Add section_size_type and section_offset_type, use them to replace a
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "target-select.h"
32 #include "dwarf_reader.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "symtab.h"
36 #include "reloc.h"
37 #include "object.h"
38 #include "dynobj.h"
39
40 namespace gold
41 {
42
43 // Class Object.
44
45 // Set the target based on fields in the ELF file header.
46
47 void
48 Object::set_target(int machine, int size, bool big_endian, int osabi,
49 int abiversion)
50 {
51 Target* target = select_target(machine, size, big_endian, osabi, abiversion);
52 if (target == NULL)
53 gold_fatal(_("%s: unsupported ELF machine number %d"),
54 this->name().c_str(), machine);
55 this->target_ = target;
56 }
57
58 // Report an error for this object file. This is used by the
59 // elfcpp::Elf_file interface, and also called by the Object code
60 // itself.
61
62 void
63 Object::error(const char* format, ...) const
64 {
65 va_list args;
66 va_start(args, format);
67 char* buf = NULL;
68 if (vasprintf(&buf, format, args) < 0)
69 gold_nomem();
70 va_end(args);
71 gold_error(_("%s: %s"), this->name().c_str(), buf);
72 free(buf);
73 }
74
75 // Return a view of the contents of a section.
76
77 const unsigned char*
78 Object::section_contents(unsigned int shndx, section_size_type* plen,
79 bool cache)
80 {
81 Location loc(this->do_section_contents(shndx));
82 *plen = convert_to_section_size_type(loc.data_size);
83 return this->get_view(loc.file_offset, *plen, cache);
84 }
85
86 // Read the section data into SD. This is code common to Sized_relobj
87 // and Sized_dynobj, so we put it into Object.
88
89 template<int size, bool big_endian>
90 void
91 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
92 Read_symbols_data* sd)
93 {
94 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
95
96 // Read the section headers.
97 const off_t shoff = elf_file->shoff();
98 const unsigned int shnum = this->shnum();
99 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size, true);
100
101 // Read the section names.
102 const unsigned char* pshdrs = sd->section_headers->data();
103 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
104 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
105
106 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
107 this->error(_("section name section has wrong type: %u"),
108 static_cast<unsigned int>(shdrnames.get_sh_type()));
109
110 sd->section_names_size =
111 convert_to_section_size_type(shdrnames.get_sh_size());
112 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
113 sd->section_names_size, false);
114 }
115
116 // If NAME is the name of a special .gnu.warning section, arrange for
117 // the warning to be issued. SHNDX is the section index. Return
118 // whether it is a warning section.
119
120 bool
121 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
122 Symbol_table* symtab)
123 {
124 const char warn_prefix[] = ".gnu.warning.";
125 const int warn_prefix_len = sizeof warn_prefix - 1;
126 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
127 {
128 symtab->add_warning(name + warn_prefix_len, this, shndx);
129 return true;
130 }
131 return false;
132 }
133
134 // Class Sized_relobj.
135
136 template<int size, bool big_endian>
137 Sized_relobj<size, big_endian>::Sized_relobj(
138 const std::string& name,
139 Input_file* input_file,
140 off_t offset,
141 const elfcpp::Ehdr<size, big_endian>& ehdr)
142 : Relobj(name, input_file, offset),
143 elf_file_(this, ehdr),
144 symtab_shndx_(-1U),
145 local_symbol_count_(0),
146 output_local_symbol_count_(0),
147 output_local_dynsym_count_(0),
148 symbols_(),
149 local_symbol_offset_(0),
150 local_dynsym_offset_(0),
151 local_values_(),
152 local_got_offsets_(),
153 has_eh_frame_(false)
154 {
155 }
156
157 template<int size, bool big_endian>
158 Sized_relobj<size, big_endian>::~Sized_relobj()
159 {
160 }
161
162 // Set up an object file based on the file header. This sets up the
163 // target and reads the section information.
164
165 template<int size, bool big_endian>
166 void
167 Sized_relobj<size, big_endian>::setup(
168 const elfcpp::Ehdr<size, big_endian>& ehdr)
169 {
170 this->set_target(ehdr.get_e_machine(), size, big_endian,
171 ehdr.get_e_ident()[elfcpp::EI_OSABI],
172 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
173
174 const unsigned int shnum = this->elf_file_.shnum();
175 this->set_shnum(shnum);
176 }
177
178 // Find the SHT_SYMTAB section, given the section headers. The ELF
179 // standard says that maybe in the future there can be more than one
180 // SHT_SYMTAB section. Until somebody figures out how that could
181 // work, we assume there is only one.
182
183 template<int size, bool big_endian>
184 void
185 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
186 {
187 const unsigned int shnum = this->shnum();
188 this->symtab_shndx_ = 0;
189 if (shnum > 0)
190 {
191 // Look through the sections in reverse order, since gas tends
192 // to put the symbol table at the end.
193 const unsigned char* p = pshdrs + shnum * This::shdr_size;
194 unsigned int i = shnum;
195 while (i > 0)
196 {
197 --i;
198 p -= This::shdr_size;
199 typename This::Shdr shdr(p);
200 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
201 {
202 this->symtab_shndx_ = i;
203 break;
204 }
205 }
206 }
207 }
208
209 // Return whether SHDR has the right type and flags to be a GNU
210 // .eh_frame section.
211
212 template<int size, bool big_endian>
213 bool
214 Sized_relobj<size, big_endian>::check_eh_frame_flags(
215 const elfcpp::Shdr<size, big_endian>* shdr) const
216 {
217 return (shdr->get_sh_size() > 0
218 && shdr->get_sh_type() == elfcpp::SHT_PROGBITS
219 && shdr->get_sh_flags() == elfcpp::SHF_ALLOC);
220 }
221
222 // Return whether there is a GNU .eh_frame section, given the section
223 // headers and the section names.
