911a49ade2ca666e62544f9635c4542034462348
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h" // for unlink_if_ordinary()
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56 return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
92 gold_unreachable();
93 }
94
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
105 : layout_(layout),
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
111 {
112 // Count all the sections. Start with 1 for the null section.
113 off_t count = 1;
114 if (!parameters->options().relocatable())
115 {
116 for (Layout::Segment_list::const_iterator p = segment_list->begin();
117 p != segment_list->end();
118 ++p)
119 if ((*p)->type() == elfcpp::PT_LOAD)
120 count += (*p)->output_section_count();
121 }
122 else
123 {
124 for (Layout::Section_list::const_iterator p = section_list->begin();
125 p != section_list->end();
126 ++p)
127 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
128 ++count;
129 }
130 count += unattached_section_list->size();
131
132 const int size = parameters->target().get_size();
133 int shdr_size;
134 if (size == 32)
135 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
136 else if (size == 64)
137 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
138 else
139 gold_unreachable();
140
141 this->set_data_size(count * shdr_size);
142 }
143
144 // Write out the section headers.
145
146 void
147 Output_section_headers::do_write(Output_file* of)
148 {
149 switch (parameters->size_and_endianness())
150 {
151 #ifdef HAVE_TARGET_32_LITTLE
152 case Parameters::TARGET_32_LITTLE:
153 this->do_sized_write<32, false>(of);
154 break;
155 #endif
156 #ifdef HAVE_TARGET_32_BIG
157 case Parameters::TARGET_32_BIG:
158 this->do_sized_write<32, true>(of);
159 break;
160 #endif
161 #ifdef HAVE_TARGET_64_LITTLE
162 case Parameters::TARGET_64_LITTLE:
163 this->do_sized_write<64, false>(of);
164 break;
165 #endif
166 #ifdef HAVE_TARGET_64_BIG
167 case Parameters::TARGET_64_BIG:
168 this->do_sized_write<64, true>(of);
169 break;
170 #endif
171 default:
172 gold_unreachable();
173 }
174 }
175
176 template<int size, bool big_endian>
177 void
178 Output_section_headers::do_sized_write(Output_file* of)
179 {
180 off_t all_shdrs_size = this->data_size();
181 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
182
183 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
184 unsigned char* v = view;
185
186 {
187 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
188 oshdr.put_sh_name(0);
189 oshdr.put_sh_type(elfcpp::SHT_NULL);
190 oshdr.put_sh_flags(0);
191 oshdr.put_sh_addr(0);
192 oshdr.put_sh_offset(0);
193
194 size_t section_count = (this->data_size()
195 / elfcpp::Elf_sizes<size>::shdr_size);
196 if (section_count < elfcpp::SHN_LORESERVE)
197 oshdr.put_sh_size(0);
198 else
199 oshdr.put_sh_size(section_count);
200
201 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
202 if (shstrndx < elfcpp::SHN_LORESERVE)
203 oshdr.put_sh_link(0);
204 else
205 oshdr.put_sh_link(shstrndx);
206
207 oshdr.put_sh_info(0);
208 oshdr.put_sh_addralign(0);
209 oshdr.put_sh_entsize(0);
210 }
211
212 v += shdr_size;
213
214 unsigned int shndx = 1;
215 if (!parameters->options().relocatable())
216 {
217 for (Layout::Segment_list::const_iterator p =
218 this->segment_list_->begin();
219 p != this->segment_list_->end();
220 ++p)
221 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
222 this->secnamepool_,
223 v,
224 &shndx);
225 }
226 else
227 {
228 for (Layout::Section_list::const_iterator p =
229 this->section_list_->begin();
230 p != this->section_list_->end();
231 ++p)
232 {
233 // We do unallocated sections below, except that group
234 // sections have to come first.
235 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
236 && (*p)->type() != elfcpp::SHT_GROUP)
237 continue;
238 gold_assert(shndx == (*p)->out_shndx());
239 elfcpp::Shdr_write<size, big_endian> oshdr(v);
240 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
241 v += shdr_size;
242 ++shndx;
243 }
244 }
245
246 for (Layout::Section_list::const_iterator p =
247 this->unattached_section_list_->begin();
248 p != this->unattached_section_list_->end();
249 ++p)
250 {
251 // For a relocatable link, we did unallocated group sections
252 // above, since they have to come first.
253 if ((*p)->type() == elfcpp::SHT_GROUP
254 && parameters->options().relocatable())
255 continue;
256 gold_assert(shndx == (*p)->out_shndx());
257 elfcpp::Shdr_write<size, big_endian> oshdr(v);
258 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
259 v += shdr_size;
260 ++shndx;
261 }
262
263 of->write_output_view(this->offset(), all_shdrs_size, view);
264 }
265
266 // Output_segment_header methods.
267
268 Output_segment_headers::Output_segment_headers(
269 const Layout::Segment_list& segment_list)
270 : segment_list_(segment_list)
271 {
272 const int size = parameters->target().get_size();
273 int phdr_size;
274 if (size == 32)
275 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
276 else if (size == 64)
277 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
278 else
279 gold_unreachable();
280
281 this->set_data_size(segment_list.size() * phdr_size);
282 }
283
284 void
285 Output_segment_headers::do_write(Output_file* of)
286 {
287 switch (parameters->size_and_endianness())
288 {
289 #ifdef HAVE_TARGET_32_LITTLE
290 case Parameters::TARGET_32_LITTLE:
291 this->do_sized_write<32, false>(of);
292 break;
293 #endif
294 #ifdef HAVE_TARGET_32_BIG
295 case Parameters::TARGET_32_BIG:
296 this->do_sized_write<32, true>(of);
297 break;
298 #endif
299 #ifdef HAVE_TARGET_64_LITTLE
300 case Parameters::TARGET_64_LITTLE:
301 this->do_sized_write<64, false>(of);
302 break;
303 #endif
304 #ifdef HAVE_TARGET_64_BIG
305 case Parameters::TARGET_64_BIG:
306 this->do_sized_write<64, true>(of);
307 break;
308 #endif
309 default:
310 gold_unreachable();
311 }
312 }
313
314 template<int size, bool big_endian>
315 void
316 Output_segment_headers::do_sized_write(Output_file* of)
317 {
318 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
319 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
320 gold_assert(all_phdrs_size == this->data_size());
321 unsigned char* view = of->get_output_view(this->offset(),
322 all_phdrs_size);
323 unsigned char* v = view;
324 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
325 p != this->segment_list_.end();
326 ++p)
327 {
328 elfcpp::Phdr_write<size, big_endian> ophdr(v);
329 (*p)->write_header(&ophdr);
330 v += phdr_size;
331 }
332
333 gold_assert(v - view == all_phdrs_size);
334
335 of->write_output_view(this->offset(), all_phdrs_size, view);
336 }
337
338 // Output_file_header methods.
339
340 Output_file_header::Output_file_header(const Target* target,
341 const Symbol_table* symtab,
342 const Output_segment_headers* osh,
343 const char* entry)
344 : target_(target),
345 symtab_(symtab),
346 segment_header_(osh),
347 section_header_(NULL),
348 shstrtab_(NULL),
349 entry_(entry)
350 {
351 const int size = parameters->target().get_size();
352 int ehdr_size;
353 if (size == 32)
354 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
355 else if (size == 64)
356 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
357 else
358 gold_unreachable();
359
360 this->set_data_size(ehdr_size);
361 }
362
363 // Set the section table information for a file header.
364
365 void
366 Output_file_header::set_section_info(const Output_section_headers* shdrs,
367 const Output_section* shstrtab)
368 {
369 this->section_header_ = shdrs;
370 this->shstrtab_ = shstrtab;
371 }
372
373 // Write out the file header.
374
375 void
376 Output_file_header::do_write(Output_file* of)
377 {
378 gold_assert(this->offset() == 0);
379
380 switch (parameters->size_and_endianness())
381 {
382 #ifdef HAVE_TARGET_32_LITTLE
383 case Parameters::TARGET_32_LITTLE:
384 this->do_sized_write<32, false>(of);
385 break;
386 #endif
387 #ifdef HAVE_TARGET_32_BIG
388 case Parameters::TARGET_32_BIG:
389 this->do_sized_write<32, true>(of);
390 break;
391 #endif
392 #ifdef HAVE_TARGET_64_LITTLE
393 case Parameters::TARGET_64_LITTLE:
394 this->do_sized_write<64, false>(of);
395 break;
396 #endif
397 #ifdef HAVE_TARGET_64_BIG
398 case Parameters::TARGET_64_BIG:
399 this->do_sized_write<64, true>(of);
400 break;
401 #endif
402 default:
403 gold_unreachable();
404 }
405 }
406
407 // Write out the file header with appropriate size and endianess.
408
409 template<int size, bool big_endian>
410 void
411 Output_file_header::do_sized_write(Output_file* of)
412 {
413 gold_assert(this->offset() == 0);
414
415 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
416 unsigned char* view = of->get_output_view(0, ehdr_size);
417 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
418
419 unsigned char e_ident[elfcpp::EI_NIDENT];
420 memset(e_ident, 0, elfcpp::EI_NIDENT);
421 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
422 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
423 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
424 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
425 if (size == 32)
426 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
427 else if (size == 64)
428 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
429 else
430 gold_unreachable();
431 e_ident[elfcpp::EI_DATA] = (big_endian
432 ? elfcpp::ELFDATA2MSB
433 : elfcpp::ELFDATA2LSB);
434 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
435 oehdr.put_e_ident(e_ident);
436
437 elfcpp::ET e_type;
438 if (parameters->options().relocatable())
439 e_type = elfcpp::ET_REL;
440 else if (parameters->options().shared())
441 e_type = elfcpp::ET_DYN;
442 else
443 e_type = elfcpp::ET_EXEC;
444 oehdr.put_e_type(e_type);
445
446 oehdr.put_e_machine(this->target_->machine_code());
447 oehdr.put_e_version(elfcpp::EV_CURRENT);
448
449 oehdr.put_e_entry(this->entry<size>());
450
451 if (this->segment_header_ == NULL)
452 oehdr.put_e_phoff(0);
453 else
454 oehdr.put_e_phoff(this->segment_header_->offset());
455
456 oehdr.put_e_shoff(this->section_header_->offset());
457
458 // FIXME: The target needs to set the flags.
459 oehdr.put_e_flags(0);
460
461 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
462
463 if (this->segment_header_ == NULL)
464 {
465 oehdr.put_e_phentsize(0);
466 oehdr.put_e_phnum(0);
467 }
468 else
469 {
470 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
471 oehdr.put_e_phnum(this->segment_header_->data_size()
472 / elfcpp::Elf_sizes<size>::phdr_size);
473 }
474
475 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
476 size_t section_count = (this->section_header_->data_size()
477 / elfcpp::Elf_sizes<size>::shdr_size);
478
479 if (section_count < elfcpp::SHN_LORESERVE)
480 oehdr.put_e_shnum(this->section_header_->data_size()
481 / elfcpp::Elf_sizes<size>::shdr_size);
482 else
483 oehdr.put_e_shnum(0);
484
485 unsigned int shstrndx = this->shstrtab_->out_shndx();
486 if (shstrndx < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
488 else
489 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
490
491 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
492 // the e_ident field.
493 parameters->target().adjust_elf_header(view, ehdr_size);
494
495 of->write_output_view(0, ehdr_size, view);
496 }
497
498 // Return the value to use for the entry address. THIS->ENTRY_ is the
499 // symbol specified on the command line, if any.
500
501 template<int size>
502 typename elfcpp::Elf_types<size>::Elf_Addr
503 Output_file_header::entry()
504 {
505 const bool should_issue_warning = (this->entry_ != NULL
506 && !parameters->options().relocatable()
507 && !parameters->options().shared());
508
509 // FIXME: Need to support target specific entry symbol.
510 const char* entry = this->entry_;
511 if (entry == NULL)
512 entry = "_start";
513
514 Symbol* sym = this->symtab_->lookup(entry);
515
516 typename Sized_symbol<size>::Value_type v;
517 if (sym != NULL)
518 {
519 Sized_symbol<size>* ssym;
520 ssym = this->symtab_->get_sized_symbol<size>(sym);
521 if (!ssym->is_defined() && should_issue_warning)
522 gold_warning("entry symbol '%s' exists but is not defined", entry);
523 v = ssym->value();
524 }
525 else
526 {
527 // We couldn't find the entry symbol. See if we can parse it as
528 // a number. This supports, e.g., -e 0x1000.
529 char* endptr;
530 v = strtoull(entry, &endptr, 0);
531 if (*endptr != '\0')
532 {
533 if (should_issue_warning)
534 gold_warning("cannot find entry symbol '%s'", entry);
535 v = 0;
536 }
537 }
538
539 return v;
540 }
541
542 // Output_data_const methods.
543
544 void
545 Output_data_const::do_write(Output_file* of)
546 {
547 of->write(this->offset(), this->data_.data(), this->data_.size());
548 }
549
550 // Output_data_const_buffer methods.
551
552 void
553 Output_data_const_buffer::do_write(Output_file* of)
554 {
555 of->write(this->offset(), this->p_, this->data_size());
556 }
557
558 // Output_section_data methods.
559
560 // Record the output section, and set the entry size and such.
561
562 void
563 Output_section_data::set_output_section(Output_section* os)
564 {
565 gold_assert(this->output_section_ == NULL);
566 this->output_section_ = os;
567 this->do_adjust_output_section(os);
568 }
569
570 // Return the section index of the output section.
571
572 unsigned int
573 Output_section_data::do_out_shndx() const
574 {
575 gold_assert(this->output_section_ != NULL);
576 return this->output_section_->out_shndx();
577 }
578
579 // Set the alignment, which means we may need to update the alignment
580 // of the output section.
