Speed up relocations against local symbols in merged sections.
[deliverable/binutils-gdb.git] / gold / object.h
1 // object.h -- support for an object file for linking in gold -*- C++ -*-
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OBJECT_H
24 #define GOLD_OBJECT_H
25
26 #include <string>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "elfcpp_file.h"
31 #include "fileread.h"
32 #include "target.h"
33
34 namespace gold
35 {
36
37 class General_options;
38 class Task;
39 class Layout;
40 class Output_section;
41 class Output_file;
42 class Dynobj;
43 class Object_merge_map;
44
45 template<typename Stringpool_char>
46 class Stringpool_template;
47
48 // Data to pass from read_symbols() to add_symbols().
49
50 struct Read_symbols_data
51 {
52 // Section headers.
53 File_view* section_headers;
54 // Section names.
55 File_view* section_names;
56 // Size of section name data in bytes.
57 section_size_type section_names_size;
58 // Symbol data.
59 File_view* symbols;
60 // Size of symbol data in bytes.
61 section_size_type symbols_size;
62 // Offset of external symbols within symbol data. This structure
63 // sometimes contains only external symbols, in which case this will
64 // be zero. Sometimes it contains all symbols.
65 section_offset_type external_symbols_offset;
66 // Symbol names.
67 File_view* symbol_names;
68 // Size of symbol name data in bytes.
69 section_size_type symbol_names_size;
70
71 // Version information. This is only used on dynamic objects.
72 // Version symbol data (from SHT_GNU_versym section).
73 File_view* versym;
74 section_size_type versym_size;
75 // Version definition data (from SHT_GNU_verdef section).
76 File_view* verdef;
77 section_size_type verdef_size;
78 unsigned int verdef_info;
79 // Needed version data (from SHT_GNU_verneed section).
80 File_view* verneed;
81 section_size_type verneed_size;
82 unsigned int verneed_info;
83 };
84
85 // Information used to print error messages.
86
87 struct Symbol_location_info
88 {
89 std::string source_file;
90 std::string enclosing_symbol_name;
91 int line_number;
92 };
93
94 // Data about a single relocation section. This is read in
95 // read_relocs and processed in scan_relocs.
96
97 struct Section_relocs
98 {
99 // Index of reloc section.
100 unsigned int reloc_shndx;
101 // Index of section that relocs apply to.
102 unsigned int data_shndx;
103 // Contents of reloc section.
104 File_view* contents;
105 // Reloc section type.
106 unsigned int sh_type;
107 // Number of reloc entries.
108 size_t reloc_count;
109 // Output section.
110 Output_section* output_section;
111 // Whether this section has special handling for offsets.
112 bool needs_special_offset_handling;
113 };
114
115 // Relocations in an object file. This is read in read_relocs and
116 // processed in scan_relocs.
117
118 struct Read_relocs_data
119 {
120 typedef std::vector<Section_relocs> Relocs_list;
121 // The relocations.
122 Relocs_list relocs;
123 // The local symbols.
124 File_view* local_symbols;
125 };
126
127 // Object is an abstract base class which represents either a 32-bit
128 // or a 64-bit input object. This can be a regular object file
129 // (ET_REL) or a shared object (ET_DYN).
130
131 class Object
132 {
133 public:
134 // NAME is the name of the object as we would report it to the user
135 // (e.g., libfoo.a(bar.o) if this is in an archive. INPUT_FILE is
136 // used to read the file. OFFSET is the offset within the input
137 // file--0 for a .o or .so file, something else for a .a file.
138 Object(const std::string& name, Input_file* input_file, bool is_dynamic,
139 off_t offset = 0)
140 : name_(name), input_file_(input_file), offset_(offset), shnum_(-1U),
141 is_dynamic_(is_dynamic), target_(NULL)
142 { }
143
144 virtual ~Object()
145 { }
146
147 // Return the name of the object as we would report it to the tuser.
148 const std::string&
149 name() const
150 { return this->name_; }
151
152 // Get the offset into the file.
153 off_t
154 offset() const
155 { return this->offset_; }
156
157 // Return whether this is a dynamic object.
158 bool
159 is_dynamic() const
160 { return this->is_dynamic_; }
161
162 // Return the target structure associated with this object.
163 Target*
164 target() const
165 { return this->target_; }
166
167 // Lock the underlying file.
168 void
169 lock(const Task* t)
170 { this->input_file()->file().lock(t); }
171
172 // Unlock the underlying file.
173 void
174 unlock(const Task* t)
175 { this->input_file()->file().unlock(t); }
176
177 // Return whether the underlying file is locked.
178 bool
179 is_locked() const
180 { return this->input_file()->file().is_locked(); }
181
182 // Return the token, so that the task can be queued.
183 Task_token*
184 token()
185 { return this->input_file()->file().token(); }
186
187 // Release the underlying file.
188 void
189 release()
190 { this->input_file_->file().release(); }
191
192 // Return the sized target structure associated with this object.
193 // This is like the target method but it returns a pointer of
194 // appropriate checked type.
195 template<int size, bool big_endian>
196 Sized_target<size, big_endian>*
197 sized_target(ACCEPT_SIZE_ENDIAN_ONLY) const;
198
199 // Get the number of sections.
200 unsigned int
201 shnum() const
202 { return this->shnum_; }
203
204 // Return a view of the contents of a section. Set *PLEN to the
205 // size. CACHE is a hint as in File_read::get_view.
206 const unsigned char*
207 section_contents(unsigned int shndx, section_size_type* plen, bool cache);
208
209 // Return the name of a section given a section index. This is only
210 // used for error messages.
211 std::string
212 section_name(unsigned int shndx)
213 { return this->do_section_name(shndx); }
214
215 // Return the section flags given a section index.
