PR gold/14570
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cstdlib>
27 #include <cstring>
28 #include <cerrno>
29 #include <fcntl.h>
30 #include <unistd.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33
34 #ifdef HAVE_SYS_MMAN_H
35 #include <sys/mman.h>
36 #endif
37
38 #include "libiberty.h"
39
40 #include "dwarf.h"
41 #include "parameters.h"
42 #include "object.h"
43 #include "symtab.h"
44 #include "reloc.h"
45 #include "merge.h"
46 #include "descriptors.h"
47 #include "layout.h"
48 #include "output.h"
49
50 // For systems without mmap support.
51 #ifndef HAVE_MMAP
52 # define mmap gold_mmap
53 # define munmap gold_munmap
54 # define mremap gold_mremap
55 # ifndef MAP_FAILED
56 # define MAP_FAILED (reinterpret_cast<void*>(-1))
57 # endif
58 # ifndef PROT_READ
59 # define PROT_READ 0
60 # endif
61 # ifndef PROT_WRITE
62 # define PROT_WRITE 0
63 # endif
64 # ifndef MAP_PRIVATE
65 # define MAP_PRIVATE 0
66 # endif
67 # ifndef MAP_ANONYMOUS
68 # define MAP_ANONYMOUS 0
69 # endif
70 # ifndef MAP_SHARED
71 # define MAP_SHARED 0
72 # endif
73
74 # ifndef ENOSYS
75 # define ENOSYS EINVAL
76 # endif
77
78 static void *
79 gold_mmap(void *, size_t, int, int, int, off_t)
80 {
81 errno = ENOSYS;
82 return MAP_FAILED;
83 }
84
85 static int
86 gold_munmap(void *, size_t)
87 {
88 errno = ENOSYS;
89 return -1;
90 }
91
92 static void *
93 gold_mremap(void *, size_t, size_t, int)
94 {
95 errno = ENOSYS;
96 return MAP_FAILED;
97 }
98
99 #endif
100
101 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
102 # define mremap gold_mremap
103 extern "C" void *gold_mremap(void *, size_t, size_t, int);
104 #endif
105
106 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
107 #ifndef MAP_ANONYMOUS
108 # define MAP_ANONYMOUS MAP_ANON
109 #endif
110
111 #ifndef MREMAP_MAYMOVE
112 # define MREMAP_MAYMOVE 1
113 #endif
114
115 // Mingw does not have S_ISLNK.
116 #ifndef S_ISLNK
117 # define S_ISLNK(mode) 0
118 #endif
119
120 namespace gold
121 {
122
123 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
124 // or the --no-posix-fallocate option is set, we try the fallocate
125 // system call directly. If that fails, we use ftruncate to set
126 // the file size and hope that there is enough disk space.
127
128 static int
129 gold_fallocate(int o, off_t offset, off_t len)
130 {
131 #ifdef HAVE_POSIX_FALLOCATE
132 if (parameters->options().posix_fallocate())
133 return ::posix_fallocate(o, offset, len);
134 #endif // defined(HAVE_POSIX_FALLOCATE)
135 #ifdef HAVE_FALLOCATE
136 if (::fallocate(o, 0, offset, len) == 0)
137 return 0;
138 #endif // defined(HAVE_FALLOCATE)
139 if (::ftruncate(o, offset + len) < 0)
140 return errno;
141 return 0;
142 }
143
144 // Output_data variables.
145
146 bool Output_data::allocated_sizes_are_fixed;
147
148 // Output_data methods.
149
150 Output_data::~Output_data()
151 {
152 }
153
154 // Return the default alignment for the target size.
155
156 uint64_t
157 Output_data::default_alignment()
158 {
159 return Output_data::default_alignment_for_size(
160 parameters->target().get_size());
161 }
162
163 // Return the default alignment for a size--32 or 64.
164
165 uint64_t
166 Output_data::default_alignment_for_size(int size)
167 {
168 if (size == 32)
169 return 4;
170 else if (size == 64)
171 return 8;
172 else
173 gold_unreachable();
174 }
175
176 // Output_section_header methods. This currently assumes that the
177 // segment and section lists are complete at construction time.
178
179 Output_section_headers::Output_section_headers(
180 const Layout* layout,
181 const Layout::Segment_list* segment_list,
182 const Layout::Section_list* section_list,
183 const Layout::Section_list* unattached_section_list,
184 const Stringpool* secnamepool,
185 const Output_section* shstrtab_section)
186 : layout_(layout),
187 segment_list_(segment_list),
188 section_list_(section_list),
189 unattached_section_list_(unattached_section_list),
190 secnamepool_(secnamepool),
191 shstrtab_section_(shstrtab_section)
192 {
193 }
194
195 // Compute the current data size.
196
197 off_t
198 Output_section_headers::do_size() const
199 {
200 // Count all the sections. Start with 1 for the null section.
201 off_t count = 1;
202 if (!parameters->options().relocatable())
203 {
204 for (Layout::Segment_list::const_iterator p =
205 this->segment_list_->begin();
206 p != this->segment_list_->end();
207 ++p)
208 if ((*p)->type() == elfcpp::PT_LOAD)
209 count += (*p)->output_section_count();
210 }
211 else
212 {
213 for (Layout::Section_list::const_iterator p =
214 this->section_list_->begin();
215 p != this->section_list_->end();
216 ++p)
217 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
218 ++count;
219 }
220 count += this->unattached_section_list_->size();
221
222 const int size = parameters->target().get_size();
223 int shdr_size;
224 if (size == 32)
225 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
226 else if (size == 64)
227 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
228 else
229 gold_unreachable();
230
231 return count * shdr_size;
232 }
233
234 // Write out the section headers.
235
236 void
237 Output_section_headers::do_write(Output_file* of)
238 {
239 switch (parameters->size_and_endianness())
240 {
241 #ifdef HAVE_TARGET_32_LITTLE
242 case Parameters::TARGET_32_LITTLE:
243 this->do_sized_write<32, false>(of);
244 break;
245 #endif
246 #ifdef HAVE_TARGET_32_BIG
247 case Parameters::TARGET_32_BIG:
248 this->do_sized_write<32, true>(of);
249 break;
250 #endif
251 #ifdef HAVE_TARGET_64_LITTLE
252 case Parameters::TARGET_64_LITTLE:
253 this->do_sized_write<64, false>(of);
254 break;
255 #endif
256 #ifdef HAVE_TARGET_64_BIG
257 case Parameters::TARGET_64_BIG:
258 this->do_sized_write<64, true>(of);
259 break;
260 #endif
261 default:
262 gold_unreachable();
263 }
264 }
265
266 template<int size, bool big_endian>
267 void
268 Output_section_headers::do_sized_write(Output_file* of)
269 {
270 off_t all_shdrs_size = this->data_size();
271 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
272
273 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
274 unsigned char* v = view;
275
276 {
277 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
278 oshdr.put_sh_name(0);
279 oshdr.put_sh_type(elfcpp::SHT_NULL);
280 oshdr.put_sh_flags(0);
281 oshdr.put_sh_addr(0);
282 oshdr.put_sh_offset(0);
283
284 size_t section_count = (this->data_size()
285 / elfcpp::Elf_sizes<size>::shdr_size);
286 if (section_count < elfcpp::SHN_LORESERVE)
287 oshdr.put_sh_size(0);
288 else
289 oshdr.put_sh_size(section_count);
290
291 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
292 if (shstrndx < elfcpp::SHN_LORESERVE)
293 oshdr.put_sh_link(0);
294 else
295 oshdr.put_sh_link(shstrndx);
296
297 size_t segment_count = this->segment_list_->size();
298 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
299
300 oshdr.put_sh_addralign(0);
301 oshdr.put_sh_entsize(0);
302 }
303
304 v += shdr_size;
305
306 unsigned int shndx = 1;
307 if (!parameters->options().relocatable())
308 {
309 for (Layout::Segment_list::const_iterator p =
310 this->segment_list_->begin();
311 p != this->segment_list_->end();
312 ++p)
313 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
314 this->secnamepool_,
315 v,
316 &shndx);
317 }
318 else
319 {
320 for (Layout::Section_list::const_iterator p =
321 this->section_list_->begin();
322 p != this->section_list_->end();
323 ++p)
324 {
325 // We do unallocated sections below, except that group
326 // sections have to come first.
327 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
328 && (*p)->type() != elfcpp::SHT_GROUP)
329 continue;
330 gold_assert(shndx == (*p)->out_shndx());
331 elfcpp::Shdr_write<size, big_endian> oshdr(v);
332 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
333 v += shdr_size;
334 ++shndx;
335 }
336 }
337
338 for (Layout::Section_list::const_iterator p =
339 this->unattached_section_list_->begin();
340 p != this->unattached_section_list_->end();
341 ++p)
342 {
343 // For a relocatable link, we did unallocated group sections
344 // above, since they have to come first.
345 if ((*p)->type() == elfcpp::SHT_GROUP
346 && parameters->options().relocatable())
347 continue;
348 gold_assert(shndx == (*p)->out_shndx());
349 elfcpp::Shdr_write<size, big_endian> oshdr(v);
350 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
351 v += shdr_size;
352 ++shndx;
353 }
354
355 of->write_output_view(this->offset(), all_shdrs_size, view);
356 }
357
358 // Output_segment_header methods.
359
360 Output_segment_headers::Output_segment_headers(
361 const Layout::Segment_list& segment_list)
362 : segment_list_(segment_list)
363 {
364 this->set_current_data_size_for_child(this->do_size());
365 }
366
367 void
368 Output_segment_headers::do_write(Output_file* of)
369 {
370 switch (parameters->size_and_endianness())
371 {
372 #ifdef HAVE_TARGET_32_LITTLE
373 case Parameters::TARGET_32_LITTLE:
374 this->do_sized_write<32, false>(of);
375 break;
376 #endif
377 #ifdef HAVE_TARGET_32_BIG
378 case Parameters::TARGET_32_BIG:
379 this->do_sized_write<32, true>(of);
380 break;
381 #endif
382 #ifdef HAVE_TARGET_64_LITTLE
383 case Parameters::TARGET_64_LITTLE:
384 this->do_sized_write<64, false>(of);
385 break;
386 #endif
387 #ifdef HAVE_TARGET_64_BIG
388 case Parameters::TARGET_64_BIG:
389 this->do_sized_write<64, true>(of);
390 break;
391 #endif
392 default:
393 gold_unreachable();
394 }
395 }
396
397 template<int size, bool big_endian>
398 void
399 Output_segment_headers::do_sized_write(Output_file* of)
400 {
401 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
402 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
403 gold_assert(all_phdrs_size == this->data_size());
404 unsigned char* view = of->get_output_view(this->offset(),
405 all_phdrs_size);
406 unsigned char* v = view;
407 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
408 p != this->segment_list_.end();
409 ++p)
410 {
411 elfcpp::Phdr_write<size, big_endian> ophdr(v);
412 (*p)->write_header(&ophdr);
413 v += phdr_size;
414 }
415
416 gold_assert(v - view == all_phdrs_size);
417
418 of->write_output_view(this->offset(), all_phdrs_size, view);
419 }
420
421 off_t
422 Output_segment_headers::do_size() const
423 {
424 const int size = parameters->target().get_size();
425 int phdr_size;
426 if (size == 32)
427 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
428 else if (size == 64)
429 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
430 else
431 gold_unreachable();
432
433 return this->segment_list_.size() * phdr_size;
434 }
435
436 // Output_file_header methods.
437
438 Output_file_header::Output_file_header(const Target* target,
439 const Symbol_table* symtab,
440 const Output_segment_headers* osh)
441 : target_(target),
442 symtab_(symtab),
443 segment_header_(osh),
444 section_header_(NULL),
445 shstrtab_(NULL)
446 {
447 this->set_data_size(this->do_size());
448 }
449
450 // Set the section table information for a file header.
451
452 void
453 Output_file_header::set_section_info(const Output_section_headers* shdrs,
454 const Output_section* shstrtab)
455 {
456 this->section_header_ = shdrs;
457 this->shstrtab_ = shstrtab;
458 }
459
460 // Write out the file header.
461
462 void
463 Output_file_header::do_write(Output_file* of)
464 {
465 gold_assert(this->offset() == 0);
466
467 switch (parameters->size_and_endianness())
468 {
469 #ifdef HAVE_TARGET_32_LITTLE
470 case Parameters::TARGET_32_LITTLE:
471 this->do_sized_write<32, false>(of);
472 break;
473 #endif
474 #ifdef HAVE_TARGET_32_BIG
475 case Parameters::TARGET_32_BIG:
476 this->do_sized_write<32, true>(of);
477 break;
478 #endif
479 #ifdef HAVE_TARGET_64_LITTLE
480 case Parameters::TARGET_64_LITTLE:
481 this->do_sized_write<64, false>(of);
482 break;
483 #endif
484 #ifdef HAVE_TARGET_64_BIG
485 case Parameters::TARGET_64_BIG:
486 this->do_sized_write<64, true>(of);
487 break;
488 #endif
489 default:
490 gold_unreachable();
491 }
492 }
493
494 // Write out the file header with appropriate size and endianness.
495
496 template<int size, bool big_endian>
497 void
498 Output_file_header::do_sized_write(Output_file* of)
499 {
500 gold_assert(this->offset() == 0);
501
502 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
503 unsigned char* view = of->get_output_view(0, ehdr_size);
504 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
505
506 unsigned char e_ident[elfcpp::EI_NIDENT];
507 memset(e_ident, 0, elfcpp::EI_NIDENT);
508 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
509 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
510 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
511 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
512 if (size == 32)
513 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
514 else if (size == 64)
515 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
516 else
517 gold_unreachable();
518 e_ident[elfcpp::EI_DATA] = (big_endian
519 ? elfcpp::ELFDATA2MSB
520 : elfcpp::ELFDATA2LSB);
521 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
522 oehdr.put_e_ident(e_ident);
523
524 elfcpp::ET e_type;
525 if (parameters->options().relocatable())
526 e_type = elfcpp::ET_REL;
527 else if (parameters->options().output_is_position_independent())
528 e_type = elfcpp::ET_DYN;
529 else
530 e_type = elfcpp::ET_EXEC;
531 oehdr.put_e_type(e_type);
532
533 oehdr.put_e_machine(this->target_->machine_code());
534 oehdr.put_e_version(elfcpp::EV_CURRENT);
535
536 oehdr.put_e_entry(this->entry<size>());
537
538 if (this->segment_header_ == NULL)
539 oehdr.put_e_phoff(0);
540 else
541 oehdr.put_e_phoff(this->segment_header_->offset());
542
543 oehdr.put_e_shoff(this->section_header_->offset());
544 oehdr.put_e_flags(this->target_->processor_specific_flags());
545 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
546
547 if (this->segment_header_ == NULL)
548 {
549 oehdr.put_e_phentsize(0);
550 oehdr.put_e_phnum(0);
551 }
552 else
553 {
554 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
555 size_t phnum = (this->segment_header_->data_size()
556 / elfcpp::Elf_sizes<size>::phdr_size);
557 if (phnum > elfcpp::PN_XNUM)
558 phnum = elfcpp::PN_XNUM;
559 oehdr.put_e_phnum(phnum);
560 }
561
562 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
563 size_t section_count = (this->section_header_->data_size()
564 / elfcpp::Elf_sizes<size>::shdr_size);
565
566 if (section_count < elfcpp::SHN_LORESERVE)
567 oehdr.put_e_shnum(this->section_header_->data_size()
568 / elfcpp::Elf_sizes<size>::shdr_size);
569 else
570 oehdr.put_e_shnum(0);
571
572 unsigned int shstrndx = this->shstrtab_->out_shndx();
573 if (shstrndx < elfcpp::SHN_LORESERVE)
574 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
575 else
576 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
577
578 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
579 // the e_ident field.
580 parameters->target().adjust_elf_header(view, ehdr_size);
581
582 of->write_output_view(0, ehdr_size, view);
583 }
584
585 // Return the value to use for the entry address.
586
587 template<int size>
588 typename elfcpp::Elf_types<size>::Elf_Addr
589 Output_file_header::entry()
590 {
591 const bool should_issue_warning = (parameters->options().entry() != NULL
592 && !parameters->options().relocatable()
593 && !parameters->options().shared());
594 const char* entry = parameters->entry();
595 Symbol* sym = this->symtab_->lookup(entry);
596
597 typename Sized_symbol<size>::Value_type v;
598 if (sym != NULL)
599 {
600 Sized_symbol<size>* ssym;
601 ssym = this->symtab_->get_sized_symbol<size>(sym);
602 if (!ssym->is_defined() && should_issue_warning)
603 gold_warning("entry symbol '%s' exists but is not defined", entry);
604 v = ssym->value();
605 }
606 else
607 {
608 // We couldn't find the entry symbol. See if we can parse it as
609 // a number. This supports, e.g., -e 0x1000.
610 char* endptr;
611 v = strtoull(entry, &endptr, 0);
612 if (*endptr != '\0')
613 {
614 if (should_issue_warning)
615 gold_warning("cannot find entry symbol '%s'", entry);
616 v = 0;
617 }
618 }
619
620 return v;
621 }
622
623 // Compute the current data size.
624
625 off_t
626 Output_file_header::do_size() const
627 {
628 const int size = parameters->target().get_size();
629 if (size == 32)
630 return elfcpp::Elf_sizes<32>::ehdr_size;
631 else if (size == 64)
632 return elfcpp::Elf_sizes<64>::ehdr_size;
633 else
634 gold_unreachable();
635 }
636
637 // Output_data_const methods.
638
639 void
640 Output_data_const::do_write(Output_file* of)
641 {
642 of->write(this->offset(), this->data_.data(), this->data_.size());
643 }
644
645 // Output_data_const_buffer methods.
646
647 void
648 Output_data_const_buffer::do_write(Output_file* of)
649 {
650 of->write(this->offset(), this->p_, this->data_size());
651 }
652
653 // Output_section_data methods.
654
655 // Record the output section, and set the entry size and such.
656
657 void
658 Output_section_data::set_output_section(Output_section* os)
659 {
660 gold_assert(this->output_section_ == NULL);
661 this->output_section_ = os;
662 this->do_adjust_output_section(os);
663 }
664
665 // Return the section index of the output section.
666
667 unsigned int
668 Output_section_data::do_out_shndx() const
669 {
670 gold_assert(this->output_section_ != NULL);
671 return this->output_section_->out_shndx();
672 }
673
674 // Set the alignment, which means we may need to update the alignment
675 // of the output section.
676
677 void
678 Output_section_data::set_addralign(uint64_t addralign)
679 {
680 this->addralign_ = addralign;
681 if (this->output_section_ != NULL
682 && this->output_section_->addralign() < addralign)
683 this->output_section_->set_addralign(addralign);
684 }
685
686 // Output_data_strtab methods.
687
688 // Set the final data size.
689
690 void
691 Output_data_strtab::set_final_data_size()
692 {
693 this->strtab_->set_string_offsets();
694 this->set_data_size(this->strtab_->get_strtab_size());
695 }
696
697 // Write out a string table.
698
699 void
700 Output_data_strtab::do_write(Output_file* of)
701 {
702 this->strtab_->write(of, this->offset());
703 }
704
705 // Output_reloc methods.
706
707 // A reloc against a global symbol.
708
709 template<bool dynamic, int size, bool big_endian>
710 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
711 Symbol* gsym,
712 unsigned int type,
713 Output_data* od,
714 Address address,
715 bool is_relative,
716 bool is_symbolless,
717 bool use_plt_offset)
718 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
719 is_relative_(is_relative), is_symbolless_(is_symbolless),
720 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
721 {
722 // this->type_ is a bitfield; make sure TYPE fits.
723 gold_assert(this->type_ == type);
724 this->u1_.gsym = gsym;
725 this->u2_.od = od;
726 if (dynamic)
727 this->set_needs_dynsym_index();
728 }
729
730 template<bool dynamic, int size, bool big_endian>
731 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Symbol* gsym,
733 unsigned int type,
734 Sized_relobj<size, big_endian>* relobj,
735 unsigned int shndx,
736 Address address,
737 bool is_relative,
738 bool is_symbolless,
739 bool use_plt_offset)
740 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
741 is_relative_(is_relative), is_symbolless_(is_symbolless),
742 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
743 {
744 gold_assert(shndx != INVALID_CODE);
745 // this->type_ is a bitfield; make sure TYPE fits.
746 gold_assert(this->type_ == type);
747 this->u1_.gsym = gsym;
748 this->u2_.relobj = relobj;
749 if (dynamic)
750 this->set_needs_dynsym_index();
751 }
752
753 // A reloc against a local symbol.
