From Craig Silverstein: Add first version of generating error messages
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28
29 #include "target-select.h"
30 #include "dwarf_reader.h"
31 #include "layout.h"
32 #include "output.h"
33 #include "symtab.h"
34 #include "object.h"
35 #include "dynobj.h"
36
37 namespace gold
38 {
39
40 // Class Object.
41
42 // Set the target based on fields in the ELF file header.
43
44 void
45 Object::set_target(int machine, int size, bool big_endian, int osabi,
46 int abiversion)
47 {
48 Target* target = select_target(machine, size, big_endian, osabi, abiversion);
49 if (target == NULL)
50 gold_fatal(_("%s: unsupported ELF machine number %d"),
51 this->name().c_str(), machine);
52 this->target_ = target;
53 }
54
55 // Report an error for this object file. This is used by the
56 // elfcpp::Elf_file interface, and also called by the Object code
57 // itself.
58
59 void
60 Object::error(const char* format, ...) const
61 {
62 va_list args;
63 va_start(args, format);
64 char* buf = NULL;
65 if (vasprintf(&buf, format, args) < 0)
66 gold_nomem();
67 va_end(args);
68 gold_error(_("%s: %s"), this->name().c_str(), buf);
69 free(buf);
70 }
71
72 // Return a view of the contents of a section.
73
74 const unsigned char*
75 Object::section_contents(unsigned int shndx, off_t* plen, bool cache)
76 {
77 Location loc(this->do_section_contents(shndx));
78 *plen = loc.data_size;
79 return this->get_view(loc.file_offset, loc.data_size, cache);
80 }
81
82 // Read the section data into SD. This is code common to Sized_relobj
83 // and Sized_dynobj, so we put it into Object.
84
85 template<int size, bool big_endian>
86 void
87 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
88 Read_symbols_data* sd)
89 {
90 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
91
92 // Read the section headers.
93 const off_t shoff = elf_file->shoff();
94 const unsigned int shnum = this->shnum();
95 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size, true);
96
97 // Read the section names.
98 const unsigned char* pshdrs = sd->section_headers->data();
99 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
100 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
101
102 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
103 this->error(_("section name section has wrong type: %u"),
104 static_cast<unsigned int>(shdrnames.get_sh_type()));
105
106 sd->section_names_size = shdrnames.get_sh_size();
107 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
108 sd->section_names_size, false);
109 }
110
111 // If NAME is the name of a special .gnu.warning section, arrange for
112 // the warning to be issued. SHNDX is the section index. Return
113 // whether it is a warning section.
114
115 bool
116 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
117 Symbol_table* symtab)
118 {
119 const char warn_prefix[] = ".gnu.warning.";
120 const int warn_prefix_len = sizeof warn_prefix - 1;
121 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
122 {
123 symtab->add_warning(name + warn_prefix_len, this, shndx);
124 return true;
125 }
126 return false;
127 }
128
129 // Class Sized_relobj.
130
131 template<int size, bool big_endian>
132 Sized_relobj<size, big_endian>::Sized_relobj(
133 const std::string& name,
134 Input_file* input_file,
135 off_t offset,
136 const elfcpp::Ehdr<size, big_endian>& ehdr)
137 : Relobj(name, input_file, offset),
138 elf_file_(this, ehdr),
139 symtab_shndx_(-1U),
140 local_symbol_count_(0),
141 output_local_symbol_count_(0),
142 symbols_(NULL),
143 local_symbol_offset_(0),
144 local_values_(),
145 local_got_offsets_()
146 {
147 }
148
149 template<int size, bool big_endian>
150 Sized_relobj<size, big_endian>::~Sized_relobj()
151 {
152 }
153
154 // Set up an object file based on the file header. This sets up the
155 // target and reads the section information.
156
157 template<int size, bool big_endian>
158 void
159 Sized_relobj<size, big_endian>::setup(
160 const elfcpp::Ehdr<size, big_endian>& ehdr)
161 {
162 this->set_target(ehdr.get_e_machine(), size, big_endian,
163 ehdr.get_e_ident()[elfcpp::EI_OSABI],
164 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
165
166 const unsigned int shnum = this->elf_file_.shnum();
167 this->set_shnum(shnum);
168 }
169
170 // Find the SHT_SYMTAB section, given the section headers. The ELF
171 // standard says that maybe in the future there can be more than one
172 // SHT_SYMTAB section. Until somebody figures out how that could
173 // work, we assume there is only one.