216 uint64_t
217 section_flags(unsigned int shndx)
218 { return this->do_section_flags(shndx); }
219
220 // Return the section type given a section index.
221 unsigned int
222 section_type(unsigned int shndx)
223 { return this->do_section_type(shndx); }
224
225 // Return the section link field given a section index.
226 unsigned int
227 section_link(unsigned int shndx)
228 { return this->do_section_link(shndx); }
229
230 // Return the section info field given a section index.
231 unsigned int
232 section_info(unsigned int shndx)
233 { return this->do_section_info(shndx); }
234
235 // Read the symbol information.
236 void
237 read_symbols(Read_symbols_data* sd)
238 { return this->do_read_symbols(sd); }
239
240 // Pass sections which should be included in the link to the Layout
241 // object, and record where the sections go in the output file.
242 void
243 layout(Symbol_table* symtab, Layout* layout, Read_symbols_data* sd)
244 { this->do_layout(symtab, layout, sd); }
245
246 // Add symbol information to the global symbol table.
247 void
248 add_symbols(Symbol_table* symtab, Read_symbols_data* sd)
249 { this->do_add_symbols(symtab, sd); }
250
251 // Functions and types for the elfcpp::Elf_file interface. This
252 // permit us to use Object as the File template parameter for
253 // elfcpp::Elf_file.
254
255 // The View class is returned by view. It must support a single
256 // method, data(). This is trivial, because get_view does what we
257 // need.
258 class View
259 {
260 public:
261 View(const unsigned char* p)
262 : p_(p)
263 { }
264
265 const unsigned char*
266 data() const
267 { return this->p_; }
268
269 private:
270 const unsigned char* p_;
271 };
272
273 // Return a View.
274 View
275 view(off_t file_offset, section_size_type data_size)
276 { return View(this->get_view(file_offset, data_size, true)); }
277
278 // Report an error.
279 void
280 error(const char* format, ...) const ATTRIBUTE_PRINTF_2;
281
282 // A location in the file.
283 struct Location
284 {
285 off_t file_offset;
286 off_t data_size;
287
288 Location(off_t fo, section_size_type ds)
289 : file_offset(fo), data_size(ds)
290 { }
291 };
292
293 // Get a View given a Location.
294 View view(Location loc)
295 { return View(this->get_view(loc.file_offset, loc.data_size, true)); }
296
297 protected:
298 // Read the symbols--implemented by child class.
299 virtual void
300 do_read_symbols(Read_symbols_data*) = 0;
301
302 // Lay out sections--implemented by child class.
303 virtual void
304 do_layout(Symbol_table*, Layout*, Read_symbols_data*) = 0;
305
306 // Add symbol information to the global symbol table--implemented by
307 // child class.
308 virtual void
309 do_add_symbols(Symbol_table*, Read_symbols_data*) = 0;
310
311 // Return the location of the contents of a section. Implemented by
312 // child class.
313 virtual Location
314 do_section_contents(unsigned int shndx) = 0;
315
316 // Get the name of a section--implemented by child class.
317 virtual std::string
318 do_section_name(unsigned int shndx) = 0;
319
320 // Get section flags--implemented by child class.
321 virtual uint64_t
322 do_section_flags(unsigned int shndx) = 0;
323
324 // Get section type--implemented by child class.
325 virtual unsigned int
326 do_section_type(unsigned int shndx) = 0;
327
328 // Get section link field--implemented by child class.
329 virtual unsigned int
330 do_section_link(unsigned int shndx) = 0;
331
332 // Get section info field--implemented by child class.
333 virtual unsigned int
334 do_section_info(unsigned int shndx) = 0;
335
336 // Get the file. We pass on const-ness.
337 Input_file*
338 input_file()
339 { return this->input_file_; }
340
341 const Input_file*
342 input_file() const
343 { return this->input_file_; }
344
345 // Get a view into the underlying file.
346 const unsigned char*
347 get_view(off_t start, section_size_type size, bool cache)
348 {
349 return this->input_file()->file().get_view(start + this->offset_, size,
350 cache);
351 }
352
353 // Get a lasting view into the underlying file.
354 File_view*
355 get_lasting_view(off_t start, section_size_type size, bool cache)
356 {
357 return this->input_file()->file().get_lasting_view(start + this->offset_,
358 size, cache);
359 }
360
361 // Read data from the underlying file.
362 void
363 read(off_t start, section_size_type size, void* p) const
364 { this->input_file()->file().read(start + this->offset_, size, p); }
365
366 // Set the target.
367 void
368 set_target(int machine, int size, bool big_endian, int osabi,
369 int abiversion);
370
371 // Set the number of sections.
372 void
373 set_shnum(int shnum)
374 { this->shnum_ = shnum; }
375
376 // Functions used by both Sized_relobj and Sized_dynobj.
377
378 // Read the section data into a Read_symbols_data object.
379 template<int size, bool big_endian>
380 void
381 read_section_data(elfcpp::Elf_file<size, big_endian, Object>*,
382 Read_symbols_data*);
383
384 // If NAME is the name of a special .gnu.warning section, arrange
385 // for the warning to be issued. SHNDX is the section index.
386 // Return whether it is a warning section.
387 bool
388 handle_gnu_warning_section(const char* name, unsigned int shndx,
389 Symbol_table*);
390
391 private:
392 // This class may not be copied.
393 Object(const Object&);
394 Object& operator=(const Object&);
395
396 // Name of object as printed to user.
397 std::string name_;
398 // For reading the file.
399 Input_file* input_file_;
400 // Offset within the file--0 for an object file, non-0 for an
401 // archive.
402 off_t offset_;
403 // Number of input sections.
404 unsigned int shnum_;
405 // Whether this is a dynamic object.
406 bool is_dynamic_;
407 // Target functions--may be NULL if the target is not known.