224
225 template<int size, bool big_endian>
226 bool
227 Sized_relobj<size, big_endian>::find_eh_frame(
228 const unsigned char* pshdrs,
229 const char* names,
230 section_size_type names_size) const
231 {
232 const unsigned int shnum = this->shnum();
233 const unsigned char* p = pshdrs + This::shdr_size;
234 for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
235 {
236 typename This::Shdr shdr(p);
237 if (this->check_eh_frame_flags(&shdr))
238 {
239 if (shdr.get_sh_name() >= names_size)
240 {
241 this->error(_("bad section name offset for section %u: %lu"),
242 i, static_cast<unsigned long>(shdr.get_sh_name()));
243 continue;
244 }
245
246 const char* name = names + shdr.get_sh_name();
247 if (strcmp(name, ".eh_frame") == 0)
248 return true;
249 }
250 }
251 return false;
252 }
253
254 // Read the sections and symbols from an object file.
255
256 template<int size, bool big_endian>
257 void
258 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
259 {
260 this->read_section_data(&this->elf_file_, sd);
261
262 const unsigned char* const pshdrs = sd->section_headers->data();
263
264 this->find_symtab(pshdrs);
265
266 const unsigned char* namesu = sd->section_names->data();
267 const char* names = reinterpret_cast<const char*>(namesu);
268 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
269 this->has_eh_frame_ = true;
270
271 sd->symbols = NULL;
272 sd->symbols_size = 0;
273 sd->external_symbols_offset = 0;
274 sd->symbol_names = NULL;
275 sd->symbol_names_size = 0;
276
277 if (this->symtab_shndx_ == 0)
278 {
279 // No symbol table. Weird but legal.
280 return;
281 }
282
283 // Get the symbol table section header.
284 typename This::Shdr symtabshdr(pshdrs
285 + this->symtab_shndx_ * This::shdr_size);
286 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
287
288 // If this object has a .eh_frame section, we need all the symbols.
289 // Otherwise we only need the external symbols. While it would be
290 // simpler to just always read all the symbols, I've seen object
291 // files with well over 2000 local symbols, which for a 64-bit
292 // object file format is over 5 pages that we don't need to read
293 // now.
294
295 const int sym_size = This::sym_size;
296 const unsigned int loccount = symtabshdr.get_sh_info();
297 this->local_symbol_count_ = loccount;
298 this->local_values_.resize(loccount);
299 section_offset_type locsize = loccount * sym_size;
300 off_t dataoff = symtabshdr.get_sh_offset();
301 section_size_type datasize =
302 convert_to_section_size_type(symtabshdr.get_sh_size());
303 off_t extoff = dataoff + locsize;
304 section_size_type extsize = datasize - locsize;
305
306 off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
307 section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
308
309 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, false);
310
311 // Read the section header for the symbol names.
312 unsigned int strtab_shndx = symtabshdr.get_sh_link();
313 if (strtab_shndx >= this->shnum())
314 {
315 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
316 return;
317 }
318 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
319 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
320 {
321 this->error(_("symbol table name section has wrong type: %u"),
322 static_cast<unsigned int>(strtabshdr.get_sh_type()));
323 return;
324 }
325
326 // Read the symbol names.
327 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
328 strtabshdr.get_sh_size(), true);
329
330 sd->symbols = fvsymtab;
331 sd->symbols_size = readsize;
332 sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
333 sd->symbol_names = fvstrtab;
334 sd->symbol_names_size =
335 convert_to_section_size_type(strtabshdr.get_sh_size());
336 }
337
338 // Return the section index of symbol SYM. Set *VALUE to its value in
339 // the object file. Note that for a symbol which is not defined in
340 // this object file, this will set *VALUE to 0 and return SHN_UNDEF;
341 // it will not return the final value of the symbol in the link.
342
343 template<int size, bool big_endian>
344 unsigned int
345 Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym,
346 Address* value)
347 {
348 section_size_type symbols_size;
349 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
350 &symbols_size,
351 false);
352
353 const size_t count = symbols_size / This::sym_size;
354 gold_assert(sym < count);
355
356 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
357 *value = elfsym.get_st_value();
358 // FIXME: Handle SHN_XINDEX.
359 return elfsym.get_st_shndx();
360 }
361
362 // Return whether to include a section group in the link. LAYOUT is
363 // used to keep track of which section groups we have already seen.
364 // INDEX is the index of the section group and SHDR is the section
365 // header. If we do not want to include this group, we set bits in
366 // OMIT for each section which should be discarded.
367
368 template<int size, bool big_endian>
369 bool
370 Sized_relobj<size, big_endian>::include_section_group(
371 Layout* layout,
372 unsigned int index,
373 const elfcpp::Shdr<size, big_endian>& shdr,
374 std::vector<bool>* omit)
375 {
376 // Read the section contents.
377 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
378 shdr.get_sh_size(), false);
379 const elfcpp::Elf_Word* pword =
380 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
381
382 // The first word contains flags. We only care about COMDAT section
383 // groups. Other section groups are always included in the link
384 // just like ordinary sections.
385 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
386 if ((flags & elfcpp::GRP_COMDAT) == 0)
387 return true;
388
389 // Look up the group signature, which is the name of a symbol. This
390 // is a lot of effort to go to to read a string. Why didn't they
391 // just use the name of the SHT_GROUP section as the group
392 // signature?
393
394 // Get the appropriate symbol table header (this will normally be
395 // the single SHT_SYMTAB section, but in principle it need not be).
396 const unsigned int link = shdr.get_sh_link();
397 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
398
399 // Read the symbol table entry.
400 if (shdr.get_sh_info() >= symshdr.get_sh_size() / This::sym_size)
401 {
402 this->error(_("section group %u info %u out of range"),
403 index, shdr.get_sh_info());
404 return false;
405 }
406 off_t symoff = symshdr.get_sh_offset() + shdr.get_sh_info() * This::sym_size;
407 const unsigned char* psym = this->get_view(symoff, This::sym_size, true);
408 elfcpp::Sym<size, big_endian> sym(psym);
409
410 // Read the symbol table names.
