From Craig Silverstein: Clean up DWARF line reader code.
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cerrno>
27 #include <fcntl.h>
28 #include <unistd.h>
29 #include <sys/mman.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32 #include "libiberty.h" // for unlink_if_ordinary()
33
34 #include "parameters.h"
35 #include "object.h"
36 #include "symtab.h"
37 #include "reloc.h"
38 #include "merge.h"
39 #include "output.h"
40
41 namespace gold
42 {
43
44 // Output_data variables.
45
46 bool Output_data::sizes_are_fixed;
47
48 // Output_data methods.
49
50 Output_data::~Output_data()
51 {
52 }
53
54 // Set the address and offset.
55
56 void
57 Output_data::set_address(uint64_t addr, off_t off)
58 {
59 this->address_ = addr;
60 this->offset_ = off;
61
62 // Let the child class know.
63 this->do_set_address(addr, off);
64 }
65
66 // Return the default alignment for the target size.
67
68 uint64_t
69 Output_data::default_alignment()
70 {
71 return Output_data::default_alignment_for_size(parameters->get_size());
72 }
73
74 // Return the default alignment for a size--32 or 64.
75
76 uint64_t
77 Output_data::default_alignment_for_size(int size)
78 {
79 if (size == 32)
80 return 4;
81 else if (size == 64)
82 return 8;
83 else
84 gold_unreachable();
85 }
86
87 // Output_section_header methods. This currently assumes that the
88 // segment and section lists are complete at construction time.
89
90 Output_section_headers::Output_section_headers(
91 const Layout* layout,
92 const Layout::Segment_list* segment_list,
93 const Layout::Section_list* unattached_section_list,
94 const Stringpool* secnamepool)
95 : layout_(layout),
96 segment_list_(segment_list),
97 unattached_section_list_(unattached_section_list),
98 secnamepool_(secnamepool)
99 {
100 // Count all the sections. Start with 1 for the null section.
101 off_t count = 1;
102 for (Layout::Segment_list::const_iterator p = segment_list->begin();
103 p != segment_list->end();
104 ++p)
105 if ((*p)->type() == elfcpp::PT_LOAD)
106 count += (*p)->output_section_count();
107 count += unattached_section_list->size();
108
109 const int size = parameters->get_size();
110 int shdr_size;
111 if (size == 32)
112 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
113 else if (size == 64)
114 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
115 else
116 gold_unreachable();
117
118 this->set_data_size(count * shdr_size);
119 }
120
121 // Write out the section headers.
122
123 void
124 Output_section_headers::do_write(Output_file* of)
125 {
126 if (parameters->get_size() == 32)
127 {
128 if (parameters->is_big_endian())
129 {
130 #ifdef HAVE_TARGET_32_BIG
131 this->do_sized_write<32, true>(of);
132 #else
133 gold_unreachable();
134 #endif
135 }
136 else
137 {
138 #ifdef HAVE_TARGET_32_LITTLE
139 this->do_sized_write<32, false>(of);
140 #else
141 gold_unreachable();
142 #endif
143 }
144 }
145 else if (parameters->get_size() == 64)
146 {
147 if (parameters->is_big_endian())
148 {
149 #ifdef HAVE_TARGET_64_BIG
150 this->do_sized_write<64, true>(of);
151 #else
152 gold_unreachable();
153 #endif
154 }
155 else
156 {
157 #ifdef HAVE_TARGET_64_LITTLE
158 this->do_sized_write<64, false>(of);
159 #else
160 gold_unreachable();
161 #endif
162 }
163 }
164 else
165 gold_unreachable();
166 }
167
168 template<int size, bool big_endian>
169 void
170 Output_section_headers::do_sized_write(Output_file* of)
171 {
172 off_t all_shdrs_size = this->data_size();
173 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
174
175 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
176 unsigned char* v = view;
177
178 {
179 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
180 oshdr.put_sh_name(0);
181 oshdr.put_sh_type(elfcpp::SHT_NULL);
182 oshdr.put_sh_flags(0);
183 oshdr.put_sh_addr(0);
184 oshdr.put_sh_offset(0);
185 oshdr.put_sh_size(0);
186 oshdr.put_sh_link(0);
187 oshdr.put_sh_info(0);
188 oshdr.put_sh_addralign(0);
189 oshdr.put_sh_entsize(0);
190 }
191
192 v += shdr_size;
193
194 unsigned shndx = 1;
195 for (Layout::Segment_list::const_iterator p = this->segment_list_->begin();
196 p != this->segment_list_->end();
197 ++p)
198 v = (*p)->write_section_headers SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
199 this->layout_, this->secnamepool_, v, &shndx
200 SELECT_SIZE_ENDIAN(size, big_endian));
201 for (Layout::Section_list::const_iterator p =
202 this->unattached_section_list_->begin();
203 p != this->unattached_section_list_->end();
204 ++p)
205 {
206 gold_assert(shndx == (*p)->out_shndx());
207 elfcpp::Shdr_write<size, big_endian> oshdr(v);
208 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
209 v += shdr_size;
210 ++shndx;
211 }
212
213 of->write_output_view(this->offset(), all_shdrs_size, view);
214 }
215
216 // Output_segment_header methods.
217
218 Output_segment_headers::Output_segment_headers(
219 const Layout::Segment_list& segment_list)
220 : segment_list_(segment_list)
221 {
222 const int size = parameters->get_size();
223 int phdr_size;
224 if (size == 32)
225 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
226 else if (size == 64)
227 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
228 else
229 gold_unreachable();
230
231 this->set_data_size(segment_list.size() * phdr_size);
232 }
233
234 void
235 Output_segment_headers::do_write(Output_file* of)
236 {
237 if (parameters->get_size() == 32)
238 {
239 if (parameters->is_big_endian())
240 {
241 #ifdef HAVE_TARGET_32_BIG
242 this->do_sized_write<32, true>(of);
243 #else
244 gold_unreachable();
245 #endif
246 }
247 else
248 {
249 #ifdef HAVE_TARGET_32_LITTLE
250 this->do_sized_write<32, false>(of);
251 #else
252 gold_unreachable();
253 #endif
254 }
255 }
256 else if (parameters->get_size() == 64)
257 {
258 if (parameters->is_big_endian())
259 {
260 #ifdef HAVE_TARGET_64_BIG
261 this->do_sized_write<64, true>(of);
262 #else
263 gold_unreachable();
264 #endif
265 }
266 else
267 {
268 #ifdef HAVE_TARGET_64_LITTLE
269 this->do_sized_write<64, false>(of);
270 #else
271 gold_unreachable();
272 #endif
273 }
274 }
275 else
276 gold_unreachable();
277 }
278
279 template<int size, bool big_endian>
280 void
281 Output_segment_headers::do_sized_write(Output_file* of)
282 {
283 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
284 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
285 unsigned char* view = of->get_output_view(this->offset(),
286 all_phdrs_size);
287 unsigned char* v = view;
288 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
289 p != this->segment_list_.end();
290 ++p)
291 {
292 elfcpp::Phdr_write<size, big_endian> ophdr(v);
293 (*p)->write_header(&ophdr);
294 v += phdr_size;
295 }
296
297 of->write_output_view(this->offset(), all_phdrs_size, view);
298 }
299
300 // Output_file_header methods.
