[ARM] Assembler and disassembler support Dot Product Extension
[deliverable/binutils-gdb.git] / gold / output.h
1 // output.h -- manage the output file for gold -*- C++ -*-
2
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
25
26 #include <algorithm>
27 #include <list>
28 #include <vector>
29
30 #include "elfcpp.h"
31 #include "mapfile.h"
32 #include "layout.h"
33 #include "reloc-types.h"
34
35 namespace gold
36 {
37
38 class General_options;
39 class Object;
40 class Symbol;
41 class Output_merge_base;
42 class Output_section;
43 class Relocatable_relocs;
44 class Target;
45 template<int size, bool big_endian>
46 class Sized_target;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
51
52 // This class represents the output file.
53
54 class Output_file
55 {
56 public:
57 Output_file(const char* name);
58
59 // Indicate that this is a temporary file which should not be
60 // output.
61 void
62 set_is_temporary()
63 { this->is_temporary_ = true; }
64
65 // Try to open an existing file. Returns false if the file doesn't
66 // exist, has a size of 0 or can't be mmaped. This method is
67 // thread-unsafe. If BASE_NAME is not NULL, use the contents of
68 // that file as the base for incremental linking.
69 bool
70 open_base_file(const char* base_name, bool writable);
71
72 // Open the output file. FILE_SIZE is the final size of the file.
73 // If the file already exists, it is deleted/truncated. This method
74 // is thread-unsafe.
75 void
76 open(off_t file_size);
77
78 // Resize the output file. This method is thread-unsafe.
79 void
80 resize(off_t file_size);
81
82 // Close the output file (flushing all buffered data) and make sure
83 // there are no errors. This method is thread-unsafe.
84 void
85 close();
86
87 // Return the size of this file.
88 off_t
89 filesize()
90 { return this->file_size_; }
91
92 // Return the name of this file.
93 const char*
94 filename()
95 { return this->name_; }
96
97 // We currently always use mmap which makes the view handling quite
98 // simple. In the future we may support other approaches.
99
100 // Write data to the output file.
101 void
102 write(off_t offset, const void* data, size_t len)
103 { memcpy(this->base_ + offset, data, len); }
104
105 // Get a buffer to use to write to the file, given the offset into
106 // the file and the size.
107 unsigned char*
108 get_output_view(off_t start, size_t size)
109 {
110 gold_assert(start >= 0
111 && start + static_cast<off_t>(size) <= this->file_size_);
112 return this->base_ + start;
113 }
114
115 // VIEW must have been returned by get_output_view. Write the
116 // buffer to the file, passing in the offset and the size.
117 void
118 write_output_view(off_t, size_t, unsigned char*)
119 { }
120
121 // Get a read/write buffer. This is used when we want to write part
122 // of the file, read it in, and write it again.
123 unsigned char*
124 get_input_output_view(off_t start, size_t size)
125 { return this->get_output_view(start, size); }
126
127 // Write a read/write buffer back to the file.
128 void
129 write_input_output_view(off_t, size_t, unsigned char*)
130 { }
131
132 // Get a read buffer. This is used when we just want to read part
133 // of the file back it in.
134 const unsigned char*
135 get_input_view(off_t start, size_t size)
136 { return this->get_output_view(start, size); }
137
138 // Release a read bfufer.
139 void
140 free_input_view(off_t, size_t, const unsigned char*)
141 { }
142
143 private:
144 // Map the file into memory or, if that fails, allocate anonymous
145 // memory.
146 void
147 map();
148
149 // Allocate anonymous memory for the file.
150 bool
151 map_anonymous();
152
153 // Map the file into memory.
154 bool
155 map_no_anonymous(bool);
156
157 // Unmap the file from memory (and flush to disk buffers).
158 void
159 unmap();
160
161 // File name.
162 const char* name_;
163 // File descriptor.
164 int o_;
165 // File size.
166 off_t file_size_;
167 // Base of file mapped into memory.
168 unsigned char* base_;
169 // True iff base_ points to a memory buffer rather than an output file.
170 bool map_is_anonymous_;
171 // True if base_ was allocated using new rather than mmap.
172 bool map_is_allocated_;
173 // True if this is a temporary file which should not be output.
174 bool is_temporary_;
175 };
176
177 // An abtract class for data which has to go into the output file.
178
179 class Output_data
180 {
181 public:
182 explicit Output_data()
183 : address_(0), data_size_(0), offset_(-1),
184 is_address_valid_(false), is_data_size_valid_(false),
185 is_offset_valid_(false), is_data_size_fixed_(false),
186 has_dynamic_reloc_(false)
187 { }
188
189 virtual
190 ~Output_data();
191
192 // Return the address. For allocated sections, this is only valid
193 // after Layout::finalize is finished.
194 uint64_t
195 address() const
196 {
197 gold_assert(this->is_address_valid_);
198 return this->address_;
199 }
200
201 // Return the size of the data. For allocated sections, this must
202 // be valid after Layout::finalize calls set_address, but need not
203 // be valid before then.
204 off_t
205 data_size() const
206 {
207 gold_assert(this->is_data_size_valid_);
208 return this->data_size_;
209 }
210
211 // Get the current data size.
212 off_t
213 current_data_size() const
214 { return this->current_data_size_for_child(); }
215
216 // Return true if data size is fixed.
217 bool
218 is_data_size_fixed() const
219 { return this->is_data_size_fixed_; }
220
221 // Return the file offset. This is only valid after
222 // Layout::finalize is finished. For some non-allocated sections,
223 // it may not be valid until near the end of the link.
224 off_t
225 offset() const
226 {
227 gold_assert(this->is_offset_valid_);
228 return this->offset_;
229 }
230
231 // Reset the address, file offset and data size. This essentially
232 // disables the sanity testing about duplicate and unknown settings.
233 void
234 reset_address_and_file_offset()
235 {
236 this->is_address_valid_ = false;
237 this->is_offset_valid_ = false;
238 if (!this->is_data_size_fixed_)
239 this->is_data_size_valid_ = false;
240 this->do_reset_address_and_file_offset();
241 }
242
243 // As above, but just for data size.
244 void
245 reset_data_size()
246 {
247 if (!this->is_data_size_fixed_)
248 this->is_data_size_valid_ = false;
249 }
250
251 // Return true if address and file offset already have reset values. In
252 // other words, calling reset_address_and_file_offset will not change them.
253 bool
254 address_and_file_offset_have_reset_values() const
255 { return this->do_address_and_file_offset_have_reset_values(); }
256
257 // Return the required alignment.
258 uint64_t
259 addralign() const
260 { return this->do_addralign(); }
261
262 // Return whether this has a load address.
263 bool
264 has_load_address() const
265 { return this->do_has_load_address(); }
266
267 // Return the load address.
268 uint64_t
269 load_address() const
270 { return this->do_load_address(); }
271
272 // Return whether this is an Output_section.
273 bool
274 is_section() const
275 { return this->do_is_section(); }
276
277 // Return whether this is an Output_section of the specified type.
278 bool
279 is_section_type(elfcpp::Elf_Word stt) const
280 { return this->do_is_section_type(stt); }
281
282 // Return whether this is an Output_section with the specified flag
283 // set.
284 bool
285 is_section_flag_set(elfcpp::Elf_Xword shf) const
286 { return this->do_is_section_flag_set(shf); }
287
288 // Return the output section that this goes in, if there is one.
289 Output_section*
290 output_section()
291 { return this->do_output_section(); }
292
293 const Output_section*
294 output_section() const
295 { return this->do_output_section(); }
296
297 // Return the output section index, if there is an output section.
298 unsigned int
299 out_shndx() const
300 { return this->do_out_shndx(); }
301
302 // Set the output section index, if this is an output section.
303 void
304 set_out_shndx(unsigned int shndx)
305 { this->do_set_out_shndx(shndx); }
306
307 // Set the address and file offset of this data, and finalize the
308 // size of the data. This is called during Layout::finalize for
309 // allocated sections.
310 void
311 set_address_and_file_offset(uint64_t addr, off_t off)
312 {
313 this->set_address(addr);
314 this->set_file_offset(off);
315 this->finalize_data_size();
316 }
317
318 // Set the address.
319 void
320 set_address(uint64_t addr)
321 {
322 gold_assert(!this->is_address_valid_);
323 this->address_ = addr;
324 this->is_address_valid_ = true;
325 }
326
327 // Set the file offset.
328 void
329 set_file_offset(off_t off)
330 {
331 gold_assert(!this->is_offset_valid_);
332 this->offset_ = off;
333 this->is_offset_valid_ = true;
334 }
335
336 // Update the data size without finalizing it.
337 void
338 pre_finalize_data_size()
339 {
340 if (!this->is_data_size_valid_)
341 {
342 // Tell the child class to update the data size.
343 this->update_data_size();
344 }
345 }
346
347 // Finalize the data size.
348 void
349 finalize_data_size()
350 {
351 if (!this->is_data_size_valid_)
352 {
353 // Tell the child class to set the data size.
354 this->set_final_data_size();
355 gold_assert(this->is_data_size_valid_);
356 }
357 }
358
359 // Set the TLS offset. Called only for SHT_TLS sections.
360 void
361 set_tls_offset(uint64_t tls_base)
362 { this->do_set_tls_offset(tls_base); }
363
364 // Return the TLS offset, relative to the base of the TLS segment.
365 // Valid only for SHT_TLS sections.
366 uint64_t
367 tls_offset() const
368 { return this->do_tls_offset(); }
369
370 // Write the data to the output file. This is called after
371 // Layout::finalize is complete.
372 void
373 write(Output_file* file)
374 { this->do_write(file); }
375
376 // This is called by Layout::finalize to note that the sizes of
377 // allocated sections must now be fixed.
378 static void
379 layout_complete()
380 { Output_data::allocated_sizes_are_fixed = true; }
381
382 // Used to check that layout has been done.
383 static bool
384 is_layout_complete()
385 { return Output_data::allocated_sizes_are_fixed; }
386
387 // Note that a dynamic reloc has been applied to this data.
388 void
389 add_dynamic_reloc()
390 { this->has_dynamic_reloc_ = true; }
391
392 // Return whether a dynamic reloc has been applied.
393 bool
394 has_dynamic_reloc() const
395 { return this->has_dynamic_reloc_; }
396
397 // Whether the address is valid.
398 bool
399 is_address_valid() const
400 { return this->is_address_valid_; }
401
402 // Whether the file offset is valid.
403 bool
404 is_offset_valid() const
405 { return this->is_offset_valid_; }
406
407 // Whether the data size is valid.
408 bool
409 is_data_size_valid() const
410 { return this->is_data_size_valid_; }
411
412 // Print information to the map file.
413 void
414 print_to_mapfile(Mapfile* mapfile) const
415 { return this->do_print_to_mapfile(mapfile); }
416
417 protected:
418 // Functions that child classes may or in some cases must implement.
419
420 // Write the data to the output file.
421 virtual void
422 do_write(Output_file*) = 0;
423
424 // Return the required alignment.
425 virtual uint64_t
426 do_addralign() const = 0;
427
428 // Return whether this has a load address.
429 virtual bool
430 do_has_load_address() const
431 { return false; }
432
433 // Return the load address.
434 virtual uint64_t
435 do_load_address() const
436 { gold_unreachable(); }
437
438 // Return whether this is an Output_section.
439 virtual bool
440 do_is_section() const
441 { return false; }
442
443 // Return whether this is an Output_section of the specified type.
444 // This only needs to be implement by Output_section.
445 virtual bool
446 do_is_section_type(elfcpp::Elf_Word) const
447 { return false; }
448
449 // Return whether this is an Output_section with the specific flag
450 // set. This only needs to be implemented by Output_section.
