* object.cc (make_elf_object): Correct test for 64-bit ELF file
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "target-select.h"
32 #include "dwarf_reader.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "symtab.h"
36 #include "reloc.h"
37 #include "object.h"
38 #include "dynobj.h"
39
40 namespace gold
41 {
42
43 // Class Xindex.
44
45 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
46 // section and read it in. SYMTAB_SHNDX is the index of the symbol
47 // table we care about.
48
49 template<int size, bool big_endian>
50 void
51 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
52 {
53 if (!this->symtab_xindex_.empty())
54 return;
55
56 gold_assert(symtab_shndx != 0);
57
58 // Look through the sections in reverse order, on the theory that it
59 // is more likely to be near the end than the beginning.
60 unsigned int i = object->shnum();
61 while (i > 0)
62 {
63 --i;
64 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
65 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
66 {
67 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
68 return;
69 }
70 }
71
72 object->error(_("missing SHT_SYMTAB_SHNDX section"));
73 }
74
75 // Read in the symtab_xindex_ array, given the section index of the
76 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
77 // section headers.
78
79 template<int size, bool big_endian>
80 void
81 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
82 const unsigned char* pshdrs)
83 {
84 section_size_type bytecount;
85 const unsigned char* contents;
86 if (pshdrs == NULL)
87 contents = object->section_contents(xindex_shndx, &bytecount, false);
88 else
89 {
90 const unsigned char* p = (pshdrs
91 + (xindex_shndx
92 * elfcpp::Elf_sizes<size>::shdr_size));
93 typename elfcpp::Shdr<size, big_endian> shdr(p);
94 bytecount = convert_to_section_size_type(shdr.get_sh_size());
95 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
96 }
97
98 gold_assert(this->symtab_xindex_.empty());
99 this->symtab_xindex_.reserve(bytecount / 4);
100 for (section_size_type i = 0; i < bytecount; i += 4)
101 {
102 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
103 // We preadjust the section indexes we save.
104 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
105 }
106 }
107
108 // Symbol symndx has a section of SHN_XINDEX; return the real section
109 // index.
110
111 unsigned int
112 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
113 {
114 if (symndx >= this->symtab_xindex_.size())
115 {
116 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
117 symndx);
118 return elfcpp::SHN_UNDEF;
119 }
120 unsigned int shndx = this->symtab_xindex_[symndx];
121 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
122 {
123 object->error(_("extended index for symbol %u out of range: %u"),
124 symndx, shndx);
125 return elfcpp::SHN_UNDEF;
126 }
127 return shndx;
128 }
129
130 // Class Object.
131
132 // Set the target based on fields in the ELF file header.
133
134 void
135 Object::set_target(int machine, int size, bool big_endian, int osabi,
136 int abiversion)
137 {
138 Target* target = select_target(machine, size, big_endian, osabi, abiversion);
139 if (target == NULL)
140 gold_fatal(_("%s: unsupported ELF machine number %d"),
141 this->name().c_str(), machine);
142 this->target_ = target;
143 }
144
145 // Report an error for this object file. This is used by the
146 // elfcpp::Elf_file interface, and also called by the Object code
147 // itself.
148
149 void
150 Object::error(const char* format, ...) const
151 {
152 va_list args;
153 va_start(args, format);
154 char* buf = NULL;
155 if (vasprintf(&buf, format, args) < 0)
156 gold_nomem();
157 va_end(args);
158 gold_error(_("%s: %s"), this->name().c_str(), buf);
159 free(buf);
160 }
161
162 // Return a view of the contents of a section.
163
164 const unsigned char*
165 Object::section_contents(unsigned int shndx, section_size_type* plen,
166 bool cache)
167 {
168 Location loc(this->do_section_contents(shndx));
169 *plen = convert_to_section_size_type(loc.data_size);
170 return this->get_view(loc.file_offset, *plen, true, cache);
171 }
172
173 // Read the section data into SD. This is code common to Sized_relobj
174 // and Sized_dynobj, so we put it into Object.
175
176 template<int size, bool big_endian>
177 void
178 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
179 Read_symbols_data* sd)
180 {
181 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
182
183 // Read the section headers.
184 const off_t shoff = elf_file->shoff();
185 const unsigned int shnum = this->shnum();
186 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
187 true, true);
188
189 // Read the section names.
190 const unsigned char* pshdrs = sd->section_headers->data();
191 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
192 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
193
194 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
195 this->error(_("section name section has wrong type: %u"),
196 static_cast<unsigned int>(shdrnames.get_sh_type()));
197
198 sd->section_names_size =
199 convert_to_section_size_type(shdrnames.get_sh_size());
200 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
201 sd->section_names_size, false,
202 false);
203 }
204
205 // If NAME is the name of a special .gnu.warning section, arrange for
206 // the warning to be issued. SHNDX is the section index. Return
207 // whether it is a warning section.
208
209 bool
210 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
211 Symbol_table* symtab)
212 {
213 const char warn_prefix[] = ".gnu.warning.";
214 const int warn_prefix_len = sizeof warn_prefix - 1;
215 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
216 {
217 // Read the section contents to get the warning text. It would
218 // be nicer if we only did this if we have to actually issue a
219 // warning. Unfortunately, warnings are issued as we relocate
220 // sections. That means that we can not lock the object then,
221 // as we might try to issue the same warning multiple times
222 // simultaneously.
223 section_size_type len;
224 const unsigned char* contents = this->section_contents(shndx, &len,
225 false);
226 std::string warning(reinterpret_cast<const char*>(contents), len);
227 symtab->add_warning(name + warn_prefix_len, this, warning);
228 return true;
229 }
230 return false;
231 }
232
233 // Class Sized_relobj.
234
235 template<int size, bool big_endian>
236 Sized_relobj<size, big_endian>::Sized_relobj(
237 const std::string& name,
238 Input_file* input_file,
239 off_t offset,
240 const elfcpp::Ehdr<size, big_endian>& ehdr)
241 : Relobj(name, input_file, offset),
242 elf_file_(this, ehdr),
243 symtab_shndx_(-1U),
244 local_symbol_count_(0),
245 output_local_symbol_count_(0),
246 output_local_dynsym_count_(0),
247 symbols_(),
248 local_symbol_offset_(0),
249 local_dynsym_offset_(0),
250 local_values_(),
251 local_got_offsets_(),
252 has_eh_frame_(false)
253 {
254 }
255
256 template<int size, bool big_endian>
257 Sized_relobj<size, big_endian>::~Sized_relobj()
258 {
259 }
260
261 // Set up an object file based on the file header. This sets up the
262 // target and reads the section information.