301
302 Output_file_header::Output_file_header(const Target* target,
303 const Symbol_table* symtab,
304 const Output_segment_headers* osh)
305 : target_(target),
306 symtab_(symtab),
307 segment_header_(osh),
308 section_header_(NULL),
309 shstrtab_(NULL)
310 {
311 const int size = parameters->get_size();
312 int ehdr_size;
313 if (size == 32)
314 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
315 else if (size == 64)
316 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
317 else
318 gold_unreachable();
319
320 this->set_data_size(ehdr_size);
321 }
322
323 // Set the section table information for a file header.
324
325 void
326 Output_file_header::set_section_info(const Output_section_headers* shdrs,
327 const Output_section* shstrtab)
328 {
329 this->section_header_ = shdrs;
330 this->shstrtab_ = shstrtab;
331 }
332
333 // Write out the file header.
334
335 void
336 Output_file_header::do_write(Output_file* of)
337 {
338 if (parameters->get_size() == 32)
339 {
340 if (parameters->is_big_endian())
341 {
342 #ifdef HAVE_TARGET_32_BIG
343 this->do_sized_write<32, true>(of);
344 #else
345 gold_unreachable();
346 #endif
347 }
348 else
349 {
350 #ifdef HAVE_TARGET_32_LITTLE
351 this->do_sized_write<32, false>(of);
352 #else
353 gold_unreachable();
354 #endif
355 }
356 }
357 else if (parameters->get_size() == 64)
358 {
359 if (parameters->is_big_endian())
360 {
361 #ifdef HAVE_TARGET_64_BIG
362 this->do_sized_write<64, true>(of);
363 #else
364 gold_unreachable();
365 #endif
366 }
367 else
368 {
369 #ifdef HAVE_TARGET_64_LITTLE
370 this->do_sized_write<64, false>(of);
371 #else
372 gold_unreachable();
373 #endif
374 }
375 }
376 else
377 gold_unreachable();
378 }
379
380 // Write out the file header with appropriate size and endianess.
381
382 template<int size, bool big_endian>
383 void
384 Output_file_header::do_sized_write(Output_file* of)
385 {
386 gold_assert(this->offset() == 0);
387
388 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
389 unsigned char* view = of->get_output_view(0, ehdr_size);
390 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
391
392 unsigned char e_ident[elfcpp::EI_NIDENT];
393 memset(e_ident, 0, elfcpp::EI_NIDENT);
394 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
395 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
396 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
397 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
398 if (size == 32)
399 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
400 else if (size == 64)
401 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
402 else
403 gold_unreachable();
404 e_ident[elfcpp::EI_DATA] = (big_endian
405 ? elfcpp::ELFDATA2MSB
406 : elfcpp::ELFDATA2LSB);
407 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
408 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
409 oehdr.put_e_ident(e_ident);
410
411 elfcpp::ET e_type;
412 if (parameters->output_is_object())
413 e_type = elfcpp::ET_REL;
414 else if (parameters->output_is_shared())
415 e_type = elfcpp::ET_DYN;
416 else
417 e_type = elfcpp::ET_EXEC;
418 oehdr.put_e_type(e_type);
419
420 oehdr.put_e_machine(this->target_->machine_code());
421 oehdr.put_e_version(elfcpp::EV_CURRENT);
422
423 // FIXME: Need to support -e, and target specific entry symbol.
424 Symbol* sym = this->symtab_->lookup("_start");
425 typename Sized_symbol<size>::Value_type v;
426 if (sym == NULL)
427 v = 0;
428 else
429 {
430 Sized_symbol<size>* ssym;
431 ssym = this->symtab_->get_sized_symbol SELECT_SIZE_NAME(size) (
432 sym SELECT_SIZE(size));
433 v = ssym->value();
434 }
435 oehdr.put_e_entry(v);
436
437 oehdr.put_e_phoff(this->segment_header_->offset());
438 oehdr.put_e_shoff(this->section_header_->offset());
439
440 // FIXME: The target needs to set the flags.
441 oehdr.put_e_flags(0);
442
443 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
444 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
445 oehdr.put_e_phnum(this->segment_header_->data_size()
446 / elfcpp::Elf_sizes<size>::phdr_size);
447 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
448 oehdr.put_e_shnum(this->section_header_->data_size()
449 / elfcpp::Elf_sizes<size>::shdr_size);
450 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
451
452 of->write_output_view(0, ehdr_size, view);
453 }
454
455 // Output_data_const methods.
456
457 void
458 Output_data_const::do_write(Output_file* of)
459 {
460 of->write(this->offset(), this->data_.data(), this->data_.size());
461 }
462
463 // Output_data_const_buffer methods.
464
465 void
466 Output_data_const_buffer::do_write(Output_file* of)
467 {
468 of->write(this->offset(), this->p_, this->data_size());
469 }
470
471 // Output_section_data methods.
472
473 // Record the output section, and set the entry size and such.
474
475 void
476 Output_section_data::set_output_section(Output_section* os)
477 {
478 gold_assert(this->output_section_ == NULL);
479 this->output_section_ = os;
480 this->do_adjust_output_section(os);
481 }
482
483 // Return the section index of the output section.
484
485 unsigned int
486 Output_section_data::do_out_shndx() const
487 {
488 gold_assert(this->output_section_ != NULL);
489 return this->output_section_->out_shndx();
490 }
491
492 // Output_data_strtab methods.
493
494 // Set the address. We don't actually care about the address, but we
495 // do set our final size.
496
497 void
498 Output_data_strtab::do_set_address(uint64_t, off_t)
499 {
500 this->strtab_->set_string_offsets();
501 this->set_data_size(this->strtab_->get_strtab_size());
502 }
503
504 // Write out a string table.
505
506 void
507 Output_data_strtab::do_write(Output_file* of)
508 {
509 this->strtab_->write(of, this->offset());
510 }
511
512 // Output_reloc methods.
513
514 // Get the symbol index of a relocation.
515
516 template<bool dynamic, int size, bool big_endian>
517 unsigned int
518 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
519 const
520 {
521 unsigned int index;
522 switch (this->local_sym_index_)
523 {
524 case INVALID_CODE:
525 gold_unreachable();
526
527 case GSYM_CODE:
528 if (this->u1_.gsym == NULL)
529 index = 0;
530 else if (dynamic)
531 index = this->u1_.gsym->dynsym_index();
532 else
533 index = this->u1_.gsym->symtab_index();
534 break;
535
536 case SECTION_CODE:
537 if (dynamic)
538 index = this->u1_.os->dynsym_index();
539 else
540 index = this->u1_.os->symtab_index();
541 break;
542
543 case 0:
544 // Relocations without symbols use a symbol index of 0.
545 index = 0;
546 break;
547
548 default:
549 if (dynamic)
550 {
551 // FIXME: It seems that some targets may need to generate
552 // dynamic relocations against local symbols for some
553 // reasons. This will have to be addressed at some point.