408 Target* target_;
409 };
410
411 // Implement sized_target inline for efficiency. This approach breaks
412 // static type checking, but is made safe using asserts.
413
414 template<int size, bool big_endian>
415 inline Sized_target<size, big_endian>*
416 Object::sized_target(ACCEPT_SIZE_ENDIAN_ONLY) const
417 {
418 gold_assert(this->target_->get_size() == size);
419 gold_assert(this->target_->is_big_endian() ? big_endian : !big_endian);
420 return static_cast<Sized_target<size, big_endian>*>(this->target_);
421 }
422
423 // A regular object (ET_REL). This is an abstract base class itself.
424 // The implementation is the template class Sized_relobj.
425
426 class Relobj : public Object
427 {
428 public:
429 Relobj(const std::string& name, Input_file* input_file, off_t offset = 0)
430 : Object(name, input_file, false, offset),
431 map_to_output_(),
432 object_merge_map_(NULL),
433 relocs_must_follow_section_writes_(false)
434 { }
435
436 // Read the relocs.
437 void
438 read_relocs(Read_relocs_data* rd)
439 { return this->do_read_relocs(rd); }
440
441 // Scan the relocs and adjust the symbol table.
442 void
443 scan_relocs(const General_options& options, Symbol_table* symtab,
444 Layout* layout, Read_relocs_data* rd)
445 { return this->do_scan_relocs(options, symtab, layout, rd); }
446
447 // The number of local symbols in the input symbol table.
448 virtual unsigned int
449 local_symbol_count() const
450 { return this->do_local_symbol_count(); }
451
452 // Initial local symbol processing: count the number of local symbols
453 // in the output symbol table and dynamic symbol table; add local symbol
454 // names to *POOL and *DYNPOOL.
455 void
456 count_local_symbols(Stringpool_template<char>* pool,
457 Stringpool_template<char>* dynpool)
458 { return this->do_count_local_symbols(pool, dynpool); }
459
460 // Set the values of the local symbols, set the output symbol table
461 // indexes for the local variables, and set the offset where local
462 // symbol information will be stored. Returns the new local symbol index.
463 unsigned int
464 finalize_local_symbols(unsigned int index, off_t off)
465 { return this->do_finalize_local_symbols(index, off); }
466
467 // Set the output dynamic symbol table indexes for the local variables.
468 unsigned int
469 set_local_dynsym_indexes(unsigned int index)
470 { return this->do_set_local_dynsym_indexes(index); }
471
472 // Set the offset where local dynamic symbol information will be stored.
473 unsigned int
474 set_local_dynsym_offset(off_t off)
475 { return this->do_set_local_dynsym_offset(off); }
476
477 // Relocate the input sections and write out the local symbols.
478 void
479 relocate(const General_options& options, const Symbol_table* symtab,
480 const Layout* layout, Output_file* of)
481 { return this->do_relocate(options, symtab, layout, of); }
482
483 // Return whether an input section is being included in the link.
484 bool
485 is_section_included(unsigned int shndx) const
486 {
487 gold_assert(shndx < this->map_to_output_.size());
488 return this->map_to_output_[shndx].output_section != NULL;
489 }
490
491 // Return whether an input section requires special
492 // handling--whether it is not simply mapped from the input file to
493 // the output file.
494 bool
495 is_section_specially_mapped(unsigned int shndx) const
496 {
497 gold_assert(shndx < this->map_to_output_.size());
498 return (this->map_to_output_[shndx].output_section != NULL
499 && this->map_to_output_[shndx].offset == -1);
500 }
501
502 // Given a section index, return the corresponding Output_section
503 // (which will be NULL if the section is not included in the link)
504 // and set *POFF to the offset within that section. *POFF will be
505 // set to -1 if the section requires special handling.
506 inline Output_section*
507 output_section(unsigned int shndx, section_offset_type* poff) const;
508
509 // Set the offset of an input section within its output section.
510 void
511 set_section_offset(unsigned int shndx, section_offset_type off)
512 {
513 gold_assert(shndx < this->map_to_output_.size());
514 this->map_to_output_[shndx].offset = off;
515 }
516
517 // Return true if we need to wait for output sections to be written
518 // before we can apply relocations. This is true if the object has
519 // any relocations for sections which require special handling, such
520 // as the exception frame section.
521 bool
522 relocs_must_follow_section_writes() const
523 { return this->relocs_must_follow_section_writes_; }
524
525 // Return the object merge map.
526 Object_merge_map*
527 merge_map() const
528 { return this->object_merge_map_; }
529
530 // Set the object merge map.
531 void
532 set_merge_map(Object_merge_map* object_merge_map)
533 {
534 gold_assert(this->object_merge_map_ == NULL);
535 this->object_merge_map_ = object_merge_map;
536 }
537
538 protected:
539 // What we need to know to map an input section to an output
540 // section. We keep an array of these, one for each input section,
541 // indexed by the input section number.
542 struct Map_to_output
543 {
544 // The output section. This is NULL if the input section is to be
545 // discarded.
546 Output_section* output_section;
547 // The offset within the output section. This is -1 if the
548 // section requires special handling.
549 section_offset_type offset;
550 };
551
552 // Read the relocs--implemented by child class.
553 virtual void
554 do_read_relocs(Read_relocs_data*) = 0;
555
556 // Scan the relocs--implemented by child class.
557 virtual void
558 do_scan_relocs(const General_options&, Symbol_table*, Layout*,
559 Read_relocs_data*) = 0;
560
561 // Return the number of local symbols--implemented by child class.
562 virtual unsigned int
563 do_local_symbol_count() const = 0;
564
565 // Count local symbols--implemented by child class.