754
755 template<bool dynamic, int size, bool big_endian>
756 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
757 Sized_relobj<size, big_endian>* relobj,
758 unsigned int local_sym_index,
759 unsigned int type,
760 Output_data* od,
761 Address address,
762 bool is_relative,
763 bool is_symbolless,
764 bool is_section_symbol,
765 bool use_plt_offset)
766 : address_(address), local_sym_index_(local_sym_index), type_(type),
767 is_relative_(is_relative), is_symbolless_(is_symbolless),
768 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
769 shndx_(INVALID_CODE)
770 {
771 gold_assert(local_sym_index != GSYM_CODE
772 && local_sym_index != INVALID_CODE);
773 // this->type_ is a bitfield; make sure TYPE fits.
774 gold_assert(this->type_ == type);
775 this->u1_.relobj = relobj;
776 this->u2_.od = od;
777 if (dynamic)
778 this->set_needs_dynsym_index();
779 }
780
781 template<bool dynamic, int size, bool big_endian>
782 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
783 Sized_relobj<size, big_endian>* relobj,
784 unsigned int local_sym_index,
785 unsigned int type,
786 unsigned int shndx,
787 Address address,
788 bool is_relative,
789 bool is_symbolless,
790 bool is_section_symbol,
791 bool use_plt_offset)
792 : address_(address), local_sym_index_(local_sym_index), type_(type),
793 is_relative_(is_relative), is_symbolless_(is_symbolless),
794 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
795 shndx_(shndx)
796 {
797 gold_assert(local_sym_index != GSYM_CODE
798 && local_sym_index != INVALID_CODE);
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = relobj;
803 this->u2_.relobj = relobj;
804 if (dynamic)
805 this->set_needs_dynsym_index();
806 }
807
808 // A reloc against the STT_SECTION symbol of an output section.
809
810 template<bool dynamic, int size, bool big_endian>
811 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
812 Output_section* os,
813 unsigned int type,
814 Output_data* od,
815 Address address,
816 bool is_relative)
817 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
818 is_relative_(is_relative), is_symbolless_(is_relative),
819 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
820 {
821 // this->type_ is a bitfield; make sure TYPE fits.
822 gold_assert(this->type_ == type);
823 this->u1_.os = os;
824 this->u2_.od = od;
825 if (dynamic)
826 this->set_needs_dynsym_index();
827 else
828 os->set_needs_symtab_index();
829 }
830
831 template<bool dynamic, int size, bool big_endian>
832 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
833 Output_section* os,
834 unsigned int type,
835 Sized_relobj<size, big_endian>* relobj,
836 unsigned int shndx,
837 Address address,
838 bool is_relative)
839 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
840 is_relative_(is_relative), is_symbolless_(is_relative),
841 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
842 {
843 gold_assert(shndx != INVALID_CODE);
844 // this->type_ is a bitfield; make sure TYPE fits.
845 gold_assert(this->type_ == type);
846 this->u1_.os = os;
847 this->u2_.relobj = relobj;
848 if (dynamic)
849 this->set_needs_dynsym_index();
850 else
851 os->set_needs_symtab_index();
852 }
853
854 // An absolute relocation.
855
856 template<bool dynamic, int size, bool big_endian>
857 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
858 unsigned int type,
859 Output_data* od,
860 Address address)
861 : address_(address), local_sym_index_(0), type_(type),
862 is_relative_(false), is_symbolless_(false),
863 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
864 {
865 // this->type_ is a bitfield; make sure TYPE fits.
866 gold_assert(this->type_ == type);
867 this->u1_.relobj = NULL;
868 this->u2_.od = od;
869 }
870
871 template<bool dynamic, int size, bool big_endian>
872 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
873 unsigned int type,
874 Sized_relobj<size, big_endian>* relobj,
875 unsigned int shndx,
876 Address address)
877 : address_(address), local_sym_index_(0), type_(type),
878 is_relative_(false), is_symbolless_(false),
879 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
880 {
881 gold_assert(shndx != INVALID_CODE);
882 // this->type_ is a bitfield; make sure TYPE fits.
883 gold_assert(this->type_ == type);
884 this->u1_.relobj = NULL;
885 this->u2_.relobj = relobj;
886 }
887
888 // A target specific relocation.
889
890 template<bool dynamic, int size, bool big_endian>
891 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
892 unsigned int type,
893 void* arg,
894 Output_data* od,
895 Address address)
896 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
897 is_relative_(false), is_symbolless_(false),
898 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
899 {
900 // this->type_ is a bitfield; make sure TYPE fits.
901 gold_assert(this->type_ == type);
902 this->u1_.arg = arg;
903 this->u2_.od = od;
904 }
905
906 template<bool dynamic, int size, bool big_endian>
907 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
908 unsigned int type,
909 void* arg,
910 Sized_relobj<size, big_endian>* relobj,
911 unsigned int shndx,
912 Address address)
913 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
914 is_relative_(false), is_symbolless_(false),
915 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
916 {
917 gold_assert(shndx != INVALID_CODE);
918 // this->type_ is a bitfield; make sure TYPE fits.
919 gold_assert(this->type_ == type);
920 this->u1_.arg = arg;
921 this->u2_.relobj = relobj;
922 }
923
924 // Record that we need a dynamic symbol index for this relocation.
925
926 template<bool dynamic, int size, bool big_endian>
927 void
928 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
929 set_needs_dynsym_index()
930 {
931 if (this->is_symbolless_)
932 return;
933 switch (this->local_sym_index_)
934 {
935 case INVALID_CODE:
936 gold_unreachable();
937
938 case GSYM_CODE:
939 this->u1_.gsym->set_needs_dynsym_entry();
940 break;
941
942 case SECTION_CODE:
943 this->u1_.os->set_needs_dynsym_index();
944 break;
945
946 case TARGET_CODE:
947 // The target must take care of this if necessary.
948 break;
949
950 case 0:
951 break;
952
953 default:
954 {
955 const unsigned int lsi = this->local_sym_index_;
956 Sized_relobj_file<size, big_endian>* relobj =
957 this->u1_.relobj->sized_relobj();
958 gold_assert(relobj != NULL);
959 if (!this->is_section_symbol_)
960 relobj->set_needs_output_dynsym_entry(lsi);
961 else
962 relobj->output_section(lsi)->set_needs_dynsym_index();
963 }
964 break;
965 }
966 }
967
968 // Get the symbol index of a relocation.
969
970 template<bool dynamic, int size, bool big_endian>
971 unsigned int
972 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
973 const
974 {
975 unsigned int index;
976 if (this->is_symbolless_)
977 return 0;
978 switch (this->local_sym_index_)
979 {
980 case INVALID_CODE:
981 gold_unreachable();
982
983 case GSYM_CODE:
984 if (this->u1_.gsym == NULL)
985 index = 0;
986 else if (dynamic)
987 index = this->u1_.gsym->dynsym_index();
988 else
989 index = this->u1_.gsym->symtab_index();
990 break;
991
992 case SECTION_CODE:
993 if (dynamic)
994 index = this->u1_.os->dynsym_index();
995 else
996 index = this->u1_.os->symtab_index();
997 break;
998
999 case TARGET_CODE:
1000 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1001 this->type_);
1002 break;
1003
1004 case 0:
1005 // Relocations without symbols use a symbol index of 0.
1006 index = 0;
1007 break;
1008
1009 default:
1010 {
1011 const unsigned int lsi = this->local_sym_index_;
1012 Sized_relobj_file<size, big_endian>* relobj =
1013 this->u1_.relobj->sized_relobj();
1014 gold_assert(relobj != NULL);
1015 if (!this->is_section_symbol_)
1016 {
1017 if (dynamic)
1018 index = relobj->dynsym_index(lsi);
1019 else
1020 index = relobj->symtab_index(lsi);
1021 }
1022 else
1023 {
1024 Output_section* os = relobj->output_section(lsi);
1025 gold_assert(os != NULL);
1026 if (dynamic)
1027 index = os->dynsym_index();
1028 else
1029 index = os->symtab_index();
1030 }
1031 }
1032 break;
1033 }
1034 gold_assert(index != -1U);
1035 return index;
1036 }
1037
1038 // For a local section symbol, get the address of the offset ADDEND
1039 // within the input section.
1040
1041 template<bool dynamic, int size, bool big_endian>
1042 typename elfcpp::Elf_types<size>::Elf_Addr
1043 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1044 local_section_offset(Addend addend) const
1045 {
1046 gold_assert(this->local_sym_index_ != GSYM_CODE
1047 && this->local_sym_index_ != SECTION_CODE
1048 && this->local_sym_index_ != TARGET_CODE
1049 && this->local_sym_index_ != INVALID_CODE
1050 && this->local_sym_index_ != 0
1051 && this->is_section_symbol_);
1052 const unsigned int lsi = this->local_sym_index_;
1053 Output_section* os = this->u1_.relobj->output_section(lsi);
1054 gold_assert(os != NULL);
1055 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1056 if (offset != invalid_address)
1057 return offset + addend;
1058 // This is a merge section.
1059 Sized_relobj_file<size, big_endian>* relobj =
1060 this->u1_.relobj->sized_relobj();
1061 gold_assert(relobj != NULL);
1062 offset = os->output_address(relobj, lsi, addend);
1063 gold_assert(offset != invalid_address);
1064 return offset;
1065 }
1066
1067 // Get the output address of a relocation.
1068
1069 template<bool dynamic, int size, bool big_endian>
1070 typename elfcpp::Elf_types<size>::Elf_Addr
1071 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1072 {
1073 Address address = this->address_;
1074 if (this->shndx_ != INVALID_CODE)
1075 {
1076 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1077 gold_assert(os != NULL);
1078 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1079 if (off != invalid_address)
1080 address += os->address() + off;
1081 else
1082 {
1083 Sized_relobj_file<size, big_endian>* relobj =
1084 this->u2_.relobj->sized_relobj();
1085 gold_assert(relobj != NULL);
1086 address = os->output_address(relobj, this->shndx_, address);
1087 gold_assert(address != invalid_address);
1088 }
1089 }
1090 else if (this->u2_.od != NULL)
1091 address += this->u2_.od->address();
1092 return address;
1093 }
1094
1095 // Write out the offset and info fields of a Rel or Rela relocation
1096 // entry.
1097
1098 template<bool dynamic, int size, bool big_endian>
1099 template<typename Write_rel>
1100 void
1101 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1102 Write_rel* wr) const
1103 {
1104 wr->put_r_offset(this->get_address());
1105 unsigned int sym_index = this->get_symbol_index();
1106 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1107 }
1108
1109 // Write out a Rel relocation.
1110
1111 template<bool dynamic, int size, bool big_endian>
1112 void
1113 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1114 unsigned char* pov) const
1115 {
1116 elfcpp::Rel_write<size, big_endian> orel(pov);
1117 this->write_rel(&orel);
1118 }
1119
1120 // Get the value of the symbol referred to by a Rel relocation.
1121
1122 template<bool dynamic, int size, bool big_endian>
1123 typename elfcpp::Elf_types<size>::Elf_Addr
1124 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1125 Addend addend) const
1126 {
1127 if (this->local_sym_index_ == GSYM_CODE)
1128 {
1129 const Sized_symbol<size>* sym;
1130 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1131 if (this->use_plt_offset_ && sym->has_plt_offset())
1132 {
1133 uint64_t plt_address =
1134 parameters->target().plt_address_for_global(sym);
1135 return plt_address + sym->plt_offset();
1136 }
1137 else
1138 return sym->value() + addend;
1139 }
1140 if (this->local_sym_index_ == SECTION_CODE)
1141 {
1142 gold_assert(!this->use_plt_offset_);
1143 return this->u1_.os->address() + addend;
1144 }
1145 gold_assert(this->local_sym_index_ != TARGET_CODE
1146 && this->local_sym_index_ != INVALID_CODE
1147 && this->local_sym_index_ != 0
1148 && !this->is_section_symbol_);
1149 const unsigned int lsi = this->local_sym_index_;
1150 Sized_relobj_file<size, big_endian>* relobj =
1151 this->u1_.relobj->sized_relobj();
1152 gold_assert(relobj != NULL);
1153 if (this->use_plt_offset_)
1154 {
1155 uint64_t plt_address =
1156 parameters->target().plt_address_for_local(relobj, lsi);
1157 return plt_address + relobj->local_plt_offset(lsi);
1158 }
1159 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1160 return symval->value(relobj, addend);
1161 }
1162
1163 // Reloc comparison. This function sorts the dynamic relocs for the
1164 // benefit of the dynamic linker. First we sort all relative relocs
1165 // to the front. Among relative relocs, we sort by output address.
1166 // Among non-relative relocs, we sort by symbol index, then by output
1167 // address.
1168
1169 template<bool dynamic, int size, bool big_endian>
1170 int
1171 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1172 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1173 const
1174 {
1175 if (this->is_relative_)
1176 {
1177 if (!r2.is_relative_)
1178 return -1;
1179 // Otherwise sort by reloc address below.
1180 }
1181 else if (r2.is_relative_)
1182 return 1;
1183 else
1184 {
1185 unsigned int sym1 = this->get_symbol_index();
1186 unsigned int sym2 = r2.get_symbol_index();
1187 if (sym1 < sym2)
1188 return -1;
1189 else if (sym1 > sym2)
1190 return 1;
1191 // Otherwise sort by reloc address.
1192 }
1193
1194 section_offset_type addr1 = this->get_address();
1195 section_offset_type addr2 = r2.get_address();
1196 if (addr1 < addr2)
1197 return -1;
1198 else if (addr1 > addr2)
1199 return 1;
1200
1201 // Final tie breaker, in order to generate the same output on any
1202 // host: reloc type.
1203 unsigned int type1 = this->type_;
1204 unsigned int type2 = r2.type_;
1205 if (type1 < type2)
1206 return -1;
1207 else if (type1 > type2)
1208 return 1;
1209
1210 // These relocs appear to be exactly the same.
1211 return 0;
1212 }
1213
1214 // Write out a Rela relocation.
1215
1216 template<bool dynamic, int size, bool big_endian>
1217 void
1218 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1219 unsigned char* pov) const
1220 {
1221 elfcpp::Rela_write<size, big_endian> orel(pov);
1222 this->rel_.write_rel(&orel);
1223 Addend addend = this->addend_;
1224 if (this->rel_.is_target_specific())
1225 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1226 this->rel_.type(), addend);
1227 else if (this->rel_.is_symbolless())
1228 addend = this->rel_.symbol_value(addend);
1229 else if (this->rel_.is_local_section_symbol())
1230 addend = this->rel_.local_section_offset(addend);
1231 orel.put_r_addend(addend);
1232 }
1233
1234 // Output_data_reloc_base methods.
1235
1236 // Adjust the output section.
1237
1238 template<int sh_type, bool dynamic, int size, bool big_endian>
1239 void
1240 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1241 ::do_adjust_output_section(Output_section* os)
1242 {
1243 if (sh_type == elfcpp::SHT_REL)
1244 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1245 else if (sh_type == elfcpp::SHT_RELA)
1246 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1247 else
1248 gold_unreachable();
1249
1250 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1251 // static link. The backends will generate a dynamic reloc section
1252 // to hold this. In that case we don't want to link to the dynsym
1253 // section, because there isn't one.
1254 if (!dynamic)
1255 os->set_should_link_to_symtab();
1256 else if (parameters->doing_static_link())
1257 ;
1258 else
1259 os->set_should_link_to_dynsym();
1260 }
1261
1262 // Write out relocation data.
1263
1264 template<int sh_type, bool dynamic, int size, bool big_endian>
1265 void
1266 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1267 Output_file* of)
1268 {
1269 const off_t off = this->offset();
1270 const off_t oview_size = this->data_size();
1271 unsigned char* const oview = of->get_output_view(off, oview_size);
1272
1273 if (this->sort_relocs())
1274 {
1275 gold_assert(dynamic);
1276 std::sort(this->relocs_.begin(), this->relocs_.end(),
1277 Sort_relocs_comparison());
1278 }
1279
1280 unsigned char* pov = oview;
1281 for (typename Relocs::const_iterator p = this->relocs_.begin();
1282 p != this->relocs_.end();
1283 ++p)
1284 {
1285 p->write(pov);
1286 pov += reloc_size;
1287 }
1288
1289 gold_assert(pov - oview == oview_size);
1290
1291 of->write_output_view(off, oview_size, oview);
1292
1293 // We no longer need the relocation entries.
1294 this->relocs_.clear();
1295 }
1296
1297 // Class Output_relocatable_relocs.
1298
1299 template<int sh_type, int size, bool big_endian>
1300 void
1301 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1302 {
1303 this->set_data_size(this->rr_->output_reloc_count()
1304 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1305 }
1306
1307 // class Output_data_group.
1308
1309 template<int size, bool big_endian>
1310 Output_data_group<size, big_endian>::Output_data_group(
1311 Sized_relobj_file<size, big_endian>* relobj,
1312 section_size_type entry_count,
1313 elfcpp::Elf_Word flags,
1314 std::vector<unsigned int>* input_shndxes)
1315 : Output_section_data(entry_count * 4, 4, false),
1316 relobj_(relobj),
1317 flags_(flags)
1318 {
1319 this->input_shndxes_.swap(*input_shndxes);
1320 }
1321
1322 // Write out the section group, which means translating the section
1323 // indexes to apply to the output file.
1324
1325 template<int size, bool big_endian>
1326 void
1327 Output_data_group<size, big_endian>::do_write(Output_file* of)
1328 {
1329 const off_t off = this->offset();
1330 const section_size_type oview_size =
1331 convert_to_section_size_type(this->data_size());
1332 unsigned char* const oview = of->get_output_view(off, oview_size);
1333
1334 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1335 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1336 ++contents;
1337
1338 for (std::vector<unsigned int>::const_iterator p =
1339 this->input_shndxes_.begin();
1340 p != this->input_shndxes_.end();
1341 ++p, ++contents)
1342 {
1343 Output_section* os = this->relobj_->output_section(*p);
1344
1345 unsigned int output_shndx;
1346 if (os != NULL)
1347 output_shndx = os->out_shndx();
1348 else
1349 {
1350 this->relobj_->error(_("section group retained but "
1351 "group element discarded"));
1352 output_shndx = 0;
1353 }
1354
1355 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1356 }
1357
1358 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1359 gold_assert(wrote == oview_size);
1360
1361 of->write_output_view(off, oview_size, oview);
1362
1363 // We no longer need this information.
1364 this->input_shndxes_.clear();
1365 }
1366
1367 // Output_data_got::Got_entry methods.
1368
1369 // Write out the entry.
1370
1371 template<int got_size, bool big_endian>
1372 void
1373 Output_data_got<got_size, big_endian>::Got_entry::write(
1374 unsigned int got_indx,
1375 unsigned char* pov) const
1376 {
1377 Valtype val = 0;
1378
1379 switch (this->local_sym_index_)
1380 {
1381 case GSYM_CODE:
1382 {
1383 // If the symbol is resolved locally, we need to write out the
1384 // link-time value, which will be relocated dynamically by a
1385 // RELATIVE relocation.
1386 Symbol* gsym = this->u_.gsym;
1387 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1388 val = (parameters->target().plt_address_for_global(gsym)
1389 + gsym->plt_offset());
1390 else
1391 {
1392 switch (parameters->size_and_endianness())
1393 {
1394 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1395 case Parameters::TARGET_32_LITTLE:
1396 case Parameters::TARGET_32_BIG:
1397 {
1398 // This cast is ugly. We don't want to put a
1399 // virtual method in Symbol, because we want Symbol
1400 // to be as small as possible.
1401 Sized_symbol<32>::Value_type v;
1402 v = static_cast<Sized_symbol<32>*>(gsym)->value();
1403 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1404 }
1405 break;
1406 #endif
1407 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1408 case Parameters::TARGET_64_LITTLE:
1409 case Parameters::TARGET_64_BIG:
1410 {
1411 Sized_symbol<64>::Value_type v;
1412 v = static_cast<Sized_symbol<64>*>(gsym)->value();
1413 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1414 }
1415 break;
1416 #endif
1417 default:
1418 gold_unreachable();
1419 }
1420 if (this->use_plt_or_tls_offset_
1421 && gsym->type() == elfcpp::STT_TLS)
1422 val += parameters->target().tls_offset_for_global(gsym,
1423 got_indx);
1424 }
1425 }
1426 break;
1427
1428 case CONSTANT_CODE:
1429 val = this->u_.constant;
1430 break;
1431
1432 case RESERVED_CODE:
1433 // If we're doing an incremental update, don't touch this GOT entry.
