Clean up setting address and section offset.
[deliverable/binutils-gdb.git] / gold / output.h
1 // output.h -- manage the output file for gold -*- C++ -*-
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
25
26 #include <list>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "layout.h"
31 #include "reloc-types.h"
32
33 namespace gold
34 {
35
36 class General_options;
37 class Object;
38 class Symbol;
39 class Output_file;
40 class Output_section;
41 class Target;
42 template<int size, bool big_endian>
43 class Sized_target;
44 template<int size, bool big_endian>
45 class Sized_relobj;
46
47 // An abtract class for data which has to go into the output file.
48
49 class Output_data
50 {
51 public:
52 explicit Output_data()
53 : address_(0), data_size_(0), offset_(-1),
54 is_address_valid_(false), is_data_size_valid_(false),
55 is_offset_valid_(false),
56 dynamic_reloc_count_(0)
57 { }
58
59 virtual
60 ~Output_data();
61
62 // Return the address. For allocated sections, this is only valid
63 // after Layout::finalize is finished.
64 uint64_t
65 address() const
66 {
67 gold_assert(this->is_address_valid_);
68 return this->address_;
69 }
70
71 // Return the size of the data. For allocated sections, this must
72 // be valid after Layout::finalize calls set_address, but need not
73 // be valid before then.
74 off_t
75 data_size() const
76 {
77 gold_assert(this->is_data_size_valid_);
78 return this->data_size_;
79 }
80
81 // Return the file offset. This is only valid after
82 // Layout::finalize is finished. For some non-allocated sections,
83 // it may not be valid until near the end of the link.
84 off_t
85 offset() const
86 {
87 gold_assert(this->is_offset_valid_);
88 return this->offset_;
89 }
90
91 // Return the required alignment.
92 uint64_t
93 addralign() const
94 { return this->do_addralign(); }
95
96 // Return whether this is an Output_section.
97 bool
98 is_section() const
99 { return this->do_is_section(); }
100
101 // Return whether this is an Output_section of the specified type.
102 bool
103 is_section_type(elfcpp::Elf_Word stt) const
104 { return this->do_is_section_type(stt); }
105
106 // Return whether this is an Output_section with the specified flag
107 // set.
108 bool
109 is_section_flag_set(elfcpp::Elf_Xword shf) const
110 { return this->do_is_section_flag_set(shf); }
111
112 // Return the output section index, if there is an output section.
113 unsigned int
114 out_shndx() const
115 { return this->do_out_shndx(); }
116
117 // Set the output section index, if this is an output section.
118 void
119 set_out_shndx(unsigned int shndx)
120 { this->do_set_out_shndx(shndx); }
121
122 // Set the address and file offset of this data, and finalize the
123 // size of the data. This is called during Layout::finalize for
124 // allocated sections.
125 void
126 set_address_and_file_offset(uint64_t addr, off_t off)
127 {
128 this->set_address(addr);
129 this->set_file_offset(off);
130 this->finalize_data_size();
131 }
132
133 // Set the address.
134 void
135 set_address(uint64_t addr)
136 {
137 gold_assert(!this->is_address_valid_);
138 this->address_ = addr;
139 this->is_address_valid_ = true;
140 }
141
142 // Set the file offset.
143 void
144 set_file_offset(off_t off)
145 {
146 gold_assert(!this->is_offset_valid_);
147 this->offset_ = off;
148 this->is_offset_valid_ = true;
149 }
150
151 // Finalize the data size.
152 void
153 finalize_data_size()
154 {
155 if (!this->is_data_size_valid_)
156 {
157 // Tell the child class to set the data size.
158 this->set_final_data_size();
159 gold_assert(this->is_data_size_valid_);
160 }
161 }
162
163 // Write the data to the output file. This is called after
164 // Layout::finalize is complete.
165 void
166 write(Output_file* file)
167 { this->do_write(file); }
168
169 // This is called by Layout::finalize to note that the sizes of
170 // allocated sections must now be fixed.
171 static void
172 layout_complete()
173 { Output_data::allocated_sizes_are_fixed = true; }
174
175 // Used to check that layout has been done.
176 static bool
177 is_layout_complete()
178 { return Output_data::allocated_sizes_are_fixed; }
179
180 // Count the number of dynamic relocations applied to this section.
181 void
182 add_dynamic_reloc()
183 { ++this->dynamic_reloc_count_; }
184
185 // Return the number of dynamic relocations applied to this section.
186 unsigned int
187 dynamic_reloc_count() const
188 { return this->dynamic_reloc_count_; }
189
190 protected:
191 // Functions that child classes may or in some cases must implement.
192
193 // Write the data to the output file.
194 virtual void
195 do_write(Output_file*) = 0;
196
197 // Return the required alignment.
198 virtual uint64_t
199 do_addralign() const = 0;
200
201 // Return whether this is an Output_section.
202 virtual bool
203 do_is_section() const
204 { return false; }
205
206 // Return whether this is an Output_section of the specified type.
207 // This only needs to be implement by Output_section.
208 virtual bool
209 do_is_section_type(elfcpp::Elf_Word) const
210 { return false; }
211
212 // Return whether this is an Output_section with the specific flag
213 // set. This only needs to be implemented by Output_section.
214 virtual bool
215 do_is_section_flag_set(elfcpp::Elf_Xword) const
216 { return false; }
217
218 // Return the output section index, if there is an output section.
219 virtual unsigned int
220 do_out_shndx() const
221 { gold_unreachable(); }
222
223 // Set the output section index, if this is an output section.
224 virtual void
225 do_set_out_shndx(unsigned int)
226 { gold_unreachable(); }
227
228 // This is a hook for derived classes to set the data size. This is
229 // called by finalize_data_size, normally called during
230 // Layout::finalize, when the section address is set.
231 virtual void
232 set_final_data_size()
233 { gold_unreachable(); }
234
235 // Functions that child classes may call.
236
237 // Whether the address is valid.
238 bool
239 is_address_valid() const
240 { return this->is_address_valid_; }
241
242 // Whether the file offset is valid.
243 bool
244 is_offset_valid() const
245 { return this->is_offset_valid_; }
246
247 // Whether the data size is valid.
248 bool
249 is_data_size_valid() const
250 { return this->is_data_size_valid_; }
251
252 // Set the size of the data.
253 void
254 set_data_size(off_t data_size)
255 {
256 gold_assert(!this->is_data_size_valid_);
257 this->data_size_ = data_size;
258 this->is_data_size_valid_ = true;
259 }
260
261 // Get the current data size--this is for the convenience of
262 // sections which build up their size over time.
263 off_t
264 current_data_size_for_child() const
265 { return this->data_size_; }
266
267 // Set the current data size--this is for the convenience of
268 // sections which build up their size over time.
269 void
270 set_current_data_size_for_child(off_t data_size)
271 {
272 gold_assert(!this->is_data_size_valid_);
273 this->data_size_ = data_size;
274 }
275
276 // Return default alignment for the target size.
277 static uint64_t
278 default_alignment();
279
280 // Return default alignment for a specified size--32 or 64.
281 static uint64_t
282 default_alignment_for_size(int size);
283
284 private:
285 Output_data(const Output_data&);
286 Output_data& operator=(const Output_data&);
287
288 // This is used for verification, to make sure that we don't try to
289 // change any sizes of allocated sections after we set the section
290 // addresses.
291 static bool allocated_sizes_are_fixed;
292
293 // Memory address in output file.
294 uint64_t address_;
295 // Size of data in output file.
296 off_t data_size_;
297 // File offset of contents in output file.
298 off_t offset_;
299 // Whether address_ is valid.
300 bool is_address_valid_;
301 // Whether data_size_ is valid.
302 bool is_data_size_valid_;
303 // Whether offset_ is valid.
304 bool is_offset_valid_;
305 // Count of dynamic relocations applied to this section.
306 unsigned int dynamic_reloc_count_;
307 };
308
309 // Output the section headers.
