == elfcpp::SHT_SYMTAB_SHNDX
93 && this->adjust_shndx(object
->section_link(i
)) == symtab_shndx
)
95 this->read_symtab_xindex
<size
, big_endian
>(object
, i
, NULL
);
100 object
->error(_("missing SHT_SYMTAB_SHNDX section"));
103 // Read in the symtab_xindex_ array, given the section index of the
104 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
107 template<int size
, bool big_endian
>
109 Xindex::read_symtab_xindex(Object
* object
, unsigned int xindex_shndx
,
110 const unsigned char* pshdrs
)
112 section_size_type bytecount
;
113 const unsigned char* contents
;
115 contents
= object
->section_contents(xindex_shndx
, &bytecount
, false);
118 const unsigned char* p
= (pshdrs
120 * elfcpp::Elf_sizes
<size
>::shdr_size
));
121 typename
elfcpp::Shdr
<size
, big_endian
> shdr(p
);
122 bytecount
= convert_to_section_size_type(shdr
.get_sh_size());
123 contents
= object
->get_view(shdr
.get_sh_offset(), bytecount
, true, false);
126 gold_assert(this->symtab_xindex_
.empty());
127 this->symtab_xindex_
.reserve(bytecount
/ 4);
128 for (section_size_type i
= 0; i
< bytecount
; i
+= 4)
130 unsigned int shndx
= elfcpp::Swap
<32, big_endian
>::readval(contents
+ i
);
131 // We preadjust the section indexes we save.
132 this->symtab_xindex_
.push_back(this->adjust_shndx(shndx
));
136 // Symbol symndx has a section of SHN_XINDEX; return the real section
140 Xindex::sym_xindex_to_shndx(Object
* object
, unsigned int symndx
)
142 if (symndx
>= this->symtab_xindex_
.size())
144 object
->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146 return elfcpp::SHN_UNDEF
;
148 unsigned int shndx
= this->symtab_xindex_
[symndx
];
149 if (shndx
< elfcpp::SHN_LORESERVE
|| shndx
>= object
->shnum())
151 object
->error(_("extended index for symbol %u out of range: %u"),
153 return elfcpp::SHN_UNDEF
;
160 // Report an error for this object file. This is used by the
161 // elfcpp::Elf_file interface, and also called by the Object code
165 Object::error(const char* format
, ...) const
168 va_start(args
, format
);
170 if (vasprintf(&buf
, format
, args
) < 0)
173 gold_error(_("%s: %s"), this->name().c_str(), buf
);
177 // Return a view of the contents of a section.
180 Object::section_contents(unsigned int shndx
, section_size_type
* plen
,
182 { return this->do_section_contents(shndx
, plen
, cache
); }
184 // Read the section data into SD. This is code common to Sized_relobj_file
185 // and Sized_dynobj, so we put it into Object.
187 template<int size
, bool big_endian
>
189 Object::read_section_data(elfcpp::Elf_file
<size
, big_endian
, Object
>* elf_file
,
190 Read_symbols_data
* sd
)
192 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
194 // Read the section headers.
195 const off_t shoff
= elf_file
->shoff();
196 const unsigned int shnum
= this->shnum();
197 sd
->section_headers
= this->get_lasting_view(shoff
, shnum
* shdr_size
,
200 // Read the section names.
201 const unsigned char* pshdrs
= sd
->section_headers
->data();
202 const unsigned char* pshdrnames
= pshdrs
+ elf_file
->shstrndx() * shdr_size
;
203 typename
elfcpp::Shdr
<size
, big_endian
> shdrnames(pshdrnames
);
205 if (shdrnames
.get_sh_type() != elfcpp::SHT_STRTAB
)
206 this->error(_("section name section has wrong type: %u"),
207 static_cast<unsigned int>(shdrnames
.get_sh_type()));
209 sd
->section_names_size
=
210 convert_to_section_size_type(shdrnames
.get_sh_size());
211 sd
->section_names
= this->get_lasting_view(shdrnames
.get_sh_offset(),
212 sd
->section_names_size
, false,
216 // If NAME is the name of a special .gnu.warning section, arrange for
217 // the warning to be issued. SHNDX is the section index. Return
218 // whether it is a warning section.
221 Object::handle_gnu_warning_section(const char* name
, unsigned int shndx
,
222 Symbol_table
* symtab
)
224 const char warn_prefix
[] = ".gnu.warning.";
225 const int warn_prefix_len
= sizeof warn_prefix
- 1;
226 if (strncmp(name
, warn_prefix
, warn_prefix_len
) == 0)
228 // Read the section contents to get the warning text. It would
229 // be nicer if we only did this if we have to actually issue a
230 // warning. Unfortunately, warnings are issued as we relocate
231 // sections. That means that we can not lock the object then,
232 // as we might try to issue the same warning multiple times
234 section_size_type len
;
235 const unsigned char* contents
= this->section_contents(shndx
, &len
,
239 const char* warning
= name
+ warn_prefix_len
;
240 contents
= reinterpret_cast<const unsigned char*>(warning
);
241 len
= strlen(warning
);
243 std::string
warning(reinterpret_cast<const char*>(contents
), len
);
244 symtab
->add_warning(name
+ warn_prefix_len
, this, warning
);
250 // If NAME is the name of the special section which indicates that
251 // this object was compiled with -fsplit-stack, mark it accordingly.
254 Object::handle_split_stack_section(const char* name
)
256 if (strcmp(name
, ".note.GNU-split-stack") == 0)
258 this->uses_split_stack_
= true;
261 if (strcmp(name
, ".note.GNU-no-split-stack") == 0)
263 this->has_no_split_stack_
= true;
271 // To copy the symbols data read from the file to a local data structure.
272 // This function is called from do_layout only while doing garbage
276 Relobj::copy_symbols_data(Symbols_data
* gc_sd
, Read_symbols_data
* sd
,
277 unsigned int section_header_size
)
279 gc_sd
->section_headers_data
=
280 new unsigned char[(section_header_size
)];
281 memcpy(gc_sd
->section_headers_data
, sd
->section_headers
->data(),
282 section_header_size
);
283 gc_sd
->section_names_data
=
284 new unsigned char[sd
->section_names_size
];
285 memcpy(gc_sd
->section_names_data
, sd
->section_names
->data(),
286 sd
->section_names_size
);
287 gc_sd
->section_names_size
= sd
->section_names_size
;
288 if (sd
->symbols
!= NULL
)
290 gc_sd
->symbols_data
=
291 new unsigned char[sd
->symbols_size
];
292 memcpy(gc_sd
->symbols_data
, sd
->symbols
->data(),
297 gc_sd
->symbols_data
= NULL
;
299 gc_sd
->symbols_size
= sd
->symbols_size
;
300 gc_sd
->external_symbols_offset
= sd
->external_symbols_offset
;
301 if (sd
->symbol_names
!= NULL
)
303 gc_sd
->symbol_names_data
=
304 new unsigned char[sd
->symbol_names_size
];
305 memcpy(gc_sd
->symbol_names_data
, sd
->symbol_names
->data(),
306 sd
->symbol_names_size
);
310 gc_sd
->symbol_names_data
= NULL
;
312 gc_sd
->symbol_names_size
= sd
->symbol_names_size
;
315 // This function determines if a particular section name must be included
316 // in the link. This is used during garbage collection to determine the
317 // roots of the worklist.
320 Relobj::is_section_name_included(const char* name
)
322 if (is_prefix_of(".ctors", name
)
323 || is_prefix_of(".dtors", name
)
324 || is_prefix_of(".note", name
)
325 || is_prefix_of(".init", name
)
326 || is_prefix_of(".fini", name
)
327 || is_prefix_of(".gcc_except_table", name
)
328 || is_prefix_of(".jcr", name
)
329 || is_prefix_of(".preinit_array", name
)
330 || (is_prefix_of(".text", name
)
331 && strstr(name
, "personality"))
332 || (is_prefix_of(".data", name
)
333 && strstr(name
, "personality"))
334 || (is_prefix_of(".gnu.linkonce.d", name
)
335 && strstr(name
, "personality")))
342 // Finalize the incremental relocation information. Allocates a block
343 // of relocation entries for each symbol, and sets the reloc_bases_
344 // array to point to the first entry in each block. If CLEAR_COUNTS
345 // is TRUE, also clear the per-symbol relocation counters.
348 Relobj::finalize_incremental_relocs(Layout
* layout
, bool clear_counts
)
350 unsigned int nsyms
= this->get_global_symbols()->size();
351 this->reloc_bases_
= new unsigned int[nsyms
];
353 gold_assert(this->reloc_bases_
!= NULL
);
354 gold_assert(layout
->incremental_inputs() != NULL
);
356 unsigned int rindex
= layout
->incremental_inputs()->get_reloc_count();
357 for (unsigned int i
= 0; i
< nsyms
; ++i
)
359 this->reloc_bases_
[i
] = rindex
;
360 rindex
+= this->reloc_counts_
[i
];
362 this->reloc_counts_
[i
] = 0;
364 layout
->incremental_inputs()->set_reloc_count(rindex
);
367 // Class Sized_relobj.
369 // Iterate over local symbols, calling a visitor class V for each GOT offset
370 // associated with a local symbol.
372 template<int size
, bool big_endian
>
374 Sized_relobj
<size
, big_endian
>::do_for_all_local_got_entries(
375 Got_offset_list::Visitor
* v
) const
377 unsigned int nsyms
= this->local_symbol_count();
378 for (unsigned int i
= 0; i
< nsyms
; i
++)
380 Local_got_offsets::const_iterator p
= this->local_got_offsets_
.find(i
);
381 if (p
!= this->local_got_offsets_
.end())
383 const Got_offset_list
* got_offsets
= p
->second
;
384 got_offsets
->for_all_got_offsets(v
);
389 // Class Sized_relobj_file.
391 template<int size
, bool big_endian
>
392 Sized_relobj_file
<size
, big_endian
>::Sized_relobj_file(
393 const std::string
& name
,
394 Input_file
* input_file
,
396 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
397 : Sized_relobj
<size
, big_endian
>(name
, input_file
, offset
),
398 elf_file_(this, ehdr
),
400 local_symbol_count_(0),
401 output_local_symbol_count_(0),
402 output_local_dynsym_count_(0),
405 local_symbol_offset_(0),
406 local_dynsym_offset_(0),
408 local_plt_offsets_(),
409 kept_comdat_sections_(),
410 has_eh_frame_(false),
411 discarded_eh_frame_shndx_(-1U),
413 deferred_layout_relocs_(),
414 compressed_sections_()
416 this->e_type_
= ehdr
.get_e_type();
419 template<int size
, bool big_endian
>
420 Sized_relobj_file
<size
, big_endian
>::~Sized_relobj_file()
424 // Set up an object file based on the file header. This sets up the
425 // section information.
427 template<int size
, bool big_endian
>
429 Sized_relobj_file
<size
, big_endian
>::do_setup()
431 const unsigned int shnum
= this->elf_file_
.shnum();
432 this->set_shnum(shnum
);
435 // Find the SHT_SYMTAB section, given the section headers. The ELF
436 // standard says that maybe in the future there can be more than one
437 // SHT_SYMTAB section. Until somebody figures out how that could
438 // work, we assume there is only one.
440 template<int size
, bool big_endian
>
442 Sized_relobj_file
<size
, big_endian
>::find_symtab(const unsigned char* pshdrs
)
444 const unsigned int shnum
= this->shnum();
445 this->symtab_shndx_
= 0;
448 // Look through the sections in reverse order, since gas tends
449 // to put the symbol table at the end.