1434 if (parameters->incremental_update())
1435 return;
1436 val = this->u_.constant;
1437 break;
1438
1439 default:
1440 {
1441 const Relobj* object = this->u_.object;
1442 const unsigned int lsi = this->local_sym_index_;
1443 bool is_tls = object->local_is_tls(lsi);
1444 if (this->use_plt_or_tls_offset_ && !is_tls)
1445 {
1446 uint64_t plt_address =
1447 parameters->target().plt_address_for_local(object, lsi);
1448 val = plt_address + object->local_plt_offset(lsi);
1449 }
1450 else
1451 {
1452 uint64_t lval = object->local_symbol_value(lsi, 0);
1453 val = convert_types<Valtype, uint64_t>(lval);
1454 if (this->use_plt_or_tls_offset_ && is_tls)
1455 val += parameters->target().tls_offset_for_local(object, lsi,
1456 got_indx);
1457 }
1458 }
1459 break;
1460 }
1461
1462 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1463 }
1464
1465 // Output_data_got methods.
1466
1467 // Add an entry for a global symbol to the GOT. This returns true if
1468 // this is a new GOT entry, false if the symbol already had a GOT
1469 // entry.
1470
1471 template<int got_size, bool big_endian>
1472 bool
1473 Output_data_got<got_size, big_endian>::add_global(
1474 Symbol* gsym,
1475 unsigned int got_type)
1476 {
1477 if (gsym->has_got_offset(got_type))
1478 return false;
1479
1480 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1481 gsym->set_got_offset(got_type, got_offset);
1482 return true;
1483 }
1484
1485 // Like add_global, but use the PLT offset.
1486
1487 template<int got_size, bool big_endian>
1488 bool
1489 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1490 unsigned int got_type)
1491 {
1492 if (gsym->has_got_offset(got_type))
1493 return false;
1494
1495 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1496 gsym->set_got_offset(got_type, got_offset);
1497 return true;
1498 }
1499
1500 // Add an entry for a global symbol to the GOT, and add a dynamic
1501 // relocation of type R_TYPE for the GOT entry.
1502
1503 template<int got_size, bool big_endian>
1504 void
1505 Output_data_got<got_size, big_endian>::add_global_with_rel(
1506 Symbol* gsym,
1507 unsigned int got_type,
1508 Output_data_reloc_generic* rel_dyn,
1509 unsigned int r_type)
1510 {
1511 if (gsym->has_got_offset(got_type))
1512 return;
1513
1514 unsigned int got_offset = this->add_got_entry(Got_entry());
1515 gsym->set_got_offset(got_type, got_offset);
1516 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1517 }
1518
1519 // Add a pair of entries for a global symbol to the GOT, and add
1520 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1521 // If R_TYPE_2 == 0, add the second entry with no relocation.
1522 template<int got_size, bool big_endian>
1523 void
1524 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1525 Symbol* gsym,
1526 unsigned int got_type,
1527 Output_data_reloc_generic* rel_dyn,
1528 unsigned int r_type_1,
1529 unsigned int r_type_2)
1530 {
1531 if (gsym->has_got_offset(got_type))
1532 return;
1533
1534 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1535 gsym->set_got_offset(got_type, got_offset);
1536 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1537
1538 if (r_type_2 != 0)
1539 rel_dyn->add_global_generic(gsym, r_type_2, this,
1540 got_offset + got_size / 8, 0);
1541 }
1542
1543 // Add an entry for a local symbol to the GOT. This returns true if
1544 // this is a new GOT entry, false if the symbol already has a GOT
1545 // entry.
1546
1547 template<int got_size, bool big_endian>
1548 bool
1549 Output_data_got<got_size, big_endian>::add_local(
1550 Relobj* object,
1551 unsigned int symndx,
1552 unsigned int got_type)
1553 {
1554 if (object->local_has_got_offset(symndx, got_type))
1555 return false;
1556
1557 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1558 false));
1559 object->set_local_got_offset(symndx, got_type, got_offset);
1560 return true;
1561 }
1562
1563 // Like add_local, but use the PLT offset.
1564
1565 template<int got_size, bool big_endian>
1566 bool
1567 Output_data_got<got_size, big_endian>::add_local_plt(
1568 Relobj* object,
1569 unsigned int symndx,
1570 unsigned int got_type)
1571 {
1572 if (object->local_has_got_offset(symndx, got_type))
1573 return false;
1574
1575 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1576 true));
1577 object->set_local_got_offset(symndx, got_type, got_offset);
1578 return true;
1579 }
1580
1581 // Add an entry for a local symbol to the GOT, and add a dynamic
1582 // relocation of type R_TYPE for the GOT entry.
1583
1584 template<int got_size, bool big_endian>
1585 void
1586 Output_data_got<got_size, big_endian>::add_local_with_rel(
1587 Relobj* object,
1588 unsigned int symndx,
1589 unsigned int got_type,
1590 Output_data_reloc_generic* rel_dyn,
1591 unsigned int r_type)
1592 {
1593 if (object->local_has_got_offset(symndx, got_type))
1594 return;
1595
1596 unsigned int got_offset = this->add_got_entry(Got_entry());
1597 object->set_local_got_offset(symndx, got_type, got_offset);
1598 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1599 }
1600
1601 // Add a pair of entries for a local symbol to the GOT, and add
1602 // a dynamic relocation of type R_TYPE using the section symbol of
1603 // the output section to which input section SHNDX maps, on the first.
1604 // The first got entry will have a value of zero, the second the
1605 // value of the local symbol.
1606 template<int got_size, bool big_endian>
1607 void
1608 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1609 Relobj* object,
1610 unsigned int symndx,
1611 unsigned int shndx,
1612 unsigned int got_type,
1613 Output_data_reloc_generic* rel_dyn,
1614 unsigned int r_type)
1615 {
1616 if (object->local_has_got_offset(symndx, got_type))
1617 return;
1618
1619 unsigned int got_offset =
1620 this->add_got_entry_pair(Got_entry(),
1621 Got_entry(object, symndx, false));
1622 object->set_local_got_offset(symndx, got_type, got_offset);
1623 Output_section* os = object->output_section(shndx);
1624 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1625 }
1626
1627 // Add a pair of entries for a local symbol to the GOT, and add
1628 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1629 // The first got entry will have a value of zero, the second the
1630 // value of the local symbol offset by Target::tls_offset_for_local.
1631 template<int got_size, bool big_endian>
1632 void
1633 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1634 Relobj* object,
1635 unsigned int symndx,
1636 unsigned int got_type,
1637 Output_data_reloc_generic* rel_dyn,
1638 unsigned int r_type)
1639 {
1640 if (object->local_has_got_offset(symndx, got_type))
1641 return;
1642
1643 unsigned int got_offset
1644 = this->add_got_entry_pair(Got_entry(),
1645 Got_entry(object, symndx, true));
1646 object->set_local_got_offset(symndx, got_type, got_offset);
1647 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1648 }
1649
1650 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1651
1652 template<int got_size, bool big_endian>
1653 void
1654 Output_data_got<got_size, big_endian>::reserve_local(
1655 unsigned int i,
1656 Relobj* object,
1657 unsigned int sym_index,
1658 unsigned int got_type)
1659 {
1660 this->do_reserve_slot(i);
1661 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1662 }
1663
1664 // Reserve a slot in the GOT for a global symbol.
1665
1666 template<int got_size, bool big_endian>
1667 void
1668 Output_data_got<got_size, big_endian>::reserve_global(
1669 unsigned int i,
1670 Symbol* gsym,
1671 unsigned int got_type)
1672 {
1673 this->do_reserve_slot(i);
1674 gsym->set_got_offset(got_type, this->got_offset(i));
1675 }
1676
1677 // Write out the GOT.
1678
1679 template<int got_size, bool big_endian>
1680 void
1681 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1682 {
1683 const int add = got_size / 8;
1684
1685 const off_t off = this->offset();
1686 const off_t oview_size = this->data_size();
1687 unsigned char* const oview = of->get_output_view(off, oview_size);
1688
1689 unsigned char* pov = oview;
1690 for (unsigned int i = 0; i < this->entries_.size(); ++i)
1691 {
1692 this->entries_[i].write(i, pov);
1693 pov += add;
1694 }
1695
1696 gold_assert(pov - oview == oview_size);
1697
1698 of->write_output_view(off, oview_size, oview);
1699
1700 // We no longer need the GOT entries.
1701 this->entries_.clear();
1702 }
1703
1704 // Create a new GOT entry and return its offset.
1705
1706 template<int got_size, bool big_endian>
1707 unsigned int
1708 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1709 {
1710 if (!this->is_data_size_valid())
1711 {
1712 this->entries_.push_back(got_entry);
1713 this->set_got_size();
1714 return this->last_got_offset();
1715 }
1716 else
1717 {
1718 // For an incremental update, find an available slot.
1719 off_t got_offset = this->free_list_.allocate(got_size / 8,
1720 got_size / 8, 0);
1721 if (got_offset == -1)
1722 gold_fallback(_("out of patch space (GOT);"
1723 " relink with --incremental-full"));
1724 unsigned int got_index = got_offset / (got_size / 8);
1725 gold_assert(got_index < this->entries_.size());
1726 this->entries_[got_index] = got_entry;
1727 return static_cast<unsigned int>(got_offset);
1728 }
1729 }
1730
1731 // Create a pair of new GOT entries and return the offset of the first.
1732
1733 template<int got_size, bool big_endian>
1734 unsigned int
1735 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1736 Got_entry got_entry_1,
1737 Got_entry got_entry_2)
1738 {
1739 if (!this->is_data_size_valid())
1740 {
1741 unsigned int got_offset;
1742 this->entries_.push_back(got_entry_1);
1743 got_offset = this->last_got_offset();
1744 this->entries_.push_back(got_entry_2);
1745 this->set_got_size();
1746 return got_offset;
1747 }
1748 else
1749 {
1750 // For an incremental update, find an available pair of slots.
1751 off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1752 got_size / 8, 0);
1753 if (got_offset == -1)
1754 gold_fallback(_("out of patch space (GOT);"
1755 " relink with --incremental-full"));
1756 unsigned int got_index = got_offset / (got_size / 8);
1757 gold_assert(got_index < this->entries_.size());
1758 this->entries_[got_index] = got_entry_1;
1759 this->entries_[got_index + 1] = got_entry_2;
1760 return static_cast<unsigned int>(got_offset);
1761 }
1762 }
1763
1764 // Replace GOT entry I with a new value.
1765
1766 template<int got_size, bool big_endian>
1767 void
1768 Output_data_got<got_size, big_endian>::replace_got_entry(
1769 unsigned int i,
1770 Got_entry got_entry)
1771 {
1772 gold_assert(i < this->entries_.size());
1773 this->entries_[i] = got_entry;
1774 }
1775
1776 // Output_data_dynamic::Dynamic_entry methods.
1777
1778 // Write out the entry.
1779
1780 template<int size, bool big_endian>
1781 void
1782 Output_data_dynamic::Dynamic_entry::write(
1783 unsigned char* pov,
1784 const Stringpool* pool) const
1785 {
1786 typename elfcpp::Elf_types<size>::Elf_WXword val;
1787 switch (this->offset_)
1788 {
1789 case DYNAMIC_NUMBER:
1790 val = this->u_.val;
1791 break;
1792
1793 case DYNAMIC_SECTION_SIZE:
1794 val = this->u_.od->data_size();
1795 if (this->od2 != NULL)
1796 val += this->od2->data_size();
1797 break;
1798
1799 case DYNAMIC_SYMBOL:
1800 {
1801 const Sized_symbol<size>* s =
1802 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1803 val = s->value();
1804 }
1805 break;
1806
1807 case DYNAMIC_STRING:
1808 val = pool->get_offset(this->u_.str);
1809 break;
1810
1811 default:
1812 val = this->u_.od->address() + this->offset_;
1813 break;
1814 }
1815
1816 elfcpp::Dyn_write<size, big_endian> dw(pov);
1817 dw.put_d_tag(this->tag_);
1818 dw.put_d_val(val);
1819 }
1820
1821 // Output_data_dynamic methods.
1822
1823 // Adjust the output section to set the entry size.
1824
1825 void
1826 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1827 {
1828 if (parameters->target().get_size() == 32)
1829 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1830 else if (parameters->target().get_size() == 64)
1831 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1832 else
1833 gold_unreachable();
1834 }
1835
1836 // Set the final data size.
1837
1838 void
1839 Output_data_dynamic::set_final_data_size()
1840 {
1841 // Add the terminating entry if it hasn't been added.
1842 // Because of relaxation, we can run this multiple times.
1843 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1844 {
1845 int extra = parameters->options().spare_dynamic_tags();
1846 for (int i = 0; i < extra; ++i)
1847 this->add_constant(elfcpp::DT_NULL, 0);
1848 this->add_constant(elfcpp::DT_NULL, 0);
1849 }
1850
1851 int dyn_size;
1852 if (parameters->target().get_size() == 32)
1853 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1854 else if (parameters->target().get_size() == 64)
1855 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1856 else
1857 gold_unreachable();
1858 this->set_data_size(this->entries_.size() * dyn_size);
1859 }
1860
1861 // Write out the dynamic entries.
1862
1863 void
1864 Output_data_dynamic::do_write(Output_file* of)
1865 {
1866 switch (parameters->size_and_endianness())
1867 {
1868 #ifdef HAVE_TARGET_32_LITTLE
1869 case Parameters::TARGET_32_LITTLE:
1870 this->sized_write<32, false>(of);
1871 break;
1872 #endif
1873 #ifdef HAVE_TARGET_32_BIG
1874 case Parameters::TARGET_32_BIG:
1875 this->sized_write<32, true>(of);
1876 break;
1877 #endif
1878 #ifdef HAVE_TARGET_64_LITTLE
1879 case Parameters::TARGET_64_LITTLE:
1880 this->sized_write<64, false>(of);
1881 break;
1882 #endif
1883 #ifdef HAVE_TARGET_64_BIG
1884 case Parameters::TARGET_64_BIG:
1885 this->sized_write<64, true>(of);
1886 break;
1887 #endif
1888 default:
1889 gold_unreachable();
1890 }
1891 }
1892
1893 template<int size, bool big_endian>
1894 void
1895 Output_data_dynamic::sized_write(Output_file* of)
1896 {
1897 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1898
1899 const off_t offset = this->offset();
1900 const off_t oview_size = this->data_size();
1901 unsigned char* const oview = of->get_output_view(offset, oview_size);
1902
1903 unsigned char* pov = oview;
1904 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1905 p != this->entries_.end();
1906 ++p)
1907 {
1908 p->write<size, big_endian>(pov, this->pool_);
1909 pov += dyn_size;
1910 }
1911
1912 gold_assert(pov - oview == oview_size);
1913
1914 of->write_output_view(offset, oview_size, oview);
1915
1916 // We no longer need the dynamic entries.
1917 this->entries_.clear();
1918 }
1919
1920 // Class Output_symtab_xindex.
1921
1922 void
1923 Output_symtab_xindex::do_write(Output_file* of)
1924 {
1925 const off_t offset = this->offset();
1926 const off_t oview_size = this->data_size();
1927 unsigned char* const oview = of->get_output_view(offset, oview_size);
1928
1929 memset(oview, 0, oview_size);
1930
1931 if (parameters->target().is_big_endian())
1932 this->endian_do_write<true>(oview);
1933 else
1934 this->endian_do_write<false>(oview);
1935
1936 of->write_output_view(offset, oview_size, oview);
1937
1938 // We no longer need the data.
1939 this->entries_.clear();
1940 }
1941
1942 template<bool big_endian>
1943 void
1944 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1945 {
1946 for (Xindex_entries::const_iterator p = this->entries_.begin();
1947 p != this->entries_.end();
1948 ++p)
1949 {
1950 unsigned int symndx = p->first;
1951 gold_assert(symndx * 4 < this->data_size());
1952 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1953 }
1954 }
1955
1956 // Output_fill_debug_info methods.
1957
1958 // Return the minimum size needed for a dummy compilation unit header.
1959
1960 size_t
1961 Output_fill_debug_info::do_minimum_hole_size() const
1962 {
1963 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1964 // address_size.
1965 const size_t len = 4 + 2 + 4 + 1;
1966 // For type units, add type_signature, type_offset.
1967 if (this->is_debug_types_)
1968 return len + 8 + 4;
1969 return len;
1970 }
1971
1972 // Write a dummy compilation unit header to fill a hole in the
1973 // .debug_info or .debug_types section.
1974
1975 void
1976 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1977 {
1978 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1979 static_cast<long>(off), static_cast<long>(len));
1980
1981 gold_assert(len >= this->do_minimum_hole_size());
1982
1983 unsigned char* const oview = of->get_output_view(off, len);
1984 unsigned char* pov = oview;
1985
1986 // Write header fields: unit_length, version, debug_abbrev_offset,
1987 // address_size.
1988 if (this->is_big_endian())
1989 {
1990 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1991 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1992 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1993 }
1994 else
1995 {
1996 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1997 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1998 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1999 }
2000 pov += 4 + 2 + 4;
2001 *pov++ = 4;
2002
2003 // For type units, the additional header fields -- type_signature,
2004 // type_offset -- can be filled with zeroes.
2005
2006 // Fill the remainder of the free space with zeroes. The first
2007 // zero should tell the consumer there are no DIEs to read in this
2008 // compilation unit.
2009 if (pov < oview + len)
2010 memset(pov, 0, oview + len - pov);
2011
2012 of->write_output_view(off, len, oview);
2013 }
2014
2015 // Output_fill_debug_line methods.
2016
2017 // Return the minimum size needed for a dummy line number program header.
2018
2019 size_t
2020 Output_fill_debug_line::do_minimum_hole_size() const
2021 {
2022 // Line number program header fields: unit_length, version, header_length,
2023 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2024 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2025 const size_t len = 4 + 2 + 4 + this->header_length;
2026 return len;
2027 }
2028
2029 // Write a dummy line number program header to fill a hole in the
2030 // .debug_line section.
2031
2032 void
2033 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2034 {
2035 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2036 static_cast<long>(off), static_cast<long>(len));
2037
2038 gold_assert(len >= this->do_minimum_hole_size());
2039
2040 unsigned char* const oview = of->get_output_view(off, len);
2041 unsigned char* pov = oview;
2042
2043 // Write header fields: unit_length, version, header_length,
2044 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2045 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2046 // We set the header_length field to cover the entire hole, so the
2047 // line number program is empty.
2048 if (this->is_big_endian())
2049 {
2050 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2051 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2052 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2053 }
2054 else
2055 {
2056 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2057 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2058 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2059 }
2060 pov += 4 + 2 + 4;
2061 *pov++ = 1; // minimum_instruction_length
2062 *pov++ = 0; // default_is_stmt
2063 *pov++ = 0; // line_base
2064 *pov++ = 5; // line_range
2065 *pov++ = 13; // opcode_base
2066 *pov++ = 0; // standard_opcode_lengths[1]
2067 *pov++ = 1; // standard_opcode_lengths[2]
2068 *pov++ = 1; // standard_opcode_lengths[3]
2069 *pov++ = 1; // standard_opcode_lengths[4]
2070 *pov++ = 1; // standard_opcode_lengths[5]
2071 *pov++ = 0; // standard_opcode_lengths[6]
2072 *pov++ = 0; // standard_opcode_lengths[7]
2073 *pov++ = 0; // standard_opcode_lengths[8]
2074 *pov++ = 1; // standard_opcode_lengths[9]
2075 *pov++ = 0; // standard_opcode_lengths[10]
2076 *pov++ = 0; // standard_opcode_lengths[11]
2077 *pov++ = 1; // standard_opcode_lengths[12]
2078 *pov++ = 0; // include_directories (empty)
2079 *pov++ = 0; // filenames (empty)
2080
2081 // Some consumers don't check the header_length field, and simply
2082 // start reading the line number program immediately following the
2083 // header. For those consumers, we fill the remainder of the free
2084 // space with DW_LNS_set_basic_block opcodes. These are effectively
2085 // no-ops: the resulting line table program will not create any rows.
2086 if (pov < oview + len)
2087 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2088
2089 of->write_output_view(off, len, oview);
2090 }
2091
2092 // Output_section::Input_section methods.
2093
2094 // Return the current data size. For an input section we store the size here.
2095 // For an Output_section_data, we have to ask it for the size.
2096
2097 off_t
2098 Output_section::Input_section::current_data_size() const
2099 {
2100 if (this->is_input_section())
2101 return this->u1_.data_size;
2102 else
2103 {
2104 this->u2_.posd->pre_finalize_data_size();
2105 return this->u2_.posd->current_data_size();
2106 }
2107 }
2108
2109 // Return the data size. For an input section we store the size here.
2110 // For an Output_section_data, we have to ask it for the size.
2111
2112 off_t
2113 Output_section::Input_section::data_size() const
2114 {
2115 if (this->is_input_section())
2116 return this->u1_.data_size;
2117 else
2118 return this->u2_.posd->data_size();
2119 }
2120
2121 // Return the object for an input section.
