merge from gcc
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h" // for unlink_if_ordinary()
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56 return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
92 gold_unreachable();
93 }
94
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
105 : layout_(layout),
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
111 {
112 // Count all the sections. Start with 1 for the null section.
113 off_t count = 1;
114 if (!parameters->options().relocatable())
115 {
116 for (Layout::Segment_list::const_iterator p = segment_list->begin();
117 p != segment_list->end();
118 ++p)
119 if ((*p)->type() == elfcpp::PT_LOAD)
120 count += (*p)->output_section_count();
121 }
122 else
123 {
124 for (Layout::Section_list::const_iterator p = section_list->begin();
125 p != section_list->end();
126 ++p)
127 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
128 ++count;
129 }
130 count += unattached_section_list->size();
131
132 const int size = parameters->target().get_size();
133 int shdr_size;
134 if (size == 32)
135 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
136 else if (size == 64)
137 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
138 else
139 gold_unreachable();
140
141 this->set_data_size(count * shdr_size);
142 }
143
144 // Write out the section headers.
145
146 void
147 Output_section_headers::do_write(Output_file* of)
148 {
149 switch (parameters->size_and_endianness())
150 {
151 #ifdef HAVE_TARGET_32_LITTLE
152 case Parameters::TARGET_32_LITTLE:
153 this->do_sized_write<32, false>(of);
154 break;
155 #endif
156 #ifdef HAVE_TARGET_32_BIG
157 case Parameters::TARGET_32_BIG:
158 this->do_sized_write<32, true>(of);
159 break;
160 #endif
161 #ifdef HAVE_TARGET_64_LITTLE
162 case Parameters::TARGET_64_LITTLE:
163 this->do_sized_write<64, false>(of);
164 break;
165 #endif
166 #ifdef HAVE_TARGET_64_BIG
167 case Parameters::TARGET_64_BIG:
168 this->do_sized_write<64, true>(of);
169 break;
170 #endif
171 default:
172 gold_unreachable();
173 }
174 }
175
176 template<int size, bool big_endian>
177 void
178 Output_section_headers::do_sized_write(Output_file* of)
179 {
180 off_t all_shdrs_size = this->data_size();
181 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
182
183 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
184 unsigned char* v = view;
185
186 {
187 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
188 oshdr.put_sh_name(0);
189 oshdr.put_sh_type(elfcpp::SHT_NULL);
190 oshdr.put_sh_flags(0);
191 oshdr.put_sh_addr(0);
192 oshdr.put_sh_offset(0);
193
194 size_t section_count = (this->data_size()
195 / elfcpp::Elf_sizes<size>::shdr_size);
196 if (section_count < elfcpp::SHN_LORESERVE)
197 oshdr.put_sh_size(0);
198 else
199 oshdr.put_sh_size(section_count);
200
201 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
202 if (shstrndx < elfcpp::SHN_LORESERVE)
203 oshdr.put_sh_link(0);
204 else
205 oshdr.put_sh_link(shstrndx);
206
207 oshdr.put_sh_info(0);
208 oshdr.put_sh_addralign(0);
209 oshdr.put_sh_entsize(0);
210 }
211
212 v += shdr_size;
213
214 unsigned int shndx = 1;
215 if (!parameters->options().relocatable())
216 {
217 for (Layout::Segment_list::const_iterator p =
218 this->segment_list_->begin();
219 p != this->segment_list_->end();
220 ++p)
221 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
222 this->secnamepool_,
223 v,
224 &shndx);
225 }
226 else
227 {
228 for (Layout::Section_list::const_iterator p =
229 this->section_list_->begin();
230 p != this->section_list_->end();
231 ++p)
232 {
233 // We do unallocated sections below, except that group
234 // sections have to come first.
235 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
236 && (*p)->type() != elfcpp::SHT_GROUP)
237 continue;
238 gold_assert(shndx == (*p)->out_shndx());
239 elfcpp::Shdr_write<size, big_endian> oshdr(v);
240 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
241 v += shdr_size;
242 ++shndx;
243 }
244 }
245
246 for (Layout::Section_list::const_iterator p =
247 this->unattached_section_list_->begin();
248 p != this->unattached_section_list_->end();
249 ++p)
250 {
251 // For a relocatable link, we did unallocated group sections
252 // above, since they have to come first.
253 if ((*p)->type() == elfcpp::SHT_GROUP
254 && parameters->options().relocatable())
255 continue;
256 gold_assert(shndx == (*p)->out_shndx());
257 elfcpp::Shdr_write<size, big_endian> oshdr(v);
258 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
259 v += shdr_size;
260 ++shndx;
261 }
262
263 of->write_output_view(this->offset(), all_shdrs_size, view);
264 }
265
266 // Output_segment_header methods.
267
268 Output_segment_headers::Output_segment_headers(
269 const Layout::Segment_list& segment_list)
270 : segment_list_(segment_list)
271 {
272 const int size = parameters->target().get_size();
273 int phdr_size;
274 if (size == 32)
275 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
276 else if (size == 64)
277 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
278 else
279 gold_unreachable();
280
281 this->set_data_size(segment_list.size() * phdr_size);
282 }
283
284 void
285 Output_segment_headers::do_write(Output_file* of)
286 {
287 switch (parameters->size_and_endianness())
288 {
289 #ifdef HAVE_TARGET_32_LITTLE
290 case Parameters::TARGET_32_LITTLE:
291 this->do_sized_write<32, false>(of);
292 break;
293 #endif
294 #ifdef HAVE_TARGET_32_BIG
295 case Parameters::TARGET_32_BIG:
296 this->do_sized_write<32, true>(of);
297 break;
298 #endif
299 #ifdef HAVE_TARGET_64_LITTLE
300 case Parameters::TARGET_64_LITTLE:
301 this->do_sized_write<64, false>(of);
302 break;
303 #endif
304 #ifdef HAVE_TARGET_64_BIG
305 case Parameters::TARGET_64_BIG:
306 this->do_sized_write<64, true>(of);
307 break;
308 #endif
309 default:
310 gold_unreachable();
311 }
312 }
313
314 template<int size, bool big_endian>
315 void
316 Output_segment_headers::do_sized_write(Output_file* of)
317 {
318 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
319 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
320 gold_assert(all_phdrs_size == this->data_size());
321 unsigned char* view = of->get_output_view(this->offset(),
322 all_phdrs_size);
323 unsigned char* v = view;
324 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
325 p != this->segment_list_.end();
326 ++p)
327 {
328 elfcpp::Phdr_write<size, big_endian> ophdr(v);
329 (*p)->write_header(&ophdr);
330 v += phdr_size;
331 }
332
333 gold_assert(v - view == all_phdrs_size);
334
335 of->write_output_view(this->offset(), all_phdrs_size, view);
336 }
337
338 // Output_file_header methods.
339
340 Output_file_header::Output_file_header(const Target* target,
341 const Symbol_table* symtab,
342 const Output_segment_headers* osh,
343 const char* entry)
344 : target_(target),
345 symtab_(symtab),
346 segment_header_(osh),
347 section_header_(NULL),
348 shstrtab_(NULL),
349 entry_(entry)
350 {
351 const int size = parameters->target().get_size();
352 int ehdr_size;
353 if (size == 32)
354 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
355 else if (size == 64)
356 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
357 else
358 gold_unreachable();
359
360 this->set_data_size(ehdr_size);
361 }
362
363 // Set the section table information for a file header.
364
365 void
366 Output_file_header::set_section_info(const Output_section_headers* shdrs,
367 const Output_section* shstrtab)
368 {
369 this->section_header_ = shdrs;
370 this->shstrtab_ = shstrtab;
371 }
372
373 // Write out the file header.
374
375 void
376 Output_file_header::do_write(Output_file* of)
377 {
378 gold_assert(this->offset() == 0);
379
380 switch (parameters->size_and_endianness())
381 {
382 #ifdef HAVE_TARGET_32_LITTLE
383 case Parameters::TARGET_32_LITTLE:
384 this->do_sized_write<32, false>(of);
385 break;
386 #endif
387 #ifdef HAVE_TARGET_32_BIG
388 case Parameters::TARGET_32_BIG:
389 this->do_sized_write<32, true>(of);
390 break;
391 #endif
392 #ifdef HAVE_TARGET_64_LITTLE
393 case Parameters::TARGET_64_LITTLE:
394 this->do_sized_write<64, false>(of);
395 break;
396 #endif
397 #ifdef HAVE_TARGET_64_BIG
398 case Parameters::TARGET_64_BIG:
399 this->do_sized_write<64, true>(of);
400 break;
401 #endif
402 default:
403 gold_unreachable();
404 }
405 }
406
407 // Write out the file header with appropriate size and endianess.
408
409 template<int size, bool big_endian>
410 void
411 Output_file_header::do_sized_write(Output_file* of)
412 {
413 gold_assert(this->offset() == 0);
414
415 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
416 unsigned char* view = of->get_output_view(0, ehdr_size);
417 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
418
419 unsigned char e_ident[elfcpp::EI_NIDENT];
420 memset(e_ident, 0, elfcpp::EI_NIDENT);
421 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
422 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
423 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
424 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
425 if (size == 32)
426 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
427 else if (size == 64)
428 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
429 else
430 gold_unreachable();
431 e_ident[elfcpp::EI_DATA] = (big_endian
432 ? elfcpp::ELFDATA2MSB
433 : elfcpp::ELFDATA2LSB);
434 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
435 oehdr.put_e_ident(e_ident);
436
437 elfcpp::ET e_type;
438 if (parameters->options().relocatable())
439 e_type = elfcpp::ET_REL;
440 else if (parameters->options().shared())
441 e_type = elfcpp::ET_DYN;
442 else
443 e_type = elfcpp::ET_EXEC;
444 oehdr.put_e_type(e_type);
445
446 oehdr.put_e_machine(this->target_->machine_code());
447 oehdr.put_e_version(elfcpp::EV_CURRENT);
448
449 oehdr.put_e_entry(this->entry<size>());
450
451 if (this->segment_header_ == NULL)
452 oehdr.put_e_phoff(0);
453 else
454 oehdr.put_e_phoff(this->segment_header_->offset());
455
456 oehdr.put_e_shoff(this->section_header_->offset());
457
458 // FIXME: The target needs to set the flags.
459 oehdr.put_e_flags(0);
460
461 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
462
463 if (this->segment_header_ == NULL)
464 {
465 oehdr.put_e_phentsize(0);
466 oehdr.put_e_phnum(0);
467 }
468 else
469 {
470 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
471 oehdr.put_e_phnum(this->segment_header_->data_size()
472 / elfcpp::Elf_sizes<size>::phdr_size);
473 }
474
475 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
476 size_t section_count = (this->section_header_->data_size()
477 / elfcpp::Elf_sizes<size>::shdr_size);
478
479 if (section_count < elfcpp::SHN_LORESERVE)
480 oehdr.put_e_shnum(this->section_header_->data_size()
481 / elfcpp::Elf_sizes<size>::shdr_size);
482 else
483 oehdr.put_e_shnum(0);
484
485 unsigned int shstrndx = this->shstrtab_->out_shndx();
486 if (shstrndx < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
488 else
489 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
490
491 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
492 // the e_ident field.
493 parameters->target().adjust_elf_header(view, ehdr_size);
494
495 of->write_output_view(0, ehdr_size, view);
496 }
497
498 // Return the value to use for the entry address. THIS->ENTRY_ is the
499 // symbol specified on the command line, if any.
500
501 template<int size>
502 typename elfcpp::Elf_types<size>::Elf_Addr
503 Output_file_header::entry()
504 {
505 const bool should_issue_warning = (this->entry_ != NULL
506 && !parameters->options().relocatable()
507 && !parameters->options().shared());
508
509 // FIXME: Need to support target specific entry symbol.
510 const char* entry = this->entry_;
511 if (entry == NULL)
512 entry = "_start";
513
514 Symbol* sym = this->symtab_->lookup(entry);
515
516 typename Sized_symbol<size>::Value_type v;
517 if (sym != NULL)
518 {
519 Sized_symbol<size>* ssym;
520 ssym = this->symtab_->get_sized_symbol<size>(sym);
521 if (!ssym->is_defined() && should_issue_warning)
522 gold_warning("entry symbol '%s' exists but is not defined", entry);
523 v = ssym->value();
524 }
525 else
526 {
527 // We couldn't find the entry symbol. See if we can parse it as
528 // a number. This supports, e.g., -e 0x1000.
529 char* endptr;
530 v = strtoull(entry, &endptr, 0);
531 if (*endptr != '\0')
532 {
533 if (should_issue_warning)
534 gold_warning("cannot find entry symbol '%s'", entry);
535 v = 0;
536 }
537 }
538
539 return v;
540 }
541
542 // Output_data_const methods.
543
544 void
545 Output_data_const::do_write(Output_file* of)
546 {
547 of->write(this->offset(), this->data_.data(), this->data_.size());
548 }
549
550 // Output_data_const_buffer methods.
551
552 void
553 Output_data_const_buffer::do_write(Output_file* of)
554 {
555 of->write(this->offset(), this->p_, this->data_size());
556 }
557
558 // Output_section_data methods.
559
560 // Record the output section, and set the entry size and such.
561
562 void
563 Output_section_data::set_output_section(Output_section* os)
564 {
565 gold_assert(this->output_section_ == NULL);
566 this->output_section_ = os;
567 this->do_adjust_output_section(os);
568 }
569
570 // Return the section index of the output section.