263
264 template<int size, bool big_endian>
265 void
266 Sized_relobj<size, big_endian>::setup(
267 const elfcpp::Ehdr<size, big_endian>& ehdr)
268 {
269 this->set_target(ehdr.get_e_machine(), size, big_endian,
270 ehdr.get_e_ident()[elfcpp::EI_OSABI],
271 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
272
273 const unsigned int shnum = this->elf_file_.shnum();
274 this->set_shnum(shnum);
275 }
276
277 // Find the SHT_SYMTAB section, given the section headers. The ELF
278 // standard says that maybe in the future there can be more than one
279 // SHT_SYMTAB section. Until somebody figures out how that could
280 // work, we assume there is only one.
281
282 template<int size, bool big_endian>
283 void
284 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
285 {
286 const unsigned int shnum = this->shnum();
287 this->symtab_shndx_ = 0;
288 if (shnum > 0)
289 {
290 // Look through the sections in reverse order, since gas tends
291 // to put the symbol table at the end.
292 const unsigned char* p = pshdrs + shnum * This::shdr_size;
293 unsigned int i = shnum;
294 unsigned int xindex_shndx = 0;
295 unsigned int xindex_link = 0;
296 while (i > 0)
297 {
298 --i;
299 p -= This::shdr_size;
300 typename This::Shdr shdr(p);
301 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
302 {
303 this->symtab_shndx_ = i;
304 if (xindex_shndx > 0 && xindex_link == i)
305 {
306 Xindex* xindex =
307 new Xindex(this->elf_file_.large_shndx_offset());
308 xindex->read_symtab_xindex<size, big_endian>(this,
309 xindex_shndx,
310 pshdrs);
311 this->set_xindex(xindex);
312 }
313 break;
314 }
315
316 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
317 // one. This will work if it follows the SHT_SYMTAB
318 // section.
319 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
320 {
321 xindex_shndx = i;
322 xindex_link = this->adjust_shndx(shdr.get_sh_link());
323 }
324 }
325 }
326 }
327
328 // Return the Xindex structure to use for object with lots of
329 // sections.
330
331 template<int size, bool big_endian>
332 Xindex*
333 Sized_relobj<size, big_endian>::do_initialize_xindex()
334 {
335 gold_assert(this->symtab_shndx_ != -1U);
336 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
337 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
338 return xindex;
339 }
340
341 // Return whether SHDR has the right type and flags to be a GNU
342 // .eh_frame section.
343
344 template<int size, bool big_endian>
345 bool
346 Sized_relobj<size, big_endian>::check_eh_frame_flags(
347 const elfcpp::Shdr<size, big_endian>* shdr) const
348 {
349 return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
350 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
351 }
352
353 // Return whether there is a GNU .eh_frame section, given the section
354 // headers and the section names.
355
356 template<int size, bool big_endian>
357 bool
358 Sized_relobj<size, big_endian>::find_eh_frame(
359 const unsigned char* pshdrs,
360 const char* names,
361 section_size_type names_size) const
362 {
363 const unsigned int shnum = this->shnum();
364 const unsigned char* p = pshdrs + This::shdr_size;
365 for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
366 {
367 typename This::Shdr shdr(p);
368 if (this->check_eh_frame_flags(&shdr))
369 {
370 if (shdr.get_sh_name() >= names_size)
371 {
372 this->error(_("bad section name offset for section %u: %lu"),
373 i, static_cast<unsigned long>(shdr.get_sh_name()));
374 continue;
375 }
376
377 const char* name = names + shdr.get_sh_name();
378 if (strcmp(name, ".eh_frame") == 0)
379 return true;
380 }
381 }
382 return false;
383 }
384
385 // Read the sections and symbols from an object file.
386
387 template<int size, bool big_endian>
388 void
389 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
390 {
391 this->read_section_data(&this->elf_file_, sd);
392
393 const unsigned char* const pshdrs = sd->section_headers->data();
394
395 this->find_symtab(pshdrs);
396
397 const unsigned char* namesu = sd->section_names->data();
398 const char* names = reinterpret_cast<const char*>(namesu);
399 if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
400 {
401 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
402 this->has_eh_frame_ = true;
403 }
404
405 sd->symbols = NULL;
406 sd->symbols_size = 0;
407 sd->external_symbols_offset = 0;
408 sd->symbol_names = NULL;
409 sd->symbol_names_size = 0;
410
411 if (this->symtab_shndx_ == 0)
412 {
413 // No symbol table. Weird but legal.
414 return;
415 }
416
417 // Get the symbol table section header.
418 typename This::Shdr symtabshdr(pshdrs
419 + this->symtab_shndx_ * This::shdr_size);
420 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
421
422 // If this object has a .eh_frame section, we need all the symbols.
423 // Otherwise we only need the external symbols. While it would be
424 // simpler to just always read all the symbols, I've seen object
425 // files with well over 2000 local symbols, which for a 64-bit
426 // object file format is over 5 pages that we don't need to read
427 // now.
428
429 const int sym_size = This::sym_size;
430 const unsigned int loccount = symtabshdr.get_sh_info();
431 this->local_symbol_count_ = loccount;
432 this->local_values_.resize(loccount);
433 section_offset_type locsize = loccount * sym_size;
434 off_t dataoff = symtabshdr.get_sh_offset();
435 section_size_type datasize =
436 convert_to_section_size_type(symtabshdr.get_sh_size());
437 off_t extoff = dataoff + locsize;
438 section_size_type extsize = datasize - locsize;
439
440 off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
441 section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
442
443 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
444
445 // Read the section header for the symbol names.
446 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
447 if (strtab_shndx >= this->shnum())
448 {
449 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
450 return;
451 }
452 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
453 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
454 {
455 this->error(_("symbol table name section has wrong type: %u"),
456 static_cast<unsigned int>(strtabshdr.get_sh_type()));
457 return;
458 }
459
460 // Read the symbol names.
461 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
462 strtabshdr.get_sh_size(),
463 false, true);
464
465 sd->symbols = fvsymtab;
466 sd->symbols_size = readsize;
467 sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
468 sd->symbol_names = fvstrtab;
469 sd->symbol_names_size =
470 convert_to_section_size_type(strtabshdr.get_sh_size());
471 }
472
473 // Return the section index of symbol SYM. Set *VALUE to its value in
474 // the object file. Set *IS_ORDINARY if this is an ordinary section
475 // index. not a special cod between SHN_LORESERVE and SHN_HIRESERVE.
476 // Note that for a symbol which is not defined in this object file,
477 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
478 // the final value of the symbol in the link.
479
480 template<int size, bool big_endian>
481 unsigned int
482 Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym,
483 Address* value,
484 bool* is_ordinary)
485 {
486 section_size_type symbols_size;
487 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
488 &symbols_size,
489 false);
490
491 const size_t count = symbols_size / This::sym_size;
492 gold_assert(sym < count);
493
494 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
495 *value = elfsym.get_st_value();
496
497 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
498 }
499
500 // Return whether to include a section group in the link. LAYOUT is
501 // used to keep track of which section groups we have already seen.