174
175 template<int size, bool big_endian>
176 void
177 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
178 {
179 const unsigned int shnum = this->shnum();
180 this->symtab_shndx_ = 0;
181 if (shnum > 0)
182 {
183 // Look through the sections in reverse order, since gas tends
184 // to put the symbol table at the end.
185 const unsigned char* p = pshdrs + shnum * This::shdr_size;
186 unsigned int i = shnum;
187 while (i > 0)
188 {
189 --i;
190 p -= This::shdr_size;
191 typename This::Shdr shdr(p);
192 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
193 {
194 this->symtab_shndx_ = i;
195 break;
196 }
197 }
198 }
199 }
200
201 // Read the sections and symbols from an object file.
202
203 template<int size, bool big_endian>
204 void
205 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
206 {
207 this->read_section_data(&this->elf_file_, sd);
208
209 const unsigned char* const pshdrs = sd->section_headers->data();
210
211 this->find_symtab(pshdrs);
212
213 sd->symbols = NULL;
214 sd->symbols_size = 0;
215 sd->symbol_names = NULL;
216 sd->symbol_names_size = 0;
217
218 if (this->symtab_shndx_ == 0)
219 {
220 // No symbol table. Weird but legal.
221 return;
222 }
223
224 // Get the symbol table section header.
225 typename This::Shdr symtabshdr(pshdrs
226 + this->symtab_shndx_ * This::shdr_size);
227 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
228
229 // We only need the external symbols.
230 const int sym_size = This::sym_size;
231 const unsigned int loccount = symtabshdr.get_sh_info();
232 this->local_symbol_count_ = loccount;
233 off_t locsize = loccount * sym_size;
234 off_t extoff = symtabshdr.get_sh_offset() + locsize;
235 off_t extsize = symtabshdr.get_sh_size() - locsize;
236
237 // Read the symbol table.
238 File_view* fvsymtab = this->get_lasting_view(extoff, extsize, false);
239
240 // Read the section header for the symbol names.
241 unsigned int strtab_shndx = symtabshdr.get_sh_link();
242 if (strtab_shndx >= this->shnum())
243 {
244 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
245 return;
246 }
247 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
248 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
249 {
250 this->error(_("symbol table name section has wrong type: %u"),
251 static_cast<unsigned int>(strtabshdr.get_sh_type()));
252 return;
253 }
254
255 // Read the symbol names.
256 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
257 strtabshdr.get_sh_size(), true);
258
259 sd->symbols = fvsymtab;
260 sd->symbols_size = extsize;
261 sd->symbol_names = fvstrtab;
262 sd->symbol_names_size = strtabshdr.get_sh_size();
263 }
264
265 // Return whether to include a section group in the link. LAYOUT is
266 // used to keep track of which section groups we have already seen.
267 // INDEX is the index of the section group and SHDR is the section
268 // header. If we do not want to include this group, we set bits in
269 // OMIT for each section which should be discarded.
270
271 template<int size, bool big_endian>
272 bool
273 Sized_relobj<size, big_endian>::include_section_group(
274 Layout* layout,
275 unsigned int index,
276 const elfcpp::Shdr<size, big_endian>& shdr,
277 std::vector<bool>* omit)
278 {
279 // Read the section contents.
280 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
281 shdr.get_sh_size(), false);
282 const elfcpp::Elf_Word* pword =
283 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
284
285 // The first word contains flags. We only care about COMDAT section
286 // groups. Other section groups are always included in the link
287 // just like ordinary sections.
288 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
289 if ((flags & elfcpp::GRP_COMDAT) == 0)
290 return true;
291
292 // Look up the group signature, which is the name of a symbol. This
293 // is a lot of effort to go to to read a string. Why didn't they
294 // just use the name of the SHT_GROUP section as the group
295 // signature?
296
297 // Get the appropriate symbol table header (this will normally be
298 // the single SHT_SYMTAB section, but in principle it need not be).
299 const unsigned int link = shdr.get_sh_link();
300 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
301
302 // Read the symbol table entry.
303 if (shdr.get_sh_info() >= symshdr.get_sh_size() / This::sym_size)
304 {
305 this->error(_("section group %u info %u out of range"),
306 index, shdr.get_sh_info());
307 return false;
308 }
309 off_t symoff = symshdr.get_sh_offset() + shdr.get_sh_info() * This::sym_size;
310 const unsigned char* psym = this->get_view(symoff, This::sym_size, true);
311 elfcpp::Sym<size, big_endian> sym(psym);
312
313 // Read the symbol table names.