571
572 unsigned int
573 Output_section_data::do_out_shndx() const
574 {
575 gold_assert(this->output_section_ != NULL);
576 return this->output_section_->out_shndx();
577 }
578
579 // Set the alignment, which means we may need to update the alignment
580 // of the output section.
581
582 void
583 Output_section_data::set_addralign(uint64_t addralign)
584 {
585 this->addralign_ = addralign;
586 if (this->output_section_ != NULL
587 && this->output_section_->addralign() < addralign)
588 this->output_section_->set_addralign(addralign);
589 }
590
591 // Output_data_strtab methods.
592
593 // Set the final data size.
594
595 void
596 Output_data_strtab::set_final_data_size()
597 {
598 this->strtab_->set_string_offsets();
599 this->set_data_size(this->strtab_->get_strtab_size());
600 }
601
602 // Write out a string table.
603
604 void
605 Output_data_strtab::do_write(Output_file* of)
606 {
607 this->strtab_->write(of, this->offset());
608 }
609
610 // Output_reloc methods.
611
612 // A reloc against a global symbol.
613
614 template<bool dynamic, int size, bool big_endian>
615 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
616 Symbol* gsym,
617 unsigned int type,
618 Output_data* od,
619 Address address,
620 bool is_relative)
621 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
622 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
623 {
624 // this->type_ is a bitfield; make sure TYPE fits.
625 gold_assert(this->type_ == type);
626 this->u1_.gsym = gsym;
627 this->u2_.od = od;
628 if (dynamic)
629 this->set_needs_dynsym_index();
630 }
631
632 template<bool dynamic, int size, bool big_endian>
633 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
634 Symbol* gsym,
635 unsigned int type,
636 Sized_relobj<size, big_endian>* relobj,
637 unsigned int shndx,
638 Address address,
639 bool is_relative)
640 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
641 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
642 {
643 gold_assert(shndx != INVALID_CODE);
644 // this->type_ is a bitfield; make sure TYPE fits.
645 gold_assert(this->type_ == type);
646 this->u1_.gsym = gsym;
647 this->u2_.relobj = relobj;
648 if (dynamic)
649 this->set_needs_dynsym_index();
650 }
651
652 // A reloc against a local symbol.
653
654 template<bool dynamic, int size, bool big_endian>
655 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
656 Sized_relobj<size, big_endian>* relobj,
657 unsigned int local_sym_index,
658 unsigned int type,
659 Output_data* od,
660 Address address,
661 bool is_relative,
662 bool is_section_symbol)
663 : address_(address), local_sym_index_(local_sym_index), type_(type),
664 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
665 shndx_(INVALID_CODE)
666 {
667 gold_assert(local_sym_index != GSYM_CODE
668 && local_sym_index != INVALID_CODE);
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_ == type);
671 this->u1_.relobj = relobj;
672 this->u2_.od = od;
673 if (dynamic)
674 this->set_needs_dynsym_index();
675 }
676
677 template<bool dynamic, int size, bool big_endian>
678 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
679 Sized_relobj<size, big_endian>* relobj,
680 unsigned int local_sym_index,
681 unsigned int type,
682 unsigned int shndx,
683 Address address,
684 bool is_relative,
685 bool is_section_symbol)
686 : address_(address), local_sym_index_(local_sym_index), type_(type),
687 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
688 shndx_(shndx)
689 {
690 gold_assert(local_sym_index != GSYM_CODE
691 && local_sym_index != INVALID_CODE);
692 gold_assert(shndx != INVALID_CODE);
693 // this->type_ is a bitfield; make sure TYPE fits.
694 gold_assert(this->type_ == type);
695 this->u1_.relobj = relobj;
696 this->u2_.relobj = relobj;
697 if (dynamic)
698 this->set_needs_dynsym_index();
699 }
700
701 // A reloc against the STT_SECTION symbol of an output section.
702
703 template<bool dynamic, int size, bool big_endian>
704 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705 Output_section* os,
706 unsigned int type,
707 Output_data* od,
708 Address address)
709 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
710 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
711 {
712 // this->type_ is a bitfield; make sure TYPE fits.
713 gold_assert(this->type_ == type);
714 this->u1_.os = os;
715 this->u2_.od = od;
716 if (dynamic)
717 this->set_needs_dynsym_index();
718 else
719 os->set_needs_symtab_index();
720 }
721
722 template<bool dynamic, int size, bool big_endian>
723 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
724 Output_section* os,
725 unsigned int type,
726 Sized_relobj<size, big_endian>* relobj,
727 unsigned int shndx,
728 Address address)
729 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
730 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
731 {
732 gold_assert(shndx != INVALID_CODE);
733 // this->type_ is a bitfield; make sure TYPE fits.
734 gold_assert(this->type_ == type);
735 this->u1_.os = os;
736 this->u2_.relobj = relobj;
737 if (dynamic)
738 this->set_needs_dynsym_index();
739 else
740 os->set_needs_symtab_index();
741 }
742
743 // Record that we need a dynamic symbol index for this relocation.
744
745 template<bool dynamic, int size, bool big_endian>
746 void
747 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
748 set_needs_dynsym_index()
749 {
750 if (this->is_relative_)
751 return;
752 switch (this->local_sym_index_)
753 {
754 case INVALID_CODE:
755 gold_unreachable();
756
757 case GSYM_CODE:
758 this->u1_.gsym->set_needs_dynsym_entry();
759 break;
760
761 case SECTION_CODE:
762 this->u1_.os->set_needs_dynsym_index();
763 break;
764
765 case 0:
766 break;
767
768 default:
769 {
770 const unsigned int lsi = this->local_sym_index_;
771 if (!this->is_section_symbol_)
772 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
773 else
774 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
775 }
776 break;
777 }
778 }
779
780 // Get the symbol index of a relocation.
781
782 template<bool dynamic, int size, bool big_endian>
783 unsigned int
784 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
785 const
786 {
787 unsigned int index;
788 switch (this->local_sym_index_)
789 {
790 case INVALID_CODE:
791 gold_unreachable();
792
793 case GSYM_CODE:
794 if (this->u1_.gsym == NULL)
795 index = 0;
796 else if (dynamic)
797 index = this->u1_.gsym->dynsym_index();
798 else
799 index = this->u1_.gsym->symtab_index();
800 break;
801
802 case SECTION_CODE:
803 if (dynamic)
804 index = this->u1_.os->dynsym_index();
805 else
806 index = this->u1_.os->symtab_index();
807 break;
808
809 case 0:
810 // Relocations without symbols use a symbol index of 0.
811 index = 0;
812 break;
813
814 default:
815 {
816 const unsigned int lsi = this->local_sym_index_;
817 if (!this->is_section_symbol_)
818 {
819 if (dynamic)
820 index = this->u1_.relobj->dynsym_index(lsi);
821 else
822 index = this->u1_.relobj->symtab_index(lsi);
823 }
824 else
825 {
826 Output_section* os = this->u1_.relobj->output_section(lsi);
827 gold_assert(os != NULL);
828 if (dynamic)
829 index = os->dynsym_index();
830 else
831 index = os->symtab_index();
832 }
833 }
834 break;
835 }
836 gold_assert(index != -1U);
837 return index;
838 }
839
840 // For a local section symbol, get the address of the offset ADDEND
841 // within the input section.
842
843 template<bool dynamic, int size, bool big_endian>
844 typename elfcpp::Elf_types<size>::Elf_Addr
845 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
846 local_section_offset(Addend addend) const
847 {
848 gold_assert(this->local_sym_index_ != GSYM_CODE
849 && this->local_sym_index_ != SECTION_CODE
850 && this->local_sym_index_ != INVALID_CODE
851 && this->is_section_symbol_);
852 const unsigned int lsi = this->local_sym_index_;
853 Output_section* os = this->u1_.relobj->output_section(lsi);
854 gold_assert(os != NULL);
855 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
856 if (offset != invalid_address)
857 return offset + addend;
858 // This is a merge section.
859 offset = os->output_address(this->u1_.relobj, lsi, addend);
860 gold_assert(offset != invalid_address);
861 return offset;
862 }
863
864 // Get the output address of a relocation.
865
866 template<bool dynamic, int size, bool big_endian>
867 typename elfcpp::Elf_types<size>::Elf_Addr
868 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
869 {
870 Address address = this->address_;
871 if (this->shndx_ != INVALID_CODE)
872 {
873 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
874 gold_assert(os != NULL);
875 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
876 if (off != invalid_address)
877 address += os->address() + off;
878 else
879 {
880 address = os->output_address(this->u2_.relobj, this->shndx_,
881 address);
882 gold_assert(address != invalid_address);
883 }
884 }
885 else if (this->u2_.od != NULL)
886 address += this->u2_.od->address();
887 return address;
888 }
889
890 // Write out the offset and info fields of a Rel or Rela relocation
891 // entry.
892
893 template<bool dynamic, int size, bool big_endian>
894 template<typename Write_rel>
895 void
896 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
897 Write_rel* wr) const
898 {
899 wr->put_r_offset(this->get_address());
900 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
901 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
902 }
903
904 // Write out a Rel relocation.
905
906 template<bool dynamic, int size, bool big_endian>
907 void
908 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
909 unsigned char* pov) const
910 {
911 elfcpp::Rel_write<size, big_endian> orel(pov);
912 this->write_rel(&orel);
913 }
914
915 // Get the value of the symbol referred to by a Rel relocation.
916
917 template<bool dynamic, int size, bool big_endian>
918 typename elfcpp::Elf_types<size>::Elf_Addr
919 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
920 Addend addend) const
921 {
922 if (this->local_sym_index_ == GSYM_CODE)
923 {
924 const Sized_symbol<size>* sym;
925 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
926 return sym->value() + addend;
927 }
928 gold_assert(this->local_sym_index_ != SECTION_CODE
929 && this->local_sym_index_ != INVALID_CODE
930 && !this->is_section_symbol_);
931 const unsigned int lsi = this->local_sym_index_;
932 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
933 return symval->value(this->u1_.relobj, addend);
934 }
935
936 // Reloc comparison. This function sorts the dynamic relocs for the
937 // benefit of the dynamic linker. First we sort all relative relocs
938 // to the front. Among relative relocs, we sort by output address.
939 // Among non-relative relocs, we sort by symbol index, then by output
940 // address.
941
942 template<bool dynamic, int size, bool big_endian>
943 int
944 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
945 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
946 const
947 {
948 if (this->is_relative_)
949 {
950 if (!r2.is_relative_)
951 return -1;
952 // Otherwise sort by reloc address below.
953 }
954 else if (r2.is_relative_)
955 return 1;
956 else
957 {
958 unsigned int sym1 = this->get_symbol_index();
959 unsigned int sym2 = r2.get_symbol_index();
960 if (sym1 < sym2)
961 return -1;
962 else if (sym1 > sym2)
963 return 1;
964 // Otherwise sort by reloc address.
965 }
966
967 section_offset_type addr1 = this->get_address();
968 section_offset_type addr2 = r2.get_address();
969 if (addr1 < addr2)
970 return -1;
971 else if (addr1 > addr2)
972 return 1;
973
974 // Final tie breaker, in order to generate the same output on any
975 // host: reloc type.
976 unsigned int type1 = this->type_;
977 unsigned int type2 = r2.type_;
978 if (type1 < type2)
979 return -1;
980 else if (type1 > type2)
981 return 1;
982
983 // These relocs appear to be exactly the same.
984 return 0;
985 }
986
987 // Write out a Rela relocation.
988
989 template<bool dynamic, int size, bool big_endian>
990 void
991 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
992 unsigned char* pov) const
993 {
994 elfcpp::Rela_write<size, big_endian> orel(pov);
995 this->rel_.write_rel(&orel);
996 Addend addend = this->addend_;
997 if (this->rel_.is_relative())
998 addend = this->rel_.symbol_value(addend);
999 else if (this->rel_.is_local_section_symbol())
1000 addend = this->rel_.local_section_offset(addend);
1001 orel.put_r_addend(addend);
1002 }
1003
1004 // Output_data_reloc_base methods.
1005
1006 // Adjust the output section.
1007
1008 template<int sh_type, bool dynamic, int size, bool big_endian>
1009 void
1010 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1011 ::do_adjust_output_section(Output_section* os)
1012 {
1013 if (sh_type == elfcpp::SHT_REL)
1014 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1015 else if (sh_type == elfcpp::SHT_RELA)
1016 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1017 else
1018 gold_unreachable();
1019 if (dynamic)
1020 os->set_should_link_to_dynsym();
1021 else
1022 os->set_should_link_to_symtab();
1023 }
1024
1025 // Write out relocation data.
1026
1027 template<int sh_type, bool dynamic, int size, bool big_endian>
1028 void
1029 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1030 Output_file* of)
1031 {
1032 const off_t off = this->offset();
1033 const off_t oview_size = this->data_size();
1034 unsigned char* const oview = of->get_output_view(off, oview_size);
1035
1036 if (this->sort_relocs_)
1037 {
1038 gold_assert(dynamic);
1039 std::sort(this->relocs_.begin(), this->relocs_.end(),
1040 Sort_relocs_comparison());
1041 }
1042
1043 unsigned char* pov = oview;
1044 for (typename Relocs::const_iterator p = this->relocs_.begin();
1045 p != this->relocs_.end();
1046 ++p)
1047 {
1048 p->write(pov);
1049 pov += reloc_size;
1050 }
1051
1052 gold_assert(pov - oview == oview_size);
1053
1054 of->write_output_view(off, oview_size, oview);
1055
1056 // We no longer need the relocation entries.
1057 this->relocs_.clear();
1058 }
1059
1060 // Class Output_relocatable_relocs.