581
582 void
583 Output_section_data::set_addralign(uint64_t addralign)
584 {
585 this->addralign_ = addralign;
586 if (this->output_section_ != NULL
587 && this->output_section_->addralign() < addralign)
588 this->output_section_->set_addralign(addralign);
589 }
590
591 // Output_data_strtab methods.
592
593 // Set the final data size.
594
595 void
596 Output_data_strtab::set_final_data_size()
597 {
598 this->strtab_->set_string_offsets();
599 this->set_data_size(this->strtab_->get_strtab_size());
600 }
601
602 // Write out a string table.
603
604 void
605 Output_data_strtab::do_write(Output_file* of)
606 {
607 this->strtab_->write(of, this->offset());
608 }
609
610 // Output_reloc methods.
611
612 // A reloc against a global symbol.
613
614 template<bool dynamic, int size, bool big_endian>
615 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
616 Symbol* gsym,
617 unsigned int type,
618 Output_data* od,
619 Address address,
620 bool is_relative)
621 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
622 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
623 {
624 // this->type_ is a bitfield; make sure TYPE fits.
625 gold_assert(this->type_ == type);
626 this->u1_.gsym = gsym;
627 this->u2_.od = od;
628 if (dynamic)
629 this->set_needs_dynsym_index();
630 }
631
632 template<bool dynamic, int size, bool big_endian>
633 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
634 Symbol* gsym,
635 unsigned int type,
636 Sized_relobj<size, big_endian>* relobj,
637 unsigned int shndx,
638 Address address,
639 bool is_relative)
640 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
641 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
642 {
643 gold_assert(shndx != INVALID_CODE);
644 // this->type_ is a bitfield; make sure TYPE fits.
645 gold_assert(this->type_ == type);
646 this->u1_.gsym = gsym;
647 this->u2_.relobj = relobj;
648 if (dynamic)
649 this->set_needs_dynsym_index();
650 }
651
652 // A reloc against a local symbol.
653
654 template<bool dynamic, int size, bool big_endian>
655 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
656 Sized_relobj<size, big_endian>* relobj,
657 unsigned int local_sym_index,
658 unsigned int type,
659 Output_data* od,
660 Address address,
661 bool is_relative,
662 bool is_section_symbol)
663 : address_(address), local_sym_index_(local_sym_index), type_(type),
664 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
665 shndx_(INVALID_CODE)
666 {
667 gold_assert(local_sym_index != GSYM_CODE
668 && local_sym_index != INVALID_CODE);
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_ == type);
671 this->u1_.relobj = relobj;
672 this->u2_.od = od;
673 if (dynamic)
674 this->set_needs_dynsym_index();
675 }
676
677 template<bool dynamic, int size, bool big_endian>
678 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
679 Sized_relobj<size, big_endian>* relobj,
680 unsigned int local_sym_index,
681 unsigned int type,
682 unsigned int shndx,
683 Address address,
684 bool is_relative,
685 bool is_section_symbol)
686 : address_(address), local_sym_index_(local_sym_index), type_(type),
687 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
688 shndx_(shndx)
689 {
690 gold_assert(local_sym_index != GSYM_CODE
691 && local_sym_index != INVALID_CODE);
692 gold_assert(shndx != INVALID_CODE);
693 // this->type_ is a bitfield; make sure TYPE fits.
694 gold_assert(this->type_ == type);
695 this->u1_.relobj = relobj;
696 this->u2_.relobj = relobj;
697 if (dynamic)
698 this->set_needs_dynsym_index();
699 }
700
701 // A reloc against the STT_SECTION symbol of an output section.
702
703 template<bool dynamic, int size, bool big_endian>
704 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705 Output_section* os,
706 unsigned int type,
707 Output_data* od,
708 Address address)
709 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
710 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
711 {
712 // this->type_ is a bitfield; make sure TYPE fits.
713 gold_assert(this->type_ == type);
714 this->u1_.os = os;
715 this->u2_.od = od;
716 if (dynamic)
717 this->set_needs_dynsym_index();
718 else
719 os->set_needs_symtab_index();
720 }
721
722 template<bool dynamic, int size, bool big_endian>
723 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
724 Output_section* os,
725 unsigned int type,
726 Sized_relobj<size, big_endian>* relobj,
727 unsigned int shndx,
728 Address address)
729 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
730 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
731 {
732 gold_assert(shndx != INVALID_CODE);
733 // this->type_ is a bitfield; make sure TYPE fits.
734 gold_assert(this->type_ == type);
735 this->u1_.os = os;
736 this->u2_.relobj = relobj;
737 if (dynamic)
738 this->set_needs_dynsym_index();
739 else
740 os->set_needs_symtab_index();
741 }
742
743 // Record that we need a dynamic symbol index for this relocation.
744
745 template<bool dynamic, int size, bool big_endian>
746 void
747 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
748 set_needs_dynsym_index()
749 {
750 if (this->is_relative_)
751 return;
752 switch (this->local_sym_index_)
753 {
754 case INVALID_CODE:
755 gold_unreachable();
756
757 case GSYM_CODE:
758 this->u1_.gsym->set_needs_dynsym_entry();
759 break;
760
761 case SECTION_CODE:
762 this->u1_.os->set_needs_dynsym_index();
763 break;
764
765 case 0:
766 break;
767
768 default:
769 {
770 const unsigned int lsi = this->local_sym_index_;
771 if (!this->is_section_symbol_)
772 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
773 else
774 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
775 }
776 break;
777 }
778 }
779
780 // Get the symbol index of a relocation.
781
782 template<bool dynamic, int size, bool big_endian>
783 unsigned int
784 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
785 const
786 {
787 unsigned int index;
788 switch (this->local_sym_index_)
789 {
790 case INVALID_CODE:
791 gold_unreachable();
792
793 case GSYM_CODE:
794 if (this->u1_.gsym == NULL)
795 index = 0;
796 else if (dynamic)
797 index = this->u1_.gsym->dynsym_index();
798 else
799 index = this->u1_.gsym->symtab_index();
800 break;
801
802 case SECTION_CODE:
803 if (dynamic)
804 index = this->u1_.os->dynsym_index();
805 else
806 index = this->u1_.os->symtab_index();
807 break;
808
809 case 0:
810 // Relocations without symbols use a symbol index of 0.
811 index = 0;
812 break;
813
814 default:
815 {
816 const unsigned int lsi = this->local_sym_index_;
817 if (!this->is_section_symbol_)
818 {
819 if (dynamic)
820 index = this->u1_.relobj->dynsym_index(lsi);
821 else
822 index = this->u1_.relobj->symtab_index(lsi);
823 }
824 else
825 {
826 Output_section* os = this->u1_.relobj->output_section(lsi);
827 gold_assert(os != NULL);
828 if (dynamic)
829 index = os->dynsym_index();
830 else
831 index = os->symtab_index();
832 }
833 }
834 break;
835 }
836 gold_assert(index != -1U);
837 return index;
838 }
839
840 // For a local section symbol, get the address of the offset ADDEND
841 // within the input section.
842
843 template<bool dynamic, int size, bool big_endian>
844 typename elfcpp::Elf_types<size>::Elf_Addr
845 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
846 local_section_offset(Addend addend) const
847 {
848 gold_assert(this->local_sym_index_ != GSYM_CODE
849 && this->local_sym_index_ != SECTION_CODE
850 && this->local_sym_index_ != INVALID_CODE
851 && this->is_section_symbol_);
852 const unsigned int lsi = this->local_sym_index_;
853 Output_section* os = this->u1_.relobj->output_section(lsi);
854 gold_assert(os != NULL);
855 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
856 if (offset != invalid_address)
857 return offset + addend;
858 // This is a merge section.
859 offset = os->output_address(this->u1_.relobj, lsi, addend);
860 gold_assert(offset != invalid_address);
861 return offset;
862 }
863
864 // Get the output address of a relocation.
865
866 template<bool dynamic, int size, bool big_endian>
867 typename elfcpp::Elf_types<size>::Elf_Addr
868 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
869 {
870 Address address = this->address_;
871 if (this->shndx_ != INVALID_CODE)
872 {
873 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
874 gold_assert(os != NULL);
875 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
876 if (off != invalid_address)
877 address += os->address() + off;
878 else
879 {
880 address = os->output_address(this->u2_.relobj, this->shndx_,
881 address);
882 gold_assert(address != invalid_address);
883 }
884 }
885 else if (this->u2_.od != NULL)
886 address += this->u2_.od->address();
887 return address;
888 }
889
890 // Write out the offset and info fields of a Rel or Rela relocation
891 // entry.
892
893 template<bool dynamic, int size, bool big_endian>
894 template<typename Write_rel>
895 void
896 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
897 Write_rel* wr) const
898 {
899 wr->put_r_offset(this->get_address());
900 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
901 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
902 }
903
904 // Write out a Rel relocation.
905
906 template<bool dynamic, int size, bool big_endian>
907 void
908 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
909 unsigned char* pov) const
910 {
911 elfcpp::Rel_write<size, big_endian> orel(pov);
912 this->write_rel(&orel);
913 }
914
915 // Get the value of the symbol referred to by a Rel relocation.
916
917 template<bool dynamic, int size, bool big_endian>
918 typename elfcpp::Elf_types<size>::Elf_Addr
919 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
920 Addend addend) const
921 {
922 if (this->local_sym_index_ == GSYM_CODE)
923 {
924 const Sized_symbol<size>* sym;
925 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
926 return sym->value() + addend;
927 }
928 gold_assert(this->local_sym_index_ != SECTION_CODE
929 && this->local_sym_index_ != INVALID_CODE
930 && !this->is_section_symbol_);
931 const unsigned int lsi = this->local_sym_index_;
932 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
933 return symval->value(this->u1_.relobj, addend);
934 }
935
936 // Reloc comparison. This function sorts the dynamic relocs for the
937 // benefit of the dynamic linker. First we sort all relative relocs
938 // to the front. Among relative relocs, we sort by output address.
939 // Among non-relative relocs, we sort by symbol index, then by output
940 // address.
941
942 template<bool dynamic, int size, bool big_endian>
943 int
944 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
945 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
946 const
947 {
948 if (this->is_relative_)
949 {
950 if (!r2.is_relative_)
951 return -1;
952 // Otherwise sort by reloc address below.
953 }
954 else if (r2.is_relative_)
955 return 1;
956 else
957 {
958 unsigned int sym1 = this->get_symbol_index();
959 unsigned int sym2 = r2.get_symbol_index();
960 if (sym1 < sym2)
961 return -1;
962 else if (sym1 > sym2)
963 return 1;
964 // Otherwise sort by reloc address.
965 }
966
967 section_offset_type addr1 = this->get_address();
968 section_offset_type addr2 = r2.get_address();
969 if (addr1 < addr2)
970 return -1;
971 else if (addr1 > addr2)
972 return 1;
973
974 // Final tie breaker, in order to generate the same output on any
975 // host: reloc type.
976 unsigned int type1 = this->type_;
977 unsigned int type2 = r2.type_;
978 if (type1 < type2)
979 return -1;
980 else if (type1 > type2)
981 return 1;
982
983 // These relocs appear to be exactly the same.
984 return 0;
985 }
986
987 // Write out a Rela relocation.
988
989 template<bool dynamic, int size, bool big_endian>
990 void
991 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
992 unsigned char* pov) const
993 {
994 elfcpp::Rela_write<size, big_endian> orel(pov);
995 this->rel_.write_rel(&orel);
996 Addend addend = this->addend_;
997 if (this->rel_.is_relative())
998 addend = this->rel_.symbol_value(addend);
999 else if (this->rel_.is_local_section_symbol())
1000 addend = this->rel_.local_section_offset(addend);
1001 orel.put_r_addend(addend);
1002 }
1003
1004 // Output_data_reloc_base methods.
1005
1006 // Adjust the output section.
1007
1008 template<int sh_type, bool dynamic, int size, bool big_endian>
1009 void
1010 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1011 ::do_adjust_output_section(Output_section* os)
1012 {
1013 if (sh_type == elfcpp::SHT_REL)
1014 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1015 else if (sh_type == elfcpp::SHT_RELA)
1016 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1017 else
1018 gold_unreachable();
1019 if (dynamic)
1020 os->set_should_link_to_dynsym();
1021 else
1022 os->set_should_link_to_symtab();
1023 }
1024
1025 // Write out relocation data.
1026
1027 template<int sh_type, bool dynamic, int size, bool big_endian>
1028 void
1029 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1030 Output_file* of)
1031 {
1032 const off_t off = this->offset();
1033 const off_t oview_size = this->data_size();
1034 unsigned char* const oview = of->get_output_view(off, oview_size);
1035
1036 if (this->sort_relocs_)
1037 {
1038 gold_assert(dynamic);
1039 std::sort(this->relocs_.begin(), this->relocs_.end(),
1040 Sort_relocs_comparison());
1041 }
1042
1043 unsigned char* pov = oview;
1044 for (typename Relocs::const_iterator p = this->relocs_.begin();
1045 p != this->relocs_.end();
1046 ++p)
1047 {
1048 p->write(pov);
1049 pov += reloc_size;
1050 }
1051
1052 gold_assert(pov - oview == oview_size);
1053
1054 of->write_output_view(off, oview_size, oview);
1055
1056 // We no longer need the relocation entries.
1057 this->relocs_.clear();
1058 }
1059
1060 // Class Output_relocatable_relocs.
1061
1062 template<int sh_type, int size, bool big_endian>
1063 void
1064 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1065 {
1066 this->set_data_size(this->rr_->output_reloc_count()
1067 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1068 }
1069
1070 // class Output_data_group.
1071
1072 template<int size, bool big_endian>
1073 Output_data_group<size, big_endian>::Output_data_group(
1074 Sized_relobj<size, big_endian>* relobj,
1075 section_size_type entry_count,
1076 elfcpp::Elf_Word flags,
1077 std::vector<unsigned int>* input_shndxes)
1078 : Output_section_data(entry_count * 4, 4),
1079 relobj_(relobj),
1080 flags_(flags)
1081 {
1082 this->input_shndxes_.swap(*input_shndxes);
1083 }
1084
1085 // Write out the section group, which means translating the section
1086 // indexes to apply to the output file.
