d75b45bfd22cd167ce677f589e7a4c208710beb2
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56 return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
92 gold_unreachable();
93 }
94
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
105 : layout_(layout),
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
111 {
112 }
113
114 // Compute the current data size.
115
116 off_t
117 Output_section_headers::do_size() const
118 {
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
121 if (!parameters->options().relocatable())
122 {
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
139 count += this->unattached_section_list_->size();
140
141 const int size = parameters->target().get_size();
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
148 gold_unreachable();
149
150 return count * shdr_size;
151 }
152
153 // Write out the section headers.
154
155 void
156 Output_section_headers::do_write(Output_file* of)
157 {
158 switch (parameters->size_and_endianness())
159 {
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179 #endif
180 default:
181 gold_unreachable();
182 }
183 }
184
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
188 {
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
216 oshdr.put_sh_info(0);
217 oshdr.put_sh_addralign(0);
218 oshdr.put_sh_entsize(0);
219 }
220
221 v += shdr_size;
222
223 unsigned int shndx = 1;
224 if (!parameters->options().relocatable())
225 {
226 for (Layout::Segment_list::const_iterator p =
227 this->segment_list_->begin();
228 p != this->segment_list_->end();
229 ++p)
230 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
231 this->secnamepool_,
232 v,
233 &shndx);
234 }
235 else
236 {
237 for (Layout::Section_list::const_iterator p =
238 this->section_list_->begin();
239 p != this->section_list_->end();
240 ++p)
241 {
242 // We do unallocated sections below, except that group
243 // sections have to come first.
244 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
245 && (*p)->type() != elfcpp::SHT_GROUP)
246 continue;
247 gold_assert(shndx == (*p)->out_shndx());
248 elfcpp::Shdr_write<size, big_endian> oshdr(v);
249 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
250 v += shdr_size;
251 ++shndx;
252 }
253 }
254
255 for (Layout::Section_list::const_iterator p =
256 this->unattached_section_list_->begin();
257 p != this->unattached_section_list_->end();
258 ++p)
259 {
260 // For a relocatable link, we did unallocated group sections
261 // above, since they have to come first.
262 if ((*p)->type() == elfcpp::SHT_GROUP
263 && parameters->options().relocatable())
264 continue;
265 gold_assert(shndx == (*p)->out_shndx());
266 elfcpp::Shdr_write<size, big_endian> oshdr(v);
267 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
268 v += shdr_size;
269 ++shndx;
270 }
271
272 of->write_output_view(this->offset(), all_shdrs_size, view);
273 }
274
275 // Output_segment_header methods.
276
277 Output_segment_headers::Output_segment_headers(
278 const Layout::Segment_list& segment_list)
279 : segment_list_(segment_list)
280 {
281 }
282
283 void
284 Output_segment_headers::do_write(Output_file* of)
285 {
286 switch (parameters->size_and_endianness())
287 {
288 #ifdef HAVE_TARGET_32_LITTLE
289 case Parameters::TARGET_32_LITTLE:
290 this->do_sized_write<32, false>(of);
291 break;
292 #endif
293 #ifdef HAVE_TARGET_32_BIG
294 case Parameters::TARGET_32_BIG:
295 this->do_sized_write<32, true>(of);
296 break;
297 #endif
298 #ifdef HAVE_TARGET_64_LITTLE
299 case Parameters::TARGET_64_LITTLE:
300 this->do_sized_write<64, false>(of);
301 break;
302 #endif
303 #ifdef HAVE_TARGET_64_BIG
304 case Parameters::TARGET_64_BIG:
305 this->do_sized_write<64, true>(of);
306 break;
307 #endif
308 default:
309 gold_unreachable();
310 }
311 }
312
313 template<int size, bool big_endian>
314 void
315 Output_segment_headers::do_sized_write(Output_file* of)
316 {
317 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
318 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
319 gold_assert(all_phdrs_size == this->data_size());
320 unsigned char* view = of->get_output_view(this->offset(),
321 all_phdrs_size);
322 unsigned char* v = view;
323 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
324 p != this->segment_list_.end();
325 ++p)
326 {
327 elfcpp::Phdr_write<size, big_endian> ophdr(v);
328 (*p)->write_header(&ophdr);
329 v += phdr_size;
330 }
331
332 gold_assert(v - view == all_phdrs_size);
333
334 of->write_output_view(this->offset(), all_phdrs_size, view);
335 }
336
337 off_t
338 Output_segment_headers::do_size() const
339 {
340 const int size = parameters->target().get_size();
341 int phdr_size;
342 if (size == 32)
343 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
344 else if (size == 64)
345 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
346 else
347 gold_unreachable();
348
349 return this->segment_list_.size() * phdr_size;
350 }
351
352 // Output_file_header methods.
353
354 Output_file_header::Output_file_header(const Target* target,
355 const Symbol_table* symtab,
356 const Output_segment_headers* osh,
357 const char* entry)
358 : target_(target),
359 symtab_(symtab),
360 segment_header_(osh),
361 section_header_(NULL),
362 shstrtab_(NULL),
363 entry_(entry)
364 {
365 this->set_data_size(this->do_size());
366 }
367
368 // Set the section table information for a file header.
369
370 void
371 Output_file_header::set_section_info(const Output_section_headers* shdrs,
372 const Output_section* shstrtab)
373 {
374 this->section_header_ = shdrs;
375 this->shstrtab_ = shstrtab;
376 }
377
378 // Write out the file header.
379
380 void
381 Output_file_header::do_write(Output_file* of)
382 {
383 gold_assert(this->offset() == 0);
384
385 switch (parameters->size_and_endianness())
386 {
387 #ifdef HAVE_TARGET_32_LITTLE
388 case Parameters::TARGET_32_LITTLE:
389 this->do_sized_write<32, false>(of);
390 break;
391 #endif
392 #ifdef HAVE_TARGET_32_BIG
393 case Parameters::TARGET_32_BIG:
394 this->do_sized_write<32, true>(of);
395 break;
396 #endif
397 #ifdef HAVE_TARGET_64_LITTLE
398 case Parameters::TARGET_64_LITTLE:
399 this->do_sized_write<64, false>(of);
400 break;
401 #endif
402 #ifdef HAVE_TARGET_64_BIG
403 case Parameters::TARGET_64_BIG:
404 this->do_sized_write<64, true>(of);
405 break;
406 #endif
407 default:
408 gold_unreachable();
409 }
410 }
411
412 // Write out the file header with appropriate size and endianess.
413
414 template<int size, bool big_endian>
415 void
416 Output_file_header::do_sized_write(Output_file* of)
417 {
418 gold_assert(this->offset() == 0);
419
420 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
421 unsigned char* view = of->get_output_view(0, ehdr_size);
422 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
423
424 unsigned char e_ident[elfcpp::EI_NIDENT];
425 memset(e_ident, 0, elfcpp::EI_NIDENT);
426 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
427 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
428 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
429 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
430 if (size == 32)
431 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
432 else if (size == 64)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
434 else
435 gold_unreachable();
436 e_ident[elfcpp::EI_DATA] = (big_endian
437 ? elfcpp::ELFDATA2MSB
438 : elfcpp::ELFDATA2LSB);
439 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
440 oehdr.put_e_ident(e_ident);
441
442 elfcpp::ET e_type;
443 if (parameters->options().relocatable())
444 e_type = elfcpp::ET_REL;
445 else if (parameters->options().output_is_position_independent())
446 e_type = elfcpp::ET_DYN;
447 else
448 e_type = elfcpp::ET_EXEC;
449 oehdr.put_e_type(e_type);
450
451 oehdr.put_e_machine(this->target_->machine_code());
452 oehdr.put_e_version(elfcpp::EV_CURRENT);
453
454 oehdr.put_e_entry(this->entry<size>());
455
456 if (this->segment_header_ == NULL)
457 oehdr.put_e_phoff(0);
458 else
459 oehdr.put_e_phoff(this->segment_header_->offset());
460
461 oehdr.put_e_shoff(this->section_header_->offset());
462 oehdr.put_e_flags(this->target_->processor_specific_flags());
463 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
464
465 if (this->segment_header_ == NULL)
466 {
467 oehdr.put_e_phentsize(0);
468 oehdr.put_e_phnum(0);
469 }
470 else
471 {
472 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
473 oehdr.put_e_phnum(this->segment_header_->data_size()
474 / elfcpp::Elf_sizes<size>::phdr_size);
475 }
476
477 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
478 size_t section_count = (this->section_header_->data_size()
479 / elfcpp::Elf_sizes<size>::shdr_size);
480
481 if (section_count < elfcpp::SHN_LORESERVE)
482 oehdr.put_e_shnum(this->section_header_->data_size()
483 / elfcpp::Elf_sizes<size>::shdr_size);
484 else
485 oehdr.put_e_shnum(0);
486
487 unsigned int shstrndx = this->shstrtab_->out_shndx();
488 if (shstrndx < elfcpp::SHN_LORESERVE)
489 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
490 else
491 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
492
493 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
494 // the e_ident field.
495 parameters->target().adjust_elf_header(view, ehdr_size);
496
497 of->write_output_view(0, ehdr_size, view);
498 }
499
500 // Return the value to use for the entry address. THIS->ENTRY_ is the
501 // symbol specified on the command line, if any.
502
503 template<int size>
504 typename elfcpp::Elf_types<size>::Elf_Addr
505 Output_file_header::entry()
506 {
507 const bool should_issue_warning = (this->entry_ != NULL
508 && !parameters->options().relocatable()
509 && !parameters->options().shared());
510
511 // FIXME: Need to support target specific entry symbol.
512 const char* entry = this->entry_;
513 if (entry == NULL)
514 entry = "_start";
515
516 Symbol* sym = this->symtab_->lookup(entry);
517
518 typename Sized_symbol<size>::Value_type v;
519 if (sym != NULL)
520 {
521 Sized_symbol<size>* ssym;
522 ssym = this->symtab_->get_sized_symbol<size>(sym);
523 if (!ssym->is_defined() && should_issue_warning)
524 gold_warning("entry symbol '%s' exists but is not defined", entry);
525 v = ssym->value();
526 }
527 else
528 {
529 // We couldn't find the entry symbol. See if we can parse it as
530 // a number. This supports, e.g., -e 0x1000.
531 char* endptr;
532 v = strtoull(entry, &endptr, 0);
533 if (*endptr != '\0')
534 {
535 if (should_issue_warning)
536 gold_warning("cannot find entry symbol '%s'", entry);
537 v = 0;
538 }
539 }
540
541 return v;
542 }
543
544 // Compute the current data size.
545
546 off_t
547 Output_file_header::do_size() const
548 {
549 const int size = parameters->target().get_size();
550 if (size == 32)
551 return elfcpp::Elf_sizes<32>::ehdr_size;
552 else if (size == 64)
553 return elfcpp::Elf_sizes<64>::ehdr_size;
554 else
555 gold_unreachable();
556 }
557
558 // Output_data_const methods.
559
560 void
561 Output_data_const::do_write(Output_file* of)
562 {
563 of->write(this->offset(), this->data_.data(), this->data_.size());
564 }
565
566 // Output_data_const_buffer methods.
567
568 void
569 Output_data_const_buffer::do_write(Output_file* of)
570 {
571 of->write(this->offset(), this->p_, this->data_size());
572 }
573
574 // Output_section_data methods.
575
576 // Record the output section, and set the entry size and such.
577
578 void
579 Output_section_data::set_output_section(Output_section* os)
580 {
581 gold_assert(this->output_section_ == NULL);
582 this->output_section_ = os;
583 this->do_adjust_output_section(os);
584 }
585
586 // Return the section index of the output section.
587
588 unsigned int
589 Output_section_data::do_out_shndx() const
590 {
591 gold_assert(this->output_section_ != NULL);
592 return this->output_section_->out_shndx();
593 }
594
595 // Set the alignment, which means we may need to update the alignment
596 // of the output section.
597
598 void
599 Output_section_data::set_addralign(uint64_t addralign)
600 {
601 this->addralign_ = addralign;
602 if (this->output_section_ != NULL
603 && this->output_section_->addralign() < addralign)
604 this->output_section_->set_addralign(addralign);
605 }
606
607 // Output_data_strtab methods.
608
609 // Set the final data size.
610
611 void
612 Output_data_strtab::set_final_data_size()
613 {
614 this->strtab_->set_string_offsets();
615 this->set_data_size(this->strtab_->get_strtab_size());
616 }
617
618 // Write out a string table.
619
620 void
621 Output_data_strtab::do_write(Output_file* of)
622 {
623 this->strtab_->write(of, this->offset());
624 }
625
626 // Output_reloc methods.
627
628 // A reloc against a global symbol.
629
630 template<bool dynamic, int size, bool big_endian>
631 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
632 Symbol* gsym,
633 unsigned int type,
634 Output_data* od,
635 Address address,
636 bool is_relative)
637 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
638 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
639 {
640 // this->type_ is a bitfield; make sure TYPE fits.
641 gold_assert(this->type_ == type);
642 this->u1_.gsym = gsym;
643 this->u2_.od = od;
644 if (dynamic)
645 this->set_needs_dynsym_index();
646 }
647
648 template<bool dynamic, int size, bool big_endian>
649 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
650 Symbol* gsym,
651 unsigned int type,
652 Sized_relobj<size, big_endian>* relobj,
653 unsigned int shndx,
654 Address address,
655 bool is_relative)
656 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
657 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
658 {
659 gold_assert(shndx != INVALID_CODE);
660 // this->type_ is a bitfield; make sure TYPE fits.
661 gold_assert(this->type_ == type);
662 this->u1_.gsym = gsym;
663 this->u2_.relobj = relobj;
664 if (dynamic)
665 this->set_needs_dynsym_index();
666 }
667
668 // A reloc against a local symbol.
669
670 template<bool dynamic, int size, bool big_endian>
671 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
672 Sized_relobj<size, big_endian>* relobj,
673 unsigned int local_sym_index,
674 unsigned int type,
675 Output_data* od,
676 Address address,
677 bool is_relative,
678 bool is_section_symbol)
679 : address_(address), local_sym_index_(local_sym_index), type_(type),
680 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
681 shndx_(INVALID_CODE)
682 {
683 gold_assert(local_sym_index != GSYM_CODE
684 && local_sym_index != INVALID_CODE);
685 // this->type_ is a bitfield; make sure TYPE fits.
686 gold_assert(this->type_ == type);
687 this->u1_.relobj = relobj;
688 this->u2_.od = od;
689 if (dynamic)
690 this->set_needs_dynsym_index();
691 }
692
693 template<bool dynamic, int size, bool big_endian>
694 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
695 Sized_relobj<size, big_endian>* relobj,
696 unsigned int local_sym_index,
697 unsigned int type,
698 unsigned int shndx,
699 Address address,
700 bool is_relative,
701 bool is_section_symbol)
702 : address_(address), local_sym_index_(local_sym_index), type_(type),
703 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
704 shndx_(shndx)
705 {
706 gold_assert(local_sym_index != GSYM_CODE
707 && local_sym_index != INVALID_CODE);
708 gold_assert(shndx != INVALID_CODE);
709 // this->type_ is a bitfield; make sure TYPE fits.
710 gold_assert(this->type_ == type);
711 this->u1_.relobj = relobj;
712 this->u2_.relobj = relobj;
713 if (dynamic)
714 this->set_needs_dynsym_index();
715 }
716
717 // A reloc against the STT_SECTION symbol of an output section.
718
719 template<bool dynamic, int size, bool big_endian>
720 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
721 Output_section* os,
722 unsigned int type,
723 Output_data* od,
724 Address address)
725 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
726 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
727 {
728 // this->type_ is a bitfield; make sure TYPE fits.
729 gold_assert(this->type_ == type);
730 this->u1_.os = os;
731 this->u2_.od = od;
732 if (dynamic)
733 this->set_needs_dynsym_index();
734 else
735 os->set_needs_symtab_index();
736 }
737
738 template<bool dynamic, int size, bool big_endian>
739 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
740 Output_section* os,
741 unsigned int type,
742 Sized_relobj<size, big_endian>* relobj,
743 unsigned int shndx,
744 Address address)
745 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
746 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
747 {
748 gold_assert(shndx != INVALID_CODE);
749 // this->type_ is a bitfield; make sure TYPE fits.