310
311 class Output_section_headers : public Output_data
312 {
313 public:
314 Output_section_headers(const Layout*,
315 const Layout::Segment_list*,
316 const Layout::Section_list*,
317 const Stringpool*);
318
319 protected:
320 // Write the data to the file.
321 void
322 do_write(Output_file*);
323
324 // Return the required alignment.
325 uint64_t
326 do_addralign() const
327 { return Output_data::default_alignment(); }
328
329 private:
330 // Write the data to the file with the right size and endianness.
331 template<int size, bool big_endian>
332 void
333 do_sized_write(Output_file*);
334
335 const Layout* layout_;
336 const Layout::Segment_list* segment_list_;
337 const Layout::Section_list* unattached_section_list_;
338 const Stringpool* secnamepool_;
339 };
340
341 // Output the segment headers.
342
343 class Output_segment_headers : public Output_data
344 {
345 public:
346 Output_segment_headers(const Layout::Segment_list& segment_list);
347
348 protected:
349 // Write the data to the file.
350 void
351 do_write(Output_file*);
352
353 // Return the required alignment.
354 uint64_t
355 do_addralign() const
356 { return Output_data::default_alignment(); }
357
358 private:
359 // Write the data to the file with the right size and endianness.
360 template<int size, bool big_endian>
361 void
362 do_sized_write(Output_file*);
363
364 const Layout::Segment_list& segment_list_;
365 };
366
367 // Output the ELF file header.
368
369 class Output_file_header : public Output_data
370 {
371 public:
372 Output_file_header(const Target*,
373 const Symbol_table*,
374 const Output_segment_headers*);
375
376 // Add information about the section headers. We lay out the ELF
377 // file header before we create the section headers.
378 void set_section_info(const Output_section_headers*,
379 const Output_section* shstrtab);
380
381 protected:
382 // Write the data to the file.
383 void
384 do_write(Output_file*);
385
386 // Return the required alignment.
387 uint64_t
388 do_addralign() const
389 { return Output_data::default_alignment(); }
390
391 private:
392 // Write the data to the file with the right size and endianness.
393 template<int size, bool big_endian>
394 void
395 do_sized_write(Output_file*);
396
397 const Target* target_;
398 const Symbol_table* symtab_;
399 const Output_segment_headers* segment_header_;
400 const Output_section_headers* section_header_;
401 const Output_section* shstrtab_;
402 };
403
404 // Output sections are mainly comprised of input sections. However,
405 // there are cases where we have data to write out which is not in an
406 // input section. Output_section_data is used in such cases. This is
407 // an abstract base class.
408
409 class Output_section_data : public Output_data
410 {
411 public:
412 Output_section_data(off_t data_size, uint64_t addralign)
413 : Output_data(), output_section_(NULL), addralign_(addralign)
414 { this->set_data_size(data_size); }
415
416 Output_section_data(uint64_t addralign)
417 : Output_data(), output_section_(NULL), addralign_(addralign)
418 { }
419
420 // Return the output section.
421 const Output_section*
422 output_section() const
423 { return this->output_section_; }
424
425 // Record the output section.
426 void
427 set_output_section(Output_section* os);
428
429 // Add an input section, for SHF_MERGE sections. This returns true
430 // if the section was handled.
431 bool
432 add_input_section(Relobj* object, unsigned int shndx)
433 { return this->do_add_input_section(object, shndx); }
434
435 // Given an input OBJECT, an input section index SHNDX within that
436 // object, and an OFFSET relative to the start of that input
437 // section, return whether or not the corresponding offset within
438 // the output section is known. If this function returns true, it
439 // sets *POUTPUT to the output offset. The value -1 indicates that
440 // this input offset is being discarded.
441 virtual bool
442 output_offset(const Relobj* object, unsigned int shndx, off_t offset,
443 off_t *poutput) const
444 { return this->do_output_offset(object, shndx, offset, poutput); }
445
446 protected:
447 // The child class must implement do_write.
448
449 // The child class may implement specific adjustments to the output
450 // section.
451 virtual void
452 do_adjust_output_section(Output_section*)
453 { }
454
455 // May be implemented by child class. Return true if the section
456 // was handled.
457 virtual bool
458 do_add_input_section(Relobj*, unsigned int)
459 { gold_unreachable(); }
460
461 // The child class may implement output_offset.
462 virtual bool
463 do_output_offset(const Relobj*, unsigned int, off_t, off_t*) const
464 { return false; }
465
466 // Return the required alignment.
467 uint64_t
468 do_addralign() const
469 { return this->addralign_; }
470
471 // Return the section index of the output section.
472 unsigned int
473 do_out_shndx() const;
474
475 // Set the alignment.
476 void
477 set_addralign(uint64_t addralign)
478 { this->addralign_ = addralign; }
479
480 private:
481 // The output section for this section.
482 const Output_section* output_section_;
483 // The required alignment.
484 uint64_t addralign_;
485 };
486
487 // Some Output_section_data classes build up their data step by step,
488 // rather than all at once. This class provides an interface for
489 // them.
490
491 class Output_section_data_build : public Output_section_data
492 {
493 public:
494 Output_section_data_build(uint64_t addralign)
495 : Output_section_data(addralign)
496 { }
497
498 // Get the current data size.
499 off_t
500 current_data_size() const
501 { return this->current_data_size_for_child(); }
502
503 // Set the current data size.
504 void
505 set_current_data_size(off_t data_size)
506 { this->set_current_data_size_for_child(data_size); }
507
508 protected:
509 // Set the final data size.
510 virtual void
511 set_final_data_size()
512 { this->set_data_size(this->current_data_size_for_child()); }
513 };
514
515 // A simple case of Output_data in which we have constant data to
516 // output.
517
518 class Output_data_const : public Output_section_data
519 {
520 public:
521 Output_data_const(const std::string& data, uint64_t addralign)
522 : Output_section_data(data.size(), addralign), data_(data)
523 { }
524
525 Output_data_const(const char* p, off_t len, uint64_t addralign)
526 : Output_section_data(len, addralign), data_(p, len)
527 { }
528
529 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
530 : Output_section_data(len, addralign),
531 data_(reinterpret_cast<const char*>(p), len)
532 { }
533
534 protected:
535 // Write the data to the output file.
536 void
537 do_write(Output_file*);
538
539 private:
540 std::string data_;
541 };
542
543 // Another version of Output_data with constant data, in which the
544 // buffer is allocated by the caller.
545
546 class Output_data_const_buffer : public Output_section_data
547 {
548 public:
549 Output_data_const_buffer(const unsigned char* p, off_t len,
550 uint64_t addralign)
551 : Output_section_data(len, addralign), p_(p)
552 { }
553
554 protected:
555 // Write the data the output file.
556 void
557 do_write(Output_file*);
558
559 private:
560 const unsigned char* p_;
561 };
562
563 // A place holder for a fixed amount of data written out via some
564 // other mechanism.
565
566 class Output_data_fixed_space : public Output_section_data
567 {
568 public:
569 Output_data_fixed_space(off_t data_size, uint64_t addralign)
570 : Output_section_data(data_size, addralign)
571 { }
572
573 protected:
574 // Write out the data--the actual data must be written out
575 // elsewhere.
576 void
577 do_write(Output_file*)
578 { }
579 };
580
581 // A place holder for variable sized data written out via some other
582 // mechanism.
583
584 class Output_data_space : public Output_section_data_build
585 {
586 public:
587 explicit Output_data_space(uint64_t addralign)
588 : Output_section_data_build(addralign)
589 { }
590
591 // Set the alignment.
592 void
593 set_space_alignment(uint64_t align)
594 { this->set_addralign(align); }
595
596 protected:
597 // Write out the data--the actual data must be written out
598 // elsewhere.
599 void
600 do_write(Output_file*)
601 { }
602 };
603
604 // A string table which goes into an output section.
605
606 class Output_data_strtab : public Output_section_data
607 {
608 public:
609 Output_data_strtab(Stringpool* strtab)
610 : Output_section_data(1), strtab_(strtab)
611 { }
612
613 protected:
614 // This is called to set the address and file offset. Here we make
615 // sure that the Stringpool is finalized.