502 // INDEX is the index of the section group and SHDR is the section
503 // header. If we do not want to include this group, we set bits in
504 // OMIT for each section which should be discarded.
505
506 template<int size, bool big_endian>
507 bool
508 Sized_relobj<size, big_endian>::include_section_group(
509 Symbol_table* symtab,
510 Layout* layout,
511 unsigned int index,
512 const char* name,
513 const elfcpp::Shdr<size, big_endian>& shdr,
514 std::vector<bool>* omit)
515 {
516 // Read the section contents.
517 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
518 shdr.get_sh_size(), true, false);
519 const elfcpp::Elf_Word* pword =
520 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
521
522 // The first word contains flags. We only care about COMDAT section
523 // groups. Other section groups are always included in the link
524 // just like ordinary sections.
525 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
526
527 // Look up the group signature, which is the name of a symbol. This
528 // is a lot of effort to go to to read a string. Why didn't they
529 // just have the group signature point into the string table, rather
530 // than indirect through a symbol?
531
532 // Get the appropriate symbol table header (this will normally be
533 // the single SHT_SYMTAB section, but in principle it need not be).
534 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
535 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
536
537 // Read the symbol table entry.
538 unsigned int symndx = shdr.get_sh_info();
539 if (symndx >= symshdr.get_sh_size() / This::sym_size)
540 {
541 this->error(_("section group %u info %u out of range"),
542 index, symndx);
543 return false;
544 }
545 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
546 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
547 false);
548 elfcpp::Sym<size, big_endian> sym(psym);
549
550 // Read the symbol table names.
551 section_size_type symnamelen;
552 const unsigned char* psymnamesu;
553 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
554 &symnamelen, true);
555 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
556
557 // Get the section group signature.
558 if (sym.get_st_name() >= symnamelen)
559 {
560 this->error(_("symbol %u name offset %u out of range"),
561 symndx, sym.get_st_name());
562 return false;
563 }
564
565 const char* signature = psymnames + sym.get_st_name();
566
567 // It seems that some versions of gas will create a section group
568 // associated with a section symbol, and then fail to give a name to
569 // the section symbol. In such a case, use the name of the section.
570 std::string secname;
571 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
572 {
573 bool is_ordinary;
574 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
575 sym.get_st_shndx(),
576 &is_ordinary);
577 if (!is_ordinary || sym_shndx >= this->shnum())
578 {
579 this->error(_("symbol %u invalid section index %u"),
580 symndx, sym_shndx);
581 return false;
582 }
583 secname = this->section_name(sym_shndx);
584 signature = secname.c_str();
585 }
586
587 // Record this section group, and see whether we've already seen one
588 // with the same signature.
589
590 if ((flags & elfcpp::GRP_COMDAT) == 0
591 || layout->add_comdat(signature, true))
592 {
593 if (parameters->options().relocatable())
594 layout->layout_group(symtab, this, index, name, signature, shdr,
595 pword);
596 return true;
597 }
598
599 // This is a duplicate. We want to discard the sections in this
600 // group.
601 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
602 for (size_t i = 1; i < count; ++i)
603 {
604 elfcpp::Elf_Word secnum =
605 elfcpp::Swap<32, big_endian>::readval(pword + i);
606 if (secnum >= this->shnum())
607 {
608 this->error(_("section %u in section group %u out of range"),
609 secnum, index);
610 continue;
611 }
612 (*omit)[secnum] = true;
613 }
614
615 return false;
616 }
617
618 // Whether to include a linkonce section in the link. NAME is the
619 // name of the section and SHDR is the section header.
620
621 // Linkonce sections are a GNU extension implemented in the original
622 // GNU linker before section groups were defined. The semantics are
623 // that we only include one linkonce section with a given name. The
624 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
625 // where T is the type of section and SYMNAME is the name of a symbol.
626 // In an attempt to make linkonce sections interact well with section
627 // groups, we try to identify SYMNAME and use it like a section group
628 // signature. We want to block section groups with that signature,
629 // but not other linkonce sections with that signature. We also use
630 // the full name of the linkonce section as a normal section group
631 // signature.
632
633 template<int size, bool big_endian>
634 bool
635 Sized_relobj<size, big_endian>::include_linkonce_section(
636 Layout* layout,
637 const char* name,
638 const elfcpp::Shdr<size, big_endian>&)
639 {
640 // In general the symbol name we want will be the string following
641 // the last '.'. However, we have to handle the case of
642 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
643 // some versions of gcc. So we use a heuristic: if the name starts
644 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
645 // we look for the last '.'. We can't always simply skip
646 // ".gnu.linkonce.X", because we have to deal with cases like
647 // ".gnu.linkonce.d.rel.ro.local".
648 const char* const linkonce_t = ".gnu.linkonce.t.";
649 const char* symname;
650 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
651 symname = name + strlen(linkonce_t);
652 else
653 symname = strrchr(name, '.') + 1;
654 bool include1 = layout->add_comdat(symname, false);
655 bool include2 = layout->add_comdat(name, true);
656 return include1 && include2;
657 }
658
659 // Lay out the input sections. We walk through the sections and check
660 // whether they should be included in the link. If they should, we
661 // pass them to the Layout object, which will return an output section
662 // and an offset.
663
664 template<int size, bool big_endian>
665 void
666 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
667 Layout* layout,
668 Read_symbols_data* sd)
669 {
670 const unsigned int shnum = this->shnum();
671 if (shnum == 0)
672 return;
673
674 // Get the section headers.
675 const unsigned char* pshdrs = sd->section_headers->data();
676
677 // Get the section names.
678 const unsigned char* pnamesu = sd->section_names->data();
679 const char* pnames = reinterpret_cast<const char*>(pnamesu);
680
681 // For each section, record the index of the reloc section if any.
682 // Use 0 to mean that there is no reloc section, -1U to mean that
683 // there is more than one.
684 std::vector<unsigned int> reloc_shndx(shnum, 0);
685 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
686 // Skip the first, dummy, section.
687 pshdrs += This::shdr_size;
688 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
689 {
690 typename This::Shdr shdr(pshdrs);
691
692 unsigned int sh_type = shdr.get_sh_type();
693 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
694 {
695 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
696 if (target_shndx == 0 || target_shndx >= shnum)
697 {
698 this->error(_("relocation section %u has bad info %u"),
699 i, target_shndx);
700 continue;
701 }
702
703 if (reloc_shndx[target_shndx] != 0)
704 reloc_shndx[target_shndx] = -1U;
705 else
706 {
707 reloc_shndx[target_shndx] = i;
708 reloc_type[target_shndx] = sh_type;
709 }
710 }
711 }
712
713 std::vector<Map_to_output>& map_sections(this->map_to_output());
714 map_sections.resize(shnum);
715
716 // If we are only linking for symbols, then there is nothing else to
717 // do here.