750 gold_assert(this->type_ == type);
751 this->u1_.os = os;
752 this->u2_.relobj = relobj;
753 if (dynamic)
754 this->set_needs_dynsym_index();
755 else
756 os->set_needs_symtab_index();
757 }
758
759 // Record that we need a dynamic symbol index for this relocation.
760
761 template<bool dynamic, int size, bool big_endian>
762 void
763 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
764 set_needs_dynsym_index()
765 {
766 if (this->is_relative_)
767 return;
768 switch (this->local_sym_index_)
769 {
770 case INVALID_CODE:
771 gold_unreachable();
772
773 case GSYM_CODE:
774 this->u1_.gsym->set_needs_dynsym_entry();
775 break;
776
777 case SECTION_CODE:
778 this->u1_.os->set_needs_dynsym_index();
779 break;
780
781 case 0:
782 break;
783
784 default:
785 {
786 const unsigned int lsi = this->local_sym_index_;
787 if (!this->is_section_symbol_)
788 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
789 else
790 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
791 }
792 break;
793 }
794 }
795
796 // Get the symbol index of a relocation.
797
798 template<bool dynamic, int size, bool big_endian>
799 unsigned int
800 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
801 const
802 {
803 unsigned int index;
804 switch (this->local_sym_index_)
805 {
806 case INVALID_CODE:
807 gold_unreachable();
808
809 case GSYM_CODE:
810 if (this->u1_.gsym == NULL)
811 index = 0;
812 else if (dynamic)
813 index = this->u1_.gsym->dynsym_index();
814 else
815 index = this->u1_.gsym->symtab_index();
816 break;
817
818 case SECTION_CODE:
819 if (dynamic)
820 index = this->u1_.os->dynsym_index();
821 else
822 index = this->u1_.os->symtab_index();
823 break;
824
825 case 0:
826 // Relocations without symbols use a symbol index of 0.
827 index = 0;
828 break;
829
830 default:
831 {
832 const unsigned int lsi = this->local_sym_index_;
833 if (!this->is_section_symbol_)
834 {
835 if (dynamic)
836 index = this->u1_.relobj->dynsym_index(lsi);
837 else
838 index = this->u1_.relobj->symtab_index(lsi);
839 }
840 else
841 {
842 Output_section* os = this->u1_.relobj->output_section(lsi);
843 gold_assert(os != NULL);
844 if (dynamic)
845 index = os->dynsym_index();
846 else
847 index = os->symtab_index();
848 }
849 }
850 break;
851 }
852 gold_assert(index != -1U);
853 return index;
854 }
855
856 // For a local section symbol, get the address of the offset ADDEND
857 // within the input section.
858
859 template<bool dynamic, int size, bool big_endian>
860 typename elfcpp::Elf_types<size>::Elf_Addr
861 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
862 local_section_offset(Addend addend) const
863 {
864 gold_assert(this->local_sym_index_ != GSYM_CODE
865 && this->local_sym_index_ != SECTION_CODE
866 && this->local_sym_index_ != INVALID_CODE
867 && this->is_section_symbol_);
868 const unsigned int lsi = this->local_sym_index_;
869 Output_section* os = this->u1_.relobj->output_section(lsi);
870 gold_assert(os != NULL);
871 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
872 if (offset != invalid_address)
873 return offset + addend;
874 // This is a merge section.
875 offset = os->output_address(this->u1_.relobj, lsi, addend);
876 gold_assert(offset != invalid_address);
877 return offset;
878 }
879
880 // Get the output address of a relocation.
881
882 template<bool dynamic, int size, bool big_endian>
883 typename elfcpp::Elf_types<size>::Elf_Addr
884 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
885 {
886 Address address = this->address_;
887 if (this->shndx_ != INVALID_CODE)
888 {
889 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
890 gold_assert(os != NULL);
891 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
892 if (off != invalid_address)
893 address += os->address() + off;
894 else
895 {
896 address = os->output_address(this->u2_.relobj, this->shndx_,
897 address);
898 gold_assert(address != invalid_address);
899 }
900 }
901 else if (this->u2_.od != NULL)
902 address += this->u2_.od->address();
903 return address;
904 }
905
906 // Write out the offset and info fields of a Rel or Rela relocation
907 // entry.
908
909 template<bool dynamic, int size, bool big_endian>
910 template<typename Write_rel>
911 void
912 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
913 Write_rel* wr) const
914 {
915 wr->put_r_offset(this->get_address());
916 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
917 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
918 }
919
920 // Write out a Rel relocation.
921
922 template<bool dynamic, int size, bool big_endian>
923 void
924 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
925 unsigned char* pov) const
926 {
927 elfcpp::Rel_write<size, big_endian> orel(pov);
928 this->write_rel(&orel);
929 }
930
931 // Get the value of the symbol referred to by a Rel relocation.
932
933 template<bool dynamic, int size, bool big_endian>
934 typename elfcpp::Elf_types<size>::Elf_Addr
935 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
936 Addend addend) const
937 {
938 if (this->local_sym_index_ == GSYM_CODE)
939 {
940 const Sized_symbol<size>* sym;
941 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
942 return sym->value() + addend;
943 }
944 gold_assert(this->local_sym_index_ != SECTION_CODE
945 && this->local_sym_index_ != INVALID_CODE
946 && !this->is_section_symbol_);
947 const unsigned int lsi = this->local_sym_index_;
948 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
949 return symval->value(this->u1_.relobj, addend);
950 }
951
952 // Reloc comparison. This function sorts the dynamic relocs for the
953 // benefit of the dynamic linker. First we sort all relative relocs
954 // to the front. Among relative relocs, we sort by output address.
955 // Among non-relative relocs, we sort by symbol index, then by output
956 // address.
957
958 template<bool dynamic, int size, bool big_endian>
959 int
960 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
961 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
962 const
963 {
964 if (this->is_relative_)
965 {
966 if (!r2.is_relative_)
967 return -1;
968 // Otherwise sort by reloc address below.
969 }
970 else if (r2.is_relative_)
971 return 1;
972 else
973 {
974 unsigned int sym1 = this->get_symbol_index();
975 unsigned int sym2 = r2.get_symbol_index();
976 if (sym1 < sym2)
977 return -1;
978 else if (sym1 > sym2)
979 return 1;
980 // Otherwise sort by reloc address.
981 }
982
983 section_offset_type addr1 = this->get_address();
984 section_offset_type addr2 = r2.get_address();
985 if (addr1 < addr2)
986 return -1;
987 else if (addr1 > addr2)
988 return 1;
989
990 // Final tie breaker, in order to generate the same output on any
991 // host: reloc type.
992 unsigned int type1 = this->type_;
993 unsigned int type2 = r2.type_;
994 if (type1 < type2)
995 return -1;
996 else if (type1 > type2)
997 return 1;
998
999 // These relocs appear to be exactly the same.
1000 return 0;
1001 }
1002
1003 // Write out a Rela relocation.
1004
1005 template<bool dynamic, int size, bool big_endian>
1006 void
1007 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1008 unsigned char* pov) const
1009 {
1010 elfcpp::Rela_write<size, big_endian> orel(pov);
1011 this->rel_.write_rel(&orel);
1012 Addend addend = this->addend_;
1013 if (this->rel_.is_relative())
1014 addend = this->rel_.symbol_value(addend);
1015 else if (this->rel_.is_local_section_symbol())
1016 addend = this->rel_.local_section_offset(addend);
1017 orel.put_r_addend(addend);
1018 }
1019
1020 // Output_data_reloc_base methods.
1021
1022 // Adjust the output section.
1023
1024 template<int sh_type, bool dynamic, int size, bool big_endian>
1025 void
1026 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1027 ::do_adjust_output_section(Output_section* os)
1028 {
1029 if (sh_type == elfcpp::SHT_REL)
1030 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1031 else if (sh_type == elfcpp::SHT_RELA)
1032 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1033 else
1034 gold_unreachable();
1035 if (dynamic)
1036 os->set_should_link_to_dynsym();
1037 else
1038 os->set_should_link_to_symtab();
1039 }
1040
1041 // Write out relocation data.
1042
1043 template<int sh_type, bool dynamic, int size, bool big_endian>
1044 void
1045 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1046 Output_file* of)
1047 {
1048 const off_t off = this->offset();
1049 const off_t oview_size = this->data_size();
1050 unsigned char* const oview = of->get_output_view(off, oview_size);
1051
1052 if (this->sort_relocs_)
1053 {
1054 gold_assert(dynamic);
1055 std::sort(this->relocs_.begin(), this->relocs_.end(),
1056 Sort_relocs_comparison());
1057 }
1058
1059 unsigned char* pov = oview;
1060 for (typename Relocs::const_iterator p = this->relocs_.begin();
1061 p != this->relocs_.end();
1062 ++p)
1063 {
1064 p->write(pov);
1065 pov += reloc_size;
1066 }
1067
1068 gold_assert(pov - oview == oview_size);
1069
1070 of->write_output_view(off, oview_size, oview);
1071
1072 // We no longer need the relocation entries.
1073 this->relocs_.clear();
1074 }
1075
1076 // Class Output_relocatable_relocs.
1077
1078 template<int sh_type, int size, bool big_endian>
1079 void
1080 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1081 {
1082 this->set_data_size(this->rr_->output_reloc_count()
1083 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1084 }
1085
1086 // class Output_data_group.
1087
1088 template<int size, bool big_endian>
1089 Output_data_group<size, big_endian>::Output_data_group(
1090 Sized_relobj<size, big_endian>* relobj,
1091 section_size_type entry_count,
1092 elfcpp::Elf_Word flags,
1093 std::vector<unsigned int>* input_shndxes)
1094 : Output_section_data(entry_count * 4, 4, false),
1095 relobj_(relobj),
1096 flags_(flags)
1097 {
1098 this->input_shndxes_.swap(*input_shndxes);
1099 }
1100
1101 // Write out the section group, which means translating the section
1102 // indexes to apply to the output file.
1103
1104 template<int size, bool big_endian>
1105 void
1106 Output_data_group<size, big_endian>::do_write(Output_file* of)
1107 {
1108 const off_t off = this->offset();
1109 const section_size_type oview_size =
1110 convert_to_section_size_type(this->data_size());
1111 unsigned char* const oview = of->get_output_view(off, oview_size);
1112
1113 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1114 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1115 ++contents;
1116
1117 for (std::vector<unsigned int>::const_iterator p =
1118 this->input_shndxes_.begin();
1119 p != this->input_shndxes_.end();
1120 ++p, ++contents)
1121 {
1122 Output_section* os = this->relobj_->output_section(*p);
1123
1124 unsigned int output_shndx;
1125 if (os != NULL)
1126 output_shndx = os->out_shndx();
1127 else
1128 {
1129 this->relobj_->error(_("section group retained but "
1130 "group element discarded"));
1131 output_shndx = 0;
1132 }
1133
1134 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1135 }
1136
1137 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1138 gold_assert(wrote == oview_size);
1139
1140 of->write_output_view(off, oview_size, oview);
1141
1142 // We no longer need this information.
1143 this->input_shndxes_.clear();
1144 }
1145
1146 // Output_data_got::Got_entry methods.
1147
1148 // Write out the entry.
1149
1150 template<int size, bool big_endian>
1151 void
1152 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1153 {
1154 Valtype val = 0;
1155
1156 switch (this->local_sym_index_)
1157 {
1158 case GSYM_CODE:
1159 {
1160 // If the symbol is resolved locally, we need to write out the
1161 // link-time value, which will be relocated dynamically by a
1162 // RELATIVE relocation.
1163 Symbol* gsym = this->u_.gsym;
1164 Sized_symbol<size>* sgsym;
1165 // This cast is a bit ugly. We don't want to put a
1166 // virtual method in Symbol, because we want Symbol to be
1167 // as small as possible.
1168 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1169 val = sgsym->value();
1170 }
1171 break;
1172
1173 case CONSTANT_CODE:
1174 val = this->u_.constant;
1175 break;
1176
1177 default:
1178 {
1179 const unsigned int lsi = this->local_sym_index_;
1180 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1181 val = symval->value(this->u_.object, 0);
1182 }
1183 break;
1184 }
1185
1186 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1187 }
1188
1189 // Output_data_got methods.
1190
1191 // Add an entry for a global symbol to the GOT. This returns true if
1192 // this is a new GOT entry, false if the symbol already had a GOT
1193 // entry.
1194
1195 template<int size, bool big_endian>
1196 bool
1197 Output_data_got<size, big_endian>::add_global(
1198 Symbol* gsym,
1199 unsigned int got_type)
1200 {
1201 if (gsym->has_got_offset(got_type))
1202 return false;
1203
1204 this->entries_.push_back(Got_entry(gsym));
1205 this->set_got_size();
1206 gsym->set_got_offset(got_type, this->last_got_offset());
1207 return true;
1208 }
1209
1210 // Add an entry for a global symbol to the GOT, and add a dynamic
1211 // relocation of type R_TYPE for the GOT entry.
1212 template<int size, bool big_endian>
1213 void
1214 Output_data_got<size, big_endian>::add_global_with_rel(
1215 Symbol* gsym,
1216 unsigned int got_type,
1217 Rel_dyn* rel_dyn,
1218 unsigned int r_type)
1219 {
1220 if (gsym->has_got_offset(got_type))
1221 return;
1222
1223 this->entries_.push_back(Got_entry());
1224 this->set_got_size();
1225 unsigned int got_offset = this->last_got_offset();
1226 gsym->set_got_offset(got_type, got_offset);
1227 rel_dyn->add_global(gsym, r_type, this, got_offset);
1228 }
1229
1230 template<int size, bool big_endian>
1231 void
1232 Output_data_got<size, big_endian>::add_global_with_rela(
1233 Symbol* gsym,
1234 unsigned int got_type,
1235 Rela_dyn* rela_dyn,
1236 unsigned int r_type)
1237 {
1238 if (gsym->has_got_offset(got_type))
1239 return;
1240
1241 this->entries_.push_back(Got_entry());
1242 this->set_got_size();
1243 unsigned int got_offset = this->last_got_offset();
1244 gsym->set_got_offset(got_type, got_offset);
1245 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1246 }
1247
1248 // Add a pair of entries for a global symbol to the GOT, and add
1249 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1250 // If R_TYPE_2 == 0, add the second entry with no relocation.
1251 template<int size, bool big_endian>
1252 void
1253 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1254 Symbol* gsym,
1255 unsigned int got_type,
1256 Rel_dyn* rel_dyn,
1257 unsigned int r_type_1,
1258 unsigned int r_type_2)
1259 {
1260 if (gsym->has_got_offset(got_type))
1261 return;
1262
1263 this->entries_.push_back(Got_entry());
1264 unsigned int got_offset = this->last_got_offset();
1265 gsym->set_got_offset(got_type, got_offset);
1266 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1267
1268 this->entries_.push_back(Got_entry());
1269 if (r_type_2 != 0)
1270 {
1271 got_offset = this->last_got_offset();
1272 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1273 }
1274
1275 this->set_got_size();
1276 }
1277
1278 template<int size, bool big_endian>
1279 void
1280 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1281 Symbol* gsym,
1282 unsigned int got_type,
1283 Rela_dyn* rela_dyn,
1284 unsigned int r_type_1,
1285 unsigned int r_type_2)
1286 {
1287 if (gsym->has_got_offset(got_type))
1288 return;
1289
1290 this->entries_.push_back(Got_entry());
1291 unsigned int got_offset = this->last_got_offset();
1292 gsym->set_got_offset(got_type, got_offset);
1293 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1294
1295 this->entries_.push_back(Got_entry());
1296 if (r_type_2 != 0)
1297 {
1298 got_offset = this->last_got_offset();
1299 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1300 }
1301
1302 this->set_got_size();
1303 }
1304
1305 // Add an entry for a local symbol to the GOT. This returns true if
1306 // this is a new GOT entry, false if the symbol already has a GOT
1307 // entry.