450 const unsigned char* p
= pshdrs
+ shnum
* This::shdr_size
;
451 unsigned int i
= shnum
;
452 unsigned int xindex_shndx
= 0;
453 unsigned int xindex_link
= 0;
457 p
-= This::shdr_size
;
458 typename
This::Shdr
shdr(p
);
459 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB
)
461 this->symtab_shndx_
= i
;
462 if (xindex_shndx
> 0 && xindex_link
== i
)
465 new Xindex(this->elf_file_
.large_shndx_offset());
466 xindex
->read_symtab_xindex
<size
, big_endian
>(this,
469 this->set_xindex(xindex
);
474 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
475 // one. This will work if it follows the SHT_SYMTAB
477 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX
)
480 xindex_link
= this->adjust_shndx(shdr
.get_sh_link());
486 // Return the Xindex structure to use for object with lots of
489 template<int size
, bool big_endian
>
491 Sized_relobj_file
<size
, big_endian
>::do_initialize_xindex()
493 gold_assert(this->symtab_shndx_
!= -1U);
494 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
495 xindex
->initialize_symtab_xindex
<size
, big_endian
>(this, this->symtab_shndx_
);
499 // Return whether SHDR has the right type and flags to be a GNU
500 // .eh_frame section.
502 template<int size
, bool big_endian
>
504 Sized_relobj_file
<size
, big_endian
>::check_eh_frame_flags(
505 const elfcpp::Shdr
<size
, big_endian
>* shdr
) const
507 elfcpp::Elf_Word sh_type
= shdr
->get_sh_type();
508 return ((sh_type
== elfcpp::SHT_PROGBITS
509 || sh_type
== elfcpp::SHT_X86_64_UNWIND
)
510 && (shdr
->get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
513 // Return whether there is a GNU .eh_frame section, given the section
514 // headers and the section names.
516 template<int size
, bool big_endian
>
518 Sized_relobj_file
<size
, big_endian
>::find_eh_frame(
519 const unsigned char* pshdrs
,
521 section_size_type names_size
) const
523 const unsigned int shnum
= this->shnum();
524 const unsigned char* p
= pshdrs
+ This::shdr_size
;
525 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= This::shdr_size
)
527 typename
This::Shdr
shdr(p
);
528 if (this->check_eh_frame_flags(&shdr
))
530 if (shdr
.get_sh_name() >= names_size
)
532 this->error(_("bad section name offset for section %u: %lu"),
533 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
537 const char* name
= names
+ shdr
.get_sh_name();
538 if (strcmp(name
, ".eh_frame") == 0)
545 // Return TRUE if this is a section whose contents will be needed in the
546 // Add_symbols task. This function is only called for sections that have
547 // already passed the test in is_compressed_debug_section(), so we know
548 // that the section name begins with ".zdebug".
551 need_decompressed_section(const char* name
)
553 // Skip over the ".zdebug" and a quick check for the "_".
558 #ifdef ENABLE_THREADS
559 // Decompressing these sections now will help only if we're
561 if (parameters
->options().threads())
563 // We will need .zdebug_str if this is not an incremental link
564 // (i.e., we are processing string merge sections) or if we need
565 // to build a gdb index.
566 if ((!parameters
->incremental() || parameters
->options().gdb_index())
567 && strcmp(name
, "str") == 0)
570 // We will need these other sections when building a gdb index.
571 if (parameters
->options().gdb_index()
572 && (strcmp(name
, "info") == 0
573 || strcmp(name
, "types") == 0
574 || strcmp(name
, "pubnames") == 0
575 || strcmp(name
, "pubtypes") == 0
576 || strcmp(name
, "ranges") == 0
577 || strcmp(name
, "abbrev") == 0))
582 // Even when single-threaded, we will need .zdebug_str if this is
583 // not an incremental link and we are building a gdb index.
584 // Otherwise, we would decompress the section twice: once for
585 // string merge processing, and once for building the gdb index.
586 if (!parameters
->incremental()
587 && parameters
->options().gdb_index()
588 && strcmp(name
, "str") == 0)
594 // Build a table for any compressed debug sections, mapping each section index
595 // to the uncompressed size and (if needed) the decompressed contents.
597 template<int size
, bool big_endian
>
598 Compressed_section_map
*
599 build_compressed_section_map(
600 const unsigned char* pshdrs
,
603 section_size_type names_size
,
604 Sized_relobj_file
<size
, big_endian
>* obj
)
606 Compressed_section_map
* uncompressed_map
= new Compressed_section_map();
607 const unsigned int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
608 const unsigned char* p
= pshdrs
+ shdr_size
;
610 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= shdr_size
)
612 typename
elfcpp::Shdr
<size
, big_endian
> shdr(p
);
613 if (shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
614 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
616 if (shdr
.get_sh_name() >= names_size
)
618 obj
->error(_("bad section name offset for section %u: %lu"),
619 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
623 const char* name
= names
+ shdr
.get_sh_name();
624 if (is_compressed_debug_section(name
))
626 section_size_type len
;
627 const unsigned char* contents
=
628 obj
->section_contents(i
, &len
, false);
629 uint64_t uncompressed_size
= get_uncompressed_size(contents
, len
);
630 Compressed_section_info info
;
631 info
.size
= convert_to_section_size_type(uncompressed_size
);
632 info
.contents
= NULL
;
633 if (uncompressed_size
!= -1ULL)
635 unsigned char* uncompressed_data
= NULL
;
636 if (need_decompressed_section(name
))
638 uncompressed_data
= new unsigned char[uncompressed_size
];
639 if (decompress_input_section(contents
, len
,
642 info
.contents
= uncompressed_data
;
644 delete[] uncompressed_data
;
646 (*uncompressed_map
)[i
] = info
;
651 return uncompressed_map
;
654 // Read the sections and symbols from an object file.
656 template<int size
, bool big_endian
>
658 Sized_relobj_file
<size
, big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
660 bool need_local_symbols
= false;
662 this->read_section_data(&this->elf_file_
, sd
);
664 const unsigned char* const pshdrs
= sd
->section_headers
->data();
666 this->find_symtab(pshdrs
);
668 const unsigned char* namesu
= sd
->section_names
->data();
669 const char* names
= reinterpret_cast<const char*>(namesu
);
670 if (memmem(names
, sd
->section_names_size
, ".eh_frame", 10) != NULL
)
672 if (this->find_eh_frame(pshdrs
, names
, sd
->section_names_size
))
673 this->has_eh_frame_
= true;
675 if (memmem(names
, sd
->section_names_size
, ".zdebug_", 8) != NULL
)
676 this->compressed_sections_
=
677 build_compressed_section_map(pshdrs
, this->shnum(), names
,
678 sd
->section_names_size
, this);
680 if (this->has_eh_frame_
681 || (!parameters
->options().relocatable()
682 && parameters
->options().gdb_index()
683 && (memmem(names
, sd
->section_names_size
, "debug_info", 12) == 0
684 || memmem(names
, sd
->section_names_size
, "debug_types",
686 need_local_symbols
= true;
689 sd
->symbols_size
= 0;
690 sd
->external_symbols_offset
= 0;
691 sd
->symbol_names
= NULL
;
692 sd
->symbol_names_size
= 0;
694 if (this->symtab_shndx_
== 0)
696 // No symbol table. Weird but legal.
700 // Get the symbol table section header.
701 typename
This::Shdr
symtabshdr(pshdrs
702 + this->symtab_shndx_
* This::shdr_size
);
703 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
705 // If this object has a .eh_frame section, or if building a .gdb_index
706 // section and there is debug info, we need all the symbols.
707 // Otherwise we only need the external symbols. While it would be
708 // simpler to just always read all the symbols, I've seen object
709 // files with well over 2000 local symbols, which for a 64-bit
710 // object file format is over 5 pages that we don't need to read
713 const int sym_size
= This::sym_size
;
714 const unsigned int loccount
= symtabshdr
.get_sh_info();
715 this->local_symbol_count_
= loccount
;
716 this->local_values_
.resize(loccount
);
717 section_offset_type locsize
= loccount
* sym_size
;
718 off_t dataoff
= symtabshdr
.get_sh_offset();
719 section_size_type datasize
=
720 convert_to_section_size_type(symtabshdr
.get_sh_size());
721 off_t extoff
= dataoff
+ locsize
;
722 section_size_type extsize
= datasize
- locsize
;
724 off_t readoff
= need_local_symbols
? dataoff
: extoff
;
725 section_size_type readsize
= need_local_symbols
? datasize
: extsize
;
729 // No external symbols. Also weird but also legal.
733 File_view
* fvsymtab
= this->get_lasting_view(readoff
, readsize
, true, false);
735 // Read the section header for the symbol names.
736 unsigned int strtab_shndx
= this->adjust_shndx(symtabshdr
.get_sh_link());
737 if (strtab_shndx
>= this->shnum())
739 this->error(_("invalid symbol table name index: %u"), strtab_shndx
);
742 typename
This::Shdr
strtabshdr(pshdrs
+ strtab_shndx
* This::shdr_size
);
743 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
745 this->error(_("symbol table name section has wrong type: %u"),
746 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
750 // Read the symbol names.
751 File_view
* fvstrtab
= this->get_lasting_view(strtabshdr
.get_sh_offset(),
752 strtabshdr
.get_sh_size(),
755 sd
->symbols
= fvsymtab
;
756 sd
->symbols_size
= readsize
;
757 sd
->external_symbols_offset
= need_local_symbols
? locsize
: 0;
758 sd
->symbol_names
= fvstrtab
;
759 sd
->symbol_names_size
=
760 convert_to_section_size_type(strtabshdr
.get_sh_size());
763 // Return the section index of symbol SYM. Set *VALUE to its value in
764 // the object file. Set *IS_ORDINARY if this is an ordinary section
765 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
766 // Note that for a symbol which is not defined in this object file,
767 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
768 // the final value of the symbol in the link.
770 template<int size
, bool big_endian
>
772 Sized_relobj_file
<size
, big_endian
>::symbol_section_and_value(unsigned int sym
,
776 section_size_type symbols_size
;
777 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
781 const size_t count
= symbols_size
/ This::sym_size
;
782 gold_assert(sym
< count
);
784 elfcpp::Sym
<size
, big_endian
> elfsym(symbols
+ sym
* This::sym_size
);
785 *value
= elfsym
.get_st_value();
787 return this->adjust_sym_shndx(sym
, elfsym
.get_st_shndx(), is_ordinary
);
790 // Return whether to include a section group in the link. LAYOUT is
791 // used to keep track of which section groups we have already seen.
792 // INDEX is the index of the section group and SHDR is the section
793 // header. If we do not want to include this group, we set bits in
794 // OMIT for each section which should be discarded.
796 template<int size
, bool big_endian
>
798 Sized_relobj_file
<size
, big_endian
>::include_section_group(
799 Symbol_table
* symtab
,
803 const unsigned char* shdrs
,
804 const char* section_names
,
805 section_size_type section_names_size
,
806 std::vector
<bool>* omit
)
808 // Read the section contents.
809 typename
This::Shdr
shdr(shdrs
+ index
* This::shdr_size
);
810 const unsigned char* pcon
= this->get_view(shdr
.get_sh_offset(),
811 shdr
.get_sh_size(), true, false);
812 const elfcpp::Elf_Word
* pword
=
813 reinterpret_cast<const elfcpp::Elf_Word
*>(pcon
);
815 // The first word contains flags. We only care about COMDAT section
816 // groups. Other section groups are always included in the link
817 // just like ordinary sections.
818 elfcpp::Elf_Word flags
= elfcpp::Swap
<32, big_endian
>::readval(pword
);
820 // Look up the group signature, which is the name of a symbol. ELF
821 // uses a symbol name because some group signatures are long, and
822 // the name is generally already in the symbol table, so it makes
823 // sense to put the long string just once in .strtab rather than in
824 // both .strtab and .shstrtab.
826 // Get the appropriate symbol table header (this will normally be
827 // the single SHT_SYMTAB section, but in principle it need not be).
828 const unsigned int link
= this->adjust_shndx(shdr
.get_sh_link());
829 typename
This::Shdr
symshdr(this, this->elf_file_
.section_header(link
));
831 // Read the symbol table entry.
832 unsigned int symndx
= shdr
.get_sh_info();
833 if (symndx
>= symshdr
.get_sh_size() / This::sym_size
)
835 this->error(_("section group %u info %u out of range"),
839 off_t symoff
= symshdr
.get_sh_offset() + symndx
* This::sym_size
;
840 const unsigned char* psym
= this->get_view(symoff
, This::sym_size
, true,
842 elfcpp::Sym
<size
, big_endian
> sym(psym
);
844 // Read the symbol table names.