314 off_t symnamelen;
315 const unsigned char* psymnamesu;
316 psymnamesu = this->section_contents(symshdr.get_sh_link(), &symnamelen,
317 true);
318 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
319
320 // Get the section group signature.
321 if (sym.get_st_name() >= symnamelen)
322 {
323 this->error(_("symbol %u name offset %u out of range"),
324 shdr.get_sh_info(), sym.get_st_name());
325 return false;
326 }
327
328 const char* signature = psymnames + sym.get_st_name();
329
330 // It seems that some versions of gas will create a section group
331 // associated with a section symbol, and then fail to give a name to
332 // the section symbol. In such a case, use the name of the section.
333 // FIXME.
334 std::string secname;
335 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
336 {
337 secname = this->section_name(sym.get_st_shndx());
338 signature = secname.c_str();
339 }
340
341 // Record this section group, and see whether we've already seen one
342 // with the same signature.
343 if (layout->add_comdat(signature, true))
344 return true;
345
346 // This is a duplicate. We want to discard the sections in this
347 // group.
348 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
349 for (size_t i = 1; i < count; ++i)
350 {
351 elfcpp::Elf_Word secnum =
352 elfcpp::Swap<32, big_endian>::readval(pword + i);
353 if (secnum >= this->shnum())
354 {
355 this->error(_("section %u in section group %u out of range"),
356 secnum, index);
357 continue;
358 }
359 (*omit)[secnum] = true;
360 }
361
362 return false;
363 }
364
365 // Whether to include a linkonce section in the link. NAME is the
366 // name of the section and SHDR is the section header.
367
368 // Linkonce sections are a GNU extension implemented in the original
369 // GNU linker before section groups were defined. The semantics are
370 // that we only include one linkonce section with a given name. The
371 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
372 // where T is the type of section and SYMNAME is the name of a symbol.
373 // In an attempt to make linkonce sections interact well with section
374 // groups, we try to identify SYMNAME and use it like a section group
375 // signature. We want to block section groups with that signature,
376 // but not other linkonce sections with that signature. We also use
377 // the full name of the linkonce section as a normal section group
378 // signature.
379
380 template<int size, bool big_endian>
381 bool
382 Sized_relobj<size, big_endian>::include_linkonce_section(
383 Layout* layout,
384 const char* name,
385 const elfcpp::Shdr<size, big_endian>&)
386 {
387 // In general the symbol name we want will be the string following
388 // the last '.'. However, we have to handle the case of
389 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
390 // some versions of gcc. So we use a heuristic: if the name starts
391 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
392 // we look for the last '.'. We can't always simply skip
393 // ".gnu.linkonce.X", because we have to deal with cases like
394 // ".gnu.linkonce.d.rel.ro.local".
395 const char* const linkonce_t = ".gnu.linkonce.t.";
396 const char* symname;
397 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
398 symname = name + strlen(linkonce_t);
399 else
400 symname = strrchr(name, '.') + 1;
401 bool include1 = layout->add_comdat(symname, false);
402 bool include2 = layout->add_comdat(name, true);
403 return include1 && include2;
404 }
405
406 // Lay out the input sections. We walk through the sections and check
407 // whether they should be included in the link. If they should, we
408 // pass them to the Layout object, which will return an output section
409 // and an offset.
410
411 template<int size, bool big_endian>
412 void
413 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
414 Layout* layout,
415 Read_symbols_data* sd)
416 {
417 const unsigned int shnum = this->shnum();
418 if (shnum == 0)
419 return;
420
421 // Get the section headers.
422 const unsigned char* pshdrs = sd->section_headers->data();
423
424 // Get the section names.
425 const unsigned char* pnamesu = sd->section_names->data();
426 const char* pnames = reinterpret_cast<const char*>(pnamesu);
427
428 std::vector<Map_to_output>& map_sections(this->map_to_output());
429 map_sections.resize(shnum);
430
431 // Whether we've seen a .note.GNU-stack section.
432 bool seen_gnu_stack = false;
433 // The flags of a .note.GNU-stack section.
434 uint64_t gnu_stack_flags = 0;
435
436 // Keep track of which sections to omit.
437 std::vector<bool> omit(shnum, false);
438
439 // Skip the first, dummy, section.