616 void
617 set_final_data_size();
618
619 // Write out the data.
620 void
621 do_write(Output_file*);
622
623 private:
624 Stringpool* strtab_;
625 };
626
627 // This POD class is used to represent a single reloc in the output
628 // file. This could be a private class within Output_data_reloc, but
629 // the templatization is complex enough that I broke it out into a
630 // separate class. The class is templatized on either elfcpp::SHT_REL
631 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
632 // relocation or an ordinary relocation.
633
634 // A relocation can be against a global symbol, a local symbol, an
635 // output section, or the undefined symbol at index 0. We represent
636 // the latter by using a NULL global symbol.
637
638 template<int sh_type, bool dynamic, int size, bool big_endian>
639 class Output_reloc;
640
641 template<bool dynamic, int size, bool big_endian>
642 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
643 {
644 public:
645 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
646
647 // An uninitialized entry. We need this because we want to put
648 // instances of this class into an STL container.
649 Output_reloc()
650 : local_sym_index_(INVALID_CODE)
651 { }
652
653 // A reloc against a global symbol.
654
655 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
656 Address address)
657 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
658 shndx_(INVALID_CODE)
659 {
660 this->u1_.gsym = gsym;
661 this->u2_.od = od;
662 }
663
664 Output_reloc(Symbol* gsym, unsigned int type, Relobj* relobj,
665 unsigned int shndx, Address address)
666 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
667 shndx_(shndx)
668 {
669 gold_assert(shndx != INVALID_CODE);
670 this->u1_.gsym = gsym;
671 this->u2_.relobj = relobj;
672 }
673
674 // A reloc against a local symbol.
675
676 Output_reloc(Sized_relobj<size, big_endian>* relobj,
677 unsigned int local_sym_index,
678 unsigned int type,
679 Output_data* od,
680 Address address)
681 : address_(address), local_sym_index_(local_sym_index), type_(type),
682 shndx_(INVALID_CODE)
683 {
684 gold_assert(local_sym_index != GSYM_CODE
685 && local_sym_index != INVALID_CODE);
686 this->u1_.relobj = relobj;
687 this->u2_.od = od;
688 }
689
690 Output_reloc(Sized_relobj<size, big_endian>* relobj,
691 unsigned int local_sym_index,
692 unsigned int type,
693 unsigned int shndx,
694 Address address)
695 : address_(address), local_sym_index_(local_sym_index), type_(type),
696 shndx_(shndx)
697 {
698 gold_assert(local_sym_index != GSYM_CODE
699 && local_sym_index != INVALID_CODE);
700 gold_assert(shndx != INVALID_CODE);
701 this->u1_.relobj = relobj;
702 this->u2_.relobj = relobj;
703 }
704
705 // A reloc against the STT_SECTION symbol of an output section.
706
707 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
708 Address address)
709 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
710 shndx_(INVALID_CODE)
711 {
712 this->u1_.os = os;
713 this->u2_.od = od;
714 }
715
716 Output_reloc(Output_section* os, unsigned int type, Relobj* relobj,
717 unsigned int shndx, Address address)
718 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
719 shndx_(shndx)
720 {
721 gold_assert(shndx != INVALID_CODE);
722 this->u1_.os = os;
723 this->u2_.relobj = relobj;
724 }
725
726 // Write the reloc entry to an output view.
727 void
728 write(unsigned char* pov) const;
729
730 // Write the offset and info fields to Write_rel.
731 template<typename Write_rel>
732 void write_rel(Write_rel*) const;
733
734 private:
735 // Return the symbol index. We can't do a double template
736 // specialization, so we do a secondary template here.
737 unsigned int
738 get_symbol_index() const;
739
740 // Codes for local_sym_index_.
741 enum
742 {
743 // Global symbol.
744 GSYM_CODE = -1U,
745 // Output section.
746 SECTION_CODE = -2U,
747 // Invalid uninitialized entry.
748 INVALID_CODE = -3U
749 };
750
751 union
752 {
753 // For a local symbol, the object. We will never generate a
754 // relocation against a local symbol in a dynamic object; that
755 // doesn't make sense. And our callers will always be
756 // templatized, so we use Sized_relobj here.
757 Sized_relobj<size, big_endian>* relobj;
758 // For a global symbol, the symbol. If this is NULL, it indicates
759 // a relocation against the undefined 0 symbol.
760 Symbol* gsym;
761 // For a relocation against an output section, the output section.
762 Output_section* os;
763 } u1_;
764 union
765 {
766 // If shndx_ is not INVALID CODE, the object which holds the input
767 // section being used to specify the reloc address.
768 Relobj* relobj;
769 // If shndx_ is INVALID_CODE, the output data being used to
770 // specify the reloc address. This may be NULL if the reloc
771 // address is absolute.
772 Output_data* od;
773 } u2_;
774 // The address offset within the input section or the Output_data.
775 Address address_;
776 // For a local symbol, the local symbol index. This is GSYM_CODE
777 // for a global symbol, or INVALID_CODE for an uninitialized value.
778 unsigned int local_sym_index_;
779 // The reloc type--a processor specific code.
780 unsigned int type_;
781 // If the reloc address is an input section in an object, the
782 // section index. This is INVALID_CODE if the reloc address is
783 // specified in some other way.
784 unsigned int shndx_;
785 };
786
787 // The SHT_RELA version of Output_reloc<>. This is just derived from
788 // the SHT_REL version of Output_reloc, but it adds an addend.
789
790 template<bool dynamic, int size, bool big_endian>
791 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
792 {
793 public:
794 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
795 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
796
797 // An uninitialized entry.
798 Output_reloc()
799 : rel_()
800 { }
801
802 // A reloc against a global symbol.
803
804 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
805 Address address, Addend addend)
806 : rel_(gsym, type, od, address), addend_(addend)
807 { }
808
809 Output_reloc(Symbol* gsym, unsigned int type, Relobj* relobj,
810 unsigned int shndx, Address address, Addend addend)
811 : rel_(gsym, type, relobj, shndx, address), addend_(addend)
812 { }
813
814 // A reloc against a local symbol.
815
816 Output_reloc(Sized_relobj<size, big_endian>* relobj,
817 unsigned int local_sym_index,
818 unsigned int type, Output_data* od, Address address,
819 Addend addend)
820 : rel_(relobj, local_sym_index, type, od, address), addend_(addend)
821 { }
822
823 Output_reloc(Sized_relobj<size, big_endian>* relobj,
824 unsigned int local_sym_index,
825 unsigned int type,
826 unsigned int shndx,
827 Address address,
828 Addend addend)
829 : rel_(relobj, local_sym_index, type, shndx, address),
830 addend_(addend)
831 { }
832
833 // A reloc against the STT_SECTION symbol of an output section.
834
835 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
836 Address address, Addend addend)
837 : rel_(os, type, od, address), addend_(addend)
838 { }
839
840 Output_reloc(Output_section* os, unsigned int type, Relobj* relobj,
841 unsigned int shndx, Address address, Addend addend)
842 : rel_(os, type, relobj, shndx, address), addend_(addend)
843 { }
844
845 // Write the reloc entry to an output view.
846 void
847 write(unsigned char* pov) const;
848
849 private:
850 // The basic reloc.
851 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
852 // The addend.
853 Addend addend_;
854 };
855
856 // Output_data_reloc is used to manage a section containing relocs.
857 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
858 // indicates whether this is a dynamic relocation or a normal
859 // relocation. Output_data_reloc_base is a base class.
860 // Output_data_reloc is the real class, which we specialize based on
861 // the reloc type.
862
863 template<int sh_type, bool dynamic, int size, bool big_endian>
864 class Output_data_reloc_base : public Output_section_data_build
865 {
866 public:
867 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
868 typedef typename Output_reloc_type::Address Address;
869 static const int reloc_size =
870 Reloc_types<sh_type, size, big_endian>::reloc_size;
871
872 // Construct the section.