845 section_size_type symnamelen
;
846 const unsigned char* psymnamesu
;
847 psymnamesu
= this->section_contents(this->adjust_shndx(symshdr
.get_sh_link()),
849 const char* psymnames
= reinterpret_cast<const char*>(psymnamesu
);
851 // Get the section group signature.
852 if (sym
.get_st_name() >= symnamelen
)
854 this->error(_("symbol %u name offset %u out of range"),
855 symndx
, sym
.get_st_name());
859 std::string
signature(psymnames
+ sym
.get_st_name());
861 // It seems that some versions of gas will create a section group
862 // associated with a section symbol, and then fail to give a name to
863 // the section symbol. In such a case, use the name of the section.
864 if (signature
[0] == '\0' && sym
.get_st_type() == elfcpp::STT_SECTION
)
867 unsigned int sym_shndx
= this->adjust_sym_shndx(symndx
,
870 if (!is_ordinary
|| sym_shndx
>= this->shnum())
872 this->error(_("symbol %u invalid section index %u"),
876 typename
This::Shdr
member_shdr(shdrs
+ sym_shndx
* This::shdr_size
);
877 if (member_shdr
.get_sh_name() < section_names_size
)
878 signature
= section_names
+ member_shdr
.get_sh_name();
881 // Record this section group in the layout, and see whether we've already
882 // seen one with the same signature.
885 Kept_section
* kept_section
= NULL
;
887 if ((flags
& elfcpp::GRP_COMDAT
) == 0)
889 include_group
= true;
894 include_group
= layout
->find_or_add_kept_section(signature
,
896 true, &kept_section
);
900 if (is_comdat
&& include_group
)
902 Incremental_inputs
* incremental_inputs
= layout
->incremental_inputs();
903 if (incremental_inputs
!= NULL
)
904 incremental_inputs
->report_comdat_group(this, signature
.c_str());
907 size_t count
= shdr
.get_sh_size() / sizeof(elfcpp::Elf_Word
);
909 std::vector
<unsigned int> shndxes
;
910 bool relocate_group
= include_group
&& parameters
->options().relocatable();
912 shndxes
.reserve(count
- 1);
914 for (size_t i
= 1; i
< count
; ++i
)
916 elfcpp::Elf_Word shndx
=
917 this->adjust_shndx(elfcpp::Swap
<32, big_endian
>::readval(pword
+ i
));
920 shndxes
.push_back(shndx
);
922 if (shndx
>= this->shnum())
924 this->error(_("section %u in section group %u out of range"),
929 // Check for an earlier section number, since we're going to get
930 // it wrong--we may have already decided to include the section.
932 this->error(_("invalid section group %u refers to earlier section %u"),
935 // Get the name of the member section.
936 typename
This::Shdr
member_shdr(shdrs
+ shndx
* This::shdr_size
);
937 if (member_shdr
.get_sh_name() >= section_names_size
)
939 // This is an error, but it will be diagnosed eventually
940 // in do_layout, so we don't need to do anything here but
944 std::string
mname(section_names
+ member_shdr
.get_sh_name());
949 kept_section
->add_comdat_section(mname
, shndx
,
950 member_shdr
.get_sh_size());
954 (*omit
)[shndx
] = true;
958 Relobj
* kept_object
= kept_section
->object();
959 if (kept_section
->is_comdat())
961 // Find the corresponding kept section, and store
962 // that info in the discarded section table.
963 unsigned int kept_shndx
;
965 if (kept_section
->find_comdat_section(mname
, &kept_shndx
,
968 // We don't keep a mapping for this section if
969 // it has a different size. The mapping is only
970 // used for relocation processing, and we don't
971 // want to treat the sections as similar if the
972 // sizes are different. Checking the section
973 // size is the approach used by the GNU linker.
974 if (kept_size
== member_shdr
.get_sh_size())
975 this->set_kept_comdat_section(shndx
, kept_object
,
981 // The existing section is a linkonce section. Add
982 // a mapping if there is exactly one section in the
983 // group (which is true when COUNT == 2) and if it
986 && (kept_section
->linkonce_size()
987 == member_shdr
.get_sh_size()))
988 this->set_kept_comdat_section(shndx
, kept_object
,
989 kept_section
->shndx());
996 layout
->layout_group(symtab
, this, index
, name
, signature
.c_str(),
997 shdr
, flags
, &shndxes
);
999 return include_group
;
1002 // Whether to include a linkonce section in the link. NAME is the
1003 // name of the section and SHDR is the section header.
1005 // Linkonce sections are a GNU extension implemented in the original
1006 // GNU linker before section groups were defined. The semantics are
1007 // that we only include one linkonce section with a given name. The
1008 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1009 // where T is the type of section and SYMNAME is the name of a symbol.
1010 // In an attempt to make linkonce sections interact well with section
1011 // groups, we try to identify SYMNAME and use it like a section group
1012 // signature. We want to block section groups with that signature,
1013 // but not other linkonce sections with that signature. We also use
1014 // the full name of the linkonce section as a normal section group
1017 template<int size
, bool big_endian
>
1019 Sized_relobj_file
<size
, big_endian
>::include_linkonce_section(
1023 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
1025 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_size
= shdr
.get_sh_size();
1026 // In general the symbol name we want will be the string following
1027 // the last '.'. However, we have to handle the case of
1028 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1029 // some versions of gcc. So we use a heuristic: if the name starts
1030 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1031 // we look for the last '.'. We can't always simply skip
1032 // ".gnu.linkonce.X", because we have to deal with cases like
1033 // ".gnu.linkonce.d.rel.ro.local".
1034 const char* const linkonce_t
= ".gnu.linkonce.t.";
1035 const char* symname
;
1036 if (strncmp(name
, linkonce_t
, strlen(linkonce_t
)) == 0)
1037 symname
= name
+ strlen(linkonce_t
);
1039 symname
= strrchr(name
, '.') + 1;
1040 std::string
sig1(symname
);
1041 std::string
sig2(name
);
1042 Kept_section
* kept1
;
1043 Kept_section
* kept2
;
1044 bool include1
= layout
->find_or_add_kept_section(sig1
, this, index
, false,
1046 bool include2
= layout
->find_or_add_kept_section(sig2
, this, index
, false,
1051 // We are not including this section because we already saw the
1052 // name of the section as a signature. This normally implies
1053 // that the kept section is another linkonce section. If it is
1054 // the same size, record it as the section which corresponds to
1056 if (kept2
->object() != NULL
1057 && !kept2
->is_comdat()
1058 && kept2
->linkonce_size() == sh_size
)
1059 this->set_kept_comdat_section(index
, kept2
->object(), kept2
->shndx());
1063 // The section is being discarded on the basis of its symbol
1064 // name. This means that the corresponding kept section was
1065 // part of a comdat group, and it will be difficult to identify
1066 // the specific section within that group that corresponds to
1067 // this linkonce section. We'll handle the simple case where
1068 // the group has only one member section. Otherwise, it's not
1069 // worth the effort.
1070 unsigned int kept_shndx
;
1072 if (kept1
->object() != NULL
1073 && kept1
->is_comdat()
1074 && kept1
->find_single_comdat_section(&kept_shndx
, &kept_size
)
1075 && kept_size
== sh_size
)
1076 this->set_kept_comdat_section(index
, kept1
->object(), kept_shndx
);
1080 kept1
->set_linkonce_size(sh_size
);
1081 kept2
->set_linkonce_size(sh_size
);
1084 return include1
&& include2
;
1087 // Layout an input section.
1089 template<int size
, bool big_endian
>
1091 Sized_relobj_file
<size
, big_endian
>::layout_section(
1095 const typename
This::Shdr
& shdr
,
1096 unsigned int reloc_shndx
,
1097 unsigned int reloc_type
)
1100 Output_section
* os
= layout
->layout(this, shndx
, name
, shdr
,
1101 reloc_shndx
, reloc_type
, &offset
);
1103 this->output_sections()[shndx
] = os
;
1105 this->section_offsets()[shndx
] = invalid_address
;
1107 this->section_offsets()[shndx
] = convert_types
<Address
, off_t
>(offset
);
1109 // If this section requires special handling, and if there are
1110 // relocs that apply to it, then we must do the special handling
1111 // before we apply the relocs.
1112 if (offset
== -1 && reloc_shndx
!= 0)
1113 this->set_relocs_must_follow_section_writes();
1116 // Layout an input .eh_frame section.
1118 template<int size
, bool big_endian
>
1120 Sized_relobj_file
<size
, big_endian
>::layout_eh_frame_section(
1122 const unsigned char* symbols_data
,
1123 section_size_type symbols_size
,
1124 const unsigned char* symbol_names_data
,
1125 section_size_type symbol_names_size
,
1127 const typename
This::Shdr
& shdr
,
1128 unsigned int reloc_shndx
,
1129 unsigned int reloc_type
)
1131 gold_assert(this->has_eh_frame_
);
1134 Output_section
* os
= layout
->layout_eh_frame(this,
1144 this->output_sections()[shndx
] = os
;
1145 if (os
== NULL
|| offset
== -1)
1147 // An object can contain at most one section holding exception
1148 // frame information.
1149 gold_assert(this->discarded_eh_frame_shndx_
== -1U);
1150 this->discarded_eh_frame_shndx_
= shndx
;
1151 this->section_offsets()[shndx
] = invalid_address
;
1154 this->section_offsets()[shndx
] = convert_types
<Address
, off_t
>(offset
);
1156 // If this section requires special handling, and if there are
1157 // relocs that aply to it, then we must do the special handling
1158 // before we apply the relocs.
1159 if (os
!= NULL
&& offset
== -1 && reloc_shndx
!= 0)
1160 this->set_relocs_must_follow_section_writes();
1163 // Lay out the input sections. We walk through the sections and check
1164 // whether they should be included in the link. If they should, we
1165 // pass them to the Layout object, which will return an output section
1167 // During garbage collection (--gc-sections) and identical code folding
1168 // (--icf), this function is called twice. When it is called the first
1169 // time, it is for setting up some sections as roots to a work-list for
1170 // --gc-sections and to do comdat processing. Actual layout happens the
1171 // second time around after all the relevant sections have been determined.
1172 // The first time, is_worklist_ready or is_icf_ready is false. It is then
1173 // set to true after the garbage collection worklist or identical code
1174 // folding is processed and the relevant sections to be kept are
1175 // determined. Then, this function is called again to layout the sections.
1177 template<int size
, bool big_endian
>
1179 Sized_relobj_file
<size
, big_endian
>::do_layout(Symbol_table
* symtab
,
1181 Read_symbols_data
* sd
)
1183 const unsigned int shnum
= this->shnum();
1184 bool is_gc_pass_one
= ((parameters
->options().gc_sections()
1185 && !symtab
->gc()->is_worklist_ready())
1186 || (parameters
->options().icf_enabled()
1187 && !symtab
->icf()->is_icf_ready()));
1189 bool is_gc_pass_two
= ((parameters
->options().gc_sections()
1190 && symtab
->gc()->is_worklist_ready())
1191 || (parameters
->options().icf_enabled()
1192 && symtab
->icf()->is_icf_ready()));
1194 bool is_gc_or_icf
= (parameters
->options().gc_sections()
1195 || parameters
->options().icf_enabled());
1197 // Both is_gc_pass_one and is_gc_pass_two should not be true.
1198 gold_assert(!(is_gc_pass_one
&& is_gc_pass_two
));
1202 Symbols_data
* gc_sd
= NULL
;
1205 // During garbage collection save the symbols data to use it when
1206 // re-entering this function.