1061
1062 template<int sh_type, int size, bool big_endian>
1063 void
1064 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1065 {
1066 this->set_data_size(this->rr_->output_reloc_count()
1067 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1068 }
1069
1070 // class Output_data_group.
1071
1072 template<int size, bool big_endian>
1073 Output_data_group<size, big_endian>::Output_data_group(
1074 Sized_relobj<size, big_endian>* relobj,
1075 section_size_type entry_count,
1076 elfcpp::Elf_Word flags,
1077 std::vector<unsigned int>* input_shndxes)
1078 : Output_section_data(entry_count * 4, 4),
1079 relobj_(relobj),
1080 flags_(flags)
1081 {
1082 this->input_shndxes_.swap(*input_shndxes);
1083 }
1084
1085 // Write out the section group, which means translating the section
1086 // indexes to apply to the output file.
1087
1088 template<int size, bool big_endian>
1089 void
1090 Output_data_group<size, big_endian>::do_write(Output_file* of)
1091 {
1092 const off_t off = this->offset();
1093 const section_size_type oview_size =
1094 convert_to_section_size_type(this->data_size());
1095 unsigned char* const oview = of->get_output_view(off, oview_size);
1096
1097 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1098 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1099 ++contents;
1100
1101 for (std::vector<unsigned int>::const_iterator p =
1102 this->input_shndxes_.begin();
1103 p != this->input_shndxes_.end();
1104 ++p, ++contents)
1105 {
1106 Output_section* os = this->relobj_->output_section(*p);
1107
1108 unsigned int output_shndx;
1109 if (os != NULL)
1110 output_shndx = os->out_shndx();
1111 else
1112 {
1113 this->relobj_->error(_("section group retained but "
1114 "group element discarded"));
1115 output_shndx = 0;
1116 }
1117
1118 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1119 }
1120
1121 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1122 gold_assert(wrote == oview_size);
1123
1124 of->write_output_view(off, oview_size, oview);
1125
1126 // We no longer need this information.
1127 this->input_shndxes_.clear();
1128 }
1129
1130 // Output_data_got::Got_entry methods.
1131
1132 // Write out the entry.
1133
1134 template<int size, bool big_endian>
1135 void
1136 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1137 {
1138 Valtype val = 0;
1139
1140 switch (this->local_sym_index_)
1141 {
1142 case GSYM_CODE:
1143 {
1144 // If the symbol is resolved locally, we need to write out the
1145 // link-time value, which will be relocated dynamically by a
1146 // RELATIVE relocation.
1147 Symbol* gsym = this->u_.gsym;
1148 Sized_symbol<size>* sgsym;
1149 // This cast is a bit ugly. We don't want to put a
1150 // virtual method in Symbol, because we want Symbol to be
1151 // as small as possible.
1152 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1153 val = sgsym->value();
1154 }
1155 break;
1156
1157 case CONSTANT_CODE:
1158 val = this->u_.constant;
1159 break;
1160
1161 default:
1162 {
1163 const unsigned int lsi = this->local_sym_index_;
1164 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1165 val = symval->value(this->u_.object, 0);
1166 }
1167 break;
1168 }
1169
1170 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1171 }
1172
1173 // Output_data_got methods.
1174
1175 // Add an entry for a global symbol to the GOT. This returns true if
1176 // this is a new GOT entry, false if the symbol already had a GOT
1177 // entry.
1178
1179 template<int size, bool big_endian>
1180 bool
1181 Output_data_got<size, big_endian>::add_global(
1182 Symbol* gsym,
1183 unsigned int got_type)
1184 {
1185 if (gsym->has_got_offset(got_type))
1186 return false;
1187
1188 this->entries_.push_back(Got_entry(gsym));
1189 this->set_got_size();
1190 gsym->set_got_offset(got_type, this->last_got_offset());
1191 return true;
1192 }
1193
1194 // Add an entry for a global symbol to the GOT, and add a dynamic
1195 // relocation of type R_TYPE for the GOT entry.
1196 template<int size, bool big_endian>
1197 void
1198 Output_data_got<size, big_endian>::add_global_with_rel(
1199 Symbol* gsym,
1200 unsigned int got_type,
1201 Rel_dyn* rel_dyn,
1202 unsigned int r_type)
1203 {
1204 if (gsym->has_got_offset(got_type))
1205 return;
1206
1207 this->entries_.push_back(Got_entry());
1208 this->set_got_size();
1209 unsigned int got_offset = this->last_got_offset();
1210 gsym->set_got_offset(got_type, got_offset);
1211 rel_dyn->add_global(gsym, r_type, this, got_offset);
1212 }
1213
1214 template<int size, bool big_endian>
1215 void
1216 Output_data_got<size, big_endian>::add_global_with_rela(
1217 Symbol* gsym,
1218 unsigned int got_type,
1219 Rela_dyn* rela_dyn,
1220 unsigned int r_type)
1221 {
1222 if (gsym->has_got_offset(got_type))
1223 return;
1224
1225 this->entries_.push_back(Got_entry());
1226 this->set_got_size();
1227 unsigned int got_offset = this->last_got_offset();
1228 gsym->set_got_offset(got_type, got_offset);
1229 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1230 }
1231
1232 // Add a pair of entries for a global symbol to the GOT, and add
1233 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1234 // If R_TYPE_2 == 0, add the second entry with no relocation.
1235 template<int size, bool big_endian>
1236 void
1237 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1238 Symbol* gsym,
1239 unsigned int got_type,
1240 Rel_dyn* rel_dyn,
1241 unsigned int r_type_1,
1242 unsigned int r_type_2)
1243 {
1244 if (gsym->has_got_offset(got_type))
1245 return;
1246
1247 this->entries_.push_back(Got_entry());
1248 unsigned int got_offset = this->last_got_offset();
1249 gsym->set_got_offset(got_type, got_offset);
1250 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1251
1252 this->entries_.push_back(Got_entry());
1253 if (r_type_2 != 0)
1254 {
1255 got_offset = this->last_got_offset();
1256 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1257 }
1258
1259 this->set_got_size();
1260 }
1261
1262 template<int size, bool big_endian>
1263 void
1264 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1265 Symbol* gsym,
1266 unsigned int got_type,
1267 Rela_dyn* rela_dyn,
1268 unsigned int r_type_1,
1269 unsigned int r_type_2)
1270 {
1271 if (gsym->has_got_offset(got_type))
1272 return;
1273
1274 this->entries_.push_back(Got_entry());
1275 unsigned int got_offset = this->last_got_offset();
1276 gsym->set_got_offset(got_type, got_offset);
1277 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1278
1279 this->entries_.push_back(Got_entry());
1280 if (r_type_2 != 0)
1281 {
1282 got_offset = this->last_got_offset();
1283 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1284 }
1285
1286 this->set_got_size();
1287 }
1288
1289 // Add an entry for a local symbol to the GOT. This returns true if
1290 // this is a new GOT entry, false if the symbol already has a GOT
1291 // entry.
1292
1293 template<int size, bool big_endian>
1294 bool
1295 Output_data_got<size, big_endian>::add_local(
1296 Sized_relobj<size, big_endian>* object,
1297 unsigned int symndx,
1298 unsigned int got_type)
1299 {
1300 if (object->local_has_got_offset(symndx, got_type))
1301 return false;
1302
1303 this->entries_.push_back(Got_entry(object, symndx));
1304 this->set_got_size();
1305 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1306 return true;
1307 }
1308
1309 // Add an entry for a local symbol to the GOT, and add a dynamic
1310 // relocation of type R_TYPE for the GOT entry.
1311 template<int size, bool big_endian>
1312 void
1313 Output_data_got<size, big_endian>::add_local_with_rel(
1314 Sized_relobj<size, big_endian>* object,
1315 unsigned int symndx,
1316 unsigned int got_type,
1317 Rel_dyn* rel_dyn,
1318 unsigned int r_type)
1319 {
1320 if (object->local_has_got_offset(symndx, got_type))
1321 return;
1322
1323 this->entries_.push_back(Got_entry());
1324 this->set_got_size();
1325 unsigned int got_offset = this->last_got_offset();
1326 object->set_local_got_offset(symndx, got_type, got_offset);
1327 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1328 }
1329
1330 template<int size, bool big_endian>
1331 void
1332 Output_data_got<size, big_endian>::add_local_with_rela(
1333 Sized_relobj<size, big_endian>* object,
1334 unsigned int symndx,
1335 unsigned int got_type,
1336 Rela_dyn* rela_dyn,
1337 unsigned int r_type)
1338 {
1339 if (object->local_has_got_offset(symndx, got_type))
1340 return;
1341
1342 this->entries_.push_back(Got_entry());
1343 this->set_got_size();
1344 unsigned int got_offset = this->last_got_offset();
1345 object->set_local_got_offset(symndx, got_type, got_offset);
1346 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1347 }
1348
1349 // Add a pair of entries for a local symbol to the GOT, and add
1350 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1351 // If R_TYPE_2 == 0, add the second entry with no relocation.
1352 template<int size, bool big_endian>
1353 void
1354 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1355 Sized_relobj<size, big_endian>* object,
1356 unsigned int symndx,
1357 unsigned int shndx,
1358 unsigned int got_type,
1359 Rel_dyn* rel_dyn,
1360 unsigned int r_type_1,
1361 unsigned int r_type_2)
1362 {
1363 if (object->local_has_got_offset(symndx, got_type))
1364 return;
1365
1366 this->entries_.push_back(Got_entry());
1367 unsigned int got_offset = this->last_got_offset();
1368 object->set_local_got_offset(symndx, got_type, got_offset);
1369 Output_section* os = object->output_section(shndx);
1370 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1371
1372 this->entries_.push_back(Got_entry(object, symndx));
1373 if (r_type_2 != 0)
1374 {
1375 got_offset = this->last_got_offset();
1376 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1377 }
1378
1379 this->set_got_size();
1380 }
1381
1382 template<int size, bool big_endian>
1383 void
1384 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1385 Sized_relobj<size, big_endian>* object,
1386 unsigned int symndx,
1387 unsigned int shndx,
1388 unsigned int got_type,
1389 Rela_dyn* rela_dyn,
1390 unsigned int r_type_1,
1391 unsigned int r_type_2)
1392 {
1393 if (object->local_has_got_offset(symndx, got_type))
1394 return;
1395
1396 this->entries_.push_back(Got_entry());
1397 unsigned int got_offset = this->last_got_offset();
1398 object->set_local_got_offset(symndx, got_type, got_offset);
1399 Output_section* os = object->output_section(shndx);
1400 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1401
1402 this->entries_.push_back(Got_entry(object, symndx));
1403 if (r_type_2 != 0)
1404 {
1405 got_offset = this->last_got_offset();
1406 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1407 }
1408
1409 this->set_got_size();
1410 }
1411
1412 // Write out the GOT.
1413
1414 template<int size, bool big_endian>
1415 void
1416 Output_data_got<size, big_endian>::do_write(Output_file* of)
1417 {
1418 const int add = size / 8;
1419
1420 const off_t off = this->offset();
1421 const off_t oview_size = this->data_size();
1422 unsigned char* const oview = of->get_output_view(off, oview_size);
1423
1424 unsigned char* pov = oview;
1425 for (typename Got_entries::const_iterator p = this->entries_.begin();
1426 p != this->entries_.end();
1427 ++p)
1428 {
1429 p->write(pov);
1430 pov += add;
1431 }
1432
1433 gold_assert(pov - oview == oview_size);
1434
1435 of->write_output_view(off, oview_size, oview);
1436
1437 // We no longer need the GOT entries.
1438 this->entries_.clear();
1439 }
1440
1441 // Output_data_dynamic::Dynamic_entry methods.
1442
1443 // Write out the entry.
1444
1445 template<int size, bool big_endian>
1446 void
1447 Output_data_dynamic::Dynamic_entry::write(
1448 unsigned char* pov,
1449 const Stringpool* pool) const
1450 {
1451 typename elfcpp::Elf_types<size>::Elf_WXword val;
1452 switch (this->offset_)
1453 {
1454 case DYNAMIC_NUMBER:
1455 val = this->u_.val;
1456 break;
1457
1458 case DYNAMIC_SECTION_SIZE:
1459 val = this->u_.od->data_size();
1460 break;
1461
1462 case DYNAMIC_SYMBOL:
1463 {
1464 const Sized_symbol<size>* s =
1465 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1466 val = s->value();
1467 }
1468 break;
1469
1470 case DYNAMIC_STRING:
1471 val = pool->get_offset(this->u_.str);
1472 break;
1473
1474 default:
1475 val = this->u_.od->address() + this->offset_;
1476 break;
1477 }
1478
1479 elfcpp::Dyn_write<size, big_endian> dw(pov);
1480 dw.put_d_tag(this->tag_);
1481 dw.put_d_val(val);
1482 }
1483
1484 // Output_data_dynamic methods.
1485
1486 // Adjust the output section to set the entry size.
1487
1488 void
1489 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1490 {
1491 if (parameters->target().get_size() == 32)
1492 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1493 else if (parameters->target().get_size() == 64)
1494 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1495 else
1496 gold_unreachable();
1497 }
1498
1499 // Set the final data size.
1500
1501 void
1502 Output_data_dynamic::set_final_data_size()
1503 {
1504 // Add the terminating entry.
1505 this->add_constant(elfcpp::DT_NULL, 0);
1506
1507 int dyn_size;
1508 if (parameters->target().get_size() == 32)
1509 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1510 else if (parameters->target().get_size() == 64)
1511 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1512 else
1513 gold_unreachable();
1514 this->set_data_size(this->entries_.size() * dyn_size);
1515 }
1516
1517 // Write out the dynamic entries.