2122
2123 Relobj*
2124 Output_section::Input_section::relobj() const
2125 {
2126 if (this->is_input_section())
2127 return this->u2_.object;
2128 else if (this->is_merge_section())
2129 {
2130 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2131 return this->u2_.pomb->first_relobj();
2132 }
2133 else if (this->is_relaxed_input_section())
2134 return this->u2_.poris->relobj();
2135 else
2136 gold_unreachable();
2137 }
2138
2139 // Return the input section index for an input section.
2140
2141 unsigned int
2142 Output_section::Input_section::shndx() const
2143 {
2144 if (this->is_input_section())
2145 return this->shndx_;
2146 else if (this->is_merge_section())
2147 {
2148 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2149 return this->u2_.pomb->first_shndx();
2150 }
2151 else if (this->is_relaxed_input_section())
2152 return this->u2_.poris->shndx();
2153 else
2154 gold_unreachable();
2155 }
2156
2157 // Set the address and file offset.
2158
2159 void
2160 Output_section::Input_section::set_address_and_file_offset(
2161 uint64_t address,
2162 off_t file_offset,
2163 off_t section_file_offset)
2164 {
2165 if (this->is_input_section())
2166 this->u2_.object->set_section_offset(this->shndx_,
2167 file_offset - section_file_offset);
2168 else
2169 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2170 }
2171
2172 // Reset the address and file offset.
2173
2174 void
2175 Output_section::Input_section::reset_address_and_file_offset()
2176 {
2177 if (!this->is_input_section())
2178 this->u2_.posd->reset_address_and_file_offset();
2179 }
2180
2181 // Finalize the data size.
2182
2183 void
2184 Output_section::Input_section::finalize_data_size()
2185 {
2186 if (!this->is_input_section())
2187 this->u2_.posd->finalize_data_size();
2188 }
2189
2190 // Try to turn an input offset into an output offset. We want to
2191 // return the output offset relative to the start of this
2192 // Input_section in the output section.
2193
2194 inline bool
2195 Output_section::Input_section::output_offset(
2196 const Relobj* object,
2197 unsigned int shndx,
2198 section_offset_type offset,
2199 section_offset_type* poutput) const
2200 {
2201 if (!this->is_input_section())
2202 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2203 else
2204 {
2205 if (this->shndx_ != shndx || this->u2_.object != object)
2206 return false;
2207 *poutput = offset;
2208 return true;
2209 }
2210 }
2211
2212 // Return whether this is the merge section for the input section
2213 // SHNDX in OBJECT.
2214
2215 inline bool
2216 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2217 unsigned int shndx) const
2218 {
2219 if (this->is_input_section())
2220 return false;
2221 return this->u2_.posd->is_merge_section_for(object, shndx);
2222 }
2223
2224 // Write out the data. We don't have to do anything for an input
2225 // section--they are handled via Object::relocate--but this is where
2226 // we write out the data for an Output_section_data.
2227
2228 void
2229 Output_section::Input_section::write(Output_file* of)
2230 {
2231 if (!this->is_input_section())
2232 this->u2_.posd->write(of);
2233 }
2234
2235 // Write the data to a buffer. As for write(), we don't have to do
2236 // anything for an input section.
2237
2238 void
2239 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2240 {
2241 if (!this->is_input_section())
2242 this->u2_.posd->write_to_buffer(buffer);
2243 }
2244
2245 // Print to a map file.
2246
2247 void
2248 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2249 {
2250 switch (this->shndx_)
2251 {
2252 case OUTPUT_SECTION_CODE:
2253 case MERGE_DATA_SECTION_CODE:
2254 case MERGE_STRING_SECTION_CODE:
2255 this->u2_.posd->print_to_mapfile(mapfile);
2256 break;
2257
2258 case RELAXED_INPUT_SECTION_CODE:
2259 {
2260 Output_relaxed_input_section* relaxed_section =
2261 this->relaxed_input_section();
2262 mapfile->print_input_section(relaxed_section->relobj(),
2263 relaxed_section->shndx());
2264 }
2265 break;
2266 default:
2267 mapfile->print_input_section(this->u2_.object, this->shndx_);
2268 break;
2269 }
2270 }
2271
2272 // Output_section methods.
2273
2274 // Construct an Output_section. NAME will point into a Stringpool.
2275
2276 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2277 elfcpp::Elf_Xword flags)
2278 : name_(name),
2279 addralign_(0),
2280 entsize_(0),
2281 load_address_(0),
2282 link_section_(NULL),
2283 link_(0),
2284 info_section_(NULL),
2285 info_symndx_(NULL),
2286 info_(0),
2287 type_(type),
2288 flags_(flags),
2289 order_(ORDER_INVALID),
2290 out_shndx_(-1U),
2291 symtab_index_(0),
2292 dynsym_index_(0),
2293 input_sections_(),
2294 first_input_offset_(0),
2295 fills_(),
2296 postprocessing_buffer_(NULL),
2297 needs_symtab_index_(false),
2298 needs_dynsym_index_(false),
2299 should_link_to_symtab_(false),
2300 should_link_to_dynsym_(false),
2301 after_input_sections_(false),
2302 requires_postprocessing_(false),
2303 found_in_sections_clause_(false),
2304 has_load_address_(false),
2305 info_uses_section_index_(false),
2306 input_section_order_specified_(false),
2307 may_sort_attached_input_sections_(false),
2308 must_sort_attached_input_sections_(false),
2309 attached_input_sections_are_sorted_(false),
2310 is_relro_(false),
2311 is_small_section_(false),
2312 is_large_section_(false),
2313 generate_code_fills_at_write_(false),
2314 is_entsize_zero_(false),
2315 section_offsets_need_adjustment_(false),
2316 is_noload_(false),
2317 always_keeps_input_sections_(false),
2318 has_fixed_layout_(false),
2319 is_patch_space_allowed_(false),
2320 is_unique_segment_(false),
2321 tls_offset_(0),
2322 extra_segment_flags_(0),
2323 segment_alignment_(0),
2324 checkpoint_(NULL),
2325 lookup_maps_(new Output_section_lookup_maps),
2326 free_list_(),
2327 free_space_fill_(NULL),
2328 patch_space_(0)
2329 {
2330 // An unallocated section has no address. Forcing this means that
2331 // we don't need special treatment for symbols defined in debug
2332 // sections.
2333 if ((flags & elfcpp::SHF_ALLOC) == 0)
2334 this->set_address(0);
2335 }
2336
2337 Output_section::~Output_section()
2338 {
2339 delete this->checkpoint_;
2340 }
2341
2342 // Set the entry size.
2343
2344 void
2345 Output_section::set_entsize(uint64_t v)
2346 {
2347 if (this->is_entsize_zero_)
2348 ;
2349 else if (this->entsize_ == 0)
2350 this->entsize_ = v;
2351 else if (this->entsize_ != v)
2352 {
2353 this->entsize_ = 0;
2354 this->is_entsize_zero_ = 1;
2355 }
2356 }
2357
2358 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2359 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2360 // relocation section which applies to this section, or 0 if none, or
2361 // -1U if more than one. Return the offset of the input section
2362 // within the output section. Return -1 if the input section will
2363 // receive special handling. In the normal case we don't always keep
2364 // track of input sections for an Output_section. Instead, each
2365 // Object keeps track of the Output_section for each of its input
2366 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2367 // track of input sections here; this is used when SECTIONS appears in
2368 // a linker script.
2369
2370 template<int size, bool big_endian>
2371 off_t
2372 Output_section::add_input_section(Layout* layout,
2373 Sized_relobj_file<size, big_endian>* object,
2374 unsigned int shndx,
2375 const char* secname,
2376 const elfcpp::Shdr<size, big_endian>& shdr,
2377 unsigned int reloc_shndx,
2378 bool have_sections_script)
2379 {
2380 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2381 if ((addralign & (addralign - 1)) != 0)
2382 {
2383 object->error(_("invalid alignment %lu for section \"%s\""),
2384 static_cast<unsigned long>(addralign), secname);
2385 addralign = 1;
2386 }
2387
2388 if (addralign > this->addralign_)
2389 this->addralign_ = addralign;
2390
2391 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2392 uint64_t entsize = shdr.get_sh_entsize();
2393
2394 // .debug_str is a mergeable string section, but is not always so
2395 // marked by compilers. Mark manually here so we can optimize.
2396 if (strcmp(secname, ".debug_str") == 0)
2397 {
2398 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2399 entsize = 1;
2400 }
2401
2402 this->update_flags_for_input_section(sh_flags);
2403 this->set_entsize(entsize);
2404
2405 // If this is a SHF_MERGE section, we pass all the input sections to
2406 // a Output_data_merge. We don't try to handle relocations for such
2407 // a section. We don't try to handle empty merge sections--they
2408 // mess up the mappings, and are useless anyhow.
2409 // FIXME: Need to handle merge sections during incremental update.
2410 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2411 && reloc_shndx == 0
2412 && shdr.get_sh_size() > 0
2413 && !parameters->incremental())
2414 {
2415 // Keep information about merged input sections for rebuilding fast
2416 // lookup maps if we have sections-script or we do relaxation.
2417 bool keeps_input_sections = (this->always_keeps_input_sections_
2418 || have_sections_script
2419 || parameters->target().may_relax());
2420
2421 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2422 addralign, keeps_input_sections))
2423 {
2424 // Tell the relocation routines that they need to call the
2425 // output_offset method to determine the final address.
2426 return -1;
2427 }
2428 }
2429
2430 section_size_type input_section_size = shdr.get_sh_size();
2431 section_size_type uncompressed_size;
2432 if (object->section_is_compressed(shndx, &uncompressed_size))
2433 input_section_size = uncompressed_size;
2434
2435 off_t offset_in_section;
2436 off_t aligned_offset_in_section;
2437 if (this->has_fixed_layout())
2438 {
2439 // For incremental updates, find a chunk of unused space in the section.
2440 offset_in_section = this->free_list_.allocate(input_section_size,
2441 addralign, 0);
2442 if (offset_in_section == -1)
2443 gold_fallback(_("out of patch space in section %s; "
2444 "relink with --incremental-full"),
2445 this->name());
2446 aligned_offset_in_section = offset_in_section;
2447 }
2448 else
2449 {
2450 offset_in_section = this->current_data_size_for_child();
2451 aligned_offset_in_section = align_address(offset_in_section,
2452 addralign);
2453 this->set_current_data_size_for_child(aligned_offset_in_section
2454 + input_section_size);
2455 }
2456
2457 // Determine if we want to delay code-fill generation until the output
2458 // section is written. When the target is relaxing, we want to delay fill
2459 // generating to avoid adjusting them during relaxation. Also, if we are
2460 // sorting input sections we must delay fill generation.
2461 if (!this->generate_code_fills_at_write_
2462 && !have_sections_script
2463 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2464 && parameters->target().has_code_fill()
2465 && (parameters->target().may_relax()
2466 || layout->is_section_ordering_specified()))
2467 {
2468 gold_assert(this->fills_.empty());
2469 this->generate_code_fills_at_write_ = true;
2470 }
2471
2472 if (aligned_offset_in_section > offset_in_section
2473 && !this->generate_code_fills_at_write_
2474 && !have_sections_script
2475 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2476 && parameters->target().has_code_fill())
2477 {
2478 // We need to add some fill data. Using fill_list_ when
2479 // possible is an optimization, since we will often have fill
2480 // sections without input sections.
2481 off_t fill_len = aligned_offset_in_section - offset_in_section;
2482 if (this->input_sections_.empty())
2483 this->fills_.push_back(Fill(offset_in_section, fill_len));
2484 else
2485 {
2486 std::string fill_data(parameters->target().code_fill(fill_len));
2487 Output_data_const* odc = new Output_data_const(fill_data, 1);
2488 this->input_sections_.push_back(Input_section(odc));
2489 }
2490 }
2491
2492 // We need to keep track of this section if we are already keeping
2493 // track of sections, or if we are relaxing. Also, if this is a
2494 // section which requires sorting, or which may require sorting in
2495 // the future, we keep track of the sections. If the
2496 // --section-ordering-file option is used to specify the order of
2497 // sections, we need to keep track of sections.
2498 if (this->always_keeps_input_sections_
2499 || have_sections_script
2500 || !this->input_sections_.empty()
2501 || this->may_sort_attached_input_sections()
2502 || this->must_sort_attached_input_sections()
2503 || parameters->options().user_set_Map()
2504 || parameters->target().may_relax()
2505 || layout->is_section_ordering_specified())
2506 {
2507 Input_section isecn(object, shndx, input_section_size, addralign);
2508 /* If section ordering is requested by specifying a ordering file,
2509 using --section-ordering-file, match the section name with
2510 a pattern. */
2511 if (parameters->options().section_ordering_file())
2512 {
2513 unsigned int section_order_index =
2514 layout->find_section_order_index(std::string(secname));
2515 if (section_order_index != 0)
2516 {
2517 isecn.set_section_order_index(section_order_index);
2518 this->set_input_section_order_specified();
2519 }
2520 }
2521 if (this->has_fixed_layout())
2522 {
2523 // For incremental updates, finalize the address and offset now.
2524 uint64_t addr = this->address();
2525 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2526 aligned_offset_in_section,
2527 this->offset());
2528 }
2529 this->input_sections_.push_back(isecn);
2530 }
2531
2532 return aligned_offset_in_section;
2533 }
2534
2535 // Add arbitrary data to an output section.
2536
2537 void
2538 Output_section::add_output_section_data(Output_section_data* posd)
2539 {
2540 Input_section inp(posd);
2541 this->add_output_section_data(&inp);
2542
2543 if (posd->is_data_size_valid())
2544 {
2545 off_t offset_in_section;
2546 if (this->has_fixed_layout())
2547 {
2548 // For incremental updates, find a chunk of unused space.
2549 offset_in_section = this->free_list_.allocate(posd->data_size(),
2550 posd->addralign(), 0);
2551 if (offset_in_section == -1)
2552 gold_fallback(_("out of patch space in section %s; "
2553 "relink with --incremental-full"),
2554 this->name());
2555 // Finalize the address and offset now.
2556 uint64_t addr = this->address();
2557 off_t offset = this->offset();
2558 posd->set_address_and_file_offset(addr + offset_in_section,
2559 offset + offset_in_section);
2560 }
2561 else
2562 {
2563 offset_in_section = this->current_data_size_for_child();
2564 off_t aligned_offset_in_section = align_address(offset_in_section,
2565 posd->addralign());
2566 this->set_current_data_size_for_child(aligned_offset_in_section
2567 + posd->data_size());
2568 }
2569 }
2570 else if (this->has_fixed_layout())
2571 {
2572 // For incremental updates, arrange for the data to have a fixed layout.
2573 // This will mean that additions to the data must be allocated from
2574 // free space within the containing output section.
2575 uint64_t addr = this->address();
2576 posd->set_address(addr);
2577 posd->set_file_offset(0);
2578 // FIXME: This should eventually be unreachable.
2579 // gold_unreachable();
2580 }
2581 }
2582
2583 // Add a relaxed input section.
2584
2585 void
2586 Output_section::add_relaxed_input_section(Layout* layout,
2587 Output_relaxed_input_section* poris,
2588 const std::string& name)
2589 {
2590 Input_section inp(poris);
2591
2592 // If the --section-ordering-file option is used to specify the order of
2593 // sections, we need to keep track of sections.
2594 if (layout->is_section_ordering_specified())
2595 {
2596 unsigned int section_order_index =
2597 layout->find_section_order_index(name);
2598 if (section_order_index != 0)
2599 {
2600 inp.set_section_order_index(section_order_index);
2601 this->set_input_section_order_specified();
2602 }
2603 }
2604
2605 this->add_output_section_data(&inp);
2606 if (this->lookup_maps_->is_valid())
2607 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2608 poris->shndx(), poris);
2609
2610 // For a relaxed section, we use the current data size. Linker scripts
2611 // get all the input sections, including relaxed one from an output
2612 // section and add them back to them same output section to compute the
2613 // output section size. If we do not account for sizes of relaxed input
2614 // sections, an output section would be incorrectly sized.
2615 off_t offset_in_section = this->current_data_size_for_child();
2616 off_t aligned_offset_in_section = align_address(offset_in_section,
2617 poris->addralign());
2618 this->set_current_data_size_for_child(aligned_offset_in_section
2619 + poris->current_data_size());
2620 }
2621
2622 // Add arbitrary data to an output section by Input_section.
2623
2624 void
2625 Output_section::add_output_section_data(Input_section* inp)
2626 {
2627 if (this->input_sections_.empty())
2628 this->first_input_offset_ = this->current_data_size_for_child();
2629
2630 this->input_sections_.push_back(*inp);
2631
2632 uint64_t addralign = inp->addralign();
2633 if (addralign > this->addralign_)
2634 this->addralign_ = addralign;
2635
2636 inp->set_output_section(this);
2637 }
2638
2639 // Add a merge section to an output section.
2640
2641 void
2642 Output_section::add_output_merge_section(Output_section_data* posd,
2643 bool is_string, uint64_t entsize)
2644 {
2645 Input_section inp(posd, is_string, entsize);
2646 this->add_output_section_data(&inp);
2647 }
2648
2649 // Add an input section to a SHF_MERGE section.
2650
2651 bool
2652 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2653 uint64_t flags, uint64_t entsize,
2654 uint64_t addralign,
2655 bool keeps_input_sections)
2656 {
2657 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2658
2659 // We only merge strings if the alignment is not more than the
2660 // character size. This could be handled, but it's unusual.
2661 if (is_string && addralign > entsize)
2662 return false;
2663
2664 // We cannot restore merged input section states.
2665 gold_assert(this->checkpoint_ == NULL);
2666
2667 // Look up merge sections by required properties.
2668 // Currently, we only invalidate the lookup maps in script processing
2669 // and relaxation. We should not have done either when we reach here.
2670 // So we assume that the lookup maps are valid to simply code.
2671 gold_assert(this->lookup_maps_->is_valid());
2672 Merge_section_properties msp(is_string, entsize, addralign);
2673 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2674 bool is_new = false;
2675 if (pomb != NULL)
2676 {
2677 gold_assert(pomb->is_string() == is_string
2678 && pomb->entsize() == entsize
2679 && pomb->addralign() == addralign);
2680 }
2681 else
2682 {
2683 // Create a new Output_merge_data or Output_merge_string_data.
2684 if (!is_string)
2685 pomb = new Output_merge_data(entsize, addralign);
2686 else
2687 {
2688 switch (entsize)
2689 {
2690 case 1:
2691 pomb = new Output_merge_string<char>(addralign);
2692 break;
2693 case 2:
2694 pomb = new Output_merge_string<uint16_t>(addralign);
2695 break;
2696 case 4:
2697 pomb = new Output_merge_string<uint32_t>(addralign);
2698 break;
2699 default:
2700 return false;
2701 }
2702 }
2703 // If we need to do script processing or relaxation, we need to keep
2704 // the original input sections to rebuild the fast lookup maps.
2705 if (keeps_input_sections)
2706 pomb->set_keeps_input_sections();
2707 is_new = true;
2708 }
2709
2710 if (pomb->add_input_section(object, shndx))
2711 {
2712 // Add new merge section to this output section and link merge
2713 // section properties to new merge section in map.
2714 if (is_new)
2715 {
2716 this->add_output_merge_section(pomb, is_string, entsize);
2717 this->lookup_maps_->add_merge_section(msp, pomb);
2718 }
2719
2720 // Add input section to new merge section and link input section to new
2721 // merge section in map.
2722 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2723 return true;
2724 }
2725 else
2726 {
2727 // If add_input_section failed, delete new merge section to avoid
2728 // exporting empty merge sections in Output_section::get_input_section.
2729 if (is_new)
2730 delete pomb;
2731 return false;
2732 }
2733 }
2734
2735 // Build a relaxation map to speed up relaxation of existing input sections.
2736 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2737
2738 void
2739 Output_section::build_relaxation_map(
2740 const Input_section_list& input_sections,
2741 size_t limit,
2742 Relaxation_map* relaxation_map) const
2743 {
2744 for (size_t i = 0; i < limit; ++i)
2745 {
2746 const Input_section& is(input_sections[i]);
2747 if (is.is_input_section() || is.is_relaxed_input_section())
2748 {
2749 Section_id sid(is.relobj(), is.shndx());
2750 (*relaxation_map)[sid] = i;
2751 }
2752 }
2753 }
2754
2755 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2756 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2757 // indices of INPUT_SECTIONS.
2758
2759 void
2760 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2761 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2762 const Relaxation_map& map,
2763 Input_section_list* input_sections)
2764 {
2765 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2766 {
2767 Output_relaxed_input_section* poris = relaxed_sections[i];
2768 Section_id sid(poris->relobj(), poris->shndx());
2769 Relaxation_map::const_iterator p = map.find(sid);
2770 gold_assert(p != map.end());
2771 gold_assert((*input_sections)[p->second].is_input_section());
2772
2773 // Remember section order index of original input section
2774 // if it is set. Copy it to the relaxed input section.