451 virtual bool
452 do_is_section_flag_set(elfcpp::Elf_Xword) const
453 { return false; }
454
455 // Return the output section, if there is one.
456 virtual Output_section*
457 do_output_section()
458 { return NULL; }
459
460 virtual const Output_section*
461 do_output_section() const
462 { return NULL; }
463
464 // Return the output section index, if there is an output section.
465 virtual unsigned int
466 do_out_shndx() const
467 { gold_unreachable(); }
468
469 // Set the output section index, if this is an output section.
470 virtual void
471 do_set_out_shndx(unsigned int)
472 { gold_unreachable(); }
473
474 // This is a hook for derived classes to set the preliminary data size.
475 // This is called by pre_finalize_data_size, normally called during
476 // Layout::finalize, before the section address is set, and is used
477 // during an incremental update, when we need to know the size of a
478 // section before allocating space in the output file. For classes
479 // where the current data size is up to date, this default version of
480 // the method can be inherited.
481 virtual void
482 update_data_size()
483 { }
484
485 // This is a hook for derived classes to set the data size. This is
486 // called by finalize_data_size, normally called during
487 // Layout::finalize, when the section address is set.
488 virtual void
489 set_final_data_size()
490 { gold_unreachable(); }
491
492 // A hook for resetting the address and file offset.
493 virtual void
494 do_reset_address_and_file_offset()
495 { }
496
497 // Return true if address and file offset already have reset values. In
498 // other words, calling reset_address_and_file_offset will not change them.
499 // A child class overriding do_reset_address_and_file_offset may need to
500 // also override this.
501 virtual bool
502 do_address_and_file_offset_have_reset_values() const
503 { return !this->is_address_valid_ && !this->is_offset_valid_; }
504
505 // Set the TLS offset. Called only for SHT_TLS sections.
506 virtual void
507 do_set_tls_offset(uint64_t)
508 { gold_unreachable(); }
509
510 // Return the TLS offset, relative to the base of the TLS segment.
511 // Valid only for SHT_TLS sections.
512 virtual uint64_t
513 do_tls_offset() const
514 { gold_unreachable(); }
515
516 // Print to the map file. This only needs to be implemented by
517 // classes which may appear in a PT_LOAD segment.
518 virtual void
519 do_print_to_mapfile(Mapfile*) const
520 { gold_unreachable(); }
521
522 // Functions that child classes may call.
523
524 // Reset the address. The Output_section class needs this when an
525 // SHF_ALLOC input section is added to an output section which was
526 // formerly not SHF_ALLOC.
527 void
528 mark_address_invalid()
529 { this->is_address_valid_ = false; }
530
531 // Set the size of the data.
532 void
533 set_data_size(off_t data_size)
534 {
535 gold_assert(!this->is_data_size_valid_
536 && !this->is_data_size_fixed_);
537 this->data_size_ = data_size;
538 this->is_data_size_valid_ = true;
539 }
540
541 // Fix the data size. Once it is fixed, it cannot be changed
542 // and the data size remains always valid.
543 void
544 fix_data_size()
545 {
546 gold_assert(this->is_data_size_valid_);
547 this->is_data_size_fixed_ = true;
548 }
549
550 // Get the current data size--this is for the convenience of
551 // sections which build up their size over time.
552 off_t
553 current_data_size_for_child() const
554 { return this->data_size_; }
555
556 // Set the current data size--this is for the convenience of
557 // sections which build up their size over time.
558 void
559 set_current_data_size_for_child(off_t data_size)
560 {
561 gold_assert(!this->is_data_size_valid_);
562 this->data_size_ = data_size;
563 }
564
565 // Return default alignment for the target size.
566 static uint64_t
567 default_alignment();
568
569 // Return default alignment for a specified size--32 or 64.
570 static uint64_t
571 default_alignment_for_size(int size);
572
573 private:
574 Output_data(const Output_data&);
575 Output_data& operator=(const Output_data&);
576
577 // This is used for verification, to make sure that we don't try to
578 // change any sizes of allocated sections after we set the section
579 // addresses.
580 static bool allocated_sizes_are_fixed;
581
582 // Memory address in output file.
583 uint64_t address_;
584 // Size of data in output file.
585 off_t data_size_;
586 // File offset of contents in output file.
587 off_t offset_;
588 // Whether address_ is valid.
589 bool is_address_valid_ : 1;
590 // Whether data_size_ is valid.
591 bool is_data_size_valid_ : 1;
592 // Whether offset_ is valid.
593 bool is_offset_valid_ : 1;
594 // Whether data size is fixed.
595 bool is_data_size_fixed_ : 1;
596 // Whether any dynamic relocs have been applied to this section.
597 bool has_dynamic_reloc_ : 1;
598 };
599
600 // Output the section headers.
601
602 class Output_section_headers : public Output_data
603 {
604 public:
605 Output_section_headers(const Layout*,
606 const Layout::Segment_list*,
607 const Layout::Section_list*,
608 const Layout::Section_list*,
609 const Stringpool*,
610 const Output_section*);
611
612 protected:
613 // Write the data to the file.
614 void
615 do_write(Output_file*);
616
617 // Return the required alignment.
618 uint64_t
619 do_addralign() const
620 { return Output_data::default_alignment(); }
621
622 // Write to a map file.
623 void
624 do_print_to_mapfile(Mapfile* mapfile) const
625 { mapfile->print_output_data(this, _("** section headers")); }
626
627 // Update the data size.
628 void
629 update_data_size()
630 { this->set_data_size(this->do_size()); }
631
632 // Set final data size.
633 void
634 set_final_data_size()
635 { this->set_data_size(this->do_size()); }
636
637 private:
638 // Write the data to the file with the right size and endianness.
639 template<int size, bool big_endian>
640 void
641 do_sized_write(Output_file*);
642
643 // Compute data size.
644 off_t
645 do_size() const;
646
647 const Layout* layout_;
648 const Layout::Segment_list* segment_list_;
649 const Layout::Section_list* section_list_;
650 const Layout::Section_list* unattached_section_list_;
651 const Stringpool* secnamepool_;
652 const Output_section* shstrtab_section_;
653 };
654
655 // Output the segment headers.
656
657 class Output_segment_headers : public Output_data
658 {
659 public:
660 Output_segment_headers(const Layout::Segment_list& segment_list);
661
662 protected:
663 // Write the data to the file.
664 void
665 do_write(Output_file*);
666
667 // Return the required alignment.
668 uint64_t
669 do_addralign() const
670 { return Output_data::default_alignment(); }
671
672 // Write to a map file.
673 void
674 do_print_to_mapfile(Mapfile* mapfile) const
675 { mapfile->print_output_data(this, _("** segment headers")); }
676
677 // Set final data size.
678 void
679 set_final_data_size()
680 { this->set_data_size(this->do_size()); }
681
682 private:
683 // Write the data to the file with the right size and endianness.
684 template<int size, bool big_endian>
685 void
686 do_sized_write(Output_file*);
687
688 // Compute the current size.
689 off_t
690 do_size() const;
691
692 const Layout::Segment_list& segment_list_;
693 };
694
695 // Output the ELF file header.
696
697 class Output_file_header : public Output_data
698 {
699 public:
700 Output_file_header(Target*,
701 const Symbol_table*,
702 const Output_segment_headers*);
703
704 // Add information about the section headers. We lay out the ELF
705 // file header before we create the section headers.
706 void set_section_info(const Output_section_headers*,
707 const Output_section* shstrtab);
708
709 protected:
710 // Write the data to the file.
711 void
712 do_write(Output_file*);
713
714 // Return the required alignment.
715 uint64_t
716 do_addralign() const
717 { return Output_data::default_alignment(); }
718
719 // Write to a map file.
720 void
721 do_print_to_mapfile(Mapfile* mapfile) const
722 { mapfile->print_output_data(this, _("** file header")); }
723
724 // Set final data size.
725 void
726 set_final_data_size(void)
727 { this->set_data_size(this->do_size()); }
728
729 private:
730 // Write the data to the file with the right size and endianness.
731 template<int size, bool big_endian>
732 void
733 do_sized_write(Output_file*);
734
735 // Return the value to use for the entry address.
736 template<int size>
737 typename elfcpp::Elf_types<size>::Elf_Addr
738 entry();
739
740 // Compute the current data size.
741 off_t
742 do_size() const;
743
744 Target* target_;
745 const Symbol_table* symtab_;
746 const Output_segment_headers* segment_header_;
747 const Output_section_headers* section_header_;
748 const Output_section* shstrtab_;
749 };
750
751 // Output sections are mainly comprised of input sections. However,
752 // there are cases where we have data to write out which is not in an
753 // input section. Output_section_data is used in such cases. This is
754 // an abstract base class.
755
756 class Output_section_data : public Output_data
757 {
758 public:
759 Output_section_data(off_t data_size, uint64_t addralign,
760 bool is_data_size_fixed)
761 : Output_data(), output_section_(NULL), addralign_(addralign)
762 {
763 this->set_data_size(data_size);
764 if (is_data_size_fixed)
765 this->fix_data_size();
766 }
767
768 Output_section_data(uint64_t addralign)
769 : Output_data(), output_section_(NULL), addralign_(addralign)
770 { }
771
772 // Return the output section.
773 Output_section*
774 output_section()
775 { return this->output_section_; }
776
777 const Output_section*
778 output_section() const
779 { return this->output_section_; }
780
781 // Record the output section.
782 void
783 set_output_section(Output_section* os);
784
785 // Add an input section, for SHF_MERGE sections. This returns true
786 // if the section was handled.
787 bool
788 add_input_section(Relobj* object, unsigned int shndx)
789 { return this->do_add_input_section(object, shndx); }
790
791 // Given an input OBJECT, an input section index SHNDX within that
792 // object, and an OFFSET relative to the start of that input
793 // section, return whether or not the corresponding offset within
794 // the output section is known. If this function returns true, it
795 // sets *POUTPUT to the output offset. The value -1 indicates that
796 // this input offset is being discarded.
797 bool
798 output_offset(const Relobj* object, unsigned int shndx,
799 section_offset_type offset,
800 section_offset_type* poutput) const
801 { return this->do_output_offset(object, shndx, offset, poutput); }
802
803 // Write the contents to a buffer. This is used for sections which
804 // require postprocessing, such as compression.
805 void
806 write_to_buffer(unsigned char* buffer)
807 { this->do_write_to_buffer(buffer); }
808
809 // Print merge stats to stderr. This should only be called for
810 // SHF_MERGE sections.
811 void
812 print_merge_stats(const char* section_name)
813 { this->do_print_merge_stats(section_name); }
814
815 protected:
816 // The child class must implement do_write.
817
818 // The child class may implement specific adjustments to the output
819 // section.
820 virtual void
821 do_adjust_output_section(Output_section*)
822 { }
823
824 // May be implemented by child class. Return true if the section
825 // was handled.
826 virtual bool
827 do_add_input_section(Relobj*, unsigned int)
828 { gold_unreachable(); }
829
830 // The child class may implement output_offset.
831 virtual bool
832 do_output_offset(const Relobj*, unsigned int, section_offset_type,
833 section_offset_type*) const
834 { return false; }
835
836 // The child class may implement write_to_buffer. Most child
837 // classes can not appear in a compressed section, and they do not
838 // implement this.
839 virtual void
840 do_write_to_buffer(unsigned char*)
841 { gold_unreachable(); }
842
843 // Print merge statistics.
844 virtual void
845 do_print_merge_stats(const char*)
846 { gold_unreachable(); }
847
848 // Return the required alignment.