554 gold_unreachable();
555 }
556 else
557 index = this->u1_.relobj->symtab_index(this->local_sym_index_);
558 break;
559 }
560 gold_assert(index != -1U);
561 return index;
562 }
563
564 // Write out the offset and info fields of a Rel or Rela relocation
565 // entry.
566
567 template<bool dynamic, int size, bool big_endian>
568 template<typename Write_rel>
569 void
570 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
571 Write_rel* wr) const
572 {
573 Address address = this->address_;
574 if (this->shndx_ != INVALID_CODE)
575 {
576 off_t off;
577 Output_section* os = this->u2_.relobj->output_section(this->shndx_,
578 &off);
579 gold_assert(os != NULL);
580 if (off != -1)
581 address += os->address() + off;
582 else
583 {
584 address = os->output_address(this->u2_.relobj, this->shndx_,
585 address);
586 gold_assert(address != -1U);
587 }
588 }
589 else if (this->u2_.od != NULL)
590 address += this->u2_.od->address();
591 wr->put_r_offset(address);
592 wr->put_r_info(elfcpp::elf_r_info<size>(this->get_symbol_index(),
593 this->type_));
594 }
595
596 // Write out a Rel relocation.
597
598 template<bool dynamic, int size, bool big_endian>
599 void
600 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
601 unsigned char* pov) const
602 {
603 elfcpp::Rel_write<size, big_endian> orel(pov);
604 this->write_rel(&orel);
605 }
606
607 // Write out a Rela relocation.
608
609 template<bool dynamic, int size, bool big_endian>
610 void
611 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
612 unsigned char* pov) const
613 {
614 elfcpp::Rela_write<size, big_endian> orel(pov);
615 this->rel_.write_rel(&orel);
616 orel.put_r_addend(this->addend_);
617 }
618
619 // Output_data_reloc_base methods.
620
621 // Adjust the output section.
622
623 template<int sh_type, bool dynamic, int size, bool big_endian>
624 void
625 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
626 ::do_adjust_output_section(Output_section* os)
627 {
628 if (sh_type == elfcpp::SHT_REL)
629 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
630 else if (sh_type == elfcpp::SHT_RELA)
631 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
632 else
633 gold_unreachable();
634 if (dynamic)
635 os->set_should_link_to_dynsym();
636 else
637 os->set_should_link_to_symtab();
638 }
639
640 // Write out relocation data.
641
642 template<int sh_type, bool dynamic, int size, bool big_endian>
643 void
644 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
645 Output_file* of)
646 {
647 const off_t off = this->offset();
648 const off_t oview_size = this->data_size();
649 unsigned char* const oview = of->get_output_view(off, oview_size);
650
651 unsigned char* pov = oview;
652 for (typename Relocs::const_iterator p = this->relocs_.begin();
653 p != this->relocs_.end();
654 ++p)
655 {
656 p->write(pov);
657 pov += reloc_size;
658 }
659
660 gold_assert(pov - oview == oview_size);
661
662 of->write_output_view(off, oview_size, oview);
663
664 // We no longer need the relocation entries.
665 this->relocs_.clear();
666 }
667
668 // Output_data_got::Got_entry methods.
669
670 // Write out the entry.
671
672 template<int size, bool big_endian>
673 void
674 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
675 {
676 Valtype val = 0;
677
678 switch (this->local_sym_index_)
679 {
680 case GSYM_CODE:
681 {
682 Symbol* gsym = this->u_.gsym;
683
684 // If the symbol is resolved locally, we need to write out its
685 // value. Otherwise we just write zero. The target code is
686 // responsible for creating a relocation entry to fill in the
687 // value at runtime. For non-preemptible symbols in a shared
688 // library, the target will need to record whether or not the
689 // value should be written (e.g., it may use a RELATIVE
690 // relocation type).
691 if (gsym->final_value_is_known() || gsym->needs_value_in_got())
692 {
693 Sized_symbol<size>* sgsym;
694 // This cast is a bit ugly. We don't want to put a
695 // virtual method in Symbol, because we want Symbol to be
696 // as small as possible.
697 sgsym = static_cast<Sized_symbol<size>*>(gsym);
698 val = sgsym->value();
699 }
700 }
701 break;
702
703 case CONSTANT_CODE:
704 val = this->u_.constant;
705 break;
706
707 default:
708 val = this->u_.object->local_symbol_value(this->local_sym_index_);
709 break;
710 }
711
712 elfcpp::Swap<size, big_endian>::writeval(pov, val);
713 }
714
715 // Output_data_got methods.
716
717 // Add an entry for a global symbol to the GOT. This returns true if
718 // this is a new GOT entry, false if the symbol already had a GOT
719 // entry.
720
721 template<int size, bool big_endian>
722 bool
723 Output_data_got<size, big_endian>::add_global(Symbol* gsym)
724 {
725 if (gsym->has_got_offset())
726 return false;
727
728 this->entries_.push_back(Got_entry(gsym));
729 this->set_got_size();
730 gsym->set_got_offset(this->last_got_offset());
731 return true;
732 }
733
734 // Add an entry for a local symbol to the GOT. This returns true if
735 // this is a new GOT entry, false if the symbol already has a GOT
736 // entry.
737
738 template<int size, bool big_endian>
739 bool
740 Output_data_got<size, big_endian>::add_local(
741 Sized_relobj<size, big_endian>* object,
742 unsigned int symndx)
743 {
744 if (object->local_has_got_offset(symndx))
745 return false;
746 this->entries_.push_back(Got_entry(object, symndx));
747 this->set_got_size();
748 object->set_local_got_offset(symndx, this->last_got_offset());
749 return true;
750 }
751
752 // Write out the GOT.
753
754 template<int size, bool big_endian>
755 void
756 Output_data_got<size, big_endian>::do_write(Output_file* of)
757 {
758 const int add = size / 8;
759
760 const off_t off = this->offset();
761 const off_t oview_size = this->data_size();
762 unsigned char* const oview = of->get_output_view(off, oview_size);
763
764 unsigned char* pov = oview;
765 for (typename Got_entries::const_iterator p = this->entries_.begin();
766 p != this->entries_.end();
767 ++p)
768 {
769 p->write(pov);
770 pov += add;
771 }
772
773 gold_assert(pov - oview == oview_size);
774
775 of->write_output_view(off, oview_size, oview);
776
777 // We no longer need the GOT entries.
778 this->entries_.clear();
779 }
780
781 // Output_data_dynamic::Dynamic_entry methods.
782
783 // Write out the entry.
784
785 template<int size, bool big_endian>
786 void
787 Output_data_dynamic::Dynamic_entry::write(
788 unsigned char* pov,
789 const Stringpool* pool
790 ACCEPT_SIZE_ENDIAN) const
791 {
792 typename elfcpp::Elf_types<size>::Elf_WXword val;
793 switch (this->classification_)
794 {
795 case DYNAMIC_NUMBER:
796 val = this->u_.val;
797 break;
798
799 case DYNAMIC_SECTION_ADDRESS:
800 val = this->u_.od->address();
801 break;
802
803 case DYNAMIC_SECTION_SIZE:
804 val = this->u_.od->data_size();
805 break;
806
807 case DYNAMIC_SYMBOL:
808 {
809 const Sized_symbol<size>* s =
810 static_cast<const Sized_symbol<size>*>(this->u_.sym);
811 val = s->value();
812 }
813 break;
814
815 case DYNAMIC_STRING:
816 val = pool->get_offset(this->u_.str);
817 break;
818
819 default:
820 gold_unreachable();
821 }
822
823 elfcpp::Dyn_write<size, big_endian> dw(pov);
824 dw.put_d_tag(this->tag_);
825 dw.put_d_val(val);
826 }
827
828 // Output_data_dynamic methods.