411 section_size_type symnamelen;
412 const unsigned char* psymnamesu;
413 psymnamesu = this->section_contents(symshdr.get_sh_link(), &symnamelen,
414 true);
415 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
416
417 // Get the section group signature.
418 if (sym.get_st_name() >= symnamelen)
419 {
420 this->error(_("symbol %u name offset %u out of range"),
421 shdr.get_sh_info(), sym.get_st_name());
422 return false;
423 }
424
425 const char* signature = psymnames + sym.get_st_name();
426
427 // It seems that some versions of gas will create a section group
428 // associated with a section symbol, and then fail to give a name to
429 // the section symbol. In such a case, use the name of the section.
430 // FIXME.
431 std::string secname;
432 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
433 {
434 secname = this->section_name(sym.get_st_shndx());
435 signature = secname.c_str();
436 }
437
438 // Record this section group, and see whether we've already seen one
439 // with the same signature.
440 if (layout->add_comdat(signature, true))
441 return true;
442
443 // This is a duplicate. We want to discard the sections in this
444 // group.
445 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
446 for (size_t i = 1; i < count; ++i)
447 {
448 elfcpp::Elf_Word secnum =
449 elfcpp::Swap<32, big_endian>::readval(pword + i);
450 if (secnum >= this->shnum())
451 {
452 this->error(_("section %u in section group %u out of range"),
453 secnum, index);
454 continue;
455 }
456 (*omit)[secnum] = true;
457 }
458
459 return false;
460 }
461
462 // Whether to include a linkonce section in the link. NAME is the
463 // name of the section and SHDR is the section header.
464
465 // Linkonce sections are a GNU extension implemented in the original
466 // GNU linker before section groups were defined. The semantics are
467 // that we only include one linkonce section with a given name. The
468 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
469 // where T is the type of section and SYMNAME is the name of a symbol.
470 // In an attempt to make linkonce sections interact well with section
471 // groups, we try to identify SYMNAME and use it like a section group
472 // signature. We want to block section groups with that signature,
473 // but not other linkonce sections with that signature. We also use
474 // the full name of the linkonce section as a normal section group
475 // signature.
476
477 template<int size, bool big_endian>
478 bool
479 Sized_relobj<size, big_endian>::include_linkonce_section(
480 Layout* layout,
481 const char* name,
482 const elfcpp::Shdr<size, big_endian>&)
483 {
484 // In general the symbol name we want will be the string following
485 // the last '.'. However, we have to handle the case of
486 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
487 // some versions of gcc. So we use a heuristic: if the name starts
488 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
489 // we look for the last '.'. We can't always simply skip
490 // ".gnu.linkonce.X", because we have to deal with cases like
491 // ".gnu.linkonce.d.rel.ro.local".
492 const char* const linkonce_t = ".gnu.linkonce.t.";
493 const char* symname;
494 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
495 symname = name + strlen(linkonce_t);
496 else
497 symname = strrchr(name, '.') + 1;
498 bool include1 = layout->add_comdat(symname, false);
499 bool include2 = layout->add_comdat(name, true);
500 return include1 && include2;
501 }
502
503 // Lay out the input sections. We walk through the sections and check
504 // whether they should be included in the link. If they should, we
505 // pass them to the Layout object, which will return an output section
506 // and an offset.
507
508 template<int size, bool big_endian>
509 void
510 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
511 Layout* layout,
512 Read_symbols_data* sd)
513 {
514 const unsigned int shnum = this->shnum();
515 if (shnum == 0)
516 return;
517
518 // Get the section headers.
519 const unsigned char* pshdrs = sd->section_headers->data();
520
521 // Get the section names.
522 const unsigned char* pnamesu = sd->section_names->data();
523 const char* pnames = reinterpret_cast<const char*>(pnamesu);
524
525 // For each section, record the index of the reloc section if any.
526 // Use 0 to mean that there is no reloc section, -1U to mean that
527 // there is more than one.
528 std::vector<unsigned int> reloc_shndx(shnum, 0);
529 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
530 // Skip the first, dummy, section.
531 pshdrs += This::shdr_size;
532 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
533 {
534 typename This::Shdr shdr(pshdrs);
535
536 unsigned int sh_type = shdr.get_sh_type();
537 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
538 {
539 unsigned int target_shndx = shdr.get_sh_info();
540 if (target_shndx == 0 || target_shndx >= shnum)
541 {
542 this->error(_("relocation section %u has bad info %u"),
543 i, target_shndx);
544 continue;
545 }
546
547 if (reloc_shndx[target_shndx] != 0)
548 reloc_shndx[target_shndx] = -1U;
549 else
550 {
551 reloc_shndx[target_shndx] = i;
552 reloc_type[target_shndx] = sh_type;
553 }
554 }
555 }
556
557 std::vector<Map_to_output>& map_sections(this->map_to_output());
558 map_sections.resize(shnum);
559
560 // Whether we've seen a .note.GNU-stack section.
561 bool seen_gnu_stack = false;
562 // The flags of a .note.GNU-stack section.
563 uint64_t gnu_stack_flags = 0;
564
565 // Keep track of which sections to omit.
566 std::vector<bool> omit(shnum, false);
567
568 // Keep track of .eh_frame sections.
569 std::vector<unsigned int> eh_frame_sections;
570
571 // Skip the first, dummy, section.
572 pshdrs = sd->section_headers->data() + This::shdr_size;
573 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
574 {
575 typename This::Shdr shdr(pshdrs);
576
577 if (shdr.get_sh_name() >= sd->section_names_size)
578 {
579 this->error(_("bad section name offset for section %u: %lu"),
580 i, static_cast<unsigned long>(shdr.get_sh_name()));
581 return;
582 }
583
584 const char* name = pnames + shdr.get_sh_name();
585
586 if (this->handle_gnu_warning_section(name, i, symtab))
587 {
588 if (!parameters->output_is_object())
589 omit[i] = true;
590 }
591
592 // The .note.GNU-stack section is special. It gives the
593 // protection flags that this object file requires for the stack
594 // in memory.