873 Output_data_reloc_base()
874 : Output_section_data_build(Output_data::default_alignment_for_size(size))
875 { }
876
877 protected:
878 // Write out the data.
879 void
880 do_write(Output_file*);
881
882 // Set the entry size and the link.
883 void
884 do_adjust_output_section(Output_section *os);
885
886 // Add a relocation entry.
887 void
888 add(Output_data *od, const Output_reloc_type& reloc)
889 {
890 this->relocs_.push_back(reloc);
891 this->set_current_data_size(this->relocs_.size() * reloc_size);
892 od->add_dynamic_reloc();
893 }
894
895 private:
896 typedef std::vector<Output_reloc_type> Relocs;
897
898 Relocs relocs_;
899 };
900
901 // The class which callers actually create.
902
903 template<int sh_type, bool dynamic, int size, bool big_endian>
904 class Output_data_reloc;
905
906 // The SHT_REL version of Output_data_reloc.
907
908 template<bool dynamic, int size, bool big_endian>
909 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
910 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
911 {
912 private:
913 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
914 big_endian> Base;
915
916 public:
917 typedef typename Base::Output_reloc_type Output_reloc_type;
918 typedef typename Output_reloc_type::Address Address;
919
920 Output_data_reloc()
921 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>()
922 { }
923
924 // Add a reloc against a global symbol.
925
926 void
927 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
928 { this->add(od, Output_reloc_type(gsym, type, od, address)); }
929
930 void
931 add_global(Symbol* gsym, unsigned int type, Output_data* od, Relobj* relobj,
932 unsigned int shndx, Address address)
933 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address)); }
934
935 // Add a reloc against a local symbol.
936
937 void
938 add_local(Sized_relobj<size, big_endian>* relobj,
939 unsigned int local_sym_index, unsigned int type,
940 Output_data* od, Address address)
941 { this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
942 address)); }
943
944 void
945 add_local(Sized_relobj<size, big_endian>* relobj,
946 unsigned int local_sym_index, unsigned int type,
947 Output_data* od, unsigned int shndx, Address address)
948 { this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
949 address)); }
950
951
952 // A reloc against the STT_SECTION symbol of an output section.
953 // OS is the Output_section that the relocation refers to; OD is
954 // the Output_data object being relocated.
955
956 void
957 add_output_section(Output_section* os, unsigned int type,
958 Output_data* od, Address address)
959 { this->add(od, Output_reloc_type(os, type, od, address)); }
960
961 void
962 add_output_section(Output_section* os, unsigned int type, Output_data* od,
963 Relobj* relobj, unsigned int shndx, Address address)
964 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
965 };
966
967 // The SHT_RELA version of Output_data_reloc.
968
969 template<bool dynamic, int size, bool big_endian>
970 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
971 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
972 {
973 private:
974 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
975 big_endian> Base;
976
977 public:
978 typedef typename Base::Output_reloc_type Output_reloc_type;
979 typedef typename Output_reloc_type::Address Address;
980 typedef typename Output_reloc_type::Addend Addend;
981
982 Output_data_reloc()
983 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>()
984 { }
985
986 // Add a reloc against a global symbol.
987
988 void
989 add_global(Symbol* gsym, unsigned int type, Output_data* od,
990 Address address, Addend addend)
991 { this->add(od, Output_reloc_type(gsym, type, od, address, addend)); }
992
993 void
994 add_global(Symbol* gsym, unsigned int type, Output_data* od, Relobj* relobj,
995 unsigned int shndx, Address address,
996 Addend addend)
997 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
998 addend)); }
999
1000 // Add a reloc against a local symbol.
1001
1002 void
1003 add_local(Sized_relobj<size, big_endian>* relobj,
1004 unsigned int local_sym_index, unsigned int type,
1005 Output_data* od, Address address, Addend addend)
1006 {
1007 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1008 addend));
1009 }
1010
1011 void
1012 add_local(Sized_relobj<size, big_endian>* relobj,
1013 unsigned int local_sym_index, unsigned int type,
1014 Output_data* od, unsigned int shndx, Address address,
1015 Addend addend)
1016 {
1017 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1018 address, addend));
1019 }
1020
1021 // A reloc against the STT_SECTION symbol of an output section.
1022
1023 void
1024 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1025 Address address, Addend addend)
1026 { this->add(os, Output_reloc_type(os, type, od, address, addend)); }
1027
1028 void
1029 add_output_section(Output_section* os, unsigned int type, Relobj* relobj,
1030 unsigned int shndx, Address address, Addend addend)
1031 { this->add(os, Output_reloc_type(os, type, relobj, shndx, address,
1032 addend)); }
1033 };
1034
1035 // Output_data_got is used to manage a GOT. Each entry in the GOT is
1036 // for one symbol--either a global symbol or a local symbol in an
1037 // object. The target specific code adds entries to the GOT as
1038 // needed.
1039
1040 template<int size, bool big_endian>
1041 class Output_data_got : public Output_section_data_build
1042 {
1043 public:
1044 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1045
1046 Output_data_got()
1047 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1048 entries_()
1049 { }
1050
1051 // Add an entry for a global symbol to the GOT. Return true if this
1052 // is a new GOT entry, false if the symbol was already in the GOT.
1053 bool
1054 add_global(Symbol* gsym);
1055
1056 // Add an entry for a local symbol to the GOT. This returns true if
1057 // this is a new GOT entry, false if the symbol already has a GOT
1058 // entry.
1059 bool
1060 add_local(Sized_relobj<size, big_endian>* object, unsigned int sym_index);
1061
1062 // Add an entry (or pair of entries) for a global TLS symbol to the GOT.
1063 // Return true if this is a new GOT entry, false if the symbol was
1064 // already in the GOT.
1065 bool
1066 add_global_tls(Symbol* gsym, bool need_pair);
1067
1068 // Add an entry (or pair of entries) for a local TLS symbol to the GOT.
1069 // This returns true if this is a new GOT entry, false if the symbol
1070 // already has a GOT entry.
1071 bool
1072 add_local_tls(Sized_relobj<size, big_endian>* object,
1073 unsigned int sym_index, bool need_pair);
1074
1075 // Add a constant to the GOT. This returns the offset of the new
1076 // entry from the start of the GOT.
1077 unsigned int
1078 add_constant(Valtype constant)
1079 {
1080 this->entries_.push_back(Got_entry(constant));
1081 this->set_got_size();
1082 return this->last_got_offset();
1083 }
1084
1085 protected:
1086 // Write out the GOT table.
1087 void
1088 do_write(Output_file*);
1089
1090 private:
1091 // This POD class holds a single GOT entry.
1092 class Got_entry
1093 {
1094 public:
1095 // Create a zero entry.
1096 Got_entry()
1097 : local_sym_index_(CONSTANT_CODE)
1098 { this->u_.constant = 0; }
1099
1100 // Create a global symbol entry.
1101 explicit Got_entry(Symbol* gsym)
1102 : local_sym_index_(GSYM_CODE)
1103 { this->u_.gsym = gsym; }
1104
1105 // Create a local symbol entry.
1106 Got_entry(Sized_relobj<size, big_endian>* object,
1107 unsigned int local_sym_index)
1108 : local_sym_index_(local_sym_index)
1109 {
1110 gold_assert(local_sym_index != GSYM_CODE
1111 && local_sym_index != CONSTANT_CODE);
1112 this->u_.object = object;
1113 }
1114
1115 // Create a constant entry. The constant is a host value--it will
1116 // be swapped, if necessary, when it is written out.
1117 explicit Got_entry(Valtype constant)
1118 : local_sym_index_(CONSTANT_CODE)
1119 { this->u_.constant = constant; }
1120
1121 // Write the GOT entry to an output view.
1122 void
1123 write(unsigned char* pov) const;
1124
1125 private:
1126 enum
1127 {
1128 GSYM_CODE = -1U,
1129 CONSTANT_CODE = -2U
1130 };
1131
1132 union
1133 {
1134 // For a local symbol, the object.
1135 Sized_relobj<size, big_endian>* object;
1136 // For a global symbol, the symbol.