849 uint64_t
850 do_addralign() const
851 { return this->addralign_; }
852
853 // Return the output section.
854 Output_section*
855 do_output_section()
856 { return this->output_section_; }
857
858 const Output_section*
859 do_output_section() const
860 { return this->output_section_; }
861
862 // Return the section index of the output section.
863 unsigned int
864 do_out_shndx() const;
865
866 // Set the alignment.
867 void
868 set_addralign(uint64_t addralign);
869
870 private:
871 // The output section for this section.
872 Output_section* output_section_;
873 // The required alignment.
874 uint64_t addralign_;
875 };
876
877 // Some Output_section_data classes build up their data step by step,
878 // rather than all at once. This class provides an interface for
879 // them.
880
881 class Output_section_data_build : public Output_section_data
882 {
883 public:
884 Output_section_data_build(uint64_t addralign)
885 : Output_section_data(addralign)
886 { }
887
888 Output_section_data_build(off_t data_size, uint64_t addralign)
889 : Output_section_data(data_size, addralign, false)
890 { }
891
892 // Set the current data size.
893 void
894 set_current_data_size(off_t data_size)
895 { this->set_current_data_size_for_child(data_size); }
896
897 protected:
898 // Set the final data size.
899 virtual void
900 set_final_data_size()
901 { this->set_data_size(this->current_data_size_for_child()); }
902 };
903
904 // A simple case of Output_data in which we have constant data to
905 // output.
906
907 class Output_data_const : public Output_section_data
908 {
909 public:
910 Output_data_const(const std::string& data, uint64_t addralign)
911 : Output_section_data(data.size(), addralign, true), data_(data)
912 { }
913
914 Output_data_const(const char* p, off_t len, uint64_t addralign)
915 : Output_section_data(len, addralign, true), data_(p, len)
916 { }
917
918 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
919 : Output_section_data(len, addralign, true),
920 data_(reinterpret_cast<const char*>(p), len)
921 { }
922
923 protected:
924 // Write the data to the output file.
925 void
926 do_write(Output_file*);
927
928 // Write the data to a buffer.
929 void
930 do_write_to_buffer(unsigned char* buffer)
931 { memcpy(buffer, this->data_.data(), this->data_.size()); }
932
933 // Write to a map file.
934 void
935 do_print_to_mapfile(Mapfile* mapfile) const
936 { mapfile->print_output_data(this, _("** fill")); }
937
938 private:
939 std::string data_;
940 };
941
942 // Another version of Output_data with constant data, in which the
943 // buffer is allocated by the caller.
944
945 class Output_data_const_buffer : public Output_section_data
946 {
947 public:
948 Output_data_const_buffer(const unsigned char* p, off_t len,
949 uint64_t addralign, const char* map_name)
950 : Output_section_data(len, addralign, true),
951 p_(p), map_name_(map_name)
952 { }
953
954 protected:
955 // Write the data the output file.
956 void
957 do_write(Output_file*);
958
959 // Write the data to a buffer.
960 void
961 do_write_to_buffer(unsigned char* buffer)
962 { memcpy(buffer, this->p_, this->data_size()); }
963
964 // Write to a map file.
965 void
966 do_print_to_mapfile(Mapfile* mapfile) const
967 { mapfile->print_output_data(this, _(this->map_name_)); }
968
969 private:
970 // The data to output.
971 const unsigned char* p_;
972 // Name to use in a map file. Maps are a rarely used feature, but
973 // the space usage is minor as aren't very many of these objects.
974 const char* map_name_;
975 };
976
977 // A place holder for a fixed amount of data written out via some
978 // other mechanism.
979
980 class Output_data_fixed_space : public Output_section_data
981 {
982 public:
983 Output_data_fixed_space(off_t data_size, uint64_t addralign,
984 const char* map_name)
985 : Output_section_data(data_size, addralign, true),
986 map_name_(map_name)
987 { }
988
989 protected:
990 // Write out the data--the actual data must be written out
991 // elsewhere.
992 void
993 do_write(Output_file*)
994 { }
995
996 // Write to a map file.
997 void
998 do_print_to_mapfile(Mapfile* mapfile) const
999 { mapfile->print_output_data(this, _(this->map_name_)); }
1000
1001 private:
1002 // Name to use in a map file. Maps are a rarely used feature, but
1003 // the space usage is minor as aren't very many of these objects.
1004 const char* map_name_;
1005 };
1006
1007 // A place holder for variable sized data written out via some other
1008 // mechanism.
1009
1010 class Output_data_space : public Output_section_data_build
1011 {
1012 public:
1013 explicit Output_data_space(uint64_t addralign, const char* map_name)
1014 : Output_section_data_build(addralign),
1015 map_name_(map_name)
1016 { }
1017
1018 explicit Output_data_space(off_t data_size, uint64_t addralign,
1019 const char* map_name)
1020 : Output_section_data_build(data_size, addralign),
1021 map_name_(map_name)
1022 { }
1023
1024 // Set the alignment.
1025 void
1026 set_space_alignment(uint64_t align)
1027 { this->set_addralign(align); }
1028
1029 protected:
1030 // Write out the data--the actual data must be written out
1031 // elsewhere.
1032 void
1033 do_write(Output_file*)
1034 { }
1035
1036 // Write to a map file.
1037 void
1038 do_print_to_mapfile(Mapfile* mapfile) const
1039 { mapfile->print_output_data(this, _(this->map_name_)); }
1040
1041 private:
1042 // Name to use in a map file. Maps are a rarely used feature, but
1043 // the space usage is minor as aren't very many of these objects.
1044 const char* map_name_;
1045 };
1046
1047 // Fill fixed space with zeroes. This is just like
1048 // Output_data_fixed_space, except that the map name is known.
1049
1050 class Output_data_zero_fill : public Output_section_data
1051 {
1052 public:
1053 Output_data_zero_fill(off_t data_size, uint64_t addralign)
1054 : Output_section_data(data_size, addralign, true)
1055 { }
1056
1057 protected:
1058 // There is no data to write out.
1059 void
1060 do_write(Output_file*)
1061 { }
1062
1063 // Write to a map file.
1064 void
1065 do_print_to_mapfile(Mapfile* mapfile) const
1066 { mapfile->print_output_data(this, "** zero fill"); }
1067 };
1068
1069 // A string table which goes into an output section.
1070
1071 class Output_data_strtab : public Output_section_data
1072 {
1073 public:
1074 Output_data_strtab(Stringpool* strtab)
1075 : Output_section_data(1), strtab_(strtab)
1076 { }
1077
1078 protected:
1079 // This is called to update the section size prior to assigning
1080 // the address and file offset.
1081 void
1082 update_data_size()
1083 { this->set_final_data_size(); }
1084
1085 // This is called to set the address and file offset. Here we make
1086 // sure that the Stringpool is finalized.
1087 void
1088 set_final_data_size();
1089
1090 // Write out the data.
1091 void
1092 do_write(Output_file*);
1093
1094 // Write the data to a buffer.
1095 void
1096 do_write_to_buffer(unsigned char* buffer)
1097 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
1098
1099 // Write to a map file.
1100 void
1101 do_print_to_mapfile(Mapfile* mapfile) const
1102 { mapfile->print_output_data(this, _("** string table")); }
1103
1104 private:
1105 Stringpool* strtab_;
1106 };
1107
1108 // This POD class is used to represent a single reloc in the output
1109 // file. This could be a private class within Output_data_reloc, but
1110 // the templatization is complex enough that I broke it out into a
1111 // separate class. The class is templatized on either elfcpp::SHT_REL
1112 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
1113 // relocation or an ordinary relocation.
1114
1115 // A relocation can be against a global symbol, a local symbol, a
1116 // local section symbol, an output section, or the undefined symbol at
1117 // index 0. We represent the latter by using a NULL global symbol.
1118
1119 template<int sh_type, bool dynamic, int size, bool big_endian>
1120 class Output_reloc;
1121
1122 template<bool dynamic, int size, bool big_endian>
1123 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1124 {
1125 public:
1126 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1127 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1128
1129 static const Address invalid_address = static_cast<Address>(0) - 1;
1130
1131 // An uninitialized entry. We need this because we want to put
1132 // instances of this class into an STL container.
1133 Output_reloc()
1134 : local_sym_index_(INVALID_CODE)
1135 { }
1136
1137 // We have a bunch of different constructors. They come in pairs
1138 // depending on how the address of the relocation is specified. It
1139 // can either be an offset in an Output_data or an offset in an
1140 // input section.
1141
1142 // A reloc against a global symbol.
1143
1144 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1145 Address address, bool is_relative, bool is_symbolless,
1146 bool use_plt_offset);
1147
1148 Output_reloc(Symbol* gsym, unsigned int type,
1149 Sized_relobj<size, big_endian>* relobj,
1150 unsigned int shndx, Address address, bool is_relative,
1151 bool is_symbolless, bool use_plt_offset);
1152
1153 // A reloc against a local symbol or local section symbol.
1154
1155 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1156 unsigned int local_sym_index, unsigned int type,
1157 Output_data* od, Address address, bool is_relative,
1158 bool is_symbolless, bool is_section_symbol,
1159 bool use_plt_offset);
1160
1161 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1162 unsigned int local_sym_index, unsigned int type,
1163 unsigned int shndx, Address address, bool is_relative,
1164 bool is_symbolless, bool is_section_symbol,
1165 bool use_plt_offset);
1166
1167 // A reloc against the STT_SECTION symbol of an output section.
1168
1169 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1170 Address address, bool is_relative);
1171
1172 Output_reloc(Output_section* os, unsigned int type,
1173 Sized_relobj<size, big_endian>* relobj, unsigned int shndx,
1174 Address address, bool is_relative);
1175
1176 // An absolute or relative relocation with no symbol.
1177
1178 Output_reloc(unsigned int type, Output_data* od, Address address,
1179 bool is_relative);
1180
1181 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1182 unsigned int shndx, Address address, bool is_relative);
1183
1184 // A target specific relocation. The target will be called to get
1185 // the symbol index, passing ARG. The type and offset will be set
1186 // as for other relocation types.
1187
1188 Output_reloc(unsigned int type, void* arg, Output_data* od,
1189 Address address);
1190
1191 Output_reloc(unsigned int type, void* arg,
1192 Sized_relobj<size, big_endian>* relobj,
1193 unsigned int shndx, Address address);
1194
1195 // Return the reloc type.
1196 unsigned int
1197 type() const
1198 { return this->type_; }
1199
1200 // Return whether this is a RELATIVE relocation.
1201 bool
1202 is_relative() const
1203 { return this->is_relative_; }
1204
1205 // Return whether this is a relocation which should not use
1206 // a symbol, but which obtains its addend from a symbol.
1207 bool
1208 is_symbolless() const
1209 { return this->is_symbolless_; }
1210
1211 // Return whether this is against a local section symbol.
1212 bool
1213 is_local_section_symbol() const
1214 {
1215 return (this->local_sym_index_ != GSYM_CODE
1216 && this->local_sym_index_ != SECTION_CODE
1217 && this->local_sym_index_ != INVALID_CODE
1218 && this->local_sym_index_ != TARGET_CODE
1219 && this->is_section_symbol_);
1220 }
1221
1222 // Return whether this is a target specific relocation.
1223 bool
1224 is_target_specific() const
1225 { return this->local_sym_index_ == TARGET_CODE; }
1226
1227 // Return the argument to pass to the target for a target specific
1228 // relocation.