595 if (strcmp(name, ".note.GNU-stack") == 0)
596 {
597 seen_gnu_stack = true;
598 gnu_stack_flags |= shdr.get_sh_flags();
599 omit[i] = true;
600 }
601
602 bool discard = omit[i];
603 if (!discard)
604 {
605 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
606 {
607 if (!this->include_section_group(layout, i, shdr, &omit))
608 discard = true;
609 }
610 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
611 && Layout::is_linkonce(name))
612 {
613 if (!this->include_linkonce_section(layout, name, shdr))
614 discard = true;
615 }
616 }
617
618 if (discard)
619 {
620 // Do not include this section in the link.
621 map_sections[i].output_section = NULL;
622 continue;
623 }
624
625 // The .eh_frame section is special. It holds exception frame
626 // information that we need to read in order to generate the
627 // exception frame header. We process these after all the other
628 // sections so that the exception frame reader can reliably
629 // determine which sections are being discarded, and discard the
630 // corresponding information.
631 if (!parameters->output_is_object()
632 && strcmp(name, ".eh_frame") == 0
633 && this->check_eh_frame_flags(&shdr))
634 {
635 eh_frame_sections.push_back(i);
636 continue;
637 }
638
639 off_t offset;
640 Output_section* os = layout->layout(this, i, name, shdr,
641 reloc_shndx[i], reloc_type[i],
642 &offset);
643
644 map_sections[i].output_section = os;
645 map_sections[i].offset = offset;
646
647 // If this section requires special handling, and if there are
648 // relocs that apply to it, then we must do the special handling
649 // before we apply the relocs.
650 if (offset == -1 && reloc_shndx[i] != 0)
651 this->set_relocs_must_follow_section_writes();
652 }
653
654 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags);
655
656 // Handle the .eh_frame sections at the end.
657 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
658 p != eh_frame_sections.end();
659 ++p)
660 {
661 gold_assert(this->has_eh_frame_);
662 gold_assert(sd->external_symbols_offset != 0);
663
664 unsigned int i = *p;
665 const unsigned char *pshdr;
666 pshdr = sd->section_headers->data() + i * This::shdr_size;
667 typename This::Shdr shdr(pshdr);
668
669 off_t offset;
670 Output_section* os = layout->layout_eh_frame(this,
671 sd->symbols->data(),
672 sd->symbols_size,
673 sd->symbol_names->data(),
674 sd->symbol_names_size,
675 i, shdr,
676 reloc_shndx[i],
677 reloc_type[i],
678 &offset);
679 map_sections[i].output_section = os;
680 map_sections[i].offset = offset;
681
682 // If this section requires special handling, and if there are
683 // relocs that apply to it, then we must do the special handling
684 // before we apply the relocs.
685 if (offset == -1 && reloc_shndx[i] != 0)
686 this->set_relocs_must_follow_section_writes();
687 }
688
689 delete sd->section_headers;
690 sd->section_headers = NULL;
691 delete sd->section_names;
692 sd->section_names = NULL;
693 }
694
695 // Add the symbols to the symbol table.
696
697 template<int size, bool big_endian>
698 void
699 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
700 Read_symbols_data* sd)
701 {
702 if (sd->symbols == NULL)
703 {
704 gold_assert(sd->symbol_names == NULL);
705 return;
706 }
707
708 const int sym_size = This::sym_size;
709 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
710 / sym_size);
711 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
712 {
713 this->error(_("size of symbols is not multiple of symbol size"));
714 return;
715 }
716
717 this->symbols_.resize(symcount);
718
719 const char* sym_names =
720 reinterpret_cast<const char*>(sd->symbol_names->data());
721 symtab->add_from_relobj(this,
722 sd->symbols->data() + sd->external_symbols_offset,
723 symcount, sym_names, sd->symbol_names_size,
724 &this->symbols_);
725
726 delete sd->symbols;
727 sd->symbols = NULL;
728 delete sd->symbol_names;
729 sd->symbol_names = NULL;
730 }
731
732 // Finalize the local symbols. Here we add their names to *POOL and
733 // *DYNPOOL, and we add their values to THIS->LOCAL_VALUES_. This
734 // function is always called from a singleton thread. The actual
735 // output of the local symbols will occur in a separate task.
736
737 template<int size, bool big_endian>
738 void
739 Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool,
740 Stringpool* dynpool)
741 {
742 gold_assert(this->symtab_shndx_ != -1U);
743 if (this->symtab_shndx_ == 0)
744 {
745 // This object has no symbols. Weird but legal.
746 return;
747 }
748
749 // Read the symbol table section header.
750 const unsigned int symtab_shndx = this->symtab_shndx_;
751 typename This::Shdr symtabshdr(this,
752 this->elf_file_.section_header(symtab_shndx));
753 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
754
755 // Read the local symbols.
756 const int sym_size = This::sym_size;
757 const unsigned int loccount = this->local_symbol_count_;
758 gold_assert(loccount == symtabshdr.get_sh_info());
759 off_t locsize = loccount * sym_size;
760 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
761 locsize, true);
762
763 // Read the symbol names.
764 const unsigned int strtab_shndx = symtabshdr.get_sh_link();
765 section_size_type strtab_size;
766 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
767 &strtab_size,
768 true);
769 const char* pnames = reinterpret_cast<const char*>(pnamesu);
770
771 // Loop over the local symbols.
772
773 const std::vector<Map_to_output>& mo(this->map_to_output());
774 unsigned int shnum = this->shnum();
775 unsigned int count = 0;
776 unsigned int dyncount = 0;
777 // Skip the first, dummy, symbol.