1518
1519 void
1520 Output_data_dynamic::do_write(Output_file* of)
1521 {
1522 switch (parameters->size_and_endianness())
1523 {
1524 #ifdef HAVE_TARGET_32_LITTLE
1525 case Parameters::TARGET_32_LITTLE:
1526 this->sized_write<32, false>(of);
1527 break;
1528 #endif
1529 #ifdef HAVE_TARGET_32_BIG
1530 case Parameters::TARGET_32_BIG:
1531 this->sized_write<32, true>(of);
1532 break;
1533 #endif
1534 #ifdef HAVE_TARGET_64_LITTLE
1535 case Parameters::TARGET_64_LITTLE:
1536 this->sized_write<64, false>(of);
1537 break;
1538 #endif
1539 #ifdef HAVE_TARGET_64_BIG
1540 case Parameters::TARGET_64_BIG:
1541 this->sized_write<64, true>(of);
1542 break;
1543 #endif
1544 default:
1545 gold_unreachable();
1546 }
1547 }
1548
1549 template<int size, bool big_endian>
1550 void
1551 Output_data_dynamic::sized_write(Output_file* of)
1552 {
1553 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1554
1555 const off_t offset = this->offset();
1556 const off_t oview_size = this->data_size();
1557 unsigned char* const oview = of->get_output_view(offset, oview_size);
1558
1559 unsigned char* pov = oview;
1560 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1561 p != this->entries_.end();
1562 ++p)
1563 {
1564 p->write<size, big_endian>(pov, this->pool_);
1565 pov += dyn_size;
1566 }
1567
1568 gold_assert(pov - oview == oview_size);
1569
1570 of->write_output_view(offset, oview_size, oview);
1571
1572 // We no longer need the dynamic entries.
1573 this->entries_.clear();
1574 }
1575
1576 // Class Output_symtab_xindex.
1577
1578 void
1579 Output_symtab_xindex::do_write(Output_file* of)
1580 {
1581 const off_t offset = this->offset();
1582 const off_t oview_size = this->data_size();
1583 unsigned char* const oview = of->get_output_view(offset, oview_size);
1584
1585 memset(oview, 0, oview_size);
1586
1587 if (parameters->target().is_big_endian())
1588 this->endian_do_write<true>(oview);
1589 else
1590 this->endian_do_write<false>(oview);
1591
1592 of->write_output_view(offset, oview_size, oview);
1593
1594 // We no longer need the data.
1595 this->entries_.clear();
1596 }
1597
1598 template<bool big_endian>
1599 void
1600 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1601 {
1602 for (Xindex_entries::const_iterator p = this->entries_.begin();
1603 p != this->entries_.end();
1604 ++p)
1605 elfcpp::Swap<32, big_endian>::writeval(oview + p->first * 4, p->second);
1606 }
1607
1608 // Output_section::Input_section methods.
1609
1610 // Return the data size. For an input section we store the size here.
1611 // For an Output_section_data, we have to ask it for the size.
1612
1613 off_t
1614 Output_section::Input_section::data_size() const
1615 {
1616 if (this->is_input_section())
1617 return this->u1_.data_size;
1618 else
1619 return this->u2_.posd->data_size();
1620 }
1621
1622 // Set the address and file offset.
1623
1624 void
1625 Output_section::Input_section::set_address_and_file_offset(
1626 uint64_t address,
1627 off_t file_offset,
1628 off_t section_file_offset)
1629 {
1630 if (this->is_input_section())
1631 this->u2_.object->set_section_offset(this->shndx_,
1632 file_offset - section_file_offset);
1633 else
1634 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1635 }
1636
1637 // Reset the address and file offset.
1638
1639 void
1640 Output_section::Input_section::reset_address_and_file_offset()
1641 {
1642 if (!this->is_input_section())
1643 this->u2_.posd->reset_address_and_file_offset();
1644 }
1645
1646 // Finalize the data size.
1647
1648 void
1649 Output_section::Input_section::finalize_data_size()
1650 {
1651 if (!this->is_input_section())
1652 this->u2_.posd->finalize_data_size();
1653 }
1654
1655 // Try to turn an input offset into an output offset. We want to
1656 // return the output offset relative to the start of this
1657 // Input_section in the output section.
1658
1659 inline bool
1660 Output_section::Input_section::output_offset(
1661 const Relobj* object,
1662 unsigned int shndx,
1663 section_offset_type offset,
1664 section_offset_type *poutput) const
1665 {
1666 if (!this->is_input_section())
1667 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1668 else
1669 {
1670 if (this->shndx_ != shndx || this->u2_.object != object)
1671 return false;
1672 *poutput = offset;
1673 return true;
1674 }
1675 }
1676
1677 // Return whether this is the merge section for the input section
1678 // SHNDX in OBJECT.
1679
1680 inline bool
1681 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1682 unsigned int shndx) const
1683 {
1684 if (this->is_input_section())
1685 return false;
1686 return this->u2_.posd->is_merge_section_for(object, shndx);
1687 }
1688
1689 // Write out the data. We don't have to do anything for an input
1690 // section--they are handled via Object::relocate--but this is where
1691 // we write out the data for an Output_section_data.
1692
1693 void
1694 Output_section::Input_section::write(Output_file* of)
1695 {
1696 if (!this->is_input_section())
1697 this->u2_.posd->write(of);
1698 }
1699
1700 // Write the data to a buffer. As for write(), we don't have to do
1701 // anything for an input section.
1702
1703 void
1704 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1705 {
1706 if (!this->is_input_section())
1707 this->u2_.posd->write_to_buffer(buffer);
1708 }
1709
1710 // Print to a map file.
1711
1712 void
1713 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1714 {
1715 switch (this->shndx_)
1716 {
1717 case OUTPUT_SECTION_CODE:
1718 case MERGE_DATA_SECTION_CODE:
1719 case MERGE_STRING_SECTION_CODE:
1720 this->u2_.posd->print_to_mapfile(mapfile);
1721 break;
1722
1723 default:
1724 mapfile->print_input_section(this->u2_.object, this->shndx_);
1725 break;
1726 }
1727 }
1728
1729 // Output_section methods.
1730
1731 // Construct an Output_section. NAME will point into a Stringpool.
1732
1733 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1734 elfcpp::Elf_Xword flags)
1735 : name_(name),
1736 addralign_(0),
1737 entsize_(0),
1738 load_address_(0),
1739 link_section_(NULL),
1740 link_(0),
1741 info_section_(NULL),
1742 info_symndx_(NULL),
1743 info_(0),
1744 type_(type),
1745 flags_(flags),
1746 out_shndx_(-1U),
1747 symtab_index_(0),
1748 dynsym_index_(0),
1749 input_sections_(),
1750 first_input_offset_(0),
1751 fills_(),
1752 postprocessing_buffer_(NULL),
1753 needs_symtab_index_(false),
1754 needs_dynsym_index_(false),
1755 should_link_to_symtab_(false),
1756 should_link_to_dynsym_(false),
1757 after_input_sections_(false),
1758 requires_postprocessing_(false),
1759 found_in_sections_clause_(false),
1760 has_load_address_(false),
1761 info_uses_section_index_(false),
1762 may_sort_attached_input_sections_(false),
1763 must_sort_attached_input_sections_(false),
1764 attached_input_sections_are_sorted_(false),
1765 is_relro_(false),
1766 is_relro_local_(false),
1767 tls_offset_(0)
1768 {
1769 // An unallocated section has no address. Forcing this means that
1770 // we don't need special treatment for symbols defined in debug
1771 // sections.
1772 if ((flags & elfcpp::SHF_ALLOC) == 0)
1773 this->set_address(0);
1774 }
1775
1776 Output_section::~Output_section()
1777 {
1778 }
1779
1780 // Set the entry size.
1781
1782 void
1783 Output_section::set_entsize(uint64_t v)
1784 {
1785 if (this->entsize_ == 0)
1786 this->entsize_ = v;
1787 else
1788 gold_assert(this->entsize_ == v);
1789 }
1790
1791 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1792 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1793 // relocation section which applies to this section, or 0 if none, or
1794 // -1U if more than one. Return the offset of the input section
1795 // within the output section. Return -1 if the input section will
1796 // receive special handling. In the normal case we don't always keep
1797 // track of input sections for an Output_section. Instead, each
1798 // Object keeps track of the Output_section for each of its input
1799 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1800 // track of input sections here; this is used when SECTIONS appears in
1801 // a linker script.
1802
1803 template<int size, bool big_endian>
1804 off_t
1805 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1806 unsigned int shndx,
1807 const char* secname,
1808 const elfcpp::Shdr<size, big_endian>& shdr,
1809 unsigned int reloc_shndx,
1810 bool have_sections_script)
1811 {
1812 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1813 if ((addralign & (addralign - 1)) != 0)
1814 {
1815 object->error(_("invalid alignment %lu for section \"%s\""),
1816 static_cast<unsigned long>(addralign), secname);
1817 addralign = 1;
1818 }
1819
1820 if (addralign > this->addralign_)
1821 this->addralign_ = addralign;
1822
1823 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1824 this->update_flags_for_input_section(sh_flags);
1825
1826 uint64_t entsize = shdr.get_sh_entsize();
1827
1828 // .debug_str is a mergeable string section, but is not always so
1829 // marked by compilers. Mark manually here so we can optimize.
1830 if (strcmp(secname, ".debug_str") == 0)
1831 {
1832 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1833 entsize = 1;
1834 }
1835
1836 // If this is a SHF_MERGE section, we pass all the input sections to
1837 // a Output_data_merge. We don't try to handle relocations for such
1838 // a section. We don't try to handle empty merge sections--they
1839 // mess up the mappings, and are useless anyhow.
1840 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1841 && reloc_shndx == 0
1842 && shdr.get_sh_size() > 0)
1843 {
1844 if (this->add_merge_input_section(object, shndx, sh_flags,
1845 entsize, addralign))
1846 {
1847 // Tell the relocation routines that they need to call the
1848 // output_offset method to determine the final address.
1849 return -1;
1850 }
1851 }
1852
1853 off_t offset_in_section = this->current_data_size_for_child();
1854 off_t aligned_offset_in_section = align_address(offset_in_section,
1855 addralign);
1856
1857 if (aligned_offset_in_section > offset_in_section
1858 && !have_sections_script
1859 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1860 && object->target()->has_code_fill())
1861 {
1862 // We need to add some fill data. Using fill_list_ when
1863 // possible is an optimization, since we will often have fill
1864 // sections without input sections.
1865 off_t fill_len = aligned_offset_in_section - offset_in_section;
1866 if (this->input_sections_.empty())
1867 this->fills_.push_back(Fill(offset_in_section, fill_len));
1868 else
1869 {
1870 // FIXME: When relaxing, the size needs to adjust to
1871 // maintain a constant alignment.
1872 std::string fill_data(object->target()->code_fill(fill_len));
1873 Output_data_const* odc = new Output_data_const(fill_data, 1);
1874 this->input_sections_.push_back(Input_section(odc));
1875 }
1876 }
1877
1878 this->set_current_data_size_for_child(aligned_offset_in_section
1879 + shdr.get_sh_size());
1880
1881 // We need to keep track of this section if we are already keeping
1882 // track of sections, or if we are relaxing. Also, if this is a
1883 // section which requires sorting, or which may require sorting in
1884 // the future, we keep track of the sections. FIXME: Add test for
1885 // relaxing.
1886 if (have_sections_script
1887 || !this->input_sections_.empty()
1888 || this->may_sort_attached_input_sections()
1889 || this->must_sort_attached_input_sections()
1890 || parameters->options().user_set_Map())
1891 this->input_sections_.push_back(Input_section(object, shndx,
1892 shdr.get_sh_size(),
1893 addralign));
1894
1895 return aligned_offset_in_section;
1896 }
1897
1898 // Add arbitrary data to an output section.
1899
1900 void
1901 Output_section::add_output_section_data(Output_section_data* posd)
1902 {
1903 Input_section inp(posd);
1904 this->add_output_section_data(&inp);
1905
1906 if (posd->is_data_size_valid())
1907 {
1908 off_t offset_in_section = this->current_data_size_for_child();
1909 off_t aligned_offset_in_section = align_address(offset_in_section,
1910 posd->addralign());
1911 this->set_current_data_size_for_child(aligned_offset_in_section
1912 + posd->data_size());
1913 }
1914 }
1915
1916 // Add arbitrary data to an output section by Input_section.
1917
1918 void
1919 Output_section::add_output_section_data(Input_section* inp)
1920 {
1921 if (this->input_sections_.empty())
1922 this->first_input_offset_ = this->current_data_size_for_child();
1923
1924 this->input_sections_.push_back(*inp);
1925
1926 uint64_t addralign = inp->addralign();
1927 if (addralign > this->addralign_)
1928 this->addralign_ = addralign;
1929
1930 inp->set_output_section(this);
1931 }
1932
1933 // Add a merge section to an output section.
1934
1935 void
1936 Output_section::add_output_merge_section(Output_section_data* posd,
1937 bool is_string, uint64_t entsize)
1938 {
1939 Input_section inp(posd, is_string, entsize);
1940 this->add_output_section_data(&inp);
1941 }
1942
1943 // Add an input section to a SHF_MERGE section.
1944
1945 bool
1946 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1947 uint64_t flags, uint64_t entsize,
1948 uint64_t addralign)
1949 {
1950 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1951
1952 // We only merge strings if the alignment is not more than the
1953 // character size. This could be handled, but it's unusual.