1229 void*
1230 target_arg() const
1231 {
1232 gold_assert(this->local_sym_index_ == TARGET_CODE);
1233 return this->u1_.arg;
1234 }
1235
1236 // For a local section symbol, return the offset of the input
1237 // section within the output section. ADDEND is the addend being
1238 // applied to the input section.
1239 Address
1240 local_section_offset(Addend addend) const;
1241
1242 // Get the value of the symbol referred to by a Rel relocation when
1243 // we are adding the given ADDEND.
1244 Address
1245 symbol_value(Addend addend) const;
1246
1247 // If this relocation is against an input section, return the
1248 // relocatable object containing the input section.
1249 Sized_relobj<size, big_endian>*
1250 get_relobj() const
1251 {
1252 if (this->shndx_ == INVALID_CODE)
1253 return NULL;
1254 return this->u2_.relobj;
1255 }
1256
1257 // Write the reloc entry to an output view.
1258 void
1259 write(unsigned char* pov) const;
1260
1261 // Write the offset and info fields to Write_rel.
1262 template<typename Write_rel>
1263 void write_rel(Write_rel*) const;
1264
1265 // This is used when sorting dynamic relocs. Return -1 to sort this
1266 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1267 int
1268 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1269 const;
1270
1271 // Return whether this reloc should be sorted before the argument
1272 // when sorting dynamic relocs.
1273 bool
1274 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1275 r2) const
1276 { return this->compare(r2) < 0; }
1277
1278 // Return the symbol index.
1279 unsigned int
1280 get_symbol_index() const;
1281
1282 // Return the output address.
1283 Address
1284 get_address() const;
1285
1286 private:
1287 // Record that we need a dynamic symbol index.
1288 void
1289 set_needs_dynsym_index();
1290
1291 // Codes for local_sym_index_.
1292 enum
1293 {
1294 // Global symbol.
1295 GSYM_CODE = -1U,
1296 // Output section.
1297 SECTION_CODE = -2U,
1298 // Target specific.
1299 TARGET_CODE = -3U,
1300 // Invalid uninitialized entry.
1301 INVALID_CODE = -4U
1302 };
1303
1304 union
1305 {
1306 // For a local symbol or local section symbol
1307 // (this->local_sym_index_ >= 0), the object. We will never
1308 // generate a relocation against a local symbol in a dynamic
1309 // object; that doesn't make sense. And our callers will always
1310 // be templatized, so we use Sized_relobj here.
1311 Sized_relobj<size, big_endian>* relobj;
1312 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1313 // symbol. If this is NULL, it indicates a relocation against the
1314 // undefined 0 symbol.
1315 Symbol* gsym;
1316 // For a relocation against an output section
1317 // (this->local_sym_index_ == SECTION_CODE), the output section.
1318 Output_section* os;
1319 // For a target specific relocation, an argument to pass to the
1320 // target.
1321 void* arg;
1322 } u1_;
1323 union
1324 {
1325 // If this->shndx_ is not INVALID CODE, the object which holds the
1326 // input section being used to specify the reloc address.
1327 Sized_relobj<size, big_endian>* relobj;
1328 // If this->shndx_ is INVALID_CODE, the output data being used to
1329 // specify the reloc address. This may be NULL if the reloc
1330 // address is absolute.
1331 Output_data* od;
1332 } u2_;
1333 // The address offset within the input section or the Output_data.
1334 Address address_;
1335 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1336 // relocation against an output section, or TARGET_CODE for a target
1337 // specific relocation, or INVALID_CODE for an uninitialized value.
1338 // Otherwise, for a local symbol (this->is_section_symbol_ is
1339 // false), the local symbol index. For a local section symbol
1340 // (this->is_section_symbol_ is true), the section index in the
1341 // input file.
1342 unsigned int local_sym_index_;
1343 // The reloc type--a processor specific code.
1344 unsigned int type_ : 28;
1345 // True if the relocation is a RELATIVE relocation.
1346 bool is_relative_ : 1;
1347 // True if the relocation is one which should not use
1348 // a symbol, but which obtains its addend from a symbol.
1349 bool is_symbolless_ : 1;
1350 // True if the relocation is against a section symbol.
1351 bool is_section_symbol_ : 1;
1352 // True if the addend should be the PLT offset.
1353 // (Used only for RELA, but stored here for space.)
1354 bool use_plt_offset_ : 1;
1355 // If the reloc address is an input section in an object, the
1356 // section index. This is INVALID_CODE if the reloc address is
1357 // specified in some other way.
1358 unsigned int shndx_;
1359 };
1360
1361 // The SHT_RELA version of Output_reloc<>. This is just derived from
1362 // the SHT_REL version of Output_reloc, but it adds an addend.
1363
1364 template<bool dynamic, int size, bool big_endian>
1365 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1366 {
1367 public:
1368 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1369 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1370
1371 // An uninitialized entry.
1372 Output_reloc()
1373 : rel_()
1374 { }
1375
1376 // A reloc against a global symbol.
1377
1378 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1379 Address address, Addend addend, bool is_relative,
1380 bool is_symbolless, bool use_plt_offset)
1381 : rel_(gsym, type, od, address, is_relative, is_symbolless,
1382 use_plt_offset),
1383 addend_(addend)
1384 { }
1385
1386 Output_reloc(Symbol* gsym, unsigned int type,
1387 Sized_relobj<size, big_endian>* relobj,
1388 unsigned int shndx, Address address, Addend addend,
1389 bool is_relative, bool is_symbolless, bool use_plt_offset)
1390 : rel_(gsym, type, relobj, shndx, address, is_relative,
1391 is_symbolless, use_plt_offset), addend_(addend)
1392 { }
1393
1394 // A reloc against a local symbol.
1395
1396 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1397 unsigned int local_sym_index, unsigned int type,
1398 Output_data* od, Address address,
1399 Addend addend, bool is_relative,
1400 bool is_symbolless, bool is_section_symbol,
1401 bool use_plt_offset)
1402 : rel_(relobj, local_sym_index, type, od, address, is_relative,
1403 is_symbolless, is_section_symbol, use_plt_offset),
1404 addend_(addend)
1405 { }
1406
1407 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1408 unsigned int local_sym_index, unsigned int type,
1409 unsigned int shndx, Address address,
1410 Addend addend, bool is_relative,
1411 bool is_symbolless, bool is_section_symbol,
1412 bool use_plt_offset)
1413 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1414 is_symbolless, is_section_symbol, use_plt_offset),
1415 addend_(addend)
1416 { }
1417
1418 // A reloc against the STT_SECTION symbol of an output section.
1419
1420 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1421 Address address, Addend addend, bool is_relative)
1422 : rel_(os, type, od, address, is_relative), addend_(addend)
1423 { }
1424
1425 Output_reloc(Output_section* os, unsigned int type,
1426 Sized_relobj<size, big_endian>* relobj,
1427 unsigned int shndx, Address address, Addend addend,
1428 bool is_relative)
1429 : rel_(os, type, relobj, shndx, address, is_relative), addend_(addend)
1430 { }
1431
1432 // An absolute or relative relocation with no symbol.
1433
1434 Output_reloc(unsigned int type, Output_data* od, Address address,
1435 Addend addend, bool is_relative)
1436 : rel_(type, od, address, is_relative), addend_(addend)
1437 { }
1438
1439 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1440 unsigned int shndx, Address address, Addend addend,
1441 bool is_relative)
1442 : rel_(type, relobj, shndx, address, is_relative), addend_(addend)
1443 { }
1444
1445 // A target specific relocation. The target will be called to get
1446 // the symbol index and the addend, passing ARG. The type and
1447 // offset will be set as for other relocation types.
1448
1449 Output_reloc(unsigned int type, void* arg, Output_data* od,
1450 Address address, Addend addend)
1451 : rel_(type, arg, od, address), addend_(addend)
1452 { }
1453
1454 Output_reloc(unsigned int type, void* arg,
1455 Sized_relobj<size, big_endian>* relobj,
1456 unsigned int shndx, Address address, Addend addend)
1457 : rel_(type, arg, relobj, shndx, address), addend_(addend)
1458 { }
1459
1460 // Return whether this is a RELATIVE relocation.
1461 bool
1462 is_relative() const
1463 { return this->rel_.is_relative(); }
1464
1465 // Return whether this is a relocation which should not use
1466 // a symbol, but which obtains its addend from a symbol.
1467 bool
1468 is_symbolless() const
1469 { return this->rel_.is_symbolless(); }
1470
1471 // If this relocation is against an input section, return the
1472 // relocatable object containing the input section.
1473 Sized_relobj<size, big_endian>*
1474 get_relobj() const
1475 { return this->rel_.get_relobj(); }
1476
1477 // Write the reloc entry to an output view.
1478 void
1479 write(unsigned char* pov) const;
1480
1481 // Return whether this reloc should be sorted before the argument
1482 // when sorting dynamic relocs.
1483 bool
1484 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1485 r2) const
1486 {
1487 int i = this->rel_.compare(r2.rel_);
1488 if (i < 0)
1489 return true;
1490 else if (i > 0)
1491 return false;
1492 else
1493 return this->addend_ < r2.addend_;
1494 }
1495
1496 private:
1497 // The basic reloc.
1498 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1499 // The addend.
1500 Addend addend_;
1501 };
1502
1503 // Output_data_reloc_generic is a non-template base class for
1504 // Output_data_reloc_base. This gives the generic code a way to hold
1505 // a pointer to a reloc section.
1506
1507 class Output_data_reloc_generic : public Output_section_data_build
1508 {
1509 public:
1510 Output_data_reloc_generic(int size, bool sort_relocs)
1511 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1512 relative_reloc_count_(0), sort_relocs_(sort_relocs)
1513 { }
1514
1515 // Return the number of relative relocs in this section.
1516 size_t
1517 relative_reloc_count() const
1518 { return this->relative_reloc_count_; }
1519
1520 // Whether we should sort the relocs.
1521 bool
1522 sort_relocs() const
1523 { return this->sort_relocs_; }
1524
1525 // Add a reloc of type TYPE against the global symbol GSYM. The
1526 // relocation applies to the data at offset ADDRESS within OD.
1527 virtual void
1528 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1529 uint64_t address, uint64_t addend) = 0;
1530
1531 // Add a reloc of type TYPE against the global symbol GSYM. The
1532 // relocation applies to data at offset ADDRESS within section SHNDX
1533 // of object file RELOBJ. OD is the associated output section.
1534 virtual void
1535 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1536 Relobj* relobj, unsigned int shndx, uint64_t address,
1537 uint64_t addend) = 0;
1538
1539 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1540 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1541 // within OD.
1542 virtual void
1543 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1544 unsigned int type, Output_data* od, uint64_t address,
1545 uint64_t addend) = 0;
1546
1547 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1548 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1549 // within section SHNDX of RELOBJ. OD is the associated output
1550 // section.
1551 virtual void
1552 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1553 unsigned int type, Output_data* od, unsigned int shndx,
1554 uint64_t address, uint64_t addend) = 0;
1555
1556 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1557 // output section OS. The relocation applies to the data at offset
1558 // ADDRESS within OD.
1559 virtual void
1560 add_output_section_generic(Output_section *os, unsigned int type,
1561 Output_data* od, uint64_t address,
1562 uint64_t addend) = 0;
1563
1564 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1565 // output section OS. The relocation applies to the data at offset
1566 // ADDRESS within section SHNDX of RELOBJ. OD is the associated
1567 // output section.
1568 virtual void
1569 add_output_section_generic(Output_section* os, unsigned int type,
1570 Output_data* od, Relobj* relobj,
1571 unsigned int shndx, uint64_t address,
1572 uint64_t addend) = 0;
1573
1574 protected:
1575 // Note that we've added another relative reloc.