440 pshdrs += This::shdr_size;
441 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
442 {
443 typename This::Shdr shdr(pshdrs);
444
445 if (shdr.get_sh_name() >= sd->section_names_size)
446 {
447 this->error(_("bad section name offset for section %u: %lu"),
448 i, static_cast<unsigned long>(shdr.get_sh_name()));
449 return;
450 }
451
452 const char* name = pnames + shdr.get_sh_name();
453
454 if (this->handle_gnu_warning_section(name, i, symtab))
455 {
456 if (!parameters->output_is_object())
457 omit[i] = true;
458 }
459
460 // The .note.GNU-stack section is special. It gives the
461 // protection flags that this object file requires for the stack
462 // in memory.
463 if (strcmp(name, ".note.GNU-stack") == 0)
464 {
465 seen_gnu_stack = true;
466 gnu_stack_flags |= shdr.get_sh_flags();
467 omit[i] = true;
468 }
469
470 bool discard = omit[i];
471 if (!discard)
472 {
473 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
474 {
475 if (!this->include_section_group(layout, i, shdr, &omit))
476 discard = true;
477 }
478 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
479 && Layout::is_linkonce(name))
480 {
481 if (!this->include_linkonce_section(layout, name, shdr))
482 discard = true;
483 }
484 }
485
486 if (discard)
487 {
488 // Do not include this section in the link.
489 map_sections[i].output_section = NULL;
490 continue;
491 }
492
493 off_t offset;
494 Output_section* os = layout->layout(this, i, name, shdr, &offset);
495
496 map_sections[i].output_section = os;
497 map_sections[i].offset = offset;
498 }
499
500 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags);
501
502 delete sd->section_headers;
503 sd->section_headers = NULL;
504 delete sd->section_names;
505 sd->section_names = NULL;
506 }
507
508 // Add the symbols to the symbol table.
509
510 template<int size, bool big_endian>
511 void
512 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
513 Read_symbols_data* sd)
514 {
515 if (sd->symbols == NULL)
516 {
517 gold_assert(sd->symbol_names == NULL);
518 return;
519 }
520
521 const int sym_size = This::sym_size;
522 size_t symcount = sd->symbols_size / sym_size;
523 if (static_cast<off_t>(symcount * sym_size) != sd->symbols_size)
524 {
525 this->error(_("size of symbols is not multiple of symbol size"));
526 return;
527 }
528
529 this->symbols_ = new Symbol*[symcount];
530
531 const char* sym_names =
532 reinterpret_cast<const char*>(sd->symbol_names->data());
533 symtab->add_from_relobj(this, sd->symbols->data(), symcount, sym_names,
534 sd->symbol_names_size, this->symbols_);
535
536 delete sd->symbols;
537 sd->symbols = NULL;
538 delete sd->symbol_names;
539 sd->symbol_names = NULL;
540 }
541
542 // Finalize the local symbols. Here we record the file offset at
543 // which they should be output, we add their names to *POOL, and we
544 // add their values to THIS->LOCAL_VALUES_. Return the symbol index.
545 // This function is always called from the main thread. The actual
546 // output of the local symbols will occur in a separate task.
547
548 template<int size, bool big_endian>
549 unsigned int
550 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
551 off_t off,
552 Stringpool* pool)
553 {
554 gold_assert(this->symtab_shndx_ != -1U);
555 if (this->symtab_shndx_ == 0)
556 {
557 // This object has no symbols. Weird but legal.
558 return index;
559 }
560
561 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
562
563 this->local_symbol_offset_ = off;
564
565 // Read the symbol table section header.
566 const unsigned int symtab_shndx = this->symtab_shndx_;
567 typename This::Shdr symtabshdr(this,
568 this->elf_file_.section_header(symtab_shndx));
569 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
570
571 // Read the local symbols.
572 const int sym_size = This::sym_size;
573 const unsigned int loccount = this->local_symbol_count_;
574 gold_assert(loccount == symtabshdr.get_sh_info());
575 off_t locsize = loccount * sym_size;
576 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
577 locsize, true);
578
579 this->local_values_.resize(loccount);
580
581 // Read the symbol names.
582 const unsigned int strtab_shndx = symtabshdr.get_sh_link();
583 off_t strtab_size;
584 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
585 &strtab_size,
586 true);
587 const char* pnames = reinterpret_cast<const char*>(pnamesu);
588
589 // Loop over the local symbols.
590
591 const std::vector<Map_to_output>& mo(this->map_to_output());
592 unsigned int shnum = this->shnum();
593 unsigned int count = 0;
594 // Skip the first, dummy, symbol.