1087
1088 template<int size, bool big_endian>
1089 void
1090 Output_data_group<size, big_endian>::do_write(Output_file* of)
1091 {
1092 const off_t off = this->offset();
1093 const section_size_type oview_size =
1094 convert_to_section_size_type(this->data_size());
1095 unsigned char* const oview = of->get_output_view(off, oview_size);
1096
1097 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1098 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1099 ++contents;
1100
1101 for (std::vector<unsigned int>::const_iterator p =
1102 this->input_shndxes_.begin();
1103 p != this->input_shndxes_.end();
1104 ++p, ++contents)
1105 {
1106 Output_section* os = this->relobj_->output_section(*p);
1107
1108 unsigned int output_shndx;
1109 if (os != NULL)
1110 output_shndx = os->out_shndx();
1111 else
1112 {
1113 this->relobj_->error(_("section group retained but "
1114 "group element discarded"));
1115 output_shndx = 0;
1116 }
1117
1118 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1119 }
1120
1121 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1122 gold_assert(wrote == oview_size);
1123
1124 of->write_output_view(off, oview_size, oview);
1125
1126 // We no longer need this information.
1127 this->input_shndxes_.clear();
1128 }
1129
1130 // Output_data_got::Got_entry methods.
1131
1132 // Write out the entry.
1133
1134 template<int size, bool big_endian>
1135 void
1136 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1137 {
1138 Valtype val = 0;
1139
1140 switch (this->local_sym_index_)
1141 {
1142 case GSYM_CODE:
1143 {
1144 // If the symbol is resolved locally, we need to write out the
1145 // link-time value, which will be relocated dynamically by a
1146 // RELATIVE relocation.
1147 Symbol* gsym = this->u_.gsym;
1148 Sized_symbol<size>* sgsym;
1149 // This cast is a bit ugly. We don't want to put a
1150 // virtual method in Symbol, because we want Symbol to be
1151 // as small as possible.
1152 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1153 val = sgsym->value();
1154 }
1155 break;
1156
1157 case CONSTANT_CODE:
1158 val = this->u_.constant;
1159 break;
1160
1161 default:
1162 {
1163 const unsigned int lsi = this->local_sym_index_;
1164 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1165 val = symval->value(this->u_.object, 0);
1166 }
1167 break;
1168 }
1169
1170 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1171 }
1172
1173 // Output_data_got methods.
1174
1175 // Add an entry for a global symbol to the GOT. This returns true if
1176 // this is a new GOT entry, false if the symbol already had a GOT
1177 // entry.
1178
1179 template<int size, bool big_endian>
1180 bool
1181 Output_data_got<size, big_endian>::add_global(
1182 Symbol* gsym,
1183 unsigned int got_type)
1184 {
1185 if (gsym->has_got_offset(got_type))
1186 return false;
1187
1188 this->entries_.push_back(Got_entry(gsym));
1189 this->set_got_size();
1190 gsym->set_got_offset(got_type, this->last_got_offset());
1191 return true;
1192 }
1193
1194 // Add an entry for a global symbol to the GOT, and add a dynamic
1195 // relocation of type R_TYPE for the GOT entry.
1196 template<int size, bool big_endian>
1197 void
1198 Output_data_got<size, big_endian>::add_global_with_rel(
1199 Symbol* gsym,
1200 unsigned int got_type,
1201 Rel_dyn* rel_dyn,
1202 unsigned int r_type)
1203 {
1204 if (gsym->has_got_offset(got_type))
1205 return;
1206
1207 this->entries_.push_back(Got_entry());
1208 this->set_got_size();
1209 unsigned int got_offset = this->last_got_offset();
1210 gsym->set_got_offset(got_type, got_offset);
1211 rel_dyn->add_global(gsym, r_type, this, got_offset);
1212 }
1213
1214 template<int size, bool big_endian>
1215 void
1216 Output_data_got<size, big_endian>::add_global_with_rela(
1217 Symbol* gsym,
1218 unsigned int got_type,
1219 Rela_dyn* rela_dyn,
1220 unsigned int r_type)
1221 {
1222 if (gsym->has_got_offset(got_type))
1223 return;
1224
1225 this->entries_.push_back(Got_entry());
1226 this->set_got_size();
1227 unsigned int got_offset = this->last_got_offset();
1228 gsym->set_got_offset(got_type, got_offset);
1229 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1230 }
1231
1232 // Add a pair of entries for a global symbol to the GOT, and add
1233 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1234 // If R_TYPE_2 == 0, add the second entry with no relocation.
1235 template<int size, bool big_endian>
1236 void
1237 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1238 Symbol* gsym,
1239 unsigned int got_type,
1240 Rel_dyn* rel_dyn,
1241 unsigned int r_type_1,
1242 unsigned int r_type_2)
1243 {
1244 if (gsym->has_got_offset(got_type))
1245 return;
1246
1247 this->entries_.push_back(Got_entry());
1248 unsigned int got_offset = this->last_got_offset();
1249 gsym->set_got_offset(got_type, got_offset);
1250 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1251
1252 this->entries_.push_back(Got_entry());
1253 if (r_type_2 != 0)
1254 {
1255 got_offset = this->last_got_offset();
1256 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1257 }
1258
1259 this->set_got_size();
1260 }
1261
1262 template<int size, bool big_endian>
1263 void
1264 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1265 Symbol* gsym,
1266 unsigned int got_type,
1267 Rela_dyn* rela_dyn,
1268 unsigned int r_type_1,
1269 unsigned int r_type_2)
1270 {
1271 if (gsym->has_got_offset(got_type))
1272 return;
1273
1274 this->entries_.push_back(Got_entry());
1275 unsigned int got_offset = this->last_got_offset();
1276 gsym->set_got_offset(got_type, got_offset);
1277 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1278
1279 this->entries_.push_back(Got_entry());
1280 if (r_type_2 != 0)
1281 {
1282 got_offset = this->last_got_offset();
1283 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1284 }
1285
1286 this->set_got_size();
1287 }
1288
1289 // Add an entry for a local symbol to the GOT. This returns true if
1290 // this is a new GOT entry, false if the symbol already has a GOT
1291 // entry.
1292
1293 template<int size, bool big_endian>
1294 bool
1295 Output_data_got<size, big_endian>::add_local(
1296 Sized_relobj<size, big_endian>* object,
1297 unsigned int symndx,
1298 unsigned int got_type)
1299 {
1300 if (object->local_has_got_offset(symndx, got_type))
1301 return false;
1302
1303 this->entries_.push_back(Got_entry(object, symndx));
1304 this->set_got_size();
1305 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1306 return true;
1307 }
1308
1309 // Add an entry for a local symbol to the GOT, and add a dynamic
1310 // relocation of type R_TYPE for the GOT entry.
1311 template<int size, bool big_endian>
1312 void
1313 Output_data_got<size, big_endian>::add_local_with_rel(
1314 Sized_relobj<size, big_endian>* object,
1315 unsigned int symndx,
1316 unsigned int got_type,
1317 Rel_dyn* rel_dyn,
1318 unsigned int r_type)
1319 {
1320 if (object->local_has_got_offset(symndx, got_type))
1321 return;
1322
1323 this->entries_.push_back(Got_entry());
1324 this->set_got_size();
1325 unsigned int got_offset = this->last_got_offset();
1326 object->set_local_got_offset(symndx, got_type, got_offset);
1327 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1328 }
1329
1330 template<int size, bool big_endian>
1331 void
1332 Output_data_got<size, big_endian>::add_local_with_rela(
1333 Sized_relobj<size, big_endian>* object,
1334 unsigned int symndx,
1335 unsigned int got_type,
1336 Rela_dyn* rela_dyn,
1337 unsigned int r_type)
1338 {
1339 if (object->local_has_got_offset(symndx, got_type))
1340 return;
1341
1342 this->entries_.push_back(Got_entry());
1343 this->set_got_size();
1344 unsigned int got_offset = this->last_got_offset();
1345 object->set_local_got_offset(symndx, got_type, got_offset);
1346 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1347 }
1348
1349 // Add a pair of entries for a local symbol to the GOT, and add
1350 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1351 // If R_TYPE_2 == 0, add the second entry with no relocation.
1352 template<int size, bool big_endian>
1353 void
1354 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1355 Sized_relobj<size, big_endian>* object,
1356 unsigned int symndx,
1357 unsigned int shndx,
1358 unsigned int got_type,
1359 Rel_dyn* rel_dyn,
1360 unsigned int r_type_1,
1361 unsigned int r_type_2)
1362 {
1363 if (object->local_has_got_offset(symndx, got_type))
1364 return;
1365
1366 this->entries_.push_back(Got_entry());
1367 unsigned int got_offset = this->last_got_offset();
1368 object->set_local_got_offset(symndx, got_type, got_offset);
1369 Output_section* os = object->output_section(shndx);
1370 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1371
1372 this->entries_.push_back(Got_entry(object, symndx));
1373 if (r_type_2 != 0)
1374 {
1375 got_offset = this->last_got_offset();
1376 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1377 }
1378
1379 this->set_got_size();
1380 }
1381
1382 template<int size, bool big_endian>
1383 void
1384 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1385 Sized_relobj<size, big_endian>* object,
1386 unsigned int symndx,
1387 unsigned int shndx,
1388 unsigned int got_type,
1389 Rela_dyn* rela_dyn,
1390 unsigned int r_type_1,
1391 unsigned int r_type_2)
1392 {
1393 if (object->local_has_got_offset(symndx, got_type))
1394 return;
1395
1396 this->entries_.push_back(Got_entry());
1397 unsigned int got_offset = this->last_got_offset();
1398 object->set_local_got_offset(symndx, got_type, got_offset);
1399 Output_section* os = object->output_section(shndx);
1400 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1401
1402 this->entries_.push_back(Got_entry(object, symndx));
1403 if (r_type_2 != 0)
1404 {
1405 got_offset = this->last_got_offset();
1406 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1407 }
1408
1409 this->set_got_size();
1410 }
1411
1412 // Write out the GOT.
1413
1414 template<int size, bool big_endian>
1415 void
1416 Output_data_got<size, big_endian>::do_write(Output_file* of)
1417 {
1418 const int add = size / 8;
1419
1420 const off_t off = this->offset();
1421 const off_t oview_size = this->data_size();
1422 unsigned char* const oview = of->get_output_view(off, oview_size);
1423
1424 unsigned char* pov = oview;
1425 for (typename Got_entries::const_iterator p = this->entries_.begin();
1426 p != this->entries_.end();
1427 ++p)
1428 {
1429 p->write(pov);
1430 pov += add;
1431 }
1432
1433 gold_assert(pov - oview == oview_size);
1434
1435 of->write_output_view(off, oview_size, oview);
1436
1437 // We no longer need the GOT entries.
1438 this->entries_.clear();
1439 }
1440
1441 // Output_data_dynamic::Dynamic_entry methods.
1442
1443 // Write out the entry.
1444
1445 template<int size, bool big_endian>
1446 void
1447 Output_data_dynamic::Dynamic_entry::write(
1448 unsigned char* pov,
1449 const Stringpool* pool) const
1450 {
1451 typename elfcpp::Elf_types<size>::Elf_WXword val;
1452 switch (this->offset_)
1453 {
1454 case DYNAMIC_NUMBER:
1455 val = this->u_.val;
1456 break;
1457
1458 case DYNAMIC_SECTION_SIZE:
1459 val = this->u_.od->data_size();
1460 break;
1461
1462 case DYNAMIC_SYMBOL:
1463 {
1464 const Sized_symbol<size>* s =
1465 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1466 val = s->value();
1467 }
1468 break;
1469
1470 case DYNAMIC_STRING:
1471 val = pool->get_offset(this->u_.str);
1472 break;
1473
1474 default:
1475 val = this->u_.od->address() + this->offset_;
1476 break;
1477 }
1478
1479 elfcpp::Dyn_write<size, big_endian> dw(pov);
1480 dw.put_d_tag(this->tag_);
1481 dw.put_d_val(val);
1482 }
1483
1484 // Output_data_dynamic methods.
1485
1486 // Adjust the output section to set the entry size.
1487
1488 void
1489 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1490 {
1491 if (parameters->target().get_size() == 32)
1492 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1493 else if (parameters->target().get_size() == 64)
1494 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1495 else
1496 gold_unreachable();
1497 }
1498
1499 // Set the final data size.
1500
1501 void
1502 Output_data_dynamic::set_final_data_size()
1503 {
1504 // Add the terminating entry.
1505 this->add_constant(elfcpp::DT_NULL, 0);
1506
1507 int dyn_size;
1508 if (parameters->target().get_size() == 32)
1509 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1510 else if (parameters->target().get_size() == 64)
1511 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1512 else
1513 gold_unreachable();
1514 this->set_data_size(this->entries_.size() * dyn_size);
1515 }
1516
1517 // Write out the dynamic entries.