1308
1309 template<int size, bool big_endian>
1310 bool
1311 Output_data_got<size, big_endian>::add_local(
1312 Sized_relobj<size, big_endian>* object,
1313 unsigned int symndx,
1314 unsigned int got_type)
1315 {
1316 if (object->local_has_got_offset(symndx, got_type))
1317 return false;
1318
1319 this->entries_.push_back(Got_entry(object, symndx));
1320 this->set_got_size();
1321 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1322 return true;
1323 }
1324
1325 // Add an entry for a local symbol to the GOT, and add a dynamic
1326 // relocation of type R_TYPE for the GOT entry.
1327 template<int size, bool big_endian>
1328 void
1329 Output_data_got<size, big_endian>::add_local_with_rel(
1330 Sized_relobj<size, big_endian>* object,
1331 unsigned int symndx,
1332 unsigned int got_type,
1333 Rel_dyn* rel_dyn,
1334 unsigned int r_type)
1335 {
1336 if (object->local_has_got_offset(symndx, got_type))
1337 return;
1338
1339 this->entries_.push_back(Got_entry());
1340 this->set_got_size();
1341 unsigned int got_offset = this->last_got_offset();
1342 object->set_local_got_offset(symndx, got_type, got_offset);
1343 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1344 }
1345
1346 template<int size, bool big_endian>
1347 void
1348 Output_data_got<size, big_endian>::add_local_with_rela(
1349 Sized_relobj<size, big_endian>* object,
1350 unsigned int symndx,
1351 unsigned int got_type,
1352 Rela_dyn* rela_dyn,
1353 unsigned int r_type)
1354 {
1355 if (object->local_has_got_offset(symndx, got_type))
1356 return;
1357
1358 this->entries_.push_back(Got_entry());
1359 this->set_got_size();
1360 unsigned int got_offset = this->last_got_offset();
1361 object->set_local_got_offset(symndx, got_type, got_offset);
1362 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1363 }
1364
1365 // Add a pair of entries for a local symbol to the GOT, and add
1366 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1367 // If R_TYPE_2 == 0, add the second entry with no relocation.
1368 template<int size, bool big_endian>
1369 void
1370 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1371 Sized_relobj<size, big_endian>* object,
1372 unsigned int symndx,
1373 unsigned int shndx,
1374 unsigned int got_type,
1375 Rel_dyn* rel_dyn,
1376 unsigned int r_type_1,
1377 unsigned int r_type_2)
1378 {
1379 if (object->local_has_got_offset(symndx, got_type))
1380 return;
1381
1382 this->entries_.push_back(Got_entry());
1383 unsigned int got_offset = this->last_got_offset();
1384 object->set_local_got_offset(symndx, got_type, got_offset);
1385 Output_section* os = object->output_section(shndx);
1386 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1387
1388 this->entries_.push_back(Got_entry(object, symndx));
1389 if (r_type_2 != 0)
1390 {
1391 got_offset = this->last_got_offset();
1392 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1393 }
1394
1395 this->set_got_size();
1396 }
1397
1398 template<int size, bool big_endian>
1399 void
1400 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1401 Sized_relobj<size, big_endian>* object,
1402 unsigned int symndx,
1403 unsigned int shndx,
1404 unsigned int got_type,
1405 Rela_dyn* rela_dyn,
1406 unsigned int r_type_1,
1407 unsigned int r_type_2)
1408 {
1409 if (object->local_has_got_offset(symndx, got_type))
1410 return;
1411
1412 this->entries_.push_back(Got_entry());
1413 unsigned int got_offset = this->last_got_offset();
1414 object->set_local_got_offset(symndx, got_type, got_offset);
1415 Output_section* os = object->output_section(shndx);
1416 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1417
1418 this->entries_.push_back(Got_entry(object, symndx));
1419 if (r_type_2 != 0)
1420 {
1421 got_offset = this->last_got_offset();
1422 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1423 }
1424
1425 this->set_got_size();
1426 }
1427
1428 // Write out the GOT.
1429
1430 template<int size, bool big_endian>
1431 void
1432 Output_data_got<size, big_endian>::do_write(Output_file* of)
1433 {
1434 const int add = size / 8;
1435
1436 const off_t off = this->offset();
1437 const off_t oview_size = this->data_size();
1438 unsigned char* const oview = of->get_output_view(off, oview_size);
1439
1440 unsigned char* pov = oview;
1441 for (typename Got_entries::const_iterator p = this->entries_.begin();
1442 p != this->entries_.end();
1443 ++p)
1444 {
1445 p->write(pov);
1446 pov += add;
1447 }
1448
1449 gold_assert(pov - oview == oview_size);
1450
1451 of->write_output_view(off, oview_size, oview);
1452
1453 // We no longer need the GOT entries.
1454 this->entries_.clear();
1455 }
1456
1457 // Output_data_dynamic::Dynamic_entry methods.
1458
1459 // Write out the entry.
1460
1461 template<int size, bool big_endian>
1462 void
1463 Output_data_dynamic::Dynamic_entry::write(
1464 unsigned char* pov,
1465 const Stringpool* pool) const
1466 {
1467 typename elfcpp::Elf_types<size>::Elf_WXword val;
1468 switch (this->offset_)
1469 {
1470 case DYNAMIC_NUMBER:
1471 val = this->u_.val;
1472 break;
1473
1474 case DYNAMIC_SECTION_SIZE:
1475 val = this->u_.od->data_size();
1476 break;
1477
1478 case DYNAMIC_SYMBOL:
1479 {
1480 const Sized_symbol<size>* s =
1481 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1482 val = s->value();
1483 }
1484 break;
1485
1486 case DYNAMIC_STRING:
1487 val = pool->get_offset(this->u_.str);
1488 break;
1489
1490 default:
1491 val = this->u_.od->address() + this->offset_;
1492 break;
1493 }
1494
1495 elfcpp::Dyn_write<size, big_endian> dw(pov);
1496 dw.put_d_tag(this->tag_);
1497 dw.put_d_val(val);
1498 }
1499
1500 // Output_data_dynamic methods.
1501
1502 // Adjust the output section to set the entry size.
1503
1504 void
1505 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1506 {
1507 if (parameters->target().get_size() == 32)
1508 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1509 else if (parameters->target().get_size() == 64)
1510 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1511 else
1512 gold_unreachable();
1513 }
1514
1515 // Set the final data size.
1516
1517 void
1518 Output_data_dynamic::set_final_data_size()
1519 {
1520 // Add the terminating entry if it hasn't been added.
1521 // Because of relaxation, we can run this multiple times.
1522 if (this->entries_.empty()
1523 || this->entries_.rbegin()->tag() != elfcpp::DT_NULL)
1524 this->add_constant(elfcpp::DT_NULL, 0);
1525
1526 int dyn_size;
1527 if (parameters->target().get_size() == 32)
1528 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1529 else if (parameters->target().get_size() == 64)
1530 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1531 else
1532 gold_unreachable();
1533 this->set_data_size(this->entries_.size() * dyn_size);
1534 }
1535
1536 // Write out the dynamic entries.
1537
1538 void
1539 Output_data_dynamic::do_write(Output_file* of)
1540 {
1541 switch (parameters->size_and_endianness())
1542 {
1543 #ifdef HAVE_TARGET_32_LITTLE
1544 case Parameters::TARGET_32_LITTLE:
1545 this->sized_write<32, false>(of);
1546 break;
1547 #endif
1548 #ifdef HAVE_TARGET_32_BIG
1549 case Parameters::TARGET_32_BIG:
1550 this->sized_write<32, true>(of);
1551 break;
1552 #endif
1553 #ifdef HAVE_TARGET_64_LITTLE
1554 case Parameters::TARGET_64_LITTLE:
1555 this->sized_write<64, false>(of);
1556 break;
1557 #endif
1558 #ifdef HAVE_TARGET_64_BIG
1559 case Parameters::TARGET_64_BIG:
1560 this->sized_write<64, true>(of);
1561 break;
1562 #endif
1563 default:
1564 gold_unreachable();
1565 }
1566 }
1567
1568 template<int size, bool big_endian>
1569 void
1570 Output_data_dynamic::sized_write(Output_file* of)
1571 {
1572 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1573
1574 const off_t offset = this->offset();
1575 const off_t oview_size = this->data_size();
1576 unsigned char* const oview = of->get_output_view(offset, oview_size);
1577
1578 unsigned char* pov = oview;
1579 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1580 p != this->entries_.end();
1581 ++p)
1582 {
1583 p->write<size, big_endian>(pov, this->pool_);
1584 pov += dyn_size;
1585 }
1586
1587 gold_assert(pov - oview == oview_size);
1588
1589 of->write_output_view(offset, oview_size, oview);
1590
1591 // We no longer need the dynamic entries.
1592 this->entries_.clear();
1593 }
1594
1595 // Class Output_symtab_xindex.
1596
1597 void
1598 Output_symtab_xindex::do_write(Output_file* of)
1599 {
1600 const off_t offset = this->offset();
1601 const off_t oview_size = this->data_size();
1602 unsigned char* const oview = of->get_output_view(offset, oview_size);
1603
1604 memset(oview, 0, oview_size);
1605
1606 if (parameters->target().is_big_endian())
1607 this->endian_do_write<true>(oview);
1608 else
1609 this->endian_do_write<false>(oview);
1610
1611 of->write_output_view(offset, oview_size, oview);
1612
1613 // We no longer need the data.
1614 this->entries_.clear();
1615 }
1616
1617 template<bool big_endian>
1618 void
1619 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1620 {
1621 for (Xindex_entries::const_iterator p = this->entries_.begin();
1622 p != this->entries_.end();
1623 ++p)
1624 {
1625 unsigned int symndx = p->first;
1626 gold_assert(symndx * 4 < this->data_size());
1627 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1628 }
1629 }
1630
1631 // Output_section::Input_section methods.
1632
1633 // Return the data size. For an input section we store the size here.
1634 // For an Output_section_data, we have to ask it for the size.
1635
1636 off_t
1637 Output_section::Input_section::data_size() const
1638 {
1639 if (this->is_input_section())
1640 return this->u1_.data_size;
1641 else
1642 return this->u2_.posd->data_size();
1643 }
1644
1645 // Set the address and file offset.
1646
1647 void
1648 Output_section::Input_section::set_address_and_file_offset(
1649 uint64_t address,
1650 off_t file_offset,
1651 off_t section_file_offset)
1652 {
1653 if (this->is_input_section())
1654 this->u2_.object->set_section_offset(this->shndx_,
1655 file_offset - section_file_offset);
1656 else
1657 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1658 }
1659
1660 // Reset the address and file offset.
1661
1662 void
1663 Output_section::Input_section::reset_address_and_file_offset()
1664 {
1665 if (!this->is_input_section())
1666 this->u2_.posd->reset_address_and_file_offset();
1667 }
1668
1669 // Finalize the data size.
1670
1671 void
1672 Output_section::Input_section::finalize_data_size()
1673 {
1674 if (!this->is_input_section())
1675 this->u2_.posd->finalize_data_size();
1676 }
1677
1678 // Try to turn an input offset into an output offset. We want to
1679 // return the output offset relative to the start of this
1680 // Input_section in the output section.
1681
1682 inline bool
1683 Output_section::Input_section::output_offset(
1684 const Relobj* object,
1685 unsigned int shndx,
1686 section_offset_type offset,
1687 section_offset_type *poutput) const
1688 {
1689 if (!this->is_input_section())
1690 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1691 else
1692 {
1693 if (this->shndx_ != shndx || this->u2_.object != object)
1694 return false;
1695 *poutput = offset;
1696 return true;
1697 }
1698 }
1699
1700 // Return whether this is the merge section for the input section
1701 // SHNDX in OBJECT.
1702
1703 inline bool
1704 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1705 unsigned int shndx) const
1706 {
1707 if (this->is_input_section())
1708 return false;
1709 return this->u2_.posd->is_merge_section_for(object, shndx);
1710 }
1711
1712 // Write out the data. We don't have to do anything for an input
1713 // section--they are handled via Object::relocate--but this is where
1714 // we write out the data for an Output_section_data.
1715
1716 void
1717 Output_section::Input_section::write(Output_file* of)
1718 {
1719 if (!this->is_input_section())
1720 this->u2_.posd->write(of);
1721 }
1722
1723 // Write the data to a buffer. As for write(), we don't have to do
1724 // anything for an input section.
1725
1726 void
1727 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1728 {
1729 if (!this->is_input_section())
1730 this->u2_.posd->write_to_buffer(buffer);
1731 }
1732
1733 // Print to a map file.
1734
1735 void
1736 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1737 {
1738 switch (this->shndx_)
1739 {
1740 case OUTPUT_SECTION_CODE:
1741 case MERGE_DATA_SECTION_CODE:
1742 case MERGE_STRING_SECTION_CODE:
1743 this->u2_.posd->print_to_mapfile(mapfile);
1744 break;
1745
1746 case RELAXED_INPUT_SECTION_CODE:
1747 {
1748 Output_relaxed_input_section* relaxed_section =
1749 this->relaxed_input_section();
1750 mapfile->print_input_section(relaxed_section->relobj(),
1751 relaxed_section->shndx());
1752 }
1753 break;
1754 default:
1755 mapfile->print_input_section(this->u2_.object, this->shndx_);
1756 break;
1757 }
1758 }
1759
1760 // Output_section methods.
1761
1762 // Construct an Output_section. NAME will point into a Stringpool.
1763
1764 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1765 elfcpp::Elf_Xword flags)
1766 : name_(name),
1767 addralign_(0),
1768 entsize_(0),
1769 load_address_(0),
1770 link_section_(NULL),
1771 link_(0),
1772 info_section_(NULL),
1773 info_symndx_(NULL),
1774 info_(0),
1775 type_(type),
1776 flags_(flags),
1777 out_shndx_(-1U),
1778 symtab_index_(0),
1779 dynsym_index_(0),
1780 input_sections_(),
1781 first_input_offset_(0),
1782 fills_(),
1783 postprocessing_buffer_(NULL),
1784 needs_symtab_index_(false),
1785 needs_dynsym_index_(false),
1786 should_link_to_symtab_(false),
1787 should_link_to_dynsym_(false),
1788 after_input_sections_(false),
1789 requires_postprocessing_(false),
1790 found_in_sections_clause_(false),
1791 has_load_address_(false),
1792 info_uses_section_index_(false),
1793 may_sort_attached_input_sections_(false),
1794 must_sort_attached_input_sections_(false),
1795 attached_input_sections_are_sorted_(false),
1796 is_relro_(false),
1797 is_relro_local_(false),
1798 is_small_section_(false),
1799 is_large_section_(false),
1800 is_interp_(false),
1801 is_dynamic_linker_section_(false),
1802 generate_code_fills_at_write_(false),
1803 is_entsize_zero_(false),
1804 tls_offset_(0),
1805 checkpoint_(NULL),
1806 merge_section_map_(),
1807 merge_section_by_properties_map_(),
1808 relaxed_input_section_map_(),
1809 is_relaxed_input_section_map_valid_(true)
1810 {
1811 // An unallocated section has no address. Forcing this means that
1812 // we don't need special treatment for symbols defined in debug
1813 // sections.
1814 if ((flags & elfcpp::SHF_ALLOC) == 0)
1815 this->set_address(0);
1816 }
1817
1818 Output_section::~Output_section()
1819 {
1820 delete this->checkpoint_;
1821 }
1822
1823 // Set the entry size.
1824
1825 void
1826 Output_section::set_entsize(uint64_t v)
1827 {
1828 if (this->is_entsize_zero_)
1829 ;
1830 else if (this->entsize_ == 0)
1831 this->entsize_ = v;
1832 else if (this->entsize_ != v)
1833 {
1834 this->entsize_ = 0;
1835 this->is_entsize_zero_ = 1;
1836 }
1837 }
1838
1839 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1840 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1841 // relocation section which applies to this section, or 0 if none, or
1842 // -1U if more than one. Return the offset of the input section
1843 // within the output section. Return -1 if the input section will
1844 // receive special handling. In the normal case we don't always keep
1845 // track of input sections for an Output_section. Instead, each
1846 // Object keeps track of the Output_section for each of its input
1847 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1848 // track of input sections here; this is used when SECTIONS appears in
1849 // a linker script.