566 virtual void
567 do_count_local_symbols(Stringpool_template<char>*,
568 Stringpool_template<char>*) = 0;
569
570 // Finalize the local symbols. Set the output symbol table indexes for the local variables, and set the
571 // offset where local symbol information will be stored.
572 virtual unsigned int
573 do_finalize_local_symbols(unsigned int, off_t) = 0;
574
575 // Set the output dynamic symbol table indexes for the local variables.
576 virtual unsigned int
577 do_set_local_dynsym_indexes(unsigned int) = 0;
578
579 // Set the offset where local dynamic symbol information will be stored.
580 virtual unsigned int
581 do_set_local_dynsym_offset(off_t) = 0;
582
583 // Relocate the input sections and write out the local
584 // symbols--implemented by child class.
585 virtual void
586 do_relocate(const General_options& options, const Symbol_table* symtab,
587 const Layout*, Output_file* of) = 0;
588
589 // Return the vector mapping input sections to output sections.
590 std::vector<Map_to_output>&
591 map_to_output()
592 { return this->map_to_output_; }
593
594 const std::vector<Map_to_output>&
595 map_to_output() const
596 { return this->map_to_output_; }
597
598 // Record that we must wait for the output sections to be written
599 // before applying relocations.
600 void
601 set_relocs_must_follow_section_writes()
602 { this->relocs_must_follow_section_writes_ = true; }
603
604 private:
605 // Mapping from input sections to output section.
606 std::vector<Map_to_output> map_to_output_;
607 // Mappings for merge sections. This is managed by the code in the
608 // Merge_map class.
609 Object_merge_map* object_merge_map_;
610 // Whether we need to wait for output sections to be written before
611 // we can apply relocations.
612 bool relocs_must_follow_section_writes_;
613 };
614
615 // Implement Object::output_section inline for efficiency.
616 inline Output_section*
617 Relobj::output_section(unsigned int shndx, section_offset_type* poff) const
618 {
619 gold_assert(shndx < this->map_to_output_.size());
620 const Map_to_output& mo(this->map_to_output_[shndx]);
621 *poff = mo.offset;
622 return mo.output_section;
623 }
624
625 // This class is used to handle relocations against a section symbol
626 // in an SHF_MERGE section. For such a symbol, we need to know the
627 // addend of the relocation before we can determine the final value.
628 // The addend gives us the location in the input section, and we can
629 // determine how it is mapped to the output section. For a
630 // non-section symbol, we apply the addend to the final value of the
631 // symbol; that is done in finalize_local_symbols, and does not use
632 // this class.
633
634 template<int size>
635 class Merged_symbol_value
636 {
637 public:
638 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value;
639
640 // We use a hash table to map offsets in the input section to output
641 // addresses.
642 typedef Unordered_map<section_offset_type, Value> Output_addresses;
643
644 Merged_symbol_value(Value input_value, Value output_start_address)
645 : input_value_(input_value), output_start_address_(output_start_address),
646 output_addresses_()
647 { }
648
649 // Initialize the hash table.
650 void
651 initialize_input_to_output_map(const Relobj*, unsigned int input_shndx);
652
653 // Release the hash table to save space.
654 void
655 free_input_to_output_map()
656 { this->output_addresses_.clear(); }
657
658 // Get the output value corresponding to an addend. The object and
659 // input section index are passed in because the caller will have
660 // them; otherwise we could store them here.
661 Value
662 value(const Relobj* object, unsigned int input_shndx, Value addend) const
663 {
664 Value input_offset = this->input_value_ + addend;
665 typename Output_addresses::const_iterator p =
666 this->output_addresses_.find(input_offset);
667 if (p != this->output_addresses_.end())
668 return p->second;
669
670 return this->value_from_output_section(object, input_shndx, input_offset);
671 }
672
673 private:
674 // Get the output value for an input offset if we couldn't find it
675 // in the hash table.
676 Value
677 value_from_output_section(const Relobj*, unsigned int input_shndx,
678 Value input_offset) const;
679
680 // The value of the section symbol in the input file. This is
681 // normally zero, but could in principle be something else.
682 Value input_value_;
683 // The start address of this merged section in the output file.
684 Value output_start_address_;
685 // A hash table which maps offsets in the input section to output
686 // addresses. This only maps specific offsets, not all offsets.
687 Output_addresses output_addresses_;
688 };
689
690 // This POD class is holds the value of a symbol. This is used for
691 // local symbols, and for all symbols during relocation processing.
692 // For special sections, such as SHF_MERGE sections, this calls a
693 // function to get the final symbol value.
694
695 template<int size>
696 class Symbol_value
697 {
698 public:
699 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value;
700
701 Symbol_value()
702 : output_symtab_index_(0), output_dynsym_index_(-1U), input_shndx_(0),
703 is_section_symbol_(false), is_tls_symbol_(false),
704 has_output_value_(true)
705 { this->u_.value = 0; }
706
707 // Get the value of this symbol. OBJECT is the object in which this
708 // symbol is defined, and ADDEND is an addend to add to the value.
709 template<bool big_endian>
710 Value
711 value(const Sized_relobj<size, big_endian>* object, Value addend) const
712 {
713 if (this->has_output_value_)
714 return this->u_.value + addend;
715 else
716 return this->u_.merged_symbol_value->value(object, this->input_shndx_,
717 addend);
718 }
719
720 // Set the value of this symbol in the output symbol table.
721 void
722 set_output_value(Value value)
723 { this->u_.value = value; }
724
725 // For a section symbol in a merged section, we need more
726 // information.
727 void
728 set_merged_symbol_value(Merged_symbol_value<size>* msv)
729 {
730 gold_assert(this->is_section_symbol_);
731 this->has_output_value_ = false;
732 this->u_.merged_symbol_value = msv;
733 }
734
735 // Initialize the input to output map for a section symbol in a
736 // merged section. We also initialize the value of a non-section
737 // symbol in a merged section.