1207 gc_sd
= new Symbols_data
;
1208 this->copy_symbols_data(gc_sd
, sd
, This::shdr_size
* shnum
);
1209 this->set_symbols_data(gc_sd
);
1211 else if (is_gc_pass_two
)
1213 gc_sd
= this->get_symbols_data();
1216 const unsigned char* section_headers_data
= NULL
;
1217 section_size_type section_names_size
;
1218 const unsigned char* symbols_data
= NULL
;
1219 section_size_type symbols_size
;
1220 const unsigned char* symbol_names_data
= NULL
;
1221 section_size_type symbol_names_size
;
1225 section_headers_data
= gc_sd
->section_headers_data
;
1226 section_names_size
= gc_sd
->section_names_size
;
1227 symbols_data
= gc_sd
->symbols_data
;
1228 symbols_size
= gc_sd
->symbols_size
;
1229 symbol_names_data
= gc_sd
->symbol_names_data
;
1230 symbol_names_size
= gc_sd
->symbol_names_size
;
1234 section_headers_data
= sd
->section_headers
->data();
1235 section_names_size
= sd
->section_names_size
;
1236 if (sd
->symbols
!= NULL
)
1237 symbols_data
= sd
->symbols
->data();
1238 symbols_size
= sd
->symbols_size
;
1239 if (sd
->symbol_names
!= NULL
)
1240 symbol_names_data
= sd
->symbol_names
->data();
1241 symbol_names_size
= sd
->symbol_names_size
;
1244 // Get the section headers.
1245 const unsigned char* shdrs
= section_headers_data
;
1246 const unsigned char* pshdrs
;
1248 // Get the section names.
1249 const unsigned char* pnamesu
= (is_gc_or_icf
)
1250 ? gc_sd
->section_names_data
1251 : sd
->section_names
->data();
1253 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
1255 // If any input files have been claimed by plugins, we need to defer
1256 // actual layout until the replacement files have arrived.
1257 const bool should_defer_layout
=
1258 (parameters
->options().has_plugins()
1259 && parameters
->options().plugins()->should_defer_layout());
1260 unsigned int num_sections_to_defer
= 0;
1262 // For each section, record the index of the reloc section if any.
1263 // Use 0 to mean that there is no reloc section, -1U to mean that
1264 // there is more than one.
1265 std::vector
<unsigned int> reloc_shndx(shnum
, 0);
1266 std::vector
<unsigned int> reloc_type(shnum
, elfcpp::SHT_NULL
);
1267 // Skip the first, dummy, section.
1268 pshdrs
= shdrs
+ This::shdr_size
;
1269 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
1271 typename
This::Shdr
shdr(pshdrs
);
1273 // Count the number of sections whose layout will be deferred.
1274 if (should_defer_layout
&& (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1275 ++num_sections_to_defer
;
1277 unsigned int sh_type
= shdr
.get_sh_type();
1278 if (sh_type
== elfcpp::SHT_REL
|| sh_type
== elfcpp::SHT_RELA
)
1280 unsigned int target_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1281 if (target_shndx
== 0 || target_shndx
>= shnum
)
1283 this->error(_("relocation section %u has bad info %u"),
1288 if (reloc_shndx
[target_shndx
] != 0)
1289 reloc_shndx
[target_shndx
] = -1U;
1292 reloc_shndx
[target_shndx
] = i
;
1293 reloc_type
[target_shndx
] = sh_type
;
1298 Output_sections
& out_sections(this->output_sections());
1299 std::vector
<Address
>& out_section_offsets(this->section_offsets());
1301 if (!is_gc_pass_two
)
1303 out_sections
.resize(shnum
);
1304 out_section_offsets
.resize(shnum
);
1307 // If we are only linking for symbols, then there is nothing else to
1309 if (this->input_file()->just_symbols())
1311 if (!is_gc_pass_two
)
1313 delete sd
->section_headers
;
1314 sd
->section_headers
= NULL
;
1315 delete sd
->section_names
;
1316 sd
->section_names
= NULL
;
1321 if (num_sections_to_defer
> 0)
1323 parameters
->options().plugins()->add_deferred_layout_object(this);
1324 this->deferred_layout_
.reserve(num_sections_to_defer
);
1327 // Whether we've seen a .note.GNU-stack section.
1328 bool seen_gnu_stack
= false;
1329 // The flags of a .note.GNU-stack section.
1330 uint64_t gnu_stack_flags
= 0;
1332 // Keep track of which sections to omit.
1333 std::vector
<bool> omit(shnum
, false);
1335 // Keep track of reloc sections when emitting relocations.
1336 const bool relocatable
= parameters
->options().relocatable();
1337 const bool emit_relocs
= (relocatable
1338 || parameters
->options().emit_relocs());
1339 std::vector
<unsigned int> reloc_sections
;
1341 // Keep track of .eh_frame sections.
1342 std::vector
<unsigned int> eh_frame_sections
;
1344 // Keep track of .debug_info and .debug_types sections.
1345 std::vector
<unsigned int> debug_info_sections
;
1346 std::vector
<unsigned int> debug_types_sections
;
1348 // Skip the first, dummy, section.
1349 pshdrs
= shdrs
+ This::shdr_size
;
1350 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
1352 typename
This::Shdr
shdr(pshdrs
);
1354 if (shdr
.get_sh_name() >= section_names_size
)
1356 this->error(_("bad section name offset for section %u: %lu"),
1357 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
1361 const char* name
= pnames
+ shdr
.get_sh_name();
1363 if (!is_gc_pass_two
)
1365 if (this->handle_gnu_warning_section(name
, i
, symtab
))
1367 if (!relocatable
&& !parameters
->options().shared())
1371 // The .note.GNU-stack section is special. It gives the
1372 // protection flags that this object file requires for the stack
1374 if (strcmp(name
, ".note.GNU-stack") == 0)
1376 seen_gnu_stack
= true;
1377 gnu_stack_flags
|= shdr
.get_sh_flags();
1381 // The .note.GNU-split-stack section is also special. It
1382 // indicates that the object was compiled with
1384 if (this->handle_split_stack_section(name
))
1386 if (!relocatable
&& !parameters
->options().shared())
1390 // Skip attributes section.
1391 if (parameters
->target().is_attributes_section(name
))
1396 bool discard
= omit
[i
];
1399 if (shdr
.get_sh_type() == elfcpp::SHT_GROUP
)
1401 if (!this->include_section_group(symtab
, layout
, i
, name
,
1407 else if ((shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) == 0
1408 && Layout::is_linkonce(name
))
1410 if (!this->include_linkonce_section(layout
, i
, name
, shdr
))
1415 // Add the section to the incremental inputs layout.
1416 Incremental_inputs
* incremental_inputs
= layout
->incremental_inputs();
1417 if (incremental_inputs
!= NULL
1419 && can_incremental_update(shdr
.get_sh_type()))
1421 off_t sh_size
= shdr
.get_sh_size();
1422 section_size_type uncompressed_size
;
1423 if (this->section_is_compressed(i
, &uncompressed_size
))
1424 sh_size
= uncompressed_size
;
1425 incremental_inputs
->report_input_section(this, i
, name
, sh_size
);
1430 // Do not include this section in the link.
1431 out_sections
[i
] = NULL
;
1432 out_section_offsets
[i
] = invalid_address
;
1437 if (is_gc_pass_one
&& parameters
->options().gc_sections())
1439 if (this->is_section_name_included(name
)
1440 || shdr
.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1441 || shdr
.get_sh_type() == elfcpp::SHT_FINI_ARRAY
)
1443 symtab
->gc()->worklist().push(Section_id(this, i
));
1445 // If the section name XXX can be represented as a C identifier
1446 // it cannot be discarded if there are references to
1447 // __start_XXX and __stop_XXX symbols. These need to be
1448 // specially handled.
1449 if (is_cident(name
))
1451 symtab
->gc()->add_cident_section(name
, Section_id(this, i
));
1455 // When doing a relocatable link we are going to copy input
1456 // reloc sections into the output. We only want to copy the
1457 // ones associated with sections which are not being discarded.
1458 // However, we don't know that yet for all sections. So save
1459 // reloc sections and process them later. Garbage collection is
1460 // not triggered when relocatable code is desired.
1462 && (shdr
.get_sh_type() == elfcpp::SHT_REL
1463 || shdr
.get_sh_type() == elfcpp::SHT_RELA
))
1465 reloc_sections
.push_back(i
);
1469 if (relocatable
&& shdr
.get_sh_type() == elfcpp::SHT_GROUP
)
1472 // The .eh_frame section is special. It holds exception frame
1473 // information that we need to read in order to generate the
1474 // exception frame header. We process these after all the other
1475 // sections so that the exception frame reader can reliably
1476 // determine which sections are being discarded, and discard the
1477 // corresponding information.
1479 && strcmp(name
, ".eh_frame") == 0
1480 && this->check_eh_frame_flags(&shdr
))
1484 out_sections
[i
] = reinterpret_cast<Output_section
*>(1);
1485 out_section_offsets
[i
] = invalid_address
;
1487 else if (should_defer_layout
)
1488 this->deferred_layout_
.push_back(Deferred_layout(i
, name
,
1493 eh_frame_sections
.push_back(i
);
1497 if (is_gc_pass_two
&& parameters
->options().gc_sections())
1499 // This is executed during the second pass of garbage
1500 // collection. do_layout has been called before and some
1501 // sections have been already discarded. Simply ignore
1502 // such sections this time around.
1503 if (out_sections
[i
] == NULL
)
1505 gold_assert(out_section_offsets
[i
] == invalid_address
);
1508 if (((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0)
1509 && symtab
->gc()->is_section_garbage(this, i
))
1511 if (parameters
->options().print_gc_sections())
1512 gold_info(_("%s: removing unused section from '%s'"
1514 program_name
, this->section_name(i
).c_str(),
1515 this->name().c_str());
1516 out_sections
[i
] = NULL
;
1517 out_section_offsets
[i
] = invalid_address
;
1522 if (is_gc_pass_two
&& parameters
->options().icf_enabled())
1524 if (out_sections
[i
] == NULL
)
1526 gold_assert(out_section_offsets
[i
] == invalid_address
);
1529 if (((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0)
1530 && symtab
->icf()->is_section_folded(this, i
))
1532 if (parameters
->options().print_icf_sections())
1535 symtab
->icf()->get_folded_section(this, i
);
1536 Relobj
* folded_obj
=
1537 reinterpret_cast<Relobj
*>(folded
.first
);
1538 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1539 "into '%s' in file '%s'"),
1540 program_name
, this->section_name(i
).c_str(),
1541 this->name().c_str(),
1542 folded_obj
->section_name(folded
.second
).c_str(),
1543 folded_obj
->name().c_str());
1545 out_sections
[i
] = NULL
;
1546 out_section_offsets
[i
] = invalid_address
;
1551 // Defer layout here if input files are claimed by plugins. When gc
1552 // is turned on this function is called twice. For the second call
1553 // should_defer_layout should be false.
1554 if (should_defer_layout
&& (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1556 gold_assert(!is_gc_pass_two
);
1557 this->deferred_layout_
.push_back(Deferred_layout(i
, name
,
1561 // Put dummy values here; real values will be supplied by
1562 // do_layout_deferred_sections.
1563 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1564 out_section_offsets
[i
] = invalid_address
;
1568 // During gc_pass_two if a section that was previously deferred is
1569 // found, do not layout the section as layout_deferred_sections will
1570 // do it later from gold.cc.
1572 && (out_sections
[i
] == reinterpret_cast<Output_section
*>(2)))
1577 // This is during garbage collection. The out_sections are
1578 // assigned in the second call to this function.
1579 out_sections
[i
] = reinterpret_cast<Output_section
*>(1);
1580 out_section_offsets
[i
] = invalid_address
;
1584 // When garbage collection is switched on the actual layout
1585 // only happens in the second call.
1586 this->layout_section(layout
, i
, name
, shdr
, reloc_shndx
[i
],
1589 // When generating a .gdb_index section, we do additional
1590 // processing of .debug_info and .debug_types sections after all
1591 // the other sections for the same reason as above.
1593 && parameters
->options().gdb_index()
1594 && !(shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
))
1596 if (strcmp(name
, ".debug_info") == 0
1597 || strcmp(name
, ".zdebug_info") == 0)
1598 debug_info_sections
.push_back(i
);
1599 else if (strcmp(name
, ".debug_types") == 0
1600 || strcmp(name
, ".zdebug_types") == 0)
1601 debug_types_sections
.push_back(i
);
1606 if (!is_gc_pass_two
)
1607 layout
->layout_gnu_stack(seen_gnu_stack
, gnu_stack_flags
, this);
1609 // When doing a relocatable link handle the reloc sections at the
1610 // end. Garbage collection and Identical Code Folding is not
1611 // turned on for relocatable code.