1850
1851 template<int size, bool big_endian>
1852 off_t
1853 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1854 unsigned int shndx,
1855 const char* secname,
1856 const elfcpp::Shdr<size, big_endian>& shdr,
1857 unsigned int reloc_shndx,
1858 bool have_sections_script)
1859 {
1860 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1861 if ((addralign & (addralign - 1)) != 0)
1862 {
1863 object->error(_("invalid alignment %lu for section \"%s\""),
1864 static_cast<unsigned long>(addralign), secname);
1865 addralign = 1;
1866 }
1867
1868 if (addralign > this->addralign_)
1869 this->addralign_ = addralign;
1870
1871 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1872 uint64_t entsize = shdr.get_sh_entsize();
1873
1874 // .debug_str is a mergeable string section, but is not always so
1875 // marked by compilers. Mark manually here so we can optimize.
1876 if (strcmp(secname, ".debug_str") == 0)
1877 {
1878 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1879 entsize = 1;
1880 }
1881
1882 this->update_flags_for_input_section(sh_flags);
1883 this->set_entsize(entsize);
1884
1885 // If this is a SHF_MERGE section, we pass all the input sections to
1886 // a Output_data_merge. We don't try to handle relocations for such
1887 // a section. We don't try to handle empty merge sections--they
1888 // mess up the mappings, and are useless anyhow.
1889 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1890 && reloc_shndx == 0
1891 && shdr.get_sh_size() > 0)
1892 {
1893 if (this->add_merge_input_section(object, shndx, sh_flags,
1894 entsize, addralign))
1895 {
1896 // Tell the relocation routines that they need to call the
1897 // output_offset method to determine the final address.
1898 return -1;
1899 }
1900 }
1901
1902 off_t offset_in_section = this->current_data_size_for_child();
1903 off_t aligned_offset_in_section = align_address(offset_in_section,
1904 addralign);
1905
1906 // Determine if we want to delay code-fill generation until the output
1907 // section is written. When the target is relaxing, we want to delay fill
1908 // generating to avoid adjusting them during relaxation.
1909 if (!this->generate_code_fills_at_write_
1910 && !have_sections_script
1911 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1912 && parameters->target().has_code_fill()
1913 && parameters->target().may_relax())
1914 {
1915 gold_assert(this->fills_.empty());
1916 this->generate_code_fills_at_write_ = true;
1917 }
1918
1919 if (aligned_offset_in_section > offset_in_section
1920 && !this->generate_code_fills_at_write_
1921 && !have_sections_script
1922 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1923 && parameters->target().has_code_fill())
1924 {
1925 // We need to add some fill data. Using fill_list_ when
1926 // possible is an optimization, since we will often have fill
1927 // sections without input sections.
1928 off_t fill_len = aligned_offset_in_section - offset_in_section;
1929 if (this->input_sections_.empty())
1930 this->fills_.push_back(Fill(offset_in_section, fill_len));
1931 else
1932 {
1933 std::string fill_data(parameters->target().code_fill(fill_len));
1934 Output_data_const* odc = new Output_data_const(fill_data, 1);
1935 this->input_sections_.push_back(Input_section(odc));
1936 }
1937 }
1938
1939 this->set_current_data_size_for_child(aligned_offset_in_section
1940 + shdr.get_sh_size());
1941
1942 // We need to keep track of this section if we are already keeping
1943 // track of sections, or if we are relaxing. Also, if this is a
1944 // section which requires sorting, or which may require sorting in
1945 // the future, we keep track of the sections.
1946 if (have_sections_script
1947 || !this->input_sections_.empty()
1948 || this->may_sort_attached_input_sections()
1949 || this->must_sort_attached_input_sections()
1950 || parameters->options().user_set_Map()
1951 || parameters->target().may_relax())
1952 this->input_sections_.push_back(Input_section(object, shndx,
1953 shdr.get_sh_size(),
1954 addralign));
1955
1956 return aligned_offset_in_section;
1957 }
1958
1959 // Add arbitrary data to an output section.
1960
1961 void
1962 Output_section::add_output_section_data(Output_section_data* posd)
1963 {
1964 Input_section inp(posd);
1965 this->add_output_section_data(&inp);
1966
1967 if (posd->is_data_size_valid())
1968 {
1969 off_t offset_in_section = this->current_data_size_for_child();
1970 off_t aligned_offset_in_section = align_address(offset_in_section,
1971 posd->addralign());
1972 this->set_current_data_size_for_child(aligned_offset_in_section
1973 + posd->data_size());
1974 }
1975 }
1976
1977 // Add a relaxed input section.
1978
1979 void
1980 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
1981 {
1982 Input_section inp(poris);
1983 this->add_output_section_data(&inp);
1984 if (this->is_relaxed_input_section_map_valid_)
1985 {
1986 Input_section_specifier iss(poris->relobj(), poris->shndx());
1987 this->relaxed_input_section_map_[iss] = poris;
1988 }
1989
1990 // For a relaxed section, we use the current data size. Linker scripts
1991 // get all the input sections, including relaxed one from an output
1992 // section and add them back to them same output section to compute the
1993 // output section size. If we do not account for sizes of relaxed input
1994 // sections, an output section would be incorrectly sized.
1995 off_t offset_in_section = this->current_data_size_for_child();
1996 off_t aligned_offset_in_section = align_address(offset_in_section,
1997 poris->addralign());
1998 this->set_current_data_size_for_child(aligned_offset_in_section
1999 + poris->current_data_size());
2000 }
2001
2002 // Add arbitrary data to an output section by Input_section.
2003
2004 void
2005 Output_section::add_output_section_data(Input_section* inp)
2006 {
2007 if (this->input_sections_.empty())
2008 this->first_input_offset_ = this->current_data_size_for_child();
2009
2010 this->input_sections_.push_back(*inp);
2011
2012 uint64_t addralign = inp->addralign();
2013 if (addralign > this->addralign_)
2014 this->addralign_ = addralign;
2015
2016 inp->set_output_section(this);
2017 }
2018
2019 // Add a merge section to an output section.
2020
2021 void
2022 Output_section::add_output_merge_section(Output_section_data* posd,
2023 bool is_string, uint64_t entsize)
2024 {
2025 Input_section inp(posd, is_string, entsize);
2026 this->add_output_section_data(&inp);
2027 }
2028
2029 // Add an input section to a SHF_MERGE section.
2030
2031 bool
2032 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2033 uint64_t flags, uint64_t entsize,
2034 uint64_t addralign)
2035 {
2036 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2037
2038 // We only merge strings if the alignment is not more than the
2039 // character size. This could be handled, but it's unusual.
2040 if (is_string && addralign > entsize)
2041 return false;
2042
2043 // We cannot restore merged input section states.
2044 gold_assert(this->checkpoint_ == NULL);
2045
2046 // Look up merge sections by required properties.
2047 Merge_section_properties msp(is_string, entsize, addralign);
2048 Merge_section_by_properties_map::const_iterator p =
2049 this->merge_section_by_properties_map_.find(msp);
2050 if (p != this->merge_section_by_properties_map_.end())
2051 {
2052 Output_merge_base* merge_section = p->second;
2053 merge_section->add_input_section(object, shndx);
2054 gold_assert(merge_section->is_string() == is_string
2055 && merge_section->entsize() == entsize
2056 && merge_section->addralign() == addralign);
2057
2058 // Link input section to found merge section.
2059 Input_section_specifier iss(object, shndx);
2060 this->merge_section_map_[iss] = merge_section;
2061 return true;
2062 }
2063
2064 // We handle the actual constant merging in Output_merge_data or
2065 // Output_merge_string_data.
2066 Output_merge_base* pomb;
2067 if (!is_string)
2068 pomb = new Output_merge_data(entsize, addralign);
2069 else
2070 {
2071 switch (entsize)
2072 {
2073 case 1:
2074 pomb = new Output_merge_string<char>(addralign);
2075 break;
2076 case 2:
2077 pomb = new Output_merge_string<uint16_t>(addralign);
2078 break;
2079 case 4:
2080 pomb = new Output_merge_string<uint32_t>(addralign);
2081 break;
2082 default:
2083 return false;
2084 }
2085 }
2086
2087 // Add new merge section to this output section and link merge section
2088 // properties to new merge section in map.
2089 this->add_output_merge_section(pomb, is_string, entsize);
2090 this->merge_section_by_properties_map_[msp] = pomb;
2091
2092 // Add input section to new merge section and link input section to new
2093 // merge section in map.
2094 pomb->add_input_section(object, shndx);
2095 Input_section_specifier iss(object, shndx);
2096 this->merge_section_map_[iss] = pomb;
2097
2098 return true;
2099 }
2100
2101 // Build a relaxation map to speed up relaxation of existing input sections.
2102 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2103
2104 void
2105 Output_section::build_relaxation_map(
2106 const Input_section_list& input_sections,
2107 size_t limit,
2108 Relaxation_map* relaxation_map) const
2109 {
2110 for (size_t i = 0; i < limit; ++i)
2111 {
2112 const Input_section& is(input_sections[i]);
2113 if (is.is_input_section() || is.is_relaxed_input_section())
2114 {
2115 Input_section_specifier iss(is.relobj(), is.shndx());
2116 (*relaxation_map)[iss] = i;
2117 }
2118 }
2119 }
2120
2121 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2122 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from input section
2123 // specifier to indices of INPUT_SECTIONS.
2124
2125 void
2126 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2127 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2128 const Relaxation_map& map,
2129 Input_section_list* input_sections)
2130 {
2131 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2132 {
2133 Output_relaxed_input_section* poris = relaxed_sections[i];
2134 Input_section_specifier iss(poris->relobj(), poris->shndx());
2135 Relaxation_map::const_iterator p = map.find(iss);
2136 gold_assert(p != map.end());
2137 gold_assert((*input_sections)[p->second].is_input_section());
2138 (*input_sections)[p->second] = Input_section(poris);
2139 }
2140 }
2141
2142 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2143 // is a vector of pointers to Output_relaxed_input_section or its derived
2144 // classes. The relaxed sections must correspond to existing input sections.
2145
2146 void
2147 Output_section::convert_input_sections_to_relaxed_sections(
2148 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2149 {
2150 gold_assert(parameters->target().may_relax());
2151
2152 // We want to make sure that restore_states does not undo the effect of
2153 // this. If there is no checkpoint active, just search the current
2154 // input section list and replace the sections there. If there is
2155 // a checkpoint, also replace the sections there.
2156
2157 // By default, we look at the whole list.
2158 size_t limit = this->input_sections_.size();
2159
2160 if (this->checkpoint_ != NULL)
2161 {
2162 // Replace input sections with relaxed input section in the saved
2163 // copy of the input section list.
2164 if (this->checkpoint_->input_sections_saved())
2165 {
2166 Relaxation_map map;
2167 this->build_relaxation_map(
2168 *(this->checkpoint_->input_sections()),
2169 this->checkpoint_->input_sections()->size(),
2170 &map);
2171 this->convert_input_sections_in_list_to_relaxed_sections(
2172 relaxed_sections,
2173 map,
2174 this->checkpoint_->input_sections());
2175 }
2176 else
2177 {
2178 // We have not copied the input section list yet. Instead, just
2179 // look at the portion that would be saved.
2180 limit = this->checkpoint_->input_sections_size();
2181 }
2182 }
2183
2184 // Convert input sections in input_section_list.
2185 Relaxation_map map;
2186 this->build_relaxation_map(this->input_sections_, limit, &map);
2187 this->convert_input_sections_in_list_to_relaxed_sections(
2188 relaxed_sections,
2189 map,
2190 &this->input_sections_);
2191 }
2192
2193 // Update the output section flags based on input section flags.
2194
2195 void
2196 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2197 {
2198 // If we created the section with SHF_ALLOC clear, we set the
2199 // address. If we are now setting the SHF_ALLOC flag, we need to
2200 // undo that.
2201 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2202 && (flags & elfcpp::SHF_ALLOC) != 0)
2203 this->mark_address_invalid();
2204
2205 this->flags_ |= (flags
2206 & (elfcpp::SHF_WRITE
2207 | elfcpp::SHF_ALLOC
2208 | elfcpp::SHF_EXECINSTR));
2209
2210 if ((flags & elfcpp::SHF_MERGE) == 0)
2211 this->flags_ &=~ elfcpp::SHF_MERGE;
2212 else
2213 {
2214 if (this->current_data_size_for_child() == 0)
2215 this->flags_ |= elfcpp::SHF_MERGE;
2216 }
2217
2218 if ((flags & elfcpp::SHF_STRINGS) == 0)
2219 this->flags_ &=~ elfcpp::SHF_STRINGS;
2220 else
2221 {
2222 if (this->current_data_size_for_child() == 0)
2223 this->flags_ |= elfcpp::SHF_STRINGS;
2224 }
2225 }
2226
2227 // Find the merge section into which an input section with index SHNDX in
2228 // OBJECT has been added. Return NULL if none found.
2229
2230 Output_section_data*
2231 Output_section::find_merge_section(const Relobj* object,
2232 unsigned int shndx) const
2233 {
2234 Input_section_specifier iss(object, shndx);
2235 Output_section_data_by_input_section_map::const_iterator p =
2236 this->merge_section_map_.find(iss);
2237 if (p != this->merge_section_map_.end())
2238 {
2239 Output_section_data* posd = p->second;
2240 gold_assert(posd->is_merge_section_for(object, shndx));
2241 return posd;
2242 }
2243 else
2244 return NULL;
2245 }
2246
2247 // Find an relaxed input section corresponding to an input section
2248 // in OBJECT with index SHNDX.
2249
2250 const Output_relaxed_input_section*
2251 Output_section::find_relaxed_input_section(const Relobj* object,
2252 unsigned int shndx) const
2253 {
2254 // Be careful that the map may not be valid due to input section export
2255 // to scripts or a check-point restore.
2256 if (!this->is_relaxed_input_section_map_valid_)
2257 {
2258 // Rebuild the map as needed.
2259 this->relaxed_input_section_map_.clear();
2260 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2261 p != this->input_sections_.end();
2262 ++p)
2263 if (p->is_relaxed_input_section())
2264 {
2265 Input_section_specifier iss(p->relobj(), p->shndx());
2266 this->relaxed_input_section_map_[iss] =
2267 p->relaxed_input_section();
2268 }
2269 this->is_relaxed_input_section_map_valid_ = true;
2270 }
2271
2272 Input_section_specifier iss(object, shndx);
2273 Output_relaxed_input_section_by_input_section_map::const_iterator p =
2274 this->relaxed_input_section_map_.find(iss);
2275 if (p != this->relaxed_input_section_map_.end())
2276 return p->second;
2277 else
2278 return NULL;
2279 }
2280
2281 // Given an address OFFSET relative to the start of input section
2282 // SHNDX in OBJECT, return whether this address is being included in
2283 // the final link. This should only be called if SHNDX in OBJECT has
2284 // a special mapping.
2285
2286 bool
2287 Output_section::is_input_address_mapped(const Relobj* object,
2288 unsigned int shndx,
2289 off_t offset) const
2290 {
2291 // Look at the Output_section_data_maps first.
2292 const Output_section_data* posd = this->find_merge_section(object, shndx);
2293 if (posd == NULL)
2294 posd = this->find_relaxed_input_section(object, shndx);
2295
2296 if (posd != NULL)
2297 {
2298 section_offset_type output_offset;
2299 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2300 gold_assert(found);
2301 return output_offset != -1;
2302 }
2303
2304 // Fall back to the slow look-up.
2305 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2306 p != this->input_sections_.end();
2307 ++p)
2308 {
2309 section_offset_type output_offset;
2310 if (p->output_offset(object, shndx, offset, &output_offset))
2311 return output_offset != -1;
2312 }
2313
2314 // By default we assume that the address is mapped. This should
2315 // only be called after we have passed all sections to Layout. At
2316 // that point we should know what we are discarding.