778 psyms += sym_size;
779 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
780 {
781 elfcpp::Sym<size, big_endian> sym(psyms);
782
783 Symbol_value<size>& lv(this->local_values_[i]);
784
785 unsigned int shndx = sym.get_st_shndx();
786 lv.set_input_shndx(shndx);
787
788 if (sym.get_st_type() == elfcpp::STT_SECTION)
789 lv.set_is_section_symbol();
790 else if (sym.get_st_type() == elfcpp::STT_TLS)
791 lv.set_is_tls_symbol();
792
793 // Save the input symbol value for use in do_finalize_local_symbols().
794 lv.set_input_value(sym.get_st_value());
795
796 // Decide whether this symbol should go into the output file.
797
798 if (shndx < shnum && mo[shndx].output_section == NULL)
799 {
800 lv.set_no_output_symtab_entry();
801 continue;
802 }
803
804 if (sym.get_st_type() == elfcpp::STT_SECTION)
805 {
806 lv.set_no_output_symtab_entry();
807 continue;
808 }
809
810 if (sym.get_st_name() >= strtab_size)
811 {
812 this->error(_("local symbol %u section name out of range: %u >= %u"),
813 i, sym.get_st_name(),
814 static_cast<unsigned int>(strtab_size));
815 lv.set_no_output_symtab_entry();
816 continue;
817 }
818
819 // Add the symbol to the symbol table string pool.
820 const char* name = pnames + sym.get_st_name();
821 pool->add(name, true, NULL);
822 ++count;
823
824 // If needed, add the symbol to the dynamic symbol table string pool.
825 if (lv.needs_output_dynsym_entry())
826 {
827 dynpool->add(name, true, NULL);
828 ++dyncount;
829 }
830 }
831
832 this->output_local_symbol_count_ = count;
833 this->output_local_dynsym_count_ = dyncount;
834 }
835
836 // Finalize the local symbols. Here we add their values to
837 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
838 // This function is always called from a singleton thread. The actual
839 // output of the local symbols will occur in a separate task.
840
841 template<int size, bool big_endian>
842 unsigned int
843 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
844 off_t off)
845 {
846 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
847
848 const unsigned int loccount = this->local_symbol_count_;
849 this->local_symbol_offset_ = off;
850
851 const std::vector<Map_to_output>& mo(this->map_to_output());
852 unsigned int shnum = this->shnum();
853
854 for (unsigned int i = 1; i < loccount; ++i)
855 {
856 Symbol_value<size>& lv(this->local_values_[i]);
857
858 unsigned int shndx = lv.input_shndx();
859
860 // Set the output symbol value.
861
862 if (shndx >= elfcpp::SHN_LORESERVE)
863 {
864 if (shndx == elfcpp::SHN_ABS)
865 lv.set_output_value(lv.input_value());
866 else
867 {
868 // FIXME: Handle SHN_XINDEX.
869 this->error(_("unknown section index %u for local symbol %u"),
870 shndx, i);
871 lv.set_output_value(0);
872 }
873 }
874 else
875 {
876 if (shndx >= shnum)
877 {
878 this->error(_("local symbol %u section index %u out of range"),
879 i, shndx);
880 shndx = 0;
881 }
882
883 Output_section* os = mo[shndx].output_section;
884
885 if (os == NULL)
886 {
887 lv.set_output_value(0);
888 continue;
889 }
890 else if (mo[shndx].offset == -1)
891 {
892 // Leave the input value in place for SHF_MERGE sections.
893 }
894 else if (lv.is_tls_symbol())
895 lv.set_output_value(mo[shndx].output_section->tls_offset()
896 + mo[shndx].offset
897 + lv.input_value());
898 else
899 lv.set_output_value(mo[shndx].output_section->address()
900 + mo[shndx].offset
901 + lv.input_value());
902 }
903
904 if (lv.needs_output_symtab_entry())
905 {
906 lv.set_output_symtab_index(index);
907 ++index;
908 }
909 }
910 return index;
911 }
912
913 // Set the output dynamic symbol table indexes for the local variables.
914
915 template<int size, bool big_endian>
916 unsigned int
917 Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index)
918 {
919 const unsigned int loccount = this->local_symbol_count_;
920 for (unsigned int i = 1; i < loccount; ++i)
921 {
922 Symbol_value<size>& lv(this->local_values_[i]);
923 if (lv.needs_output_dynsym_entry())
924 {
925 lv.set_output_dynsym_index(index);
926 ++index;
927 }
928 }
929 return index;
930 }
931
932 // Set the offset where local dynamic symbol information will be stored.
933 // Returns the count of local symbols contributed to the symbol table by
934 // this object.
935
936 template<int size, bool big_endian>
937 unsigned int
938 Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off)
939 {
940 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
941 this->local_dynsym_offset_ = off;
942 return this->output_local_dynsym_count_;
943 }
944
945 // Return the value of the local symbol symndx.
946 template<int size, bool big_endian>
947 typename elfcpp::Elf_types<size>::Elf_Addr
948 Sized_relobj<size, big_endian>::local_symbol_value(unsigned int symndx) const
949 {
950 gold_assert(symndx < this->local_symbol_count_);
951 gold_assert(symndx < this->local_values_.size());
952 const Symbol_value<size>& lv(this->local_values_[symndx]);
953 return lv.value(this, 0);
954 }
955
956 // Return the value of a local symbol defined in input section SHNDX,
957 // with value VALUE, adding addend ADDEND. IS_SECTION_SYMBOL
958 // indicates whether the symbol is a section symbol. This handles
959 // SHF_MERGE sections.
960 template<int size, bool big_endian>
961 typename elfcpp::Elf_types<size>::Elf_Addr
962 Sized_relobj<size, big_endian>::local_value(unsigned int shndx,
963 Address value,
964 bool is_section_symbol,
965 Address addend) const
966 {
967 const std::vector<Map_to_output>& mo(this->map_to_output());
968 Output_section* os = mo[shndx].output_section;
969 if (os == NULL)
970 return addend;
971 gold_assert(mo[shndx].offset == -1);
972
973 // Do the mapping required by the output section. If this is not a
974 // section symbol, then we want to map the symbol value, and then
975 // include the addend. If this is a section symbol, then we need to
976 // include the addend to figure out where in the section we are,
977 // before we do the mapping. This will do the right thing provided
978 // the assembler is careful to only convert a relocation in a merged
979 // section to a section symbol if there is a zero addend. If the
980 // assembler does not do this, then in general we can't know what to
981 // do, because we can't distinguish the addend for the instruction
982 // format from the addend for the section offset.