1613 this->size_relocatable_relocs();
1615 gold_assert(!(is_gc_or_icf
) || reloc_sections
.empty());
1617 for (std::vector
<unsigned int>::const_iterator p
= reloc_sections
.begin();
1618 p
!= reloc_sections
.end();
1621 unsigned int i
= *p
;
1622 const unsigned char* pshdr
;
1623 pshdr
= section_headers_data
+ i
* This::shdr_size
;
1624 typename
This::Shdr
shdr(pshdr
);
1626 unsigned int data_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1627 if (data_shndx
>= shnum
)
1629 // We already warned about this above.
1633 Output_section
* data_section
= out_sections
[data_shndx
];
1634 if (data_section
== reinterpret_cast<Output_section
*>(2))
1636 // The layout for the data section was deferred, so we need
1637 // to defer the relocation section, too.
1638 const char* name
= pnames
+ shdr
.get_sh_name();
1639 this->deferred_layout_relocs_
.push_back(
1640 Deferred_layout(i
, name
, pshdr
, 0, elfcpp::SHT_NULL
));
1641 out_sections
[i
] = reinterpret_cast<Output_section
*>(2);
1642 out_section_offsets
[i
] = invalid_address
;
1645 if (data_section
== NULL
)
1647 out_sections
[i
] = NULL
;
1648 out_section_offsets
[i
] = invalid_address
;
1652 Relocatable_relocs
* rr
= new Relocatable_relocs();
1653 this->set_relocatable_relocs(i
, rr
);
1655 Output_section
* os
= layout
->layout_reloc(this, i
, shdr
, data_section
,
1657 out_sections
[i
] = os
;
1658 out_section_offsets
[i
] = invalid_address
;
1661 // Handle the .eh_frame sections at the end.
1662 gold_assert(!is_gc_pass_one
|| eh_frame_sections
.empty());
1663 for (std::vector
<unsigned int>::const_iterator p
= eh_frame_sections
.begin();
1664 p
!= eh_frame_sections
.end();
1667 unsigned int i
= *p
;
1668 const unsigned char* pshdr
;
1669 pshdr
= section_headers_data
+ i
* This::shdr_size
;
1670 typename
This::Shdr
shdr(pshdr
);
1672 this->layout_eh_frame_section(layout
,
1683 // When building a .gdb_index section, scan the .debug_info and
1684 // .debug_types sections.
1685 gold_assert(!is_gc_pass_one
1686 || (debug_info_sections
.empty() && debug_types_sections
.empty()));
1687 for (std::vector
<unsigned int>::const_iterator p
1688 = debug_info_sections
.begin();
1689 p
!= debug_info_sections
.end();
1692 unsigned int i
= *p
;
1693 layout
->add_to_gdb_index(false, this, symbols_data
, symbols_size
,
1694 i
, reloc_shndx
[i
], reloc_type
[i
]);
1696 for (std::vector
<unsigned int>::const_iterator p
1697 = debug_types_sections
.begin();
1698 p
!= debug_types_sections
.end();
1701 unsigned int i
= *p
;
1702 layout
->add_to_gdb_index(true, this, symbols_data
, symbols_size
,
1703 i
, reloc_shndx
[i
], reloc_type
[i
]);
1708 delete[] gc_sd
->section_headers_data
;
1709 delete[] gc_sd
->section_names_data
;
1710 delete[] gc_sd
->symbols_data
;
1711 delete[] gc_sd
->symbol_names_data
;
1712 this->set_symbols_data(NULL
);
1716 delete sd
->section_headers
;
1717 sd
->section_headers
= NULL
;
1718 delete sd
->section_names
;
1719 sd
->section_names
= NULL
;
1723 // Layout sections whose layout was deferred while waiting for
1724 // input files from a plugin.
1726 template<int size
, bool big_endian
>
1728 Sized_relobj_file
<size
, big_endian
>::do_layout_deferred_sections(Layout
* layout
)
1730 typename
std::vector
<Deferred_layout
>::iterator deferred
;
1732 for (deferred
= this->deferred_layout_
.begin();
1733 deferred
!= this->deferred_layout_
.end();
1736 typename
This::Shdr
shdr(deferred
->shdr_data_
);
1737 // If the section is not included, it is because the garbage collector
1738 // decided it is not needed. Avoid reverting that decision.
1739 if (!this->is_section_included(deferred
->shndx_
))
1742 if (parameters
->options().relocatable()
1743 || deferred
->name_
!= ".eh_frame"
1744 || !this->check_eh_frame_flags(&shdr
))
1745 this->layout_section(layout
, deferred
->shndx_
, deferred
->name_
.c_str(),
1746 shdr
, deferred
->reloc_shndx_
,
1747 deferred
->reloc_type_
);
1750 // Reading the symbols again here may be slow.
1751 Read_symbols_data sd
;
1752 this->read_symbols(&sd
);
1753 this->layout_eh_frame_section(layout
,
1756 sd
.symbol_names
->data(),
1757 sd
.symbol_names_size
,
1760 deferred
->reloc_shndx_
,
1761 deferred
->reloc_type_
);
1765 this->deferred_layout_
.clear();
1767 // Now handle the deferred relocation sections.
1769 Output_sections
& out_sections(this->output_sections());
1770 std::vector
<Address
>& out_section_offsets(this->section_offsets());
1772 for (deferred
= this->deferred_layout_relocs_
.begin();
1773 deferred
!= this->deferred_layout_relocs_
.end();
1776 unsigned int shndx
= deferred
->shndx_
;
1777 typename
This::Shdr
shdr(deferred
->shdr_data_
);
1778 unsigned int data_shndx
= this->adjust_shndx(shdr
.get_sh_info());
1780 Output_section
* data_section
= out_sections
[data_shndx
];
1781 if (data_section
== NULL
)
1783 out_sections
[shndx
] = NULL
;
1784 out_section_offsets
[shndx
] = invalid_address
;
1788 Relocatable_relocs
* rr
= new Relocatable_relocs();
1789 this->set_relocatable_relocs(shndx
, rr
);
1791 Output_section
* os
= layout
->layout_reloc(this, shndx
, shdr
,
1793 out_sections
[shndx
] = os
;
1794 out_section_offsets
[shndx
] = invalid_address
;
1798 // Add the symbols to the symbol table.
1800 template<int size
, bool big_endian
>
1802 Sized_relobj_file
<size
, big_endian
>::do_add_symbols(Symbol_table
* symtab
,
1803 Read_symbols_data
* sd
,
1806 if (sd
->symbols
== NULL
)
1808 gold_assert(sd
->symbol_names
== NULL
);
1812 const int sym_size
= This::sym_size
;
1813 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
1815 if (symcount
* sym_size
!= sd
->symbols_size
- sd
->external_symbols_offset
)
1817 this->error(_("size of symbols is not multiple of symbol size"));
1821 this->symbols_
.resize(symcount
);
1823 const char* sym_names
=
1824 reinterpret_cast<const char*>(sd
->symbol_names
->data());
1825 symtab
->add_from_relobj(this,
1826 sd
->symbols
->data() + sd
->external_symbols_offset
,
1827 symcount
, this->local_symbol_count_
,
1828 sym_names
, sd
->symbol_names_size
,
1830 &this->defined_count_
);
1834 delete sd
->symbol_names
;
1835 sd
->symbol_names
= NULL
;
1838 // Find out if this object, that is a member of a lib group, should be included
1839 // in the link. We check every symbol defined by this object. If the symbol
1840 // table has a strong undefined reference to that symbol, we have to include
1843 template<int size
, bool big_endian
>
1844 Archive::Should_include
1845 Sized_relobj_file
<size
, big_endian
>::do_should_include_member(
1846 Symbol_table
* symtab
,
1848 Read_symbols_data
* sd
,
1851 char* tmpbuf
= NULL
;
1852 size_t tmpbuflen
= 0;
1853 const char* sym_names
=
1854 reinterpret_cast<const char*>(sd
->symbol_names
->data());
1855 const unsigned char* syms
=
1856 sd
->symbols
->data() + sd
->external_symbols_offset
;
1857 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1858 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
1861 const unsigned char* p
= syms
;
1863 for (size_t i
= 0; i
< symcount
; ++i
, p
+= sym_size
)
1865 elfcpp::Sym
<size
, big_endian
> sym(p
);
1866 unsigned int st_shndx
= sym
.get_st_shndx();
1867 if (st_shndx
== elfcpp::SHN_UNDEF
)
1870 unsigned int st_name
= sym
.get_st_name();
1871 const char* name
= sym_names
+ st_name
;
1873 Archive::Should_include t
= Archive::should_include_member(symtab
,
1879 if (t
== Archive::SHOULD_INCLUDE_YES
)
1888 return Archive::SHOULD_INCLUDE_UNKNOWN
;
1891 // Iterate over global defined symbols, calling a visitor class V for each.
1893 template<int size
, bool big_endian
>
1895 Sized_relobj_file
<size
, big_endian
>::do_for_all_global_symbols(
1896 Read_symbols_data
* sd
,
1897 Library_base::Symbol_visitor_base
* v
)
1899 const char* sym_names
=
1900 reinterpret_cast<const char*>(sd
->symbol_names
->data());
1901 const unsigned char* syms
=
1902 sd
->symbols
->data() + sd
->external_symbols_offset
;
1903 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1904 size_t symcount
= ((sd
->symbols_size
- sd
->external_symbols_offset
)
1906 const unsigned char* p
= syms
;
1908 for (size_t i
= 0; i
< symcount
; ++i
, p
+= sym_size
)
1910 elfcpp::Sym
<size
, big_endian
> sym(p
);
1911 if (sym
.get_st_shndx() != elfcpp::SHN_UNDEF
)
1912 v
->visit(sym_names
+ sym
.get_st_name());
1916 // Return whether the local symbol SYMNDX has a PLT offset.
1918 template<int size
, bool big_endian
>
1920 Sized_relobj_file
<size
, big_endian
>::local_has_plt_offset(
1921 unsigned int symndx
) const
1923 typename
Local_plt_offsets::const_iterator p
=
1924 this->local_plt_offsets_
.find(symndx
);
1925 return p
!= this->local_plt_offsets_
.end();
1928 // Get the PLT offset of a local symbol.
1930 template<int size
, bool big_endian
>
1932 Sized_relobj_file
<size
, big_endian
>::do_local_plt_offset(
1933 unsigned int symndx
) const
1935 typename
Local_plt_offsets::const_iterator p
=
1936 this->local_plt_offsets_
.find(symndx
);
1937 gold_assert(p
!= this->local_plt_offsets_
.end());
1941 // Set the PLT offset of a local symbol.
1943 template<int size
, bool big_endian
>
1945 Sized_relobj_file
<size
, big_endian
>::set_local_plt_offset(
1946 unsigned int symndx
, unsigned int plt_offset
)
1948 std::pair
<typename
Local_plt_offsets::iterator
, bool> ins
=
1949 this->local_plt_offsets_
.insert(std::make_pair(symndx
, plt_offset
));
1950 gold_assert(ins
.second
);
1953 // First pass over the local symbols. Here we add their names to
1954 // *POOL and *DYNPOOL, and we store the symbol value in
1955 // THIS->LOCAL_VALUES_. This function is always called from a
1956 // singleton thread. This is followed by a call to
1957 // finalize_local_symbols.
1959 template<int size
, bool big_endian
>
1961 Sized_relobj_file
<size
, big_endian
>::do_count_local_symbols(Stringpool
* pool
,
1962 Stringpool
* dynpool
)
1964 gold_assert(this->symtab_shndx_
!= -1U);
1965 if (this->symtab_shndx_
== 0)
1967 // This object has no symbols. Weird but legal.
1971 // Read the symbol table section header.
1972 const unsigned int symtab_shndx
= this->symtab_shndx_
;
1973 typename
This::Shdr
symtabshdr(this,
1974 this->elf_file_
.section_header(symtab_shndx
));
1975 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
1977 // Read the local symbols.
1978 const int sym_size
= This::sym_size
;
1979 const unsigned int loccount
= this->local_symbol_count_
;
1980 gold_assert(loccount
== symtabshdr
.get_sh_info());
1981 off_t locsize
= loccount
* sym_size
;
1982 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
1983 locsize
, true, true);
1985 // Read the symbol names.