2317 return true;
2318 }
2319
2320 // Given an address OFFSET relative to the start of input section
2321 // SHNDX in object OBJECT, return the output offset relative to the
2322 // start of the input section in the output section. This should only
2323 // be called if SHNDX in OBJECT has a special mapping.
2324
2325 section_offset_type
2326 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2327 section_offset_type offset) const
2328 {
2329 // This can only be called meaningfully when we know the data size
2330 // of this.
2331 gold_assert(this->is_data_size_valid());
2332
2333 // Look at the Output_section_data_maps first.
2334 const Output_section_data* posd = this->find_merge_section(object, shndx);
2335 if (posd == NULL)
2336 posd = this->find_relaxed_input_section(object, shndx);
2337 if (posd != NULL)
2338 {
2339 section_offset_type output_offset;
2340 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2341 gold_assert(found);
2342 return output_offset;
2343 }
2344
2345 // Fall back to the slow look-up.
2346 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2347 p != this->input_sections_.end();
2348 ++p)
2349 {
2350 section_offset_type output_offset;
2351 if (p->output_offset(object, shndx, offset, &output_offset))
2352 return output_offset;
2353 }
2354 gold_unreachable();
2355 }
2356
2357 // Return the output virtual address of OFFSET relative to the start
2358 // of input section SHNDX in object OBJECT.
2359
2360 uint64_t
2361 Output_section::output_address(const Relobj* object, unsigned int shndx,
2362 off_t offset) const
2363 {
2364 uint64_t addr = this->address() + this->first_input_offset_;
2365
2366 // Look at the Output_section_data_maps first.
2367 const Output_section_data* posd = this->find_merge_section(object, shndx);
2368 if (posd == NULL)
2369 posd = this->find_relaxed_input_section(object, shndx);
2370 if (posd != NULL && posd->is_address_valid())
2371 {
2372 section_offset_type output_offset;
2373 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2374 gold_assert(found);
2375 return posd->address() + output_offset;
2376 }
2377
2378 // Fall back to the slow look-up.
2379 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2380 p != this->input_sections_.end();
2381 ++p)
2382 {
2383 addr = align_address(addr, p->addralign());
2384 section_offset_type output_offset;
2385 if (p->output_offset(object, shndx, offset, &output_offset))
2386 {
2387 if (output_offset == -1)
2388 return -1ULL;
2389 return addr + output_offset;
2390 }
2391 addr += p->data_size();
2392 }
2393
2394 // If we get here, it means that we don't know the mapping for this
2395 // input section. This might happen in principle if
2396 // add_input_section were called before add_output_section_data.
2397 // But it should never actually happen.
2398
2399 gold_unreachable();
2400 }
2401
2402 // Find the output address of the start of the merged section for
2403 // input section SHNDX in object OBJECT.
2404
2405 bool
2406 Output_section::find_starting_output_address(const Relobj* object,
2407 unsigned int shndx,
2408 uint64_t* paddr) const
2409 {
2410 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2411 // Looking up the merge section map does not always work as we sometimes
2412 // find a merge section without its address set.
2413 uint64_t addr = this->address() + this->first_input_offset_;
2414 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2415 p != this->input_sections_.end();
2416 ++p)
2417 {
2418 addr = align_address(addr, p->addralign());
2419
2420 // It would be nice if we could use the existing output_offset
2421 // method to get the output offset of input offset 0.
2422 // Unfortunately we don't know for sure that input offset 0 is
2423 // mapped at all.
2424 if (p->is_merge_section_for(object, shndx))
2425 {
2426 *paddr = addr;
2427 return true;
2428 }
2429
2430 addr += p->data_size();
2431 }
2432
2433 // We couldn't find a merge output section for this input section.
2434 return false;
2435 }
2436
2437 // Set the data size of an Output_section. This is where we handle
2438 // setting the addresses of any Output_section_data objects.
2439
2440 void
2441 Output_section::set_final_data_size()
2442 {
2443 if (this->input_sections_.empty())
2444 {
2445 this->set_data_size(this->current_data_size_for_child());
2446 return;
2447 }
2448
2449 if (this->must_sort_attached_input_sections())
2450 this->sort_attached_input_sections();
2451
2452 uint64_t address = this->address();
2453 off_t startoff = this->offset();
2454 off_t off = startoff + this->first_input_offset_;
2455 for (Input_section_list::iterator p = this->input_sections_.begin();
2456 p != this->input_sections_.end();
2457 ++p)
2458 {
2459 off = align_address(off, p->addralign());
2460 p->set_address_and_file_offset(address + (off - startoff), off,
2461 startoff);
2462 off += p->data_size();
2463 }
2464
2465 this->set_data_size(off - startoff);
2466 }
2467
2468 // Reset the address and file offset.
2469
2470 void
2471 Output_section::do_reset_address_and_file_offset()
2472 {
2473 // An unallocated section has no address. Forcing this means that
2474 // we don't need special treatment for symbols defined in debug
2475 // sections. We do the same in the constructor.
2476 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2477 this->set_address(0);
2478
2479 for (Input_section_list::iterator p = this->input_sections_.begin();
2480 p != this->input_sections_.end();
2481 ++p)
2482 p->reset_address_and_file_offset();
2483 }
2484
2485 // Return true if address and file offset have the values after reset.
2486
2487 bool
2488 Output_section::do_address_and_file_offset_have_reset_values() const
2489 {
2490 if (this->is_offset_valid())
2491 return false;
2492
2493 // An unallocated section has address 0 after its construction or a reset.
2494 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2495 return this->is_address_valid() && this->address() == 0;
2496 else
2497 return !this->is_address_valid();
2498 }
2499
2500 // Set the TLS offset. Called only for SHT_TLS sections.
2501
2502 void
2503 Output_section::do_set_tls_offset(uint64_t tls_base)
2504 {
2505 this->tls_offset_ = this->address() - tls_base;
2506 }
2507
2508 // In a few cases we need to sort the input sections attached to an
2509 // output section. This is used to implement the type of constructor
2510 // priority ordering implemented by the GNU linker, in which the
2511 // priority becomes part of the section name and the sections are
2512 // sorted by name. We only do this for an output section if we see an
2513 // attached input section matching ".ctor.*", ".dtor.*",
2514 // ".init_array.*" or ".fini_array.*".
2515
2516 class Output_section::Input_section_sort_entry
2517 {
2518 public:
2519 Input_section_sort_entry()
2520 : input_section_(), index_(-1U), section_has_name_(false),
2521 section_name_()
2522 { }
2523
2524 Input_section_sort_entry(const Input_section& input_section,
2525 unsigned int index)
2526 : input_section_(input_section), index_(index),
2527 section_has_name_(input_section.is_input_section()
2528 || input_section.is_relaxed_input_section())
2529 {
2530 if (this->section_has_name_)
2531 {
2532 // This is only called single-threaded from Layout::finalize,
2533 // so it is OK to lock. Unfortunately we have no way to pass
2534 // in a Task token.
2535 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2536 Object* obj = (input_section.is_input_section()
2537 ? input_section.relobj()
2538 : input_section.relaxed_input_section()->relobj());
2539 Task_lock_obj<Object> tl(dummy_task, obj);
2540
2541 // This is a slow operation, which should be cached in
2542 // Layout::layout if this becomes a speed problem.
2543 this->section_name_ = obj->section_name(input_section.shndx());
2544 }
2545 }
2546
2547 // Return the Input_section.
2548 const Input_section&
2549 input_section() const
2550 {
2551 gold_assert(this->index_ != -1U);
2552 return this->input_section_;
2553 }
2554
2555 // The index of this entry in the original list. This is used to
2556 // make the sort stable.
2557 unsigned int
2558 index() const
2559 {
2560 gold_assert(this->index_ != -1U);
2561 return this->index_;
2562 }
2563
2564 // Whether there is a section name.
2565 bool
2566 section_has_name() const
2567 { return this->section_has_name_; }
2568
2569 // The section name.
2570 const std::string&
2571 section_name() const
2572 {
2573 gold_assert(this->section_has_name_);
2574 return this->section_name_;
2575 }
2576
2577 // Return true if the section name has a priority. This is assumed
2578 // to be true if it has a dot after the initial dot.
2579 bool
2580 has_priority() const
2581 {
2582 gold_assert(this->section_has_name_);
2583 return this->section_name_.find('.', 1);
2584 }
2585
2586 // Return true if this an input file whose base name matches
2587 // FILE_NAME. The base name must have an extension of ".o", and
2588 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2589 // This is to match crtbegin.o as well as crtbeginS.o without
2590 // getting confused by other possibilities. Overall matching the
2591 // file name this way is a dreadful hack, but the GNU linker does it
2592 // in order to better support gcc, and we need to be compatible.
2593 bool
2594 match_file_name(const char* match_file_name) const
2595 {
2596 const std::string& file_name(this->input_section_.relobj()->name());
2597 const char* base_name = lbasename(file_name.c_str());
2598 size_t match_len = strlen(match_file_name);
2599 if (strncmp(base_name, match_file_name, match_len) != 0)
2600 return false;
2601 size_t base_len = strlen(base_name);
2602 if (base_len != match_len + 2 && base_len != match_len + 3)
2603 return false;
2604 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2605 }
2606
2607 private:
2608 // The Input_section we are sorting.
2609 Input_section input_section_;
2610 // The index of this Input_section in the original list.
2611 unsigned int index_;
2612 // Whether this Input_section has a section name--it won't if this
2613 // is some random Output_section_data.
2614 bool section_has_name_;
2615 // The section name if there is one.
2616 std::string section_name_;
2617 };
2618
2619 // Return true if S1 should come before S2 in the output section.
2620
2621 bool
2622 Output_section::Input_section_sort_compare::operator()(
2623 const Output_section::Input_section_sort_entry& s1,
2624 const Output_section::Input_section_sort_entry& s2) const
2625 {
2626 // crtbegin.o must come first.
2627 bool s1_begin = s1.match_file_name("crtbegin");
2628 bool s2_begin = s2.match_file_name("crtbegin");
2629 if (s1_begin || s2_begin)
2630 {
2631 if (!s1_begin)
2632 return false;
2633 if (!s2_begin)
2634 return true;
2635 return s1.index() < s2.index();
2636 }
2637
2638 // crtend.o must come last.
2639 bool s1_end = s1.match_file_name("crtend");
2640 bool s2_end = s2.match_file_name("crtend");
2641 if (s1_end || s2_end)
2642 {
2643 if (!s1_end)
2644 return true;
2645 if (!s2_end)
2646 return false;
2647 return s1.index() < s2.index();
2648 }
2649
2650 // We sort all the sections with no names to the end.
2651 if (!s1.section_has_name() || !s2.section_has_name())
2652 {
2653 if (s1.section_has_name())
2654 return true;
2655 if (s2.section_has_name())
2656 return false;
2657 return s1.index() < s2.index();
2658 }
2659
2660 // A section with a priority follows a section without a priority.
2661 // The GNU linker does this for all but .init_array sections; until
2662 // further notice we'll assume that that is an mistake.
2663 bool s1_has_priority = s1.has_priority();
2664 bool s2_has_priority = s2.has_priority();
2665 if (s1_has_priority && !s2_has_priority)
2666 return false;
2667 if (!s1_has_priority && s2_has_priority)
2668 return true;
2669
2670 // Otherwise we sort by name.
2671 int compare = s1.section_name().compare(s2.section_name());
2672 if (compare != 0)
2673 return compare < 0;
2674
2675 // Otherwise we keep the input order.
2676 return s1.index() < s2.index();
2677 }
2678
2679 // Sort the input sections attached to an output section.
2680
2681 void
2682 Output_section::sort_attached_input_sections()
2683 {
2684 if (this->attached_input_sections_are_sorted_)
2685 return;
2686
2687 if (this->checkpoint_ != NULL
2688 && !this->checkpoint_->input_sections_saved())
2689 this->checkpoint_->save_input_sections();
2690
2691 // The only thing we know about an input section is the object and
2692 // the section index. We need the section name. Recomputing this
2693 // is slow but this is an unusual case. If this becomes a speed
2694 // problem we can cache the names as required in Layout::layout.
2695
2696 // We start by building a larger vector holding a copy of each
2697 // Input_section, plus its current index in the list and its name.
2698 std::vector<Input_section_sort_entry> sort_list;
2699
2700 unsigned int i = 0;
2701 for (Input_section_list::iterator p = this->input_sections_.begin();
2702 p != this->input_sections_.end();
2703 ++p, ++i)
2704 sort_list.push_back(Input_section_sort_entry(*p, i));
2705
2706 // Sort the input sections.
2707 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2708
2709 // Copy the sorted input sections back to our list.
2710 this->input_sections_.clear();
2711 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2712 p != sort_list.end();
2713 ++p)
2714 this->input_sections_.push_back(p->input_section());
2715
2716 // Remember that we sorted the input sections, since we might get
2717 // called again.
2718 this->attached_input_sections_are_sorted_ = true;
2719 }
2720
2721 // Write the section header to *OSHDR.
2722
2723 template<int size, bool big_endian>
2724 void
2725 Output_section::write_header(const Layout* layout,
2726 const Stringpool* secnamepool,
2727 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2728 {
2729 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2730 oshdr->put_sh_type(this->type_);
2731
2732 elfcpp::Elf_Xword flags = this->flags_;
2733 if (this->info_section_ != NULL && this->info_uses_section_index_)
2734 flags |= elfcpp::SHF_INFO_LINK;
2735 oshdr->put_sh_flags(flags);
2736
2737 oshdr->put_sh_addr(this->address());
2738 oshdr->put_sh_offset(this->offset());
2739 oshdr->put_sh_size(this->data_size());
2740 if (this->link_section_ != NULL)
2741 oshdr->put_sh_link(this->link_section_->out_shndx());
2742 else if (this->should_link_to_symtab_)
2743 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2744 else if (this->should_link_to_dynsym_)
2745 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2746 else
2747 oshdr->put_sh_link(this->link_);
2748
2749 elfcpp::Elf_Word info;
2750 if (this->info_section_ != NULL)
2751 {
2752 if (this->info_uses_section_index_)
2753 info = this->info_section_->out_shndx();
2754 else
2755 info = this->info_section_->symtab_index();
2756 }
2757 else if (this->info_symndx_ != NULL)
2758 info = this->info_symndx_->symtab_index();
2759 else
2760 info = this->info_;
2761 oshdr->put_sh_info(info);
2762
2763 oshdr->put_sh_addralign(this->addralign_);
2764 oshdr->put_sh_entsize(this->entsize_);
2765 }
2766
2767 // Write out the data. For input sections the data is written out by
2768 // Object::relocate, but we have to handle Output_section_data objects
2769 // here.
2770
2771 void
2772 Output_section::do_write(Output_file* of)
2773 {
2774 gold_assert(!this->requires_postprocessing());
2775
2776 // If the target performs relaxation, we delay filler generation until now.
2777 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2778
2779 off_t output_section_file_offset = this->offset();
2780 for (Fill_list::iterator p = this->fills_.begin();
2781 p != this->fills_.end();
2782 ++p)
2783 {
2784 std::string fill_data(parameters->target().code_fill(p->length()));
2785 of->write(output_section_file_offset + p->section_offset(),
2786 fill_data.data(), fill_data.size());
2787 }
2788
2789 off_t off = this->offset() + this->first_input_offset_;
2790 for (Input_section_list::iterator p = this->input_sections_.begin();
2791 p != this->input_sections_.end();
2792 ++p)
2793 {
2794 off_t aligned_off = align_address(off, p->addralign());
2795 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2796 {
2797 size_t fill_len = aligned_off - off;
2798 std::string fill_data(parameters->target().code_fill(fill_len));
2799 of->write(off, fill_data.data(), fill_data.size());
2800 }
2801
2802 p->write(of);
2803 off = aligned_off + p->data_size();
2804 }
2805 }
2806
2807 // If a section requires postprocessing, create the buffer to use.