718 if (this->input_file()->just_symbols())
719 {
720 delete sd->section_headers;
721 sd->section_headers = NULL;
722 delete sd->section_names;
723 sd->section_names = NULL;
724 return;
725 }
726
727 // Whether we've seen a .note.GNU-stack section.
728 bool seen_gnu_stack = false;
729 // The flags of a .note.GNU-stack section.
730 uint64_t gnu_stack_flags = 0;
731
732 // Keep track of which sections to omit.
733 std::vector<bool> omit(shnum, false);
734
735 // Keep track of reloc sections when emitting relocations.
736 const bool relocatable = parameters->options().relocatable();
737 const bool emit_relocs = (relocatable
738 || parameters->options().emit_relocs());
739 std::vector<unsigned int> reloc_sections;
740
741 // Keep track of .eh_frame sections.
742 std::vector<unsigned int> eh_frame_sections;
743
744 // Skip the first, dummy, section.
745 pshdrs = sd->section_headers->data() + This::shdr_size;
746 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
747 {
748 typename This::Shdr shdr(pshdrs);
749
750 if (shdr.get_sh_name() >= sd->section_names_size)
751 {
752 this->error(_("bad section name offset for section %u: %lu"),
753 i, static_cast<unsigned long>(shdr.get_sh_name()));
754 return;
755 }
756
757 const char* name = pnames + shdr.get_sh_name();
758
759 if (this->handle_gnu_warning_section(name, i, symtab))
760 {
761 if (!relocatable)
762 omit[i] = true;
763 }
764
765 // The .note.GNU-stack section is special. It gives the
766 // protection flags that this object file requires for the stack
767 // in memory.
768 if (strcmp(name, ".note.GNU-stack") == 0)
769 {
770 seen_gnu_stack = true;
771 gnu_stack_flags |= shdr.get_sh_flags();
772 omit[i] = true;
773 }
774
775 bool discard = omit[i];
776 if (!discard)
777 {
778 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
779 {
780 if (!this->include_section_group(symtab, layout, i, name, shdr,
781 &omit))
782 discard = true;
783 }
784 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
785 && Layout::is_linkonce(name))
786 {
787 if (!this->include_linkonce_section(layout, name, shdr))
788 discard = true;
789 }
790 }
791
792 if (discard)
793 {
794 // Do not include this section in the link.
795 map_sections[i].output_section = NULL;
796 continue;
797 }
798
799 // When doing a relocatable link we are going to copy input
800 // reloc sections into the output. We only want to copy the
801 // ones associated with sections which are not being discarded.
802 // However, we don't know that yet for all sections. So save
803 // reloc sections and process them later.
804 if (emit_relocs
805 && (shdr.get_sh_type() == elfcpp::SHT_REL
806 || shdr.get_sh_type() == elfcpp::SHT_RELA))
807 {
808 reloc_sections.push_back(i);
809 continue;
810 }
811
812 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
813 continue;
814
815 // The .eh_frame section is special. It holds exception frame
816 // information that we need to read in order to generate the
817 // exception frame header. We process these after all the other
818 // sections so that the exception frame reader can reliably
819 // determine which sections are being discarded, and discard the
820 // corresponding information.
821 if (!relocatable
822 && strcmp(name, ".eh_frame") == 0
823 && this->check_eh_frame_flags(&shdr))
824 {
825 eh_frame_sections.push_back(i);
826 continue;
827 }
828
829 off_t offset;
830 Output_section* os = layout->layout(this, i, name, shdr,
831 reloc_shndx[i], reloc_type[i],
832 &offset);
833
834 map_sections[i].output_section = os;
835 map_sections[i].offset = offset;
836
837 // If this section requires special handling, and if there are
838 // relocs that apply to it, then we must do the special handling
839 // before we apply the relocs.
840 if (offset == -1 && reloc_shndx[i] != 0)
841 this->set_relocs_must_follow_section_writes();
842 }
843
844 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags);
845
846 // When doing a relocatable link handle the reloc sections at the
847 // end.
848 if (emit_relocs)
849 this->size_relocatable_relocs();
850 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
851 p != reloc_sections.end();
852 ++p)
853 {
854 unsigned int i = *p;
855 const unsigned char* pshdr;
856 pshdr = sd->section_headers->data() + i * This::shdr_size;
857 typename This::Shdr shdr(pshdr);
858
859 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
860 if (data_shndx >= shnum)
861 {
862 // We already warned about this above.
863 continue;
864 }
865
866 Output_section* data_section = map_sections[data_shndx].output_section;
867 if (data_section == NULL)
868 {
869 map_sections[i].output_section = NULL;
870 continue;
871 }
872
873 Relocatable_relocs* rr = new Relocatable_relocs();
874 this->set_relocatable_relocs(i, rr);
875
876 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
877 rr);
878 map_sections[i].output_section = os;
879 map_sections[i].offset = -1;
880 }
881
882 // Handle the .eh_frame sections at the end.
883 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
884 p != eh_frame_sections.end();
885 ++p)
886 {
887 gold_assert(this->has_eh_frame_);
888 gold_assert(sd->external_symbols_offset != 0);
889
890 unsigned int i = *p;
891 const unsigned char *pshdr;
892 pshdr = sd->section_headers->data() + i * This::shdr_size;
893 typename This::Shdr shdr(pshdr);
894
895 off_t offset;
896 Output_section* os = layout->layout_eh_frame(this,
897 sd->symbols->data(),
898 sd->symbols_size,
899 sd->symbol_names->data(),
900 sd->symbol_names_size,
901 i, shdr,
902 reloc_shndx[i],
903 reloc_type[i],
904 &offset);
905 map_sections[i].output_section = os;
906 map_sections[i].offset = offset;
907
908 // If this section requires special handling, and if there are
909 // relocs that apply to it, then we must do the special handling
910 // before we apply the relocs.
911 if (offset == -1 && reloc_shndx[i] != 0)
912 this->set_relocs_must_follow_section_writes();
913 }
914
915 delete sd->section_headers;
916 sd->section_headers = NULL;
917 delete sd->section_names;
918 sd->section_names = NULL;
919 }
920
921 // Add the symbols to the symbol table.