595 psyms += sym_size;
596 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
597 {
598 elfcpp::Sym<size, big_endian> sym(psyms);
599
600 Symbol_value<size>& lv(this->local_values_[i]);
601
602 unsigned int shndx = sym.get_st_shndx();
603 lv.set_input_shndx(shndx);
604
605 if (sym.get_st_type() == elfcpp::STT_SECTION)
606 lv.set_is_section_symbol();
607
608 if (shndx >= elfcpp::SHN_LORESERVE)
609 {
610 if (shndx == elfcpp::SHN_ABS)
611 lv.set_output_value(sym.get_st_value());
612 else
613 {
614 // FIXME: Handle SHN_XINDEX.
615 this->error(_("unknown section index %u for local symbol %u"),
616 shndx, i);
617 lv.set_output_value(0);
618 }
619 }
620 else
621 {
622 if (shndx >= shnum)
623 {
624 this->error(_("local symbol %u section index %u out of range"),
625 i, shndx);
626 shndx = 0;
627 }
628
629 Output_section* os = mo[shndx].output_section;
630
631 if (os == NULL)
632 {
633 lv.set_output_value(0);
634 lv.set_no_output_symtab_entry();
635 continue;
636 }
637
638 if (mo[shndx].offset == -1)
639 lv.set_input_value(sym.get_st_value());
640 else
641 lv.set_output_value(mo[shndx].output_section->address()
642 + mo[shndx].offset
643 + sym.get_st_value());
644 }
645
646 // Decide whether this symbol should go into the output file.
647
648 if (sym.get_st_type() == elfcpp::STT_SECTION)
649 {
650 lv.set_no_output_symtab_entry();
651 continue;
652 }
653
654 if (sym.get_st_name() >= strtab_size)
655 {
656 this->error(_("local symbol %u section name out of range: %u >= %u"),
657 i, sym.get_st_name(),
658 static_cast<unsigned int>(strtab_size));
659 lv.set_no_output_symtab_entry();
660 continue;
661 }
662
663 const char* name = pnames + sym.get_st_name();
664 pool->add(name, true, NULL);
665 lv.set_output_symtab_index(index);
666 ++index;
667 ++count;
668 }
669
670 this->output_local_symbol_count_ = count;
671
672 return index;
673 }
674
675 // Return the value of the local symbol symndx.
676 template<int size, bool big_endian>
677 typename elfcpp::Elf_types<size>::Elf_Addr
678 Sized_relobj<size, big_endian>::local_symbol_value(unsigned int symndx) const
679 {
680 gold_assert(symndx < this->local_symbol_count_);
681 gold_assert(symndx < this->local_values_.size());
682 const Symbol_value<size>& lv(this->local_values_[symndx]);
683 return lv.value(this, 0);
684 }
685
686 // Return the value of a local symbol defined in input section SHNDX,
687 // with value VALUE, adding addend ADDEND. IS_SECTION_SYMBOL
688 // indicates whether the symbol is a section symbol. This handles
689 // SHF_MERGE sections.
690 template<int size, bool big_endian>
691 typename elfcpp::Elf_types<size>::Elf_Addr
692 Sized_relobj<size, big_endian>::local_value(unsigned int shndx,
693 Address value,
694 bool is_section_symbol,
695 Address addend) const
696 {
697 const std::vector<Map_to_output>& mo(this->map_to_output());
698 Output_section* os = mo[shndx].output_section;
699 if (os == NULL)
700 return addend;
701 gold_assert(mo[shndx].offset == -1);
702
703 // Do the mapping required by the output section. If this is not a
704 // section symbol, then we want to map the symbol value, and then
705 // include the addend. If this is a section symbol, then we need to
706 // include the addend to figure out where in the section we are,
707 // before we do the mapping. This will do the right thing provided
708 // the assembler is careful to only convert a relocation in a merged
709 // section to a section symbol if there is a zero addend. If the
710 // assembler does not do this, then in general we can't know what to
711 // do, because we can't distinguish the addend for the instruction
712 // format from the addend for the section offset.
713
714 if (is_section_symbol)
715 return os->output_address(this, shndx, value + addend);
716 else
717 return addend + os->output_address(this, shndx, value);
718 }
719
720 // Write out the local symbols.
721
722 template<int size, bool big_endian>
723 void
724 Sized_relobj<size, big_endian>::write_local_symbols(Output_file* of,
725 const Stringpool* sympool)
726 {
727 if (parameters->strip_all())
728 return;
729
730 gold_assert(this->symtab_shndx_ != -1U);
731 if (this->symtab_shndx_ == 0)
732 {
733 // This object has no symbols. Weird but legal.
734 return;
735 }
736
737 // Read the symbol table section header.