983
984 if (is_section_symbol)
985 return os->output_address(this, shndx, value + addend);
986 else
987 return addend + os->output_address(this, shndx, value);
988 }
989
990 // Write out the local symbols.
991
992 template<int size, bool big_endian>
993 void
994 Sized_relobj<size, big_endian>::write_local_symbols(
995 Output_file* of,
996 const Stringpool* sympool,
997 const Stringpool* dynpool)
998 {
999 if (parameters->strip_all() && this->output_local_dynsym_count_ == 0)
1000 return;
1001
1002 gold_assert(this->symtab_shndx_ != -1U);
1003 if (this->symtab_shndx_ == 0)
1004 {
1005 // This object has no symbols. Weird but legal.
1006 return;
1007 }
1008
1009 // Read the symbol table section header.
1010 const unsigned int symtab_shndx = this->symtab_shndx_;
1011 typename This::Shdr symtabshdr(this,
1012 this->elf_file_.section_header(symtab_shndx));
1013 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1014 const unsigned int loccount = this->local_symbol_count_;
1015 gold_assert(loccount == symtabshdr.get_sh_info());
1016
1017 // Read the local symbols.
1018 const int sym_size = This::sym_size;
1019 off_t locsize = loccount * sym_size;
1020 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1021 locsize, false);
1022
1023 // Read the symbol names.
1024 const unsigned int strtab_shndx = symtabshdr.get_sh_link();
1025 section_size_type strtab_size;
1026 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1027 &strtab_size,
1028 true);
1029 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1030
1031 // Get views into the output file for the portions of the symbol table
1032 // and the dynamic symbol table that we will be writing.
1033 off_t output_size = this->output_local_symbol_count_ * sym_size;
1034 unsigned char* oview = NULL;
1035 if (output_size > 0)
1036 oview = of->get_output_view(this->local_symbol_offset_, output_size);
1037
1038 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
1039 unsigned char* dyn_oview = NULL;
1040 if (dyn_output_size > 0)
1041 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
1042 dyn_output_size);
1043
1044 const std::vector<Map_to_output>& mo(this->map_to_output());
1045
1046 gold_assert(this->local_values_.size() == loccount);
1047
1048 unsigned char* ov = oview;
1049 unsigned char* dyn_ov = dyn_oview;
1050 psyms += sym_size;
1051 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1052 {
1053 elfcpp::Sym<size, big_endian> isym(psyms);
1054
1055 unsigned int st_shndx = isym.get_st_shndx();
1056 if (st_shndx < elfcpp::SHN_LORESERVE)
1057 {
1058 gold_assert(st_shndx < mo.size());
1059 if (mo[st_shndx].output_section == NULL)
1060 continue;
1061 st_shndx = mo[st_shndx].output_section->out_shndx();
1062 }
1063
1064 // Write the symbol to the output symbol table.
1065 if (!parameters->strip_all()
1066 && this->local_values_[i].needs_output_symtab_entry())
1067 {
1068 elfcpp::Sym_write<size, big_endian> osym(ov);
1069
1070 gold_assert(isym.get_st_name() < strtab_size);
1071 const char* name = pnames + isym.get_st_name();
1072 osym.put_st_name(sympool->get_offset(name));
1073 osym.put_st_value(this->local_values_[i].value(this, 0));
1074 osym.put_st_size(isym.get_st_size());
1075 osym.put_st_info(isym.get_st_info());
1076 osym.put_st_other(isym.get_st_other());
1077 osym.put_st_shndx(st_shndx);
1078
1079 ov += sym_size;
1080 }
1081
1082 // Write the symbol to the output dynamic symbol table.
1083 if (this->local_values_[i].needs_output_dynsym_entry())
1084 {
1085 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
1086 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
1087
1088 gold_assert(isym.get_st_name() < strtab_size);
1089 const char* name = pnames + isym.get_st_name();
1090 osym.put_st_name(dynpool->get_offset(name));
1091 osym.put_st_value(this->local_values_[i].value(this, 0));
1092 osym.put_st_size(isym.get_st_size());
1093 osym.put_st_info(isym.get_st_info());
1094 osym.put_st_other(isym.get_st_other());
1095 osym.put_st_shndx(st_shndx);
1096
1097 dyn_ov += sym_size;
1098 }
1099 }
1100
1101
1102 if (output_size > 0)
1103 {
1104 gold_assert(ov - oview == output_size);
1105 of->write_output_view(this->local_symbol_offset_, output_size, oview);
1106 }
1107
1108 if (dyn_output_size > 0)
1109 {
1110 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
1111 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
1112 dyn_oview);
1113 }
1114 }
1115
1116 // Set *INFO to symbolic information about the offset OFFSET in the
1117 // section SHNDX. Return true if we found something, false if we
1118 // found nothing.