1518
1519 void
1520 Output_data_dynamic::do_write(Output_file* of)
1521 {
1522 switch (parameters->size_and_endianness())
1523 {
1524 #ifdef HAVE_TARGET_32_LITTLE
1525 case Parameters::TARGET_32_LITTLE:
1526 this->sized_write<32, false>(of);
1527 break;
1528 #endif
1529 #ifdef HAVE_TARGET_32_BIG
1530 case Parameters::TARGET_32_BIG:
1531 this->sized_write<32, true>(of);
1532 break;
1533 #endif
1534 #ifdef HAVE_TARGET_64_LITTLE
1535 case Parameters::TARGET_64_LITTLE:
1536 this->sized_write<64, false>(of);
1537 break;
1538 #endif
1539 #ifdef HAVE_TARGET_64_BIG
1540 case Parameters::TARGET_64_BIG:
1541 this->sized_write<64, true>(of);
1542 break;
1543 #endif
1544 default:
1545 gold_unreachable();
1546 }
1547 }
1548
1549 template<int size, bool big_endian>
1550 void
1551 Output_data_dynamic::sized_write(Output_file* of)
1552 {
1553 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1554
1555 const off_t offset = this->offset();
1556 const off_t oview_size = this->data_size();
1557 unsigned char* const oview = of->get_output_view(offset, oview_size);
1558
1559 unsigned char* pov = oview;
1560 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1561 p != this->entries_.end();
1562 ++p)
1563 {
1564 p->write<size, big_endian>(pov, this->pool_);
1565 pov += dyn_size;
1566 }
1567
1568 gold_assert(pov - oview == oview_size);
1569
1570 of->write_output_view(offset, oview_size, oview);
1571
1572 // We no longer need the dynamic entries.
1573 this->entries_.clear();
1574 }
1575
1576 // Class Output_symtab_xindex.
1577
1578 void
1579 Output_symtab_xindex::do_write(Output_file* of)
1580 {
1581 const off_t offset = this->offset();
1582 const off_t oview_size = this->data_size();
1583 unsigned char* const oview = of->get_output_view(offset, oview_size);
1584
1585 memset(oview, 0, oview_size);
1586
1587 if (parameters->target().is_big_endian())
1588 this->endian_do_write<true>(oview);
1589 else
1590 this->endian_do_write<false>(oview);
1591
1592 of->write_output_view(offset, oview_size, oview);
1593
1594 // We no longer need the data.
1595 this->entries_.clear();
1596 }
1597
1598 template<bool big_endian>
1599 void
1600 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1601 {
1602 for (Xindex_entries::const_iterator p = this->entries_.begin();
1603 p != this->entries_.end();
1604 ++p)
1605 elfcpp::Swap<32, big_endian>::writeval(oview + p->first * 4, p->second);
1606 }
1607
1608 // Output_section::Input_section methods.
1609
1610 // Return the data size. For an input section we store the size here.
1611 // For an Output_section_data, we have to ask it for the size.
1612
1613 off_t
1614 Output_section::Input_section::data_size() const
1615 {
1616 if (this->is_input_section())
1617 return this->u1_.data_size;
1618 else
1619 return this->u2_.posd->data_size();
1620 }
1621
1622 // Set the address and file offset.
1623
1624 void
1625 Output_section::Input_section::set_address_and_file_offset(
1626 uint64_t address,
1627 off_t file_offset,
1628 off_t section_file_offset)
1629 {
1630 if (this->is_input_section())
1631 this->u2_.object->set_section_offset(this->shndx_,
1632 file_offset - section_file_offset);
1633 else
1634 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1635 }
1636
1637 // Reset the address and file offset.
1638
1639 void
1640 Output_section::Input_section::reset_address_and_file_offset()
1641 {
1642 if (!this->is_input_section())
1643 this->u2_.posd->reset_address_and_file_offset();
1644 }
1645
1646 // Finalize the data size.
1647
1648 void
1649 Output_section::Input_section::finalize_data_size()
1650 {
1651 if (!this->is_input_section())
1652 this->u2_.posd->finalize_data_size();
1653 }
1654
1655 // Try to turn an input offset into an output offset. We want to
1656 // return the output offset relative to the start of this
1657 // Input_section in the output section.
1658
1659 inline bool
1660 Output_section::Input_section::output_offset(
1661 const Relobj* object,
1662 unsigned int shndx,
1663 section_offset_type offset,
1664 section_offset_type *poutput) const
1665 {
1666 if (!this->is_input_section())
1667 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1668 else
1669 {
1670 if (this->shndx_ != shndx || this->u2_.object != object)
1671 return false;
1672 *poutput = offset;
1673 return true;
1674 }
1675 }
1676
1677 // Return whether this is the merge section for the input section
1678 // SHNDX in OBJECT.
1679
1680 inline bool
1681 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1682 unsigned int shndx) const
1683 {
1684 if (this->is_input_section())
1685 return false;
1686 return this->u2_.posd->is_merge_section_for(object, shndx);
1687 }
1688
1689 // Write out the data. We don't have to do anything for an input
1690 // section--they are handled via Object::relocate--but this is where
1691 // we write out the data for an Output_section_data.
1692
1693 void
1694 Output_section::Input_section::write(Output_file* of)
1695 {
1696 if (!this->is_input_section())
1697 this->u2_.posd->write(of);
1698 }
1699
1700 // Write the data to a buffer. As for write(), we don't have to do
1701 // anything for an input section.
1702
1703 void
1704 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1705 {
1706 if (!this->is_input_section())
1707 this->u2_.posd->write_to_buffer(buffer);
1708 }
1709
1710 // Print to a map file.
1711
1712 void
1713 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1714 {
1715 switch (this->shndx_)
1716 {
1717 case OUTPUT_SECTION_CODE:
1718 case MERGE_DATA_SECTION_CODE:
1719 case MERGE_STRING_SECTION_CODE:
1720 this->u2_.posd->print_to_mapfile(mapfile);
1721 break;
1722
1723 default:
1724 mapfile->print_input_section(this->u2_.object, this->shndx_);
1725 break;
1726 }
1727 }
1728
1729 // Output_section methods.
1730
1731 // Construct an Output_section. NAME will point into a Stringpool.
1732
1733 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1734 elfcpp::Elf_Xword flags)
1735 : name_(name),
1736 addralign_(0),
1737 entsize_(0),
1738 load_address_(0),
1739 link_section_(NULL),
1740 link_(0),
1741 info_section_(NULL),
1742 info_symndx_(NULL),
1743 info_(0),
1744 type_(type),
1745 flags_(flags),
1746 out_shndx_(-1U),
1747 symtab_index_(0),
1748 dynsym_index_(0),
1749 input_sections_(),
1750 first_input_offset_(0),
1751 fills_(),
1752 postprocessing_buffer_(NULL),
1753 needs_symtab_index_(false),
1754 needs_dynsym_index_(false),
1755 should_link_to_symtab_(false),
1756 should_link_to_dynsym_(false),
1757 after_input_sections_(false),
1758 requires_postprocessing_(false),
1759 found_in_sections_clause_(false),
1760 has_load_address_(false),
1761 info_uses_section_index_(false),
1762 may_sort_attached_input_sections_(false),
1763 must_sort_attached_input_sections_(false),
1764 attached_input_sections_are_sorted_(false),
1765 is_relro_(false),
1766 is_relro_local_(false),
1767 is_small_section_(false),
1768 is_large_section_(false),
1769 tls_offset_(0)
1770 {
1771 // An unallocated section has no address. Forcing this means that
1772 // we don't need special treatment for symbols defined in debug
1773 // sections.
1774 if ((flags & elfcpp::SHF_ALLOC) == 0)
1775 this->set_address(0);
1776 }
1777
1778 Output_section::~Output_section()
1779 {
1780 }
1781
1782 // Set the entry size.
1783
1784 void
1785 Output_section::set_entsize(uint64_t v)
1786 {
1787 if (this->entsize_ == 0)
1788 this->entsize_ = v;
1789 else
1790 gold_assert(this->entsize_ == v);
1791 }
1792
1793 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1794 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1795 // relocation section which applies to this section, or 0 if none, or
1796 // -1U if more than one. Return the offset of the input section
1797 // within the output section. Return -1 if the input section will
1798 // receive special handling. In the normal case we don't always keep
1799 // track of input sections for an Output_section. Instead, each
1800 // Object keeps track of the Output_section for each of its input
1801 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1802 // track of input sections here; this is used when SECTIONS appears in
1803 // a linker script.
1804
1805 template<int size, bool big_endian>
1806 off_t
1807 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1808 unsigned int shndx,
1809 const char* secname,
1810 const elfcpp::Shdr<size, big_endian>& shdr,
1811 unsigned int reloc_shndx,
1812 bool have_sections_script)
1813 {
1814 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1815 if ((addralign & (addralign - 1)) != 0)
1816 {
1817 object->error(_("invalid alignment %lu for section \"%s\""),
1818 static_cast<unsigned long>(addralign), secname);
1819 addralign = 1;
1820 }
1821
1822 if (addralign > this->addralign_)
1823 this->addralign_ = addralign;
1824
1825 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1826 this->update_flags_for_input_section(sh_flags);
1827
1828 uint64_t entsize = shdr.get_sh_entsize();
1829
1830 // .debug_str is a mergeable string section, but is not always so
1831 // marked by compilers. Mark manually here so we can optimize.
1832 if (strcmp(secname, ".debug_str") == 0)
1833 {
1834 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1835 entsize = 1;
1836 }
1837
1838 // If this is a SHF_MERGE section, we pass all the input sections to
1839 // a Output_data_merge. We don't try to handle relocations for such
1840 // a section. We don't try to handle empty merge sections--they
1841 // mess up the mappings, and are useless anyhow.
1842 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1843 && reloc_shndx == 0
1844 && shdr.get_sh_size() > 0)
1845 {
1846 if (this->add_merge_input_section(object, shndx, sh_flags,
1847 entsize, addralign))
1848 {
1849 // Tell the relocation routines that they need to call the
1850 // output_offset method to determine the final address.
1851 return -1;
1852 }
1853 }
1854
1855 off_t offset_in_section = this->current_data_size_for_child();
1856 off_t aligned_offset_in_section = align_address(offset_in_section,
1857 addralign);
1858
1859 if (aligned_offset_in_section > offset_in_section
1860 && !have_sections_script
1861 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1862 && object->target()->has_code_fill())
1863 {
1864 // We need to add some fill data. Using fill_list_ when
1865 // possible is an optimization, since we will often have fill
1866 // sections without input sections.
1867 off_t fill_len = aligned_offset_in_section - offset_in_section;
1868 if (this->input_sections_.empty())
1869 this->fills_.push_back(Fill(offset_in_section, fill_len));
1870 else
1871 {
1872 // FIXME: When relaxing, the size needs to adjust to
1873 // maintain a constant alignment.
1874 std::string fill_data(object->target()->code_fill(fill_len));
1875 Output_data_const* odc = new Output_data_const(fill_data, 1);
1876 this->input_sections_.push_back(Input_section(odc));
1877 }
1878 }
1879
1880 this->set_current_data_size_for_child(aligned_offset_in_section
1881 + shdr.get_sh_size());
1882
1883 // We need to keep track of this section if we are already keeping
1884 // track of sections, or if we are relaxing. Also, if this is a
1885 // section which requires sorting, or which may require sorting in
1886 // the future, we keep track of the sections. FIXME: Add test for
1887 // relaxing.
1888 if (have_sections_script
1889 || !this->input_sections_.empty()
1890 || this->may_sort_attached_input_sections()
1891 || this->must_sort_attached_input_sections()
1892 || parameters->options().user_set_Map())
1893 this->input_sections_.push_back(Input_section(object, shndx,
1894 shdr.get_sh_size(),
1895 addralign));
1896
1897 return aligned_offset_in_section;
1898 }
1899
1900 // Add arbitrary data to an output section.
1901
1902 void
1903 Output_section::add_output_section_data(Output_section_data* posd)
1904 {
1905 Input_section inp(posd);
1906 this->add_output_section_data(&inp);
1907
1908 if (posd->is_data_size_valid())
1909 {
1910 off_t offset_in_section = this->current_data_size_for_child();
1911 off_t aligned_offset_in_section = align_address(offset_in_section,
1912 posd->addralign());
1913 this->set_current_data_size_for_child(aligned_offset_in_section
1914 + posd->data_size());
1915 }
1916 }
1917
1918 // Add arbitrary data to an output section by Input_section.
1919
1920 void
1921 Output_section::add_output_section_data(Input_section* inp)
1922 {
1923 if (this->input_sections_.empty())
1924 this->first_input_offset_ = this->current_data_size_for_child();
1925
1926 this->input_sections_.push_back(*inp);
1927
1928 uint64_t addralign = inp->addralign();
1929 if (addralign > this->addralign_)
1930 this->addralign_ = addralign;
1931
1932 inp->set_output_section(this);
1933 }
1934
1935 // Add a merge section to an output section.
1936
1937 void
1938 Output_section::add_output_merge_section(Output_section_data* posd,
1939 bool is_string, uint64_t entsize)
1940 {
1941 Input_section inp(posd, is_string, entsize);
1942 this->add_output_section_data(&inp);
1943 }
1944
1945 // Add an input section to a SHF_MERGE section.
1946
1947 bool
1948 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1949 uint64_t flags, uint64_t entsize,
1950 uint64_t addralign)
1951 {
1952 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1953
1954 // We only merge strings if the alignment is not more than the
1955 // character size. This could be handled, but it's unusual.
1956 if (is_string && addralign > entsize)
1957 return false;
1958
1959 Input_section_list::iterator p;
1960 for (p = this->input_sections_.begin();
1961 p != this->input_sections_.end();
1962 ++p)
1963 if (p->is_merge_section(is_string, entsize, addralign))
1964 {
1965 p->add_input_section(object, shndx);
1966 return true;
1967 }
1968
1969 // We handle the actual constant merging in Output_merge_data or
1970 // Output_merge_string_data.
1971 Output_section_data* posd;
1972 if (!is_string)
1973 posd = new Output_merge_data(entsize, addralign);
1974 else
1975 {
1976 switch (entsize)
1977 {
1978 case 1:
1979 posd = new Output_merge_string<char>(addralign);
1980 break;
1981 case 2:
1982 posd = new Output_merge_string<uint16_t>(addralign);
1983 break;
1984 case 4:
1985 posd = new Output_merge_string<uint32_t>(addralign);
1986 break;
1987 default:
1988 return false;
1989 }
1990 }
1991
1992 this->add_output_merge_section(posd, is_string, entsize);
1993 posd->add_input_section(object, shndx);
1994
1995 return true;
1996 }
1997
1998 // Given an address OFFSET relative to the start of input section
1999 // SHNDX in OBJECT, return whether this address is being included in
2000 // the final link. This should only be called if SHNDX in OBJECT has
2001 // a special mapping.