1137 Symbol* gsym;
1138 // For a constant, the constant.
1139 Valtype constant;
1140 } u_;
1141 // For a local symbol, the local symbol index. This is GSYM_CODE
1142 // for a global symbol, or CONSTANT_CODE for a constant.
1143 unsigned int local_sym_index_;
1144 };
1145
1146 typedef std::vector<Got_entry> Got_entries;
1147
1148 // Return the offset into the GOT of GOT entry I.
1149 unsigned int
1150 got_offset(unsigned int i) const
1151 { return i * (size / 8); }
1152
1153 // Return the offset into the GOT of the last entry added.
1154 unsigned int
1155 last_got_offset() const
1156 { return this->got_offset(this->entries_.size() - 1); }
1157
1158 // Set the size of the section.
1159 void
1160 set_got_size()
1161 { this->set_current_data_size(this->got_offset(this->entries_.size())); }
1162
1163 // The list of GOT entries.
1164 Got_entries entries_;
1165 };
1166
1167 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
1168 // section.
1169
1170 class Output_data_dynamic : public Output_section_data
1171 {
1172 public:
1173 Output_data_dynamic(Stringpool* pool)
1174 : Output_section_data(Output_data::default_alignment()),
1175 entries_(), pool_(pool)
1176 { }
1177
1178 // Add a new dynamic entry with a fixed numeric value.
1179 void
1180 add_constant(elfcpp::DT tag, unsigned int val)
1181 { this->add_entry(Dynamic_entry(tag, val)); }
1182
1183 // Add a new dynamic entry with the address of output data.
1184 void
1185 add_section_address(elfcpp::DT tag, const Output_data* od)
1186 { this->add_entry(Dynamic_entry(tag, od, false)); }
1187
1188 // Add a new dynamic entry with the size of output data.
1189 void
1190 add_section_size(elfcpp::DT tag, const Output_data* od)
1191 { this->add_entry(Dynamic_entry(tag, od, true)); }
1192
1193 // Add a new dynamic entry with the address of a symbol.
1194 void
1195 add_symbol(elfcpp::DT tag, const Symbol* sym)
1196 { this->add_entry(Dynamic_entry(tag, sym)); }
1197
1198 // Add a new dynamic entry with a string.
1199 void
1200 add_string(elfcpp::DT tag, const char* str)
1201 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
1202
1203 void
1204 add_string(elfcpp::DT tag, const std::string& str)
1205 { this->add_string(tag, str.c_str()); }
1206
1207 protected:
1208 // Adjust the output section to set the entry size.
1209 void
1210 do_adjust_output_section(Output_section*);
1211
1212 // Set the final data size.
1213 void
1214 set_final_data_size();
1215
1216 // Write out the dynamic entries.
1217 void
1218 do_write(Output_file*);
1219
1220 private:
1221 // This POD class holds a single dynamic entry.
1222 class Dynamic_entry
1223 {
1224 public:
1225 // Create an entry with a fixed numeric value.
1226 Dynamic_entry(elfcpp::DT tag, unsigned int val)
1227 : tag_(tag), classification_(DYNAMIC_NUMBER)
1228 { this->u_.val = val; }
1229
1230 // Create an entry with the size or address of a section.
1231 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
1232 : tag_(tag),
1233 classification_(section_size
1234 ? DYNAMIC_SECTION_SIZE
1235 : DYNAMIC_SECTION_ADDRESS)
1236 { this->u_.od = od; }
1237
1238 // Create an entry with the address of a symbol.
1239 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
1240 : tag_(tag), classification_(DYNAMIC_SYMBOL)
1241 { this->u_.sym = sym; }
1242
1243 // Create an entry with a string.
1244 Dynamic_entry(elfcpp::DT tag, const char* str)
1245 : tag_(tag), classification_(DYNAMIC_STRING)
1246 { this->u_.str = str; }
1247
1248 // Write the dynamic entry to an output view.
1249 template<int size, bool big_endian>
1250 void
1251 write(unsigned char* pov, const Stringpool* ACCEPT_SIZE_ENDIAN) const;
1252
1253 private:
1254 enum Classification
1255 {
1256 // Number.
1257 DYNAMIC_NUMBER,
1258 // Section address.
1259 DYNAMIC_SECTION_ADDRESS,
1260 // Section size.
1261 DYNAMIC_SECTION_SIZE,
1262 // Symbol adress.
1263 DYNAMIC_SYMBOL,
1264 // String.
1265 DYNAMIC_STRING
1266 };
1267
1268 union
1269 {
1270 // For DYNAMIC_NUMBER.
1271 unsigned int val;
1272 // For DYNAMIC_SECTION_ADDRESS and DYNAMIC_SECTION_SIZE.
1273 const Output_data* od;
1274 // For DYNAMIC_SYMBOL.
1275 const Symbol* sym;
1276 // For DYNAMIC_STRING.
1277 const char* str;
1278 } u_;
1279 // The dynamic tag.
1280 elfcpp::DT tag_;
1281 // The type of entry.
1282 Classification classification_;
1283 };
1284
1285 // Add an entry to the list.
1286 void
1287 add_entry(const Dynamic_entry& entry)
1288 { this->entries_.push_back(entry); }
1289
1290 // Sized version of write function.
1291 template<int size, bool big_endian>
1292 void
1293 sized_write(Output_file* of);
1294
1295 // The type of the list of entries.
1296 typedef std::vector<Dynamic_entry> Dynamic_entries;
1297
1298 // The entries.
1299 Dynamic_entries entries_;
1300 // The pool used for strings.
1301 Stringpool* pool_;
1302 };
1303
1304 // An output section. We don't expect to have too many output
1305 // sections, so we don't bother to do a template on the size.
1306
1307 class Output_section : public Output_data
1308 {
1309 public:
1310 // Create an output section, giving the name, type, and flags.
1311 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
1312 virtual ~Output_section();
1313
1314 // Add a new input section SHNDX, named NAME, with header SHDR, from
1315 // object OBJECT. RELOC_SHNDX is the index of a relocation section
1316 // which applies to this section, or 0 if none, or -1U if more than
1317 // one. Return the offset within the output section.
1318 template<int size, bool big_endian>
1319 off_t
1320 add_input_section(Sized_relobj<size, big_endian>* object, unsigned int shndx,
1321 const char *name,
1322 const elfcpp::Shdr<size, big_endian>& shdr,
1323 unsigned int reloc_shndx);
1324
1325 // Add generated data POSD to this output section.
1326 void
1327 add_output_section_data(Output_section_data* posd);
1328
1329 // Return the section name.
1330 const char*
1331 name() const
1332 { return this->name_; }
1333
1334 // Return the section type.
1335 elfcpp::Elf_Word
1336 type() const
1337 { return this->type_; }
1338
1339 // Return the section flags.
1340 elfcpp::Elf_Xword
1341 flags() const
1342 { return this->flags_; }
1343
1344 // Return the entsize field.
1345 uint64_t
1346 entsize() const
1347 { return this->entsize_; }
1348
1349 // Set the entsize field.
1350 void
1351 set_entsize(uint64_t v);
1352
1353 // Set the link field to the output section index of a section.
1354 void
1355 set_link_section(const Output_data* od)
1356 {
1357 gold_assert(this->link_ == 0
1358 && !this->should_link_to_symtab_
1359 && !this->should_link_to_dynsym_);
1360 this->link_section_ = od;
1361 }
1362
1363 // Set the link field to a constant.
1364 void
1365 set_link(unsigned int v)
1366 {
1367 gold_assert(this->link_section_ == NULL
1368 && !this->should_link_to_symtab_
1369 && !this->should_link_to_dynsym_);
1370 this->link_ = v;
1371 }
1372
1373 // Record that this section should link to the normal symbol table.
1374 void
1375 set_should_link_to_symtab()
1376 {
1377 gold_assert(this->link_section_ == NULL
1378 && this->link_ == 0
1379 && !this->should_link_to_dynsym_);
1380 this->should_link_to_symtab_ = true;
1381 }
1382
1383 // Record that this section should link to the dynamic symbol table.