1986 const unsigned int strtab_shndx
=
1987 this->adjust_shndx(symtabshdr
.get_sh_link());
1988 section_size_type strtab_size
;
1989 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
1992 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
1994 // Loop over the local symbols.
1996 const Output_sections
& out_sections(this->output_sections());
1997 unsigned int shnum
= this->shnum();
1998 unsigned int count
= 0;
1999 unsigned int dyncount
= 0;
2000 // Skip the first, dummy, symbol.
2002 bool strip_all
= parameters
->options().strip_all();
2003 bool discard_all
= parameters
->options().discard_all();
2004 bool discard_locals
= parameters
->options().discard_locals();
2005 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
2007 elfcpp::Sym
<size
, big_endian
> sym(psyms
);
2009 Symbol_value
<size
>& lv(this->local_values_
[i
]);
2012 unsigned int shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
2014 lv
.set_input_shndx(shndx
, is_ordinary
);
2016 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
2017 lv
.set_is_section_symbol();
2018 else if (sym
.get_st_type() == elfcpp::STT_TLS
)
2019 lv
.set_is_tls_symbol();
2020 else if (sym
.get_st_type() == elfcpp::STT_GNU_IFUNC
)
2021 lv
.set_is_ifunc_symbol();
2023 // Save the input symbol value for use in do_finalize_local_symbols().
2024 lv
.set_input_value(sym
.get_st_value());
2026 // Decide whether this symbol should go into the output file.
2028 if ((shndx
< shnum
&& out_sections
[shndx
] == NULL
)
2029 || shndx
== this->discarded_eh_frame_shndx_
)
2031 lv
.set_no_output_symtab_entry();
2032 gold_assert(!lv
.needs_output_dynsym_entry());
2036 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
2038 lv
.set_no_output_symtab_entry();
2039 gold_assert(!lv
.needs_output_dynsym_entry());
2043 if (sym
.get_st_name() >= strtab_size
)
2045 this->error(_("local symbol %u section name out of range: %u >= %u"),
2046 i
, sym
.get_st_name(),
2047 static_cast<unsigned int>(strtab_size
));
2048 lv
.set_no_output_symtab_entry();
2052 const char* name
= pnames
+ sym
.get_st_name();
2054 // If needed, add the symbol to the dynamic symbol table string pool.
2055 if (lv
.needs_output_dynsym_entry())
2057 dynpool
->add(name
, true, NULL
);
2062 || (discard_all
&& lv
.may_be_discarded_from_output_symtab()))
2064 lv
.set_no_output_symtab_entry();
2068 // If --discard-locals option is used, discard all temporary local
2069 // symbols. These symbols start with system-specific local label
2070 // prefixes, typically .L for ELF system. We want to be compatible
2071 // with GNU ld so here we essentially use the same check in
2072 // bfd_is_local_label(). The code is different because we already
2075 // - the symbol is local and thus cannot have global or weak binding.
2076 // - the symbol is not a section symbol.
2077 // - the symbol has a name.
2079 // We do not discard a symbol if it needs a dynamic symbol entry.
2081 && sym
.get_st_type() != elfcpp::STT_FILE
2082 && !lv
.needs_output_dynsym_entry()
2083 && lv
.may_be_discarded_from_output_symtab()
2084 && parameters
->target().is_local_label_name(name
))
2086 lv
.set_no_output_symtab_entry();
2090 // Discard the local symbol if -retain_symbols_file is specified
2091 // and the local symbol is not in that file.
2092 if (!parameters
->options().should_retain_symbol(name
))
2094 lv
.set_no_output_symtab_entry();
2098 // Add the symbol to the symbol table string pool.
2099 pool
->add(name
, true, NULL
);
2103 this->output_local_symbol_count_
= count
;
2104 this->output_local_dynsym_count_
= dyncount
;
2107 // Compute the final value of a local symbol.
2109 template<int size
, bool big_endian
>
2110 typename Sized_relobj_file
<size
, big_endian
>::Compute_final_local_value_status
2111 Sized_relobj_file
<size
, big_endian
>::compute_final_local_value_internal(
2113 const Symbol_value
<size
>* lv_in
,
2114 Symbol_value
<size
>* lv_out
,
2116 const Output_sections
& out_sections
,
2117 const std::vector
<Address
>& out_offsets
,
2118 const Symbol_table
* symtab
)
2120 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2121 // we may have a memory leak.
2122 gold_assert(lv_out
->has_output_value());
2125 unsigned int shndx
= lv_in
->input_shndx(&is_ordinary
);
2127 // Set the output symbol value.
2131 if (shndx
== elfcpp::SHN_ABS
|| Symbol::is_common_shndx(shndx
))
2132 lv_out
->set_output_value(lv_in
->input_value());
2135 this->error(_("unknown section index %u for local symbol %u"),
2137 lv_out
->set_output_value(0);
2138 return This::CFLV_ERROR
;
2143 if (shndx
>= this->shnum())
2145 this->error(_("local symbol %u section index %u out of range"),
2147 lv_out
->set_output_value(0);
2148 return This::CFLV_ERROR
;
2151 Output_section
* os
= out_sections
[shndx
];
2152 Address secoffset
= out_offsets
[shndx
];
2153 if (symtab
->is_section_folded(this, shndx
))
2155 gold_assert(os
== NULL
&& secoffset
== invalid_address
);
2156 // Get the os of the section it is folded onto.
2157 Section_id folded
= symtab
->icf()->get_folded_section(this,
2159 gold_assert(folded
.first
!= NULL
);
2160 Sized_relobj_file
<size
, big_endian
>* folded_obj
= reinterpret_cast
2161 <Sized_relobj_file
<size
, big_endian
>*>(folded
.first
);
2162 os
= folded_obj
->output_section(folded
.second
);
2163 gold_assert(os
!= NULL
);
2164 secoffset
= folded_obj
->get_output_section_offset(folded
.second
);
2166 // This could be a relaxed input section.
2167 if (secoffset
== invalid_address
)
2169 const Output_relaxed_input_section
* relaxed_section
=
2170 os
->find_relaxed_input_section(folded_obj
, folded
.second
);
2171 gold_assert(relaxed_section
!= NULL
);
2172 secoffset
= relaxed_section
->address() - os
->address();
2178 // This local symbol belongs to a section we are discarding.
2179 // In some cases when applying relocations later, we will
2180 // attempt to match it to the corresponding kept section,
2181 // so we leave the input value unchanged here.
2182 return This::CFLV_DISCARDED
;
2184 else if (secoffset
== invalid_address
)
2188 // This is a SHF_MERGE section or one which otherwise
2189 // requires special handling.
2190 if (shndx
== this->discarded_eh_frame_shndx_
)
2192 // This local symbol belongs to a discarded .eh_frame
2193 // section. Just treat it like the case in which
2194 // os == NULL above.
2195 gold_assert(this->has_eh_frame_
);
2196 return This::CFLV_DISCARDED
;
2198 else if (!lv_in
->is_section_symbol())
2200 // This is not a section symbol. We can determine
2201 // the final value now.
2202 lv_out
->set_output_value(
2203 os
->output_address(this, shndx
, lv_in
->input_value()));
2205 else if (!os
->find_starting_output_address(this, shndx
, &start
))
2207 // This is a section symbol, but apparently not one in a
2208 // merged section. First check to see if this is a relaxed
2209 // input section. If so, use its address. Otherwise just
2210 // use the start of the output section. This happens with
2211 // relocatable links when the input object has section
2212 // symbols for arbitrary non-merge sections.
2213 const Output_section_data
* posd
=
2214 os
->find_relaxed_input_section(this, shndx
);
2217 Address relocatable_link_adjustment
=
2218 relocatable
? os
->address() : 0;
2219 lv_out
->set_output_value(posd
->address()
2220 - relocatable_link_adjustment
);
2223 lv_out
->set_output_value(os
->address());
2227 // We have to consider the addend to determine the
2228 // value to use in a relocation. START is the start
2229 // of this input section. If we are doing a relocatable
2230 // link, use offset from start output section instead of
2232 Address adjusted_start
=
2233 relocatable
? start
- os
->address() : start
;
2234 Merged_symbol_value
<size
>* msv
=
2235 new Merged_symbol_value
<size
>(lv_in
->input_value(),
2237 lv_out
->set_merged_symbol_value(msv
);
2240 else if (lv_in
->is_tls_symbol())
2241 lv_out
->set_output_value(os
->tls_offset()
2243 + lv_in
->input_value());
2245 lv_out
->set_output_value((relocatable
? 0 : os
->address())
2247 + lv_in
->input_value());
2249 return This::CFLV_OK
;
2252 // Compute final local symbol value. R_SYM is the index of a local
2253 // symbol in symbol table. LV points to a symbol value, which is
2254 // expected to hold the input value and to be over-written by the
2255 // final value. SYMTAB points to a symbol table. Some targets may want
2256 // to know would-be-finalized local symbol values in relaxation.
2257 // Hence we provide this method. Since this method updates *LV, a
2258 // callee should make a copy of the original local symbol value and
2259 // use the copy instead of modifying an object's local symbols before
2260 // everything is finalized. The caller should also free up any allocated
2261 // memory in the return value in *LV.
2262 template<int size
, bool big_endian
>
2263 typename Sized_relobj_file
<size
, big_endian
>::Compute_final_local_value_status
2264 Sized_relobj_file
<size
, big_endian
>::compute_final_local_value(
2266 const Symbol_value
<size
>* lv_in
,
2267 Symbol_value
<size
>* lv_out
,
2268 const Symbol_table
* symtab
)
2270 // This is just a wrapper of compute_final_local_value_internal.
2271 const bool relocatable
= parameters
->options().relocatable();
2272 const Output_sections
& out_sections(this->output_sections());
2273 const std::vector
<Address
>& out_offsets(this->section_offsets());
2274 return this->compute_final_local_value_internal(r_sym
, lv_in
, lv_out
,
2275 relocatable
, out_sections
,
2276 out_offsets
, symtab
);
2279 // Finalize the local symbols. Here we set the final value in
2280 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2281 // This function is always called from a singleton thread. The actual
2282 // output of the local symbols will occur in a separate task.
2284 template<int size
, bool big_endian
>
2286 Sized_relobj_file
<size
, big_endian
>::do_finalize_local_symbols(
2289 Symbol_table
* symtab
)
2291 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
2293 const unsigned int loccount
= this->local_symbol_count_
;
2294 this->local_symbol_offset_
= off
;
2296 const bool relocatable
= parameters
->options().relocatable();
2297 const Output_sections
& out_sections(this->output_sections());
2298 const std::vector
<Address
>& out_offsets(this->section_offsets());
2300 for (unsigned int i
= 1; i
< loccount
; ++i
)
2302 Symbol_value
<size
>* lv
= &this->local_values_
[i
];
2304 Compute_final_local_value_status cflv_status
=
2305 this->compute_final_local_value_internal(i
, lv
, lv
, relocatable
,
2306 out_sections
, out_offsets
,
2308 switch (cflv_status
)
2311 if (!lv
->is_output_symtab_index_set())
2313 lv
->set_output_symtab_index(index
);
2317 case CFLV_DISCARDED
:
2328 // Set the output dynamic symbol table indexes for the local variables.
2330 template<int size
, bool big_endian
>
2332 Sized_relobj_file
<size
, big_endian
>::do_set_local_dynsym_indexes(
2335 const unsigned int loccount
= this->local_symbol_count_
;
2336 for (unsigned int i
= 1; i
< loccount
; ++i
)
2338 Symbol_value
<size
>& lv(this->local_values_
[i
]);
2339 if (lv
.needs_output_dynsym_entry())
2341 lv
.set_output_dynsym_index(index
);
2348 // Set the offset where local dynamic symbol information will be stored.
2349 // Returns the count of local symbols contributed to the symbol table by
2352 template<int size
, bool big_endian
>
2354 Sized_relobj_file
<size
, big_endian
>::do_set_local_dynsym_offset(off_t off
)
2356 gold_assert(off
== static_cast<off_t
>(align_address(off
, size
>> 3)));
2357 this->local_dynsym_offset_
= off
;
2358 return this->output_local_dynsym_count_
;
2361 // If Symbols_data is not NULL get the section flags from here otherwise
2362 // get it from the file.