2775 unsigned int soi =
2776 (*input_sections)[p->second].section_order_index();
2777 (*input_sections)[p->second] = Input_section(poris);
2778 (*input_sections)[p->second].set_section_order_index(soi);
2779 }
2780 }
2781
2782 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2783 // is a vector of pointers to Output_relaxed_input_section or its derived
2784 // classes. The relaxed sections must correspond to existing input sections.
2785
2786 void
2787 Output_section::convert_input_sections_to_relaxed_sections(
2788 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2789 {
2790 gold_assert(parameters->target().may_relax());
2791
2792 // We want to make sure that restore_states does not undo the effect of
2793 // this. If there is no checkpoint active, just search the current
2794 // input section list and replace the sections there. If there is
2795 // a checkpoint, also replace the sections there.
2796
2797 // By default, we look at the whole list.
2798 size_t limit = this->input_sections_.size();
2799
2800 if (this->checkpoint_ != NULL)
2801 {
2802 // Replace input sections with relaxed input section in the saved
2803 // copy of the input section list.
2804 if (this->checkpoint_->input_sections_saved())
2805 {
2806 Relaxation_map map;
2807 this->build_relaxation_map(
2808 *(this->checkpoint_->input_sections()),
2809 this->checkpoint_->input_sections()->size(),
2810 &map);
2811 this->convert_input_sections_in_list_to_relaxed_sections(
2812 relaxed_sections,
2813 map,
2814 this->checkpoint_->input_sections());
2815 }
2816 else
2817 {
2818 // We have not copied the input section list yet. Instead, just
2819 // look at the portion that would be saved.
2820 limit = this->checkpoint_->input_sections_size();
2821 }
2822 }
2823
2824 // Convert input sections in input_section_list.
2825 Relaxation_map map;
2826 this->build_relaxation_map(this->input_sections_, limit, &map);
2827 this->convert_input_sections_in_list_to_relaxed_sections(
2828 relaxed_sections,
2829 map,
2830 &this->input_sections_);
2831
2832 // Update fast look-up map.
2833 if (this->lookup_maps_->is_valid())
2834 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2835 {
2836 Output_relaxed_input_section* poris = relaxed_sections[i];
2837 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2838 poris->shndx(), poris);
2839 }
2840 }
2841
2842 // Update the output section flags based on input section flags.
2843
2844 void
2845 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2846 {
2847 // If we created the section with SHF_ALLOC clear, we set the
2848 // address. If we are now setting the SHF_ALLOC flag, we need to
2849 // undo that.
2850 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2851 && (flags & elfcpp::SHF_ALLOC) != 0)
2852 this->mark_address_invalid();
2853
2854 this->flags_ |= (flags
2855 & (elfcpp::SHF_WRITE
2856 | elfcpp::SHF_ALLOC
2857 | elfcpp::SHF_EXECINSTR));
2858
2859 if ((flags & elfcpp::SHF_MERGE) == 0)
2860 this->flags_ &=~ elfcpp::SHF_MERGE;
2861 else
2862 {
2863 if (this->current_data_size_for_child() == 0)
2864 this->flags_ |= elfcpp::SHF_MERGE;
2865 }
2866
2867 if ((flags & elfcpp::SHF_STRINGS) == 0)
2868 this->flags_ &=~ elfcpp::SHF_STRINGS;
2869 else
2870 {
2871 if (this->current_data_size_for_child() == 0)
2872 this->flags_ |= elfcpp::SHF_STRINGS;
2873 }
2874 }
2875
2876 // Find the merge section into which an input section with index SHNDX in
2877 // OBJECT has been added. Return NULL if none found.
2878
2879 Output_section_data*
2880 Output_section::find_merge_section(const Relobj* object,
2881 unsigned int shndx) const
2882 {
2883 if (!this->lookup_maps_->is_valid())
2884 this->build_lookup_maps();
2885 return this->lookup_maps_->find_merge_section(object, shndx);
2886 }
2887
2888 // Build the lookup maps for merge and relaxed sections. This is needs
2889 // to be declared as a const methods so that it is callable with a const
2890 // Output_section pointer. The method only updates states of the maps.
2891
2892 void
2893 Output_section::build_lookup_maps() const
2894 {
2895 this->lookup_maps_->clear();
2896 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2897 p != this->input_sections_.end();
2898 ++p)
2899 {
2900 if (p->is_merge_section())
2901 {
2902 Output_merge_base* pomb = p->output_merge_base();
2903 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2904 pomb->addralign());
2905 this->lookup_maps_->add_merge_section(msp, pomb);
2906 for (Output_merge_base::Input_sections::const_iterator is =
2907 pomb->input_sections_begin();
2908 is != pomb->input_sections_end();
2909 ++is)
2910 {
2911 const Const_section_id& csid = *is;
2912 this->lookup_maps_->add_merge_input_section(csid.first,
2913 csid.second, pomb);
2914 }
2915
2916 }
2917 else if (p->is_relaxed_input_section())
2918 {
2919 Output_relaxed_input_section* poris = p->relaxed_input_section();
2920 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2921 poris->shndx(), poris);
2922 }
2923 }
2924 }
2925
2926 // Find an relaxed input section corresponding to an input section
2927 // in OBJECT with index SHNDX.
2928
2929 const Output_relaxed_input_section*
2930 Output_section::find_relaxed_input_section(const Relobj* object,
2931 unsigned int shndx) const
2932 {
2933 if (!this->lookup_maps_->is_valid())
2934 this->build_lookup_maps();
2935 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2936 }
2937
2938 // Given an address OFFSET relative to the start of input section
2939 // SHNDX in OBJECT, return whether this address is being included in
2940 // the final link. This should only be called if SHNDX in OBJECT has
2941 // a special mapping.
2942
2943 bool
2944 Output_section::is_input_address_mapped(const Relobj* object,
2945 unsigned int shndx,
2946 off_t offset) const
2947 {
2948 // Look at the Output_section_data_maps first.
2949 const Output_section_data* posd = this->find_merge_section(object, shndx);
2950 if (posd == NULL)
2951 posd = this->find_relaxed_input_section(object, shndx);
2952
2953 if (posd != NULL)
2954 {
2955 section_offset_type output_offset;
2956 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2957 gold_assert(found);
2958 return output_offset != -1;
2959 }
2960
2961 // Fall back to the slow look-up.
2962 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2963 p != this->input_sections_.end();
2964 ++p)
2965 {
2966 section_offset_type output_offset;
2967 if (p->output_offset(object, shndx, offset, &output_offset))
2968 return output_offset != -1;
2969 }
2970
2971 // By default we assume that the address is mapped. This should
2972 // only be called after we have passed all sections to Layout. At
2973 // that point we should know what we are discarding.
2974 return true;
2975 }
2976
2977 // Given an address OFFSET relative to the start of input section
2978 // SHNDX in object OBJECT, return the output offset relative to the
2979 // start of the input section in the output section. This should only
2980 // be called if SHNDX in OBJECT has a special mapping.
2981
2982 section_offset_type
2983 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2984 section_offset_type offset) const
2985 {
2986 // This can only be called meaningfully when we know the data size
2987 // of this.
2988 gold_assert(this->is_data_size_valid());
2989
2990 // Look at the Output_section_data_maps first.
2991 const Output_section_data* posd = this->find_merge_section(object, shndx);
2992 if (posd == NULL)
2993 posd = this->find_relaxed_input_section(object, shndx);
2994 if (posd != NULL)
2995 {
2996 section_offset_type output_offset;
2997 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2998 gold_assert(found);
2999 return output_offset;
3000 }
3001
3002 // Fall back to the slow look-up.
3003 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3004 p != this->input_sections_.end();
3005 ++p)
3006 {
3007 section_offset_type output_offset;
3008 if (p->output_offset(object, shndx, offset, &output_offset))
3009 return output_offset;
3010 }
3011 gold_unreachable();
3012 }
3013
3014 // Return the output virtual address of OFFSET relative to the start
3015 // of input section SHNDX in object OBJECT.
3016
3017 uint64_t
3018 Output_section::output_address(const Relobj* object, unsigned int shndx,
3019 off_t offset) const
3020 {
3021 uint64_t addr = this->address() + this->first_input_offset_;
3022
3023 // Look at the Output_section_data_maps first.
3024 const Output_section_data* posd = this->find_merge_section(object, shndx);
3025 if (posd == NULL)
3026 posd = this->find_relaxed_input_section(object, shndx);
3027 if (posd != NULL && posd->is_address_valid())
3028 {
3029 section_offset_type output_offset;
3030 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3031 gold_assert(found);
3032 return posd->address() + output_offset;
3033 }
3034
3035 // Fall back to the slow look-up.
3036 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3037 p != this->input_sections_.end();
3038 ++p)
3039 {
3040 addr = align_address(addr, p->addralign());
3041 section_offset_type output_offset;
3042 if (p->output_offset(object, shndx, offset, &output_offset))
3043 {
3044 if (output_offset == -1)
3045 return -1ULL;
3046 return addr + output_offset;
3047 }
3048 addr += p->data_size();
3049 }
3050
3051 // If we get here, it means that we don't know the mapping for this
3052 // input section. This might happen in principle if
3053 // add_input_section were called before add_output_section_data.
3054 // But it should never actually happen.
3055
3056 gold_unreachable();
3057 }
3058
3059 // Find the output address of the start of the merged section for
3060 // input section SHNDX in object OBJECT.
3061
3062 bool
3063 Output_section::find_starting_output_address(const Relobj* object,
3064 unsigned int shndx,
3065 uint64_t* paddr) const
3066 {
3067 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3068 // Looking up the merge section map does not always work as we sometimes
3069 // find a merge section without its address set.
3070 uint64_t addr = this->address() + this->first_input_offset_;
3071 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3072 p != this->input_sections_.end();
3073 ++p)
3074 {
3075 addr = align_address(addr, p->addralign());
3076
3077 // It would be nice if we could use the existing output_offset
3078 // method to get the output offset of input offset 0.
3079 // Unfortunately we don't know for sure that input offset 0 is
3080 // mapped at all.
3081 if (p->is_merge_section_for(object, shndx))
3082 {
3083 *paddr = addr;
3084 return true;
3085 }
3086
3087 addr += p->data_size();
3088 }
3089
3090 // We couldn't find a merge output section for this input section.
3091 return false;
3092 }
3093
3094 // Update the data size of an Output_section.
3095
3096 void
3097 Output_section::update_data_size()
3098 {
3099 if (this->input_sections_.empty())
3100 return;
3101
3102 if (this->must_sort_attached_input_sections()
3103 || this->input_section_order_specified())
3104 this->sort_attached_input_sections();
3105
3106 off_t off = this->first_input_offset_;
3107 for (Input_section_list::iterator p = this->input_sections_.begin();
3108 p != this->input_sections_.end();
3109 ++p)
3110 {
3111 off = align_address(off, p->addralign());
3112 off += p->current_data_size();
3113 }
3114
3115 this->set_current_data_size_for_child(off);
3116 }
3117
3118 // Set the data size of an Output_section. This is where we handle
3119 // setting the addresses of any Output_section_data objects.
3120
3121 void
3122 Output_section::set_final_data_size()
3123 {
3124 off_t data_size;
3125
3126 if (this->input_sections_.empty())
3127 data_size = this->current_data_size_for_child();
3128 else
3129 {
3130 if (this->must_sort_attached_input_sections()
3131 || this->input_section_order_specified())
3132 this->sort_attached_input_sections();
3133
3134 uint64_t address = this->address();
3135 off_t startoff = this->offset();
3136 off_t off = startoff + this->first_input_offset_;
3137 for (Input_section_list::iterator p = this->input_sections_.begin();
3138 p != this->input_sections_.end();
3139 ++p)
3140 {
3141 off = align_address(off, p->addralign());
3142 p->set_address_and_file_offset(address + (off - startoff), off,
3143 startoff);
3144 off += p->data_size();
3145 }
3146 data_size = off - startoff;
3147 }
3148
3149 // For full incremental links, we want to allocate some patch space
3150 // in most sections for subsequent incremental updates.
3151 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3152 {
3153 double pct = parameters->options().incremental_patch();
3154 size_t extra = static_cast<size_t>(data_size * pct);
3155 if (this->free_space_fill_ != NULL
3156 && this->free_space_fill_->minimum_hole_size() > extra)
3157 extra = this->free_space_fill_->minimum_hole_size();
3158 off_t new_size = align_address(data_size + extra, this->addralign());
3159 this->patch_space_ = new_size - data_size;
3160 gold_debug(DEBUG_INCREMENTAL,
3161 "set_final_data_size: %08lx + %08lx: section %s",
3162 static_cast<long>(data_size),
3163 static_cast<long>(this->patch_space_),
3164 this->name());
3165 data_size = new_size;
3166 }
3167
3168 this->set_data_size(data_size);
3169 }
3170
3171 // Reset the address and file offset.
3172
3173 void
3174 Output_section::do_reset_address_and_file_offset()
3175 {
3176 // An unallocated section has no address. Forcing this means that
3177 // we don't need special treatment for symbols defined in debug
3178 // sections. We do the same in the constructor. This does not
3179 // apply to NOLOAD sections though.
3180 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3181 this->set_address(0);
3182
3183 for (Input_section_list::iterator p = this->input_sections_.begin();
3184 p != this->input_sections_.end();
3185 ++p)
3186 p->reset_address_and_file_offset();
3187
3188 // Remove any patch space that was added in set_final_data_size.
3189 if (this->patch_space_ > 0)
3190 {
3191 this->set_current_data_size_for_child(this->current_data_size_for_child()
3192 - this->patch_space_);
3193 this->patch_space_ = 0;
3194 }
3195 }
3196
3197 // Return true if address and file offset have the values after reset.
3198
3199 bool
3200 Output_section::do_address_and_file_offset_have_reset_values() const
3201 {
3202 if (this->is_offset_valid())
3203 return false;
3204
3205 // An unallocated section has address 0 after its construction or a reset.
3206 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3207 return this->is_address_valid() && this->address() == 0;
3208 else
3209 return !this->is_address_valid();
3210 }
3211
3212 // Set the TLS offset. Called only for SHT_TLS sections.
3213
3214 void
3215 Output_section::do_set_tls_offset(uint64_t tls_base)
3216 {
3217 this->tls_offset_ = this->address() - tls_base;
3218 }
3219
3220 // In a few cases we need to sort the input sections attached to an
3221 // output section. This is used to implement the type of constructor
3222 // priority ordering implemented by the GNU linker, in which the
3223 // priority becomes part of the section name and the sections are
3224 // sorted by name. We only do this for an output section if we see an
3225 // attached input section matching ".ctors.*", ".dtors.*",
3226 // ".init_array.*" or ".fini_array.*".
3227
3228 class Output_section::Input_section_sort_entry
3229 {
3230 public:
3231 Input_section_sort_entry()
3232 : input_section_(), index_(-1U), section_has_name_(false),
3233 section_name_()
3234 { }
3235
3236 Input_section_sort_entry(const Input_section& input_section,
3237 unsigned int index,
3238 bool must_sort_attached_input_sections)
3239 : input_section_(input_section), index_(index),
3240 section_has_name_(input_section.is_input_section()
3241 || input_section.is_relaxed_input_section())
3242 {
3243 if (this->section_has_name_
3244 && must_sort_attached_input_sections)
3245 {
3246 // This is only called single-threaded from Layout::finalize,
3247 // so it is OK to lock. Unfortunately we have no way to pass
3248 // in a Task token.
3249 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3250 Object* obj = (input_section.is_input_section()
3251 ? input_section.relobj()
3252 : input_section.relaxed_input_section()->relobj());
3253 Task_lock_obj<Object> tl(dummy_task, obj);
3254
3255 // This is a slow operation, which should be cached in
3256 // Layout::layout if this becomes a speed problem.
3257 this->section_name_ = obj->section_name(input_section.shndx());
3258 }
3259 }
3260
3261 // Return the Input_section.
3262 const Input_section&
3263 input_section() const
3264 {
3265 gold_assert(this->index_ != -1U);
3266 return this->input_section_;
3267 }
3268
3269 // The index of this entry in the original list. This is used to
3270 // make the sort stable.
3271 unsigned int
3272 index() const
3273 {
3274 gold_assert(this->index_ != -1U);
3275 return this->index_;
3276 }
3277
3278 // Whether there is a section name.
3279 bool
3280 section_has_name() const
3281 { return this->section_has_name_; }
3282
3283 // The section name.
3284 const std::string&
3285 section_name() const
3286 {
3287 gold_assert(this->section_has_name_);
3288 return this->section_name_;
3289 }
3290
3291 // Return true if the section name has a priority. This is assumed
3292 // to be true if it has a dot after the initial dot.
3293 bool
3294 has_priority() const
3295 {
3296 gold_assert(this->section_has_name_);
3297 return this->section_name_.find('.', 1) != std::string::npos;
3298 }
3299
3300 // Return the priority. Believe it or not, gcc encodes the priority
3301 // differently for .ctors/.dtors and .init_array/.fini_array
3302 // sections.
3303 unsigned int
3304 get_priority() const
3305 {
3306 gold_assert(this->section_has_name_);
3307 bool is_ctors;
3308 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3309 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3310 is_ctors = true;
3311 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3312 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3313 is_ctors = false;
3314 else
3315 return 0;
3316 char* end;
3317 unsigned long prio = strtoul((this->section_name_.c_str()
3318 + (is_ctors ? 7 : 12)),
3319 &end, 10);
3320 if (*end != '\0')
3321 return 0;
3322 else if (is_ctors)
3323 return 65535 - prio;
3324 else
3325 return prio;
3326 }
3327
3328 // Return true if this an input file whose base name matches
3329 // FILE_NAME. The base name must have an extension of ".o", and
3330 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3331 // This is to match crtbegin.o as well as crtbeginS.o without
3332 // getting confused by other possibilities. Overall matching the
3333 // file name this way is a dreadful hack, but the GNU linker does it
3334 // in order to better support gcc, and we need to be compatible.
3335 bool
3336 match_file_name(const char* file_name) const
3337 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3338
3339 // Returns 1 if THIS should appear before S in section order, -1 if S
3340 // appears before THIS and 0 if they are not comparable.
3341 int
3342 compare_section_ordering(const Input_section_sort_entry& s) const
3343 {
3344 unsigned int this_secn_index = this->input_section_.section_order_index();
3345 unsigned int s_secn_index = s.input_section().section_order_index();
3346 if (this_secn_index > 0 && s_secn_index > 0)
3347 {
3348 if (this_secn_index < s_secn_index)
3349 return 1;
3350 else if (this_secn_index > s_secn_index)
3351 return -1;
3352 }
3353 return 0;
3354 }
3355
3356 private:
3357 // The Input_section we are sorting.
3358 Input_section input_section_;
3359 // The index of this Input_section in the original list.
3360 unsigned int index_;
3361 // Whether this Input_section has a section name--it won't if this
3362 // is some random Output_section_data.
3363 bool section_has_name_;
3364 // The section name if there is one.
3365 std::string section_name_;
3366 };
3367
3368 // Return true if S1 should come before S2 in the output section.
3369
3370 bool
3371 Output_section::Input_section_sort_compare::operator()(
3372 const Output_section::Input_section_sort_entry& s1,
3373 const Output_section::Input_section_sort_entry& s2) const
3374 {
3375 // crtbegin.o must come first.
3376 bool s1_begin = s1.match_file_name("crtbegin");
3377 bool s2_begin = s2.match_file_name("crtbegin");
3378 if (s1_begin || s2_begin)
3379 {
3380 if (!s1_begin)
3381 return false;
3382 if (!s2_begin)
3383 return true;
3384 return s1.index() < s2.index();
3385 }
3386
3387 // crtend.o must come last.
3388 bool s1_end = s1.match_file_name("crtend");
3389 bool s2_end = s2.match_file_name("crtend");
3390 if (s1_end || s2_end)
3391 {
3392 if (!s1_end)
3393 return true;
3394 if (!s2_end)
3395 return false;
3396 return s1.index() < s2.index();
3397 }
3398
3399 // We sort all the sections with no names to the end.
3400 if (!s1.section_has_name() || !s2.section_has_name())
3401 {
3402 if (s1.section_has_name())
3403 return true;
3404 if (s2.section_has_name())
3405 return false;
3406 return s1.index() < s2.index();
3407 }
3408
3409 // A section with a priority follows a section without a priority.
3410 bool s1_has_priority = s1.has_priority();
3411 bool s2_has_priority = s2.has_priority();
3412 if (s1_has_priority && !s2_has_priority)
3413 return false;
3414 if (!s1_has_priority && s2_has_priority)
3415 return true;
3416
3417 // Check if a section order exists for these sections through a section
3418 // ordering file. If sequence_num is 0, an order does not exist.