2002
2003 bool
2004 Output_section::is_input_address_mapped(const Relobj* object,
2005 unsigned int shndx,
2006 off_t offset) const
2007 {
2008 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2009 p != this->input_sections_.end();
2010 ++p)
2011 {
2012 section_offset_type output_offset;
2013 if (p->output_offset(object, shndx, offset, &output_offset))
2014 return output_offset != -1;
2015 }
2016
2017 // By default we assume that the address is mapped. This should
2018 // only be called after we have passed all sections to Layout. At
2019 // that point we should know what we are discarding.
2020 return true;
2021 }
2022
2023 // Given an address OFFSET relative to the start of input section
2024 // SHNDX in object OBJECT, return the output offset relative to the
2025 // start of the input section in the output section. This should only
2026 // be called if SHNDX in OBJECT has a special mapping.
2027
2028 section_offset_type
2029 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2030 section_offset_type offset) const
2031 {
2032 // This can only be called meaningfully when layout is complete.
2033 gold_assert(Output_data::is_layout_complete());
2034
2035 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2036 p != this->input_sections_.end();
2037 ++p)
2038 {
2039 section_offset_type output_offset;
2040 if (p->output_offset(object, shndx, offset, &output_offset))
2041 return output_offset;
2042 }
2043 gold_unreachable();
2044 }
2045
2046 // Return the output virtual address of OFFSET relative to the start
2047 // of input section SHNDX in object OBJECT.
2048
2049 uint64_t
2050 Output_section::output_address(const Relobj* object, unsigned int shndx,
2051 off_t offset) const
2052 {
2053 uint64_t addr = this->address() + this->first_input_offset_;
2054 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2055 p != this->input_sections_.end();
2056 ++p)
2057 {
2058 addr = align_address(addr, p->addralign());
2059 section_offset_type output_offset;
2060 if (p->output_offset(object, shndx, offset, &output_offset))
2061 {
2062 if (output_offset == -1)
2063 return -1ULL;
2064 return addr + output_offset;
2065 }
2066 addr += p->data_size();
2067 }
2068
2069 // If we get here, it means that we don't know the mapping for this
2070 // input section. This might happen in principle if
2071 // add_input_section were called before add_output_section_data.
2072 // But it should never actually happen.
2073
2074 gold_unreachable();
2075 }
2076
2077 // Find the output address of the start of the merged section for
2078 // input section SHNDX in object OBJECT.
2079
2080 bool
2081 Output_section::find_starting_output_address(const Relobj* object,
2082 unsigned int shndx,
2083 uint64_t* paddr) const
2084 {
2085 uint64_t addr = this->address() + this->first_input_offset_;
2086 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2087 p != this->input_sections_.end();
2088 ++p)
2089 {
2090 addr = align_address(addr, p->addralign());
2091
2092 // It would be nice if we could use the existing output_offset
2093 // method to get the output offset of input offset 0.
2094 // Unfortunately we don't know for sure that input offset 0 is
2095 // mapped at all.
2096 if (p->is_merge_section_for(object, shndx))
2097 {
2098 *paddr = addr;
2099 return true;
2100 }
2101
2102 addr += p->data_size();
2103 }
2104
2105 // We couldn't find a merge output section for this input section.
2106 return false;
2107 }
2108
2109 // Set the data size of an Output_section. This is where we handle
2110 // setting the addresses of any Output_section_data objects.
2111
2112 void
2113 Output_section::set_final_data_size()
2114 {
2115 if (this->input_sections_.empty())
2116 {
2117 this->set_data_size(this->current_data_size_for_child());
2118 return;
2119 }
2120
2121 if (this->must_sort_attached_input_sections())
2122 this->sort_attached_input_sections();
2123
2124 uint64_t address = this->address();
2125 off_t startoff = this->offset();
2126 off_t off = startoff + this->first_input_offset_;
2127 for (Input_section_list::iterator p = this->input_sections_.begin();
2128 p != this->input_sections_.end();
2129 ++p)
2130 {
2131 off = align_address(off, p->addralign());
2132 p->set_address_and_file_offset(address + (off - startoff), off,
2133 startoff);
2134 off += p->data_size();
2135 }
2136
2137 this->set_data_size(off - startoff);
2138 }
2139
2140 // Reset the address and file offset.
2141
2142 void
2143 Output_section::do_reset_address_and_file_offset()
2144 {
2145 for (Input_section_list::iterator p = this->input_sections_.begin();
2146 p != this->input_sections_.end();
2147 ++p)
2148 p->reset_address_and_file_offset();
2149 }
2150
2151 // Set the TLS offset. Called only for SHT_TLS sections.
2152
2153 void
2154 Output_section::do_set_tls_offset(uint64_t tls_base)
2155 {
2156 this->tls_offset_ = this->address() - tls_base;
2157 }
2158
2159 // In a few cases we need to sort the input sections attached to an
2160 // output section. This is used to implement the type of constructor
2161 // priority ordering implemented by the GNU linker, in which the
2162 // priority becomes part of the section name and the sections are
2163 // sorted by name. We only do this for an output section if we see an
2164 // attached input section matching ".ctor.*", ".dtor.*",
2165 // ".init_array.*" or ".fini_array.*".
2166
2167 class Output_section::Input_section_sort_entry
2168 {
2169 public:
2170 Input_section_sort_entry()
2171 : input_section_(), index_(-1U), section_has_name_(false),
2172 section_name_()
2173 { }
2174
2175 Input_section_sort_entry(const Input_section& input_section,
2176 unsigned int index)
2177 : input_section_(input_section), index_(index),
2178 section_has_name_(input_section.is_input_section())
2179 {
2180 if (this->section_has_name_)
2181 {
2182 // This is only called single-threaded from Layout::finalize,
2183 // so it is OK to lock. Unfortunately we have no way to pass
2184 // in a Task token.
2185 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2186 Object* obj = input_section.relobj();
2187 Task_lock_obj<Object> tl(dummy_task, obj);
2188
2189 // This is a slow operation, which should be cached in
2190 // Layout::layout if this becomes a speed problem.
2191 this->section_name_ = obj->section_name(input_section.shndx());
2192 }
2193 }
2194
2195 // Return the Input_section.
2196 const Input_section&
2197 input_section() const
2198 {
2199 gold_assert(this->index_ != -1U);
2200 return this->input_section_;
2201 }
2202
2203 // The index of this entry in the original list. This is used to
2204 // make the sort stable.
2205 unsigned int
2206 index() const
2207 {
2208 gold_assert(this->index_ != -1U);
2209 return this->index_;
2210 }
2211
2212 // Whether there is a section name.
2213 bool
2214 section_has_name() const
2215 { return this->section_has_name_; }
2216
2217 // The section name.
2218 const std::string&
2219 section_name() const
2220 {
2221 gold_assert(this->section_has_name_);
2222 return this->section_name_;
2223 }
2224
2225 // Return true if the section name has a priority. This is assumed
2226 // to be true if it has a dot after the initial dot.
2227 bool
2228 has_priority() const
2229 {
2230 gold_assert(this->section_has_name_);
2231 return this->section_name_.find('.', 1);
2232 }
2233
2234 // Return true if this an input file whose base name matches
2235 // FILE_NAME. The base name must have an extension of ".o", and
2236 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2237 // This is to match crtbegin.o as well as crtbeginS.o without
2238 // getting confused by other possibilities. Overall matching the
2239 // file name this way is a dreadful hack, but the GNU linker does it
2240 // in order to better support gcc, and we need to be compatible.
2241 bool
2242 match_file_name(const char* match_file_name) const
2243 {
2244 const std::string& file_name(this->input_section_.relobj()->name());
2245 const char* base_name = lbasename(file_name.c_str());
2246 size_t match_len = strlen(match_file_name);
2247 if (strncmp(base_name, match_file_name, match_len) != 0)
2248 return false;
2249 size_t base_len = strlen(base_name);
2250 if (base_len != match_len + 2 && base_len != match_len + 3)
2251 return false;
2252 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2253 }
2254
2255 private:
2256 // The Input_section we are sorting.
2257 Input_section input_section_;
2258 // The index of this Input_section in the original list.
2259 unsigned int index_;
2260 // Whether this Input_section has a section name--it won't if this
2261 // is some random Output_section_data.
2262 bool section_has_name_;
2263 // The section name if there is one.
2264 std::string section_name_;
2265 };
2266
2267 // Return true if S1 should come before S2 in the output section.
2268
2269 bool
2270 Output_section::Input_section_sort_compare::operator()(
2271 const Output_section::Input_section_sort_entry& s1,
2272 const Output_section::Input_section_sort_entry& s2) const
2273 {
2274 // crtbegin.o must come first.
2275 bool s1_begin = s1.match_file_name("crtbegin");
2276 bool s2_begin = s2.match_file_name("crtbegin");
2277 if (s1_begin || s2_begin)
2278 {
2279 if (!s1_begin)
2280 return false;
2281 if (!s2_begin)
2282 return true;
2283 return s1.index() < s2.index();
2284 }
2285
2286 // crtend.o must come last.
2287 bool s1_end = s1.match_file_name("crtend");
2288 bool s2_end = s2.match_file_name("crtend");
2289 if (s1_end || s2_end)
2290 {
2291 if (!s1_end)
2292 return true;
2293 if (!s2_end)
2294 return false;
2295 return s1.index() < s2.index();
2296 }
2297
2298 // We sort all the sections with no names to the end.
2299 if (!s1.section_has_name() || !s2.section_has_name())
2300 {
2301 if (s1.section_has_name())
2302 return true;
2303 if (s2.section_has_name())
2304 return false;
2305 return s1.index() < s2.index();
2306 }
2307
2308 // A section with a priority follows a section without a priority.
2309 // The GNU linker does this for all but .init_array sections; until
2310 // further notice we'll assume that that is an mistake.
2311 bool s1_has_priority = s1.has_priority();
2312 bool s2_has_priority = s2.has_priority();
2313 if (s1_has_priority && !s2_has_priority)
2314 return false;
2315 if (!s1_has_priority && s2_has_priority)
2316 return true;
2317
2318 // Otherwise we sort by name.
2319 int compare = s1.section_name().compare(s2.section_name());
2320 if (compare != 0)
2321 return compare < 0;
2322
2323 // Otherwise we keep the input order.
2324 return s1.index() < s2.index();
2325 }
2326
2327 // Sort the input sections attached to an output section.
2328
2329 void
2330 Output_section::sort_attached_input_sections()
2331 {
2332 if (this->attached_input_sections_are_sorted_)
2333 return;
2334
2335 // The only thing we know about an input section is the object and
2336 // the section index. We need the section name. Recomputing this
2337 // is slow but this is an unusual case. If this becomes a speed
2338 // problem we can cache the names as required in Layout::layout.
2339
2340 // We start by building a larger vector holding a copy of each
2341 // Input_section, plus its current index in the list and its name.
2342 std::vector<Input_section_sort_entry> sort_list;
2343
2344 unsigned int i = 0;
2345 for (Input_section_list::iterator p = this->input_sections_.begin();
2346 p != this->input_sections_.end();
2347 ++p, ++i)
2348 sort_list.push_back(Input_section_sort_entry(*p, i));
2349
2350 // Sort the input sections.
2351 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2352
2353 // Copy the sorted input sections back to our list.
2354 this->input_sections_.clear();
2355 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2356 p != sort_list.end();
2357 ++p)
2358 this->input_sections_.push_back(p->input_section());
2359
2360 // Remember that we sorted the input sections, since we might get
2361 // called again.
2362 this->attached_input_sections_are_sorted_ = true;
2363 }
2364
2365 // Write the section header to *OSHDR.
2366
2367 template<int size, bool big_endian>
2368 void
2369 Output_section::write_header(const Layout* layout,
2370 const Stringpool* secnamepool,
2371 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2372 {
2373 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2374 oshdr->put_sh_type(this->type_);
2375
2376 elfcpp::Elf_Xword flags = this->flags_;
2377 if (this->info_section_ != NULL && this->info_uses_section_index_)
2378 flags |= elfcpp::SHF_INFO_LINK;
2379 oshdr->put_sh_flags(flags);
2380
2381 oshdr->put_sh_addr(this->address());
2382 oshdr->put_sh_offset(this->offset());
2383 oshdr->put_sh_size(this->data_size());
2384 if (this->link_section_ != NULL)
2385 oshdr->put_sh_link(this->link_section_->out_shndx());
2386 else if (this->should_link_to_symtab_)
2387 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2388 else if (this->should_link_to_dynsym_)
2389 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2390 else
2391 oshdr->put_sh_link(this->link_);
2392
2393 elfcpp::Elf_Word info;
2394 if (this->info_section_ != NULL)
2395 {
2396 if (this->info_uses_section_index_)
2397 info = this->info_section_->out_shndx();
2398 else
2399 info = this->info_section_->symtab_index();
2400 }
2401 else if (this->info_symndx_ != NULL)
2402 info = this->info_symndx_->symtab_index();
2403 else
2404 info = this->info_;
2405 oshdr->put_sh_info(info);
2406
2407 oshdr->put_sh_addralign(this->addralign_);
2408 oshdr->put_sh_entsize(this->entsize_);
2409 }
2410
2411 // Write out the data. For input sections the data is written out by
2412 // Object::relocate, but we have to handle Output_section_data objects
2413 // here.