829
830 // Adjust the output section to set the entry size.
831
832 void
833 Output_data_dynamic::do_adjust_output_section(Output_section* os)
834 {
835 if (parameters->get_size() == 32)
836 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
837 else if (parameters->get_size() == 64)
838 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
839 else
840 gold_unreachable();
841 }
842
843 // Set the final data size.
844
845 void
846 Output_data_dynamic::do_set_address(uint64_t, off_t)
847 {
848 // Add the terminating entry.
849 this->add_constant(elfcpp::DT_NULL, 0);
850
851 int dyn_size;
852 if (parameters->get_size() == 32)
853 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
854 else if (parameters->get_size() == 64)
855 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
856 else
857 gold_unreachable();
858 this->set_data_size(this->entries_.size() * dyn_size);
859 }
860
861 // Write out the dynamic entries.
862
863 void
864 Output_data_dynamic::do_write(Output_file* of)
865 {
866 if (parameters->get_size() == 32)
867 {
868 if (parameters->is_big_endian())
869 {
870 #ifdef HAVE_TARGET_32_BIG
871 this->sized_write<32, true>(of);
872 #else
873 gold_unreachable();
874 #endif
875 }
876 else
877 {
878 #ifdef HAVE_TARGET_32_LITTLE
879 this->sized_write<32, false>(of);
880 #else
881 gold_unreachable();
882 #endif
883 }
884 }
885 else if (parameters->get_size() == 64)
886 {
887 if (parameters->is_big_endian())
888 {
889 #ifdef HAVE_TARGET_64_BIG
890 this->sized_write<64, true>(of);
891 #else
892 gold_unreachable();
893 #endif
894 }
895 else
896 {
897 #ifdef HAVE_TARGET_64_LITTLE
898 this->sized_write<64, false>(of);
899 #else
900 gold_unreachable();
901 #endif
902 }
903 }
904 else
905 gold_unreachable();
906 }
907
908 template<int size, bool big_endian>
909 void
910 Output_data_dynamic::sized_write(Output_file* of)
911 {
912 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
913
914 const off_t offset = this->offset();
915 const off_t oview_size = this->data_size();
916 unsigned char* const oview = of->get_output_view(offset, oview_size);
917
918 unsigned char* pov = oview;
919 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
920 p != this->entries_.end();
921 ++p)
922 {
923 p->write SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
924 pov, this->pool_ SELECT_SIZE_ENDIAN(size, big_endian));
925 pov += dyn_size;
926 }
927
928 gold_assert(pov - oview == oview_size);
929
930 of->write_output_view(offset, oview_size, oview);
931
932 // We no longer need the dynamic entries.
933 this->entries_.clear();
934 }
935
936 // Output_section::Input_section methods.
937
938 // Return the data size. For an input section we store the size here.
939 // For an Output_section_data, we have to ask it for the size.
940
941 off_t
942 Output_section::Input_section::data_size() const
943 {
944 if (this->is_input_section())
945 return this->u1_.data_size;
946 else
947 return this->u2_.posd->data_size();
948 }
949
950 // Set the address and file offset.
951
952 void
953 Output_section::Input_section::set_address(uint64_t addr, off_t off,
954 off_t secoff)
955 {
956 if (this->is_input_section())
957 this->u2_.object->set_section_offset(this->shndx_, off - secoff);
958 else
959 this->u2_.posd->set_address(addr, off);
960 }
961
962 // Try to turn an input offset into an output offset.
963
964 bool
965 Output_section::Input_section::output_offset(const Relobj* object,
966 unsigned int shndx,
967 off_t offset,
968 off_t *poutput) const
969 {
970 if (!this->is_input_section())
971 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
972 else
973 {
974 if (this->shndx_ != shndx || this->u2_.object != object)
975 return false;
976 off_t output_offset;
977 Output_section* os = object->output_section(shndx, &output_offset);
978 gold_assert(os != NULL);
979 gold_assert(output_offset != -1);
980 *poutput = output_offset + offset;
981 return true;
982 }
983 }
984
985 // Write out the data. We don't have to do anything for an input
986 // section--they are handled via Object::relocate--but this is where
987 // we write out the data for an Output_section_data.
988
989 void
990 Output_section::Input_section::write(Output_file* of)
991 {
992 if (!this->is_input_section())
993 this->u2_.posd->write(of);
994 }
995
996 // Output_section methods.
997
998 // Construct an Output_section. NAME will point into a Stringpool.
999
1000 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1001 elfcpp::Elf_Xword flags)
1002 : name_(name),
1003 addralign_(0),
1004 entsize_(0),
1005 link_section_(NULL),
1006 link_(0),
1007 info_section_(NULL),
1008 info_(0),
1009 type_(type),
1010 flags_(flags),
1011 out_shndx_(-1U),
1012 symtab_index_(0),
1013 dynsym_index_(0),
1014 input_sections_(),
1015 first_input_offset_(0),
1016 fills_(),
1017 needs_symtab_index_(false),
1018 needs_dynsym_index_(false),
1019 should_link_to_symtab_(false),
1020 should_link_to_dynsym_(false),
1021 after_input_sections_(false)
1022 {
1023 }
1024
1025 Output_section::~Output_section()
1026 {
1027 }
1028
1029 // Set the entry size.
1030
1031 void
1032 Output_section::set_entsize(uint64_t v)
1033 {
1034 if (this->entsize_ == 0)
1035 this->entsize_ = v;
1036 else
1037 gold_assert(this->entsize_ == v);
1038 }
1039
1040 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1041 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1042 // relocation section which applies to this section, or 0 if none, or
1043 // -1U if more than one. Return the offset of the input section
1044 // within the output section. Return -1 if the input section will
1045 // receive special handling. In the normal case we don't always keep
1046 // track of input sections for an Output_section. Instead, each
1047 // Object keeps track of the Output_section for each of its input
1048 // sections.
1049
1050 template<int size, bool big_endian>
1051 off_t
1052 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1053 unsigned int shndx,
1054 const char* secname,
1055 const elfcpp::Shdr<size, big_endian>& shdr,
1056 unsigned int reloc_shndx)
1057 {
1058 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1059 if ((addralign & (addralign - 1)) != 0)
1060 {
1061 object->error(_("invalid alignment %lu for section \"%s\""),
1062 static_cast<unsigned long>(addralign), secname);
1063 addralign = 1;
1064 }
1065
1066 if (addralign > this->addralign_)
1067 this->addralign_ = addralign;
1068
1069 // If this is a SHF_MERGE section, we pass all the input sections to
1070 // a Output_data_merge. We don't try to handle relocations for such
1071 // a section.