1576 void
1577 bump_relative_reloc_count()
1578 { ++this->relative_reloc_count_; }
1579
1580 private:
1581 // The number of relative relocs added to this section. This is to
1582 // support DT_RELCOUNT.
1583 size_t relative_reloc_count_;
1584 // Whether to sort the relocations when writing them out, to make
1585 // the dynamic linker more efficient.
1586 bool sort_relocs_;
1587 };
1588
1589 // Output_data_reloc is used to manage a section containing relocs.
1590 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1591 // indicates whether this is a dynamic relocation or a normal
1592 // relocation. Output_data_reloc_base is a base class.
1593 // Output_data_reloc is the real class, which we specialize based on
1594 // the reloc type.
1595
1596 template<int sh_type, bool dynamic, int size, bool big_endian>
1597 class Output_data_reloc_base : public Output_data_reloc_generic
1598 {
1599 public:
1600 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1601 typedef typename Output_reloc_type::Address Address;
1602 static const int reloc_size =
1603 Reloc_types<sh_type, size, big_endian>::reloc_size;
1604
1605 // Construct the section.
1606 Output_data_reloc_base(bool sort_relocs)
1607 : Output_data_reloc_generic(size, sort_relocs)
1608 { }
1609
1610 protected:
1611 // Write out the data.
1612 void
1613 do_write(Output_file*);
1614
1615 // Generic implementation of do_write, allowing a customized
1616 // class for writing the output relocation (e.g., for MIPS-64).
1617 template<class Output_reloc_writer>
1618 void
1619 do_write_generic(Output_file* of)
1620 {
1621 const off_t off = this->offset();
1622 const off_t oview_size = this->data_size();
1623 unsigned char* const oview = of->get_output_view(off, oview_size);
1624
1625 if (this->sort_relocs())
1626 {
1627 gold_assert(dynamic);
1628 std::sort(this->relocs_.begin(), this->relocs_.end(),
1629 Sort_relocs_comparison());
1630 }
1631
1632 unsigned char* pov = oview;
1633 for (typename Relocs::const_iterator p = this->relocs_.begin();
1634 p != this->relocs_.end();
1635 ++p)
1636 {
1637 Output_reloc_writer::write(p, pov);
1638 pov += reloc_size;
1639 }
1640
1641 gold_assert(pov - oview == oview_size);
1642
1643 of->write_output_view(off, oview_size, oview);
1644
1645 // We no longer need the relocation entries.
1646 this->relocs_.clear();
1647 }
1648
1649 // Set the entry size and the link.
1650 void
1651 do_adjust_output_section(Output_section* os);
1652
1653 // Write to a map file.
1654 void
1655 do_print_to_mapfile(Mapfile* mapfile) const
1656 {
1657 mapfile->print_output_data(this,
1658 (dynamic
1659 ? _("** dynamic relocs")
1660 : _("** relocs")));
1661 }
1662
1663 // Add a relocation entry.
1664 void
1665 add(Output_data* od, const Output_reloc_type& reloc)
1666 {
1667 this->relocs_.push_back(reloc);
1668 this->set_current_data_size(this->relocs_.size() * reloc_size);
1669 if (dynamic)
1670 od->add_dynamic_reloc();
1671 if (reloc.is_relative())
1672 this->bump_relative_reloc_count();
1673 Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
1674 if (relobj != NULL)
1675 relobj->add_dyn_reloc(this->relocs_.size() - 1);
1676 }
1677
1678 private:
1679 typedef std::vector<Output_reloc_type> Relocs;
1680
1681 // The class used to sort the relocations.
1682 struct Sort_relocs_comparison
1683 {
1684 bool
1685 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1686 { return r1.sort_before(r2); }
1687 };
1688
1689 // The relocations in this section.
1690 Relocs relocs_;
1691 };
1692
1693 // The class which callers actually create.
1694
1695 template<int sh_type, bool dynamic, int size, bool big_endian>
1696 class Output_data_reloc;
1697
1698 // The SHT_REL version of Output_data_reloc.
1699
1700 template<bool dynamic, int size, bool big_endian>
1701 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1702 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1703 {
1704 private:
1705 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1706 big_endian> Base;
1707
1708 public:
1709 typedef typename Base::Output_reloc_type Output_reloc_type;
1710 typedef typename Output_reloc_type::Address Address;
1711
1712 Output_data_reloc(bool sr)
1713 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1714 { }
1715
1716 // Add a reloc against a global symbol.
1717
1718 void
1719 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1720 {
1721 this->add(od, Output_reloc_type(gsym, type, od, address,
1722 false, false, false));
1723 }
1724
1725 void
1726 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1727 Sized_relobj<size, big_endian>* relobj,
1728 unsigned int shndx, Address address)
1729 {
1730 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1731 false, false, false));
1732 }
1733
1734 void
1735 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1736 uint64_t address, uint64_t addend)
1737 {
1738 gold_assert(addend == 0);
1739 this->add(od, Output_reloc_type(gsym, type, od,
1740 convert_types<Address, uint64_t>(address),
1741 false, false, false));
1742 }
1743
1744 void
1745 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1746 Relobj* relobj, unsigned int shndx, uint64_t address,
1747 uint64_t addend)
1748 {
1749 gold_assert(addend == 0);
1750 Sized_relobj<size, big_endian>* sized_relobj =
1751 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1752 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1753 convert_types<Address, uint64_t>(address),
1754 false, false, false));
1755 }
1756
1757 // Add a RELATIVE reloc against a global symbol. The final relocation
1758 // will not reference the symbol.
1759
1760 void
1761 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1762 Address address)
1763 {
1764 this->add(od, Output_reloc_type(gsym, type, od, address, true, true,
1765 false));
1766 }
1767
1768 void
1769 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1770 Sized_relobj<size, big_endian>* relobj,
1771 unsigned int shndx, Address address)
1772 {
1773 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1774 true, true, false));
1775 }
1776
1777 // Add a global relocation which does not use a symbol for the relocation,
1778 // but which gets its addend from a symbol.
1779
1780 void
1781 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1782 Output_data* od, Address address)
1783 {
1784 this->add(od, Output_reloc_type(gsym, type, od, address, false, true,
1785 false));
1786 }
1787
1788 void
1789 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1790 Output_data* od,
1791 Sized_relobj<size, big_endian>* relobj,
1792 unsigned int shndx, Address address)
1793 {
1794 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1795 false, true, false));
1796 }
1797
1798 // Add a reloc against a local symbol.
1799
1800 void
1801 add_local(Sized_relobj<size, big_endian>* relobj,
1802 unsigned int local_sym_index, unsigned int type,
1803 Output_data* od, Address address)
1804 {
1805 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1806 address, false, false, false, false));
1807 }
1808
1809 void
1810 add_local(Sized_relobj<size, big_endian>* relobj,
1811 unsigned int local_sym_index, unsigned int type,
1812 Output_data* od, unsigned int shndx, Address address)
1813 {
1814 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1815 address, false, false, false, false));
1816 }
1817
1818 void
1819 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1820 unsigned int type, Output_data* od, uint64_t address,
1821 uint64_t addend)
1822 {
1823 gold_assert(addend == 0);
1824 Sized_relobj<size, big_endian>* sized_relobj =
1825 static_cast<Sized_relobj<size, big_endian> *>(relobj);
1826 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1827 convert_types<Address, uint64_t>(address),
1828 false, false, false, false));
1829 }
1830
1831 void
1832 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1833 unsigned int type, Output_data* od, unsigned int shndx,
1834 uint64_t address, uint64_t addend)
1835 {
1836 gold_assert(addend == 0);
1837 Sized_relobj<size, big_endian>* sized_relobj =
1838 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1839 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
1840 convert_types<Address, uint64_t>(address),
1841 false, false, false, false));
1842 }
1843
1844 // Add a RELATIVE reloc against a local symbol.
1845
1846 void
1847 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1848 unsigned int local_sym_index, unsigned int type,
1849 Output_data* od, Address address)
1850 {
1851 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1852 address, true, true, false, false));
1853 }
1854
1855 void
1856 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1857 unsigned int local_sym_index, unsigned int type,
1858 Output_data* od, unsigned int shndx, Address address)
1859 {
1860 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1861 address, true, true, false, false));
1862 }
1863
1864 void
1865 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1866 unsigned int local_sym_index, unsigned int type,
1867 Output_data* od, unsigned int shndx, Address address,
1868 bool use_plt_offset)
1869 {
1870 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1871 address, true, true, false,
1872 use_plt_offset));
1873 }
1874
1875 // Add a local relocation which does not use a symbol for the relocation,
1876 // but which gets its addend from a symbol.
1877
1878 void
1879 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1880 unsigned int local_sym_index, unsigned int type,
1881 Output_data* od, Address address)
1882 {
1883 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1884 address, false, true, false, false));
1885 }
1886
1887 void
1888 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1889 unsigned int local_sym_index, unsigned int type,
1890 Output_data* od, unsigned int shndx,
1891 Address address)
1892 {
1893 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1894 address, false, true, false, false));
1895 }
1896
1897 // Add a reloc against a local section symbol. This will be
1898 // converted into a reloc against the STT_SECTION symbol of the
1899 // output section.
1900
1901 void
1902 add_local_section(Sized_relobj<size, big_endian>* relobj,
1903 unsigned int input_shndx, unsigned int type,
1904 Output_data* od, Address address)
1905 {
1906 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1907 address, false, false, true, false));
1908 }
1909
1910 void
1911 add_local_section(Sized_relobj<size, big_endian>* relobj,
1912 unsigned int input_shndx, unsigned int type,
1913 Output_data* od, unsigned int shndx, Address address)
1914 {
1915 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1916 address, false, false, true, false));
1917 }
1918
1919 // A reloc against the STT_SECTION symbol of an output section.
1920 // OS is the Output_section that the relocation refers to; OD is
1921 // the Output_data object being relocated.
1922
1923 void
1924 add_output_section(Output_section* os, unsigned int type,
1925 Output_data* od, Address address)
1926 { this->add(od, Output_reloc_type(os, type, od, address, false)); }
1927
1928 void
1929 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1930 Sized_relobj<size, big_endian>* relobj,
1931 unsigned int shndx, Address address)
1932 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, false)); }
1933
1934 void
1935 add_output_section_generic(Output_section* os, unsigned int type,
1936 Output_data* od, uint64_t address,
1937 uint64_t addend)
1938 {
1939 gold_assert(addend == 0);
1940 this->add(od, Output_reloc_type(os, type, od,
1941 convert_types<Address, uint64_t>(address),
1942 false));
1943 }
1944
1945 void
1946 add_output_section_generic(Output_section* os, unsigned int type,
1947 Output_data* od, Relobj* relobj,
1948 unsigned int shndx, uint64_t address,
1949 uint64_t addend)
1950 {
1951 gold_assert(addend == 0);
1952 Sized_relobj<size, big_endian>* sized_relobj =
1953 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1954 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
1955 convert_types<Address, uint64_t>(address),
1956 false));
1957 }
1958
1959 // As above, but the reloc TYPE is relative
1960
1961 void
1962 add_output_section_relative(Output_section* os, unsigned int type,
1963 Output_data* od, Address address)
1964 { this->add(od, Output_reloc_type(os, type, od, address, true)); }
1965
1966 void
1967 add_output_section_relative(Output_section* os, unsigned int type,
1968 Output_data* od,
1969 Sized_relobj<size, big_endian>* relobj,
1970 unsigned int shndx, Address address)
1971 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, true)); }
1972
1973 // Add an absolute relocation.