3419 int sequence_num = s1.compare_section_ordering(s2);
3420 if (sequence_num != 0)
3421 return sequence_num == 1;
3422
3423 // Otherwise we sort by name.
3424 int compare = s1.section_name().compare(s2.section_name());
3425 if (compare != 0)
3426 return compare < 0;
3427
3428 // Otherwise we keep the input order.
3429 return s1.index() < s2.index();
3430 }
3431
3432 // Return true if S1 should come before S2 in an .init_array or .fini_array
3433 // output section.
3434
3435 bool
3436 Output_section::Input_section_sort_init_fini_compare::operator()(
3437 const Output_section::Input_section_sort_entry& s1,
3438 const Output_section::Input_section_sort_entry& s2) const
3439 {
3440 // We sort all the sections with no names to the end.
3441 if (!s1.section_has_name() || !s2.section_has_name())
3442 {
3443 if (s1.section_has_name())
3444 return true;
3445 if (s2.section_has_name())
3446 return false;
3447 return s1.index() < s2.index();
3448 }
3449
3450 // A section without a priority follows a section with a priority.
3451 // This is the reverse of .ctors and .dtors sections.
3452 bool s1_has_priority = s1.has_priority();
3453 bool s2_has_priority = s2.has_priority();
3454 if (s1_has_priority && !s2_has_priority)
3455 return true;
3456 if (!s1_has_priority && s2_has_priority)
3457 return false;
3458
3459 // .ctors and .dtors sections without priority come after
3460 // .init_array and .fini_array sections without priority.
3461 if (!s1_has_priority
3462 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3463 && s1.section_name() != s2.section_name())
3464 return false;
3465 if (!s2_has_priority
3466 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3467 && s2.section_name() != s1.section_name())
3468 return true;
3469
3470 // Sort by priority if we can.
3471 if (s1_has_priority)
3472 {
3473 unsigned int s1_prio = s1.get_priority();
3474 unsigned int s2_prio = s2.get_priority();
3475 if (s1_prio < s2_prio)
3476 return true;
3477 else if (s1_prio > s2_prio)
3478 return false;
3479 }
3480
3481 // Check if a section order exists for these sections through a section
3482 // ordering file. If sequence_num is 0, an order does not exist.
3483 int sequence_num = s1.compare_section_ordering(s2);
3484 if (sequence_num != 0)
3485 return sequence_num == 1;
3486
3487 // Otherwise we sort by name.
3488 int compare = s1.section_name().compare(s2.section_name());
3489 if (compare != 0)
3490 return compare < 0;
3491
3492 // Otherwise we keep the input order.
3493 return s1.index() < s2.index();
3494 }
3495
3496 // Return true if S1 should come before S2. Sections that do not match
3497 // any pattern in the section ordering file are placed ahead of the sections
3498 // that match some pattern.
3499
3500 bool
3501 Output_section::Input_section_sort_section_order_index_compare::operator()(
3502 const Output_section::Input_section_sort_entry& s1,
3503 const Output_section::Input_section_sort_entry& s2) const
3504 {
3505 unsigned int s1_secn_index = s1.input_section().section_order_index();
3506 unsigned int s2_secn_index = s2.input_section().section_order_index();
3507
3508 // Keep input order if section ordering cannot determine order.
3509 if (s1_secn_index == s2_secn_index)
3510 return s1.index() < s2.index();
3511
3512 return s1_secn_index < s2_secn_index;
3513 }
3514
3515 // This updates the section order index of input sections according to the
3516 // the order specified in the mapping from Section id to order index.
3517
3518 void
3519 Output_section::update_section_layout(
3520 const Section_layout_order* order_map)
3521 {
3522 for (Input_section_list::iterator p = this->input_sections_.begin();
3523 p != this->input_sections_.end();
3524 ++p)
3525 {
3526 if (p->is_input_section()
3527 || p->is_relaxed_input_section())
3528 {
3529 Object* obj = (p->is_input_section()
3530 ? p->relobj()
3531 : p->relaxed_input_section()->relobj());
3532 unsigned int shndx = p->shndx();
3533 Section_layout_order::const_iterator it
3534 = order_map->find(Section_id(obj, shndx));
3535 if (it == order_map->end())
3536 continue;
3537 unsigned int section_order_index = it->second;
3538 if (section_order_index != 0)
3539 {
3540 p->set_section_order_index(section_order_index);
3541 this->set_input_section_order_specified();
3542 }
3543 }
3544 }
3545 }
3546
3547 // Sort the input sections attached to an output section.
3548
3549 void
3550 Output_section::sort_attached_input_sections()
3551 {
3552 if (this->attached_input_sections_are_sorted_)
3553 return;
3554
3555 if (this->checkpoint_ != NULL
3556 && !this->checkpoint_->input_sections_saved())
3557 this->checkpoint_->save_input_sections();
3558
3559 // The only thing we know about an input section is the object and
3560 // the section index. We need the section name. Recomputing this
3561 // is slow but this is an unusual case. If this becomes a speed
3562 // problem we can cache the names as required in Layout::layout.
3563
3564 // We start by building a larger vector holding a copy of each
3565 // Input_section, plus its current index in the list and its name.
3566 std::vector<Input_section_sort_entry> sort_list;
3567
3568 unsigned int i = 0;
3569 for (Input_section_list::iterator p = this->input_sections_.begin();
3570 p != this->input_sections_.end();
3571 ++p, ++i)
3572 sort_list.push_back(Input_section_sort_entry(*p, i,
3573 this->must_sort_attached_input_sections()));
3574
3575 // Sort the input sections.
3576 if (this->must_sort_attached_input_sections())
3577 {
3578 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3579 || this->type() == elfcpp::SHT_INIT_ARRAY
3580 || this->type() == elfcpp::SHT_FINI_ARRAY)
3581 std::sort(sort_list.begin(), sort_list.end(),
3582 Input_section_sort_init_fini_compare());
3583 else
3584 std::sort(sort_list.begin(), sort_list.end(),
3585 Input_section_sort_compare());
3586 }
3587 else
3588 {
3589 gold_assert(this->input_section_order_specified());
3590 std::sort(sort_list.begin(), sort_list.end(),
3591 Input_section_sort_section_order_index_compare());
3592 }
3593
3594 // Copy the sorted input sections back to our list.
3595 this->input_sections_.clear();
3596 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3597 p != sort_list.end();
3598 ++p)
3599 this->input_sections_.push_back(p->input_section());
3600 sort_list.clear();
3601
3602 // Remember that we sorted the input sections, since we might get
3603 // called again.
3604 this->attached_input_sections_are_sorted_ = true;
3605 }
3606
3607 // Write the section header to *OSHDR.
3608
3609 template<int size, bool big_endian>
3610 void
3611 Output_section::write_header(const Layout* layout,
3612 const Stringpool* secnamepool,
3613 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3614 {
3615 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3616 oshdr->put_sh_type(this->type_);
3617
3618 elfcpp::Elf_Xword flags = this->flags_;
3619 if (this->info_section_ != NULL && this->info_uses_section_index_)
3620 flags |= elfcpp::SHF_INFO_LINK;
3621 oshdr->put_sh_flags(flags);
3622
3623 oshdr->put_sh_addr(this->address());
3624 oshdr->put_sh_offset(this->offset());
3625 oshdr->put_sh_size(this->data_size());
3626 if (this->link_section_ != NULL)
3627 oshdr->put_sh_link(this->link_section_->out_shndx());
3628 else if (this->should_link_to_symtab_)
3629 oshdr->put_sh_link(layout->symtab_section_shndx());
3630 else if (this->should_link_to_dynsym_)
3631 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3632 else
3633 oshdr->put_sh_link(this->link_);
3634
3635 elfcpp::Elf_Word info;
3636 if (this->info_section_ != NULL)
3637 {
3638 if (this->info_uses_section_index_)
3639 info = this->info_section_->out_shndx();
3640 else
3641 info = this->info_section_->symtab_index();
3642 }
3643 else if (this->info_symndx_ != NULL)
3644 info = this->info_symndx_->symtab_index();
3645 else
3646 info = this->info_;
3647 oshdr->put_sh_info(info);
3648
3649 oshdr->put_sh_addralign(this->addralign_);
3650 oshdr->put_sh_entsize(this->entsize_);
3651 }
3652
3653 // Write out the data. For input sections the data is written out by
3654 // Object::relocate, but we have to handle Output_section_data objects
3655 // here.
3656
3657 void
3658 Output_section::do_write(Output_file* of)
3659 {
3660 gold_assert(!this->requires_postprocessing());
3661
3662 // If the target performs relaxation, we delay filler generation until now.
3663 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3664
3665 off_t output_section_file_offset = this->offset();
3666 for (Fill_list::iterator p = this->fills_.begin();
3667 p != this->fills_.end();
3668 ++p)
3669 {
3670 std::string fill_data(parameters->target().code_fill(p->length()));
3671 of->write(output_section_file_offset + p->section_offset(),
3672 fill_data.data(), fill_data.size());
3673 }
3674
3675 off_t off = this->offset() + this->first_input_offset_;
3676 for (Input_section_list::iterator p = this->input_sections_.begin();
3677 p != this->input_sections_.end();
3678 ++p)
3679 {
3680 off_t aligned_off = align_address(off, p->addralign());
3681 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3682 {
3683 size_t fill_len = aligned_off - off;
3684 std::string fill_data(parameters->target().code_fill(fill_len));
3685 of->write(off, fill_data.data(), fill_data.size());
3686 }
3687
3688 p->write(of);
3689 off = aligned_off + p->data_size();
3690 }
3691
3692 // For incremental links, fill in unused chunks in debug sections
3693 // with dummy compilation unit headers.
3694 if (this->free_space_fill_ != NULL)
3695 {
3696 for (Free_list::Const_iterator p = this->free_list_.begin();
3697 p != this->free_list_.end();
3698 ++p)
3699 {
3700 off_t off = p->start_;
3701 size_t len = p->end_ - off;
3702 this->free_space_fill_->write(of, this->offset() + off, len);
3703 }
3704 if (this->patch_space_ > 0)
3705 {
3706 off_t off = this->current_data_size_for_child() - this->patch_space_;
3707 this->free_space_fill_->write(of, this->offset() + off,
3708 this->patch_space_);
3709 }
3710 }
3711 }
3712
3713 // If a section requires postprocessing, create the buffer to use.
3714
3715 void
3716 Output_section::create_postprocessing_buffer()
3717 {
3718 gold_assert(this->requires_postprocessing());
3719
3720 if (this->postprocessing_buffer_ != NULL)
3721 return;
3722
3723 if (!this->input_sections_.empty())
3724 {
3725 off_t off = this->first_input_offset_;
3726 for (Input_section_list::iterator p = this->input_sections_.begin();
3727 p != this->input_sections_.end();
3728 ++p)
3729 {
3730 off = align_address(off, p->addralign());
3731 p->finalize_data_size();
3732 off += p->data_size();
3733 }
3734 this->set_current_data_size_for_child(off);
3735 }
3736
3737 off_t buffer_size = this->current_data_size_for_child();
3738 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3739 }
3740
3741 // Write all the data of an Output_section into the postprocessing
3742 // buffer. This is used for sections which require postprocessing,
3743 // such as compression. Input sections are handled by
3744 // Object::Relocate.
3745
3746 void
3747 Output_section::write_to_postprocessing_buffer()
3748 {
3749 gold_assert(this->requires_postprocessing());
3750
3751 // If the target performs relaxation, we delay filler generation until now.
3752 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3753
3754 unsigned char* buffer = this->postprocessing_buffer();
3755 for (Fill_list::iterator p = this->fills_.begin();
3756 p != this->fills_.end();
3757 ++p)
3758 {
3759 std::string fill_data(parameters->target().code_fill(p->length()));
3760 memcpy(buffer + p->section_offset(), fill_data.data(),
3761 fill_data.size());
3762 }
3763
3764 off_t off = this->first_input_offset_;
3765 for (Input_section_list::iterator p = this->input_sections_.begin();
3766 p != this->input_sections_.end();
3767 ++p)
3768 {
3769 off_t aligned_off = align_address(off, p->addralign());
3770 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3771 {
3772 size_t fill_len = aligned_off - off;
3773 std::string fill_data(parameters->target().code_fill(fill_len));
3774 memcpy(buffer + off, fill_data.data(), fill_data.size());
3775 }
3776
3777 p->write_to_buffer(buffer + aligned_off);
3778 off = aligned_off + p->data_size();
3779 }
3780 }
3781
3782 // Get the input sections for linker script processing. We leave
3783 // behind the Output_section_data entries. Note that this may be
3784 // slightly incorrect for merge sections. We will leave them behind,
3785 // but it is possible that the script says that they should follow
3786 // some other input sections, as in:
3787 // .rodata { *(.rodata) *(.rodata.cst*) }
3788 // For that matter, we don't handle this correctly:
3789 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3790 // With luck this will never matter.
3791
3792 uint64_t
3793 Output_section::get_input_sections(
3794 uint64_t address,
3795 const std::string& fill,
3796 std::list<Input_section>* input_sections)
3797 {
3798 if (this->checkpoint_ != NULL
3799 && !this->checkpoint_->input_sections_saved())
3800 this->checkpoint_->save_input_sections();
3801
3802 // Invalidate fast look-up maps.
3803 this->lookup_maps_->invalidate();
3804
3805 uint64_t orig_address = address;
3806
3807 address = align_address(address, this->addralign());
3808
3809 Input_section_list remaining;
3810 for (Input_section_list::iterator p = this->input_sections_.begin();
3811 p != this->input_sections_.end();
3812 ++p)
3813 {
3814 if (p->is_input_section()
3815 || p->is_relaxed_input_section()
3816 || p->is_merge_section())
3817 input_sections->push_back(*p);
3818 else
3819 {
3820 uint64_t aligned_address = align_address(address, p->addralign());
3821 if (aligned_address != address && !fill.empty())
3822 {
3823 section_size_type length =
3824 convert_to_section_size_type(aligned_address - address);
3825 std::string this_fill;
3826 this_fill.reserve(length);
3827 while (this_fill.length() + fill.length() <= length)
3828 this_fill += fill;
3829 if (this_fill.length() < length)
3830 this_fill.append(fill, 0, length - this_fill.length());
3831
3832 Output_section_data* posd = new Output_data_const(this_fill, 0);
3833 remaining.push_back(Input_section(posd));
3834 }
3835 address = aligned_address;
3836
3837 remaining.push_back(*p);
3838
3839 p->finalize_data_size();
3840 address += p->data_size();
3841 }
3842 }
3843
3844 this->input_sections_.swap(remaining);
3845 this->first_input_offset_ = 0;
3846
3847 uint64_t data_size = address - orig_address;
3848 this->set_current_data_size_for_child(data_size);
3849 return data_size;
3850 }
3851
3852 // Add a script input section. SIS is an Output_section::Input_section,
3853 // which can be either a plain input section or a special input section like
3854 // a relaxed input section. For a special input section, its size must be
3855 // finalized.
3856
3857 void
3858 Output_section::add_script_input_section(const Input_section& sis)
3859 {
3860 uint64_t data_size = sis.data_size();
3861 uint64_t addralign = sis.addralign();
3862 if (addralign > this->addralign_)
3863 this->addralign_ = addralign;
3864
3865 off_t offset_in_section = this->current_data_size_for_child();
3866 off_t aligned_offset_in_section = align_address(offset_in_section,
3867 addralign);
3868
3869 this->set_current_data_size_for_child(aligned_offset_in_section
3870 + data_size);
3871
3872 this->input_sections_.push_back(sis);
3873
3874 // Update fast lookup maps if necessary.
3875 if (this->lookup_maps_->is_valid())
3876 {
3877 if (sis.is_merge_section())
3878 {
3879 Output_merge_base* pomb = sis.output_merge_base();
3880 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3881 pomb->addralign());
3882 this->lookup_maps_->add_merge_section(msp, pomb);
3883 for (Output_merge_base::Input_sections::const_iterator p =
3884 pomb->input_sections_begin();
3885 p != pomb->input_sections_end();
3886 ++p)
3887 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3888 pomb);
3889 }
3890 else if (sis.is_relaxed_input_section())
3891 {
3892 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3893 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3894 poris->shndx(), poris);
3895 }
3896 }
3897 }
3898
3899 // Save states for relaxation.
3900
3901 void
3902 Output_section::save_states()
3903 {
3904 gold_assert(this->checkpoint_ == NULL);
3905 Checkpoint_output_section* checkpoint =
3906 new Checkpoint_output_section(this->addralign_, this->flags_,
3907 this->input_sections_,
3908 this->first_input_offset_,
3909 this->attached_input_sections_are_sorted_);
3910 this->checkpoint_ = checkpoint;
3911 gold_assert(this->fills_.empty());
3912 }
3913
3914 void
3915 Output_section::discard_states()
3916 {
3917 gold_assert(this->checkpoint_ != NULL);
3918 delete this->checkpoint_;
3919 this->checkpoint_ = NULL;
3920 gold_assert(this->fills_.empty());
3921
3922 // Simply invalidate the fast lookup maps since we do not keep
3923 // track of them.
3924 this->lookup_maps_->invalidate();
3925 }
3926
3927 void
3928 Output_section::restore_states()
3929 {
3930 gold_assert(this->checkpoint_ != NULL);
3931 Checkpoint_output_section* checkpoint = this->checkpoint_;
3932
3933 this->addralign_ = checkpoint->addralign();
3934 this->flags_ = checkpoint->flags();
3935 this->first_input_offset_ = checkpoint->first_input_offset();
3936
3937 if (!checkpoint->input_sections_saved())
3938 {
3939 // If we have not copied the input sections, just resize it.
3940 size_t old_size = checkpoint->input_sections_size();
3941 gold_assert(this->input_sections_.size() >= old_size);
3942 this->input_sections_.resize(old_size);
3943 }
3944 else
3945 {
3946 // We need to copy the whole list. This is not efficient for
3947 // extremely large output with hundreads of thousands of input
3948 // objects. We may need to re-think how we should pass sections
3949 // to scripts.
3950 this->input_sections_ = *checkpoint->input_sections();
3951 }
3952
3953 this->attached_input_sections_are_sorted_ =
3954 checkpoint->attached_input_sections_are_sorted();
3955
3956 // Simply invalidate the fast lookup maps since we do not keep
3957 // track of them.
3958 this->lookup_maps_->invalidate();
3959 }
3960
3961 // Update the section offsets of input sections in this. This is required if
3962 // relaxation causes some input sections to change sizes.
3963
3964 void
3965 Output_section::adjust_section_offsets()
3966 {
3967 if (!this->section_offsets_need_adjustment_)
3968 return;
3969
3970 off_t off = 0;
3971 for (Input_section_list::iterator p = this->input_sections_.begin();
3972 p != this->input_sections_.end();
3973 ++p)
3974 {
3975 off = align_address(off, p->addralign());
3976 if (p->is_input_section())
3977 p->relobj()->set_section_offset(p->shndx(), off);
3978 off += p->data_size();
3979 }
3980
3981 this->section_offsets_need_adjustment_ = false;
3982 }
3983
3984 // Print to the map file.
3985
3986 void
3987 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3988 {
3989 mapfile->print_output_section(this);
3990
3991 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3992 p != this->input_sections_.end();
3993 ++p)
3994 p->print_to_mapfile(mapfile);
3995 }
3996
3997 // Print stats for merge sections to stderr.
3998
3999 void
4000 Output_section::print_merge_stats()
4001 {
4002 Input_section_list::iterator p;
4003 for (p = this->input_sections_.begin();
4004 p != this->input_sections_.end();
4005 ++p)
4006 p->print_merge_stats(this->name_);
4007 }
4008
4009 // Set a fixed layout for the section. Used for incremental update links.
4010
4011 void
4012 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4013 off_t sh_size, uint64_t sh_addralign)
4014 {
4015 this->addralign_ = sh_addralign;
4016 this->set_current_data_size(sh_size);
4017 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4018 this->set_address(sh_addr);
4019 this->set_file_offset(sh_offset);
4020 this->finalize_data_size();
4021 this->free_list_.init(sh_size, false);
4022 this->has_fixed_layout_ = true;
4023 }
4024
4025 // Reserve space within the fixed layout for the section. Used for
4026 // incremental update links.
4027
4028 void
4029 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4030 {
4031 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4032 }
4033
4034 // Allocate space from the free list for the section. Used for
4035 // incremental update links.
4036
4037 off_t
4038 Output_section::allocate(off_t len, uint64_t addralign)
4039 {
4040 return this->free_list_.allocate(len, addralign, 0);
4041 }
4042
4043 // Output segment methods.