738 void
739 initialize_input_to_output_map(const Relobj* object)
740 {
741 if (!this->has_output_value_)
742 {
743 gold_assert(this->is_section_symbol_);
744 Merged_symbol_value<size>* msv = this->u_.merged_symbol_value;
745 msv->initialize_input_to_output_map(object, this->input_shndx_);
746 }
747 }
748
749 // Free the input to output map for a section symbol in a merged
750 // section.
751 void
752 free_input_to_output_map()
753 {
754 if (!this->has_output_value_)
755 this->u_.merged_symbol_value->free_input_to_output_map();
756 }
757
758 // Set the value of the symbol from the input file. This is only
759 // called by count_local_symbols, to communicate the value to
760 // finalize_local_symbols.
761 void
762 set_input_value(Value value)
763 { this->u_.value = value; }
764
765 // Return the input value. This is only called by
766 // finalize_local_symbols.
767 Value
768 input_value() const
769 { return this->u_.value; }
770
771 // Return whether this symbol should go into the output symbol
772 // table.
773 bool
774 needs_output_symtab_entry() const
775 { return this->output_symtab_index_ != -1U; }
776
777 // Return the index in the output symbol table.
778 unsigned int
779 output_symtab_index() const
780 {
781 gold_assert(this->output_symtab_index_ != 0);
782 return this->output_symtab_index_;
783 }
784
785 // Set the index in the output symbol table.
786 void
787 set_output_symtab_index(unsigned int i)
788 {
789 gold_assert(this->output_symtab_index_ == 0);
790 this->output_symtab_index_ = i;
791 }
792
793 // Record that this symbol should not go into the output symbol
794 // table.
795 void
796 set_no_output_symtab_entry()
797 {
798 gold_assert(this->output_symtab_index_ == 0);
799 this->output_symtab_index_ = -1U;
800 }
801
802 // Set the index in the output dynamic symbol table.
803 void
804 set_needs_output_dynsym_entry()
805 {
806 this->output_dynsym_index_ = 0;
807 }
808
809 // Return whether this symbol should go into the output symbol
810 // table.
811 bool
812 needs_output_dynsym_entry() const
813 {
814 return this->output_dynsym_index_ != -1U;
815 }
816
817 // Record that this symbol should go into the dynamic symbol table.
818 void
819 set_output_dynsym_index(unsigned int i)
820 {
821 gold_assert(this->output_dynsym_index_ == 0);
822 this->output_dynsym_index_ = i;
823 }
824
825 // Return the index in the output dynamic symbol table.
826 unsigned int
827 output_dynsym_index() const
828 {
829 gold_assert(this->output_dynsym_index_ != 0);
830 return this->output_dynsym_index_;
831 }
832
833 // Set the index of the input section in the input file.
834 void
835 set_input_shndx(unsigned int i)
836 {
837 this->input_shndx_ = i;
838 // input_shndx_ field is a bitfield, so make sure that the value
839 // fits.
840 gold_assert(this->input_shndx_ == i);
841 }
842
843 // Return the index of the input section in the input file.
844 unsigned int
845 input_shndx() const
846 { return this->input_shndx_; }
847
848 // Whether this is a section symbol.
849 bool
850 is_section_symbol() const
851 { return this->is_section_symbol_; }
852
853 // Record that this is a section symbol.
854 void
855 set_is_section_symbol()
856 { this->is_section_symbol_ = true; }
857
858 // Record that this is a TLS symbol.
859 void
860 set_is_tls_symbol()
861 { this->is_tls_symbol_ = true; }
862
863 // Return TRUE if this is a TLS symbol.
864 bool
865 is_tls_symbol() const
866 { return this->is_tls_symbol_; }
867
868 private:
869 // The index of this local symbol in the output symbol table. This
870 // will be -1 if the symbol should not go into the symbol table.
871 unsigned int output_symtab_index_;
872 // The index of this local symbol in the dynamic symbol table. This
873 // will be -1 if the symbol should not go into the symbol table.
874 unsigned int output_dynsym_index_;
875 // The section index in the input file in which this symbol is
876 // defined.
877 unsigned int input_shndx_ : 29;
878 // Whether this is a STT_SECTION symbol.
879 bool is_section_symbol_ : 1;
880 // Whether this is a STT_TLS symbol.
881 bool is_tls_symbol_ : 1;
882 // Whether this symbol has a value for the output file. This is
883 // normally set to true during Layout::finalize, by
884 // finalize_local_symbols. It will be false for a section symbol in
885 // a merge section, as for such symbols we can not determine the
886 // value to use in a relocation until we see the addend.
887 bool has_output_value_ : 1;
888 union
889 {
890 // This is used if has_output_value_ is true. Between
891 // count_local_symbols and finalize_local_symbols, this is the
892 // value in the input file. After finalize_local_symbols, it is
893 // the value in the output file.
894 Value value;
895 // This is used if has_output_value_ is false. It points to the
896 // information we need to get the value for a merge section.
897 Merged_symbol_value<size>* merged_symbol_value;
898 } u_;
899 };
900
901 // A regular object file. This is size and endian specific.
902
903 template<int size, bool big_endian>
904 class Sized_relobj : public Relobj
905 {
906 public:
907 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
908 typedef std::vector<Symbol*> Symbols;
909 typedef std::vector<Symbol_value<size> > Local_values;
910
911 Sized_relobj(const std::string& name, Input_file* input_file, off_t offset,
912 const typename elfcpp::Ehdr<size, big_endian>&);
913
914 ~Sized_relobj();
915
916 // Set up the object file based on the ELF header.
917 void
918 setup(const typename elfcpp::Ehdr<size, big_endian>&);
919
920 // If SYM is the index of a global symbol in the object file's
921 // symbol table, return the Symbol object. Otherwise, return NULL.