2364 template<int size
, bool big_endian
>
2366 Sized_relobj_file
<size
, big_endian
>::do_section_flags(unsigned int shndx
)
2368 Symbols_data
* sd
= this->get_symbols_data();
2371 const unsigned char* pshdrs
= sd
->section_headers_data
2372 + This::shdr_size
* shndx
;
2373 typename
This::Shdr
shdr(pshdrs
);
2374 return shdr
.get_sh_flags();
2376 // If sd is NULL, read the section header from the file.
2377 return this->elf_file_
.section_flags(shndx
);
2380 // Get the section's ent size from Symbols_data. Called by get_section_contents
2383 template<int size
, bool big_endian
>
2385 Sized_relobj_file
<size
, big_endian
>::do_section_entsize(unsigned int shndx
)
2387 Symbols_data
* sd
= this->get_symbols_data();
2388 gold_assert(sd
!= NULL
);
2390 const unsigned char* pshdrs
= sd
->section_headers_data
2391 + This::shdr_size
* shndx
;
2392 typename
This::Shdr
shdr(pshdrs
);
2393 return shdr
.get_sh_entsize();
2396 // Write out the local symbols.
2398 template<int size
, bool big_endian
>
2400 Sized_relobj_file
<size
, big_endian
>::write_local_symbols(
2402 const Stringpool
* sympool
,
2403 const Stringpool
* dynpool
,
2404 Output_symtab_xindex
* symtab_xindex
,
2405 Output_symtab_xindex
* dynsym_xindex
,
2408 const bool strip_all
= parameters
->options().strip_all();
2411 if (this->output_local_dynsym_count_
== 0)
2413 this->output_local_symbol_count_
= 0;
2416 gold_assert(this->symtab_shndx_
!= -1U);
2417 if (this->symtab_shndx_
== 0)
2419 // This object has no symbols. Weird but legal.
2423 // Read the symbol table section header.
2424 const unsigned int symtab_shndx
= this->symtab_shndx_
;
2425 typename
This::Shdr
symtabshdr(this,
2426 this->elf_file_
.section_header(symtab_shndx
));
2427 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
2428 const unsigned int loccount
= this->local_symbol_count_
;
2429 gold_assert(loccount
== symtabshdr
.get_sh_info());
2431 // Read the local symbols.
2432 const int sym_size
= This::sym_size
;
2433 off_t locsize
= loccount
* sym_size
;
2434 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
2435 locsize
, true, false);
2437 // Read the symbol names.
2438 const unsigned int strtab_shndx
=
2439 this->adjust_shndx(symtabshdr
.get_sh_link());
2440 section_size_type strtab_size
;
2441 const unsigned char* pnamesu
= this->section_contents(strtab_shndx
,
2444 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
2446 // Get views into the output file for the portions of the symbol table
2447 // and the dynamic symbol table that we will be writing.
2448 off_t output_size
= this->output_local_symbol_count_
* sym_size
;
2449 unsigned char* oview
= NULL
;
2450 if (output_size
> 0)
2451 oview
= of
->get_output_view(symtab_off
+ this->local_symbol_offset_
,
2454 off_t dyn_output_size
= this->output_local_dynsym_count_
* sym_size
;
2455 unsigned char* dyn_oview
= NULL
;
2456 if (dyn_output_size
> 0)
2457 dyn_oview
= of
->get_output_view(this->local_dynsym_offset_
,
2460 const Output_sections
out_sections(this->output_sections());
2462 gold_assert(this->local_values_
.size() == loccount
);
2464 unsigned char* ov
= oview
;
2465 unsigned char* dyn_ov
= dyn_oview
;
2467 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
2469 elfcpp::Sym
<size
, big_endian
> isym(psyms
);
2471 Symbol_value
<size
>& lv(this->local_values_
[i
]);
2474 unsigned int st_shndx
= this->adjust_sym_shndx(i
, isym
.get_st_shndx(),
2478 gold_assert(st_shndx
< out_sections
.size());
2479 if (out_sections
[st_shndx
] == NULL
)
2481 st_shndx
= out_sections
[st_shndx
]->out_shndx();
2482 if (st_shndx
>= elfcpp::SHN_LORESERVE
)
2484 if (lv
.has_output_symtab_entry())
2485 symtab_xindex
->add(lv
.output_symtab_index(), st_shndx
);
2486 if (lv
.has_output_dynsym_entry())
2487 dynsym_xindex
->add(lv
.output_dynsym_index(), st_shndx
);
2488 st_shndx
= elfcpp::SHN_XINDEX
;
2492 // Write the symbol to the output symbol table.
2493 if (lv
.has_output_symtab_entry())
2495 elfcpp::Sym_write
<size
, big_endian
> osym(ov
);
2497 gold_assert(isym
.get_st_name() < strtab_size
);
2498 const char* name
= pnames
+ isym
.get_st_name();
2499 osym
.put_st_name(sympool
->get_offset(name
));
2500 osym
.put_st_value(this->local_values_
[i
].value(this, 0));
2501 osym
.put_st_size(isym
.get_st_size());
2502 osym
.put_st_info(isym
.get_st_info());
2503 osym
.put_st_other(isym
.get_st_other());
2504 osym
.put_st_shndx(st_shndx
);
2509 // Write the symbol to the output dynamic symbol table.
2510 if (lv
.has_output_dynsym_entry())
2512 gold_assert(dyn_ov
< dyn_oview
+ dyn_output_size
);
2513 elfcpp::Sym_write
<size
, big_endian
> osym(dyn_ov
);
2515 gold_assert(isym
.get_st_name() < strtab_size
);
2516 const char* name
= pnames
+ isym
.get_st_name();
2517 osym
.put_st_name(dynpool
->get_offset(name
));
2518 osym
.put_st_value(this->local_values_
[i
].value(this, 0));
2519 osym
.put_st_size(isym
.get_st_size());
2520 osym
.put_st_info(isym
.get_st_info());
2521 osym
.put_st_other(isym
.get_st_other());
2522 osym
.put_st_shndx(st_shndx
);
2529 if (output_size
> 0)
2531 gold_assert(ov
- oview
== output_size
);
2532 of
->write_output_view(symtab_off
+ this->local_symbol_offset_
,
2533 output_size
, oview
);
2536 if (dyn_output_size
> 0)
2538 gold_assert(dyn_ov
- dyn_oview
== dyn_output_size
);
2539 of
->write_output_view(this->local_dynsym_offset_
, dyn_output_size
,
2544 // Set *INFO to symbolic information about the offset OFFSET in the
2545 // section SHNDX. Return true if we found something, false if we
2548 template<int size
, bool big_endian
>
2550 Sized_relobj_file
<size
, big_endian
>::get_symbol_location_info(
2553 Symbol_location_info
* info
)
2555 if (this->symtab_shndx_
== 0)
2558 section_size_type symbols_size
;
2559 const unsigned char* symbols
= this->section_contents(this->symtab_shndx_
,
2563 unsigned int symbol_names_shndx
=
2564 this->adjust_shndx(this->section_link(this->symtab_shndx_
));
2565 section_size_type names_size
;
2566 const unsigned char* symbol_names_u
=
2567 this->section_contents(symbol_names_shndx
, &names_size
, false);
2568 const char* symbol_names
= reinterpret_cast<const char*>(symbol_names_u
);
2570 const int sym_size
= This::sym_size
;
2571 const size_t count
= symbols_size
/ sym_size
;
2573 const unsigned char* p
= symbols
;
2574 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
2576 elfcpp::Sym
<size
, big_endian
> sym(p
);
2578 if (sym
.get_st_type() == elfcpp::STT_FILE
)
2580 if (sym
.get_st_name() >= names_size
)
2581 info
->source_file
= "(invalid)";
2583 info
->source_file
= symbol_names
+ sym
.get_st_name();
2588 unsigned int st_shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
2591 && st_shndx
== shndx
2592 && static_cast<off_t
>(sym
.get_st_value()) <= offset
2593 && (static_cast<off_t
>(sym
.get_st_value() + sym
.get_st_size())
2596 if (sym
.get_st_name() > names_size
)
2597 info
->enclosing_symbol_name
= "(invalid)";
2600 info
->enclosing_symbol_name
= symbol_names
+ sym
.get_st_name();
2601 if (parameters
->options().do_demangle())
2603 char* demangled_name
= cplus_demangle(
2604 info
->enclosing_symbol_name
.c_str(),
2605 DMGL_ANSI
| DMGL_PARAMS
);
2606 if (demangled_name
!= NULL
)
2608 info
->enclosing_symbol_name
.assign(demangled_name
);
2609 free(demangled_name
);
2620 // Look for a kept section corresponding to the given discarded section,
2621 // and return its output address. This is used only for relocations in
2622 // debugging sections. If we can't find the kept section, return 0.
2624 template<int size
, bool big_endian
>
2625 typename Sized_relobj_file
<size
, big_endian
>::Address
2626 Sized_relobj_file
<size
, big_endian
>::map_to_kept_section(
2630 Relobj
* kept_object
;
2631 unsigned int kept_shndx
;
2632 if (this->get_kept_comdat_section(shndx
, &kept_object
, &kept_shndx
))
2634 Sized_relobj_file
<size
, big_endian
>* kept_relobj
=
2635 static_cast<Sized_relobj_file
<size
, big_endian
>*>(kept_object
);
2636 Output_section
* os
= kept_relobj
->output_section(kept_shndx
);
2637 Address offset
= kept_relobj
->get_output_section_offset(kept_shndx
);
2638 if (os
!= NULL
&& offset
!= invalid_address
)
2641 return os
->address() + offset
;
2648 // Get symbol counts.
2650 template<int size
, bool big_endian
>
2652 Sized_relobj_file
<size
, big_endian
>::do_get_global_symbol_counts(
2653 const Symbol_table
*,
2657 *defined
= this->defined_count_
;
2659 for (typename
Symbols::const_iterator p
= this->symbols_
.begin();
2660 p
!= this->symbols_
.end();
2663 && (*p
)->source() == Symbol::FROM_OBJECT
2664 && (*p
)->object() == this
2665 && (*p
)->is_defined())
2670 // Return a view of the decompressed contents of a section. Set *PLEN
2671 // to the size. Set *IS_NEW to true if the contents need to be freed
2674 template<int size
, bool big_endian
>
2675 const unsigned char*
2676 Sized_relobj_file
<size
, big_endian
>::do_decompressed_section_contents(
2678 section_size_type
* plen
,
2681 section_size_type buffer_size
;
2682 const unsigned char* buffer
= this->do_section_contents(shndx
, &buffer_size
,
2685 if (this->compressed_sections_
== NULL
)
2687 *plen
= buffer_size
;
2692 Compressed_section_map::const_iterator p
=
2693 this->compressed_sections_
->find(shndx
);
2694 if (p
== this->compressed_sections_
->end())
2696 *plen
= buffer_size
;
2701 section_size_type uncompressed_size
= p
->second
.size
;
2702 if (p
->second
.contents
!= NULL
)
2704 *plen
= uncompressed_size
;
2706 return p
->second
.contents
;
2709 unsigned char* uncompressed_data
= new unsigned char[uncompressed_size
];
2710 if (!decompress_input_section(buffer
,
2714 this->error(_("could not decompress section %s"),
2715 this->do_section_name(shndx
).c_str());
2717 // We could cache the results in p->second.contents and store
2718 // false in *IS_NEW, but build_compressed_section_map() would
2719 // have done so if it had expected it to be profitable. If
2720 // we reach this point, we expect to need the contents only
2721 // once in this pass.
2722 *plen
= uncompressed_size
;
2724 return uncompressed_data
;
2727 // Discard any buffers of uncompressed sections. This is done
2728 // at the end of the Add_symbols task.