1072 if ((shdr.get_sh_flags() & elfcpp::SHF_MERGE) != 0
1073 && reloc_shndx == 0)
1074 {
1075 if (this->add_merge_input_section(object, shndx, shdr.get_sh_flags(),
1076 shdr.get_sh_entsize(),
1077 addralign))
1078 {
1079 // Tell the relocation routines that they need to call the
1080 // output_offset method to determine the final address.
1081 return -1;
1082 }
1083 }
1084
1085 off_t offset_in_section = this->data_size();
1086 off_t aligned_offset_in_section = align_address(offset_in_section,
1087 addralign);
1088
1089 if (aligned_offset_in_section > offset_in_section
1090 && (shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0
1091 && object->target()->has_code_fill())
1092 {
1093 // We need to add some fill data. Using fill_list_ when
1094 // possible is an optimization, since we will often have fill
1095 // sections without input sections.
1096 off_t fill_len = aligned_offset_in_section - offset_in_section;
1097 if (this->input_sections_.empty())
1098 this->fills_.push_back(Fill(offset_in_section, fill_len));
1099 else
1100 {
1101 // FIXME: When relaxing, the size needs to adjust to
1102 // maintain a constant alignment.
1103 std::string fill_data(object->target()->code_fill(fill_len));
1104 Output_data_const* odc = new Output_data_const(fill_data, 1);
1105 this->input_sections_.push_back(Input_section(odc));
1106 }
1107 }
1108
1109 this->set_data_size(aligned_offset_in_section + shdr.get_sh_size());
1110
1111 // We need to keep track of this section if we are already keeping
1112 // track of sections, or if we are relaxing. FIXME: Add test for
1113 // relaxing.
1114 if (!this->input_sections_.empty())
1115 this->input_sections_.push_back(Input_section(object, shndx,
1116 shdr.get_sh_size(),
1117 addralign));
1118
1119 return aligned_offset_in_section;
1120 }
1121
1122 // Add arbitrary data to an output section.
1123
1124 void
1125 Output_section::add_output_section_data(Output_section_data* posd)
1126 {
1127 Input_section inp(posd);
1128 this->add_output_section_data(&inp);
1129 }
1130
1131 // Add arbitrary data to an output section by Input_section.
1132
1133 void
1134 Output_section::add_output_section_data(Input_section* inp)
1135 {
1136 if (this->input_sections_.empty())
1137 this->first_input_offset_ = this->data_size();
1138
1139 this->input_sections_.push_back(*inp);
1140
1141 uint64_t addralign = inp->addralign();
1142 if (addralign > this->addralign_)
1143 this->addralign_ = addralign;
1144
1145 inp->set_output_section(this);
1146 }
1147
1148 // Add a merge section to an output section.
1149
1150 void
1151 Output_section::add_output_merge_section(Output_section_data* posd,
1152 bool is_string, uint64_t entsize)
1153 {
1154 Input_section inp(posd, is_string, entsize);
1155 this->add_output_section_data(&inp);
1156 }
1157
1158 // Add an input section to a SHF_MERGE section.
1159
1160 bool
1161 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1162 uint64_t flags, uint64_t entsize,
1163 uint64_t addralign)
1164 {
1165 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1166
1167 // We only merge strings if the alignment is not more than the
1168 // character size. This could be handled, but it's unusual.
1169 if (is_string && addralign > entsize)
1170 return false;
1171
1172 Input_section_list::iterator p;
1173 for (p = this->input_sections_.begin();
1174 p != this->input_sections_.end();
1175 ++p)
1176 if (p->is_merge_section(is_string, entsize, addralign))
1177 break;
1178
1179 // We handle the actual constant merging in Output_merge_data or
1180 // Output_merge_string_data.
1181 if (p != this->input_sections_.end())
1182 p->add_input_section(object, shndx);
1183 else
1184 {
1185 Output_section_data* posd;
1186 if (!is_string)
1187 posd = new Output_merge_data(entsize, addralign);
1188 else if (entsize == 1)
1189 posd = new Output_merge_string<char>(addralign);
1190 else if (entsize == 2)
1191 posd = new Output_merge_string<uint16_t>(addralign);
1192 else if (entsize == 4)
1193 posd = new Output_merge_string<uint32_t>(addralign);
1194 else
1195 return false;
1196
1197 this->add_output_merge_section(posd, is_string, entsize);
1198 posd->add_input_section(object, shndx);
1199 }
1200
1201 return true;
1202 }
1203
1204 // Given an address OFFSET relative to the start of input section
1205 // SHNDX in OBJECT, return whether this address is being included in
1206 // the final link. This should only be called if SHNDX in OBJECT has
1207 // a special mapping.
1208
1209 bool
1210 Output_section::is_input_address_mapped(const Relobj* object,
1211 unsigned int shndx,
1212 off_t offset) const
1213 {
1214 gold_assert(object->is_section_specially_mapped(shndx));
1215
1216 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1217 p != this->input_sections_.end();
1218 ++p)
1219 {
1220 off_t output_offset;
1221 if (p->output_offset(object, shndx, offset, &output_offset))
1222 return output_offset != -1;
1223 }
1224
1225 // By default we assume that the address is mapped. This should
1226 // only be called after we have passed all sections to Layout. At
1227 // that point we should know what we are discarding.
1228 return true;
1229 }
1230
1231 // Given an address OFFSET relative to the start of input section
1232 // SHNDX in object OBJECT, return the output offset relative to the
1233 // start of the section. This should only be called if SHNDX in
1234 // OBJECT has a special mapping.
1235
1236 off_t
1237 Output_section::output_offset(const Relobj* object, unsigned int shndx,
1238 off_t offset) const
1239 {
1240 gold_assert(object->is_section_specially_mapped(shndx));
1241 // This can only be called meaningfully when layout is complete.
1242 gold_assert(Output_data::is_layout_complete());
1243
1244 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1245 p != this->input_sections_.end();
1246 ++p)
1247 {
1248 off_t output_offset;
1249 if (p->output_offset(object, shndx, offset, &output_offset))
1250 return output_offset;
1251 }
1252 gold_unreachable();
1253 }
1254
1255 // Return the output virtual address of OFFSET relative to the start
1256 // of input section SHNDX in object OBJECT.
1257
1258 uint64_t
1259 Output_section::output_address(const Relobj* object, unsigned int shndx,
1260 off_t offset) const
1261 {
1262 gold_assert(object->is_section_specially_mapped(shndx));
1263 // This can only be called meaningfully when layout is complete.
1264 gold_assert(Output_data::is_layout_complete());
1265
1266 uint64_t addr = this->address() + this->first_input_offset_;
1267 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1268 p != this->input_sections_.end();
1269 ++p)
1270 {
1271 addr = align_address(addr, p->addralign());
1272 off_t output_offset;
1273 if (p->output_offset(object, shndx, offset, &output_offset))
1274 {
1275 if (output_offset == -1)
1276 return -1U;
1277 return addr + output_offset;
1278 }
1279 addr += p->data_size();
1280 }
1281
1282 // If we get here, it means that we don't know the mapping for this
1283 // input section. This might happen in principle if
1284 // add_input_section were called before add_output_section_data.