922 Symbol*
923 global_symbol(unsigned int sym) const
924 {
925 if (sym >= this->local_symbol_count_)
926 {
927 gold_assert(sym - this->local_symbol_count_ < this->symbols_.size());
928 return this->symbols_[sym - this->local_symbol_count_];
929 }
930 return NULL;
931 }
932
933 // Return the section index of symbol SYM. Set *VALUE to its value
934 // in the object file. Note that for a symbol which is not defined
935 // in this object file, this will set *VALUE to 0 and return
936 // SHN_UNDEF; it will not return the final value of the symbol in
937 // the link.
938 unsigned int
939 symbol_section_and_value(unsigned int sym, Address* value);
940
941 // Return a pointer to the Symbol_value structure which holds the
942 // value of a local symbol.
943 const Symbol_value<size>*
944 local_symbol(unsigned int sym) const
945 {
946 gold_assert(sym < this->local_values_.size());
947 return &this->local_values_[sym];
948 }
949
950 // Return the index of local symbol SYM in the ordinary symbol
951 // table. A value of -1U means that the symbol is not being output.
952 unsigned int
953 symtab_index(unsigned int sym) const
954 {
955 gold_assert(sym < this->local_values_.size());
956 return this->local_values_[sym].output_symtab_index();
957 }
958
959 // Return the index of local symbol SYM in the dynamic symbol
960 // table. A value of -1U means that the symbol is not being output.
961 unsigned int
962 dynsym_index(unsigned int sym) const
963 {
964 gold_assert(sym < this->local_values_.size());
965 return this->local_values_[sym].output_dynsym_index();
966 }
967
968 // Return the appropriate Sized_target structure.
969 Sized_target<size, big_endian>*
970 sized_target()
971 {
972 return this->Object::sized_target
973 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
974 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
975 }
976
977 // Return the value of the local symbol symndx.
978 Address
979 local_symbol_value(unsigned int symndx) const;
980
981 void
982 set_needs_output_dynsym_entry(unsigned int sym)
983 {
984 gold_assert(sym < this->local_values_.size());
985 this->local_values_[sym].set_needs_output_dynsym_entry();
986 }
987
988 // Return whether the local symbol SYMNDX has a GOT offset.
989 // For TLS symbols, the GOT entry will hold its tp-relative offset.
990 bool
991 local_has_got_offset(unsigned int symndx) const
992 {
993 return (this->local_got_offsets_.find(symndx)
994 != this->local_got_offsets_.end());
995 }
996
997 // Return the GOT offset of the local symbol SYMNDX.
998 unsigned int
999 local_got_offset(unsigned int symndx) const
1000 {
1001 Local_got_offsets::const_iterator p =
1002 this->local_got_offsets_.find(symndx);
1003 gold_assert(p != this->local_got_offsets_.end());
1004 return p->second;
1005 }
1006
1007 // Set the GOT offset of the local symbol SYMNDX to GOT_OFFSET.
1008 void
1009 set_local_got_offset(unsigned int symndx, unsigned int got_offset)
1010 {
1011 std::pair<Local_got_offsets::iterator, bool> ins =
1012 this->local_got_offsets_.insert(std::make_pair(symndx, got_offset));
1013 gold_assert(ins.second);
1014 }
1015
1016 // Return whether the local TLS symbol SYMNDX has a GOT offset.
1017 // The GOT entry at this offset will contain a module index. If
1018 // NEED_PAIR is true, a second entry immediately following the first
1019 // will contain the dtv-relative offset.
1020 bool
1021 local_has_tls_got_offset(unsigned int symndx, bool need_pair) const
1022 {
1023 typename Local_tls_got_offsets::const_iterator p =
1024 this->local_tls_got_offsets_.find(symndx);
1025 if (p == this->local_tls_got_offsets_.end()
1026 || (need_pair && !p->second.have_pair_))
1027 return false;
1028 return true;
1029 }
1030
1031 // Return the offset of the GOT entry for the local TLS symbol SYMNDX.
1032 // If NEED_PAIR is true, we need the offset of a pair of GOT entries;
1033 // otherwise we need the offset of the GOT entry for the module index.
1034 unsigned int
1035 local_tls_got_offset(unsigned int symndx, bool need_pair) const
1036 {
1037 typename Local_tls_got_offsets::const_iterator p =
1038 this->local_tls_got_offsets_.find(symndx);
1039 gold_assert(p != this->local_tls_got_offsets_.end());
1040 gold_assert(!need_pair || p->second.have_pair_);
1041 return p->second.got_offset_;
1042 }
1043
1044 // Set the offset of the GOT entry for the local TLS symbol SYMNDX
1045 // to GOT_OFFSET. If HAVE_PAIR is true, we have a pair of GOT entries;
1046 // otherwise, we have just a single entry for the module index.
1047 void
1048 set_local_tls_got_offset(unsigned int symndx, unsigned int got_offset,
1049 bool have_pair)
1050 {
1051 typename Local_tls_got_offsets::iterator p =
1052 this->local_tls_got_offsets_.find(symndx);
1053 if (p != this->local_tls_got_offsets_.end())
1054 {
1055 // An entry already existed for this symbol. This can happen
1056 // if we see a relocation asking for the module index before
1057 // a relocation asking for the pair. In that case, the original
1058 // GOT entry will remain, but won't get used by any further
1059 // relocations.
1060 p->second.got_offset_ = got_offset;
1061 gold_assert(have_pair);
1062 p->second.have_pair_ = true;
1063 }
1064 else
1065 {
1066 std::pair<typename Local_tls_got_offsets::iterator, bool> ins =
1067 this->local_tls_got_offsets_.insert(
1068 std::make_pair(symndx, Tls_got_entry(got_offset, have_pair)));
1069 gold_assert(ins.second);
1070 }
1071 }
1072
1073 // Return the name of the symbol that spans the given offset in the
1074 // specified section in this object. This is used only for error
1075 // messages and is not particularly efficient.