1954 if (is_string && addralign > entsize)
1955 return false;
1956
1957 Input_section_list::iterator p;
1958 for (p = this->input_sections_.begin();
1959 p != this->input_sections_.end();
1960 ++p)
1961 if (p->is_merge_section(is_string, entsize, addralign))
1962 {
1963 p->add_input_section(object, shndx);
1964 return true;
1965 }
1966
1967 // We handle the actual constant merging in Output_merge_data or
1968 // Output_merge_string_data.
1969 Output_section_data* posd;
1970 if (!is_string)
1971 posd = new Output_merge_data(entsize, addralign);
1972 else
1973 {
1974 switch (entsize)
1975 {
1976 case 1:
1977 posd = new Output_merge_string<char>(addralign);
1978 break;
1979 case 2:
1980 posd = new Output_merge_string<uint16_t>(addralign);
1981 break;
1982 case 4:
1983 posd = new Output_merge_string<uint32_t>(addralign);
1984 break;
1985 default:
1986 return false;
1987 }
1988 }
1989
1990 this->add_output_merge_section(posd, is_string, entsize);
1991 posd->add_input_section(object, shndx);
1992
1993 return true;
1994 }
1995
1996 // Given an address OFFSET relative to the start of input section
1997 // SHNDX in OBJECT, return whether this address is being included in
1998 // the final link. This should only be called if SHNDX in OBJECT has
1999 // a special mapping.
2000
2001 bool
2002 Output_section::is_input_address_mapped(const Relobj* object,
2003 unsigned int shndx,
2004 off_t offset) const
2005 {
2006 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2007 p != this->input_sections_.end();
2008 ++p)
2009 {
2010 section_offset_type output_offset;
2011 if (p->output_offset(object, shndx, offset, &output_offset))
2012 return output_offset != -1;
2013 }
2014
2015 // By default we assume that the address is mapped. This should
2016 // only be called after we have passed all sections to Layout. At
2017 // that point we should know what we are discarding.
2018 return true;
2019 }
2020
2021 // Given an address OFFSET relative to the start of input section
2022 // SHNDX in object OBJECT, return the output offset relative to the
2023 // start of the input section in the output section. This should only
2024 // be called if SHNDX in OBJECT has a special mapping.
2025
2026 section_offset_type
2027 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2028 section_offset_type offset) const
2029 {
2030 // This can only be called meaningfully when layout is complete.
2031 gold_assert(Output_data::is_layout_complete());
2032
2033 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2034 p != this->input_sections_.end();
2035 ++p)
2036 {
2037 section_offset_type output_offset;
2038 if (p->output_offset(object, shndx, offset, &output_offset))
2039 return output_offset;
2040 }
2041 gold_unreachable();
2042 }
2043
2044 // Return the output virtual address of OFFSET relative to the start
2045 // of input section SHNDX in object OBJECT.
2046
2047 uint64_t
2048 Output_section::output_address(const Relobj* object, unsigned int shndx,
2049 off_t offset) const
2050 {
2051 uint64_t addr = this->address() + this->first_input_offset_;
2052 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2053 p != this->input_sections_.end();
2054 ++p)
2055 {
2056 addr = align_address(addr, p->addralign());
2057 section_offset_type output_offset;
2058 if (p->output_offset(object, shndx, offset, &output_offset))
2059 {
2060 if (output_offset == -1)
2061 return -1ULL;
2062 return addr + output_offset;
2063 }
2064 addr += p->data_size();
2065 }
2066
2067 // If we get here, it means that we don't know the mapping for this
2068 // input section. This might happen in principle if
2069 // add_input_section were called before add_output_section_data.
2070 // But it should never actually happen.
2071
2072 gold_unreachable();
2073 }
2074
2075 // Find the output address of the start of the merged section for
2076 // input section SHNDX in object OBJECT.
2077
2078 bool
2079 Output_section::find_starting_output_address(const Relobj* object,
2080 unsigned int shndx,
2081 uint64_t* paddr) const
2082 {
2083 uint64_t addr = this->address() + this->first_input_offset_;
2084 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2085 p != this->input_sections_.end();
2086 ++p)
2087 {
2088 addr = align_address(addr, p->addralign());
2089
2090 // It would be nice if we could use the existing output_offset
2091 // method to get the output offset of input offset 0.
2092 // Unfortunately we don't know for sure that input offset 0 is
2093 // mapped at all.
2094 if (p->is_merge_section_for(object, shndx))
2095 {
2096 *paddr = addr;
2097 return true;
2098 }
2099
2100 addr += p->data_size();
2101 }
2102
2103 // We couldn't find a merge output section for this input section.
2104 return false;
2105 }
2106
2107 // Set the data size of an Output_section. This is where we handle
2108 // setting the addresses of any Output_section_data objects.
2109
2110 void
2111 Output_section::set_final_data_size()
2112 {
2113 if (this->input_sections_.empty())
2114 {
2115 this->set_data_size(this->current_data_size_for_child());
2116 return;
2117 }
2118
2119 if (this->must_sort_attached_input_sections())
2120 this->sort_attached_input_sections();
2121
2122 uint64_t address = this->address();
2123 off_t startoff = this->offset();
2124 off_t off = startoff + this->first_input_offset_;
2125 for (Input_section_list::iterator p = this->input_sections_.begin();
2126 p != this->input_sections_.end();
2127 ++p)
2128 {
2129 off = align_address(off, p->addralign());
2130 p->set_address_and_file_offset(address + (off - startoff), off,
2131 startoff);
2132 off += p->data_size();
2133 }
2134
2135 this->set_data_size(off - startoff);
2136 }
2137
2138 // Reset the address and file offset.
2139
2140 void
2141 Output_section::do_reset_address_and_file_offset()
2142 {
2143 for (Input_section_list::iterator p = this->input_sections_.begin();
2144 p != this->input_sections_.end();
2145 ++p)
2146 p->reset_address_and_file_offset();
2147 }
2148
2149 // Set the TLS offset. Called only for SHT_TLS sections.
2150
2151 void
2152 Output_section::do_set_tls_offset(uint64_t tls_base)
2153 {
2154 this->tls_offset_ = this->address() - tls_base;
2155 }
2156
2157 // In a few cases we need to sort the input sections attached to an
2158 // output section. This is used to implement the type of constructor
2159 // priority ordering implemented by the GNU linker, in which the
2160 // priority becomes part of the section name and the sections are
2161 // sorted by name. We only do this for an output section if we see an
2162 // attached input section matching ".ctor.*", ".dtor.*",
2163 // ".init_array.*" or ".fini_array.*".
2164
2165 class Output_section::Input_section_sort_entry
2166 {
2167 public:
2168 Input_section_sort_entry()
2169 : input_section_(), index_(-1U), section_has_name_(false),
2170 section_name_()
2171 { }
2172
2173 Input_section_sort_entry(const Input_section& input_section,
2174 unsigned int index)
2175 : input_section_(input_section), index_(index),
2176 section_has_name_(input_section.is_input_section())
2177 {
2178 if (this->section_has_name_)
2179 {
2180 // This is only called single-threaded from Layout::finalize,
2181 // so it is OK to lock. Unfortunately we have no way to pass
2182 // in a Task token.
2183 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2184 Object* obj = input_section.relobj();
2185 Task_lock_obj<Object> tl(dummy_task, obj);
2186
2187 // This is a slow operation, which should be cached in
2188 // Layout::layout if this becomes a speed problem.
2189 this->section_name_ = obj->section_name(input_section.shndx());
2190 }
2191 }
2192
2193 // Return the Input_section.
2194 const Input_section&
2195 input_section() const
2196 {
2197 gold_assert(this->index_ != -1U);
2198 return this->input_section_;
2199 }
2200
2201 // The index of this entry in the original list. This is used to
2202 // make the sort stable.
2203 unsigned int
2204 index() const
2205 {
2206 gold_assert(this->index_ != -1U);
2207 return this->index_;
2208 }
2209
2210 // Whether there is a section name.
2211 bool
2212 section_has_name() const
2213 { return this->section_has_name_; }
2214
2215 // The section name.
2216 const std::string&
2217 section_name() const
2218 {
2219 gold_assert(this->section_has_name_);
2220 return this->section_name_;
2221 }
2222
2223 // Return true if the section name has a priority. This is assumed
2224 // to be true if it has a dot after the initial dot.
2225 bool
2226 has_priority() const
2227 {
2228 gold_assert(this->section_has_name_);
2229 return this->section_name_.find('.', 1);
2230 }
2231
2232 // Return true if this an input file whose base name matches
2233 // FILE_NAME. The base name must have an extension of ".o", and
2234 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2235 // This is to match crtbegin.o as well as crtbeginS.o without
2236 // getting confused by other possibilities. Overall matching the
2237 // file name this way is a dreadful hack, but the GNU linker does it
2238 // in order to better support gcc, and we need to be compatible.
2239 bool
2240 match_file_name(const char* match_file_name) const
2241 {
2242 const std::string& file_name(this->input_section_.relobj()->name());
2243 const char* base_name = lbasename(file_name.c_str());
2244 size_t match_len = strlen(match_file_name);
2245 if (strncmp(base_name, match_file_name, match_len) != 0)
2246 return false;
2247 size_t base_len = strlen(base_name);
2248 if (base_len != match_len + 2 && base_len != match_len + 3)
2249 return false;
2250 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2251 }
2252
2253 private:
2254 // The Input_section we are sorting.
2255 Input_section input_section_;
2256 // The index of this Input_section in the original list.
2257 unsigned int index_;
2258 // Whether this Input_section has a section name--it won't if this
2259 // is some random Output_section_data.
2260 bool section_has_name_;
2261 // The section name if there is one.
2262 std::string section_name_;
2263 };
2264
2265 // Return true if S1 should come before S2 in the output section.
2266
2267 bool
2268 Output_section::Input_section_sort_compare::operator()(
2269 const Output_section::Input_section_sort_entry& s1,
2270 const Output_section::Input_section_sort_entry& s2) const
2271 {
2272 // crtbegin.o must come first.
2273 bool s1_begin = s1.match_file_name("crtbegin");
2274 bool s2_begin = s2.match_file_name("crtbegin");
2275 if (s1_begin || s2_begin)
2276 {
2277 if (!s1_begin)
2278 return false;
2279 if (!s2_begin)
2280 return true;
2281 return s1.index() < s2.index();
2282 }
2283
2284 // crtend.o must come last.
2285 bool s1_end = s1.match_file_name("crtend");
2286 bool s2_end = s2.match_file_name("crtend");
2287 if (s1_end || s2_end)
2288 {
2289 if (!s1_end)
2290 return true;
2291 if (!s2_end)
2292 return false;
2293 return s1.index() < s2.index();
2294 }
2295
2296 // We sort all the sections with no names to the end.
2297 if (!s1.section_has_name() || !s2.section_has_name())
2298 {
2299 if (s1.section_has_name())
2300 return true;
2301 if (s2.section_has_name())
2302 return false;
2303 return s1.index() < s2.index();
2304 }
2305
2306 // A section with a priority follows a section without a priority.
2307 // The GNU linker does this for all but .init_array sections; until
2308 // further notice we'll assume that that is an mistake.
2309 bool s1_has_priority = s1.has_priority();
2310 bool s2_has_priority = s2.has_priority();
2311 if (s1_has_priority && !s2_has_priority)
2312 return false;
2313 if (!s1_has_priority && s2_has_priority)
2314 return true;
2315
2316 // Otherwise we sort by name.
2317 int compare = s1.section_name().compare(s2.section_name());
2318 if (compare != 0)
2319 return compare < 0;
2320
2321 // Otherwise we keep the input order.
2322 return s1.index() < s2.index();
2323 }
2324
2325 // Sort the input sections attached to an output section.
2326
2327 void
2328 Output_section::sort_attached_input_sections()
2329 {
2330 if (this->attached_input_sections_are_sorted_)
2331 return;
2332
2333 // The only thing we know about an input section is the object and
2334 // the section index. We need the section name. Recomputing this
2335 // is slow but this is an unusual case. If this becomes a speed
2336 // problem we can cache the names as required in Layout::layout.
2337
2338 // We start by building a larger vector holding a copy of each
2339 // Input_section, plus its current index in the list and its name.
2340 std::vector<Input_section_sort_entry> sort_list;
2341
2342 unsigned int i = 0;
2343 for (Input_section_list::iterator p = this->input_sections_.begin();
2344 p != this->input_sections_.end();
2345 ++p, ++i)
2346 sort_list.push_back(Input_section_sort_entry(*p, i));
2347
2348 // Sort the input sections.
2349 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2350
2351 // Copy the sorted input sections back to our list.
2352 this->input_sections_.clear();
2353 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2354 p != sort_list.end();
2355 ++p)
2356 this->input_sections_.push_back(p->input_section());
2357
2358 // Remember that we sorted the input sections, since we might get
2359 // called again.
2360 this->attached_input_sections_are_sorted_ = true;
2361 }
2362
2363 // Write the section header to *OSHDR.