1974
1975 void
1976 add_absolute(unsigned int type, Output_data* od, Address address)
1977 { this->add(od, Output_reloc_type(type, od, address, false)); }
1978
1979 void
1980 add_absolute(unsigned int type, Output_data* od,
1981 Sized_relobj<size, big_endian>* relobj,
1982 unsigned int shndx, Address address)
1983 { this->add(od, Output_reloc_type(type, relobj, shndx, address, false)); }
1984
1985 // Add a relative relocation
1986
1987 void
1988 add_relative(unsigned int type, Output_data* od, Address address)
1989 { this->add(od, Output_reloc_type(type, od, address, true)); }
1990
1991 void
1992 add_relative(unsigned int type, Output_data* od,
1993 Sized_relobj<size, big_endian>* relobj,
1994 unsigned int shndx, Address address)
1995 { this->add(od, Output_reloc_type(type, relobj, shndx, address, true)); }
1996
1997 // Add a target specific relocation. A target which calls this must
1998 // define the reloc_symbol_index and reloc_addend virtual functions.
1999
2000 void
2001 add_target_specific(unsigned int type, void* arg, Output_data* od,
2002 Address address)
2003 { this->add(od, Output_reloc_type(type, arg, od, address)); }
2004
2005 void
2006 add_target_specific(unsigned int type, void* arg, Output_data* od,
2007 Sized_relobj<size, big_endian>* relobj,
2008 unsigned int shndx, Address address)
2009 { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
2010 };
2011
2012 // The SHT_RELA version of Output_data_reloc.
2013
2014 template<bool dynamic, int size, bool big_endian>
2015 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
2016 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
2017 {
2018 private:
2019 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
2020 big_endian> Base;
2021
2022 public:
2023 typedef typename Base::Output_reloc_type Output_reloc_type;
2024 typedef typename Output_reloc_type::Address Address;
2025 typedef typename Output_reloc_type::Addend Addend;
2026
2027 Output_data_reloc(bool sr)
2028 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
2029 { }
2030
2031 // Add a reloc against a global symbol.
2032
2033 void
2034 add_global(Symbol* gsym, unsigned int type, Output_data* od,
2035 Address address, Addend addend)
2036 {
2037 this->add(od, Output_reloc_type(gsym, type, od, address, addend,
2038 false, false, false));
2039 }
2040
2041 void
2042 add_global(Symbol* gsym, unsigned int type, Output_data* od,
2043 Sized_relobj<size, big_endian>* relobj,
2044 unsigned int shndx, Address address,
2045 Addend addend)
2046 {
2047 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
2048 addend, false, false, false));
2049 }
2050
2051 void
2052 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
2053 uint64_t address, uint64_t addend)
2054 {
2055 this->add(od, Output_reloc_type(gsym, type, od,
2056 convert_types<Address, uint64_t>(address),
2057 convert_types<Addend, uint64_t>(addend),
2058 false, false, false));
2059 }
2060
2061 void
2062 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
2063 Relobj* relobj, unsigned int shndx, uint64_t address,
2064 uint64_t addend)
2065 {
2066 Sized_relobj<size, big_endian>* sized_relobj =
2067 static_cast<Sized_relobj<size, big_endian>*>(relobj);
2068 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
2069 convert_types<Address, uint64_t>(address),
2070 convert_types<Addend, uint64_t>(addend),
2071 false, false, false));
2072 }
2073
2074 // Add a RELATIVE reloc against a global symbol. The final output
2075 // relocation will not reference the symbol, but we must keep the symbol
2076 // information long enough to set the addend of the relocation correctly
2077 // when it is written.
2078
2079 void
2080 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
2081 Address address, Addend addend, bool use_plt_offset)
2082 {
2083 this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
2084 true, use_plt_offset));
2085 }
2086
2087 void
2088 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
2089 Sized_relobj<size, big_endian>* relobj,
2090 unsigned int shndx, Address address, Addend addend,
2091 bool use_plt_offset)
2092 {
2093 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
2094 addend, true, true, use_plt_offset));
2095 }
2096
2097 // Add a global relocation which does not use a symbol for the relocation,
2098 // but which gets its addend from a symbol.
2099
2100 void
2101 add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
2102 Address address, Addend addend)
2103 {
2104 this->add(od, Output_reloc_type(gsym, type, od, address, addend,
2105 false, true, false));
2106 }
2107
2108 void
2109 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
2110 Output_data* od,
2111 Sized_relobj<size, big_endian>* relobj,
2112 unsigned int shndx, Address address,
2113 Addend addend)
2114 {
2115 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
2116 addend, false, true, false));
2117 }
2118
2119 // Add a reloc against a local symbol.
2120
2121 void
2122 add_local(Sized_relobj<size, big_endian>* relobj,
2123 unsigned int local_sym_index, unsigned int type,
2124 Output_data* od, Address address, Addend addend)
2125 {
2126 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
2127 addend, false, false, false, false));
2128 }
2129
2130 void
2131 add_local(Sized_relobj<size, big_endian>* relobj,
2132 unsigned int local_sym_index, unsigned int type,
2133 Output_data* od, unsigned int shndx, Address address,
2134 Addend addend)
2135 {
2136 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
2137 address, addend, false, false, false,
2138 false));
2139 }
2140
2141 void
2142 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
2143 unsigned int type, Output_data* od, uint64_t address,
2144 uint64_t addend)
2145 {
2146 Sized_relobj<size, big_endian>* sized_relobj =
2147 static_cast<Sized_relobj<size, big_endian> *>(relobj);
2148 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
2149 convert_types<Address, uint64_t>(address),
2150 convert_types<Addend, uint64_t>(addend),
2151 false, false, false, false));
2152 }
2153
2154 void
2155 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
2156 unsigned int type, Output_data* od, unsigned int shndx,
2157 uint64_t address, uint64_t addend)
2158 {
2159 Sized_relobj<size, big_endian>* sized_relobj =
2160 static_cast<Sized_relobj<size, big_endian>*>(relobj);
2161 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
2162 convert_types<Address, uint64_t>(address),
2163 convert_types<Addend, uint64_t>(addend),
2164 false, false, false, false));
2165 }
2166
2167 // Add a RELATIVE reloc against a local symbol.
2168
2169 void
2170 add_local_relative(Sized_relobj<size, big_endian>* relobj,
2171 unsigned int local_sym_index, unsigned int type,
2172 Output_data* od, Address address, Addend addend,
2173 bool use_plt_offset)
2174 {
2175 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
2176 addend, true, true, false,
2177 use_plt_offset));
2178 }
2179
2180 void
2181 add_local_relative(Sized_relobj<size, big_endian>* relobj,
2182 unsigned int local_sym_index, unsigned int type,
2183 Output_data* od, unsigned int shndx, Address address,
2184 Addend addend, bool use_plt_offset)
2185 {
2186 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
2187 address, addend, true, true, false,
2188 use_plt_offset));
2189 }
2190
2191 // Add a local relocation which does not use a symbol for the relocation,
2192 // but which gets it's addend from a symbol.
2193
2194 void
2195 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
2196 unsigned int local_sym_index, unsigned int type,
2197 Output_data* od, Address address, Addend addend)
2198 {
2199 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
2200 addend, false, true, false, false));
2201 }
2202
2203 void
2204 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
2205 unsigned int local_sym_index, unsigned int type,
2206 Output_data* od, unsigned int shndx,
2207 Address address, Addend addend)
2208 {
2209 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
2210 address, addend, false, true, false,
2211 false));
2212 }
2213
2214 // Add a reloc against a local section symbol. This will be
2215 // converted into a reloc against the STT_SECTION symbol of the
2216 // output section.
2217
2218 void
2219 add_local_section(Sized_relobj<size, big_endian>* relobj,
2220 unsigned int input_shndx, unsigned int type,
2221 Output_data* od, Address address, Addend addend)
2222 {
2223 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
2224 addend, false, false, true, false));
2225 }
2226
2227 void
2228 add_local_section(Sized_relobj<size, big_endian>* relobj,
2229 unsigned int input_shndx, unsigned int type,
2230 Output_data* od, unsigned int shndx, Address address,
2231 Addend addend)
2232 {
2233 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
2234 address, addend, false, false, true,
2235 false));
2236 }
2237
2238 // A reloc against the STT_SECTION symbol of an output section.
2239
2240 void
2241 add_output_section(Output_section* os, unsigned int type, Output_data* od,
2242 Address address, Addend addend)
2243 { this->add(od, Output_reloc_type(os, type, od, address, addend, false)); }
2244
2245 void
2246 add_output_section(Output_section* os, unsigned int type, Output_data* od,
2247 Sized_relobj<size, big_endian>* relobj,
2248 unsigned int shndx, Address address, Addend addend)
2249 {
2250 this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
2251 addend, false));
2252 }
2253
2254 void
2255 add_output_section_generic(Output_section* os, unsigned int type,
2256 Output_data* od, uint64_t address,
2257 uint64_t addend)
2258 {
2259 this->add(od, Output_reloc_type(os, type, od,
2260 convert_types<Address, uint64_t>(address),
2261 convert_types<Addend, uint64_t>(addend),
2262 false));
2263 }
2264
2265 void
2266 add_output_section_generic(Output_section* os, unsigned int type,
2267 Output_data* od, Relobj* relobj,
2268 unsigned int shndx, uint64_t address,
2269 uint64_t addend)
2270 {
2271 Sized_relobj<size, big_endian>* sized_relobj =
2272 static_cast<Sized_relobj<size, big_endian>*>(relobj);
2273 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
2274 convert_types<Address, uint64_t>(address),
2275 convert_types<Addend, uint64_t>(addend),
2276 false));
2277 }
2278
2279 // As above, but the reloc TYPE is relative
2280
2281 void
2282 add_output_section_relative(Output_section* os, unsigned int type,
2283 Output_data* od, Address address, Addend addend)
2284 { this->add(od, Output_reloc_type(os, type, od, address, addend, true)); }
2285
2286 void
2287 add_output_section_relative(Output_section* os, unsigned int type,
2288 Output_data* od,
2289 Sized_relobj<size, big_endian>* relobj,
2290 unsigned int shndx, Address address,
2291 Addend addend)
2292 {
2293 this->add(od, Output_reloc_type(os, type, relobj, shndx,
2294 address, addend, true));
2295 }
2296
2297 // Add an absolute relocation.
2298
2299 void
2300 add_absolute(unsigned int type, Output_data* od, Address address,
2301 Addend addend)
2302 { this->add(od, Output_reloc_type(type, od, address, addend, false)); }
2303
2304 void
2305 add_absolute(unsigned int type, Output_data* od,
2306 Sized_relobj<size, big_endian>* relobj,
2307 unsigned int shndx, Address address, Addend addend)
2308 {
2309 this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
2310 false));
2311 }
2312
2313 // Add a relative relocation
2314
2315 void
2316 add_relative(unsigned int type, Output_data* od, Address address,
2317 Addend addend)
2318 { this->add(od, Output_reloc_type(type, od, address, addend, true)); }
2319
2320 void
2321 add_relative(unsigned int type, Output_data* od,
2322 Sized_relobj<size, big_endian>* relobj,
2323 unsigned int shndx, Address address, Addend addend)
2324 {
2325 this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
2326 true));
2327 }
2328
2329 // Add a target specific relocation. A target which calls this must
2330 // define the reloc_symbol_index and reloc_addend virtual functions.