738 const unsigned int symtab_shndx = this->symtab_shndx_;
739 typename This::Shdr symtabshdr(this,
740 this->elf_file_.section_header(symtab_shndx));
741 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
742 const unsigned int loccount = this->local_symbol_count_;
743 gold_assert(loccount == symtabshdr.get_sh_info());
744
745 // Read the local symbols.
746 const int sym_size = This::sym_size;
747 off_t locsize = loccount * sym_size;
748 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
749 locsize, false);
750
751 // Read the symbol names.
752 const unsigned int strtab_shndx = symtabshdr.get_sh_link();
753 off_t strtab_size;
754 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
755 &strtab_size,
756 true);
757 const char* pnames = reinterpret_cast<const char*>(pnamesu);
758
759 // Get a view into the output file.
760 off_t output_size = this->output_local_symbol_count_ * sym_size;
761 unsigned char* oview = of->get_output_view(this->local_symbol_offset_,
762 output_size);
763
764 const std::vector<Map_to_output>& mo(this->map_to_output());
765
766 gold_assert(this->local_values_.size() == loccount);
767
768 unsigned char* ov = oview;
769 psyms += sym_size;
770 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
771 {
772 elfcpp::Sym<size, big_endian> isym(psyms);
773
774 if (!this->local_values_[i].needs_output_symtab_entry())
775 continue;
776
777 unsigned int st_shndx = isym.get_st_shndx();
778 if (st_shndx < elfcpp::SHN_LORESERVE)
779 {
780 gold_assert(st_shndx < mo.size());
781 if (mo[st_shndx].output_section == NULL)
782 continue;
783 st_shndx = mo[st_shndx].output_section->out_shndx();
784 }
785
786 elfcpp::Sym_write<size, big_endian> osym(ov);
787
788 gold_assert(isym.get_st_name() < strtab_size);
789 const char* name = pnames + isym.get_st_name();
790 osym.put_st_name(sympool->get_offset(name));
791 osym.put_st_value(this->local_values_[i].value(this, 0));
792 osym.put_st_size(isym.get_st_size());
793 osym.put_st_info(isym.get_st_info());
794 osym.put_st_other(isym.get_st_other());
795 osym.put_st_shndx(st_shndx);
796
797 ov += sym_size;
798 }
799
800 gold_assert(ov - oview == output_size);
801
802 of->write_output_view(this->local_symbol_offset_, output_size, oview);
803 }
804
805 // Set *INFO to symbolic information about the offset OFFSET in the
806 // section SHNDX. Return true if we found something, false if we
807 // found nothing.
808
809 template<int size, bool big_endian>
810 bool
811 Sized_relobj<size, big_endian>::get_symbol_location_info(
812 unsigned int shndx,
813 off_t offset,
814 Symbol_location_info* info)
815 {
816 if (this->symtab_shndx_ == 0)
817 return false;
818
819 off_t symbols_size;
820 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
821 &symbols_size,
822 false);
823
824 unsigned int symbol_names_shndx = this->section_link(this->symtab_shndx_);
825 off_t names_size;
826 const unsigned char* symbol_names_u =
827 this->section_contents(symbol_names_shndx, &names_size, false);
828 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
829
830 const int sym_size = This::sym_size;
831 const size_t count = symbols_size / sym_size;
832
833 const unsigned char* p = symbols;
834 for (size_t i = 0; i < count; ++i, p += sym_size)
835 {
836 elfcpp::Sym<size, big_endian> sym(p);
837
838 if (sym.get_st_type() == elfcpp::STT_FILE)
839 {
840 if (sym.get_st_name() >= names_size)
841 info->source_file = "(invalid)";
842 else
843 info->source_file = symbol_names + sym.get_st_name();
844 }
845 else if (sym.get_st_shndx() == shndx
846 && static_cast<off_t>(sym.get_st_value()) <= offset
847 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
848 > offset))
849 {
850 if (sym.get_st_name() > names_size)
851 info->enclosing_symbol_name = "(invalid)";
852 else
853 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
854 return true;
855 }
856 }
857
858 return false;
859 }
860
861 // Input_objects methods.
862
863 // Add a regular relocatable object to the list. Return false if this
864 // object should be ignored.
865
866 bool
867 Input_objects::add_object(Object* obj)
868 {
869 if (!obj->is_dynamic())
870 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
871 else
872 {
873 // See if this is a duplicate SONAME.