2364
2365 template<int size, bool big_endian>
2366 void
2367 Output_section::write_header(const Layout* layout,
2368 const Stringpool* secnamepool,
2369 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2370 {
2371 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2372 oshdr->put_sh_type(this->type_);
2373
2374 elfcpp::Elf_Xword flags = this->flags_;
2375 if (this->info_section_ != NULL && this->info_uses_section_index_)
2376 flags |= elfcpp::SHF_INFO_LINK;
2377 oshdr->put_sh_flags(flags);
2378
2379 oshdr->put_sh_addr(this->address());
2380 oshdr->put_sh_offset(this->offset());
2381 oshdr->put_sh_size(this->data_size());
2382 if (this->link_section_ != NULL)
2383 oshdr->put_sh_link(this->link_section_->out_shndx());
2384 else if (this->should_link_to_symtab_)
2385 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2386 else if (this->should_link_to_dynsym_)
2387 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2388 else
2389 oshdr->put_sh_link(this->link_);
2390
2391 elfcpp::Elf_Word info;
2392 if (this->info_section_ != NULL)
2393 {
2394 if (this->info_uses_section_index_)
2395 info = this->info_section_->out_shndx();
2396 else
2397 info = this->info_section_->symtab_index();
2398 }
2399 else if (this->info_symndx_ != NULL)
2400 info = this->info_symndx_->symtab_index();
2401 else
2402 info = this->info_;
2403 oshdr->put_sh_info(info);
2404
2405 oshdr->put_sh_addralign(this->addralign_);
2406 oshdr->put_sh_entsize(this->entsize_);
2407 }
2408
2409 // Write out the data. For input sections the data is written out by
2410 // Object::relocate, but we have to handle Output_section_data objects
2411 // here.
2412
2413 void
2414 Output_section::do_write(Output_file* of)
2415 {
2416 gold_assert(!this->requires_postprocessing());
2417
2418 off_t output_section_file_offset = this->offset();
2419 for (Fill_list::iterator p = this->fills_.begin();
2420 p != this->fills_.end();
2421 ++p)
2422 {
2423 std::string fill_data(parameters->target().code_fill(p->length()));
2424 of->write(output_section_file_offset + p->section_offset(),
2425 fill_data.data(), fill_data.size());
2426 }
2427
2428 for (Input_section_list::iterator p = this->input_sections_.begin();
2429 p != this->input_sections_.end();
2430 ++p)
2431 p->write(of);
2432 }
2433
2434 // If a section requires postprocessing, create the buffer to use.
2435
2436 void
2437 Output_section::create_postprocessing_buffer()
2438 {
2439 gold_assert(this->requires_postprocessing());
2440
2441 if (this->postprocessing_buffer_ != NULL)
2442 return;
2443
2444 if (!this->input_sections_.empty())
2445 {
2446 off_t off = this->first_input_offset_;
2447 for (Input_section_list::iterator p = this->input_sections_.begin();
2448 p != this->input_sections_.end();
2449 ++p)
2450 {
2451 off = align_address(off, p->addralign());
2452 p->finalize_data_size();
2453 off += p->data_size();
2454 }
2455 this->set_current_data_size_for_child(off);
2456 }
2457
2458 off_t buffer_size = this->current_data_size_for_child();
2459 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2460 }
2461
2462 // Write all the data of an Output_section into the postprocessing
2463 // buffer. This is used for sections which require postprocessing,
2464 // such as compression. Input sections are handled by
2465 // Object::Relocate.
2466
2467 void
2468 Output_section::write_to_postprocessing_buffer()
2469 {
2470 gold_assert(this->requires_postprocessing());
2471
2472 unsigned char* buffer = this->postprocessing_buffer();
2473 for (Fill_list::iterator p = this->fills_.begin();
2474 p != this->fills_.end();
2475 ++p)
2476 {
2477 std::string fill_data(parameters->target().code_fill(p->length()));
2478 memcpy(buffer + p->section_offset(), fill_data.data(),
2479 fill_data.size());
2480 }
2481
2482 off_t off = this->first_input_offset_;
2483 for (Input_section_list::iterator p = this->input_sections_.begin();
2484 p != this->input_sections_.end();
2485 ++p)
2486 {
2487 off = align_address(off, p->addralign());
2488 p->write_to_buffer(buffer + off);
2489 off += p->data_size();
2490 }
2491 }
2492
2493 // Get the input sections for linker script processing. We leave
2494 // behind the Output_section_data entries. Note that this may be
2495 // slightly incorrect for merge sections. We will leave them behind,
2496 // but it is possible that the script says that they should follow
2497 // some other input sections, as in:
2498 // .rodata { *(.rodata) *(.rodata.cst*) }
2499 // For that matter, we don't handle this correctly:
2500 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2501 // With luck this will never matter.
2502
2503 uint64_t
2504 Output_section::get_input_sections(
2505 uint64_t address,
2506 const std::string& fill,
2507 std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2508 {
2509 uint64_t orig_address = address;
2510
2511 address = align_address(address, this->addralign());
2512
2513 Input_section_list remaining;
2514 for (Input_section_list::iterator p = this->input_sections_.begin();
2515 p != this->input_sections_.end();
2516 ++p)
2517 {
2518 if (p->is_input_section())
2519 input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2520 else
2521 {
2522 uint64_t aligned_address = align_address(address, p->addralign());
2523 if (aligned_address != address && !fill.empty())
2524 {
2525 section_size_type length =
2526 convert_to_section_size_type(aligned_address - address);
2527 std::string this_fill;
2528 this_fill.reserve(length);
2529 while (this_fill.length() + fill.length() <= length)
2530 this_fill += fill;
2531 if (this_fill.length() < length)
2532 this_fill.append(fill, 0, length - this_fill.length());
2533
2534 Output_section_data* posd = new Output_data_const(this_fill, 0);
2535 remaining.push_back(Input_section(posd));
2536 }
2537 address = aligned_address;
2538
2539 remaining.push_back(*p);
2540
2541 p->finalize_data_size();
2542 address += p->data_size();
2543 }
2544 }
2545
2546 this->input_sections_.swap(remaining);
2547 this->first_input_offset_ = 0;
2548
2549 uint64_t data_size = address - orig_address;
2550 this->set_current_data_size_for_child(data_size);
2551 return data_size;
2552 }
2553
2554 // Add an input section from a script.
2555
2556 void
2557 Output_section::add_input_section_for_script(Relobj* object,
2558 unsigned int shndx,
2559 off_t data_size,
2560 uint64_t addralign)
2561 {
2562 if (addralign > this->addralign_)
2563 this->addralign_ = addralign;
2564
2565 off_t offset_in_section = this->current_data_size_for_child();
2566 off_t aligned_offset_in_section = align_address(offset_in_section,
2567 addralign);
2568
2569 this->set_current_data_size_for_child(aligned_offset_in_section
2570 + data_size);
2571
2572 this->input_sections_.push_back(Input_section(object, shndx,
2573 data_size, addralign));
2574 }
2575
2576 // Print to the map file.
2577
2578 void
2579 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
2580 {
2581 mapfile->print_output_section(this);
2582
2583 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2584 p != this->input_sections_.end();
2585 ++p)
2586 p->print_to_mapfile(mapfile);
2587 }
2588
2589 // Print stats for merge sections to stderr.
2590
2591 void
2592 Output_section::print_merge_stats()
2593 {
2594 Input_section_list::iterator p;
2595 for (p = this->input_sections_.begin();
2596 p != this->input_sections_.end();
2597 ++p)
2598 p->print_merge_stats(this->name_);
2599 }
2600
2601 // Output segment methods.
2602
2603 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2604 : output_data_(),
2605 output_bss_(),
2606 vaddr_(0),
2607 paddr_(0),
2608 memsz_(0),
2609 max_align_(0),
2610 min_p_align_(0),
2611 offset_(0),
2612 filesz_(0),
2613 type_(type),
2614 flags_(flags),
2615 is_max_align_known_(false),
2616 are_addresses_set_(false)
2617 {
2618 }
2619
2620 // Add an Output_section to an Output_segment.
2621
2622 void
2623 Output_segment::add_output_section(Output_section* os,
2624 elfcpp::Elf_Word seg_flags)
2625 {
2626 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
2627 gold_assert(!this->is_max_align_known_);
2628
2629 // Update the segment flags.
2630 this->flags_ |= seg_flags;
2631
2632 Output_segment::Output_data_list* pdl;
2633 if (os->type() == elfcpp::SHT_NOBITS)
2634 pdl = &this->output_bss_;
2635 else
2636 pdl = &this->output_data_;
2637
2638 // So that PT_NOTE segments will work correctly, we need to ensure
2639 // that all SHT_NOTE sections are adjacent. This will normally
2640 // happen automatically, because all the SHT_NOTE input sections
2641 // will wind up in the same output section. However, it is possible
2642 // for multiple SHT_NOTE input sections to have different section
2643 // flags, and thus be in different output sections, but for the
2644 // different section flags to map into the same segment flags and
2645 // thus the same output segment.
2646
2647 // Note that while there may be many input sections in an output
2648 // section, there are normally only a few output sections in an
2649 // output segment. This loop is expected to be fast.
2650
2651 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
2652 {
2653 Output_segment::Output_data_list::iterator p = pdl->end();
2654 do
2655 {
2656 --p;
2657 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2658 {
2659 ++p;
2660 pdl->insert(p, os);
2661 return;
2662 }
2663 }
2664 while (p != pdl->begin());
2665 }
2666
2667 // Similarly, so that PT_TLS segments will work, we need to group
2668 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2669 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2670 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
2671 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2672 // and the PT_TLS segment -- we do this grouping only for the
2673 // PT_LOAD segment.
2674 if (this->type_ != elfcpp::PT_TLS
2675 && (os->flags() & elfcpp::SHF_TLS) != 0)
2676 {
2677 pdl = &this->output_data_;
2678 bool nobits = os->type() == elfcpp::SHT_NOBITS;
2679 bool sawtls = false;
2680 Output_segment::Output_data_list::iterator p = pdl->end();
2681 do
2682 {
2683 --p;
2684 bool insert;
2685 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2686 {
2687 sawtls = true;
2688 // Put a NOBITS section after the first TLS section.
2689 // Put a PROGBITS section after the first TLS/PROGBITS
2690 // section.
2691 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2692 }
2693 else
2694 {
2695 // If we've gone past the TLS sections, but we've seen a
2696 // TLS section, then we need to insert this section now.
2697 insert = sawtls;
2698 }
2699
2700 if (insert)
2701 {
2702 ++p;
2703 pdl->insert(p, os);
2704 return;
2705 }
2706 }
2707 while (p != pdl->begin());
2708
2709 // There are no TLS sections yet; put this one at the requested
2710 // location in the section list.
2711 }
2712
2713 // For the PT_GNU_RELRO segment, we need to group relro sections,
2714 // and we need to put them before any non-relro sections. Also,
2715 // relro local sections go before relro non-local sections.
2716 if (parameters->options().relro() && os->is_relro())
2717 {
2718 gold_assert(pdl == &this->output_data_);
2719 Output_segment::Output_data_list::iterator p;
2720 for (p = pdl->begin(); p != pdl->end(); ++p)
2721 {
2722 if (!(*p)->is_section())
2723 break;
2724
2725 Output_section* pos = (*p)->output_section();
2726 if (!pos->is_relro()
2727 || (os->is_relro_local() && !pos->is_relro_local()))
2728 break;
2729 }
2730
2731 pdl->insert(p, os);
2732 return;
2733 }
2734
2735 pdl->push_back(os);
2736 }
2737
2738 // Remove an Output_section from this segment. It is an error if it
2739 // is not present.
2740
2741 void
2742 Output_segment::remove_output_section(Output_section* os)
2743 {
2744 // We only need this for SHT_PROGBITS.
2745 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2746 for (Output_data_list::iterator p = this->output_data_.begin();
2747 p != this->output_data_.end();
2748 ++p)
2749 {
2750 if (*p == os)
2751 {
2752 this->output_data_.erase(p);
2753 return;
2754 }
2755 }
2756 gold_unreachable();
2757 }
2758
2759 // Add an Output_data (which is not an Output_section) to the start of
2760 // a segment.
2761
2762 void
2763 Output_segment::add_initial_output_data(Output_data* od)
2764 {
2765 gold_assert(!this->is_max_align_known_);
2766 this->output_data_.push_front(od);
2767 }
2768
2769 // Return whether the first data section is a relro section.
2770
2771 bool
2772 Output_segment::is_first_section_relro() const
2773 {
2774 return (!this->output_data_.empty()
2775 && this->output_data_.front()->is_section()
2776 && this->output_data_.front()->output_section()->is_relro());
2777 }
2778
2779 // Return the maximum alignment of the Output_data in Output_segment.
2780
2781 uint64_t
2782 Output_segment::maximum_alignment()
2783 {
2784 if (!this->is_max_align_known_)
2785 {
2786 uint64_t addralign;
2787
2788 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2789 if (addralign > this->max_align_)
2790 this->max_align_ = addralign;
2791
2792 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2793 if (addralign > this->max_align_)
2794 this->max_align_ = addralign;
2795
2796 // If -z relro is in effect, and the first section in this
2797 // segment is a relro section, then the segment must be aligned
2798 // to at least the common page size. This ensures that the
2799 // PT_GNU_RELRO segment will start at a page boundary.
2800 if (this->type_ == elfcpp::PT_LOAD
2801 && parameters->options().relro()
2802 && this->is_first_section_relro())
2803 {
2804 addralign = parameters->target().common_pagesize();
2805 if (addralign > this->max_align_)
2806 this->max_align_ = addralign;
2807 }
2808
2809 this->is_max_align_known_ = true;
2810 }
2811
2812 return this->max_align_;
2813 }
2814
2815 // Return the maximum alignment of a list of Output_data.
2816
2817 uint64_t
2818 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
2819 {
2820 uint64_t ret = 0;
2821 for (Output_data_list::const_iterator p = pdl->begin();
2822 p != pdl->end();
2823 ++p)
2824 {
2825 uint64_t addralign = (*p)->addralign();
2826 if (addralign > ret)
2827 ret = addralign;
2828 }
2829 return ret;
2830 }
2831
2832 // Return the number of dynamic relocs applied to this segment.