2331
2332 void
2333 add_target_specific(unsigned int type, void* arg, Output_data* od,
2334 Address address, Addend addend)
2335 { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
2336
2337 void
2338 add_target_specific(unsigned int type, void* arg, Output_data* od,
2339 Sized_relobj<size, big_endian>* relobj,
2340 unsigned int shndx, Address address, Addend addend)
2341 {
2342 this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
2343 addend));
2344 }
2345 };
2346
2347 // Output_relocatable_relocs represents a relocation section in a
2348 // relocatable link. The actual data is written out in the target
2349 // hook relocate_relocs. This just saves space for it.
2350
2351 template<int sh_type, int size, bool big_endian>
2352 class Output_relocatable_relocs : public Output_section_data
2353 {
2354 public:
2355 Output_relocatable_relocs(Relocatable_relocs* rr)
2356 : Output_section_data(Output_data::default_alignment_for_size(size)),
2357 rr_(rr)
2358 { }
2359
2360 void
2361 set_final_data_size();
2362
2363 // Write out the data. There is nothing to do here.
2364 void
2365 do_write(Output_file*)
2366 { }
2367
2368 // Write to a map file.
2369 void
2370 do_print_to_mapfile(Mapfile* mapfile) const
2371 { mapfile->print_output_data(this, _("** relocs")); }
2372
2373 private:
2374 // The relocs associated with this input section.
2375 Relocatable_relocs* rr_;
2376 };
2377
2378 // Handle a GROUP section.
2379
2380 template<int size, bool big_endian>
2381 class Output_data_group : public Output_section_data
2382 {
2383 public:
2384 // The constructor clears *INPUT_SHNDXES.
2385 Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
2386 section_size_type entry_count,
2387 elfcpp::Elf_Word flags,
2388 std::vector<unsigned int>* input_shndxes);
2389
2390 void
2391 do_write(Output_file*);
2392
2393 // Write to a map file.
2394 void
2395 do_print_to_mapfile(Mapfile* mapfile) const
2396 { mapfile->print_output_data(this, _("** group")); }
2397
2398 // Set final data size.
2399 void
2400 set_final_data_size()
2401 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
2402
2403 private:
2404 // The input object.
2405 Sized_relobj_file<size, big_endian>* relobj_;
2406 // The group flag word.
2407 elfcpp::Elf_Word flags_;
2408 // The section indexes of the input sections in this group.
2409 std::vector<unsigned int> input_shndxes_;
2410 };
2411
2412 // Output_data_got is used to manage a GOT. Each entry in the GOT is
2413 // for one symbol--either a global symbol or a local symbol in an
2414 // object. The target specific code adds entries to the GOT as
2415 // needed. The GOT_SIZE template parameter is the size in bits of a
2416 // GOT entry, typically 32 or 64.
2417
2418 class Output_data_got_base : public Output_section_data_build
2419 {
2420 public:
2421 Output_data_got_base(uint64_t align)
2422 : Output_section_data_build(align)
2423 { }
2424
2425 Output_data_got_base(off_t data_size, uint64_t align)
2426 : Output_section_data_build(data_size, align)
2427 { }
2428
2429 // Reserve the slot at index I in the GOT.
2430 void
2431 reserve_slot(unsigned int i)
2432 { this->do_reserve_slot(i); }
2433
2434 protected:
2435 // Reserve the slot at index I in the GOT.
2436 virtual void
2437 do_reserve_slot(unsigned int i) = 0;
2438 };
2439
2440 template<int got_size, bool big_endian>
2441 class Output_data_got : public Output_data_got_base
2442 {
2443 public:
2444 typedef typename elfcpp::Elf_types<got_size>::Elf_Addr Valtype;
2445
2446 Output_data_got()
2447 : Output_data_got_base(Output_data::default_alignment_for_size(got_size)),
2448 entries_(), free_list_()
2449 { }
2450
2451 Output_data_got(off_t data_size)
2452 : Output_data_got_base(data_size,
2453 Output_data::default_alignment_for_size(got_size)),
2454 entries_(), free_list_()
2455 {
2456 // For an incremental update, we have an existing GOT section.
2457 // Initialize the list of entries and the free list.
2458 this->entries_.resize(data_size / (got_size / 8));
2459 this->free_list_.init(data_size, false);
2460 }
2461
2462 // Add an entry for a global symbol to the GOT. Return true if this
2463 // is a new GOT entry, false if the symbol was already in the GOT.
2464 bool
2465 add_global(Symbol* gsym, unsigned int got_type);
2466
2467 // Like add_global, but use the PLT offset of the global symbol if
2468 // it has one.
2469 bool
2470 add_global_plt(Symbol* gsym, unsigned int got_type);
2471
2472 // Like add_global, but for a TLS symbol where the value will be
2473 // offset using Target::tls_offset_for_global.
2474 bool
2475 add_global_tls(Symbol* gsym, unsigned int got_type)
2476 { return add_global_plt(gsym, got_type); }
2477
2478 // Add an entry for a global symbol to the GOT, and add a dynamic
2479 // relocation of type R_TYPE for the GOT entry.
2480 void
2481 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2482 Output_data_reloc_generic* rel_dyn, unsigned int r_type);
2483
2484 // Add a pair of entries for a global symbol to the GOT, and add
2485 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2486 void
2487 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2488 Output_data_reloc_generic* rel_dyn,
2489 unsigned int r_type_1, unsigned int r_type_2);
2490
2491 // Add an entry for a local symbol to the GOT. This returns true if
2492 // this is a new GOT entry, false if the symbol already has a GOT
2493 // entry.
2494 bool
2495 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type);
2496
2497 // Add an entry for a local symbol plus ADDEND to the GOT. This returns
2498 // true if this is a new GOT entry, false if the symbol already has a GOT
2499 // entry.
2500 bool
2501 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type,
2502 uint64_t addend);
2503
2504 // Like add_local, but use the PLT offset of the local symbol if it
2505 // has one.
2506 bool
2507 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type);
2508
2509 // Like add_local, but for a TLS symbol where the value will be
2510 // offset using Target::tls_offset_for_local.
2511 bool
2512 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2513 { return add_local_plt(object, sym_index, got_type); }
2514
2515 // Add an entry for a local symbol to the GOT, and add a dynamic
2516 // relocation of type R_TYPE for the GOT entry.
2517 void
2518 add_local_with_rel(Relobj* object, unsigned int sym_index,
2519 unsigned int got_type, Output_data_reloc_generic* rel_dyn,
2520 unsigned int r_type);
2521
2522 // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
2523 // relocation of type R_TYPE for the GOT entry.
2524 void
2525 add_local_with_rel(Relobj* object, unsigned int sym_index,
2526 unsigned int got_type, Output_data_reloc_generic* rel_dyn,
2527 unsigned int r_type, uint64_t addend);
2528
2529 // Add a pair of entries for a local symbol to the GOT, and add
2530 // a dynamic relocation of type R_TYPE using the section symbol of
2531 // the output section to which input section SHNDX maps, on the first.
2532 // The first got entry will have a value of zero, the second the
2533 // value of the local symbol.
2534 void
2535 add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
2536 unsigned int shndx, unsigned int got_type,
2537 Output_data_reloc_generic* rel_dyn,
2538 unsigned int r_type);
2539
2540 // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
2541 // a dynamic relocation of type R_TYPE using the section symbol of
2542 // the output section to which input section SHNDX maps, on the first.
2543 // The first got entry will have a value of zero, the second the
2544 // value of the local symbol.
2545 void
2546 add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
2547 unsigned int shndx, unsigned int got_type,
2548 Output_data_reloc_generic* rel_dyn,
2549 unsigned int r_type, uint64_t addend);
2550
2551 // Add a pair of entries for a local symbol to the GOT, and add
2552 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
2553 // The first got entry will have a value of zero, the second the
2554 // value of the local symbol offset by Target::tls_offset_for_local.
2555 void
2556 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2557 unsigned int got_type,
2558 Output_data_reloc_generic* rel_dyn,
2559 unsigned int r_type);
2560
2561 // Add a constant to the GOT. This returns the offset of the new
2562 // entry from the start of the GOT.
2563 unsigned int
2564 add_constant(Valtype constant)
2565 { return this->add_got_entry(Got_entry(constant)); }
2566
2567 // Add a pair of constants to the GOT. This returns the offset of
2568 // the new entry from the start of the GOT.
2569 unsigned int
2570 add_constant_pair(Valtype c1, Valtype c2)
2571 { return this->add_got_entry_pair(Got_entry(c1), Got_entry(c2)); }
2572
2573 // Replace GOT entry I with a new constant.
2574 void
2575 replace_constant(unsigned int i, Valtype constant)
2576 {
2577 this->replace_got_entry(i, Got_entry(constant));
2578 }
2579
2580 // Reserve a slot in the GOT for a local symbol.
2581 void
2582 reserve_local(unsigned int i, Relobj* object, unsigned int sym_index,
2583 unsigned int got_type);
2584
2585 // Reserve a slot in the GOT for a global symbol.
2586 void
2587 reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type);
2588
2589 protected:
2590 // Write out the GOT table.
2591 void
2592 do_write(Output_file*);
2593
2594 // Write to a map file.
2595 void
2596 do_print_to_mapfile(Mapfile* mapfile) const
2597 { mapfile->print_output_data(this, _("** GOT")); }
2598
2599 // Reserve the slot at index I in the GOT.
2600 virtual void
2601 do_reserve_slot(unsigned int i)
2602 { this->free_list_.remove(i * got_size / 8, (i + 1) * got_size / 8); }
2603
2604 // Return the number of words in the GOT.
2605 unsigned int
2606 num_entries () const
2607 { return this->entries_.size(); }
2608
2609 // Return the offset into the GOT of GOT entry I.
2610 unsigned int
2611 got_offset(unsigned int i) const
2612 { return i * (got_size / 8); }
2613
2614 private:
2615 // This POD class holds a single GOT entry.
2616 class Got_entry
2617 {
2618 public:
2619 // Create a zero entry.
2620 Got_entry()
2621 : local_sym_index_(RESERVED_CODE), use_plt_or_tls_offset_(false),
2622 addend_(0)
2623 { this->u_.constant = 0; }
2624
2625 // Create a global symbol entry.
2626 Got_entry(Symbol* gsym, bool use_plt_or_tls_offset)
2627 : local_sym_index_(GSYM_CODE),
2628 use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(0)
2629 { this->u_.gsym = gsym; }
2630
2631 // Create a local symbol entry.
2632 Got_entry(Relobj* object, unsigned int local_sym_index,
2633 bool use_plt_or_tls_offset)
2634 : local_sym_index_(local_sym_index),
2635 use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(0)
2636 {
2637 gold_assert(local_sym_index != GSYM_CODE
2638 && local_sym_index != CONSTANT_CODE
2639 && local_sym_index != RESERVED_CODE
2640 && local_sym_index == this->local_sym_index_);
2641 this->u_.object = object;
2642 }
2643
2644 // Create a local symbol entry plus addend.
2645 Got_entry(Relobj* object, unsigned int local_sym_index,
2646 bool use_plt_or_tls_offset, uint64_t addend)
2647 : local_sym_index_(local_sym_index),
2648 use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(addend)
2649 {
2650 gold_assert(local_sym_index != GSYM_CODE
2651 && local_sym_index != CONSTANT_CODE
2652 && local_sym_index != RESERVED_CODE
2653 && local_sym_index == this->local_sym_index_);
2654 this->u_.object = object;
2655 }
2656
2657 // Create a constant entry. The constant is a host value--it will
2658 // be swapped, if necessary, when it is written out.
2659 explicit Got_entry(Valtype constant)
2660 : local_sym_index_(CONSTANT_CODE), use_plt_or_tls_offset_(false)
2661 { this->u_.constant = constant; }
2662
2663 // Write the GOT entry to an output view.