1285 // But it should never actually happen.
1286
1287 gold_unreachable();
1288 }
1289
1290 // Set the address of an Output_section. This is where we handle
1291 // setting the addresses of any Output_section_data objects.
1292
1293 void
1294 Output_section::do_set_address(uint64_t address, off_t startoff)
1295 {
1296 if (this->input_sections_.empty())
1297 return;
1298
1299 off_t off = startoff + this->first_input_offset_;
1300 for (Input_section_list::iterator p = this->input_sections_.begin();
1301 p != this->input_sections_.end();
1302 ++p)
1303 {
1304 off = align_address(off, p->addralign());
1305 p->set_address(address + (off - startoff), off, startoff);
1306 off += p->data_size();
1307 }
1308
1309 this->set_data_size(off - startoff);
1310 }
1311
1312 // Write the section header to *OSHDR.
1313
1314 template<int size, bool big_endian>
1315 void
1316 Output_section::write_header(const Layout* layout,
1317 const Stringpool* secnamepool,
1318 elfcpp::Shdr_write<size, big_endian>* oshdr) const
1319 {
1320 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
1321 oshdr->put_sh_type(this->type_);
1322 oshdr->put_sh_flags(this->flags_);
1323 oshdr->put_sh_addr(this->address());
1324 oshdr->put_sh_offset(this->offset());
1325 oshdr->put_sh_size(this->data_size());
1326 if (this->link_section_ != NULL)
1327 oshdr->put_sh_link(this->link_section_->out_shndx());
1328 else if (this->should_link_to_symtab_)
1329 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
1330 else if (this->should_link_to_dynsym_)
1331 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
1332 else
1333 oshdr->put_sh_link(this->link_);
1334 if (this->info_section_ != NULL)
1335 oshdr->put_sh_info(this->info_section_->out_shndx());
1336 else
1337 oshdr->put_sh_info(this->info_);
1338 oshdr->put_sh_addralign(this->addralign_);
1339 oshdr->put_sh_entsize(this->entsize_);
1340 }
1341
1342 // Write out the data. For input sections the data is written out by
1343 // Object::relocate, but we have to handle Output_section_data objects
1344 // here.
1345
1346 void
1347 Output_section::do_write(Output_file* of)
1348 {
1349 off_t output_section_file_offset = this->offset();
1350 for (Fill_list::iterator p = this->fills_.begin();
1351 p != this->fills_.end();
1352 ++p)
1353 {
1354 std::string fill_data(of->target()->code_fill(p->length()));
1355 of->write(output_section_file_offset + p->section_offset(),
1356 fill_data.data(), fill_data.size());
1357 }
1358
1359 for (Input_section_list::iterator p = this->input_sections_.begin();
1360 p != this->input_sections_.end();
1361 ++p)
1362 p->write(of);
1363 }
1364
1365 // Output segment methods.
1366
1367 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
1368 : output_data_(),
1369 output_bss_(),
1370 vaddr_(0),
1371 paddr_(0),
1372 memsz_(0),
1373 align_(0),
1374 offset_(0),
1375 filesz_(0),
1376 type_(type),
1377 flags_(flags),
1378 is_align_known_(false)
1379 {
1380 }
1381
1382 // Add an Output_section to an Output_segment.
1383
1384 void
1385 Output_segment::add_output_section(Output_section* os,
1386 elfcpp::Elf_Word seg_flags,
1387 bool front)
1388 {
1389 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1390 gold_assert(!this->is_align_known_);
1391
1392 // Update the segment flags.
1393 this->flags_ |= seg_flags;
1394
1395 Output_segment::Output_data_list* pdl;
1396 if (os->type() == elfcpp::SHT_NOBITS)
1397 pdl = &this->output_bss_;
1398 else
1399 pdl = &this->output_data_;
1400
1401 // So that PT_NOTE segments will work correctly, we need to ensure
1402 // that all SHT_NOTE sections are adjacent. This will normally
1403 // happen automatically, because all the SHT_NOTE input sections
1404 // will wind up in the same output section. However, it is possible
1405 // for multiple SHT_NOTE input sections to have different section
1406 // flags, and thus be in different output sections, but for the
1407 // different section flags to map into the same segment flags and
1408 // thus the same output segment.
1409
1410 // Note that while there may be many input sections in an output
1411 // section, there are normally only a few output sections in an
1412 // output segment. This loop is expected to be fast.
1413
1414 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
1415 {
1416 Output_segment::Output_data_list::iterator p = pdl->end();
1417 do
1418 {
1419 --p;
1420 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
1421 {
1422 // We don't worry about the FRONT parameter.
1423 ++p;
1424 pdl->insert(p, os);
1425 return;
1426 }
1427 }
1428 while (p != pdl->begin());
1429 }
1430
1431 // Similarly, so that PT_TLS segments will work, we need to group
1432 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
1433 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
1434 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
1435 // correctly.
1436 if ((os->flags() & elfcpp::SHF_TLS) != 0 && !this->output_data_.empty())
1437 {
1438 pdl = &this->output_data_;
1439 bool nobits = os->type() == elfcpp::SHT_NOBITS;
1440 bool sawtls = false;
1441 Output_segment::Output_data_list::iterator p = pdl->end();
1442 do
1443 {
1444 --p;
1445 bool insert;
1446 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
1447 {
1448 sawtls = true;
1449 // Put a NOBITS section after the first TLS section.
1450 // But a PROGBITS section after the first TLS/PROGBITS
1451 // section.
1452 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
1453 }
1454 else
1455 {
1456 // If we've gone past the TLS sections, but we've seen a
1457 // TLS section, then we need to insert this section now.
1458 insert = sawtls;
1459 }
1460
1461 if (insert)
1462 {
1463 // We don't worry about the FRONT parameter.
1464 ++p;
1465 pdl->insert(p, os);
1466 return;
1467 }
1468 }
1469 while (p != pdl->begin());
1470
1471 // There are no TLS sections yet; put this one at the requested
1472 // location in the section list.
1473 }
1474
1475 if (front)
1476 pdl->push_front(os);
1477 else
1478 pdl->push_back(os);
1479 }
1480
1481 // Add an Output_data (which is not an Output_section) to the start of
1482 // a segment.
1483
1484 void
1485 Output_segment::add_initial_output_data(Output_data* od)
1486 {
1487 gold_assert(!this->is_align_known_);
1488 this->output_data_.push_front(od);
1489 }
1490
1491 // Return the maximum alignment of the Output_data in Output_segment.
1492 // Once we compute this, we prohibit new sections from being added.
1493
1494 uint64_t
1495 Output_segment::addralign()
1496 {
1497 if (!this->is_align_known_)
1498 {
1499 uint64_t addralign;
1500
1501 addralign = Output_segment::maximum_alignment(&this->output_data_);
1502 if (addralign > this->align_)
1503 this->align_ = addralign;
1504
1505 addralign = Output_segment::maximum_alignment(&this->output_bss_);
1506 if (addralign > this->align_)
1507 this->align_ = addralign;
1508
1509 this->is_align_known_ = true;
1510 }
1511
1512 return this->align_;
1513 }
1514
1515 // Return the maximum alignment of a list of Output_data.