922
923 template<int size, bool big_endian>
924 void
925 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
926 Read_symbols_data* sd)
927 {
928 if (sd->symbols == NULL)
929 {
930 gold_assert(sd->symbol_names == NULL);
931 return;
932 }
933
934 const int sym_size = This::sym_size;
935 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
936 / sym_size);
937 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
938 {
939 this->error(_("size of symbols is not multiple of symbol size"));
940 return;
941 }
942
943 this->symbols_.resize(symcount);
944
945 const char* sym_names =
946 reinterpret_cast<const char*>(sd->symbol_names->data());
947 symtab->add_from_relobj(this,
948 sd->symbols->data() + sd->external_symbols_offset,
949 symcount, this->local_symbol_count_,
950 sym_names, sd->symbol_names_size,
951 &this->symbols_);
952
953 delete sd->symbols;
954 sd->symbols = NULL;
955 delete sd->symbol_names;
956 sd->symbol_names = NULL;
957 }
958
959 // First pass over the local symbols. Here we add their names to
960 // *POOL and *DYNPOOL, and we store the symbol value in
961 // THIS->LOCAL_VALUES_. This function is always called from a
962 // singleton thread. This is followed by a call to
963 // finalize_local_symbols.
964
965 template<int size, bool big_endian>
966 void
967 Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool,
968 Stringpool* dynpool)
969 {
970 gold_assert(this->symtab_shndx_ != -1U);
971 if (this->symtab_shndx_ == 0)
972 {
973 // This object has no symbols. Weird but legal.
974 return;
975 }
976
977 // Read the symbol table section header.
978 const unsigned int symtab_shndx = this->symtab_shndx_;
979 typename This::Shdr symtabshdr(this,
980 this->elf_file_.section_header(symtab_shndx));
981 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
982
983 // Read the local symbols.
984 const int sym_size = This::sym_size;
985 const unsigned int loccount = this->local_symbol_count_;
986 gold_assert(loccount == symtabshdr.get_sh_info());
987 off_t locsize = loccount * sym_size;
988 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
989 locsize, true, true);
990
991 // Read the symbol names.
992 const unsigned int strtab_shndx =
993 this->adjust_shndx(symtabshdr.get_sh_link());
994 section_size_type strtab_size;
995 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
996 &strtab_size,
997 true);
998 const char* pnames = reinterpret_cast<const char*>(pnamesu);
999
1000 // Loop over the local symbols.
1001
1002 const std::vector<Map_to_output>& mo(this->map_to_output());
1003 unsigned int shnum = this->shnum();
1004 unsigned int count = 0;
1005 unsigned int dyncount = 0;
1006 // Skip the first, dummy, symbol.
1007 psyms += sym_size;
1008 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1009 {
1010 elfcpp::Sym<size, big_endian> sym(psyms);
1011
1012 Symbol_value<size>& lv(this->local_values_[i]);
1013
1014 bool is_ordinary;
1015 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1016 &is_ordinary);
1017 lv.set_input_shndx(shndx, is_ordinary);
1018
1019 if (sym.get_st_type() == elfcpp::STT_SECTION)
1020 lv.set_is_section_symbol();
1021 else if (sym.get_st_type() == elfcpp::STT_TLS)
1022 lv.set_is_tls_symbol();
1023
1024 // Save the input symbol value for use in do_finalize_local_symbols().
1025 lv.set_input_value(sym.get_st_value());
1026
1027 // Decide whether this symbol should go into the output file.
1028
1029 if (shndx < shnum && mo[shndx].output_section == NULL)
1030 {
1031 lv.set_no_output_symtab_entry();
1032 gold_assert(!lv.needs_output_dynsym_entry());
1033 continue;
1034 }
1035
1036 if (sym.get_st_type() == elfcpp::STT_SECTION)
1037 {
1038 lv.set_no_output_symtab_entry();
1039 gold_assert(!lv.needs_output_dynsym_entry());
1040 continue;
1041 }
1042
1043 if (sym.get_st_name() >= strtab_size)
1044 {
1045 this->error(_("local symbol %u section name out of range: %u >= %u"),
1046 i, sym.get_st_name(),
1047 static_cast<unsigned int>(strtab_size));
1048 lv.set_no_output_symtab_entry();
1049 continue;
1050 }
1051
1052 // Add the symbol to the symbol table string pool.
1053 const char* name = pnames + sym.get_st_name();
1054 pool->add(name, true, NULL);
1055 ++count;
1056
1057 // If needed, add the symbol to the dynamic symbol table string pool.
1058 if (lv.needs_output_dynsym_entry())
1059 {
1060 dynpool->add(name, true, NULL);
1061 ++dyncount;
1062 }
1063 }
1064
1065 this->output_local_symbol_count_ = count;
1066 this->output_local_dynsym_count_ = dyncount;
1067 }
1068
1069 // Finalize the local symbols. Here we set the final value in
1070 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
1071 // This function is always called from a singleton thread. The actual
1072 // output of the local symbols will occur in a separate task.
1073
1074 template<int size, bool big_endian>
1075 unsigned int
1076 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
1077 off_t off)
1078 {
1079 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1080
1081 const unsigned int loccount = this->local_symbol_count_;
1082 this->local_symbol_offset_ = off;
1083
1084 const std::vector<Map_to_output>& mo(this->map_to_output());
1085 unsigned int shnum = this->shnum();
1086
1087 for (unsigned int i = 1; i < loccount; ++i)
1088 {
1089 Symbol_value<size>& lv(this->local_values_[i]);
1090
1091 bool is_ordinary;
1092 unsigned int shndx = lv.input_shndx(&is_ordinary);
1093
1094 // Set the output symbol value.
1095
1096 if (!is_ordinary)
1097 {
1098 if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
1099 lv.set_output_value(lv.input_value());
1100 else
1101 {
1102 this->error(_("unknown section index %u for local symbol %u"),
1103 shndx, i);
1104 lv.set_output_value(0);
1105 }
1106 }
1107 else
1108 {
1109 if (shndx >= shnum)
1110 {
1111 this->error(_("local symbol %u section index %u out of range"),
1112 i, shndx);
1113 shndx = 0;
1114 }
1115
1116 Output_section* os = mo[shndx].output_section;
1117
1118 if (os == NULL)
1119 {
1120 lv.set_output_value(0);
1121 continue;
1122 }
1123 else if (mo[shndx].offset == -1)
1124 {
1125 // This is a SHF_MERGE section or one which otherwise
1126 // requires special handling. We get the output address
1127 // of the start of the merged section. If this is not a
1128 // section symbol, we can then determine the final
1129 // value. If it is a section symbol, we can not, as in
1130 // that case we have to consider the addend to determine
1131 // the value to use in a relocation.