1384 void
1385 set_should_link_to_dynsym()
1386 {
1387 gold_assert(this->link_section_ == NULL
1388 && this->link_ == 0
1389 && !this->should_link_to_symtab_);
1390 this->should_link_to_dynsym_ = true;
1391 }
1392
1393 // Return the info field.
1394 unsigned int
1395 info() const
1396 {
1397 gold_assert(this->info_section_ == NULL);
1398 return this->info_;
1399 }
1400
1401 // Set the info field to the output section index of a section.
1402 void
1403 set_info_section(const Output_data* od)
1404 {
1405 gold_assert(this->info_ == 0);
1406 this->info_section_ = od;
1407 }
1408
1409 // Set the info field to a constant.
1410 void
1411 set_info(unsigned int v)
1412 {
1413 gold_assert(this->info_section_ == NULL);
1414 this->info_ = v;
1415 }
1416
1417 // Set the addralign field.
1418 void
1419 set_addralign(uint64_t v)
1420 { this->addralign_ = v; }
1421
1422 // Indicate that we need a symtab index.
1423 void
1424 set_needs_symtab_index()
1425 { this->needs_symtab_index_ = true; }
1426
1427 // Return whether we need a symtab index.
1428 bool
1429 needs_symtab_index() const
1430 { return this->needs_symtab_index_; }
1431
1432 // Get the symtab index.
1433 unsigned int
1434 symtab_index() const
1435 {
1436 gold_assert(this->symtab_index_ != 0);
1437 return this->symtab_index_;
1438 }
1439
1440 // Set the symtab index.
1441 void
1442 set_symtab_index(unsigned int index)
1443 {
1444 gold_assert(index != 0);
1445 this->symtab_index_ = index;
1446 }
1447
1448 // Indicate that we need a dynsym index.
1449 void
1450 set_needs_dynsym_index()
1451 { this->needs_dynsym_index_ = true; }
1452
1453 // Return whether we need a dynsym index.
1454 bool
1455 needs_dynsym_index() const
1456 { return this->needs_dynsym_index_; }
1457
1458 // Get the dynsym index.
1459 unsigned int
1460 dynsym_index() const
1461 {
1462 gold_assert(this->dynsym_index_ != 0);
1463 return this->dynsym_index_;
1464 }
1465
1466 // Set the dynsym index.
1467 void
1468 set_dynsym_index(unsigned int index)
1469 {
1470 gold_assert(index != 0);
1471 this->dynsym_index_ = index;
1472 }
1473
1474 // Return whether this section should be written after all the input
1475 // sections are complete.
1476 bool
1477 after_input_sections() const
1478 { return this->after_input_sections_; }
1479
1480 // Record that this section should be written after all the input
1481 // sections are complete.
1482 void
1483 set_after_input_sections()
1484 { this->after_input_sections_ = true; }
1485
1486 // Return whether this section requires postprocessing after all
1487 // relocations have been applied.
1488 bool
1489 requires_postprocessing() const
1490 { return this->requires_postprocessing_; }
1491
1492 // Record that this section requires postprocessing after all
1493 // relocations have been applied.
1494 void
1495 set_requires_postprocessing()
1496 { this->requires_postprocessing_ = true; }
1497
1498 // Return whether the offset OFFSET in the input section SHNDX in
1499 // object OBJECT is being included in the link.
1500 bool
1501 is_input_address_mapped(const Relobj* object, unsigned int shndx,
1502 off_t offset) const;
1503
1504 // Return the offset within the output section of OFFSET relative to
1505 // the start of input section SHNDX in object OBJECT.
1506 off_t
1507 output_offset(const Relobj* object, unsigned int shndx, off_t offset) const;
1508
1509 // Return the output virtual address of OFFSET relative to the start
1510 // of input section SHNDX in object OBJECT.
1511 uint64_t
1512 output_address(const Relobj* object, unsigned int shndx,
1513 off_t offset) const;
1514
1515 // Write the section header into *OPHDR.
1516 template<int size, bool big_endian>
1517 void
1518 write_header(const Layout*, const Stringpool*,
1519 elfcpp::Shdr_write<size, big_endian>*) const;
1520
1521 protected:
1522 // Return the section index in the output file.
1523 unsigned int
1524 do_out_shndx() const
1525 {
1526 gold_assert(this->out_shndx_ != -1U);
1527 return this->out_shndx_;
1528 }
1529
1530 // Set the output section index.
1531 void
1532 do_set_out_shndx(unsigned int shndx)
1533 {
1534 gold_assert(this->out_shndx_ == -1U);
1535 this->out_shndx_ = shndx;
1536 }
1537
1538 // Set the final data size of the Output_section. For a typical
1539 // Output_section, there is nothing to do, but if there are any
1540 // Output_section_data objects we need to set their final addresses
1541 // here.
1542 void
1543 set_final_data_size();
1544
1545 // Write the data to the file. For a typical Output_section, this
1546 // does nothing: the data is written out by calling Object::Relocate
1547 // on each input object. But if there are any Output_section_data
1548 // objects we do need to write them out here.
1549 void
1550 do_write(Output_file*);
1551
1552 // Return the address alignment--function required by parent class.
1553 uint64_t
1554 do_addralign() const
1555 { return this->addralign_; }
1556
1557 // Return whether this is an Output_section.
1558 bool
1559 do_is_section() const
1560 { return true; }
1561
1562 // Return whether this is a section of the specified type.
1563 bool
1564 do_is_section_type(elfcpp::Elf_Word type) const
1565 { return this->type_ == type; }
1566
1567 // Return whether the specified section flag is set.
1568 bool
1569 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
1570 { return (this->flags_ & flag) != 0; }
1571
1572 private:
1573 // In some cases we need to keep a list of the input sections
1574 // associated with this output section. We only need the list if we
1575 // might have to change the offsets of the input section within the
1576 // output section after we add the input section. The ordinary
1577 // input sections will be written out when we process the object
1578 // file, and as such we don't need to track them here. We do need
1579 // to track Output_section_data objects here. We store instances of
1580 // this structure in a std::vector, so it must be a POD. There can
1581 // be many instances of this structure, so we use a union to save
1582 // some space.
1583 class Input_section
1584 {
1585 public:
1586 Input_section()
1587 : shndx_(0), p2align_(0)
1588 {
1589 this->u1_.data_size = 0;
1590 this->u2_.object = NULL;
1591 }
1592
1593 // For an ordinary input section.
1594 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
1595 uint64_t addralign)
1596 : shndx_(shndx),
1597 p2align_(ffsll(static_cast<long long>(addralign)))
1598 {
1599 gold_assert(shndx != OUTPUT_SECTION_CODE
1600 && shndx != MERGE_DATA_SECTION_CODE
1601 && shndx != MERGE_STRING_SECTION_CODE);
1602 this->u1_.data_size = data_size;
1603 this->u2_.object = object;
1604 }
1605
1606 // For a non-merge output section.
1607 Input_section(Output_section_data* posd)
1608 : shndx_(OUTPUT_SECTION_CODE),
1609 p2align_(ffsll(static_cast<long long>(posd->addralign())))
1610 {
1611 this->u1_.data_size = 0;
1612 this->u2_.posd = posd;
1613 }
1614
1615 // For a merge section.
1616 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
1617 : shndx_(is_string
1618 ? MERGE_STRING_SECTION_CODE
1619 : MERGE_DATA_SECTION_CODE),
1620 p2align_(ffsll(static_cast<long long>(posd->addralign())))
1621 {
1622 this->u1_.entsize = entsize;
1623 this->u2_.posd = posd;
1624 }
1625
1626 // The required alignment.
1627 uint64_t
1628 addralign() const
1629 {
1630 return (this->p2align_ == 0
1631 ? 0
1632 : static_cast<uint64_t>(1) << (this->p2align_ - 1));
1633 }
1634
1635 // Return the required size.