2808
2809 void
2810 Output_section::create_postprocessing_buffer()
2811 {
2812 gold_assert(this->requires_postprocessing());
2813
2814 if (this->postprocessing_buffer_ != NULL)
2815 return;
2816
2817 if (!this->input_sections_.empty())
2818 {
2819 off_t off = this->first_input_offset_;
2820 for (Input_section_list::iterator p = this->input_sections_.begin();
2821 p != this->input_sections_.end();
2822 ++p)
2823 {
2824 off = align_address(off, p->addralign());
2825 p->finalize_data_size();
2826 off += p->data_size();
2827 }
2828 this->set_current_data_size_for_child(off);
2829 }
2830
2831 off_t buffer_size = this->current_data_size_for_child();
2832 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2833 }
2834
2835 // Write all the data of an Output_section into the postprocessing
2836 // buffer. This is used for sections which require postprocessing,
2837 // such as compression. Input sections are handled by
2838 // Object::Relocate.
2839
2840 void
2841 Output_section::write_to_postprocessing_buffer()
2842 {
2843 gold_assert(this->requires_postprocessing());
2844
2845 // If the target performs relaxation, we delay filler generation until now.
2846 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2847
2848 unsigned char* buffer = this->postprocessing_buffer();
2849 for (Fill_list::iterator p = this->fills_.begin();
2850 p != this->fills_.end();
2851 ++p)
2852 {
2853 std::string fill_data(parameters->target().code_fill(p->length()));
2854 memcpy(buffer + p->section_offset(), fill_data.data(),
2855 fill_data.size());
2856 }
2857
2858 off_t off = this->first_input_offset_;
2859 for (Input_section_list::iterator p = this->input_sections_.begin();
2860 p != this->input_sections_.end();
2861 ++p)
2862 {
2863 off_t aligned_off = align_address(off, p->addralign());
2864 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2865 {
2866 size_t fill_len = aligned_off - off;
2867 std::string fill_data(parameters->target().code_fill(fill_len));
2868 memcpy(buffer + off, fill_data.data(), fill_data.size());
2869 }
2870
2871 p->write_to_buffer(buffer + aligned_off);
2872 off = aligned_off + p->data_size();
2873 }
2874 }
2875
2876 // Get the input sections for linker script processing. We leave
2877 // behind the Output_section_data entries. Note that this may be
2878 // slightly incorrect for merge sections. We will leave them behind,
2879 // but it is possible that the script says that they should follow
2880 // some other input sections, as in:
2881 // .rodata { *(.rodata) *(.rodata.cst*) }
2882 // For that matter, we don't handle this correctly:
2883 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2884 // With luck this will never matter.
2885
2886 uint64_t
2887 Output_section::get_input_sections(
2888 uint64_t address,
2889 const std::string& fill,
2890 std::list<Simple_input_section>* input_sections)
2891 {
2892 if (this->checkpoint_ != NULL
2893 && !this->checkpoint_->input_sections_saved())
2894 this->checkpoint_->save_input_sections();
2895
2896 // Invalidate the relaxed input section map.
2897 this->is_relaxed_input_section_map_valid_ = false;
2898
2899 uint64_t orig_address = address;
2900
2901 address = align_address(address, this->addralign());
2902
2903 Input_section_list remaining;
2904 for (Input_section_list::iterator p = this->input_sections_.begin();
2905 p != this->input_sections_.end();
2906 ++p)
2907 {
2908 if (p->is_input_section())
2909 input_sections->push_back(Simple_input_section(p->relobj(),
2910 p->shndx()));
2911 else if (p->is_relaxed_input_section())
2912 input_sections->push_back(
2913 Simple_input_section(p->relaxed_input_section()));
2914 else
2915 {
2916 uint64_t aligned_address = align_address(address, p->addralign());
2917 if (aligned_address != address && !fill.empty())
2918 {
2919 section_size_type length =
2920 convert_to_section_size_type(aligned_address - address);
2921 std::string this_fill;
2922 this_fill.reserve(length);
2923 while (this_fill.length() + fill.length() <= length)
2924 this_fill += fill;
2925 if (this_fill.length() < length)
2926 this_fill.append(fill, 0, length - this_fill.length());
2927
2928 Output_section_data* posd = new Output_data_const(this_fill, 0);
2929 remaining.push_back(Input_section(posd));
2930 }
2931 address = aligned_address;
2932
2933 remaining.push_back(*p);
2934
2935 p->finalize_data_size();
2936 address += p->data_size();
2937 }
2938 }
2939
2940 this->input_sections_.swap(remaining);
2941 this->first_input_offset_ = 0;
2942
2943 uint64_t data_size = address - orig_address;
2944 this->set_current_data_size_for_child(data_size);
2945 return data_size;
2946 }
2947
2948 // Add an input section from a script.
2949
2950 void
2951 Output_section::add_input_section_for_script(const Simple_input_section& sis,
2952 off_t data_size,
2953 uint64_t addralign)
2954 {
2955 if (addralign > this->addralign_)
2956 this->addralign_ = addralign;
2957
2958 off_t offset_in_section = this->current_data_size_for_child();
2959 off_t aligned_offset_in_section = align_address(offset_in_section,
2960 addralign);
2961
2962 this->set_current_data_size_for_child(aligned_offset_in_section
2963 + data_size);
2964
2965 Input_section is =
2966 (sis.is_relaxed_input_section()
2967 ? Input_section(sis.relaxed_input_section())
2968 : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
2969 this->input_sections_.push_back(is);
2970 }
2971
2972 //
2973
2974 void
2975 Output_section::save_states()
2976 {
2977 gold_assert(this->checkpoint_ == NULL);
2978 Checkpoint_output_section* checkpoint =
2979 new Checkpoint_output_section(this->addralign_, this->flags_,
2980 this->input_sections_,
2981 this->first_input_offset_,
2982 this->attached_input_sections_are_sorted_);
2983 this->checkpoint_ = checkpoint;
2984 gold_assert(this->fills_.empty());
2985 }
2986
2987 void
2988 Output_section::restore_states()
2989 {
2990 gold_assert(this->checkpoint_ != NULL);
2991 Checkpoint_output_section* checkpoint = this->checkpoint_;
2992
2993 this->addralign_ = checkpoint->addralign();
2994 this->flags_ = checkpoint->flags();
2995 this->first_input_offset_ = checkpoint->first_input_offset();
2996
2997 if (!checkpoint->input_sections_saved())
2998 {
2999 // If we have not copied the input sections, just resize it.
3000 size_t old_size = checkpoint->input_sections_size();
3001 gold_assert(this->input_sections_.size() >= old_size);
3002 this->input_sections_.resize(old_size);
3003 }
3004 else
3005 {
3006 // We need to copy the whole list. This is not efficient for
3007 // extremely large output with hundreads of thousands of input
3008 // objects. We may need to re-think how we should pass sections
3009 // to scripts.
3010 this->input_sections_ = *checkpoint->input_sections();
3011 }
3012
3013 this->attached_input_sections_are_sorted_ =
3014 checkpoint->attached_input_sections_are_sorted();
3015
3016 // Simply invalidate the relaxed input section map since we do not keep
3017 // track of it.
3018 this->is_relaxed_input_section_map_valid_ = false;
3019 }
3020
3021 // Print to the map file.
3022
3023 void
3024 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3025 {
3026 mapfile->print_output_section(this);
3027
3028 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3029 p != this->input_sections_.end();
3030 ++p)
3031 p->print_to_mapfile(mapfile);
3032 }
3033
3034 // Print stats for merge sections to stderr.
3035
3036 void
3037 Output_section::print_merge_stats()
3038 {
3039 Input_section_list::iterator p;
3040 for (p = this->input_sections_.begin();
3041 p != this->input_sections_.end();
3042 ++p)
3043 p->print_merge_stats(this->name_);
3044 }
3045
3046 // Output segment methods.
3047
3048 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3049 : output_data_(),
3050 output_bss_(),
3051 vaddr_(0),
3052 paddr_(0),
3053 memsz_(0),
3054 max_align_(0),
3055 min_p_align_(0),
3056 offset_(0),
3057 filesz_(0),
3058 type_(type),
3059 flags_(flags),
3060 is_max_align_known_(false),
3061 are_addresses_set_(false),
3062 is_large_data_segment_(false)
3063 {
3064 }
3065
3066 // Add an Output_section to an Output_segment.
3067
3068 void
3069 Output_segment::add_output_section(Output_section* os,
3070 elfcpp::Elf_Word seg_flags,
3071 bool do_sort)
3072 {
3073 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3074 gold_assert(!this->is_max_align_known_);
3075 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3076 gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
3077
3078 // Update the segment flags.
3079 this->flags_ |= seg_flags;
3080
3081 Output_segment::Output_data_list* pdl;
3082 if (os->type() == elfcpp::SHT_NOBITS)
3083 pdl = &this->output_bss_;
3084 else
3085 pdl = &this->output_data_;
3086
3087 // Note that while there may be many input sections in an output
3088 // section, there are normally only a few output sections in an
3089 // output segment. The loops below are expected to be fast.
3090
3091 // So that PT_NOTE segments will work correctly, we need to ensure
3092 // that all SHT_NOTE sections are adjacent.
3093 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
3094 {
3095 Output_segment::Output_data_list::iterator p = pdl->end();
3096 do
3097 {
3098 --p;
3099 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3100 {
3101 ++p;
3102 pdl->insert(p, os);
3103 return;
3104 }
3105 }
3106 while (p != pdl->begin());
3107 }
3108
3109 // Similarly, so that PT_TLS segments will work, we need to group
3110 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3111 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3112 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
3113 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
3114 // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3115 // segment.
3116 if (this->type_ != elfcpp::PT_TLS
3117 && (os->flags() & elfcpp::SHF_TLS) != 0)
3118 {
3119 pdl = &this->output_data_;
3120 if (!pdl->empty())
3121 {
3122 bool nobits = os->type() == elfcpp::SHT_NOBITS;
3123 bool sawtls = false;
3124 Output_segment::Output_data_list::iterator p = pdl->end();
3125 gold_assert(p != pdl->begin());
3126 do
3127 {
3128 --p;
3129 bool insert;
3130 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3131 {
3132 sawtls = true;
3133 // Put a NOBITS section after the first TLS section.
3134 // Put a PROGBITS section after the first
3135 // TLS/PROGBITS section.
3136 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3137 }
3138 else
3139 {
3140 // If we've gone past the TLS sections, but we've
3141 // seen a TLS section, then we need to insert this
3142 // section now.
3143 insert = sawtls;
3144 }
3145
3146 if (insert)
3147 {
3148 ++p;
3149 pdl->insert(p, os);
3150 return;
3151 }
3152 }
3153 while (p != pdl->begin());
3154 }
3155
3156 // There are no TLS sections yet; put this one at the requested
3157 // location in the section list.
3158 }
3159
3160 // For the PT_GNU_RELRO segment, we need to group relro sections,
3161 // and we need to put them before any non-relro sections. Also,
3162 // relro local sections go before relro non-local sections.
3163 if (parameters->options().relro() && os->is_relro())
3164 {
3165 gold_assert(pdl == &this->output_data_);
3166 Output_segment::Output_data_list::iterator p;
3167 for (p = pdl->begin(); p != pdl->end(); ++p)
3168 {
3169 if (!(*p)->is_section())
3170 break;
3171
3172 Output_section* pos = (*p)->output_section();
3173 if (!pos->is_relro()
3174 || (os->is_relro_local() && !pos->is_relro_local()))
3175 break;
3176 }
3177
3178 pdl->insert(p, os);
3179 return;
3180 }
3181
3182 // Small data sections go at the end of the list of data sections.
3183 // If OS is not small, and there are small sections, we have to
3184 // insert it before the first small section.
3185 if (os->type() != elfcpp::SHT_NOBITS
3186 && !os->is_small_section()
3187 && !pdl->empty()
3188 && pdl->back()->is_section()
3189 && pdl->back()->output_section()->is_small_section())
3190 {
3191 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3192 p != pdl->end();
3193 ++p)
3194 {
3195 if ((*p)->is_section()
3196 && (*p)->output_section()->is_small_section())
3197 {
3198 pdl->insert(p, os);
3199 return;
3200 }
3201 }
3202 gold_unreachable();
3203 }
3204
3205 // A small BSS section goes at the start of the BSS sections, after
3206 // other small BSS sections.
3207 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3208 {
3209 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3210 p != pdl->end();
3211 ++p)
3212 {
3213 if (!(*p)->is_section()
3214 || !(*p)->output_section()->is_small_section())
3215 {
3216 pdl->insert(p, os);
3217 return;
3218 }
3219 }
3220 }
3221
3222 // A large BSS section goes at the end of the BSS sections, which
3223 // means that one that is not large must come before the first large
3224 // one.
3225 if (os->type() == elfcpp::SHT_NOBITS
3226 && !os->is_large_section()
3227 && !pdl->empty()
3228 && pdl->back()->is_section()
3229 && pdl->back()->output_section()->is_large_section())
3230 {
3231 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3232 p != pdl->end();
3233 ++p)
3234 {
3235 if ((*p)->is_section()
3236 && (*p)->output_section()->is_large_section())
3237 {
3238 pdl->insert(p, os);
3239 return;
3240 }
3241 }
3242 gold_unreachable();
3243 }
3244
3245 // We do some further output section sorting in order to make the
3246 // generated program run more efficiently. We should only do this
3247 // when not using a linker script, so it is controled by the DO_SORT
3248 // parameter.
3249 if (do_sort)
3250 {
3251 // FreeBSD requires the .interp section to be in the first page
3252 // of the executable. That is a more efficient location anyhow
3253 // for any OS, since it means that the kernel will have the data
3254 // handy after it reads the program headers.
3255 if (os->is_interp() && !pdl->empty())
3256 {
3257 pdl->insert(pdl->begin(), os);
3258 return;
3259 }
3260
3261 // Put loadable non-writable notes immediately after the .interp
3262 // sections, so that the PT_NOTE segment is on the first page of
3263 // the executable.
3264 if (os->type() == elfcpp::SHT_NOTE
3265 && (os->flags() & elfcpp::SHF_WRITE) == 0
3266 && !pdl->empty())
3267 {
3268 Output_segment::Output_data_list::iterator p = pdl->begin();
3269 if ((*p)->is_section() && (*p)->output_section()->is_interp())
3270 ++p;
3271 pdl->insert(p, os);
3272 return;
3273 }
3274
3275 // If this section is used by the dynamic linker, and it is not
3276 // writable, then put it first, after the .interp section and
3277 // any loadable notes. This makes it more likely that the
3278 // dynamic linker will have to read less data from the disk.
3279 if (os->is_dynamic_linker_section()
3280 && !pdl->empty()
3281 && (os->flags() & elfcpp::SHF_WRITE) == 0)
3282 {
3283 bool is_reloc = (os->type() == elfcpp::SHT_REL
3284 || os->type() == elfcpp::SHT_RELA);
3285 Output_segment::Output_data_list::iterator p = pdl->begin();
3286 while (p != pdl->end()
3287 && (*p)->is_section()
3288 && ((*p)->output_section()->is_dynamic_linker_section()
3289 || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3290 {
3291 // Put reloc sections after the other ones. Putting the
3292 // dynamic reloc sections first confuses BFD, notably
3293 // objcopy and strip.
3294 if (!is_reloc
3295 && ((*p)->output_section()->type() == elfcpp::SHT_REL
3296 || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3297 break;
3298 ++p;
3299 }
3300 pdl->insert(p, os);
3301 return;
3302 }
3303 }
3304
3305 // If there were no constraints on the output section, just add it
3306 // to the end of the list.
3307 pdl->push_back(os);
3308 }
3309
3310 // Remove an Output_section from this segment. It is an error if it
3311 // is not present.
3312
3313 void
3314 Output_segment::remove_output_section(Output_section* os)
3315 {
3316 // We only need this for SHT_PROGBITS.