1132 if (!lv.is_section_symbol())
1133 lv.set_output_value(os->output_address(this, shndx,
1134 lv.input_value()));
1135 else
1136 {
1137 section_offset_type start =
1138 os->starting_output_address(this, shndx);
1139 Merged_symbol_value<size>* msv =
1140 new Merged_symbol_value<size>(lv.input_value(), start);
1141 lv.set_merged_symbol_value(msv);
1142 }
1143 }
1144 else if (lv.is_tls_symbol())
1145 lv.set_output_value(os->tls_offset()
1146 + mo[shndx].offset
1147 + lv.input_value());
1148 else
1149 lv.set_output_value(os->address()
1150 + mo[shndx].offset
1151 + lv.input_value());
1152 }
1153
1154 if (lv.needs_output_symtab_entry())
1155 {
1156 lv.set_output_symtab_index(index);
1157 ++index;
1158 }
1159 }
1160 return index;
1161 }
1162
1163 // Set the output dynamic symbol table indexes for the local variables.
1164
1165 template<int size, bool big_endian>
1166 unsigned int
1167 Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index)
1168 {
1169 const unsigned int loccount = this->local_symbol_count_;
1170 for (unsigned int i = 1; i < loccount; ++i)
1171 {
1172 Symbol_value<size>& lv(this->local_values_[i]);
1173 if (lv.needs_output_dynsym_entry())
1174 {
1175 lv.set_output_dynsym_index(index);
1176 ++index;
1177 }
1178 }
1179 return index;
1180 }
1181
1182 // Set the offset where local dynamic symbol information will be stored.
1183 // Returns the count of local symbols contributed to the symbol table by
1184 // this object.
1185
1186 template<int size, bool big_endian>
1187 unsigned int
1188 Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off)
1189 {
1190 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1191 this->local_dynsym_offset_ = off;
1192 return this->output_local_dynsym_count_;
1193 }
1194
1195 // Write out the local symbols.
1196
1197 template<int size, bool big_endian>
1198 void
1199 Sized_relobj<size, big_endian>::write_local_symbols(
1200 Output_file* of,
1201 const Stringpool* sympool,
1202 const Stringpool* dynpool,
1203 Output_symtab_xindex* symtab_xindex,
1204 Output_symtab_xindex* dynsym_xindex)
1205 {
1206 if (parameters->options().strip_all()
1207 && this->output_local_dynsym_count_ == 0)
1208 return;
1209
1210 gold_assert(this->symtab_shndx_ != -1U);
1211 if (this->symtab_shndx_ == 0)
1212 {
1213 // This object has no symbols. Weird but legal.
1214 return;
1215 }
1216
1217 // Read the symbol table section header.
1218 const unsigned int symtab_shndx = this->symtab_shndx_;
1219 typename This::Shdr symtabshdr(this,
1220 this->elf_file_.section_header(symtab_shndx));
1221 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1222 const unsigned int loccount = this->local_symbol_count_;
1223 gold_assert(loccount == symtabshdr.get_sh_info());
1224
1225 // Read the local symbols.
1226 const int sym_size = This::sym_size;
1227 off_t locsize = loccount * sym_size;
1228 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1229 locsize, true, false);
1230
1231 // Read the symbol names.
1232 const unsigned int strtab_shndx =
1233 this->adjust_shndx(symtabshdr.get_sh_link());
1234 section_size_type strtab_size;
1235 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1236 &strtab_size,
1237 false);
1238 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1239
1240 // Get views into the output file for the portions of the symbol table
1241 // and the dynamic symbol table that we will be writing.
1242 off_t output_size = this->output_local_symbol_count_ * sym_size;
1243 unsigned char* oview = NULL;
1244 if (output_size > 0)
1245 oview = of->get_output_view(this->local_symbol_offset_, output_size);
1246
1247 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
1248 unsigned char* dyn_oview = NULL;
1249 if (dyn_output_size > 0)
1250 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
1251 dyn_output_size);
1252
1253 const std::vector<Map_to_output>& mo(this->map_to_output());
1254
1255 gold_assert(this->local_values_.size() == loccount);
1256
1257 unsigned char* ov = oview;
1258 unsigned char* dyn_ov = dyn_oview;
1259 psyms += sym_size;
1260 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1261 {
1262 elfcpp::Sym<size, big_endian> isym(psyms);
1263
1264 Symbol_value<size>& lv(this->local_values_[i]);
1265
1266 bool is_ordinary;
1267 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
1268 &is_ordinary);
1269 if (is_ordinary)
1270 {
1271 gold_assert(st_shndx < mo.size());
1272 if (mo[st_shndx].output_section == NULL)
1273 continue;
1274 st_shndx = mo[st_shndx].output_section->out_shndx();
1275 if (st_shndx >= elfcpp::SHN_LORESERVE)
1276 {
1277 if (lv.needs_output_symtab_entry())
1278 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
1279 if (lv.needs_output_dynsym_entry())
1280 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
1281 st_shndx = elfcpp::SHN_XINDEX;
1282 }
1283 }
1284
1285 // Write the symbol to the output symbol table.
1286 if (!parameters->options().strip_all()
1287 && lv.needs_output_symtab_entry())
1288 {
1289 elfcpp::Sym_write<size, big_endian> osym(ov);
1290
1291 gold_assert(isym.get_st_name() < strtab_size);
1292 const char* name = pnames + isym.get_st_name();
1293 osym.put_st_name(sympool->get_offset(name));
1294 osym.put_st_value(this->local_values_[i].value(this, 0));
1295 osym.put_st_size(isym.get_st_size());
1296 osym.put_st_info(isym.get_st_info());
1297 osym.put_st_other(isym.get_st_other());
1298 osym.put_st_shndx(st_shndx);
1299
1300 ov += sym_size;
1301 }
1302
1303 // Write the symbol to the output dynamic symbol table.
1304 if (lv.needs_output_dynsym_entry())
1305 {
1306 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
1307 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
1308
1309 gold_assert(isym.get_st_name() < strtab_size);
1310 const char* name = pnames + isym.get_st_name();
1311 osym.put_st_name(dynpool->get_offset(name));
1312 osym.put_st_value(this->local_values_[i].value(this, 0));
1313 osym.put_st_size(isym.get_st_size());
1314 osym.put_st_info(isym.get_st_info());
1315 osym.put_st_other(isym.get_st_other());
1316 osym.put_st_shndx(st_shndx);
1317
1318 dyn_ov += sym_size;
1319 }
1320 }
1321
1322
1323 if (output_size > 0)
1324 {
1325 gold_assert(ov - oview == output_size);
1326 of->write_output_view(this->local_symbol_offset_, output_size, oview);
1327 }
1328
1329 if (dyn_output_size > 0)
1330 {
1331 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
1332 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
1333 dyn_oview);
1334 }
1335 }
1336
1337 // Set *INFO to symbolic information about the offset OFFSET in the
1338 // section SHNDX. Return true if we found something, false if we
1339 // found nothing.