1636 off_t
1637 data_size() const;
1638
1639 // Return whether this is a merge section which matches the
1640 // parameters.
1641 bool
1642 is_merge_section(bool is_string, uint64_t entsize,
1643 uint64_t addralign) const
1644 {
1645 return (this->shndx_ == (is_string
1646 ? MERGE_STRING_SECTION_CODE
1647 : MERGE_DATA_SECTION_CODE)
1648 && this->u1_.entsize == entsize
1649 && this->addralign() == addralign);
1650 }
1651
1652 // Set the output section.
1653 void
1654 set_output_section(Output_section* os)
1655 {
1656 gold_assert(!this->is_input_section());
1657 this->u2_.posd->set_output_section(os);
1658 }
1659
1660 // Set the address and file offset. This is called during
1661 // Layout::finalize. SECOFF is the file offset of the enclosing
1662 // section.
1663 void
1664 set_address(uint64_t addr, off_t off, off_t secoff);
1665
1666 // Add an input section, for SHF_MERGE sections.
1667 bool
1668 add_input_section(Relobj* object, unsigned int shndx)
1669 {
1670 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
1671 || this->shndx_ == MERGE_STRING_SECTION_CODE);
1672 return this->u2_.posd->add_input_section(object, shndx);
1673 }
1674
1675 // Given an input OBJECT, an input section index SHNDX within that
1676 // object, and an OFFSET relative to the start of that input
1677 // section, return whether or not the output offset is known. If
1678 // this function returns true, it sets *POUTPUT to the output
1679 // offset.
1680 bool
1681 output_offset(const Relobj* object, unsigned int shndx, off_t offset,
1682 off_t *poutput) const;
1683
1684 // Write out the data. This does nothing for an input section.
1685 void
1686 write(Output_file*);
1687
1688 private:
1689 // Code values which appear in shndx_. If the value is not one of
1690 // these codes, it is the input section index in the object file.
1691 enum
1692 {
1693 // An Output_section_data.
1694 OUTPUT_SECTION_CODE = -1U,
1695 // An Output_section_data for an SHF_MERGE section with
1696 // SHF_STRINGS not set.
1697 MERGE_DATA_SECTION_CODE = -2U,
1698 // An Output_section_data for an SHF_MERGE section with
1699 // SHF_STRINGS set.
1700 MERGE_STRING_SECTION_CODE = -3U
1701 };
1702
1703 // Whether this is an input section.
1704 bool
1705 is_input_section() const
1706 {
1707 return (this->shndx_ != OUTPUT_SECTION_CODE
1708 && this->shndx_ != MERGE_DATA_SECTION_CODE
1709 && this->shndx_ != MERGE_STRING_SECTION_CODE);
1710 }
1711
1712 // For an ordinary input section, this is the section index in the
1713 // input file. For an Output_section_data, this is
1714 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
1715 // MERGE_STRING_SECTION_CODE.
1716 unsigned int shndx_;
1717 // The required alignment, stored as a power of 2.
1718 unsigned int p2align_;
1719 union
1720 {
1721 // For an ordinary input section, the section size.
1722 off_t data_size;
1723 // For OUTPUT_SECTION_CODE, this is not used. For
1724 // MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
1725 // entity size.
1726 uint64_t entsize;
1727 } u1_;
1728 union
1729 {
1730 // For an ordinary input section, the object which holds the
1731 // input section.
1732 Relobj* object;
1733 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
1734 // MERGE_STRING_SECTION_CODE, the data.
1735 Output_section_data* posd;
1736 } u2_;
1737 };
1738
1739 typedef std::vector<Input_section> Input_section_list;
1740
1741 // Fill data. This is used to fill in data between input sections.
1742 // When we have to keep track of the input sections, we can use an
1743 // Output_data_const, but we don't want to have to keep track of
1744 // input sections just to implement fills. For a fill we record the
1745 // offset, and the actual data to be written out.
1746 class Fill
1747 {
1748 public:
1749 Fill(off_t section_offset, off_t length)
1750 : section_offset_(section_offset), length_(length)
1751 { }
1752
1753 // Return section offset.
1754 off_t
1755 section_offset() const
1756 { return this->section_offset_; }
1757
1758 // Return fill length.
1759 off_t
1760 length() const
1761 { return this->length_; }
1762
1763 private:
1764 // The offset within the output section.
1765 off_t section_offset_;
1766 // The length of the space to fill.
1767 off_t length_;
1768 };
1769
1770 typedef std::vector<Fill> Fill_list;
1771
1772 // Add a new output section by Input_section.
1773 void
1774 add_output_section_data(Input_section*);
1775
1776 // Add an SHF_MERGE input section. Returns true if the section was
1777 // handled.
1778 bool
1779 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
1780 uint64_t entsize, uint64_t addralign);
1781
1782 // Add an output SHF_MERGE section POSD to this output section.
1783 // IS_STRING indicates whether it is a SHF_STRINGS section, and
1784 // ENTSIZE is the entity size. This returns the entry added to
1785 // input_sections_.
1786 void
1787 add_output_merge_section(Output_section_data* posd, bool is_string,
1788 uint64_t entsize);
1789
1790 // Most of these fields are only valid after layout.
1791
1792 // The name of the section. This will point into a Stringpool.
1793 const char* const name_;
1794 // The section address is in the parent class.
1795 // The section alignment.
1796 uint64_t addralign_;
1797 // The section entry size.
1798 uint64_t entsize_;
1799 // The file offset is in the parent class.
1800 // Set the section link field to the index of this section.
1801 const Output_data* link_section_;
1802 // If link_section_ is NULL, this is the link field.
1803 unsigned int link_;
1804 // Set the section info field to the index of this section.
1805 const Output_data* info_section_;
1806 // If info_section_ is NULL, this is the section info field.
1807 unsigned int info_;
1808 // The section type.
1809 const elfcpp::Elf_Word type_;
1810 // The section flags.
1811 const elfcpp::Elf_Xword flags_;
1812 // The section index.
1813 unsigned int out_shndx_;
1814 // If there is a STT_SECTION for this output section in the normal
1815 // symbol table, this is the symbol index. This starts out as zero.
1816 // It is initialized in Layout::finalize() to be the index, or -1U
1817 // if there isn't one.
1818 unsigned int symtab_index_;
1819 // If there is a STT_SECTION for this output section in the dynamic
1820 // symbol table, this is the symbol index. This starts out as zero.
1821 // It is initialized in Layout::finalize() to be the index, or -1U
1822 // if there isn't one.
1823 unsigned int dynsym_index_;
1824 // The input sections. This will be empty in cases where we don't
1825 // need to keep track of them.
1826 Input_section_list input_sections_;
1827 // The offset of the first entry in input_sections_.
1828 off_t first_input_offset_;
1829 // The fill data. This is separate from input_sections_ because we
1830 // often will need fill sections without needing to keep track of
1831 // input sections.
1832 Fill_list fills_;
1833 // Whether this output section needs a STT_SECTION symbol in the
1834 // normal symbol table. This will be true if there is a relocation
1835 // which needs it.
1836 bool needs_symtab_index_ : 1;
1837 // Whether this output section needs a STT_SECTION symbol in the
1838 // dynamic symbol table. This will be true if there is a dynamic
1839 // relocation which needs it.
1840 bool needs_dynsym_index_ : 1;
1841 // Whether the link field of this output section should point to the
1842 // normal symbol table.
1843 bool should_link_to_symtab_ : 1;
1844 // Whether the link field of this output section should point to the
1845 // dynamic symbol table.
1846 bool should_link_to_dynsym_ : 1;
1847 // Whether this section should be written after all the input
1848 // sections are complete.
1849 bool after_input_sections_ : 1;
1850 // Whether this section requires post processing after all
1851 // relocations have been applied.
1852 bool requires_postprocessing_ : 1;
1853 };
1854
1855 // An output segment. PT_LOAD segments are built from collections of
1856 // output sections. Other segments typically point within PT_LOAD
1857 // segments, and are built directly as needed.
1858
1859 class Output_segment
1860 {
1861 public:
1862 // Create an output segment, specifying the type and flags.