1516
1517 uint64_t
1518 Output_segment::maximum_alignment(const Output_data_list* pdl)
1519 {
1520 uint64_t ret = 0;
1521 for (Output_data_list::const_iterator p = pdl->begin();
1522 p != pdl->end();
1523 ++p)
1524 {
1525 uint64_t addralign = (*p)->addralign();
1526 if (addralign > ret)
1527 ret = addralign;
1528 }
1529 return ret;
1530 }
1531
1532 // Set the section addresses for an Output_segment. ADDR is the
1533 // address and *POFF is the file offset. Set the section indexes
1534 // starting with *PSHNDX. Return the address of the immediately
1535 // following segment. Update *POFF and *PSHNDX.
1536
1537 uint64_t
1538 Output_segment::set_section_addresses(uint64_t addr, off_t* poff,
1539 unsigned int* pshndx)
1540 {
1541 gold_assert(this->type_ == elfcpp::PT_LOAD);
1542
1543 this->vaddr_ = addr;
1544 this->paddr_ = addr;
1545
1546 off_t orig_off = *poff;
1547 this->offset_ = orig_off;
1548
1549 *poff = align_address(*poff, this->addralign());
1550
1551 addr = this->set_section_list_addresses(&this->output_data_, addr, poff,
1552 pshndx);
1553 this->filesz_ = *poff - orig_off;
1554
1555 off_t off = *poff;
1556
1557 uint64_t ret = this->set_section_list_addresses(&this->output_bss_, addr,
1558 poff, pshndx);
1559 this->memsz_ = *poff - orig_off;
1560
1561 // Ignore the file offset adjustments made by the BSS Output_data
1562 // objects.
1563 *poff = off;
1564
1565 return ret;
1566 }
1567
1568 // Set the addresses and file offsets in a list of Output_data
1569 // structures.
1570
1571 uint64_t
1572 Output_segment::set_section_list_addresses(Output_data_list* pdl,
1573 uint64_t addr, off_t* poff,
1574 unsigned int* pshndx)
1575 {
1576 off_t startoff = *poff;
1577
1578 off_t off = startoff;
1579 for (Output_data_list::iterator p = pdl->begin();
1580 p != pdl->end();
1581 ++p)
1582 {
1583 off = align_address(off, (*p)->addralign());
1584 (*p)->set_address(addr + (off - startoff), off);
1585
1586 // Unless this is a PT_TLS segment, we want to ignore the size
1587 // of a SHF_TLS/SHT_NOBITS section. Such a section does not
1588 // affect the size of a PT_LOAD segment.
1589 if (this->type_ == elfcpp::PT_TLS
1590 || !(*p)->is_section_flag_set(elfcpp::SHF_TLS)
1591 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
1592 off += (*p)->data_size();
1593
1594 if ((*p)->is_section())
1595 {
1596 (*p)->set_out_shndx(*pshndx);
1597 ++*pshndx;
1598 }
1599 }
1600
1601 *poff = off;
1602 return addr + (off - startoff);
1603 }
1604
1605 // For a non-PT_LOAD segment, set the offset from the sections, if
1606 // any.
1607
1608 void
1609 Output_segment::set_offset()
1610 {
1611 gold_assert(this->type_ != elfcpp::PT_LOAD);
1612
1613 if (this->output_data_.empty() && this->output_bss_.empty())
1614 {
1615 this->vaddr_ = 0;
1616 this->paddr_ = 0;
1617 this->memsz_ = 0;
1618 this->align_ = 0;
1619 this->offset_ = 0;
1620 this->filesz_ = 0;
1621 return;
1622 }
1623
1624 const Output_data* first;
1625 if (this->output_data_.empty())
1626 first = this->output_bss_.front();
1627 else
1628 first = this->output_data_.front();
1629 this->vaddr_ = first->address();
1630 this->paddr_ = this->vaddr_;
1631 this->offset_ = first->offset();
1632
1633 if (this->output_data_.empty())
1634 this->filesz_ = 0;
1635 else
1636 {
1637 const Output_data* last_data = this->output_data_.back();
1638 this->filesz_ = (last_data->address()
1639 + last_data->data_size()
1640 - this->vaddr_);
1641 }
1642
1643 const Output_data* last;
1644 if (this->output_bss_.empty())
1645 last = this->output_data_.back();
1646 else
1647 last = this->output_bss_.back();
1648 this->memsz_ = (last->address()
1649 + last->data_size()
1650 - this->vaddr_);
1651 }
1652
1653 // Return the number of Output_sections in an Output_segment.
1654
1655 unsigned int
1656 Output_segment::output_section_count() const
1657 {
1658 return (this->output_section_count_list(&this->output_data_)
1659 + this->output_section_count_list(&this->output_bss_));
1660 }
1661
1662 // Return the number of Output_sections in an Output_data_list.
1663
1664 unsigned int
1665 Output_segment::output_section_count_list(const Output_data_list* pdl) const
1666 {
1667 unsigned int count = 0;
1668 for (Output_data_list::const_iterator p = pdl->begin();
1669 p != pdl->end();
1670 ++p)
1671 {
1672 if ((*p)->is_section())
1673 ++count;
1674 }
1675 return count;
1676 }
1677
1678 // Write the segment data into *OPHDR.
1679
1680 template<int size, bool big_endian>
1681 void
1682 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
1683 {
1684 ophdr->put_p_type(this->type_);
1685 ophdr->put_p_offset(this->offset_);
1686 ophdr->put_p_vaddr(this->vaddr_);
1687 ophdr->put_p_paddr(this->paddr_);
1688 ophdr->put_p_filesz(this->filesz_);
1689 ophdr->put_p_memsz(this->memsz_);
1690 ophdr->put_p_flags(this->flags_);
1691 ophdr->put_p_align(this->addralign());
1692 }
1693
1694 // Write the section headers into V.
1695
1696 template<int size, bool big_endian>
1697 unsigned char*
1698 Output_segment::write_section_headers(const Layout* layout,
1699 const Stringpool* secnamepool,
1700 unsigned char* v,
1701 unsigned int *pshndx
1702 ACCEPT_SIZE_ENDIAN) const
1703 {
1704 // Every section that is attached to a segment must be attached to a
1705 // PT_LOAD segment, so we only write out section headers for PT_LOAD
1706 // segments.