1340
1341 template<int size, bool big_endian>
1342 bool
1343 Sized_relobj<size, big_endian>::get_symbol_location_info(
1344 unsigned int shndx,
1345 off_t offset,
1346 Symbol_location_info* info)
1347 {
1348 if (this->symtab_shndx_ == 0)
1349 return false;
1350
1351 section_size_type symbols_size;
1352 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
1353 &symbols_size,
1354 false);
1355
1356 unsigned int symbol_names_shndx =
1357 this->adjust_shndx(this->section_link(this->symtab_shndx_));
1358 section_size_type names_size;
1359 const unsigned char* symbol_names_u =
1360 this->section_contents(symbol_names_shndx, &names_size, false);
1361 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
1362
1363 const int sym_size = This::sym_size;
1364 const size_t count = symbols_size / sym_size;
1365
1366 const unsigned char* p = symbols;
1367 for (size_t i = 0; i < count; ++i, p += sym_size)
1368 {
1369 elfcpp::Sym<size, big_endian> sym(p);
1370
1371 if (sym.get_st_type() == elfcpp::STT_FILE)
1372 {
1373 if (sym.get_st_name() >= names_size)
1374 info->source_file = "(invalid)";
1375 else
1376 info->source_file = symbol_names + sym.get_st_name();
1377 continue;
1378 }
1379
1380 bool is_ordinary;
1381 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1382 &is_ordinary);
1383 if (is_ordinary
1384 && st_shndx == shndx
1385 && static_cast<off_t>(sym.get_st_value()) <= offset
1386 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
1387 > offset))
1388 {
1389 if (sym.get_st_name() > names_size)
1390 info->enclosing_symbol_name = "(invalid)";
1391 else
1392 {
1393 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
1394 if (parameters->options().do_demangle())
1395 {
1396 char* demangled_name = cplus_demangle(
1397 info->enclosing_symbol_name.c_str(),
1398 DMGL_ANSI | DMGL_PARAMS);
1399 if (demangled_name != NULL)
1400 {
1401 info->enclosing_symbol_name.assign(demangled_name);
1402 free(demangled_name);
1403 }
1404 }
1405 }
1406 return true;
1407 }
1408 }
1409
1410 return false;
1411 }
1412
1413 // Input_objects methods.
1414
1415 // Add a regular relocatable object to the list. Return false if this
1416 // object should be ignored.
1417
1418 bool
1419 Input_objects::add_object(Object* obj)
1420 {
1421 // Set the global target from the first object file we recognize.
1422 Target* target = obj->target();
1423 if (!parameters->target_valid())
1424 set_parameters_target(target);
1425 else if (target != &parameters->target())
1426 {
1427 obj->error(_("incompatible target"));
1428 return false;
1429 }
1430
1431 // Print the filename if the -t/--trace option is selected.
1432 if (parameters->options().trace())
1433 gold_info("%s", obj->name().c_str());
1434
1435 if (!obj->is_dynamic())
1436 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
1437 else
1438 {
1439 // See if this is a duplicate SONAME.
1440 Dynobj* dynobj = static_cast<Dynobj*>(obj);
1441 const char* soname = dynobj->soname();
1442
1443 std::pair<Unordered_set<std::string>::iterator, bool> ins =
1444 this->sonames_.insert(soname);
1445 if (!ins.second)
1446 {
1447 // We have already seen a dynamic object with this soname.
1448 return false;
1449 }
1450
1451 this->dynobj_list_.push_back(dynobj);
1452
1453 // If this is -lc, remember the directory in which we found it.
1454 // We use this when issuing warnings about undefined symbols: as
1455 // a heuristic, we don't warn about system libraries found in
1456 // the same directory as -lc.
1457 if (strncmp(soname, "libc.so", 7) == 0)
1458 {
1459 const char* object_name = dynobj->name().c_str();
1460 const char* base = lbasename(object_name);
1461 if (base != object_name)
1462 this->system_library_directory_.assign(object_name,
1463 base - 1 - object_name);
1464 }
1465 }
1466
1467 return true;
1468 }
1469
1470 // Return whether an object was found in the system library directory.
1471
1472 bool
1473 Input_objects::found_in_system_library_directory(const Object* object) const
1474 {
1475 return (!this->system_library_directory_.empty()
1476 && object->name().compare(0,
1477 this->system_library_directory_.size(),
1478 this->system_library_directory_) == 0);
1479 }
1480
1481 // For each dynamic object, record whether we've seen all of its
1482 // explicit dependencies.
1483
1484 void
1485 Input_objects::check_dynamic_dependencies() const
1486 {
1487 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
1488 p != this->dynobj_list_.end();
1489 ++p)
1490 {
1491 const Dynobj::Needed& needed((*p)->needed());
1492 bool found_all = true;
1493 for (Dynobj::Needed::const_iterator pneeded = needed.begin();
1494 pneeded != needed.end();
1495 ++pneeded)
1496 {
1497 if (this->sonames_.find(*pneeded) == this->sonames_.end())
1498 {
1499 found_all = false;
1500 break;
1501 }
1502 }
1503 (*p)->set_has_unknown_needed_entries(!found_all);
1504 }
1505 }
1506
1507 // Relocate_info methods.
1508
1509 // Return a string describing the location of a relocation. This is
1510 // only used in error messages.
1511
1512 template<int size, bool big_endian>
1513 std::string
1514 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
1515 {
1516 // See if we can get line-number information from debugging sections.
1517 std::string filename;
1518 std::string file_and_lineno; // Better than filename-only, if available.
1519
1520 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
1521 // This will be "" if we failed to parse the debug info for any reason.
1522 file_and_lineno = line_info.addr2line(this->data_shndx, offset);
1523
1524 std::string ret(this->object->name());
1525 ret += ':';
1526 Symbol_location_info info;
1527 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
1528 {
1529 ret += " in function ";
1530 ret += info.enclosing_symbol_name;
1531 ret += ":";
1532 filename = info.source_file;
1533 }
1534
1535 if (!file_and_lineno.empty())
1536 ret += file_and_lineno;
1537 else
1538 {
1539 if (!filename.empty())
1540 ret += filename;
1541 ret += "(";
1542 ret += this->object->section_name(this->data_shndx);
1543 char buf[100];
1544 // Offsets into sections have to be positive.
1545 snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset));
1546 ret += buf;
1547 ret += ")";
1548 }
1549 return ret;
1550 }
1551
1552 } // End namespace gold.
1553
1554 namespace
1555 {
1556
1557 using namespace gold;
1558
1559 // Read an ELF file with the header and return the appropriate
1560 // instance of Object.