1863 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
1864
1865 // Return the virtual address.
1866 uint64_t
1867 vaddr() const
1868 { return this->vaddr_; }
1869
1870 // Return the physical address.
1871 uint64_t
1872 paddr() const
1873 { return this->paddr_; }
1874
1875 // Return the segment type.
1876 elfcpp::Elf_Word
1877 type() const
1878 { return this->type_; }
1879
1880 // Return the segment flags.
1881 elfcpp::Elf_Word
1882 flags() const
1883 { return this->flags_; }
1884
1885 // Return the memory size.
1886 uint64_t
1887 memsz() const
1888 { return this->memsz_; }
1889
1890 // Return the file size.
1891 off_t
1892 filesz() const
1893 { return this->filesz_; }
1894
1895 // Return the maximum alignment of the Output_data.
1896 uint64_t
1897 addralign();
1898
1899 // Add an Output_section to this segment.
1900 void
1901 add_output_section(Output_section* os, elfcpp::Elf_Word seg_flags)
1902 { this->add_output_section(os, seg_flags, false); }
1903
1904 // Add an Output_section to the start of this segment.
1905 void
1906 add_initial_output_section(Output_section* os, elfcpp::Elf_Word seg_flags)
1907 { this->add_output_section(os, seg_flags, true); }
1908
1909 // Add an Output_data (which is not an Output_section) to the start
1910 // of this segment.
1911 void
1912 add_initial_output_data(Output_data*);
1913
1914 // Return the number of dynamic relocations applied to this segment.
1915 unsigned int
1916 dynamic_reloc_count() const;
1917
1918 // Set the address of the segment to ADDR and the offset to *POFF
1919 // (aligned if necessary), and set the addresses and offsets of all
1920 // contained output sections accordingly. Set the section indexes
1921 // of all contained output sections starting with *PSHNDX. Return
1922 // the address of the immediately following segment. Update *POFF
1923 // and *PSHNDX. This should only be called for a PT_LOAD segment.
1924 uint64_t
1925 set_section_addresses(uint64_t addr, off_t* poff, unsigned int* pshndx);
1926
1927 // Set the minimum alignment of this segment. This may be adjusted
1928 // upward based on the section alignments.
1929 void
1930 set_minimum_addralign(uint64_t align)
1931 {
1932 gold_assert(!this->is_align_known_);
1933 this->align_ = align;
1934 }
1935
1936 // Set the offset of this segment based on the section. This should
1937 // only be called for a non-PT_LOAD segment.
1938 void
1939 set_offset();
1940
1941 // Return the number of output sections.
1942 unsigned int
1943 output_section_count() const;
1944
1945 // Write the segment header into *OPHDR.
1946 template<int size, bool big_endian>
1947 void
1948 write_header(elfcpp::Phdr_write<size, big_endian>*);
1949
1950 // Write the section headers of associated sections into V.
1951 template<int size, bool big_endian>
1952 unsigned char*
1953 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
1954 unsigned int* pshndx ACCEPT_SIZE_ENDIAN) const;
1955
1956 private:
1957 Output_segment(const Output_segment&);
1958 Output_segment& operator=(const Output_segment&);
1959
1960 typedef std::list<Output_data*> Output_data_list;
1961
1962 // Add an Output_section to this segment, specifying front or back.
1963 void
1964 add_output_section(Output_section*, elfcpp::Elf_Word seg_flags,
1965 bool front);
1966
1967 // Find the maximum alignment in an Output_data_list.
1968 static uint64_t
1969 maximum_alignment(const Output_data_list*);
1970
1971 // Set the section addresses in an Output_data_list.
1972 uint64_t
1973 set_section_list_addresses(Output_data_list*, uint64_t addr, off_t* poff,
1974 unsigned int* pshndx);
1975
1976 // Return the number of Output_sections in an Output_data_list.
1977 unsigned int
1978 output_section_count_list(const Output_data_list*) const;
1979
1980 // Return the number of dynamic relocs in an Output_data_list.
1981 unsigned int
1982 dynamic_reloc_count_list(const Output_data_list*) const;
1983
1984 // Write the section headers in the list into V.
1985 template<int size, bool big_endian>
1986 unsigned char*
1987 write_section_headers_list(const Layout*, const Stringpool*,
1988 const Output_data_list*, unsigned char* v,
1989 unsigned int* pshdx ACCEPT_SIZE_ENDIAN) const;
1990
1991 // The list of output data with contents attached to this segment.
1992 Output_data_list output_data_;
1993 // The list of output data without contents attached to this segment.
1994 Output_data_list output_bss_;
1995 // The segment virtual address.
1996 uint64_t vaddr_;
1997 // The segment physical address.
1998 uint64_t paddr_;
1999 // The size of the segment in memory.
2000 uint64_t memsz_;
2001 // The segment alignment. The is_align_known_ field indicates
2002 // whether this has been finalized. It can be set to a minimum
2003 // value before it is finalized.
2004 uint64_t align_;
2005 // The offset of the segment data within the file.
2006 off_t offset_;
2007 // The size of the segment data in the file.
2008 off_t filesz_;
2009 // The segment type;
2010 elfcpp::Elf_Word type_;
2011 // The segment flags.
2012 elfcpp::Elf_Word flags_;
2013 // Whether we have finalized align_.
2014 bool is_align_known_;
2015 };
2016
2017 // This class represents the output file.
2018
2019 class Output_file
2020 {
2021 public:
2022 Output_file(const General_options& options, Target*);
2023
2024 // Get a pointer to the target.
2025 Target*
2026 target() const
2027 { return this->target_; }
2028
2029 // Open the output file. FILE_SIZE is the final size of the file.
2030 void
2031 open(off_t file_size);
2032
2033 // Resize the output file.
2034 void
2035 resize(off_t file_size);
2036
2037 // Close the output file and make sure there are no error.
2038 void
2039 close();
2040
2041 // We currently always use mmap which makes the view handling quite
2042 // simple. In the future we may support other approaches.
2043
2044 // Write data to the output file.
2045 void
2046 write(off_t offset, const void* data, off_t len)
2047 { memcpy(this->base_ + offset, data, len); }
2048
2049 // Get a buffer to use to write to the file, given the offset into
2050 // the file and the size.
2051 unsigned char*
2052 get_output_view(off_t start, off_t size)
2053 {
2054 gold_assert(start >= 0 && size >= 0 && start + size <= this->file_size_);
2055 return this->base_ + start;
2056 }
2057
2058 // VIEW must have been returned by get_output_view. Write the
2059 // buffer to the file, passing in the offset and the size.
2060 void
2061 write_output_view(off_t, off_t, unsigned char*)
2062 { }
2063
2064 // Get a read/write buffer. This is used when we want to write part
2065 // of the file, read it in, and write it again.
2066 unsigned char*
2067 get_input_output_view(off_t start, off_t size)
2068 { return this->get_output_view(start, size); }
2069
2070 // Write a read/write buffer back to the file.
2071 void
2072 write_input_output_view(off_t, off_t, unsigned char*)
2073 { }
2074
2075 // Get a read buffer. This is used when we just want to read part
2076 // of the file back it in.
2077 const unsigned char*
2078 get_input_view(off_t start, off_t size)
2079 { return this->get_output_view(start, size); }
2080
2081 // Release a read bfufer.
2082 void
2083 free_input_view(off_t, off_t, const unsigned char*)
2084 { }
2085
2086 private:
2087 // Map the file into memory.
2088 void
2089 map();
2090
2091 // General options.
2092 const General_options& options_;
2093 // Target.
2094 Target* target_;
2095 // File name.
2096 const char* name_;
2097 // File descriptor.
2098 int o_;
2099 // File size.
2100 off_t file_size_;
2101 // Base of file mapped into memory.
2102 unsigned char* base_;
2103 };
2104
2105 } // End namespace gold.
2106
2107 #endif // !defined(GOLD_OUTPUT_H)
This page took 0.102264 seconds and 4 git commands to generate.