1707 if (this->type_ != elfcpp::PT_LOAD)
1708 return v;
1709
1710 v = this->write_section_headers_list
1711 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1712 layout, secnamepool, &this->output_data_, v, pshndx
1713 SELECT_SIZE_ENDIAN(size, big_endian));
1714 v = this->write_section_headers_list
1715 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1716 layout, secnamepool, &this->output_bss_, v, pshndx
1717 SELECT_SIZE_ENDIAN(size, big_endian));
1718 return v;
1719 }
1720
1721 template<int size, bool big_endian>
1722 unsigned char*
1723 Output_segment::write_section_headers_list(const Layout* layout,
1724 const Stringpool* secnamepool,
1725 const Output_data_list* pdl,
1726 unsigned char* v,
1727 unsigned int* pshndx
1728 ACCEPT_SIZE_ENDIAN) const
1729 {
1730 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1731 for (Output_data_list::const_iterator p = pdl->begin();
1732 p != pdl->end();
1733 ++p)
1734 {
1735 if ((*p)->is_section())
1736 {
1737 const Output_section* ps = static_cast<const Output_section*>(*p);
1738 gold_assert(*pshndx == ps->out_shndx());
1739 elfcpp::Shdr_write<size, big_endian> oshdr(v);
1740 ps->write_header(layout, secnamepool, &oshdr);
1741 v += shdr_size;
1742 ++*pshndx;
1743 }
1744 }
1745 return v;
1746 }
1747
1748 // Output_file methods.
1749
1750 Output_file::Output_file(const General_options& options, Target* target)
1751 : options_(options),
1752 target_(target),
1753 name_(options.output_file_name()),
1754 o_(-1),
1755 file_size_(0),
1756 base_(NULL)
1757 {
1758 }
1759
1760 // Open the output file.
1761
1762 void
1763 Output_file::open(off_t file_size)
1764 {
1765 this->file_size_ = file_size;
1766
1767 // Unlink the file first; otherwise the open() may fail if the file
1768 // is busy (e.g. it's an executable that's currently being executed).
1769 //
1770 // However, the linker may be part of a system where a zero-length
1771 // file is created for it to write to, with tight permissions (gcc
1772 // 2.95 did something like this). Unlinking the file would work
1773 // around those permission controls, so we only unlink if the file
1774 // has a non-zero size. We also unlink only regular files to avoid
1775 // trouble with directories/etc.
1776 //
1777 // If we fail, continue; this command is merely a best-effort attempt
1778 // to improve the odds for open().
1779
1780 struct stat s;
1781 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
1782 unlink_if_ordinary(this->name_);
1783
1784 int mode = parameters->output_is_object() ? 0666 : 0777;
1785 int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
1786 if (o < 0)
1787 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
1788 this->o_ = o;
1789
1790 // Write out one byte to make the file the right size.
1791 if (::lseek(o, file_size - 1, SEEK_SET) < 0)
1792 gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
1793 char b = 0;
1794 if (::write(o, &b, 1) != 1)
1795 gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
1796
1797 // Map the file into memory.
1798 void* base = ::mmap(NULL, file_size, PROT_READ | PROT_WRITE,
1799 MAP_SHARED, o, 0);
1800 if (base == MAP_FAILED)
1801 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
1802 this->base_ = static_cast<unsigned char*>(base);
1803 }
1804
1805 // Close the output file.
1806
1807 void
1808 Output_file::close()
1809 {
1810 if (::munmap(this->base_, this->file_size_) < 0)
1811 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
1812 this->base_ = NULL;
1813
1814 if (::close(this->o_) < 0)
1815 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
1816 this->o_ = -1;
1817 }
1818
1819 // Instantiate the templates we need. We could use the configure
1820 // script to restrict this to only the ones for implemented targets.
1821
1822 #ifdef HAVE_TARGET_32_LITTLE
1823 template
1824 off_t
1825 Output_section::add_input_section<32, false>(
1826 Sized_relobj<32, false>* object,
1827 unsigned int shndx,
1828 const char* secname,
1829 const elfcpp::Shdr<32, false>& shdr,
1830 unsigned int reloc_shndx);
1831 #endif
1832
1833 #ifdef HAVE_TARGET_32_BIG
1834 template
1835 off_t
1836 Output_section::add_input_section<32, true>(
1837 Sized_relobj<32, true>* object,
1838 unsigned int shndx,
1839 const char* secname,
1840 const elfcpp::Shdr<32, true>& shdr,
1841 unsigned int reloc_shndx);
1842 #endif
1843
1844 #ifdef HAVE_TARGET_64_LITTLE
1845 template
1846 off_t
1847 Output_section::add_input_section<64, false>(
1848 Sized_relobj<64, false>* object,
1849 unsigned int shndx,
1850 const char* secname,
1851 const elfcpp::Shdr<64, false>& shdr,
1852 unsigned int reloc_shndx);
1853 #endif
1854
1855 #ifdef HAVE_TARGET_64_BIG
1856 template
1857 off_t
1858 Output_section::add_input_section<64, true>(
1859 Sized_relobj<64, true>* object,
1860 unsigned int shndx,
1861 const char* secname,
1862 const elfcpp::Shdr<64, true>& shdr,
1863 unsigned int reloc_shndx);
1864 #endif
1865
1866 #ifdef HAVE_TARGET_32_LITTLE
1867 template
1868 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
1869 #endif
1870
1871 #ifdef HAVE_TARGET_32_BIG
1872 template
1873 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
1874 #endif
1875
1876 #ifdef HAVE_TARGET_64_LITTLE
1877 template
1878 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
1879 #endif
1880
1881 #ifdef HAVE_TARGET_64_BIG
1882 template
1883 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
1884 #endif
1885
1886 #ifdef HAVE_TARGET_32_LITTLE
1887 template
1888 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
1889 #endif
1890
1891 #ifdef HAVE_TARGET_32_BIG
1892 template
1893 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
1894 #endif
1895
1896 #ifdef HAVE_TARGET_64_LITTLE
1897 template
1898 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
1899 #endif
1900
1901 #ifdef HAVE_TARGET_64_BIG
1902 template
1903 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
1904 #endif
1905
1906 #ifdef HAVE_TARGET_32_LITTLE
1907 template
1908 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
1909 #endif
1910
1911 #ifdef HAVE_TARGET_32_BIG
1912 template
1913 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
1914 #endif
1915
1916 #ifdef HAVE_TARGET_64_LITTLE
1917 template
1918 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
1919 #endif
1920
1921 #ifdef HAVE_TARGET_64_BIG
1922 template
1923 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
1924 #endif
1925
1926 #ifdef HAVE_TARGET_32_LITTLE
1927 template
1928 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
1929 #endif
1930
1931 #ifdef HAVE_TARGET_32_BIG
1932 template
1933 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
1934 #endif
1935
1936 #ifdef HAVE_TARGET_64_LITTLE
1937 template
1938 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
1939 #endif
1940
1941 #ifdef HAVE_TARGET_64_BIG
1942 template
1943 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
1944 #endif
1945
1946 #ifdef HAVE_TARGET_32_LITTLE
1947 template
1948 class Output_data_got<32, false>;
1949 #endif
1950
1951 #ifdef HAVE_TARGET_32_BIG
1952 template
1953 class Output_data_got<32, true>;
1954 #endif
1955
1956 #ifdef HAVE_TARGET_64_LITTLE
1957 template
1958 class Output_data_got<64, false>;
1959 #endif
1960
1961 #ifdef HAVE_TARGET_64_BIG
1962 template
1963 class Output_data_got<64, true>;
1964 #endif
1965
1966 } // End namespace gold.
This page took 0.12842 seconds and 4 git commands to generate.