874 Dynobj* dynobj = static_cast<Dynobj*>(obj);
875
876 std::pair<Unordered_set<std::string>::iterator, bool> ins =
877 this->sonames_.insert(dynobj->soname());
878 if (!ins.second)
879 {
880 // We have already seen a dynamic object with this soname.
881 return false;
882 }
883
884 this->dynobj_list_.push_back(dynobj);
885 }
886
887 Target* target = obj->target();
888 if (this->target_ == NULL)
889 this->target_ = target;
890 else if (this->target_ != target)
891 {
892 gold_error(_("%s: incompatible target"), obj->name().c_str());
893 return false;
894 }
895
896 set_parameters_size_and_endianness(target->get_size(),
897 target->is_big_endian());
898
899 return true;
900 }
901
902 // Relocate_info methods.
903
904 // Return a string describing the location of a relocation. This is
905 // only used in error messages.
906
907 template<int size, bool big_endian>
908 std::string
909 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
910 {
911 // See if we can get line-number information from debugging sections.
912 std::string filename;
913 std::string file_and_lineno; // Better than filename-only, if available.
914 for (unsigned int shndx = 0; shndx < this->object->shnum(); ++shndx)
915 if (this->object->section_name(shndx) == ".debug_line")
916 {
917 off_t debuglines_size;
918 const unsigned char* debuglines = this->object->section_contents(
919 shndx, &debuglines_size, false);
920 if (debuglines)
921 {
922 Dwarf_line_info line_info(debuglines, debuglines_size);
923 line_info.read_line_mappings<size, big_endian>();
924 file_and_lineno = line_info.addr2line(this->data_shndx, offset);
925 }
926 break;
927 }
928
929 std::string ret(this->object->name());
930 ret += ':';
931 Symbol_location_info info;
932 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
933 {
934 ret += " in function ";
935 // We could demangle this name before printing, but we don't
936 // bother because gcc runs linker output through a demangle
937 // filter itself. The only advantage to demangling here is if
938 // someone might call ld directly, rather than via gcc. If we
939 // did want to demangle, cplus_demangle() is in libiberty.
940 ret += info.enclosing_symbol_name;
941 ret += ":";
942 filename = info.source_file;
943 }
944
945 if (!file_and_lineno.empty())
946 ret += file_and_lineno;
947 else
948 {
949 if (!filename.empty())
950 ret += filename;
951 ret += "(";
952 ret += this->object->section_name(this->data_shndx);
953 char buf[100];
954 // Offsets into sections have to be positive.
955 snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset));
956 ret += buf;
957 ret += ")";
958 }
959 return ret;
960 }
961
962 } // End namespace gold.
963
964 namespace
965 {
966
967 using namespace gold;
968
969 // Read an ELF file with the header and return the appropriate
970 // instance of Object.
971
972 template<int size, bool big_endian>
973 Object*
974 make_elf_sized_object(const std::string& name, Input_file* input_file,
975 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
976 {
977 int et = ehdr.get_e_type();
978 if (et == elfcpp::ET_REL)
979 {
980 Sized_relobj<size, big_endian>* obj =
981 new Sized_relobj<size, big_endian>(name, input_file, offset, ehdr);
982 obj->setup(ehdr);
983 return obj;
984 }
985 else if (et == elfcpp::ET_DYN)
986 {
987 Sized_dynobj<size, big_endian>* obj =
988 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
989 obj->setup(ehdr);
990 return obj;
991 }
992 else
993 {
994 gold_error(_("%s: unsupported ELF file type %d"),
995 name.c_str(), et);
996 return NULL;
997 }
998 }
999
1000 } // End anonymous namespace.
1001
1002 namespace gold
1003 {
1004
1005 // Read an ELF file and return the appropriate instance of Object.