2414
2415 void
2416 Output_section::do_write(Output_file* of)
2417 {
2418 gold_assert(!this->requires_postprocessing());
2419
2420 off_t output_section_file_offset = this->offset();
2421 for (Fill_list::iterator p = this->fills_.begin();
2422 p != this->fills_.end();
2423 ++p)
2424 {
2425 std::string fill_data(parameters->target().code_fill(p->length()));
2426 of->write(output_section_file_offset + p->section_offset(),
2427 fill_data.data(), fill_data.size());
2428 }
2429
2430 for (Input_section_list::iterator p = this->input_sections_.begin();
2431 p != this->input_sections_.end();
2432 ++p)
2433 p->write(of);
2434 }
2435
2436 // If a section requires postprocessing, create the buffer to use.
2437
2438 void
2439 Output_section::create_postprocessing_buffer()
2440 {
2441 gold_assert(this->requires_postprocessing());
2442
2443 if (this->postprocessing_buffer_ != NULL)
2444 return;
2445
2446 if (!this->input_sections_.empty())
2447 {
2448 off_t off = this->first_input_offset_;
2449 for (Input_section_list::iterator p = this->input_sections_.begin();
2450 p != this->input_sections_.end();
2451 ++p)
2452 {
2453 off = align_address(off, p->addralign());
2454 p->finalize_data_size();
2455 off += p->data_size();
2456 }
2457 this->set_current_data_size_for_child(off);
2458 }
2459
2460 off_t buffer_size = this->current_data_size_for_child();
2461 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2462 }
2463
2464 // Write all the data of an Output_section into the postprocessing
2465 // buffer. This is used for sections which require postprocessing,
2466 // such as compression. Input sections are handled by
2467 // Object::Relocate.
2468
2469 void
2470 Output_section::write_to_postprocessing_buffer()
2471 {
2472 gold_assert(this->requires_postprocessing());
2473
2474 unsigned char* buffer = this->postprocessing_buffer();
2475 for (Fill_list::iterator p = this->fills_.begin();
2476 p != this->fills_.end();
2477 ++p)
2478 {
2479 std::string fill_data(parameters->target().code_fill(p->length()));
2480 memcpy(buffer + p->section_offset(), fill_data.data(),
2481 fill_data.size());
2482 }
2483
2484 off_t off = this->first_input_offset_;
2485 for (Input_section_list::iterator p = this->input_sections_.begin();
2486 p != this->input_sections_.end();
2487 ++p)
2488 {
2489 off = align_address(off, p->addralign());
2490 p->write_to_buffer(buffer + off);
2491 off += p->data_size();
2492 }
2493 }
2494
2495 // Get the input sections for linker script processing. We leave
2496 // behind the Output_section_data entries. Note that this may be
2497 // slightly incorrect for merge sections. We will leave them behind,
2498 // but it is possible that the script says that they should follow
2499 // some other input sections, as in:
2500 // .rodata { *(.rodata) *(.rodata.cst*) }
2501 // For that matter, we don't handle this correctly:
2502 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2503 // With luck this will never matter.
2504
2505 uint64_t
2506 Output_section::get_input_sections(
2507 uint64_t address,
2508 const std::string& fill,
2509 std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2510 {
2511 uint64_t orig_address = address;
2512
2513 address = align_address(address, this->addralign());
2514
2515 Input_section_list remaining;
2516 for (Input_section_list::iterator p = this->input_sections_.begin();
2517 p != this->input_sections_.end();
2518 ++p)
2519 {
2520 if (p->is_input_section())
2521 input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2522 else
2523 {
2524 uint64_t aligned_address = align_address(address, p->addralign());
2525 if (aligned_address != address && !fill.empty())
2526 {
2527 section_size_type length =
2528 convert_to_section_size_type(aligned_address - address);
2529 std::string this_fill;
2530 this_fill.reserve(length);
2531 while (this_fill.length() + fill.length() <= length)
2532 this_fill += fill;
2533 if (this_fill.length() < length)
2534 this_fill.append(fill, 0, length - this_fill.length());
2535
2536 Output_section_data* posd = new Output_data_const(this_fill, 0);
2537 remaining.push_back(Input_section(posd));
2538 }
2539 address = aligned_address;
2540
2541 remaining.push_back(*p);
2542
2543 p->finalize_data_size();
2544 address += p->data_size();
2545 }
2546 }
2547
2548 this->input_sections_.swap(remaining);
2549 this->first_input_offset_ = 0;
2550
2551 uint64_t data_size = address - orig_address;
2552 this->set_current_data_size_for_child(data_size);
2553 return data_size;
2554 }
2555
2556 // Add an input section from a script.
2557
2558 void
2559 Output_section::add_input_section_for_script(Relobj* object,
2560 unsigned int shndx,
2561 off_t data_size,
2562 uint64_t addralign)
2563 {
2564 if (addralign > this->addralign_)
2565 this->addralign_ = addralign;
2566
2567 off_t offset_in_section = this->current_data_size_for_child();
2568 off_t aligned_offset_in_section = align_address(offset_in_section,
2569 addralign);
2570
2571 this->set_current_data_size_for_child(aligned_offset_in_section
2572 + data_size);
2573
2574 this->input_sections_.push_back(Input_section(object, shndx,
2575 data_size, addralign));
2576 }
2577
2578 // Print to the map file.
2579
2580 void
2581 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
2582 {
2583 mapfile->print_output_section(this);
2584
2585 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2586 p != this->input_sections_.end();
2587 ++p)
2588 p->print_to_mapfile(mapfile);
2589 }
2590
2591 // Print stats for merge sections to stderr.
2592
2593 void
2594 Output_section::print_merge_stats()
2595 {
2596 Input_section_list::iterator p;
2597 for (p = this->input_sections_.begin();
2598 p != this->input_sections_.end();
2599 ++p)
2600 p->print_merge_stats(this->name_);
2601 }
2602
2603 // Output segment methods.
2604
2605 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2606 : output_data_(),
2607 output_bss_(),
2608 vaddr_(0),
2609 paddr_(0),
2610 memsz_(0),
2611 max_align_(0),
2612 min_p_align_(0),
2613 offset_(0),
2614 filesz_(0),
2615 type_(type),
2616 flags_(flags),
2617 is_max_align_known_(false),
2618 are_addresses_set_(false),
2619 is_large_data_segment_(false)
2620 {
2621 }
2622
2623 // Add an Output_section to an Output_segment.
2624
2625 void
2626 Output_segment::add_output_section(Output_section* os,
2627 elfcpp::Elf_Word seg_flags)
2628 {
2629 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
2630 gold_assert(!this->is_max_align_known_);
2631 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
2632
2633 // Update the segment flags.
2634 this->flags_ |= seg_flags;
2635
2636 Output_segment::Output_data_list* pdl;
2637 if (os->type() == elfcpp::SHT_NOBITS)
2638 pdl = &this->output_bss_;
2639 else
2640 pdl = &this->output_data_;
2641
2642 // So that PT_NOTE segments will work correctly, we need to ensure
2643 // that all SHT_NOTE sections are adjacent. This will normally
2644 // happen automatically, because all the SHT_NOTE input sections
2645 // will wind up in the same output section. However, it is possible
2646 // for multiple SHT_NOTE input sections to have different section
2647 // flags, and thus be in different output sections, but for the
2648 // different section flags to map into the same segment flags and
2649 // thus the same output segment.
2650
2651 // Note that while there may be many input sections in an output
2652 // section, there are normally only a few output sections in an
2653 // output segment. This loop is expected to be fast.
2654
2655 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
2656 {
2657 Output_segment::Output_data_list::iterator p = pdl->end();
2658 do
2659 {
2660 --p;
2661 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2662 {
2663 ++p;
2664 pdl->insert(p, os);
2665 return;
2666 }
2667 }
2668 while (p != pdl->begin());
2669 }
2670
2671 // Similarly, so that PT_TLS segments will work, we need to group
2672 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2673 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2674 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
2675 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2676 // and the PT_TLS segment -- we do this grouping only for the
2677 // PT_LOAD segment.
2678 if (this->type_ != elfcpp::PT_TLS
2679 && (os->flags() & elfcpp::SHF_TLS) != 0)
2680 {
2681 pdl = &this->output_data_;
2682 bool nobits = os->type() == elfcpp::SHT_NOBITS;
2683 bool sawtls = false;
2684 Output_segment::Output_data_list::iterator p = pdl->end();
2685 do
2686 {
2687 --p;
2688 bool insert;
2689 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2690 {
2691 sawtls = true;
2692 // Put a NOBITS section after the first TLS section.
2693 // Put a PROGBITS section after the first TLS/PROGBITS
2694 // section.
2695 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2696 }
2697 else
2698 {
2699 // If we've gone past the TLS sections, but we've seen a
2700 // TLS section, then we need to insert this section now.
2701 insert = sawtls;
2702 }
2703
2704 if (insert)
2705 {
2706 ++p;
2707 pdl->insert(p, os);
2708 return;
2709 }
2710 }
2711 while (p != pdl->begin());
2712
2713 // There are no TLS sections yet; put this one at the requested
2714 // location in the section list.
2715 }
2716
2717 // For the PT_GNU_RELRO segment, we need to group relro sections,
2718 // and we need to put them before any non-relro sections. Also,
2719 // relro local sections go before relro non-local sections.
2720 if (parameters->options().relro() && os->is_relro())
2721 {
2722 gold_assert(pdl == &this->output_data_);
2723 Output_segment::Output_data_list::iterator p;
2724 for (p = pdl->begin(); p != pdl->end(); ++p)
2725 {
2726 if (!(*p)->is_section())
2727 break;
2728
2729 Output_section* pos = (*p)->output_section();
2730 if (!pos->is_relro()
2731 || (os->is_relro_local() && !pos->is_relro_local()))
2732 break;
2733 }
2734
2735 pdl->insert(p, os);
2736 return;
2737 }
2738
2739 // Small data sections go at the end of the list of data sections.
2740 // If OS is not small, and there are small sections, we have to
2741 // insert it before the first small section.
2742 if (os->type() != elfcpp::SHT_NOBITS
2743 && !os->is_small_section()
2744 && !pdl->empty()
2745 && pdl->back()->is_section()
2746 && pdl->back()->output_section()->is_small_section())
2747 {
2748 for (Output_segment::Output_data_list::iterator p = pdl->begin();
2749 p != pdl->end();
2750 ++p)
2751 {
2752 if ((*p)->is_section()
2753 && (*p)->output_section()->is_small_section())
2754 {
2755 pdl->insert(p, os);
2756 return;
2757 }
2758 }
2759 gold_unreachable();
2760 }
2761
2762 // A small BSS section goes at the start of the BSS sections, after
2763 // other small BSS sections.
2764 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
2765 {
2766 for (Output_segment::Output_data_list::iterator p = pdl->begin();
2767 p != pdl->end();
2768 ++p)
2769 {
2770 if (!(*p)->is_section()
2771 || !(*p)->output_section()->is_small_section())
2772 {
2773 pdl->insert(p, os);
2774 return;
2775 }
2776 }
2777 }
2778
2779 // A large BSS section goes at the end of the BSS sections, which
2780 // means that one that is not large must come before the first large
2781 // one.
2782 if (os->type() == elfcpp::SHT_NOBITS
2783 && !os->is_large_section()
2784 && !pdl->empty()
2785 && pdl->back()->is_section()
2786 && pdl->back()->output_section()->is_large_section())
2787 {
2788 for (Output_segment::Output_data_list::iterator p = pdl->begin();
2789 p != pdl->end();
2790 ++p)
2791 {
2792 if ((*p)->is_section()
2793 && (*p)->output_section()->is_large_section())
2794 {
2795 pdl->insert(p, os);
2796 return;
2797 }
2798 }
2799 gold_unreachable();
2800 }
2801
2802 pdl->push_back(os);
2803 }
2804
2805 // Remove an Output_section from this segment. It is an error if it
2806 // is not present.
2807
2808 void
2809 Output_segment::remove_output_section(Output_section* os)
2810 {
2811 // We only need this for SHT_PROGBITS.
2812 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2813 for (Output_data_list::iterator p = this->output_data_.begin();
2814 p != this->output_data_.end();
2815 ++p)
2816 {
2817 if (*p == os)
2818 {
2819 this->output_data_.erase(p);
2820 return;
2821 }
2822 }
2823 gold_unreachable();
2824 }
2825
2826 // Add an Output_data (which is not an Output_section) to the start of
2827 // a segment.
2828
2829 void
2830 Output_segment::add_initial_output_data(Output_data* od)
2831 {
2832 gold_assert(!this->is_max_align_known_);
2833 this->output_data_.push_front(od);
2834 }
2835
2836 // Return whether the first data section is a relro section.
2837
2838 bool
2839 Output_segment::is_first_section_relro() const
2840 {
2841 return (!this->output_data_.empty()
2842 && this->output_data_.front()->is_section()
2843 && this->output_data_.front()->output_section()->is_relro());
2844 }
2845
2846 // Return the maximum alignment of the Output_data in Output_segment.
2847
2848 uint64_t
2849 Output_segment::maximum_alignment()
2850 {
2851 if (!this->is_max_align_known_)
2852 {
2853 uint64_t addralign;
2854
2855 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2856 if (addralign > this->max_align_)
2857 this->max_align_ = addralign;
2858
2859 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2860 if (addralign > this->max_align_)
2861 this->max_align_ = addralign;
2862
2863 // If -z relro is in effect, and the first section in this
2864 // segment is a relro section, then the segment must be aligned
2865 // to at least the common page size. This ensures that the
2866 // PT_GNU_RELRO segment will start at a page boundary.
2867 if (this->type_ == elfcpp::PT_LOAD
2868 && parameters->options().relro()
2869 && this->is_first_section_relro())
2870 {
2871 addralign = parameters->target().common_pagesize();
2872 if (addralign > this->max_align_)
2873 this->max_align_ = addralign;
2874 }
2875
2876 this->is_max_align_known_ = true;
2877 }
2878
2879 return this->max_align_;
2880 }
2881
2882 // Return the maximum alignment of a list of Output_data.