1119
1120 template<int size, bool big_endian>
1121 bool
1122 Sized_relobj<size, big_endian>::get_symbol_location_info(
1123 unsigned int shndx,
1124 off_t offset,
1125 Symbol_location_info* info)
1126 {
1127 if (this->symtab_shndx_ == 0)
1128 return false;
1129
1130 section_size_type symbols_size;
1131 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
1132 &symbols_size,
1133 false);
1134
1135 unsigned int symbol_names_shndx = this->section_link(this->symtab_shndx_);
1136 section_size_type names_size;
1137 const unsigned char* symbol_names_u =
1138 this->section_contents(symbol_names_shndx, &names_size, false);
1139 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
1140
1141 const int sym_size = This::sym_size;
1142 const size_t count = symbols_size / sym_size;
1143
1144 const unsigned char* p = symbols;
1145 for (size_t i = 0; i < count; ++i, p += sym_size)
1146 {
1147 elfcpp::Sym<size, big_endian> sym(p);
1148
1149 if (sym.get_st_type() == elfcpp::STT_FILE)
1150 {
1151 if (sym.get_st_name() >= names_size)
1152 info->source_file = "(invalid)";
1153 else
1154 info->source_file = symbol_names + sym.get_st_name();
1155 }
1156 else if (sym.get_st_shndx() == shndx
1157 && static_cast<off_t>(sym.get_st_value()) <= offset
1158 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
1159 > offset))
1160 {
1161 if (sym.get_st_name() > names_size)
1162 info->enclosing_symbol_name = "(invalid)";
1163 else
1164 {
1165 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
1166 if (parameters->demangle())
1167 {
1168 char* demangled_name = cplus_demangle(
1169 info->enclosing_symbol_name.c_str(),
1170 DMGL_ANSI | DMGL_PARAMS);
1171 if (demangled_name != NULL)
1172 {
1173 info->enclosing_symbol_name.assign(demangled_name);
1174 free(demangled_name);
1175 }
1176 }
1177 }
1178 return true;
1179 }
1180 }
1181
1182 return false;
1183 }
1184
1185 // Input_objects methods.
1186
1187 // Add a regular relocatable object to the list. Return false if this
1188 // object should be ignored.
1189
1190 bool
1191 Input_objects::add_object(Object* obj)
1192 {
1193 Target* target = obj->target();
1194 if (this->target_ == NULL)
1195 this->target_ = target;
1196 else if (this->target_ != target)
1197 {
1198 gold_error(_("%s: incompatible target"), obj->name().c_str());
1199 return false;
1200 }
1201
1202 if (!obj->is_dynamic())
1203 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
1204 else
1205 {
1206 // See if this is a duplicate SONAME.
1207 Dynobj* dynobj = static_cast<Dynobj*>(obj);
1208 const char* soname = dynobj->soname();
1209
1210 std::pair<Unordered_set<std::string>::iterator, bool> ins =
1211 this->sonames_.insert(soname);
1212 if (!ins.second)
1213 {
1214 // We have already seen a dynamic object with this soname.
1215 return false;
1216 }
1217
1218 this->dynobj_list_.push_back(dynobj);
1219
1220 // If this is -lc, remember the directory in which we found it.
1221 // We use this when issuing warnings about undefined symbols: as
1222 // a heuristic, we don't warn about system libraries found in
1223 // the same directory as -lc.
1224 if (strncmp(soname, "libc.so", 7) == 0)
1225 {
1226 const char* object_name = dynobj->name().c_str();
1227 const char* base = lbasename(object_name);
1228 if (base != object_name)
1229 this->system_library_directory_.assign(object_name,
1230 base - 1 - object_name);
1231 }
1232 }
1233
1234 set_parameters_target(target);
1235
1236 return true;
1237 }
1238
1239 // Return whether an object was found in the system library directory.
1240
1241 bool
1242 Input_objects::found_in_system_library_directory(const Object* object) const
1243 {
1244 return (!this->system_library_directory_.empty()
1245 && object->name().compare(0,
1246 this->system_library_directory_.size(),
1247 this->system_library_directory_) == 0);
1248 }
1249
1250 // For each dynamic object, record whether we've seen all of its
1251 // explicit dependencies.
1252
1253 void
1254 Input_objects::check_dynamic_dependencies() const
1255 {
1256 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
1257 p != this->dynobj_list_.end();
1258 ++p)
1259 {
1260 const Dynobj::Needed& needed((*p)->needed());
1261 bool found_all = true;
1262 for (Dynobj::Needed::const_iterator pneeded = needed.begin();
1263 pneeded != needed.end();
1264 ++pneeded)
1265 {
1266 if (this->sonames_.find(*pneeded) == this->sonames_.end())
1267 {
1268 found_all = false;
1269 break;
1270 }
1271 }
1272 (*p)->set_has_unknown_needed_entries(!found_all);
1273 }
1274 }
1275
1276 // Relocate_info methods.
1277
1278 // Return a string describing the location of a relocation. This is
1279 // only used in error messages.
1280
1281 template<int size, bool big_endian>
1282 std::string
1283 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
1284 {
1285 // See if we can get line-number information from debugging sections.
1286 std::string filename;
1287 std::string file_and_lineno; // Better than filename-only, if available.
1288
1289 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
1290 // This will be "" if we failed to parse the debug info for any reason.
1291 file_and_lineno = line_info.addr2line(this->data_shndx, offset);
1292
1293 std::string ret(this->object->name());
1294 ret += ':';
1295 Symbol_location_info info;
1296 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
1297 {
1298 ret += " in function ";
1299 ret += info.enclosing_symbol_name;
1300 ret += ":";
1301 filename = info.source_file;
1302 }
1303
1304 if (!file_and_lineno.empty())
1305 ret += file_and_lineno;
1306 else
1307 {
1308 if (!filename.empty())
1309 ret += filename;
1310 ret += "(";
1311 ret += this->object->section_name(this->data_shndx);
1312 char buf[100];
1313 // Offsets into sections have to be positive.
1314 snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset));
1315 ret += buf;
1316 ret += ")";
1317 }
1318 return ret;
1319 }
1320
1321 } // End namespace gold.
1322
1323 namespace
1324 {
1325
1326 using namespace gold;
1327
1328 // Read an ELF file with the header and return the appropriate
1329 // instance of Object.