4044
4045 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4046 : vaddr_(0),
4047 paddr_(0),
4048 memsz_(0),
4049 max_align_(0),
4050 min_p_align_(0),
4051 offset_(0),
4052 filesz_(0),
4053 type_(type),
4054 flags_(flags),
4055 is_max_align_known_(false),
4056 are_addresses_set_(false),
4057 is_large_data_segment_(false),
4058 is_unique_segment_(false)
4059 {
4060 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4061 // the flags.
4062 if (type == elfcpp::PT_TLS)
4063 this->flags_ = elfcpp::PF_R;
4064 }
4065
4066 // Add an Output_section to a PT_LOAD Output_segment.
4067
4068 void
4069 Output_segment::add_output_section_to_load(Layout* layout,
4070 Output_section* os,
4071 elfcpp::Elf_Word seg_flags)
4072 {
4073 gold_assert(this->type() == elfcpp::PT_LOAD);
4074 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4075 gold_assert(!this->is_max_align_known_);
4076 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4077
4078 this->update_flags_for_output_section(seg_flags);
4079
4080 // We don't want to change the ordering if we have a linker script
4081 // with a SECTIONS clause.
4082 Output_section_order order = os->order();
4083 if (layout->script_options()->saw_sections_clause())
4084 order = static_cast<Output_section_order>(0);
4085 else
4086 gold_assert(order != ORDER_INVALID);
4087
4088 this->output_lists_[order].push_back(os);
4089 }
4090
4091 // Add an Output_section to a non-PT_LOAD Output_segment.
4092
4093 void
4094 Output_segment::add_output_section_to_nonload(Output_section* os,
4095 elfcpp::Elf_Word seg_flags)
4096 {
4097 gold_assert(this->type() != elfcpp::PT_LOAD);
4098 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4099 gold_assert(!this->is_max_align_known_);
4100
4101 this->update_flags_for_output_section(seg_flags);
4102
4103 this->output_lists_[0].push_back(os);
4104 }
4105
4106 // Remove an Output_section from this segment. It is an error if it
4107 // is not present.
4108
4109 void
4110 Output_segment::remove_output_section(Output_section* os)
4111 {
4112 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4113 {
4114 Output_data_list* pdl = &this->output_lists_[i];
4115 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4116 {
4117 if (*p == os)
4118 {
4119 pdl->erase(p);
4120 return;
4121 }
4122 }
4123 }
4124 gold_unreachable();
4125 }
4126
4127 // Add an Output_data (which need not be an Output_section) to the
4128 // start of a segment.
4129
4130 void
4131 Output_segment::add_initial_output_data(Output_data* od)
4132 {
4133 gold_assert(!this->is_max_align_known_);
4134 Output_data_list::iterator p = this->output_lists_[0].begin();
4135 this->output_lists_[0].insert(p, od);
4136 }
4137
4138 // Return true if this segment has any sections which hold actual
4139 // data, rather than being a BSS section.
4140
4141 bool
4142 Output_segment::has_any_data_sections() const
4143 {
4144 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4145 {
4146 const Output_data_list* pdl = &this->output_lists_[i];
4147 for (Output_data_list::const_iterator p = pdl->begin();
4148 p != pdl->end();
4149 ++p)
4150 {
4151 if (!(*p)->is_section())
4152 return true;
4153 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4154 return true;
4155 }
4156 }
4157 return false;
4158 }
4159
4160 // Return whether the first data section (not counting TLS sections)
4161 // is a relro section.
4162
4163 bool
4164 Output_segment::is_first_section_relro() const
4165 {
4166 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4167 {
4168 if (i == static_cast<int>(ORDER_TLS_DATA)
4169 || i == static_cast<int>(ORDER_TLS_BSS))
4170 continue;
4171 const Output_data_list* pdl = &this->output_lists_[i];
4172 if (!pdl->empty())
4173 {
4174 Output_data* p = pdl->front();
4175 return p->is_section() && p->output_section()->is_relro();
4176 }
4177 }
4178 return false;
4179 }
4180
4181 // Return the maximum alignment of the Output_data in Output_segment.
4182
4183 uint64_t
4184 Output_segment::maximum_alignment()
4185 {
4186 if (!this->is_max_align_known_)
4187 {
4188 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4189 {
4190 const Output_data_list* pdl = &this->output_lists_[i];
4191 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4192 if (addralign > this->max_align_)
4193 this->max_align_ = addralign;
4194 }
4195 this->is_max_align_known_ = true;
4196 }
4197
4198 return this->max_align_;
4199 }
4200
4201 // Return the maximum alignment of a list of Output_data.
4202
4203 uint64_t
4204 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4205 {
4206 uint64_t ret = 0;
4207 for (Output_data_list::const_iterator p = pdl->begin();
4208 p != pdl->end();
4209 ++p)
4210 {
4211 uint64_t addralign = (*p)->addralign();
4212 if (addralign > ret)
4213 ret = addralign;
4214 }
4215 return ret;
4216 }
4217
4218 // Return whether this segment has any dynamic relocs.
4219
4220 bool
4221 Output_segment::has_dynamic_reloc() const
4222 {
4223 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4224 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4225 return true;
4226 return false;
4227 }
4228
4229 // Return whether this Output_data_list has any dynamic relocs.
4230
4231 bool
4232 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4233 {
4234 for (Output_data_list::const_iterator p = pdl->begin();
4235 p != pdl->end();
4236 ++p)
4237 if ((*p)->has_dynamic_reloc())
4238 return true;
4239 return false;
4240 }
4241
4242 // Set the section addresses for an Output_segment. If RESET is true,
4243 // reset the addresses first. ADDR is the address and *POFF is the
4244 // file offset. Set the section indexes starting with *PSHNDX.
4245 // INCREASE_RELRO is the size of the portion of the first non-relro
4246 // section that should be included in the PT_GNU_RELRO segment.
4247 // If this segment has relro sections, and has been aligned for
4248 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4249 // the immediately following segment. Update *HAS_RELRO, *POFF,
4250 // and *PSHNDX.
4251
4252 uint64_t
4253 Output_segment::set_section_addresses(Layout* layout, bool reset,
4254 uint64_t addr,
4255 unsigned int* increase_relro,
4256 bool* has_relro,
4257 off_t* poff,
4258 unsigned int* pshndx)
4259 {
4260 gold_assert(this->type_ == elfcpp::PT_LOAD);
4261
4262 uint64_t last_relro_pad = 0;
4263 off_t orig_off = *poff;
4264
4265 bool in_tls = false;
4266
4267 // If we have relro sections, we need to pad forward now so that the
4268 // relro sections plus INCREASE_RELRO end on an abi page boundary.
4269 if (parameters->options().relro()
4270 && this->is_first_section_relro()
4271 && (!this->are_addresses_set_ || reset))
4272 {
4273 uint64_t relro_size = 0;
4274 off_t off = *poff;
4275 uint64_t max_align = 0;
4276 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4277 {
4278 Output_data_list* pdl = &this->output_lists_[i];
4279 Output_data_list::iterator p;
4280 for (p = pdl->begin(); p != pdl->end(); ++p)
4281 {
4282 if (!(*p)->is_section())
4283 break;
4284 uint64_t align = (*p)->addralign();
4285 if (align > max_align)
4286 max_align = align;
4287 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4288 in_tls = true;
4289 else if (in_tls)
4290 {
4291 // Align the first non-TLS section to the alignment
4292 // of the TLS segment.
4293 align = max_align;
4294 in_tls = false;
4295 }
4296 relro_size = align_address(relro_size, align);
4297 // Ignore the size of the .tbss section.
4298 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4299 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4300 continue;
4301 if ((*p)->is_address_valid())
4302 relro_size += (*p)->data_size();
4303 else
4304 {
4305 // FIXME: This could be faster.
4306 (*p)->set_address_and_file_offset(addr + relro_size,
4307 off + relro_size);
4308 relro_size += (*p)->data_size();
4309 (*p)->reset_address_and_file_offset();
4310 }
4311 }
4312 if (p != pdl->end())
4313 break;
4314 }
4315 relro_size += *increase_relro;
4316 // Pad the total relro size to a multiple of the maximum
4317 // section alignment seen.
4318 uint64_t aligned_size = align_address(relro_size, max_align);
4319 // Note the amount of padding added after the last relro section.
4320 last_relro_pad = aligned_size - relro_size;
4321 *has_relro = true;
4322
4323 uint64_t page_align = parameters->target().abi_pagesize();
4324
4325 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4326 uint64_t desired_align = page_align - (aligned_size % page_align);
4327 if (desired_align < *poff % page_align)
4328 *poff += page_align - *poff % page_align;
4329 *poff += desired_align - *poff % page_align;
4330 addr += *poff - orig_off;
4331 orig_off = *poff;
4332 }
4333
4334 if (!reset && this->are_addresses_set_)
4335 {
4336 gold_assert(this->paddr_ == addr);
4337 addr = this->vaddr_;
4338 }
4339 else
4340 {
4341 this->vaddr_ = addr;
4342 this->paddr_ = addr;
4343 this->are_addresses_set_ = true;
4344 }
4345
4346 in_tls = false;
4347
4348 this->offset_ = orig_off;
4349
4350 off_t off = 0;
4351 uint64_t ret;
4352 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4353 {
4354 if (i == static_cast<int>(ORDER_RELRO_LAST))
4355 {
4356 *poff += last_relro_pad;
4357 addr += last_relro_pad;
4358 if (this->output_lists_[i].empty())
4359 {
4360 // If there is nothing in the ORDER_RELRO_LAST list,
4361 // the padding will occur at the end of the relro
4362 // segment, and we need to add it to *INCREASE_RELRO.
4363 *increase_relro += last_relro_pad;
4364 }
4365 }
4366 addr = this->set_section_list_addresses(layout, reset,
4367 &this->output_lists_[i],
4368 addr, poff, pshndx, &in_tls);
4369 if (i < static_cast<int>(ORDER_SMALL_BSS))
4370 {
4371 this->filesz_ = *poff - orig_off;
4372 off = *poff;
4373 }
4374
4375 ret = addr;
4376 }
4377
4378 // If the last section was a TLS section, align upward to the
4379 // alignment of the TLS segment, so that the overall size of the TLS
4380 // segment is aligned.
4381 if (in_tls)
4382 {
4383 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4384 *poff = align_address(*poff, segment_align);
4385 }
4386
4387 this->memsz_ = *poff - orig_off;
4388
4389 // Ignore the file offset adjustments made by the BSS Output_data
4390 // objects.
4391 *poff = off;
4392
4393 return ret;
4394 }
4395
4396 // Set the addresses and file offsets in a list of Output_data
4397 // structures.
4398
4399 uint64_t
4400 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4401 Output_data_list* pdl,
4402 uint64_t addr, off_t* poff,
4403 unsigned int* pshndx,
4404 bool* in_tls)
4405 {
4406 off_t startoff = *poff;
4407 // For incremental updates, we may allocate non-fixed sections from
4408 // free space in the file. This keeps track of the high-water mark.
4409 off_t maxoff = startoff;
4410
4411 off_t off = startoff;
4412 for (Output_data_list::iterator p = pdl->begin();
4413 p != pdl->end();
4414 ++p)
4415 {
4416 if (reset)
4417 (*p)->reset_address_and_file_offset();
4418
4419 // When doing an incremental update or when using a linker script,
4420 // the section will most likely already have an address.
4421 if (!(*p)->is_address_valid())
4422 {
4423 uint64_t align = (*p)->addralign();
4424
4425 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4426 {
4427 // Give the first TLS section the alignment of the
4428 // entire TLS segment. Otherwise the TLS segment as a
4429 // whole may be misaligned.
4430 if (!*in_tls)
4431 {
4432 Output_segment* tls_segment = layout->tls_segment();
4433 gold_assert(tls_segment != NULL);
4434 uint64_t segment_align = tls_segment->maximum_alignment();
4435 gold_assert(segment_align >= align);
4436 align = segment_align;
4437
4438 *in_tls = true;
4439 }
4440 }
4441 else
4442 {
4443 // If this is the first section after the TLS segment,
4444 // align it to at least the alignment of the TLS
4445 // segment, so that the size of the overall TLS segment
4446 // is aligned.
4447 if (*in_tls)
4448 {
4449 uint64_t segment_align =
4450 layout->tls_segment()->maximum_alignment();
4451 if (segment_align > align)
4452 align = segment_align;
4453
4454 *in_tls = false;
4455 }
4456 }
4457
4458 if (!parameters->incremental_update())
4459 {
4460 off = align_address(off, align);
4461 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4462 }
4463 else
4464 {
4465 // Incremental update: allocate file space from free list.
4466 (*p)->pre_finalize_data_size();
4467 off_t current_size = (*p)->current_data_size();
4468 off = layout->allocate(current_size, align, startoff);
4469 if (off == -1)
4470 {
4471 gold_assert((*p)->output_section() != NULL);
4472 gold_fallback(_("out of patch space for section %s; "
4473 "relink with --incremental-full"),
4474 (*p)->output_section()->name());
4475 }
4476 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4477 if ((*p)->data_size() > current_size)
4478 {
4479 gold_assert((*p)->output_section() != NULL);
4480 gold_fallback(_("%s: section changed size; "
4481 "relink with --incremental-full"),
4482 (*p)->output_section()->name());
4483 }
4484 }
4485 }
4486 else if (parameters->incremental_update())
4487 {
4488 // For incremental updates, use the fixed offset for the
4489 // high-water mark computation.
4490 off = (*p)->offset();
4491 }
4492 else
4493 {
4494 // The script may have inserted a skip forward, but it
4495 // better not have moved backward.
4496 if ((*p)->address() >= addr + (off - startoff))
4497 off += (*p)->address() - (addr + (off - startoff));
4498 else
4499 {
4500 if (!layout->script_options()->saw_sections_clause())
4501 gold_unreachable();
4502 else
4503 {
4504 Output_section* os = (*p)->output_section();
4505
4506 // Cast to unsigned long long to avoid format warnings.
4507 unsigned long long previous_dot =
4508 static_cast<unsigned long long>(addr + (off - startoff));
4509 unsigned long long dot =
4510 static_cast<unsigned long long>((*p)->address());
4511
4512 if (os == NULL)
4513 gold_error(_("dot moves backward in linker script "
4514 "from 0x%llx to 0x%llx"), previous_dot, dot);
4515 else
4516 gold_error(_("address of section '%s' moves backward "
4517 "from 0x%llx to 0x%llx"),
4518 os->name(), previous_dot, dot);
4519 }
4520 }
4521 (*p)->set_file_offset(off);
4522 (*p)->finalize_data_size();
4523 }
4524
4525 if (parameters->incremental_update())
4526 gold_debug(DEBUG_INCREMENTAL,
4527 "set_section_list_addresses: %08lx %08lx %s",
4528 static_cast<long>(off),
4529 static_cast<long>((*p)->data_size()),
4530 ((*p)->output_section() != NULL
4531 ? (*p)->output_section()->name() : "(special)"));
4532
4533 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4534 // section. Such a section does not affect the size of a
4535 // PT_LOAD segment.
4536 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4537 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4538 off += (*p)->data_size();
4539
4540 if (off > maxoff)
4541 maxoff = off;
4542
4543 if ((*p)->is_section())
4544 {
4545 (*p)->set_out_shndx(*pshndx);
4546 ++*pshndx;
4547 }
4548 }
4549
4550 *poff = maxoff;
4551 return addr + (maxoff - startoff);
4552 }
4553
4554 // For a non-PT_LOAD segment, set the offset from the sections, if
4555 // any. Add INCREASE to the file size and the memory size.
4556
4557 void
4558 Output_segment::set_offset(unsigned int increase)
4559 {
4560 gold_assert(this->type_ != elfcpp::PT_LOAD);
4561
4562 gold_assert(!this->are_addresses_set_);
4563
4564 // A non-load section only uses output_lists_[0].
4565
4566 Output_data_list* pdl = &this->output_lists_[0];
4567
4568 if (pdl->empty())
4569 {
4570 gold_assert(increase == 0);
4571 this->vaddr_ = 0;
4572 this->paddr_ = 0;
4573 this->are_addresses_set_ = true;
4574 this->memsz_ = 0;
4575 this->min_p_align_ = 0;
4576 this->offset_ = 0;
4577 this->filesz_ = 0;
4578 return;
4579 }
4580
4581 // Find the first and last section by address.
4582 const Output_data* first = NULL;
4583 const Output_data* last_data = NULL;
4584 const Output_data* last_bss = NULL;
4585 for (Output_data_list::const_iterator p = pdl->begin();
4586 p != pdl->end();
4587 ++p)
4588 {
4589 if (first == NULL
4590 || (*p)->address() < first->address()
4591 || ((*p)->address() == first->address()
4592 && (*p)->data_size() < first->data_size()))
4593 first = *p;
4594 const Output_data** plast;
4595 if ((*p)->is_section()
4596 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4597 plast = &last_bss;
4598 else
4599 plast = &last_data;
4600 if (*plast == NULL
4601 || (*p)->address() > (*plast)->address()
4602 || ((*p)->address() == (*plast)->address()
4603 && (*p)->data_size() > (*plast)->data_size()))
4604 *plast = *p;
4605 }
4606
4607 this->vaddr_ = first->address();
4608 this->paddr_ = (first->has_load_address()
4609 ? first->load_address()
4610 : this->vaddr_);
4611 this->are_addresses_set_ = true;
4612 this->offset_ = first->offset();
4613
4614 if (last_data == NULL)
4615 this->filesz_ = 0;
4616 else
4617 this->filesz_ = (last_data->address()
4618 + last_data->data_size()
4619 - this->vaddr_);
4620
4621 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4622 this->memsz_ = (last->address()
4623 + last->data_size()
4624 - this->vaddr_);
4625
4626 this->filesz_ += increase;
4627 this->memsz_ += increase;
4628
4629 // If this is a RELRO segment, verify that the segment ends at a
4630 // page boundary.
4631 if (this->type_ == elfcpp::PT_GNU_RELRO)
4632 {
4633 uint64_t page_align = parameters->target().abi_pagesize();
4634 uint64_t segment_end = this->vaddr_ + this->memsz_;
4635 if (parameters->incremental_update())
4636 {
4637 // The INCREASE_RELRO calculation is bypassed for an incremental
4638 // update, so we need to adjust the segment size manually here.
4639 segment_end = align_address(segment_end, page_align);
4640 this->memsz_ = segment_end - this->vaddr_;
4641 }
4642 else
4643 gold_assert(segment_end == align_address(segment_end, page_align));
4644 }
4645
4646 // If this is a TLS segment, align the memory size. The code in
4647 // set_section_list ensures that the section after the TLS segment
4648 // is aligned to give us room.
4649 if (this->type_ == elfcpp::PT_TLS)
4650 {
4651 uint64_t segment_align = this->maximum_alignment();
4652 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4653 this->memsz_ = align_address(this->memsz_, segment_align);
4654 }
4655 }
4656
4657 // Set the TLS offsets of the sections in the PT_TLS segment.
4658
4659 void
4660 Output_segment::set_tls_offsets()
4661 {
4662 gold_assert(this->type_ == elfcpp::PT_TLS);
4663
4664 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4665 p != this->output_lists_[0].end();
4666 ++p)
4667 (*p)->set_tls_offset(this->vaddr_);
4668 }
4669
4670 // Return the first section.
4671
4672 Output_section*
4673 Output_segment::first_section() const
4674 {
4675 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4676 {
4677 const Output_data_list* pdl = &this->output_lists_[i];
4678 for (Output_data_list::const_iterator p = pdl->begin();
4679 p != pdl->end();
4680 ++p)
4681 {
4682 if ((*p)->is_section())
4683 return (*p)->output_section();
4684 }
4685 }
4686 gold_unreachable();
4687 }
4688
4689 // Return the number of Output_sections in an Output_segment.
4690
4691 unsigned int
4692 Output_segment::output_section_count() const
4693 {
4694 unsigned int ret = 0;
4695 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4696 ret += this->output_section_count_list(&this->output_lists_[i]);
4697 return ret;
4698 }
4699
4700 // Return the number of Output_sections in an Output_data_list.
4701
4702 unsigned int
4703 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4704 {
4705 unsigned int count = 0;
4706 for (Output_data_list::const_iterator p = pdl->begin();
4707 p != pdl->end();
4708 ++p)
4709 {
4710 if ((*p)->is_section())
4711 ++count;
4712 }
4713 return count;
4714 }
4715
4716 // Return the section attached to the list segment with the lowest
4717 // load address. This is used when handling a PHDRS clause in a
4718 // linker script.
4719
4720 Output_section*
4721 Output_segment::section_with_lowest_load_address() const
4722 {
4723 Output_section* found = NULL;
4724 uint64_t found_lma = 0;
4725 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4726 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4727 &found_lma);
4728 return found;
4729 }
4730
4731 // Look through a list for a section with a lower load address.