2883
2884 uint64_t
2885 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
2886 {
2887 uint64_t ret = 0;
2888 for (Output_data_list::const_iterator p = pdl->begin();
2889 p != pdl->end();
2890 ++p)
2891 {
2892 uint64_t addralign = (*p)->addralign();
2893 if (addralign > ret)
2894 ret = addralign;
2895 }
2896 return ret;
2897 }
2898
2899 // Return the number of dynamic relocs applied to this segment.
2900
2901 unsigned int
2902 Output_segment::dynamic_reloc_count() const
2903 {
2904 return (this->dynamic_reloc_count_list(&this->output_data_)
2905 + this->dynamic_reloc_count_list(&this->output_bss_));
2906 }
2907
2908 // Return the number of dynamic relocs applied to an Output_data_list.
2909
2910 unsigned int
2911 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2912 {
2913 unsigned int count = 0;
2914 for (Output_data_list::const_iterator p = pdl->begin();
2915 p != pdl->end();
2916 ++p)
2917 count += (*p)->dynamic_reloc_count();
2918 return count;
2919 }
2920
2921 // Set the section addresses for an Output_segment. If RESET is true,
2922 // reset the addresses first. ADDR is the address and *POFF is the
2923 // file offset. Set the section indexes starting with *PSHNDX.
2924 // Return the address of the immediately following segment. Update
2925 // *POFF and *PSHNDX.
2926
2927 uint64_t
2928 Output_segment::set_section_addresses(const Layout* layout, bool reset,
2929 uint64_t addr, off_t* poff,
2930 unsigned int* pshndx)
2931 {
2932 gold_assert(this->type_ == elfcpp::PT_LOAD);
2933
2934 if (!reset && this->are_addresses_set_)
2935 {
2936 gold_assert(this->paddr_ == addr);
2937 addr = this->vaddr_;
2938 }
2939 else
2940 {
2941 this->vaddr_ = addr;
2942 this->paddr_ = addr;
2943 this->are_addresses_set_ = true;
2944 }
2945
2946 bool in_tls = false;
2947
2948 bool in_relro = (parameters->options().relro()
2949 && this->is_first_section_relro());
2950
2951 off_t orig_off = *poff;
2952 this->offset_ = orig_off;
2953
2954 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
2955 addr, poff, pshndx, &in_tls,
2956 &in_relro);
2957 this->filesz_ = *poff - orig_off;
2958
2959 off_t off = *poff;
2960
2961 uint64_t ret = this->set_section_list_addresses(layout, reset,
2962 &this->output_bss_,
2963 addr, poff, pshndx,
2964 &in_tls, &in_relro);
2965
2966 // If the last section was a TLS section, align upward to the
2967 // alignment of the TLS segment, so that the overall size of the TLS
2968 // segment is aligned.
2969 if (in_tls)
2970 {
2971 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
2972 *poff = align_address(*poff, segment_align);
2973 }
2974
2975 // If all the sections were relro sections, align upward to the
2976 // common page size.
2977 if (in_relro)
2978 {
2979 uint64_t page_align = parameters->target().common_pagesize();
2980 *poff = align_address(*poff, page_align);
2981 }
2982
2983 this->memsz_ = *poff - orig_off;
2984
2985 // Ignore the file offset adjustments made by the BSS Output_data
2986 // objects.
2987 *poff = off;
2988
2989 return ret;
2990 }
2991
2992 // Set the addresses and file offsets in a list of Output_data
2993 // structures.
2994
2995 uint64_t
2996 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
2997 Output_data_list* pdl,
2998 uint64_t addr, off_t* poff,
2999 unsigned int* pshndx,
3000 bool* in_tls, bool* in_relro)
3001 {
3002 off_t startoff = *poff;
3003
3004 off_t off = startoff;
3005 for (Output_data_list::iterator p = pdl->begin();
3006 p != pdl->end();
3007 ++p)
3008 {
3009 if (reset)
3010 (*p)->reset_address_and_file_offset();
3011
3012 // When using a linker script the section will most likely
3013 // already have an address.
3014 if (!(*p)->is_address_valid())
3015 {
3016 uint64_t align = (*p)->addralign();
3017
3018 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3019 {
3020 // Give the first TLS section the alignment of the
3021 // entire TLS segment. Otherwise the TLS segment as a
3022 // whole may be misaligned.
3023 if (!*in_tls)
3024 {
3025 Output_segment* tls_segment = layout->tls_segment();
3026 gold_assert(tls_segment != NULL);
3027 uint64_t segment_align = tls_segment->maximum_alignment();
3028 gold_assert(segment_align >= align);
3029 align = segment_align;
3030
3031 *in_tls = true;
3032 }
3033 }
3034 else
3035 {
3036 // If this is the first section after the TLS segment,
3037 // align it to at least the alignment of the TLS
3038 // segment, so that the size of the overall TLS segment
3039 // is aligned.
3040 if (*in_tls)
3041 {
3042 uint64_t segment_align =
3043 layout->tls_segment()->maximum_alignment();
3044 if (segment_align > align)
3045 align = segment_align;
3046
3047 *in_tls = false;
3048 }
3049 }
3050
3051 // If this is a non-relro section after a relro section,
3052 // align it to a common page boundary so that the dynamic
3053 // linker has a page to mark as read-only.
3054 if (*in_relro
3055 && (!(*p)->is_section()
3056 || !(*p)->output_section()->is_relro()))
3057 {
3058 uint64_t page_align = parameters->target().common_pagesize();
3059 if (page_align > align)
3060 align = page_align;
3061 *in_relro = false;
3062 }
3063
3064 off = align_address(off, align);
3065 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3066 }
3067 else
3068 {
3069 // The script may have inserted a skip forward, but it
3070 // better not have moved backward.
3071 gold_assert((*p)->address() >= addr + (off - startoff));
3072 off += (*p)->address() - (addr + (off - startoff));
3073 (*p)->set_file_offset(off);
3074 (*p)->finalize_data_size();
3075 }
3076
3077 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3078 // section. Such a section does not affect the size of a
3079 // PT_LOAD segment.
3080 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3081 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3082 off += (*p)->data_size();
3083
3084 if ((*p)->is_section())
3085 {
3086 (*p)->set_out_shndx(*pshndx);
3087 ++*pshndx;
3088 }
3089 }
3090
3091 *poff = off;
3092 return addr + (off - startoff);
3093 }
3094
3095 // For a non-PT_LOAD segment, set the offset from the sections, if
3096 // any.
3097
3098 void
3099 Output_segment::set_offset()
3100 {
3101 gold_assert(this->type_ != elfcpp::PT_LOAD);
3102
3103 gold_assert(!this->are_addresses_set_);
3104
3105 if (this->output_data_.empty() && this->output_bss_.empty())
3106 {
3107 this->vaddr_ = 0;
3108 this->paddr_ = 0;
3109 this->are_addresses_set_ = true;
3110 this->memsz_ = 0;
3111 this->min_p_align_ = 0;
3112 this->offset_ = 0;
3113 this->filesz_ = 0;
3114 return;
3115 }
3116
3117 const Output_data* first;
3118 if (this->output_data_.empty())
3119 first = this->output_bss_.front();
3120 else
3121 first = this->output_data_.front();
3122 this->vaddr_ = first->address();
3123 this->paddr_ = (first->has_load_address()
3124 ? first->load_address()
3125 : this->vaddr_);
3126 this->are_addresses_set_ = true;
3127 this->offset_ = first->offset();
3128
3129 if (this->output_data_.empty())
3130 this->filesz_ = 0;
3131 else
3132 {
3133 const Output_data* last_data = this->output_data_.back();
3134 this->filesz_ = (last_data->address()
3135 + last_data->data_size()
3136 - this->vaddr_);
3137 }
3138
3139 const Output_data* last;
3140 if (this->output_bss_.empty())
3141 last = this->output_data_.back();
3142 else
3143 last = this->output_bss_.back();
3144 this->memsz_ = (last->address()
3145 + last->data_size()
3146 - this->vaddr_);
3147
3148 // If this is a TLS segment, align the memory size. The code in
3149 // set_section_list ensures that the section after the TLS segment
3150 // is aligned to give us room.
3151 if (this->type_ == elfcpp::PT_TLS)
3152 {
3153 uint64_t segment_align = this->maximum_alignment();
3154 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3155 this->memsz_ = align_address(this->memsz_, segment_align);
3156 }
3157
3158 // If this is a RELRO segment, align the memory size. The code in
3159 // set_section_list ensures that the section after the RELRO segment
3160 // is aligned to give us room.
3161 if (this->type_ == elfcpp::PT_GNU_RELRO)
3162 {
3163 uint64_t page_align = parameters->target().common_pagesize();
3164 gold_assert(this->vaddr_ == align_address(this->vaddr_, page_align));
3165 this->memsz_ = align_address(this->memsz_, page_align);
3166 }
3167 }
3168
3169 // Set the TLS offsets of the sections in the PT_TLS segment.
3170
3171 void
3172 Output_segment::set_tls_offsets()
3173 {
3174 gold_assert(this->type_ == elfcpp::PT_TLS);
3175
3176 for (Output_data_list::iterator p = this->output_data_.begin();
3177 p != this->output_data_.end();
3178 ++p)
3179 (*p)->set_tls_offset(this->vaddr_);
3180
3181 for (Output_data_list::iterator p = this->output_bss_.begin();
3182 p != this->output_bss_.end();
3183 ++p)
3184 (*p)->set_tls_offset(this->vaddr_);
3185 }
3186
3187 // Return the address of the first section.
3188
3189 uint64_t
3190 Output_segment::first_section_load_address() const
3191 {
3192 for (Output_data_list::const_iterator p = this->output_data_.begin();
3193 p != this->output_data_.end();
3194 ++p)
3195 if ((*p)->is_section())
3196 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3197
3198 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3199 p != this->output_bss_.end();
3200 ++p)
3201 if ((*p)->is_section())
3202 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3203
3204 gold_unreachable();
3205 }
3206
3207 // Return the number of Output_sections in an Output_segment.
3208
3209 unsigned int
3210 Output_segment::output_section_count() const
3211 {
3212 return (this->output_section_count_list(&this->output_data_)
3213 + this->output_section_count_list(&this->output_bss_));
3214 }
3215
3216 // Return the number of Output_sections in an Output_data_list.
3217
3218 unsigned int
3219 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3220 {
3221 unsigned int count = 0;
3222 for (Output_data_list::const_iterator p = pdl->begin();
3223 p != pdl->end();
3224 ++p)
3225 {
3226 if ((*p)->is_section())
3227 ++count;
3228 }
3229 return count;
3230 }
3231
3232 // Return the section attached to the list segment with the lowest
3233 // load address. This is used when handling a PHDRS clause in a
3234 // linker script.
3235
3236 Output_section*
3237 Output_segment::section_with_lowest_load_address() const
3238 {
3239 Output_section* found = NULL;
3240 uint64_t found_lma = 0;
3241 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3242
3243 Output_section* found_data = found;
3244 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3245 if (found != found_data && found_data != NULL)
3246 {
3247 gold_error(_("nobits section %s may not precede progbits section %s "
3248 "in same segment"),
3249 found->name(), found_data->name());
3250 return NULL;
3251 }
3252
3253 return found;
3254 }
3255
3256 // Look through a list for a section with a lower load address.
3257
3258 void
3259 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3260 Output_section** found,
3261 uint64_t* found_lma) const
3262 {
3263 for (Output_data_list::const_iterator p = pdl->begin();
3264 p != pdl->end();
3265 ++p)
3266 {
3267 if (!(*p)->is_section())
3268 continue;
3269 Output_section* os = static_cast<Output_section*>(*p);
3270 uint64_t lma = (os->has_load_address()
3271 ? os->load_address()
3272 : os->address());
3273 if (*found == NULL || lma < *found_lma)
3274 {
3275 *found = os;
3276 *found_lma = lma;
3277 }
3278 }
3279 }
3280
3281 // Write the segment data into *OPHDR.
3282
3283 template<int size, bool big_endian>
3284 void
3285 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3286 {
3287 ophdr->put_p_type(this->type_);
3288 ophdr->put_p_offset(this->offset_);
3289 ophdr->put_p_vaddr(this->vaddr_);
3290 ophdr->put_p_paddr(this->paddr_);
3291 ophdr->put_p_filesz(this->filesz_);
3292 ophdr->put_p_memsz(this->memsz_);
3293 ophdr->put_p_flags(this->flags_);
3294 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3295 }
3296
3297 // Write the section headers into V.
3298
3299 template<int size, bool big_endian>
3300 unsigned char*
3301 Output_segment::write_section_headers(const Layout* layout,
3302 const Stringpool* secnamepool,
3303 unsigned char* v,
3304 unsigned int *pshndx) const
3305 {
3306 // Every section that is attached to a segment must be attached to a
3307 // PT_LOAD segment, so we only write out section headers for PT_LOAD
3308 // segments.
3309 if (this->type_ != elfcpp::PT_LOAD)
3310 return v;
3311
3312 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3313 &this->output_data_,
3314 v, pshndx);
3315 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3316 &this->output_bss_,
3317 v, pshndx);
3318 return v;
3319 }
3320
3321 template<int size, bool big_endian>
3322 unsigned char*
3323 Output_segment::write_section_headers_list(const Layout* layout,
3324 const Stringpool* secnamepool,
3325 const Output_data_list* pdl,
3326 unsigned char* v,
3327 unsigned int* pshndx) const
3328 {
3329 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3330 for (Output_data_list::const_iterator p = pdl->begin();
3331 p != pdl->end();
3332 ++p)
3333 {
3334 if ((*p)->is_section())
3335 {
3336 const Output_section* ps = static_cast<const Output_section*>(*p);
3337 gold_assert(*pshndx == ps->out_shndx());
3338 elfcpp::Shdr_write<size, big_endian> oshdr(v);
3339 ps->write_header(layout, secnamepool, &oshdr);
3340 v += shdr_size;
3341 ++*pshndx;
3342 }
3343 }
3344 return v;
3345 }
3346
3347 // Print the output sections to the map file.