3317 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3318 for (Output_data_list::iterator p = this->output_data_.begin();
3319 p != this->output_data_.end();
3320 ++p)
3321 {
3322 if (*p == os)
3323 {
3324 this->output_data_.erase(p);
3325 return;
3326 }
3327 }
3328 gold_unreachable();
3329 }
3330
3331 // Add an Output_data (which is not an Output_section) to the start of
3332 // a segment.
3333
3334 void
3335 Output_segment::add_initial_output_data(Output_data* od)
3336 {
3337 gold_assert(!this->is_max_align_known_);
3338 this->output_data_.push_front(od);
3339 }
3340
3341 // Return whether the first data section is a relro section.
3342
3343 bool
3344 Output_segment::is_first_section_relro() const
3345 {
3346 return (!this->output_data_.empty()
3347 && this->output_data_.front()->is_section()
3348 && this->output_data_.front()->output_section()->is_relro());
3349 }
3350
3351 // Return the maximum alignment of the Output_data in Output_segment.
3352
3353 uint64_t
3354 Output_segment::maximum_alignment()
3355 {
3356 if (!this->is_max_align_known_)
3357 {
3358 uint64_t addralign;
3359
3360 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3361 if (addralign > this->max_align_)
3362 this->max_align_ = addralign;
3363
3364 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3365 if (addralign > this->max_align_)
3366 this->max_align_ = addralign;
3367
3368 // If -z relro is in effect, and the first section in this
3369 // segment is a relro section, then the segment must be aligned
3370 // to at least the common page size. This ensures that the
3371 // PT_GNU_RELRO segment will start at a page boundary.
3372 if (this->type_ == elfcpp::PT_LOAD
3373 && parameters->options().relro()
3374 && this->is_first_section_relro())
3375 {
3376 addralign = parameters->target().common_pagesize();
3377 if (addralign > this->max_align_)
3378 this->max_align_ = addralign;
3379 }
3380
3381 this->is_max_align_known_ = true;
3382 }
3383
3384 return this->max_align_;
3385 }
3386
3387 // Return the maximum alignment of a list of Output_data.
3388
3389 uint64_t
3390 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3391 {
3392 uint64_t ret = 0;
3393 for (Output_data_list::const_iterator p = pdl->begin();
3394 p != pdl->end();
3395 ++p)
3396 {
3397 uint64_t addralign = (*p)->addralign();
3398 if (addralign > ret)
3399 ret = addralign;
3400 }
3401 return ret;
3402 }
3403
3404 // Return the number of dynamic relocs applied to this segment.
3405
3406 unsigned int
3407 Output_segment::dynamic_reloc_count() const
3408 {
3409 return (this->dynamic_reloc_count_list(&this->output_data_)
3410 + this->dynamic_reloc_count_list(&this->output_bss_));
3411 }
3412
3413 // Return the number of dynamic relocs applied to an Output_data_list.
3414
3415 unsigned int
3416 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3417 {
3418 unsigned int count = 0;
3419 for (Output_data_list::const_iterator p = pdl->begin();
3420 p != pdl->end();
3421 ++p)
3422 count += (*p)->dynamic_reloc_count();
3423 return count;
3424 }
3425
3426 // Set the section addresses for an Output_segment. If RESET is true,
3427 // reset the addresses first. ADDR is the address and *POFF is the
3428 // file offset. Set the section indexes starting with *PSHNDX.
3429 // Return the address of the immediately following segment. Update
3430 // *POFF and *PSHNDX.
3431
3432 uint64_t
3433 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3434 uint64_t addr, off_t* poff,
3435 unsigned int* pshndx)
3436 {
3437 gold_assert(this->type_ == elfcpp::PT_LOAD);
3438
3439 if (!reset && this->are_addresses_set_)
3440 {
3441 gold_assert(this->paddr_ == addr);
3442 addr = this->vaddr_;
3443 }
3444 else
3445 {
3446 this->vaddr_ = addr;
3447 this->paddr_ = addr;
3448 this->are_addresses_set_ = true;
3449 }
3450
3451 bool in_tls = false;
3452
3453 bool in_relro = (parameters->options().relro()
3454 && this->is_first_section_relro());
3455
3456 off_t orig_off = *poff;
3457 this->offset_ = orig_off;
3458
3459 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3460 addr, poff, pshndx, &in_tls,
3461 &in_relro);
3462 this->filesz_ = *poff - orig_off;
3463
3464 off_t off = *poff;
3465
3466 uint64_t ret = this->set_section_list_addresses(layout, reset,
3467 &this->output_bss_,
3468 addr, poff, pshndx,
3469 &in_tls, &in_relro);
3470
3471 // If the last section was a TLS section, align upward to the
3472 // alignment of the TLS segment, so that the overall size of the TLS
3473 // segment is aligned.
3474 if (in_tls)
3475 {
3476 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3477 *poff = align_address(*poff, segment_align);
3478 }
3479
3480 // If all the sections were relro sections, align upward to the
3481 // common page size.
3482 if (in_relro)
3483 {
3484 uint64_t page_align = parameters->target().common_pagesize();
3485 *poff = align_address(*poff, page_align);
3486 }
3487
3488 this->memsz_ = *poff - orig_off;
3489
3490 // Ignore the file offset adjustments made by the BSS Output_data
3491 // objects.
3492 *poff = off;
3493
3494 return ret;
3495 }
3496
3497 // Set the addresses and file offsets in a list of Output_data
3498 // structures.
3499
3500 uint64_t
3501 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3502 Output_data_list* pdl,
3503 uint64_t addr, off_t* poff,
3504 unsigned int* pshndx,
3505 bool* in_tls, bool* in_relro)
3506 {
3507 off_t startoff = *poff;
3508
3509 off_t off = startoff;
3510 for (Output_data_list::iterator p = pdl->begin();
3511 p != pdl->end();
3512 ++p)
3513 {
3514 if (reset)
3515 (*p)->reset_address_and_file_offset();
3516
3517 // When using a linker script the section will most likely
3518 // already have an address.
3519 if (!(*p)->is_address_valid())
3520 {
3521 uint64_t align = (*p)->addralign();
3522
3523 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3524 {
3525 // Give the first TLS section the alignment of the
3526 // entire TLS segment. Otherwise the TLS segment as a
3527 // whole may be misaligned.
3528 if (!*in_tls)
3529 {
3530 Output_segment* tls_segment = layout->tls_segment();
3531 gold_assert(tls_segment != NULL);
3532 uint64_t segment_align = tls_segment->maximum_alignment();
3533 gold_assert(segment_align >= align);
3534 align = segment_align;
3535
3536 *in_tls = true;
3537 }
3538 }
3539 else
3540 {
3541 // If this is the first section after the TLS segment,
3542 // align it to at least the alignment of the TLS
3543 // segment, so that the size of the overall TLS segment
3544 // is aligned.
3545 if (*in_tls)
3546 {
3547 uint64_t segment_align =
3548 layout->tls_segment()->maximum_alignment();
3549 if (segment_align > align)
3550 align = segment_align;
3551
3552 *in_tls = false;
3553 }
3554 }
3555
3556 // If this is a non-relro section after a relro section,
3557 // align it to a common page boundary so that the dynamic
3558 // linker has a page to mark as read-only.
3559 if (*in_relro
3560 && (!(*p)->is_section()
3561 || !(*p)->output_section()->is_relro()))
3562 {
3563 uint64_t page_align = parameters->target().common_pagesize();
3564 if (page_align > align)
3565 align = page_align;
3566 *in_relro = false;
3567 }
3568
3569 off = align_address(off, align);
3570 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3571 }
3572 else
3573 {
3574 // The script may have inserted a skip forward, but it
3575 // better not have moved backward.
3576 if ((*p)->address() >= addr + (off - startoff))
3577 off += (*p)->address() - (addr + (off - startoff));
3578 else
3579 {
3580 if (!layout->script_options()->saw_sections_clause())
3581 gold_unreachable();
3582 else
3583 {
3584 Output_section* os = (*p)->output_section();
3585
3586 // Cast to unsigned long long to avoid format warnings.
3587 unsigned long long previous_dot =
3588 static_cast<unsigned long long>(addr + (off - startoff));
3589 unsigned long long dot =
3590 static_cast<unsigned long long>((*p)->address());
3591
3592 if (os == NULL)
3593 gold_error(_("dot moves backward in linker script "
3594 "from 0x%llx to 0x%llx"), previous_dot, dot);
3595 else
3596 gold_error(_("address of section '%s' moves backward "
3597 "from 0x%llx to 0x%llx"),
3598 os->name(), previous_dot, dot);
3599 }
3600 }
3601 (*p)->set_file_offset(off);
3602 (*p)->finalize_data_size();
3603 }
3604
3605 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3606 // section. Such a section does not affect the size of a
3607 // PT_LOAD segment.
3608 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3609 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3610 off += (*p)->data_size();
3611
3612 if ((*p)->is_section())
3613 {
3614 (*p)->set_out_shndx(*pshndx);
3615 ++*pshndx;
3616 }
3617 }
3618
3619 *poff = off;
3620 return addr + (off - startoff);
3621 }
3622
3623 // For a non-PT_LOAD segment, set the offset from the sections, if
3624 // any.
3625
3626 void
3627 Output_segment::set_offset()
3628 {
3629 gold_assert(this->type_ != elfcpp::PT_LOAD);
3630
3631 gold_assert(!this->are_addresses_set_);
3632
3633 if (this->output_data_.empty() && this->output_bss_.empty())
3634 {
3635 this->vaddr_ = 0;
3636 this->paddr_ = 0;
3637 this->are_addresses_set_ = true;
3638 this->memsz_ = 0;
3639 this->min_p_align_ = 0;
3640 this->offset_ = 0;
3641 this->filesz_ = 0;
3642 return;
3643 }
3644
3645 const Output_data* first;
3646 if (this->output_data_.empty())
3647 first = this->output_bss_.front();
3648 else
3649 first = this->output_data_.front();
3650 this->vaddr_ = first->address();
3651 this->paddr_ = (first->has_load_address()
3652 ? first->load_address()
3653 : this->vaddr_);
3654 this->are_addresses_set_ = true;
3655 this->offset_ = first->offset();
3656
3657 if (this->output_data_.empty())
3658 this->filesz_ = 0;
3659 else
3660 {
3661 const Output_data* last_data = this->output_data_.back();
3662 this->filesz_ = (last_data->address()
3663 + last_data->data_size()
3664 - this->vaddr_);
3665 }
3666
3667 const Output_data* last;
3668 if (this->output_bss_.empty())
3669 last = this->output_data_.back();
3670 else
3671 last = this->output_bss_.back();
3672 this->memsz_ = (last->address()
3673 + last->data_size()
3674 - this->vaddr_);
3675
3676 // If this is a TLS segment, align the memory size. The code in
3677 // set_section_list ensures that the section after the TLS segment
3678 // is aligned to give us room.
3679 if (this->type_ == elfcpp::PT_TLS)
3680 {
3681 uint64_t segment_align = this->maximum_alignment();
3682 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3683 this->memsz_ = align_address(this->memsz_, segment_align);
3684 }
3685
3686 // If this is a RELRO segment, align the memory size. The code in
3687 // set_section_list ensures that the section after the RELRO segment
3688 // is aligned to give us room.
3689 if (this->type_ == elfcpp::PT_GNU_RELRO)
3690 {
3691 uint64_t page_align = parameters->target().common_pagesize();
3692 gold_assert(this->vaddr_ == align_address(this->vaddr_, page_align));
3693 this->memsz_ = align_address(this->memsz_, page_align);
3694 }
3695 }
3696
3697 // Set the TLS offsets of the sections in the PT_TLS segment.
3698
3699 void
3700 Output_segment::set_tls_offsets()
3701 {
3702 gold_assert(this->type_ == elfcpp::PT_TLS);
3703
3704 for (Output_data_list::iterator p = this->output_data_.begin();
3705 p != this->output_data_.end();
3706 ++p)
3707 (*p)->set_tls_offset(this->vaddr_);
3708
3709 for (Output_data_list::iterator p = this->output_bss_.begin();
3710 p != this->output_bss_.end();
3711 ++p)
3712 (*p)->set_tls_offset(this->vaddr_);
3713 }
3714
3715 // Return the address of the first section.
3716
3717 uint64_t
3718 Output_segment::first_section_load_address() const
3719 {
3720 for (Output_data_list::const_iterator p = this->output_data_.begin();
3721 p != this->output_data_.end();
3722 ++p)
3723 if ((*p)->is_section())
3724 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3725
3726 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3727 p != this->output_bss_.end();
3728 ++p)
3729 if ((*p)->is_section())
3730 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3731
3732 gold_unreachable();
3733 }
3734
3735 // Return the number of Output_sections in an Output_segment.
3736
3737 unsigned int
3738 Output_segment::output_section_count() const
3739 {
3740 return (this->output_section_count_list(&this->output_data_)
3741 + this->output_section_count_list(&this->output_bss_));
3742 }
3743
3744 // Return the number of Output_sections in an Output_data_list.
3745
3746 unsigned int
3747 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3748 {
3749 unsigned int count = 0;
3750 for (Output_data_list::const_iterator p = pdl->begin();
3751 p != pdl->end();
3752 ++p)
3753 {
3754 if ((*p)->is_section())
3755 ++count;
3756 }
3757 return count;
3758 }
3759
3760 // Return the section attached to the list segment with the lowest
3761 // load address. This is used when handling a PHDRS clause in a
3762 // linker script.
3763
3764 Output_section*
3765 Output_segment::section_with_lowest_load_address() const
3766 {
3767 Output_section* found = NULL;
3768 uint64_t found_lma = 0;
3769 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3770
3771 Output_section* found_data = found;
3772 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3773 if (found != found_data && found_data != NULL)
3774 {
3775 gold_error(_("nobits section %s may not precede progbits section %s "
3776 "in same segment"),
3777 found->name(), found_data->name());
3778 return NULL;
3779 }
3780
3781 return found;
3782 }
3783
3784 // Look through a list for a section with a lower load address.
3785
3786 void
3787 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3788 Output_section** found,
3789 uint64_t* found_lma) const
3790 {
3791 for (Output_data_list::const_iterator p = pdl->begin();
3792 p != pdl->end();
3793 ++p)
3794 {
3795 if (!(*p)->is_section())
3796 continue;
3797 Output_section* os = static_cast<Output_section*>(*p);
3798 uint64_t lma = (os->has_load_address()
3799 ? os->load_address()
3800 : os->address());
3801 if (*found == NULL || lma < *found_lma)
3802 {
3803 *found = os;
3804 *found_lma = lma;
3805 }
3806 }
3807 }
3808
3809 // Write the segment data into *OPHDR.
3810
3811 template<int size, bool big_endian>
3812 void
3813 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3814 {
3815 ophdr->put_p_type(this->type_);
3816 ophdr->put_p_offset(this->offset_);
3817 ophdr->put_p_vaddr(this->vaddr_);
3818 ophdr->put_p_paddr(this->paddr_);
3819 ophdr->put_p_filesz(this->filesz_);
3820 ophdr->put_p_memsz(this->memsz_);
3821 ophdr->put_p_flags(this->flags_);
3822 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3823 }
3824
3825 // Write the section headers into V.
3826
3827 template<int size, bool big_endian>
3828 unsigned char*
3829 Output_segment::write_section_headers(const Layout* layout,
3830 const Stringpool* secnamepool,
3831 unsigned char* v,
3832 unsigned int *pshndx) const
3833 {
3834 // Every section that is attached to a segment must be attached to a
3835 // PT_LOAD segment, so we only write out section headers for PT_LOAD
3836 // segments.