2833
2834 unsigned int
2835 Output_segment::dynamic_reloc_count() const
2836 {
2837 return (this->dynamic_reloc_count_list(&this->output_data_)
2838 + this->dynamic_reloc_count_list(&this->output_bss_));
2839 }
2840
2841 // Return the number of dynamic relocs applied to an Output_data_list.
2842
2843 unsigned int
2844 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2845 {
2846 unsigned int count = 0;
2847 for (Output_data_list::const_iterator p = pdl->begin();
2848 p != pdl->end();
2849 ++p)
2850 count += (*p)->dynamic_reloc_count();
2851 return count;
2852 }
2853
2854 // Set the section addresses for an Output_segment. If RESET is true,
2855 // reset the addresses first. ADDR is the address and *POFF is the
2856 // file offset. Set the section indexes starting with *PSHNDX.
2857 // Return the address of the immediately following segment. Update
2858 // *POFF and *PSHNDX.
2859
2860 uint64_t
2861 Output_segment::set_section_addresses(const Layout* layout, bool reset,
2862 uint64_t addr, off_t* poff,
2863 unsigned int* pshndx)
2864 {
2865 gold_assert(this->type_ == elfcpp::PT_LOAD);
2866
2867 if (!reset && this->are_addresses_set_)
2868 {
2869 gold_assert(this->paddr_ == addr);
2870 addr = this->vaddr_;
2871 }
2872 else
2873 {
2874 this->vaddr_ = addr;
2875 this->paddr_ = addr;
2876 this->are_addresses_set_ = true;
2877 }
2878
2879 bool in_tls = false;
2880
2881 bool in_relro = (parameters->options().relro()
2882 && this->is_first_section_relro());
2883
2884 off_t orig_off = *poff;
2885 this->offset_ = orig_off;
2886
2887 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
2888 addr, poff, pshndx, &in_tls,
2889 &in_relro);
2890 this->filesz_ = *poff - orig_off;
2891
2892 off_t off = *poff;
2893
2894 uint64_t ret = this->set_section_list_addresses(layout, reset,
2895 &this->output_bss_,
2896 addr, poff, pshndx,
2897 &in_tls, &in_relro);
2898
2899 // If the last section was a TLS section, align upward to the
2900 // alignment of the TLS segment, so that the overall size of the TLS
2901 // segment is aligned.
2902 if (in_tls)
2903 {
2904 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
2905 *poff = align_address(*poff, segment_align);
2906 }
2907
2908 // If all the sections were relro sections, align upward to the
2909 // common page size.
2910 if (in_relro)
2911 {
2912 uint64_t page_align = parameters->target().common_pagesize();
2913 *poff = align_address(*poff, page_align);
2914 }
2915
2916 this->memsz_ = *poff - orig_off;
2917
2918 // Ignore the file offset adjustments made by the BSS Output_data
2919 // objects.
2920 *poff = off;
2921
2922 return ret;
2923 }
2924
2925 // Set the addresses and file offsets in a list of Output_data
2926 // structures.
2927
2928 uint64_t
2929 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
2930 Output_data_list* pdl,
2931 uint64_t addr, off_t* poff,
2932 unsigned int* pshndx,
2933 bool* in_tls, bool* in_relro)
2934 {
2935 off_t startoff = *poff;
2936
2937 off_t off = startoff;
2938 for (Output_data_list::iterator p = pdl->begin();
2939 p != pdl->end();
2940 ++p)
2941 {
2942 if (reset)
2943 (*p)->reset_address_and_file_offset();
2944
2945 // When using a linker script the section will most likely
2946 // already have an address.
2947 if (!(*p)->is_address_valid())
2948 {
2949 uint64_t align = (*p)->addralign();
2950
2951 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2952 {
2953 // Give the first TLS section the alignment of the
2954 // entire TLS segment. Otherwise the TLS segment as a
2955 // whole may be misaligned.
2956 if (!*in_tls)
2957 {
2958 Output_segment* tls_segment = layout->tls_segment();
2959 gold_assert(tls_segment != NULL);
2960 uint64_t segment_align = tls_segment->maximum_alignment();
2961 gold_assert(segment_align >= align);
2962 align = segment_align;
2963
2964 *in_tls = true;
2965 }
2966 }
2967 else
2968 {
2969 // If this is the first section after the TLS segment,
2970 // align it to at least the alignment of the TLS
2971 // segment, so that the size of the overall TLS segment
2972 // is aligned.
2973 if (*in_tls)
2974 {
2975 uint64_t segment_align =
2976 layout->tls_segment()->maximum_alignment();
2977 if (segment_align > align)
2978 align = segment_align;
2979
2980 *in_tls = false;
2981 }
2982 }
2983
2984 // If this is a non-relro section after a relro section,
2985 // align it to a common page boundary so that the dynamic
2986 // linker has a page to mark as read-only.
2987 if (*in_relro
2988 && (!(*p)->is_section()
2989 || !(*p)->output_section()->is_relro()))
2990 {
2991 uint64_t page_align = parameters->target().common_pagesize();
2992 if (page_align > align)
2993 align = page_align;
2994 *in_relro = false;
2995 }
2996
2997 off = align_address(off, align);
2998 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2999 }
3000 else
3001 {
3002 // The script may have inserted a skip forward, but it
3003 // better not have moved backward.
3004 gold_assert((*p)->address() >= addr + (off - startoff));
3005 off += (*p)->address() - (addr + (off - startoff));
3006 (*p)->set_file_offset(off);
3007 (*p)->finalize_data_size();
3008 }
3009
3010 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3011 // section. Such a section does not affect the size of a
3012 // PT_LOAD segment.
3013 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3014 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3015 off += (*p)->data_size();
3016
3017 if ((*p)->is_section())
3018 {
3019 (*p)->set_out_shndx(*pshndx);
3020 ++*pshndx;
3021 }
3022 }
3023
3024 *poff = off;
3025 return addr + (off - startoff);
3026 }
3027
3028 // For a non-PT_LOAD segment, set the offset from the sections, if
3029 // any.
3030
3031 void
3032 Output_segment::set_offset()
3033 {
3034 gold_assert(this->type_ != elfcpp::PT_LOAD);
3035
3036 gold_assert(!this->are_addresses_set_);
3037
3038 if (this->output_data_.empty() && this->output_bss_.empty())
3039 {
3040 this->vaddr_ = 0;
3041 this->paddr_ = 0;
3042 this->are_addresses_set_ = true;
3043 this->memsz_ = 0;
3044 this->min_p_align_ = 0;
3045 this->offset_ = 0;
3046 this->filesz_ = 0;
3047 return;
3048 }
3049
3050 const Output_data* first;
3051 if (this->output_data_.empty())
3052 first = this->output_bss_.front();
3053 else
3054 first = this->output_data_.front();
3055 this->vaddr_ = first->address();
3056 this->paddr_ = (first->has_load_address()
3057 ? first->load_address()
3058 : this->vaddr_);
3059 this->are_addresses_set_ = true;
3060 this->offset_ = first->offset();
3061
3062 if (this->output_data_.empty())
3063 this->filesz_ = 0;
3064 else
3065 {
3066 const Output_data* last_data = this->output_data_.back();
3067 this->filesz_ = (last_data->address()
3068 + last_data->data_size()
3069 - this->vaddr_);
3070 }
3071
3072 const Output_data* last;
3073 if (this->output_bss_.empty())
3074 last = this->output_data_.back();
3075 else
3076 last = this->output_bss_.back();
3077 this->memsz_ = (last->address()
3078 + last->data_size()
3079 - this->vaddr_);
3080
3081 // If this is a TLS segment, align the memory size. The code in
3082 // set_section_list ensures that the section after the TLS segment
3083 // is aligned to give us room.
3084 if (this->type_ == elfcpp::PT_TLS)
3085 {
3086 uint64_t segment_align = this->maximum_alignment();
3087 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3088 this->memsz_ = align_address(this->memsz_, segment_align);
3089 }
3090
3091 // If this is a RELRO segment, align the memory size. The code in
3092 // set_section_list ensures that the section after the RELRO segment
3093 // is aligned to give us room.
3094 if (this->type_ == elfcpp::PT_GNU_RELRO)
3095 {
3096 uint64_t page_align = parameters->target().common_pagesize();
3097 gold_assert(this->vaddr_ == align_address(this->vaddr_, page_align));
3098 this->memsz_ = align_address(this->memsz_, page_align);
3099 }
3100 }
3101
3102 // Set the TLS offsets of the sections in the PT_TLS segment.
3103
3104 void
3105 Output_segment::set_tls_offsets()
3106 {
3107 gold_assert(this->type_ == elfcpp::PT_TLS);
3108
3109 for (Output_data_list::iterator p = this->output_data_.begin();
3110 p != this->output_data_.end();
3111 ++p)
3112 (*p)->set_tls_offset(this->vaddr_);
3113
3114 for (Output_data_list::iterator p = this->output_bss_.begin();
3115 p != this->output_bss_.end();
3116 ++p)
3117 (*p)->set_tls_offset(this->vaddr_);
3118 }
3119
3120 // Return the address of the first section.
3121
3122 uint64_t
3123 Output_segment::first_section_load_address() const
3124 {
3125 for (Output_data_list::const_iterator p = this->output_data_.begin();
3126 p != this->output_data_.end();
3127 ++p)
3128 if ((*p)->is_section())
3129 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3130
3131 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3132 p != this->output_bss_.end();
3133 ++p)
3134 if ((*p)->is_section())
3135 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3136
3137 gold_unreachable();
3138 }
3139
3140 // Return the number of Output_sections in an Output_segment.
3141
3142 unsigned int
3143 Output_segment::output_section_count() const
3144 {
3145 return (this->output_section_count_list(&this->output_data_)
3146 + this->output_section_count_list(&this->output_bss_));
3147 }
3148
3149 // Return the number of Output_sections in an Output_data_list.
3150
3151 unsigned int
3152 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3153 {
3154 unsigned int count = 0;
3155 for (Output_data_list::const_iterator p = pdl->begin();
3156 p != pdl->end();
3157 ++p)
3158 {
3159 if ((*p)->is_section())
3160 ++count;
3161 }
3162 return count;
3163 }
3164
3165 // Return the section attached to the list segment with the lowest
3166 // load address. This is used when handling a PHDRS clause in a
3167 // linker script.
3168
3169 Output_section*
3170 Output_segment::section_with_lowest_load_address() const
3171 {
3172 Output_section* found = NULL;
3173 uint64_t found_lma = 0;
3174 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3175
3176 Output_section* found_data = found;
3177 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3178 if (found != found_data && found_data != NULL)
3179 {
3180 gold_error(_("nobits section %s may not precede progbits section %s "
3181 "in same segment"),
3182 found->name(), found_data->name());
3183 return NULL;
3184 }
3185
3186 return found;
3187 }
3188
3189 // Look through a list for a section with a lower load address.
3190
3191 void
3192 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3193 Output_section** found,
3194 uint64_t* found_lma) const
3195 {
3196 for (Output_data_list::const_iterator p = pdl->begin();
3197 p != pdl->end();
3198 ++p)
3199 {
3200 if (!(*p)->is_section())
3201 continue;
3202 Output_section* os = static_cast<Output_section*>(*p);
3203 uint64_t lma = (os->has_load_address()
3204 ? os->load_address()
3205 : os->address());
3206 if (*found == NULL || lma < *found_lma)
3207 {
3208 *found = os;
3209 *found_lma = lma;
3210 }
3211 }
3212 }
3213
3214 // Write the segment data into *OPHDR.
3215
3216 template<int size, bool big_endian>
3217 void
3218 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3219 {
3220 ophdr->put_p_type(this->type_);
3221 ophdr->put_p_offset(this->offset_);
3222 ophdr->put_p_vaddr(this->vaddr_);
3223 ophdr->put_p_paddr(this->paddr_);
3224 ophdr->put_p_filesz(this->filesz_);
3225 ophdr->put_p_memsz(this->memsz_);
3226 ophdr->put_p_flags(this->flags_);
3227 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3228 }
3229
3230 // Write the section headers into V.
3231
3232 template<int size, bool big_endian>
3233 unsigned char*
3234 Output_segment::write_section_headers(const Layout* layout,
3235 const Stringpool* secnamepool,
3236 unsigned char* v,
3237 unsigned int *pshndx) const
3238 {
3239 // Every section that is attached to a segment must be attached to a
3240 // PT_LOAD segment, so we only write out section headers for PT_LOAD
3241 // segments.
3242 if (this->type_ != elfcpp::PT_LOAD)
3243 return v;
3244
3245 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3246 &this->output_data_,
3247 v, pshndx);
3248 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3249 &this->output_bss_,
3250 v, pshndx);
3251 return v;
3252 }
3253
3254 template<int size, bool big_endian>
3255 unsigned char*
3256 Output_segment::write_section_headers_list(const Layout* layout,
3257 const Stringpool* secnamepool,
3258 const Output_data_list* pdl,
3259 unsigned char* v,
3260 unsigned int* pshndx) const
3261 {
3262 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3263 for (Output_data_list::const_iterator p = pdl->begin();
3264 p != pdl->end();
3265 ++p)
3266 {
3267 if ((*p)->is_section())
3268 {
3269 const Output_section* ps = static_cast<const Output_section*>(*p);
3270 gold_assert(*pshndx == ps->out_shndx());
3271 elfcpp::Shdr_write<size, big_endian> oshdr(v);
3272 ps->write_header(layout, secnamepool, &oshdr);
3273 v += shdr_size;
3274 ++*pshndx;
3275 }
3276 }
3277 return v;
3278 }
3279
3280 // Print the output sections to the map file.