3348
3349 void
3350 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
3351 {
3352 if (this->type() != elfcpp::PT_LOAD)
3353 return;
3354 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
3355 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
3356 }
3357
3358 // Print an output section list to the map file.
3359
3360 void
3361 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
3362 const Output_data_list* pdl) const
3363 {
3364 for (Output_data_list::const_iterator p = pdl->begin();
3365 p != pdl->end();
3366 ++p)
3367 (*p)->print_to_mapfile(mapfile);
3368 }
3369
3370 // Output_file methods.
3371
3372 Output_file::Output_file(const char* name)
3373 : name_(name),
3374 o_(-1),
3375 file_size_(0),
3376 base_(NULL),
3377 map_is_anonymous_(false),
3378 is_temporary_(false)
3379 {
3380 }
3381
3382 // Open the output file.
3383
3384 void
3385 Output_file::open(off_t file_size)
3386 {
3387 this->file_size_ = file_size;
3388
3389 // Unlink the file first; otherwise the open() may fail if the file
3390 // is busy (e.g. it's an executable that's currently being executed).
3391 //
3392 // However, the linker may be part of a system where a zero-length
3393 // file is created for it to write to, with tight permissions (gcc
3394 // 2.95 did something like this). Unlinking the file would work
3395 // around those permission controls, so we only unlink if the file
3396 // has a non-zero size. We also unlink only regular files to avoid
3397 // trouble with directories/etc.
3398 //
3399 // If we fail, continue; this command is merely a best-effort attempt
3400 // to improve the odds for open().
3401
3402 // We let the name "-" mean "stdout"
3403 if (!this->is_temporary_)
3404 {
3405 if (strcmp(this->name_, "-") == 0)
3406 this->o_ = STDOUT_FILENO;
3407 else
3408 {
3409 struct stat s;
3410 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
3411 unlink_if_ordinary(this->name_);
3412
3413 int mode = parameters->options().relocatable() ? 0666 : 0777;
3414 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
3415 mode);
3416 if (o < 0)
3417 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3418 this->o_ = o;
3419 }
3420 }
3421
3422 this->map();
3423 }
3424
3425 // Resize the output file.
3426
3427 void
3428 Output_file::resize(off_t file_size)
3429 {
3430 // If the mmap is mapping an anonymous memory buffer, this is easy:
3431 // just mremap to the new size. If it's mapping to a file, we want
3432 // to unmap to flush to the file, then remap after growing the file.
3433 if (this->map_is_anonymous_)
3434 {
3435 void* base = ::mremap(this->base_, this->file_size_, file_size,
3436 MREMAP_MAYMOVE);
3437 if (base == MAP_FAILED)
3438 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
3439 this->base_ = static_cast<unsigned char*>(base);
3440 this->file_size_ = file_size;
3441 }
3442 else
3443 {
3444 this->unmap();
3445 this->file_size_ = file_size;
3446 this->map();
3447 }
3448 }
3449
3450 // Map a block of memory which will later be written to the file.
3451 // Return a pointer to the memory.
3452
3453 void*
3454 Output_file::map_anonymous()
3455 {
3456 this->map_is_anonymous_ = true;
3457 return ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3458 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3459 }
3460
3461 // Map the file into memory.
3462
3463 void
3464 Output_file::map()
3465 {
3466 const int o = this->o_;
3467
3468 // If the output file is not a regular file, don't try to mmap it;
3469 // instead, we'll mmap a block of memory (an anonymous buffer), and
3470 // then later write the buffer to the file.
3471 void* base;
3472 struct stat statbuf;
3473 if (o == STDOUT_FILENO || o == STDERR_FILENO
3474 || ::fstat(o, &statbuf) != 0
3475 || !S_ISREG(statbuf.st_mode)
3476 || this->is_temporary_)
3477 base = this->map_anonymous();
3478 else
3479 {
3480 // Ensure that we have disk space available for the file. If we
3481 // don't do this, it is possible that we will call munmap,
3482 // close, and exit with dirty buffers still in the cache with no
3483 // assigned disk blocks. If the disk is out of space at that
3484 // point, the output file will wind up incomplete, but we will
3485 // have already exited. The alternative to fallocate would be
3486 // to use fdatasync, but that would be a more significant
3487 // performance hit.
3488 if (::posix_fallocate(o, 0, this->file_size_) < 0)
3489 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
3490
3491 // Map the file into memory.
3492 this->map_is_anonymous_ = false;
3493 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3494 MAP_SHARED, o, 0);
3495
3496 // The mmap call might fail because of file system issues: the
3497 // file system might not support mmap at all, or it might not
3498 // support mmap with PROT_WRITE. I'm not sure which errno
3499 // values we will see in all cases, so if the mmap fails for any
3500 // reason try for an anonymous map.
3501 if (base == MAP_FAILED)
3502 base = this->map_anonymous();
3503 }
3504 if (base == MAP_FAILED)
3505 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
3506 this->name_, static_cast<unsigned long>(this->file_size_),
3507 strerror(errno));
3508 this->base_ = static_cast<unsigned char*>(base);
3509 }
3510
3511 // Unmap the file from memory.
3512
3513 void
3514 Output_file::unmap()
3515 {
3516 if (::munmap(this->base_, this->file_size_) < 0)
3517 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
3518 this->base_ = NULL;
3519 }
3520
3521 // Close the output file.
3522
3523 void
3524 Output_file::close()
3525 {
3526 // If the map isn't file-backed, we need to write it now.
3527 if (this->map_is_anonymous_ && !this->is_temporary_)
3528 {
3529 size_t bytes_to_write = this->file_size_;
3530 size_t offset = 0;
3531 while (bytes_to_write > 0)
3532 {
3533 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
3534 bytes_to_write);
3535 if (bytes_written == 0)
3536 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
3537 else if (bytes_written < 0)
3538 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
3539 else
3540 {
3541 bytes_to_write -= bytes_written;
3542 offset += bytes_written;
3543 }
3544 }
3545 }
3546 this->unmap();
3547
3548 // We don't close stdout or stderr
3549 if (this->o_ != STDOUT_FILENO
3550 && this->o_ != STDERR_FILENO
3551 && !this->is_temporary_)
3552 if (::close(this->o_) < 0)
3553 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
3554 this->o_ = -1;
3555 }
3556
3557 // Instantiate the templates we need. We could use the configure
3558 // script to restrict this to only the ones for implemented targets.
3559
3560 #ifdef HAVE_TARGET_32_LITTLE
3561 template
3562 off_t
3563 Output_section::add_input_section<32, false>(
3564 Sized_relobj<32, false>* object,
3565 unsigned int shndx,
3566 const char* secname,
3567 const elfcpp::Shdr<32, false>& shdr,
3568 unsigned int reloc_shndx,
3569 bool have_sections_script);
3570 #endif
3571
3572 #ifdef HAVE_TARGET_32_BIG
3573 template
3574 off_t
3575 Output_section::add_input_section<32, true>(
3576 Sized_relobj<32, true>* object,
3577 unsigned int shndx,
3578 const char* secname,
3579 const elfcpp::Shdr<32, true>& shdr,
3580 unsigned int reloc_shndx,
3581 bool have_sections_script);
3582 #endif
3583
3584 #ifdef HAVE_TARGET_64_LITTLE
3585 template
3586 off_t
3587 Output_section::add_input_section<64, false>(
3588 Sized_relobj<64, false>* object,
3589 unsigned int shndx,
3590 const char* secname,
3591 const elfcpp::Shdr<64, false>& shdr,
3592 unsigned int reloc_shndx,
3593 bool have_sections_script);
3594 #endif
3595
3596 #ifdef HAVE_TARGET_64_BIG
3597 template
3598 off_t
3599 Output_section::add_input_section<64, true>(
3600 Sized_relobj<64, true>* object,
3601 unsigned int shndx,
3602 const char* secname,
3603 const elfcpp::Shdr<64, true>& shdr,
3604 unsigned int reloc_shndx,
3605 bool have_sections_script);
3606 #endif
3607
3608 #ifdef HAVE_TARGET_32_LITTLE
3609 template
3610 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
3611 #endif
3612
3613 #ifdef HAVE_TARGET_32_BIG
3614 template
3615 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
3616 #endif
3617
3618 #ifdef HAVE_TARGET_64_LITTLE
3619 template
3620 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
3621 #endif
3622
3623 #ifdef HAVE_TARGET_64_BIG
3624 template
3625 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
3626 #endif
3627
3628 #ifdef HAVE_TARGET_32_LITTLE
3629 template
3630 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
3631 #endif
3632
3633 #ifdef HAVE_TARGET_32_BIG
3634 template
3635 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
3636 #endif
3637
3638 #ifdef HAVE_TARGET_64_LITTLE
3639 template
3640 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
3641 #endif
3642
3643 #ifdef HAVE_TARGET_64_BIG
3644 template
3645 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
3646 #endif
3647
3648 #ifdef HAVE_TARGET_32_LITTLE
3649 template
3650 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
3651 #endif
3652
3653 #ifdef HAVE_TARGET_32_BIG
3654 template
3655 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
3656 #endif
3657
3658 #ifdef HAVE_TARGET_64_LITTLE
3659 template
3660 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
3661 #endif
3662
3663 #ifdef HAVE_TARGET_64_BIG
3664 template
3665 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
3666 #endif
3667
3668 #ifdef HAVE_TARGET_32_LITTLE
3669 template
3670 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
3671 #endif
3672
3673 #ifdef HAVE_TARGET_32_BIG
3674 template
3675 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
3676 #endif
3677
3678 #ifdef HAVE_TARGET_64_LITTLE
3679 template
3680 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
3681 #endif
3682
3683 #ifdef HAVE_TARGET_64_BIG
3684 template
3685 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
3686 #endif
3687
3688 #ifdef HAVE_TARGET_32_LITTLE
3689 template
3690 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
3691 #endif
3692
3693 #ifdef HAVE_TARGET_32_BIG
3694 template
3695 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
3696 #endif
3697
3698 #ifdef HAVE_TARGET_64_LITTLE
3699 template
3700 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
3701 #endif
3702
3703 #ifdef HAVE_TARGET_64_BIG
3704 template
3705 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
3706 #endif
3707
3708 #ifdef HAVE_TARGET_32_LITTLE
3709 template
3710 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
3711 #endif
3712
3713 #ifdef HAVE_TARGET_32_BIG
3714 template
3715 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
3716 #endif
3717
3718 #ifdef HAVE_TARGET_64_LITTLE
3719 template
3720 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
3721 #endif
3722
3723 #ifdef HAVE_TARGET_64_BIG
3724 template
3725 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
3726 #endif
3727
3728 #ifdef HAVE_TARGET_32_LITTLE
3729 template
3730 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
3731 #endif
3732
3733 #ifdef HAVE_TARGET_32_BIG
3734 template
3735 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
3736 #endif
3737
3738 #ifdef HAVE_TARGET_64_LITTLE
3739 template
3740 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
3741 #endif
3742
3743 #ifdef HAVE_TARGET_64_BIG
3744 template
3745 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
3746 #endif
3747
3748 #ifdef HAVE_TARGET_32_LITTLE
3749 template
3750 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
3751 #endif
3752
3753 #ifdef HAVE_TARGET_32_BIG
3754 template
3755 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
3756 #endif
3757
3758 #ifdef HAVE_TARGET_64_LITTLE
3759 template
3760 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
3761 #endif
3762
3763 #ifdef HAVE_TARGET_64_BIG
3764 template
3765 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
3766 #endif
3767
3768 #ifdef HAVE_TARGET_32_LITTLE
3769 template
3770 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3771 #endif
3772
3773 #ifdef HAVE_TARGET_32_BIG
3774 template
3775 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3776 #endif
3777
3778 #ifdef HAVE_TARGET_64_LITTLE
3779 template
3780 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3781 #endif
3782
3783 #ifdef HAVE_TARGET_64_BIG
3784 template
3785 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3786 #endif
3787
3788 #ifdef HAVE_TARGET_32_LITTLE
3789 template
3790 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3791 #endif
3792
3793 #ifdef HAVE_TARGET_32_BIG
3794 template
3795 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3796 #endif
3797
3798 #ifdef HAVE_TARGET_64_LITTLE
3799 template
3800 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3801 #endif
3802
3803 #ifdef HAVE_TARGET_64_BIG
3804 template
3805 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3806 #endif
3807
3808 #ifdef HAVE_TARGET_32_LITTLE
3809 template
3810 class Output_data_group<32, false>;
3811 #endif
3812
3813 #ifdef HAVE_TARGET_32_BIG
3814 template
3815 class Output_data_group<32, true>;
3816 #endif
3817
3818 #ifdef HAVE_TARGET_64_LITTLE
3819 template
3820 class Output_data_group<64, false>;
3821 #endif
3822
3823 #ifdef HAVE_TARGET_64_BIG
3824 template
3825 class Output_data_group<64, true>;
3826 #endif
3827
3828 #ifdef HAVE_TARGET_32_LITTLE
3829 template
3830 class Output_data_got<32, false>;
3831 #endif
3832
3833 #ifdef HAVE_TARGET_32_BIG
3834 template
3835 class Output_data_got<32, true>;
3836 #endif
3837
3838 #ifdef HAVE_TARGET_64_LITTLE
3839 template
3840 class Output_data_got<64, false>;
3841 #endif
3842
3843 #ifdef HAVE_TARGET_64_BIG
3844 template
3845 class Output_data_got<64, true>;
3846 #endif
3847
3848 } // End namespace gold.
This page took 0.11264 seconds and 4 git commands to generate.