1561
1562 template<int size, bool big_endian>
1563 Object*
1564 make_elf_sized_object(const std::string& name, Input_file* input_file,
1565 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
1566 {
1567 int et = ehdr.get_e_type();
1568 if (et == elfcpp::ET_REL)
1569 {
1570 Sized_relobj<size, big_endian>* obj =
1571 new Sized_relobj<size, big_endian>(name, input_file, offset, ehdr);
1572 obj->setup(ehdr);
1573 return obj;
1574 }
1575 else if (et == elfcpp::ET_DYN)
1576 {
1577 Sized_dynobj<size, big_endian>* obj =
1578 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
1579 obj->setup(ehdr);
1580 return obj;
1581 }
1582 else
1583 {
1584 gold_error(_("%s: unsupported ELF file type %d"),
1585 name.c_str(), et);
1586 return NULL;
1587 }
1588 }
1589
1590 } // End anonymous namespace.
1591
1592 namespace gold
1593 {
1594
1595 // Read an ELF file and return the appropriate instance of Object.
1596
1597 Object*
1598 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
1599 const unsigned char* p, section_offset_type bytes)
1600 {
1601 if (bytes < elfcpp::EI_NIDENT)
1602 {
1603 gold_error(_("%s: ELF file too short"), name.c_str());
1604 return NULL;
1605 }
1606
1607 int v = p[elfcpp::EI_VERSION];
1608 if (v != elfcpp::EV_CURRENT)
1609 {
1610 if (v == elfcpp::EV_NONE)
1611 gold_error(_("%s: invalid ELF version 0"), name.c_str());
1612 else
1613 gold_error(_("%s: unsupported ELF version %d"), name.c_str(), v);
1614 return NULL;
1615 }
1616
1617 int c = p[elfcpp::EI_CLASS];
1618 if (c == elfcpp::ELFCLASSNONE)
1619 {
1620 gold_error(_("%s: invalid ELF class 0"), name.c_str());
1621 return NULL;
1622 }
1623 else if (c != elfcpp::ELFCLASS32
1624 && c != elfcpp::ELFCLASS64)
1625 {
1626 gold_error(_("%s: unsupported ELF class %d"), name.c_str(), c);
1627 return NULL;
1628 }
1629
1630 int d = p[elfcpp::EI_DATA];
1631 if (d == elfcpp::ELFDATANONE)
1632 {
1633 gold_error(_("%s: invalid ELF data encoding"), name.c_str());
1634 return NULL;
1635 }
1636 else if (d != elfcpp::ELFDATA2LSB
1637 && d != elfcpp::ELFDATA2MSB)
1638 {
1639 gold_error(_("%s: unsupported ELF data encoding %d"), name.c_str(), d);
1640 return NULL;
1641 }
1642
1643 bool big_endian = d == elfcpp::ELFDATA2MSB;
1644
1645 if (c == elfcpp::ELFCLASS32)
1646 {
1647 if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
1648 {
1649 gold_error(_("%s: ELF file too short"), name.c_str());
1650 return NULL;
1651 }
1652 if (big_endian)
1653 {
1654 #ifdef HAVE_TARGET_32_BIG
1655 elfcpp::Ehdr<32, true> ehdr(p);
1656 return make_elf_sized_object<32, true>(name, input_file,
1657 offset, ehdr);
1658 #else
1659 gold_error(_("%s: not configured to support "
1660 "32-bit big-endian object"),
1661 name.c_str());
1662 return NULL;
1663 #endif
1664 }
1665 else
1666 {
1667 #ifdef HAVE_TARGET_32_LITTLE
1668 elfcpp::Ehdr<32, false> ehdr(p);
1669 return make_elf_sized_object<32, false>(name, input_file,
1670 offset, ehdr);
1671 #else
1672 gold_error(_("%s: not configured to support "
1673 "32-bit little-endian object"),
1674 name.c_str());
1675 return NULL;
1676 #endif
1677 }
1678 }
1679 else
1680 {
1681 if (bytes < elfcpp::Elf_sizes<64>::ehdr_size)
1682 {
1683 gold_error(_("%s: ELF file too short"), name.c_str());
1684 return NULL;
1685 }
1686 if (big_endian)
1687 {
1688 #ifdef HAVE_TARGET_64_BIG
1689 elfcpp::Ehdr<64, true> ehdr(p);
1690 return make_elf_sized_object<64, true>(name, input_file,
1691 offset, ehdr);
1692 #else
1693 gold_error(_("%s: not configured to support "
1694 "64-bit big-endian object"),
1695 name.c_str());
1696 return NULL;
1697 #endif
1698 }
1699 else
1700 {
1701 #ifdef HAVE_TARGET_64_LITTLE
1702 elfcpp::Ehdr<64, false> ehdr(p);
1703 return make_elf_sized_object<64, false>(name, input_file,
1704 offset, ehdr);
1705 #else
1706 gold_error(_("%s: not configured to support "
1707 "64-bit little-endian object"),
1708 name.c_str());
1709 return NULL;
1710 #endif
1711 }
1712 }
1713 }
1714
1715 // Instantiate the templates we need.
1716
1717 #ifdef HAVE_TARGET_32_LITTLE
1718 template
1719 void
1720 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
1721 Read_symbols_data*);
1722 #endif
1723
1724 #ifdef HAVE_TARGET_32_BIG
1725 template
1726 void
1727 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
1728 Read_symbols_data*);
1729 #endif
1730
1731 #ifdef HAVE_TARGET_64_LITTLE
1732 template
1733 void
1734 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
1735 Read_symbols_data*);
1736 #endif
1737
1738 #ifdef HAVE_TARGET_64_BIG
1739 template
1740 void
1741 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
1742 Read_symbols_data*);
1743 #endif
1744
1745 #ifdef HAVE_TARGET_32_LITTLE
1746 template
1747 class Sized_relobj<32, false>;
1748 #endif
1749
1750 #ifdef HAVE_TARGET_32_BIG
1751 template
1752 class Sized_relobj<32, true>;
1753 #endif
1754
1755 #ifdef HAVE_TARGET_64_LITTLE
1756 template
1757 class Sized_relobj<64, false>;
1758 #endif
1759
1760 #ifdef HAVE_TARGET_64_BIG
1761 template
1762 class Sized_relobj<64, true>;
1763 #endif
1764
1765 #ifdef HAVE_TARGET_32_LITTLE
1766 template
1767 struct Relocate_info<32, false>;
1768 #endif
1769
1770 #ifdef HAVE_TARGET_32_BIG
1771 template
1772 struct Relocate_info<32, true>;
1773 #endif
1774
1775 #ifdef HAVE_TARGET_64_LITTLE
1776 template
1777 struct Relocate_info<64, false>;
1778 #endif
1779
1780 #ifdef HAVE_TARGET_64_BIG
1781 template
1782 struct Relocate_info<64, true>;
1783 #endif
1784
1785 } // End namespace gold.
This page took 0.167255 seconds and 5 git commands to generate.