4732
4733 void
4734 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4735 Output_section** found,
4736 uint64_t* found_lma) const
4737 {
4738 for (Output_data_list::const_iterator p = pdl->begin();
4739 p != pdl->end();
4740 ++p)
4741 {
4742 if (!(*p)->is_section())
4743 continue;
4744 Output_section* os = static_cast<Output_section*>(*p);
4745 uint64_t lma = (os->has_load_address()
4746 ? os->load_address()
4747 : os->address());
4748 if (*found == NULL || lma < *found_lma)
4749 {
4750 *found = os;
4751 *found_lma = lma;
4752 }
4753 }
4754 }
4755
4756 // Write the segment data into *OPHDR.
4757
4758 template<int size, bool big_endian>
4759 void
4760 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4761 {
4762 ophdr->put_p_type(this->type_);
4763 ophdr->put_p_offset(this->offset_);
4764 ophdr->put_p_vaddr(this->vaddr_);
4765 ophdr->put_p_paddr(this->paddr_);
4766 ophdr->put_p_filesz(this->filesz_);
4767 ophdr->put_p_memsz(this->memsz_);
4768 ophdr->put_p_flags(this->flags_);
4769 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4770 }
4771
4772 // Write the section headers into V.
4773
4774 template<int size, bool big_endian>
4775 unsigned char*
4776 Output_segment::write_section_headers(const Layout* layout,
4777 const Stringpool* secnamepool,
4778 unsigned char* v,
4779 unsigned int* pshndx) const
4780 {
4781 // Every section that is attached to a segment must be attached to a
4782 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4783 // segments.
4784 if (this->type_ != elfcpp::PT_LOAD)
4785 return v;
4786
4787 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4788 {
4789 const Output_data_list* pdl = &this->output_lists_[i];
4790 v = this->write_section_headers_list<size, big_endian>(layout,
4791 secnamepool,
4792 pdl,
4793 v, pshndx);
4794 }
4795
4796 return v;
4797 }
4798
4799 template<int size, bool big_endian>
4800 unsigned char*
4801 Output_segment::write_section_headers_list(const Layout* layout,
4802 const Stringpool* secnamepool,
4803 const Output_data_list* pdl,
4804 unsigned char* v,
4805 unsigned int* pshndx) const
4806 {
4807 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4808 for (Output_data_list::const_iterator p = pdl->begin();
4809 p != pdl->end();
4810 ++p)
4811 {
4812 if ((*p)->is_section())
4813 {
4814 const Output_section* ps = static_cast<const Output_section*>(*p);
4815 gold_assert(*pshndx == ps->out_shndx());
4816 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4817 ps->write_header(layout, secnamepool, &oshdr);
4818 v += shdr_size;
4819 ++*pshndx;
4820 }
4821 }
4822 return v;
4823 }
4824
4825 // Print the output sections to the map file.
4826
4827 void
4828 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4829 {
4830 if (this->type() != elfcpp::PT_LOAD)
4831 return;
4832 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4833 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4834 }
4835
4836 // Print an output section list to the map file.
4837
4838 void
4839 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4840 const Output_data_list* pdl) const
4841 {
4842 for (Output_data_list::const_iterator p = pdl->begin();
4843 p != pdl->end();
4844 ++p)
4845 (*p)->print_to_mapfile(mapfile);
4846 }
4847
4848 // Output_file methods.
4849
4850 Output_file::Output_file(const char* name)
4851 : name_(name),
4852 o_(-1),
4853 file_size_(0),
4854 base_(NULL),
4855 map_is_anonymous_(false),
4856 map_is_allocated_(false),
4857 is_temporary_(false)
4858 {
4859 }
4860
4861 // Try to open an existing file. Returns false if the file doesn't
4862 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4863 // NULL, open that file as the base for incremental linking, and
4864 // copy its contents to the new output file. This routine can
4865 // be called for incremental updates, in which case WRITABLE should
4866 // be true, or by the incremental-dump utility, in which case
4867 // WRITABLE should be false.
4868
4869 bool
4870 Output_file::open_base_file(const char* base_name, bool writable)
4871 {
4872 // The name "-" means "stdout".
4873 if (strcmp(this->name_, "-") == 0)
4874 return false;
4875
4876 bool use_base_file = base_name != NULL;
4877 if (!use_base_file)
4878 base_name = this->name_;
4879 else if (strcmp(base_name, this->name_) == 0)
4880 gold_fatal(_("%s: incremental base and output file name are the same"),
4881 base_name);
4882
4883 // Don't bother opening files with a size of zero.
4884 struct stat s;
4885 if (::stat(base_name, &s) != 0)
4886 {
4887 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4888 return false;
4889 }
4890 if (s.st_size == 0)
4891 {
4892 gold_info(_("%s: incremental base file is empty"), base_name);
4893 return false;
4894 }
4895
4896 // If we're using a base file, we want to open it read-only.
4897 if (use_base_file)
4898 writable = false;
4899
4900 int oflags = writable ? O_RDWR : O_RDONLY;
4901 int o = open_descriptor(-1, base_name, oflags, 0);
4902 if (o < 0)
4903 {
4904 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4905 return false;
4906 }
4907
4908 // If the base file and the output file are different, open a
4909 // new output file and read the contents from the base file into
4910 // the newly-mapped region.
4911 if (use_base_file)
4912 {
4913 this->open(s.st_size);
4914 ssize_t bytes_to_read = s.st_size;
4915 unsigned char* p = this->base_;
4916 while (bytes_to_read > 0)
4917 {
4918 ssize_t len = ::read(o, p, bytes_to_read);
4919 if (len < 0)
4920 {
4921 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4922 return false;
4923 }
4924 if (len == 0)
4925 {
4926 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4927 base_name,
4928 static_cast<long long>(s.st_size - bytes_to_read),
4929 static_cast<long long>(s.st_size));
4930 return false;
4931 }
4932 p += len;
4933 bytes_to_read -= len;
4934 }
4935 ::close(o);
4936 return true;
4937 }
4938
4939 this->o_ = o;
4940 this->file_size_ = s.st_size;
4941
4942 if (!this->map_no_anonymous(writable))
4943 {
4944 release_descriptor(o, true);
4945 this->o_ = -1;
4946 this->file_size_ = 0;
4947 return false;
4948 }
4949
4950 return true;
4951 }
4952
4953 // Open the output file.
4954
4955 void
4956 Output_file::open(off_t file_size)
4957 {
4958 this->file_size_ = file_size;
4959
4960 // Unlink the file first; otherwise the open() may fail if the file
4961 // is busy (e.g. it's an executable that's currently being executed).
4962 //
4963 // However, the linker may be part of a system where a zero-length
4964 // file is created for it to write to, with tight permissions (gcc
4965 // 2.95 did something like this). Unlinking the file would work
4966 // around those permission controls, so we only unlink if the file
4967 // has a non-zero size. We also unlink only regular files to avoid
4968 // trouble with directories/etc.
4969 //
4970 // If we fail, continue; this command is merely a best-effort attempt
4971 // to improve the odds for open().
4972
4973 // We let the name "-" mean "stdout"
4974 if (!this->is_temporary_)
4975 {
4976 if (strcmp(this->name_, "-") == 0)
4977 this->o_ = STDOUT_FILENO;
4978 else
4979 {
4980 struct stat s;
4981 if (::stat(this->name_, &s) == 0
4982 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4983 {
4984 if (s.st_size != 0)
4985 ::unlink(this->name_);
4986 else if (!parameters->options().relocatable())
4987 {
4988 // If we don't unlink the existing file, add execute
4989 // permission where read permissions already exist
4990 // and where the umask permits.
4991 int mask = ::umask(0);
4992 ::umask(mask);
4993 s.st_mode |= (s.st_mode & 0444) >> 2;
4994 ::chmod(this->name_, s.st_mode & ~mask);
4995 }
4996 }
4997
4998 int mode = parameters->options().relocatable() ? 0666 : 0777;
4999 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5000 mode);
5001 if (o < 0)
5002 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5003 this->o_ = o;
5004 }
5005 }
5006
5007 this->map();
5008 }
5009
5010 // Resize the output file.
5011
5012 void
5013 Output_file::resize(off_t file_size)
5014 {
5015 // If the mmap is mapping an anonymous memory buffer, this is easy:
5016 // just mremap to the new size. If it's mapping to a file, we want
5017 // to unmap to flush to the file, then remap after growing the file.
5018 if (this->map_is_anonymous_)
5019 {
5020 void* base;
5021 if (!this->map_is_allocated_)
5022 {
5023 base = ::mremap(this->base_, this->file_size_, file_size,
5024 MREMAP_MAYMOVE);
5025 if (base == MAP_FAILED)
5026 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5027 }
5028 else
5029 {
5030 base = realloc(this->base_, file_size);
5031 if (base == NULL)
5032 gold_nomem();
5033 if (file_size > this->file_size_)
5034 memset(static_cast<char*>(base) + this->file_size_, 0,
5035 file_size - this->file_size_);
5036 }
5037 this->base_ = static_cast<unsigned char*>(base);
5038 this->file_size_ = file_size;
5039 }
5040 else
5041 {
5042 this->unmap();
5043 this->file_size_ = file_size;
5044 if (!this->map_no_anonymous(true))
5045 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5046 }
5047 }
5048
5049 // Map an anonymous block of memory which will later be written to the
5050 // file. Return whether the map succeeded.
5051
5052 bool
5053 Output_file::map_anonymous()
5054 {
5055 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5056 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5057 if (base == MAP_FAILED)
5058 {
5059 base = malloc(this->file_size_);
5060 if (base == NULL)
5061 return false;
5062 memset(base, 0, this->file_size_);
5063 this->map_is_allocated_ = true;
5064 }
5065 this->base_ = static_cast<unsigned char*>(base);
5066 this->map_is_anonymous_ = true;
5067 return true;
5068 }
5069
5070 // Map the file into memory. Return whether the mapping succeeded.
5071 // If WRITABLE is true, map with write access.
5072
5073 bool
5074 Output_file::map_no_anonymous(bool writable)
5075 {
5076 const int o = this->o_;
5077
5078 // If the output file is not a regular file, don't try to mmap it;
5079 // instead, we'll mmap a block of memory (an anonymous buffer), and
5080 // then later write the buffer to the file.
5081 void* base;
5082 struct stat statbuf;
5083 if (o == STDOUT_FILENO || o == STDERR_FILENO
5084 || ::fstat(o, &statbuf) != 0
5085 || !S_ISREG(statbuf.st_mode)
5086 || this->is_temporary_)
5087 return false;
5088
5089 // Ensure that we have disk space available for the file. If we
5090 // don't do this, it is possible that we will call munmap, close,
5091 // and exit with dirty buffers still in the cache with no assigned
5092 // disk blocks. If the disk is out of space at that point, the
5093 // output file will wind up incomplete, but we will have already
5094 // exited. The alternative to fallocate would be to use fdatasync,
5095 // but that would be a more significant performance hit.
5096 if (writable)
5097 {
5098 int err = gold_fallocate(o, 0, this->file_size_);
5099 if (err != 0)
5100 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5101 }
5102
5103 // Map the file into memory.
5104 int prot = PROT_READ;
5105 if (writable)
5106 prot |= PROT_WRITE;
5107 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5108
5109 // The mmap call might fail because of file system issues: the file
5110 // system might not support mmap at all, or it might not support
5111 // mmap with PROT_WRITE.
5112 if (base == MAP_FAILED)
5113 return false;
5114
5115 this->map_is_anonymous_ = false;
5116 this->base_ = static_cast<unsigned char*>(base);
5117 return true;
5118 }
5119
5120 // Map the file into memory.
5121
5122 void
5123 Output_file::map()
5124 {
5125 if (parameters->options().mmap_output_file()
5126 && this->map_no_anonymous(true))
5127 return;
5128
5129 // The mmap call might fail because of file system issues: the file
5130 // system might not support mmap at all, or it might not support
5131 // mmap with PROT_WRITE. I'm not sure which errno values we will
5132 // see in all cases, so if the mmap fails for any reason and we
5133 // don't care about file contents, try for an anonymous map.
5134 if (this->map_anonymous())
5135 return;
5136
5137 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5138 this->name_, static_cast<unsigned long>(this->file_size_),
5139 strerror(errno));
5140 }
5141
5142 // Unmap the file from memory.
5143
5144 void
5145 Output_file::unmap()
5146 {
5147 if (this->map_is_anonymous_)
5148 {
5149 // We've already written out the data, so there is no reason to
5150 // waste time unmapping or freeing the memory.
5151 }
5152 else
5153 {
5154 if (::munmap(this->base_, this->file_size_) < 0)
5155 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5156 }
5157 this->base_ = NULL;
5158 }
5159
5160 // Close the output file.
5161
5162 void
5163 Output_file::close()
5164 {
5165 // If the map isn't file-backed, we need to write it now.
5166 if (this->map_is_anonymous_ && !this->is_temporary_)
5167 {
5168 size_t bytes_to_write = this->file_size_;
5169 size_t offset = 0;
5170 while (bytes_to_write > 0)
5171 {
5172 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5173 bytes_to_write);
5174 if (bytes_written == 0)
5175 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5176 else if (bytes_written < 0)
5177 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5178 else
5179 {
5180 bytes_to_write -= bytes_written;
5181 offset += bytes_written;
5182 }
5183 }
5184 }
5185 this->unmap();
5186
5187 // We don't close stdout or stderr
5188 if (this->o_ != STDOUT_FILENO
5189 && this->o_ != STDERR_FILENO
5190 && !this->is_temporary_)
5191 if (::close(this->o_) < 0)
5192 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5193 this->o_ = -1;
5194 }
5195
5196 // Instantiate the templates we need. We could use the configure
5197 // script to restrict this to only the ones for implemented targets.
5198
5199 #ifdef HAVE_TARGET_32_LITTLE
5200 template
5201 off_t
5202 Output_section::add_input_section<32, false>(
5203 Layout* layout,
5204 Sized_relobj_file<32, false>* object,
5205 unsigned int shndx,
5206 const char* secname,
5207 const elfcpp::Shdr<32, false>& shdr,
5208 unsigned int reloc_shndx,
5209 bool have_sections_script);
5210 #endif
5211
5212 #ifdef HAVE_TARGET_32_BIG
5213 template
5214 off_t
5215 Output_section::add_input_section<32, true>(
5216 Layout* layout,
5217 Sized_relobj_file<32, true>* object,
5218 unsigned int shndx,
5219 const char* secname,
5220 const elfcpp::Shdr<32, true>& shdr,
5221 unsigned int reloc_shndx,
5222 bool have_sections_script);
5223 #endif
5224
5225 #ifdef HAVE_TARGET_64_LITTLE
5226 template
5227 off_t
5228 Output_section::add_input_section<64, false>(
5229 Layout* layout,
5230 Sized_relobj_file<64, false>* object,
5231 unsigned int shndx,
5232 const char* secname,
5233 const elfcpp::Shdr<64, false>& shdr,
5234 unsigned int reloc_shndx,
5235 bool have_sections_script);
5236 #endif
5237
5238 #ifdef HAVE_TARGET_64_BIG
5239 template
5240 off_t
5241 Output_section::add_input_section<64, true>(
5242 Layout* layout,
5243 Sized_relobj_file<64, true>* object,
5244 unsigned int shndx,
5245 const char* secname,
5246 const elfcpp::Shdr<64, true>& shdr,
5247 unsigned int reloc_shndx,
5248 bool have_sections_script);
5249 #endif
5250
5251 #ifdef HAVE_TARGET_32_LITTLE
5252 template
5253 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5254 #endif
5255
5256 #ifdef HAVE_TARGET_32_BIG
5257 template
5258 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5259 #endif
5260
5261 #ifdef HAVE_TARGET_64_LITTLE
5262 template
5263 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5264 #endif
5265
5266 #ifdef HAVE_TARGET_64_BIG
5267 template
5268 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5269 #endif
5270
5271 #ifdef HAVE_TARGET_32_LITTLE
5272 template
5273 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5274 #endif
5275
5276 #ifdef HAVE_TARGET_32_BIG
5277 template
5278 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5279 #endif
5280
5281 #ifdef HAVE_TARGET_64_LITTLE
5282 template
5283 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5284 #endif
5285
5286 #ifdef HAVE_TARGET_64_BIG
5287 template
5288 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5289 #endif
5290
5291 #ifdef HAVE_TARGET_32_LITTLE
5292 template
5293 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5294 #endif
5295
5296 #ifdef HAVE_TARGET_32_BIG
5297 template
5298 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5299 #endif
5300
5301 #ifdef HAVE_TARGET_64_LITTLE
5302 template
5303 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5304 #endif
5305
5306 #ifdef HAVE_TARGET_64_BIG
5307 template
5308 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5309 #endif
5310
5311 #ifdef HAVE_TARGET_32_LITTLE
5312 template
5313 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5314 #endif
5315
5316 #ifdef HAVE_TARGET_32_BIG
5317 template
5318 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5319 #endif
5320
5321 #ifdef HAVE_TARGET_64_LITTLE
5322 template
5323 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5324 #endif
5325
5326 #ifdef HAVE_TARGET_64_BIG
5327 template
5328 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5329 #endif
5330
5331 #ifdef HAVE_TARGET_32_LITTLE
5332 template
5333 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5334 #endif
5335
5336 #ifdef HAVE_TARGET_32_BIG
5337 template
5338 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5339 #endif
5340
5341 #ifdef HAVE_TARGET_64_LITTLE
5342 template
5343 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5344 #endif
5345
5346 #ifdef HAVE_TARGET_64_BIG
5347 template
5348 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5349 #endif
5350
5351 #ifdef HAVE_TARGET_32_LITTLE
5352 template
5353 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5354 #endif
5355
5356 #ifdef HAVE_TARGET_32_BIG
5357 template
5358 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5359 #endif
5360
5361 #ifdef HAVE_TARGET_64_LITTLE
5362 template
5363 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5364 #endif
5365
5366 #ifdef HAVE_TARGET_64_BIG
5367 template
5368 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5369 #endif
5370
5371 #ifdef HAVE_TARGET_32_LITTLE
5372 template
5373 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5374 #endif
5375
5376 #ifdef HAVE_TARGET_32_BIG
5377 template
5378 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5379 #endif
5380
5381 #ifdef HAVE_TARGET_64_LITTLE
5382 template
5383 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5384 #endif
5385
5386 #ifdef HAVE_TARGET_64_BIG
5387 template
5388 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5389 #endif
5390
5391 #ifdef HAVE_TARGET_32_LITTLE
5392 template
5393 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5394 #endif
5395
5396 #ifdef HAVE_TARGET_32_BIG
5397 template
5398 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5399 #endif
5400
5401 #ifdef HAVE_TARGET_64_LITTLE
5402 template
5403 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5404 #endif
5405
5406 #ifdef HAVE_TARGET_64_BIG
5407 template
5408 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5409 #endif
5410
5411 #ifdef HAVE_TARGET_32_LITTLE
5412 template
5413 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5414 #endif
5415
5416 #ifdef HAVE_TARGET_32_BIG
5417 template
5418 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5419 #endif
5420
5421 #ifdef HAVE_TARGET_64_LITTLE
5422 template
5423 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5424 #endif
5425
5426 #ifdef HAVE_TARGET_64_BIG
5427 template
5428 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5429 #endif
5430
5431 #ifdef HAVE_TARGET_32_LITTLE
5432 template
5433 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5434 #endif
5435
5436 #ifdef HAVE_TARGET_32_BIG
5437 template
5438 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5439 #endif
5440
5441 #ifdef HAVE_TARGET_64_LITTLE
5442 template
5443 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5444 #endif
5445
5446 #ifdef HAVE_TARGET_64_BIG
5447 template
5448 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5449 #endif
5450
5451 #ifdef HAVE_TARGET_32_LITTLE
5452 template
5453 class Output_data_group<32, false>;
5454 #endif
5455
5456 #ifdef HAVE_TARGET_32_BIG
5457 template
5458 class Output_data_group<32, true>;
5459 #endif
5460
5461 #ifdef HAVE_TARGET_64_LITTLE
5462 template
5463 class Output_data_group<64, false>;
5464 #endif
5465
5466 #ifdef HAVE_TARGET_64_BIG
5467 template
5468 class Output_data_group<64, true>;
5469 #endif
5470
5471 template
5472 class Output_data_got<32, false>;
5473
5474 template
5475 class Output_data_got<32, true>;
5476
5477 template
5478 class Output_data_got<64, false>;
5479
5480 template
5481 class Output_data_got<64, true>;
5482
5483 } // End namespace gold.
This page took 0.138665 seconds and 5 git commands to generate.