1330
1331 template<int size, bool big_endian>
1332 Object*
1333 make_elf_sized_object(const std::string& name, Input_file* input_file,
1334 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
1335 {
1336 int et = ehdr.get_e_type();
1337 if (et == elfcpp::ET_REL)
1338 {
1339 Sized_relobj<size, big_endian>* obj =
1340 new Sized_relobj<size, big_endian>(name, input_file, offset, ehdr);
1341 obj->setup(ehdr);
1342 return obj;
1343 }
1344 else if (et == elfcpp::ET_DYN)
1345 {
1346 Sized_dynobj<size, big_endian>* obj =
1347 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
1348 obj->setup(ehdr);
1349 return obj;
1350 }
1351 else
1352 {
1353 gold_error(_("%s: unsupported ELF file type %d"),
1354 name.c_str(), et);
1355 return NULL;
1356 }
1357 }
1358
1359 } // End anonymous namespace.
1360
1361 namespace gold
1362 {
1363
1364 // Read an ELF file and return the appropriate instance of Object.
1365
1366 Object*
1367 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
1368 const unsigned char* p, section_offset_type bytes)
1369 {
1370 if (bytes < elfcpp::EI_NIDENT)
1371 {
1372 gold_error(_("%s: ELF file too short"), name.c_str());
1373 return NULL;
1374 }
1375
1376 int v = p[elfcpp::EI_VERSION];
1377 if (v != elfcpp::EV_CURRENT)
1378 {
1379 if (v == elfcpp::EV_NONE)
1380 gold_error(_("%s: invalid ELF version 0"), name.c_str());
1381 else
1382 gold_error(_("%s: unsupported ELF version %d"), name.c_str(), v);
1383 return NULL;
1384 }
1385
1386 int c = p[elfcpp::EI_CLASS];
1387 if (c == elfcpp::ELFCLASSNONE)
1388 {
1389 gold_error(_("%s: invalid ELF class 0"), name.c_str());
1390 return NULL;
1391 }
1392 else if (c != elfcpp::ELFCLASS32
1393 && c != elfcpp::ELFCLASS64)
1394 {
1395 gold_error(_("%s: unsupported ELF class %d"), name.c_str(), c);
1396 return NULL;
1397 }
1398
1399 int d = p[elfcpp::EI_DATA];
1400 if (d == elfcpp::ELFDATANONE)
1401 {
1402 gold_error(_("%s: invalid ELF data encoding"), name.c_str());
1403 return NULL;
1404 }
1405 else if (d != elfcpp::ELFDATA2LSB
1406 && d != elfcpp::ELFDATA2MSB)
1407 {
1408 gold_error(_("%s: unsupported ELF data encoding %d"), name.c_str(), d);
1409 return NULL;
1410 }
1411
1412 bool big_endian = d == elfcpp::ELFDATA2MSB;
1413
1414 if (c == elfcpp::ELFCLASS32)
1415 {
1416 if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
1417 {
1418 gold_error(_("%s: ELF file too short"), name.c_str());
1419 return NULL;
1420 }
1421 if (big_endian)
1422 {
1423 #ifdef HAVE_TARGET_32_BIG
1424 elfcpp::Ehdr<32, true> ehdr(p);
1425 return make_elf_sized_object<32, true>(name, input_file,
1426 offset, ehdr);
1427 #else
1428 gold_error(_("%s: not configured to support "
1429 "32-bit big-endian object"),
1430 name.c_str());
1431 return NULL;
1432 #endif
1433 }
1434 else
1435 {
1436 #ifdef HAVE_TARGET_32_LITTLE
1437 elfcpp::Ehdr<32, false> ehdr(p);
1438 return make_elf_sized_object<32, false>(name, input_file,
1439 offset, ehdr);
1440 #else
1441 gold_error(_("%s: not configured to support "
1442 "32-bit little-endian object"),
1443 name.c_str());
1444 return NULL;
1445 #endif
1446 }
1447 }
1448 else
1449 {
1450 if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
1451 {
1452 gold_error(_("%s: ELF file too short"), name.c_str());
1453 return NULL;
1454 }
1455 if (big_endian)
1456 {
1457 #ifdef HAVE_TARGET_64_BIG
1458 elfcpp::Ehdr<64, true> ehdr(p);
1459 return make_elf_sized_object<64, true>(name, input_file,
1460 offset, ehdr);
1461 #else
1462 gold_error(_("%s: not configured to support "
1463 "64-bit big-endian object"),
1464 name.c_str());
1465 return NULL;
1466 #endif
1467 }
1468 else
1469 {
1470 #ifdef HAVE_TARGET_64_LITTLE
1471 elfcpp::Ehdr<64, false> ehdr(p);
1472 return make_elf_sized_object<64, false>(name, input_file,
1473 offset, ehdr);
1474 #else
1475 gold_error(_("%s: not configured to support "
1476 "64-bit little-endian object"),
1477 name.c_str());
1478 return NULL;
1479 #endif
1480 }
1481 }
1482 }
1483
1484 // Instantiate the templates we need. We could use the configure
1485 // script to restrict this to only the ones for implemented targets.
1486
1487 #ifdef HAVE_TARGET_32_LITTLE
1488 template
1489 class Sized_relobj<32, false>;
1490 #endif
1491
1492 #ifdef HAVE_TARGET_32_BIG
1493 template
1494 class Sized_relobj<32, true>;
1495 #endif
1496
1497 #ifdef HAVE_TARGET_64_LITTLE
1498 template
1499 class Sized_relobj<64, false>;
1500 #endif
1501
1502 #ifdef HAVE_TARGET_64_BIG
1503 template
1504 class Sized_relobj<64, true>;
1505 #endif
1506
1507 #ifdef HAVE_TARGET_32_LITTLE
1508 template
1509 struct Relocate_info<32, false>;
1510 #endif
1511
1512 #ifdef HAVE_TARGET_32_BIG
1513 template
1514 struct Relocate_info<32, true>;
1515 #endif
1516
1517 #ifdef HAVE_TARGET_64_LITTLE
1518 template
1519 struct Relocate_info<64, false>;
1520 #endif
1521
1522 #ifdef HAVE_TARGET_64_BIG
1523 template
1524 struct Relocate_info<64, true>;
1525 #endif
1526
1527 } // End namespace gold.
This page took 0.114943 seconds and 5 git commands to generate.