1076 bool
1077 get_symbol_location_info(unsigned int shndx, off_t offset,
1078 Symbol_location_info* info);
1079
1080 protected:
1081 // Read the symbols.
1082 void
1083 do_read_symbols(Read_symbols_data*);
1084
1085 // Return the number of local symbols.
1086 unsigned int
1087 do_local_symbol_count() const
1088 { return this->local_symbol_count_; }
1089
1090 // Lay out the input sections.
1091 void
1092 do_layout(Symbol_table*, Layout*, Read_symbols_data*);
1093
1094 // Add the symbols to the symbol table.
1095 void
1096 do_add_symbols(Symbol_table*, Read_symbols_data*);
1097
1098 // Read the relocs.
1099 void
1100 do_read_relocs(Read_relocs_data*);
1101
1102 // Scan the relocs and adjust the symbol table.
1103 void
1104 do_scan_relocs(const General_options&, Symbol_table*, Layout*,
1105 Read_relocs_data*);
1106
1107 // Count the local symbols.
1108 void
1109 do_count_local_symbols(Stringpool_template<char>*,
1110 Stringpool_template<char>*);
1111
1112 // Finalize the local symbols.
1113 unsigned int
1114 do_finalize_local_symbols(unsigned int, off_t);
1115
1116 // Set the offset where local dynamic symbol information will be stored.
1117 unsigned int
1118 do_set_local_dynsym_indexes(unsigned int);
1119
1120 // Set the offset where local dynamic symbol information will be stored.
1121 unsigned int
1122 do_set_local_dynsym_offset(off_t);
1123
1124 // Relocate the input sections and write out the local symbols.
1125 void
1126 do_relocate(const General_options& options, const Symbol_table* symtab,
1127 const Layout*, Output_file* of);
1128
1129 // Get the name of a section.
1130 std::string
1131 do_section_name(unsigned int shndx)
1132 { return this->elf_file_.section_name(shndx); }
1133
1134 // Return the location of the contents of a section.
1135 Object::Location
1136 do_section_contents(unsigned int shndx)
1137 { return this->elf_file_.section_contents(shndx); }
1138
1139 // Return section flags.
1140 uint64_t
1141 do_section_flags(unsigned int shndx)
1142 { return this->elf_file_.section_flags(shndx); }
1143
1144 // Return section type.
1145 unsigned int
1146 do_section_type(unsigned int shndx)
1147 { return this->elf_file_.section_type(shndx); }
1148
1149 // Return the section link field.
1150 unsigned int
1151 do_section_link(unsigned int shndx)
1152 { return this->elf_file_.section_link(shndx); }
1153
1154 // Return the section info field.
1155 unsigned int
1156 do_section_info(unsigned int shndx)
1157 { return this->elf_file_.section_info(shndx); }
1158
1159 private:
1160 // For convenience.
1161 typedef Sized_relobj<size, big_endian> This;
1162 static const int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
1163 static const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1164 static const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1165 typedef elfcpp::Shdr<size, big_endian> Shdr;
1166
1167 // Find the SHT_SYMTAB section, given the section headers.
1168 void
1169 find_symtab(const unsigned char* pshdrs);
1170
1171 // Return whether SHDR has the right flags for a GNU style exception
1172 // frame section.
1173 bool
1174 check_eh_frame_flags(const elfcpp::Shdr<size, big_endian>* shdr) const;
1175
1176 // Return whether there is a section named .eh_frame which might be
1177 // a GNU style exception frame section.
1178 bool
1179 find_eh_frame(const unsigned char* pshdrs, const char* names,
1180 section_size_type names_size) const;
1181
1182 // Whether to include a section group in the link.
1183 bool
1184 include_section_group(Layout*, unsigned int,
1185 const elfcpp::Shdr<size, big_endian>&,
1186 std::vector<bool>*);
1187
1188 // Whether to include a linkonce section in the link.
1189 bool
1190 include_linkonce_section(Layout*, const char*,
1191 const elfcpp::Shdr<size, big_endian>&);
1192
1193 // Views and sizes when relocating.
1194 struct View_size
1195 {
1196 unsigned char* view;
1197 typename elfcpp::Elf_types<size>::Elf_Addr address;
1198 off_t offset;
1199 section_size_type view_size;
1200 bool is_input_output_view;
1201 bool is_postprocessing_view;
1202 };
1203
1204 typedef std::vector<View_size> Views;
1205
1206 // Write section data to the output file. Record the views and
1207 // sizes in VIEWS for use when relocating.
1208 void
1209 write_sections(const unsigned char* pshdrs, Output_file*, Views*) const;
1210
1211 // Relocate the sections in the output file.
1212 void
1213 relocate_sections(const General_options& options, const Symbol_table*,
1214 const Layout*, const unsigned char* pshdrs, Views*);
1215
1216 // Initialize input to output maps for section symbols in merged
1217 // sections.
1218 void
1219 initialize_input_to_output_maps();
1220
1221 // Free the input to output maps for section symbols in merged
1222 // sections.
1223 void
1224 free_input_to_output_maps();
1225
1226 // Write out the local symbols.
1227 void
1228 write_local_symbols(Output_file*,
1229 const Stringpool_template<char>*,
1230 const Stringpool_template<char>*);
1231
1232 // The GOT offsets of local symbols. This map also stores GOT offsets
1233 // for tp-relative offsets for TLS symbols.
1234 typedef Unordered_map<unsigned int, unsigned int> Local_got_offsets;
1235
1236 // The TLS GOT offsets of local symbols. The map stores the offsets
1237 // for either a single GOT entry that holds the module index of a TLS
1238 // symbol, or a pair of GOT entries containing the module index and
1239 // dtv-relative offset.