3281
3282 void
3283 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
3284 {
3285 if (this->type() != elfcpp::PT_LOAD)
3286 return;
3287 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
3288 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
3289 }
3290
3291 // Print an output section list to the map file.
3292
3293 void
3294 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
3295 const Output_data_list* pdl) const
3296 {
3297 for (Output_data_list::const_iterator p = pdl->begin();
3298 p != pdl->end();
3299 ++p)
3300 (*p)->print_to_mapfile(mapfile);
3301 }
3302
3303 // Output_file methods.
3304
3305 Output_file::Output_file(const char* name)
3306 : name_(name),
3307 o_(-1),
3308 file_size_(0),
3309 base_(NULL),
3310 map_is_anonymous_(false),
3311 is_temporary_(false)
3312 {
3313 }
3314
3315 // Open the output file.
3316
3317 void
3318 Output_file::open(off_t file_size)
3319 {
3320 this->file_size_ = file_size;
3321
3322 // Unlink the file first; otherwise the open() may fail if the file
3323 // is busy (e.g. it's an executable that's currently being executed).
3324 //
3325 // However, the linker may be part of a system where a zero-length
3326 // file is created for it to write to, with tight permissions (gcc
3327 // 2.95 did something like this). Unlinking the file would work
3328 // around those permission controls, so we only unlink if the file
3329 // has a non-zero size. We also unlink only regular files to avoid
3330 // trouble with directories/etc.
3331 //
3332 // If we fail, continue; this command is merely a best-effort attempt
3333 // to improve the odds for open().
3334
3335 // We let the name "-" mean "stdout"
3336 if (!this->is_temporary_)
3337 {
3338 if (strcmp(this->name_, "-") == 0)
3339 this->o_ = STDOUT_FILENO;
3340 else
3341 {
3342 struct stat s;
3343 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
3344 unlink_if_ordinary(this->name_);
3345
3346 int mode = parameters->options().relocatable() ? 0666 : 0777;
3347 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
3348 mode);
3349 if (o < 0)
3350 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3351 this->o_ = o;
3352 }
3353 }
3354
3355 this->map();
3356 }
3357
3358 // Resize the output file.
3359
3360 void
3361 Output_file::resize(off_t file_size)
3362 {
3363 // If the mmap is mapping an anonymous memory buffer, this is easy:
3364 // just mremap to the new size. If it's mapping to a file, we want
3365 // to unmap to flush to the file, then remap after growing the file.
3366 if (this->map_is_anonymous_)
3367 {
3368 void* base = ::mremap(this->base_, this->file_size_, file_size,
3369 MREMAP_MAYMOVE);
3370 if (base == MAP_FAILED)
3371 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
3372 this->base_ = static_cast<unsigned char*>(base);
3373 this->file_size_ = file_size;
3374 }
3375 else
3376 {
3377 this->unmap();
3378 this->file_size_ = file_size;
3379 this->map();
3380 }
3381 }
3382
3383 // Map a block of memory which will later be written to the file.
3384 // Return a pointer to the memory.
3385
3386 void*
3387 Output_file::map_anonymous()
3388 {
3389 this->map_is_anonymous_ = true;
3390 return ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3391 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3392 }
3393
3394 // Map the file into memory.
3395
3396 void
3397 Output_file::map()
3398 {
3399 const int o = this->o_;
3400
3401 // If the output file is not a regular file, don't try to mmap it;
3402 // instead, we'll mmap a block of memory (an anonymous buffer), and
3403 // then later write the buffer to the file.
3404 void* base;
3405 struct stat statbuf;
3406 if (o == STDOUT_FILENO || o == STDERR_FILENO
3407 || ::fstat(o, &statbuf) != 0
3408 || !S_ISREG(statbuf.st_mode)
3409 || this->is_temporary_)
3410 base = this->map_anonymous();
3411 else
3412 {
3413 // Ensure that we have disk space available for the file. If we
3414 // don't do this, it is possible that we will call munmap,
3415 // close, and exit with dirty buffers still in the cache with no
3416 // assigned disk blocks. If the disk is out of space at that
3417 // point, the output file will wind up incomplete, but we will
3418 // have already exited. The alternative to fallocate would be
3419 // to use fdatasync, but that would be a more significant
3420 // performance hit.
3421 if (::posix_fallocate(o, 0, this->file_size_) < 0)
3422 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
3423
3424 // Map the file into memory.
3425 this->map_is_anonymous_ = false;
3426 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3427 MAP_SHARED, o, 0);
3428
3429 // The mmap call might fail because of file system issues: the
3430 // file system might not support mmap at all, or it might not
3431 // support mmap with PROT_WRITE. I'm not sure which errno
3432 // values we will see in all cases, so if the mmap fails for any
3433 // reason try for an anonymous map.
3434 if (base == MAP_FAILED)
3435 base = this->map_anonymous();
3436 }
3437 if (base == MAP_FAILED)
3438 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
3439 this->name_, static_cast<unsigned long>(this->file_size_),
3440 strerror(errno));
3441 this->base_ = static_cast<unsigned char*>(base);
3442 }
3443
3444 // Unmap the file from memory.
3445
3446 void
3447 Output_file::unmap()
3448 {
3449 if (::munmap(this->base_, this->file_size_) < 0)
3450 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
3451 this->base_ = NULL;
3452 }
3453
3454 // Close the output file.
3455
3456 void
3457 Output_file::close()
3458 {
3459 // If the map isn't file-backed, we need to write it now.
3460 if (this->map_is_anonymous_ && !this->is_temporary_)
3461 {
3462 size_t bytes_to_write = this->file_size_;
3463 while (bytes_to_write > 0)
3464 {
3465 ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
3466 if (bytes_written == 0)
3467 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
3468 else if (bytes_written < 0)
3469 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
3470 else
3471 bytes_to_write -= bytes_written;
3472 }
3473 }
3474 this->unmap();
3475
3476 // We don't close stdout or stderr
3477 if (this->o_ != STDOUT_FILENO
3478 && this->o_ != STDERR_FILENO
3479 && !this->is_temporary_)
3480 if (::close(this->o_) < 0)
3481 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
3482 this->o_ = -1;
3483 }
3484
3485 // Instantiate the templates we need. We could use the configure
3486 // script to restrict this to only the ones for implemented targets.
3487
3488 #ifdef HAVE_TARGET_32_LITTLE
3489 template
3490 off_t
3491 Output_section::add_input_section<32, false>(
3492 Sized_relobj<32, false>* object,
3493 unsigned int shndx,
3494 const char* secname,
3495 const elfcpp::Shdr<32, false>& shdr,
3496 unsigned int reloc_shndx,
3497 bool have_sections_script);
3498 #endif
3499
3500 #ifdef HAVE_TARGET_32_BIG
3501 template
3502 off_t
3503 Output_section::add_input_section<32, true>(
3504 Sized_relobj<32, true>* object,
3505 unsigned int shndx,
3506 const char* secname,
3507 const elfcpp::Shdr<32, true>& shdr,
3508 unsigned int reloc_shndx,
3509 bool have_sections_script);
3510 #endif
3511
3512 #ifdef HAVE_TARGET_64_LITTLE
3513 template
3514 off_t
3515 Output_section::add_input_section<64, false>(
3516 Sized_relobj<64, false>* object,
3517 unsigned int shndx,
3518 const char* secname,
3519 const elfcpp::Shdr<64, false>& shdr,
3520 unsigned int reloc_shndx,
3521 bool have_sections_script);
3522 #endif
3523
3524 #ifdef HAVE_TARGET_64_BIG
3525 template
3526 off_t
3527 Output_section::add_input_section<64, true>(
3528 Sized_relobj<64, true>* object,
3529 unsigned int shndx,
3530 const char* secname,
3531 const elfcpp::Shdr<64, true>& shdr,
3532 unsigned int reloc_shndx,
3533 bool have_sections_script);
3534 #endif
3535
3536 #ifdef HAVE_TARGET_32_LITTLE
3537 template
3538 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
3539 #endif
3540
3541 #ifdef HAVE_TARGET_32_BIG
3542 template
3543 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
3544 #endif
3545
3546 #ifdef HAVE_TARGET_64_LITTLE
3547 template
3548 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
3549 #endif
3550
3551 #ifdef HAVE_TARGET_64_BIG
3552 template
3553 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
3554 #endif
3555
3556 #ifdef HAVE_TARGET_32_LITTLE
3557 template
3558 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
3559 #endif
3560
3561 #ifdef HAVE_TARGET_32_BIG
3562 template
3563 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
3564 #endif
3565
3566 #ifdef HAVE_TARGET_64_LITTLE
3567 template
3568 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
3569 #endif
3570
3571 #ifdef HAVE_TARGET_64_BIG
3572 template
3573 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
3574 #endif
3575
3576 #ifdef HAVE_TARGET_32_LITTLE
3577 template
3578 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
3579 #endif
3580
3581 #ifdef HAVE_TARGET_32_BIG
3582 template
3583 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
3584 #endif
3585
3586 #ifdef HAVE_TARGET_64_LITTLE
3587 template
3588 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
3589 #endif
3590
3591 #ifdef HAVE_TARGET_64_BIG
3592 template
3593 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
3594 #endif
3595
3596 #ifdef HAVE_TARGET_32_LITTLE
3597 template
3598 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
3599 #endif
3600
3601 #ifdef HAVE_TARGET_32_BIG
3602 template
3603 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
3604 #endif
3605
3606 #ifdef HAVE_TARGET_64_LITTLE
3607 template
3608 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
3609 #endif
3610
3611 #ifdef HAVE_TARGET_64_BIG
3612 template
3613 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
3614 #endif
3615
3616 #ifdef HAVE_TARGET_32_LITTLE
3617 template
3618 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
3619 #endif
3620
3621 #ifdef HAVE_TARGET_32_BIG
3622 template
3623 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
3624 #endif
3625
3626 #ifdef HAVE_TARGET_64_LITTLE
3627 template
3628 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
3629 #endif
3630
3631 #ifdef HAVE_TARGET_64_BIG
3632 template
3633 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
3634 #endif
3635
3636 #ifdef HAVE_TARGET_32_LITTLE
3637 template
3638 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
3639 #endif
3640
3641 #ifdef HAVE_TARGET_32_BIG
3642 template
3643 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
3644 #endif
3645
3646 #ifdef HAVE_TARGET_64_LITTLE
3647 template
3648 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
3649 #endif
3650
3651 #ifdef HAVE_TARGET_64_BIG
3652 template
3653 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
3654 #endif
3655
3656 #ifdef HAVE_TARGET_32_LITTLE
3657 template
3658 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
3659 #endif
3660
3661 #ifdef HAVE_TARGET_32_BIG
3662 template
3663 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
3664 #endif
3665
3666 #ifdef HAVE_TARGET_64_LITTLE
3667 template
3668 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
3669 #endif
3670
3671 #ifdef HAVE_TARGET_64_BIG
3672 template
3673 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
3674 #endif
3675
3676 #ifdef HAVE_TARGET_32_LITTLE
3677 template
3678 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
3679 #endif
3680
3681 #ifdef HAVE_TARGET_32_BIG
3682 template
3683 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
3684 #endif
3685
3686 #ifdef HAVE_TARGET_64_LITTLE
3687 template
3688 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
3689 #endif
3690
3691 #ifdef HAVE_TARGET_64_BIG
3692 template
3693 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
3694 #endif
3695
3696 #ifdef HAVE_TARGET_32_LITTLE
3697 template
3698 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3699 #endif
3700
3701 #ifdef HAVE_TARGET_32_BIG
3702 template
3703 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3704 #endif
3705
3706 #ifdef HAVE_TARGET_64_LITTLE
3707 template
3708 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3709 #endif
3710
3711 #ifdef HAVE_TARGET_64_BIG
3712 template
3713 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3714 #endif
3715
3716 #ifdef HAVE_TARGET_32_LITTLE
3717 template
3718 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3719 #endif
3720
3721 #ifdef HAVE_TARGET_32_BIG
3722 template
3723 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3724 #endif
3725
3726 #ifdef HAVE_TARGET_64_LITTLE
3727 template
3728 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3729 #endif
3730
3731 #ifdef HAVE_TARGET_64_BIG
3732 template
3733 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3734 #endif
3735
3736 #ifdef HAVE_TARGET_32_LITTLE
3737 template
3738 class Output_data_group<32, false>;
3739 #endif
3740
3741 #ifdef HAVE_TARGET_32_BIG
3742 template
3743 class Output_data_group<32, true>;
3744 #endif
3745
3746 #ifdef HAVE_TARGET_64_LITTLE
3747 template
3748 class Output_data_group<64, false>;
3749 #endif
3750
3751 #ifdef HAVE_TARGET_64_BIG
3752 template
3753 class Output_data_group<64, true>;
3754 #endif
3755
3756 #ifdef HAVE_TARGET_32_LITTLE
3757 template
3758 class Output_data_got<32, false>;
3759 #endif
3760
3761 #ifdef HAVE_TARGET_32_BIG
3762 template
3763 class Output_data_got<32, true>;
3764 #endif
3765
3766 #ifdef HAVE_TARGET_64_LITTLE
3767 template
3768 class Output_data_got<64, false>;
3769 #endif
3770
3771 #ifdef HAVE_TARGET_64_BIG
3772 template
3773 class Output_data_got<64, true>;
3774 #endif
3775
3776 } // End namespace gold.
This page took 0.164601 seconds and 4 git commands to generate.