1006
1007 Object*
1008 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
1009 const unsigned char* p, off_t bytes)
1010 {
1011 if (bytes < elfcpp::EI_NIDENT)
1012 {
1013 gold_error(_("%s: ELF file too short"), name.c_str());
1014 return NULL;
1015 }
1016
1017 int v = p[elfcpp::EI_VERSION];
1018 if (v != elfcpp::EV_CURRENT)
1019 {
1020 if (v == elfcpp::EV_NONE)
1021 gold_error(_("%s: invalid ELF version 0"), name.c_str());
1022 else
1023 gold_error(_("%s: unsupported ELF version %d"), name.c_str(), v);
1024 return NULL;
1025 }
1026
1027 int c = p[elfcpp::EI_CLASS];
1028 if (c == elfcpp::ELFCLASSNONE)
1029 {
1030 gold_error(_("%s: invalid ELF class 0"), name.c_str());
1031 return NULL;
1032 }
1033 else if (c != elfcpp::ELFCLASS32
1034 && c != elfcpp::ELFCLASS64)
1035 {
1036 gold_error(_("%s: unsupported ELF class %d"), name.c_str(), c);
1037 return NULL;
1038 }
1039
1040 int d = p[elfcpp::EI_DATA];
1041 if (d == elfcpp::ELFDATANONE)
1042 {
1043 gold_error(_("%s: invalid ELF data encoding"), name.c_str());
1044 return NULL;
1045 }
1046 else if (d != elfcpp::ELFDATA2LSB
1047 && d != elfcpp::ELFDATA2MSB)
1048 {
1049 gold_error(_("%s: unsupported ELF data encoding %d"), name.c_str(), d);
1050 return NULL;
1051 }
1052
1053 bool big_endian = d == elfcpp::ELFDATA2MSB;
1054
1055 if (c == elfcpp::ELFCLASS32)
1056 {
1057 if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
1058 {
1059 gold_error(_("%s: ELF file too short"), name.c_str());
1060 return NULL;
1061 }
1062 if (big_endian)
1063 {
1064 #ifdef HAVE_TARGET_32_BIG
1065 elfcpp::Ehdr<32, true> ehdr(p);
1066 return make_elf_sized_object<32, true>(name, input_file,
1067 offset, ehdr);
1068 #else
1069 gold_error(_("%s: not configured to support "
1070 "32-bit big-endian object"),
1071 name.c_str());
1072 return NULL;
1073 #endif
1074 }
1075 else
1076 {
1077 #ifdef HAVE_TARGET_32_LITTLE
1078 elfcpp::Ehdr<32, false> ehdr(p);
1079 return make_elf_sized_object<32, false>(name, input_file,
1080 offset, ehdr);
1081 #else
1082 gold_error(_("%s: not configured to support "
1083 "32-bit little-endian object"),
1084 name.c_str());
1085 return NULL;
1086 #endif
1087 }
1088 }
1089 else
1090 {
1091 if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
1092 {
1093 gold_error(_("%s: ELF file too short"), name.c_str());
1094 return NULL;
1095 }
1096 if (big_endian)
1097 {
1098 #ifdef HAVE_TARGET_64_BIG
1099 elfcpp::Ehdr<64, true> ehdr(p);
1100 return make_elf_sized_object<64, true>(name, input_file,
1101 offset, ehdr);
1102 #else
1103 gold_error(_("%s: not configured to support "
1104 "64-bit big-endian object"),
1105 name.c_str());
1106 return NULL;
1107 #endif
1108 }
1109 else
1110 {
1111 #ifdef HAVE_TARGET_64_LITTLE
1112 elfcpp::Ehdr<64, false> ehdr(p);
1113 return make_elf_sized_object<64, false>(name, input_file,
1114 offset, ehdr);
1115 #else
1116 gold_error(_("%s: not configured to support "
1117 "64-bit little-endian object"),
1118 name.c_str());
1119 return NULL;
1120 #endif
1121 }
1122 }
1123 }
1124
1125 // Instantiate the templates we need. We could use the configure
1126 // script to restrict this to only the ones for implemented targets.
1127
1128 #ifdef HAVE_TARGET_32_LITTLE
1129 template
1130 class Sized_relobj<32, false>;
1131 #endif
1132
1133 #ifdef HAVE_TARGET_32_BIG
1134 template
1135 class Sized_relobj<32, true>;
1136 #endif
1137
1138 #ifdef HAVE_TARGET_64_LITTLE
1139 template
1140 class Sized_relobj<64, false>;
1141 #endif
1142
1143 #ifdef HAVE_TARGET_64_BIG
1144 template
1145 class Sized_relobj<64, true>;
1146 #endif
1147
1148 #ifdef HAVE_TARGET_32_LITTLE
1149 template
1150 struct Relocate_info<32, false>;
1151 #endif
1152
1153 #ifdef HAVE_TARGET_32_BIG
1154 template
1155 struct Relocate_info<32, true>;
1156 #endif
1157
1158 #ifdef HAVE_TARGET_64_LITTLE
1159 template
1160 struct Relocate_info<64, false>;
1161 #endif
1162
1163 #ifdef HAVE_TARGET_64_BIG
1164 template
1165 struct Relocate_info<64, true>;
1166 #endif
1167
1168 } // End namespace gold.
This page took 0.055239 seconds and 5 git commands to generate.