2730 template<int size
, bool big_endian
>
2732 Sized_relobj_file
<size
, big_endian
>::do_discard_decompressed_sections()
2734 if (this->compressed_sections_
== NULL
)
2737 for (Compressed_section_map::iterator p
= this->compressed_sections_
->begin();
2738 p
!= this->compressed_sections_
->end();
2741 if (p
->second
.contents
!= NULL
)
2743 delete[] p
->second
.contents
;
2744 p
->second
.contents
= NULL
;
2749 // Input_objects methods.
2751 // Add a regular relocatable object to the list. Return false if this
2752 // object should be ignored.
2755 Input_objects::add_object(Object
* obj
)
2757 // Print the filename if the -t/--trace option is selected.
2758 if (parameters
->options().trace())
2759 gold_info("%s", obj
->name().c_str());
2761 if (!obj
->is_dynamic())
2762 this->relobj_list_
.push_back(static_cast<Relobj
*>(obj
));
2765 // See if this is a duplicate SONAME.
2766 Dynobj
* dynobj
= static_cast<Dynobj
*>(obj
);
2767 const char* soname
= dynobj
->soname();
2769 std::pair
<Unordered_set
<std::string
>::iterator
, bool> ins
=
2770 this->sonames_
.insert(soname
);
2773 // We have already seen a dynamic object with this soname.
2777 this->dynobj_list_
.push_back(dynobj
);
2780 // Add this object to the cross-referencer if requested.
2781 if (parameters
->options().user_set_print_symbol_counts()
2782 || parameters
->options().cref())
2784 if (this->cref_
== NULL
)
2785 this->cref_
= new Cref();
2786 this->cref_
->add_object(obj
);
2792 // For each dynamic object, record whether we've seen all of its
2793 // explicit dependencies.
2796 Input_objects::check_dynamic_dependencies() const
2798 bool issued_copy_dt_needed_error
= false;
2799 for (Dynobj_list::const_iterator p
= this->dynobj_list_
.begin();
2800 p
!= this->dynobj_list_
.end();
2803 const Dynobj::Needed
& needed((*p
)->needed());
2804 bool found_all
= true;
2805 Dynobj::Needed::const_iterator pneeded
;
2806 for (pneeded
= needed
.begin(); pneeded
!= needed
.end(); ++pneeded
)
2808 if (this->sonames_
.find(*pneeded
) == this->sonames_
.end())
2814 (*p
)->set_has_unknown_needed_entries(!found_all
);
2816 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2817 // that gold does not support. However, they cause no trouble
2818 // unless there is a DT_NEEDED entry that we don't know about;
2819 // warn only in that case.
2821 && !issued_copy_dt_needed_error
2822 && (parameters
->options().copy_dt_needed_entries()
2823 || parameters
->options().add_needed()))
2825 const char* optname
;
2826 if (parameters
->options().copy_dt_needed_entries())
2827 optname
= "--copy-dt-needed-entries";
2829 optname
= "--add-needed";
2830 gold_error(_("%s is not supported but is required for %s in %s"),
2831 optname
, (*pneeded
).c_str(), (*p
)->name().c_str());
2832 issued_copy_dt_needed_error
= true;
2837 // Start processing an archive.
2840 Input_objects::archive_start(Archive
* archive
)
2842 if (parameters
->options().user_set_print_symbol_counts()
2843 || parameters
->options().cref())
2845 if (this->cref_
== NULL
)
2846 this->cref_
= new Cref();
2847 this->cref_
->add_archive_start(archive
);
2851 // Stop processing an archive.
2854 Input_objects::archive_stop(Archive
* archive
)
2856 if (parameters
->options().user_set_print_symbol_counts()
2857 || parameters
->options().cref())
2858 this->cref_
->add_archive_stop(archive
);
2861 // Print symbol counts
2864 Input_objects::print_symbol_counts(const Symbol_table
* symtab
) const
2866 if (parameters
->options().user_set_print_symbol_counts()
2867 && this->cref_
!= NULL
)
2868 this->cref_
->print_symbol_counts(symtab
);
2871 // Print a cross reference table.
2874 Input_objects::print_cref(const Symbol_table
* symtab
, FILE* f
) const
2876 if (parameters
->options().cref() && this->cref_
!= NULL
)
2877 this->cref_
->print_cref(symtab
, f
);
2880 // Relocate_info methods.
2882 // Return a string describing the location of a relocation when file
2883 // and lineno information is not available. This is only used in
2886 template<int size
, bool big_endian
>
2888 Relocate_info
<size
, big_endian
>::location(size_t, off_t offset
) const
2890 Sized_dwarf_line_info
<size
, big_endian
> line_info(this->object
);
2891 std::string ret
= line_info
.addr2line(this->data_shndx
, offset
, NULL
);
2895 ret
= this->object
->name();
2897 Symbol_location_info info
;
2898 if (this->object
->get_symbol_location_info(this->data_shndx
, offset
, &info
))
2900 if (!info
.source_file
.empty())
2903 ret
+= info
.source_file
;
2905 size_t len
= info
.enclosing_symbol_name
.length() + 100;
2906 char* buf
= new char[len
];
2907 snprintf(buf
, len
, _(":function %s"),
2908 info
.enclosing_symbol_name
.c_str());
2915 ret
+= this->object
->section_name(this->data_shndx
);
2917 snprintf(buf
, sizeof buf
, "+0x%lx)", static_cast<long>(offset
));
2922 } // End namespace gold.
2927 using namespace gold
;
2929 // Read an ELF file with the header and return the appropriate
2930 // instance of Object.
2932 template<int size
, bool big_endian
>
2934 make_elf_sized_object(const std::string
& name
, Input_file
* input_file
,
2935 off_t offset
, const elfcpp::Ehdr
<size
, big_endian
>& ehdr
,
2936 bool* punconfigured
)
2938 Target
* target
= select_target(input_file
, offset
,
2939 ehdr
.get_e_machine(), size
, big_endian
,
2940 ehdr
.get_e_ident()[elfcpp::EI_OSABI
],
2941 ehdr
.get_e_ident()[elfcpp::EI_ABIVERSION
]);
2943 gold_fatal(_("%s: unsupported ELF machine number %d"),
2944 name
.c_str(), ehdr
.get_e_machine());
2946 if (!parameters
->target_valid())
2947 set_parameters_target(target
);
2948 else if (target
!= ¶meters
->target())
2950 if (punconfigured
!= NULL
)
2951 *punconfigured
= true;
2953 gold_error(_("%s: incompatible target"), name
.c_str());
2957 return target
->make_elf_object
<size
, big_endian
>(name
, input_file
, offset
,
2961 } // End anonymous namespace.
2966 // Return whether INPUT_FILE is an ELF object.
2969 is_elf_object(Input_file
* input_file
, off_t offset
,
2970 const unsigned char** start
, int* read_size
)
2972 off_t filesize
= input_file
->file().filesize();
2973 int want
= elfcpp::Elf_recognizer::max_header_size
;
2974 if (filesize
- offset
< want
)
2975 want
= filesize
- offset
;
2977 const unsigned char* p
= input_file
->file().get_view(offset
, 0, want
,
2982 return elfcpp::Elf_recognizer::is_elf_file(p
, want
);
2985 // Read an ELF file and return the appropriate instance of Object.
2988 make_elf_object(const std::string
& name
, Input_file
* input_file
, off_t offset
,
2989 const unsigned char* p
, section_offset_type bytes
,
2990 bool* punconfigured
)
2992 if (punconfigured
!= NULL
)
2993 *punconfigured
= false;
2996 bool big_endian
= false;
2998 if (!elfcpp::Elf_recognizer::is_valid_header(p
, bytes
, &size
,
2999 &big_endian
, &error
))
3001 gold_error(_("%s: %s"), name
.c_str(), error
.c_str());
3009 #ifdef HAVE_TARGET_32_BIG
3010 elfcpp::Ehdr
<32, true> ehdr(p
);
3011 return make_elf_sized_object
<32, true>(name
, input_file
,
3012 offset
, ehdr
, punconfigured
);
3014 if (punconfigured
!= NULL
)
3015 *punconfigured
= true;
3017 gold_error(_("%s: not configured to support "
3018 "32-bit big-endian object"),
3025 #ifdef HAVE_TARGET_32_LITTLE
3026 elfcpp::Ehdr
<32, false> ehdr(p
);
3027 return make_elf_sized_object
<32, false>(name
, input_file
,
3028 offset
, ehdr
, punconfigured
);
3030 if (punconfigured
!= NULL
)
3031 *punconfigured
= true;
3033 gold_error(_("%s: not configured to support "
3034 "32-bit little-endian object"),
3040 else if (size
== 64)
3044 #ifdef HAVE_TARGET_64_BIG
3045 elfcpp::Ehdr
<64, true> ehdr(p
);
3046 return make_elf_sized_object
<64, true>(name
, input_file
,
3047 offset
, ehdr
, punconfigured
);
3049 if (punconfigured
!= NULL
)
3050 *punconfigured
= true;
3052 gold_error(_("%s: not configured to support "
3053 "64-bit big-endian object"),
3060 #ifdef HAVE_TARGET_64_LITTLE
3061 elfcpp::Ehdr
<64, false> ehdr(p
);
3062 return make_elf_sized_object
<64, false>(name
, input_file
,
3063 offset
, ehdr
, punconfigured
);
3065 if (punconfigured
!= NULL
)
3066 *punconfigured
= true;
3068 gold_error(_("%s: not configured to support "
3069 "64-bit little-endian object"),
3079 // Instantiate the templates we need.
3081 #ifdef HAVE_TARGET_32_LITTLE
3084 Object::read_section_data
<32, false>(elfcpp::Elf_file
<32, false, Object
>*,
3085 Read_symbols_data
*);
3088 #ifdef HAVE_TARGET_32_BIG
3091 Object::read_section_data
<32, true>(elfcpp::Elf_file
<32, true, Object
>*,
3092 Read_symbols_data
*);
3095 #ifdef HAVE_TARGET_64_LITTLE
3098 Object::read_section_data
<64, false>(elfcpp::Elf_file
<64, false, Object
>*,
3099 Read_symbols_data
*);
3102 #ifdef HAVE_TARGET_64_BIG
3105 Object::read_section_data
<64, true>(elfcpp::Elf_file
<64, true, Object
>*,
3106 Read_symbols_data
*);
3109 #ifdef HAVE_TARGET_32_LITTLE
3111 class Sized_relobj_file
<32, false>;
3114 #ifdef HAVE_TARGET_32_BIG
3116 class Sized_relobj_file
<32, true>;
3119 #ifdef HAVE_TARGET_64_LITTLE
3121 class Sized_relobj_file
<64, false>;
3124 #ifdef HAVE_TARGET_64_BIG
3126 class Sized_relobj_file
<64, true>;
3129 #ifdef HAVE_TARGET_32_LITTLE
3131 struct Relocate_info
<32, false>;
3134 #ifdef HAVE_TARGET_32_BIG
3136 struct Relocate_info
<32, true>;
3139 #ifdef HAVE_TARGET_64_LITTLE
3141 struct Relocate_info
<64, false>;
3144 #ifdef HAVE_TARGET_64_BIG
3146 struct Relocate_info
<64, true>;
3149 #ifdef HAVE_TARGET_32_LITTLE
3152 Xindex::initialize_symtab_xindex
<32, false>(Object
*, unsigned int);
3156 Xindex::read_symtab_xindex
<32, false>(Object
*, unsigned int,
3157 const unsigned char*);
3160 #ifdef HAVE_TARGET_32_BIG
3163 Xindex::initialize_symtab_xindex
<32, true>(Object
*, unsigned int);
3167 Xindex::read_symtab_xindex
<32, true>(Object
*, unsigned int,
3168 const unsigned char*);
3171 #ifdef HAVE_TARGET_64_LITTLE
3174 Xindex::initialize_symtab_xindex
<64, false>(Object
*, unsigned int);
3178 Xindex::read_symtab_xindex
<64, false>(Object
*, unsigned int,
3179 const unsigned char*);
3182 #ifdef HAVE_TARGET_64_BIG
3185 Xindex::initialize_symtab_xindex
<64, true>(Object
*, unsigned int);
3189 Xindex::read_symtab_xindex
<64, true>(Object
*, unsigned int,
3190 const unsigned char*);
3193 } // End namespace gold.