1240 struct Tls_got_entry
1241 {
1242 Tls_got_entry(int got_offset, bool have_pair)
1243 : got_offset_(got_offset),
1244 have_pair_(have_pair)
1245 { }
1246 int got_offset_;
1247 bool have_pair_;
1248 };
1249 typedef Unordered_map<unsigned int, Tls_got_entry> Local_tls_got_offsets;
1250
1251 // General access to the ELF file.
1252 elfcpp::Elf_file<size, big_endian, Object> elf_file_;
1253 // Index of SHT_SYMTAB section.
1254 unsigned int symtab_shndx_;
1255 // The number of local symbols.
1256 unsigned int local_symbol_count_;
1257 // The number of local symbols which go into the output file.
1258 unsigned int output_local_symbol_count_;
1259 // The number of local symbols which go into the output file's dynamic
1260 // symbol table.
1261 unsigned int output_local_dynsym_count_;
1262 // The entries in the symbol table for the external symbols.
1263 Symbols symbols_;
1264 // File offset for local symbols.
1265 off_t local_symbol_offset_;
1266 // File offset for local dynamic symbols.
1267 off_t local_dynsym_offset_;
1268 // Values of local symbols.
1269 Local_values local_values_;
1270 // GOT offsets for local non-TLS symbols, and tp-relative offsets
1271 // for TLS symbols, indexed by symbol number.
1272 Local_got_offsets local_got_offsets_;
1273 // GOT offsets for local TLS symbols, indexed by symbol number
1274 // and GOT entry type.
1275 Local_tls_got_offsets local_tls_got_offsets_;
1276 // Whether this object has a GNU style .eh_frame section.
1277 bool has_eh_frame_;
1278 };
1279
1280 // A class to manage the list of all objects.
1281
1282 class Input_objects
1283 {
1284 public:
1285 Input_objects()
1286 : relobj_list_(), dynobj_list_(), target_(NULL), sonames_(),
1287 system_library_directory_()
1288 { }
1289
1290 // The type of the list of input relocateable objects.
1291 typedef std::vector<Relobj*> Relobj_list;
1292 typedef Relobj_list::const_iterator Relobj_iterator;
1293
1294 // The type of the list of input dynamic objects.
1295 typedef std::vector<Dynobj*> Dynobj_list;
1296 typedef Dynobj_list::const_iterator Dynobj_iterator;
1297
1298 // Add an object to the list. Return true if all is well, or false
1299 // if this object should be ignored.
1300 bool
1301 add_object(Object*);
1302
1303 // Get the target we should use for the output file.
1304 Target*
1305 target() const
1306 { return this->target_; }
1307
1308 // For each dynamic object, check whether we've seen all of its
1309 // explicit dependencies.
1310 void
1311 check_dynamic_dependencies() const;
1312
1313 // Return whether an object was found in the system library
1314 // directory.
1315 bool
1316 found_in_system_library_directory(const Object*) const;
1317
1318 // Iterate over all regular objects.
1319
1320 Relobj_iterator
1321 relobj_begin() const
1322 { return this->relobj_list_.begin(); }
1323
1324 Relobj_iterator
1325 relobj_end() const
1326 { return this->relobj_list_.end(); }
1327
1328 // Iterate over all dynamic objects.
1329
1330 Dynobj_iterator
1331 dynobj_begin() const
1332 { return this->dynobj_list_.begin(); }
1333
1334 Dynobj_iterator
1335 dynobj_end() const
1336 { return this->dynobj_list_.end(); }
1337
1338 // Return whether we have seen any dynamic objects.
1339 bool
1340 any_dynamic() const
1341 { return !this->dynobj_list_.empty(); }
1342
1343 // Return the number of input objects.
1344 int
1345 number_of_input_objects() const
1346 { return this->relobj_list_.size() + this->dynobj_list_.size(); }
1347
1348 private:
1349 Input_objects(const Input_objects&);
1350 Input_objects& operator=(const Input_objects&);
1351
1352 // The list of ordinary objects included in the link.
1353 Relobj_list relobj_list_;
1354 // The list of dynamic objects included in the link.
1355 Dynobj_list dynobj_list_;
1356 // The target.
1357 Target* target_;
1358 // SONAMEs that we have seen.
1359 Unordered_set<std::string> sonames_;
1360 // The directory in which we find the libc.so.
1361 std::string system_library_directory_;
1362 };
1363
1364 // Some of the information we pass to the relocation routines. We
1365 // group this together to avoid passing a dozen different arguments.
1366
1367 template<int size, bool big_endian>
1368 struct Relocate_info
1369 {
1370 // Command line options.
1371 const General_options* options;
1372 // Symbol table.
1373 const Symbol_table* symtab;
1374 // Layout.
1375 const Layout* layout;
1376 // Object being relocated.
1377 Sized_relobj<size, big_endian>* object;
1378 // Section index of relocation section.
1379 unsigned int reloc_shndx;
1380 // Section index of section being relocated.
1381 unsigned int data_shndx;
1382
1383 // Return a string showing the location of a relocation. This is
1384 // only used for error messages.
1385 std::string
1386 location(size_t relnum, off_t reloffset) const;
1387 };
1388
1389 // Return an Object appropriate for the input file. P is BYTES long,
1390 // and holds the ELF header.
1391
1392 extern Object*
1393 make_elf_object(const std::string& name, Input_file*,
1394 off_t offset, const unsigned char* p,
1395 section_offset_type bytes);
1396
1397 } // end namespace gold
1398
1399 #endif // !defined(GOLD_OBJECT_H)
This page took 0.059413 seconds and 4 git commands to generate.