3837 if (this->type_ != elfcpp::PT_LOAD)
3838 return v;
3839
3840 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3841 &this->output_data_,
3842 v, pshndx);
3843 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3844 &this->output_bss_,
3845 v, pshndx);
3846 return v;
3847 }
3848
3849 template<int size, bool big_endian>
3850 unsigned char*
3851 Output_segment::write_section_headers_list(const Layout* layout,
3852 const Stringpool* secnamepool,
3853 const Output_data_list* pdl,
3854 unsigned char* v,
3855 unsigned int* pshndx) const
3856 {
3857 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3858 for (Output_data_list::const_iterator p = pdl->begin();
3859 p != pdl->end();
3860 ++p)
3861 {
3862 if ((*p)->is_section())
3863 {
3864 const Output_section* ps = static_cast<const Output_section*>(*p);
3865 gold_assert(*pshndx == ps->out_shndx());
3866 elfcpp::Shdr_write<size, big_endian> oshdr(v);
3867 ps->write_header(layout, secnamepool, &oshdr);
3868 v += shdr_size;
3869 ++*pshndx;
3870 }
3871 }
3872 return v;
3873 }
3874
3875 // Print the output sections to the map file.
3876
3877 void
3878 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
3879 {
3880 if (this->type() != elfcpp::PT_LOAD)
3881 return;
3882 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
3883 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
3884 }
3885
3886 // Print an output section list to the map file.
3887
3888 void
3889 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
3890 const Output_data_list* pdl) const
3891 {
3892 for (Output_data_list::const_iterator p = pdl->begin();
3893 p != pdl->end();
3894 ++p)
3895 (*p)->print_to_mapfile(mapfile);
3896 }
3897
3898 // Output_file methods.
3899
3900 Output_file::Output_file(const char* name)
3901 : name_(name),
3902 o_(-1),
3903 file_size_(0),
3904 base_(NULL),
3905 map_is_anonymous_(false),
3906 is_temporary_(false)
3907 {
3908 }
3909
3910 // Try to open an existing file. Returns false if the file doesn't
3911 // exist, has a size of 0 or can't be mmapped.
3912
3913 bool
3914 Output_file::open_for_modification()
3915 {
3916 // The name "-" means "stdout".
3917 if (strcmp(this->name_, "-") == 0)
3918 return false;
3919
3920 // Don't bother opening files with a size of zero.
3921 struct stat s;
3922 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
3923 return false;
3924
3925 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
3926 if (o < 0)
3927 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3928 this->o_ = o;
3929 this->file_size_ = s.st_size;
3930
3931 // If the file can't be mmapped, copying the content to an anonymous
3932 // map will probably negate the performance benefits of incremental
3933 // linking. This could be helped by using views and loading only
3934 // the necessary parts, but this is not supported as of now.
3935 if (!this->map_no_anonymous())
3936 {
3937 release_descriptor(o, true);
3938 this->o_ = -1;
3939 this->file_size_ = 0;
3940 return false;
3941 }
3942
3943 return true;
3944 }
3945
3946 // Open the output file.
3947
3948 void
3949 Output_file::open(off_t file_size)
3950 {
3951 this->file_size_ = file_size;
3952
3953 // Unlink the file first; otherwise the open() may fail if the file
3954 // is busy (e.g. it's an executable that's currently being executed).
3955 //
3956 // However, the linker may be part of a system where a zero-length
3957 // file is created for it to write to, with tight permissions (gcc
3958 // 2.95 did something like this). Unlinking the file would work
3959 // around those permission controls, so we only unlink if the file
3960 // has a non-zero size. We also unlink only regular files to avoid
3961 // trouble with directories/etc.
3962 //
3963 // If we fail, continue; this command is merely a best-effort attempt
3964 // to improve the odds for open().
3965
3966 // We let the name "-" mean "stdout"
3967 if (!this->is_temporary_)
3968 {
3969 if (strcmp(this->name_, "-") == 0)
3970 this->o_ = STDOUT_FILENO;
3971 else
3972 {
3973 struct stat s;
3974 if (::stat(this->name_, &s) == 0
3975 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
3976 {
3977 if (s.st_size != 0)
3978 ::unlink(this->name_);
3979 else if (!parameters->options().relocatable())
3980 {
3981 // If we don't unlink the existing file, add execute
3982 // permission where read permissions already exist
3983 // and where the umask permits.
3984 int mask = ::umask(0);
3985 ::umask(mask);
3986 s.st_mode |= (s.st_mode & 0444) >> 2;
3987 ::chmod(this->name_, s.st_mode & ~mask);
3988 }
3989 }
3990
3991 int mode = parameters->options().relocatable() ? 0666 : 0777;
3992 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
3993 mode);
3994 if (o < 0)
3995 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3996 this->o_ = o;
3997 }
3998 }
3999
4000 this->map();
4001 }
4002
4003 // Resize the output file.
4004
4005 void
4006 Output_file::resize(off_t file_size)
4007 {
4008 // If the mmap is mapping an anonymous memory buffer, this is easy:
4009 // just mremap to the new size. If it's mapping to a file, we want
4010 // to unmap to flush to the file, then remap after growing the file.
4011 if (this->map_is_anonymous_)
4012 {
4013 void* base = ::mremap(this->base_, this->file_size_, file_size,
4014 MREMAP_MAYMOVE);
4015 if (base == MAP_FAILED)
4016 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4017 this->base_ = static_cast<unsigned char*>(base);
4018 this->file_size_ = file_size;
4019 }
4020 else
4021 {
4022 this->unmap();
4023 this->file_size_ = file_size;
4024 if (!this->map_no_anonymous())
4025 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4026 }
4027 }
4028
4029 // Map an anonymous block of memory which will later be written to the
4030 // file. Return whether the map succeeded.
4031
4032 bool
4033 Output_file::map_anonymous()
4034 {
4035 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4036 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4037 if (base != MAP_FAILED)
4038 {
4039 this->map_is_anonymous_ = true;
4040 this->base_ = static_cast<unsigned char*>(base);
4041 return true;
4042 }
4043 return false;
4044 }
4045
4046 // Map the file into memory. Return whether the mapping succeeded.
4047
4048 bool
4049 Output_file::map_no_anonymous()
4050 {
4051 const int o = this->o_;
4052
4053 // If the output file is not a regular file, don't try to mmap it;
4054 // instead, we'll mmap a block of memory (an anonymous buffer), and
4055 // then later write the buffer to the file.
4056 void* base;
4057 struct stat statbuf;
4058 if (o == STDOUT_FILENO || o == STDERR_FILENO
4059 || ::fstat(o, &statbuf) != 0
4060 || !S_ISREG(statbuf.st_mode)
4061 || this->is_temporary_)
4062 return false;
4063
4064 // Ensure that we have disk space available for the file. If we
4065 // don't do this, it is possible that we will call munmap, close,
4066 // and exit with dirty buffers still in the cache with no assigned
4067 // disk blocks. If the disk is out of space at that point, the
4068 // output file will wind up incomplete, but we will have already
4069 // exited. The alternative to fallocate would be to use fdatasync,
4070 // but that would be a more significant performance hit.
4071 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4072 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4073
4074 // Map the file into memory.
4075 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4076 MAP_SHARED, o, 0);
4077
4078 // The mmap call might fail because of file system issues: the file
4079 // system might not support mmap at all, or it might not support
4080 // mmap with PROT_WRITE.
4081 if (base == MAP_FAILED)
4082 return false;
4083
4084 this->map_is_anonymous_ = false;
4085 this->base_ = static_cast<unsigned char*>(base);
4086 return true;
4087 }
4088
4089 // Map the file into memory.
4090
4091 void
4092 Output_file::map()
4093 {
4094 if (this->map_no_anonymous())
4095 return;
4096
4097 // The mmap call might fail because of file system issues: the file
4098 // system might not support mmap at all, or it might not support
4099 // mmap with PROT_WRITE. I'm not sure which errno values we will
4100 // see in all cases, so if the mmap fails for any reason and we
4101 // don't care about file contents, try for an anonymous map.
4102 if (this->map_anonymous())
4103 return;
4104
4105 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4106 this->name_, static_cast<unsigned long>(this->file_size_),
4107 strerror(errno));
4108 }
4109
4110 // Unmap the file from memory.
4111
4112 void
4113 Output_file::unmap()
4114 {
4115 if (::munmap(this->base_, this->file_size_) < 0)
4116 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4117 this->base_ = NULL;
4118 }
4119
4120 // Close the output file.
4121
4122 void
4123 Output_file::close()
4124 {
4125 // If the map isn't file-backed, we need to write it now.
4126 if (this->map_is_anonymous_ && !this->is_temporary_)
4127 {
4128 size_t bytes_to_write = this->file_size_;
4129 size_t offset = 0;
4130 while (bytes_to_write > 0)
4131 {
4132 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4133 bytes_to_write);
4134 if (bytes_written == 0)
4135 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4136 else if (bytes_written < 0)
4137 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4138 else
4139 {
4140 bytes_to_write -= bytes_written;
4141 offset += bytes_written;
4142 }
4143 }
4144 }
4145 this->unmap();
4146
4147 // We don't close stdout or stderr
4148 if (this->o_ != STDOUT_FILENO
4149 && this->o_ != STDERR_FILENO
4150 && !this->is_temporary_)
4151 if (::close(this->o_) < 0)
4152 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4153 this->o_ = -1;
4154 }
4155
4156 // Instantiate the templates we need. We could use the configure
4157 // script to restrict this to only the ones for implemented targets.
4158
4159 #ifdef HAVE_TARGET_32_LITTLE
4160 template
4161 off_t
4162 Output_section::add_input_section<32, false>(
4163 Sized_relobj<32, false>* object,
4164 unsigned int shndx,
4165 const char* secname,
4166 const elfcpp::Shdr<32, false>& shdr,
4167 unsigned int reloc_shndx,
4168 bool have_sections_script);
4169 #endif
4170
4171 #ifdef HAVE_TARGET_32_BIG
4172 template
4173 off_t
4174 Output_section::add_input_section<32, true>(
4175 Sized_relobj<32, true>* object,
4176 unsigned int shndx,
4177 const char* secname,
4178 const elfcpp::Shdr<32, true>& shdr,
4179 unsigned int reloc_shndx,
4180 bool have_sections_script);
4181 #endif
4182
4183 #ifdef HAVE_TARGET_64_LITTLE
4184 template
4185 off_t
4186 Output_section::add_input_section<64, false>(
4187 Sized_relobj<64, false>* object,
4188 unsigned int shndx,
4189 const char* secname,
4190 const elfcpp::Shdr<64, false>& shdr,
4191 unsigned int reloc_shndx,
4192 bool have_sections_script);
4193 #endif
4194
4195 #ifdef HAVE_TARGET_64_BIG
4196 template
4197 off_t
4198 Output_section::add_input_section<64, true>(
4199 Sized_relobj<64, true>* object,
4200 unsigned int shndx,
4201 const char* secname,
4202 const elfcpp::Shdr<64, true>& shdr,
4203 unsigned int reloc_shndx,
4204 bool have_sections_script);
4205 #endif
4206
4207 #ifdef HAVE_TARGET_32_LITTLE
4208 template
4209 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4210 #endif
4211
4212 #ifdef HAVE_TARGET_32_BIG
4213 template
4214 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4215 #endif
4216
4217 #ifdef HAVE_TARGET_64_LITTLE
4218 template
4219 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4220 #endif
4221
4222 #ifdef HAVE_TARGET_64_BIG
4223 template
4224 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4225 #endif
4226
4227 #ifdef HAVE_TARGET_32_LITTLE
4228 template
4229 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4230 #endif
4231
4232 #ifdef HAVE_TARGET_32_BIG
4233 template
4234 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4235 #endif
4236
4237 #ifdef HAVE_TARGET_64_LITTLE
4238 template
4239 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4240 #endif
4241
4242 #ifdef HAVE_TARGET_64_BIG
4243 template
4244 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4245 #endif
4246
4247 #ifdef HAVE_TARGET_32_LITTLE
4248 template
4249 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4250 #endif
4251
4252 #ifdef HAVE_TARGET_32_BIG
4253 template
4254 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4255 #endif
4256
4257 #ifdef HAVE_TARGET_64_LITTLE
4258 template
4259 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4260 #endif
4261
4262 #ifdef HAVE_TARGET_64_BIG
4263 template
4264 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4265 #endif
4266
4267 #ifdef HAVE_TARGET_32_LITTLE
4268 template
4269 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4270 #endif
4271
4272 #ifdef HAVE_TARGET_32_BIG
4273 template
4274 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4275 #endif
4276
4277 #ifdef HAVE_TARGET_64_LITTLE
4278 template
4279 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4280 #endif
4281
4282 #ifdef HAVE_TARGET_64_BIG
4283 template
4284 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4285 #endif
4286
4287 #ifdef HAVE_TARGET_32_LITTLE
4288 template
4289 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4290 #endif
4291
4292 #ifdef HAVE_TARGET_32_BIG
4293 template
4294 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4295 #endif
4296
4297 #ifdef HAVE_TARGET_64_LITTLE
4298 template
4299 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4300 #endif
4301
4302 #ifdef HAVE_TARGET_64_BIG
4303 template
4304 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4305 #endif
4306
4307 #ifdef HAVE_TARGET_32_LITTLE
4308 template
4309 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4310 #endif
4311
4312 #ifdef HAVE_TARGET_32_BIG
4313 template
4314 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4315 #endif
4316
4317 #ifdef HAVE_TARGET_64_LITTLE
4318 template
4319 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4320 #endif
4321
4322 #ifdef HAVE_TARGET_64_BIG
4323 template
4324 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4325 #endif
4326
4327 #ifdef HAVE_TARGET_32_LITTLE
4328 template
4329 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4330 #endif
4331
4332 #ifdef HAVE_TARGET_32_BIG
4333 template
4334 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4335 #endif
4336
4337 #ifdef HAVE_TARGET_64_LITTLE
4338 template
4339 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4340 #endif
4341
4342 #ifdef HAVE_TARGET_64_BIG
4343 template
4344 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4345 #endif
4346
4347 #ifdef HAVE_TARGET_32_LITTLE
4348 template
4349 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4350 #endif
4351
4352 #ifdef HAVE_TARGET_32_BIG
4353 template
4354 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4355 #endif
4356
4357 #ifdef HAVE_TARGET_64_LITTLE
4358 template
4359 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4360 #endif
4361
4362 #ifdef HAVE_TARGET_64_BIG
4363 template
4364 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4365 #endif
4366
4367 #ifdef HAVE_TARGET_32_LITTLE
4368 template
4369 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4370 #endif
4371
4372 #ifdef HAVE_TARGET_32_BIG
4373 template
4374 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4375 #endif
4376
4377 #ifdef HAVE_TARGET_64_LITTLE
4378 template
4379 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4380 #endif
4381
4382 #ifdef HAVE_TARGET_64_BIG
4383 template
4384 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4385 #endif
4386
4387 #ifdef HAVE_TARGET_32_LITTLE
4388 template
4389 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4390 #endif
4391
4392 #ifdef HAVE_TARGET_32_BIG
4393 template
4394 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4395 #endif
4396
4397 #ifdef HAVE_TARGET_64_LITTLE
4398 template
4399 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4400 #endif
4401
4402 #ifdef HAVE_TARGET_64_BIG
4403 template
4404 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4405 #endif
4406
4407 #ifdef HAVE_TARGET_32_LITTLE
4408 template
4409 class Output_data_group<32, false>;
4410 #endif
4411
4412 #ifdef HAVE_TARGET_32_BIG
4413 template
4414 class Output_data_group<32, true>;
4415 #endif
4416
4417 #ifdef HAVE_TARGET_64_LITTLE
4418 template
4419 class Output_data_group<64, false>;
4420 #endif
4421
4422 #ifdef HAVE_TARGET_64_BIG
4423 template
4424 class Output_data_group<64, true>;
4425 #endif
4426
4427 #ifdef HAVE_TARGET_32_LITTLE
4428 template
4429 class Output_data_got<32, false>;
4430 #endif
4431
4432 #ifdef HAVE_TARGET_32_BIG
4433 template
4434 class Output_data_got<32, true>;
4435 #endif
4436
4437 #ifdef HAVE_TARGET_64_LITTLE
4438 template
4439 class Output_data_got<64, false>;
4440 #endif
4441
4442 #ifdef HAVE_TARGET_64_BIG
4443 template
4444 class Output_data_got<64, true>;
4445 #endif
4446
4447 } // End namespace gold.
This page took 0.120524 seconds and 4 git commands to generate.