2664 void
2665 write(unsigned int got_indx, unsigned char* pov) const;
2666
2667 private:
2668 enum
2669 {
2670 GSYM_CODE = 0x7fffffff,
2671 CONSTANT_CODE = 0x7ffffffe,
2672 RESERVED_CODE = 0x7ffffffd
2673 };
2674
2675 union
2676 {
2677 // For a local symbol, the object.
2678 Relobj* object;
2679 // For a global symbol, the symbol.
2680 Symbol* gsym;
2681 // For a constant, the constant.
2682 Valtype constant;
2683 } u_;
2684 // For a local symbol, the local symbol index. This is GSYM_CODE
2685 // for a global symbol, or CONSTANT_CODE for a constant.
2686 unsigned int local_sym_index_ : 31;
2687 // Whether to use the PLT offset of the symbol if it has one.
2688 // For TLS symbols, whether to offset the symbol value.
2689 bool use_plt_or_tls_offset_ : 1;
2690 // The addend.
2691 uint64_t addend_;
2692 };
2693
2694 typedef std::vector<Got_entry> Got_entries;
2695
2696 // Create a new GOT entry and return its offset.
2697 unsigned int
2698 add_got_entry(Got_entry got_entry);
2699
2700 // Create a pair of new GOT entries and return the offset of the first.
2701 unsigned int
2702 add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
2703
2704 // Replace GOT entry I with a new value.
2705 void
2706 replace_got_entry(unsigned int i, Got_entry got_entry);
2707
2708 // Return the offset into the GOT of the last entry added.
2709 unsigned int
2710 last_got_offset() const
2711 { return this->got_offset(this->num_entries() - 1); }
2712
2713 // Set the size of the section.
2714 void
2715 set_got_size()
2716 { this->set_current_data_size(this->got_offset(this->num_entries())); }
2717
2718 // The list of GOT entries.
2719 Got_entries entries_;
2720
2721 // List of available regions within the section, for incremental
2722 // update links.
2723 Free_list free_list_;
2724 };
2725
2726 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2727 // section.
2728
2729 class Output_data_dynamic : public Output_section_data
2730 {
2731 public:
2732 Output_data_dynamic(Stringpool* pool)
2733 : Output_section_data(Output_data::default_alignment()),
2734 entries_(), pool_(pool)
2735 { }
2736
2737 // Add a new dynamic entry with a fixed numeric value.
2738 void
2739 add_constant(elfcpp::DT tag, unsigned int val)
2740 { this->add_entry(Dynamic_entry(tag, val)); }
2741
2742 // Add a new dynamic entry with the address of output data.
2743 void
2744 add_section_address(elfcpp::DT tag, const Output_data* od)
2745 { this->add_entry(Dynamic_entry(tag, od, false)); }
2746
2747 // Add a new dynamic entry with the address of output data
2748 // plus a constant offset.
2749 void
2750 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2751 unsigned int offset)
2752 { this->add_entry(Dynamic_entry(tag, od, offset)); }
2753
2754 // Add a new dynamic entry with the size of output data.
2755 void
2756 add_section_size(elfcpp::DT tag, const Output_data* od)
2757 { this->add_entry(Dynamic_entry(tag, od, true)); }
2758
2759 // Add a new dynamic entry with the total size of two output datas.
2760 void
2761 add_section_size(elfcpp::DT tag, const Output_data* od,
2762 const Output_data* od2)
2763 { this->add_entry(Dynamic_entry(tag, od, od2)); }
2764
2765 // Add a new dynamic entry with the address of a symbol.
2766 void
2767 add_symbol(elfcpp::DT tag, const Symbol* sym)
2768 { this->add_entry(Dynamic_entry(tag, sym)); }
2769
2770 // Add a new dynamic entry with a string.
2771 void
2772 add_string(elfcpp::DT tag, const char* str)
2773 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2774
2775 void
2776 add_string(elfcpp::DT tag, const std::string& str)
2777 { this->add_string(tag, str.c_str()); }
2778
2779 // Add a new dynamic entry with custom value.
2780 void
2781 add_custom(elfcpp::DT tag)
2782 { this->add_entry(Dynamic_entry(tag)); }
2783
2784 // Get a dynamic entry offset.
2785 unsigned int
2786 get_entry_offset(elfcpp::DT tag) const;
2787
2788 protected:
2789 // Adjust the output section to set the entry size.
2790 void
2791 do_adjust_output_section(Output_section*);
2792
2793 // Set the final data size.
2794 void
2795 set_final_data_size();
2796
2797 // Write out the dynamic entries.
2798 void
2799 do_write(Output_file*);
2800
2801 // Write to a map file.
2802 void
2803 do_print_to_mapfile(Mapfile* mapfile) const
2804 { mapfile->print_output_data(this, _("** dynamic")); }
2805
2806 private:
2807 // This POD class holds a single dynamic entry.
2808 class Dynamic_entry
2809 {
2810 public:
2811 // Create an entry with a fixed numeric value.
2812 Dynamic_entry(elfcpp::DT tag, unsigned int val)
2813 : tag_(tag), offset_(DYNAMIC_NUMBER)
2814 { this->u_.val = val; }
2815
2816 // Create an entry with the size or address of a section.
2817 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2818 : tag_(tag),
2819 offset_(section_size
2820 ? DYNAMIC_SECTION_SIZE
2821 : DYNAMIC_SECTION_ADDRESS)
2822 {
2823 this->u_.od = od;
2824 this->od2 = NULL;
2825 }
2826
2827 // Create an entry with the size of two sections.
2828 Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2829 : tag_(tag),
2830 offset_(DYNAMIC_SECTION_SIZE)
2831 {
2832 this->u_.od = od;
2833 this->od2 = od2;
2834 }
2835
2836 // Create an entry with the address of a section plus a constant offset.
2837 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2838 : tag_(tag),
2839 offset_(offset)
2840 { this->u_.od = od; }
2841
2842 // Create an entry with the address of a symbol.
2843 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2844 : tag_(tag), offset_(DYNAMIC_SYMBOL)
2845 { this->u_.sym = sym; }
2846
2847 // Create an entry with a string.
2848 Dynamic_entry(elfcpp::DT tag, const char* str)
2849 : tag_(tag), offset_(DYNAMIC_STRING)
2850 { this->u_.str = str; }
2851
2852 // Create an entry with a custom value.
2853 Dynamic_entry(elfcpp::DT tag)
2854 : tag_(tag), offset_(DYNAMIC_CUSTOM)
2855 { }
2856
2857 // Return the tag of this entry.
2858 elfcpp::DT
2859 tag() const
2860 { return this->tag_; }
2861
2862 // Write the dynamic entry to an output view.
2863 template<int size, bool big_endian>
2864 void
2865 write(unsigned char* pov, const Stringpool*) const;
2866
2867 private:
2868 // Classification is encoded in the OFFSET field.
2869 enum Classification
2870 {
2871 // Section address.
2872 DYNAMIC_SECTION_ADDRESS = 0,
2873 // Number.
2874 DYNAMIC_NUMBER = -1U,
2875 // Section size.
2876 DYNAMIC_SECTION_SIZE = -2U,
2877 // Symbol address.
2878 DYNAMIC_SYMBOL = -3U,
2879 // String.
2880 DYNAMIC_STRING = -4U,
2881 // Custom value.
2882 DYNAMIC_CUSTOM = -5U
2883 // Any other value indicates a section address plus OFFSET.
2884 };
2885
2886 union
2887 {
2888 // For DYNAMIC_NUMBER.
2889 unsigned int val;
2890 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2891 const Output_data* od;
2892 // For DYNAMIC_SYMBOL.
2893 const Symbol* sym;
2894 // For DYNAMIC_STRING.
2895 const char* str;
2896 } u_;
2897 // For DYNAMIC_SYMBOL with two sections.
2898 const Output_data* od2;
2899 // The dynamic tag.
2900 elfcpp::DT tag_;
2901 // The type of entry (Classification) or offset within a section.
2902 unsigned int offset_;
2903 };
2904
2905 // Add an entry to the list.
2906 void
2907 add_entry(const Dynamic_entry& entry)
2908 { this->entries_.push_back(entry); }
2909
2910 // Sized version of write function.
2911 template<int size, bool big_endian>
2912 void
2913 sized_write(Output_file* of);
2914
2915 // The type of the list of entries.
2916 typedef std::vector<Dynamic_entry> Dynamic_entries;
2917
2918 // The entries.
2919 Dynamic_entries entries_;
2920 // The pool used for strings.
2921 Stringpool* pool_;
2922 };
2923
2924 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2925 // which may be required if the object file has more than
2926 // SHN_LORESERVE sections.
2927
2928 class Output_symtab_xindex : public Output_section_data
2929 {
2930 public:
2931 Output_symtab_xindex(size_t symcount)
2932 : Output_section_data(symcount * 4, 4, true),
2933 entries_()
2934 { }
2935
2936 // Add an entry: symbol number SYMNDX has section SHNDX.
2937 void
2938 add(unsigned int symndx, unsigned int shndx)
2939 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2940
2941 protected:
2942 void
2943 do_write(Output_file*);
2944
2945 // Write to a map file.
2946 void
2947 do_print_to_mapfile(Mapfile* mapfile) const
2948 { mapfile->print_output_data(this, _("** symtab xindex")); }
2949
2950 private:
2951 template<bool big_endian>
2952 void
2953 endian_do_write(unsigned char*);
2954
2955 // It is likely that most symbols will not require entries. Rather
2956 // than keep a vector for all symbols, we keep pairs of symbol index
2957 // and section index.
2958 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2959
2960 // The entries we need.
2961 Xindex_entries entries_;
2962 };
2963
2964 // A relaxed input section.
2965 class Output_relaxed_input_section : public Output_section_data_build
2966 {
2967 public:
2968 // We would like to call relobj->section_addralign(shndx) to get the
2969 // alignment but we do not want the constructor to fail. So callers
2970 // are repsonsible for ensuring that.
2971 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2972 uint64_t addralign)
2973 : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2974 { }
2975
2976 // Return the Relobj of this relaxed input section.
2977 Relobj*
2978 relobj() const
2979 { return this->relobj_; }
2980
2981 // Return the section index of this relaxed input section.
2982 unsigned int
2983 shndx() const
2984 { return this->shndx_; }
2985
2986 protected:
2987 void
2988 set_relobj(Relobj* relobj)
2989 { this->relobj_ = relobj; }
2990
2991 void
2992 set_shndx(unsigned int shndx)
2993 { this->shndx_ = shndx; }
2994
2995 private:
2996 Relobj* relobj_;
2997 unsigned int shndx_;
2998 };
2999
3000 // This class describes properties of merge data sections. It is used
3001 // as a key type for maps.
3002 class Merge_section_properties
3003 {
3004 public:
3005 Merge_section_properties(bool is_string, uint64_t entsize,
3006 uint64_t addralign)
3007 : is_string_(is_string), entsize_(entsize), addralign_(addralign)
3008 { }
3009
3010 // Whether this equals to another Merge_section_properties MSP.
3011 bool
3012 eq(const Merge_section_properties& msp) const
3013 {
3014 return ((this->is_string_ == msp.is_string_)
3015 && (this->entsize_ == msp.entsize_)
3016 && (this->addralign_ == msp.addralign_));
3017 }
3018
3019 // Compute a hash value for this using 64-bit FNV-1a hash.
3020 size_t
3021 hash_value() const
3022 {
3023 uint64_t h = 14695981039346656037ULL; // FNV offset basis.
3024 uint64_t prime = 1099511628211ULL;
3025 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
3026 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
3027 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
3028 return h;
3029 }
3030
3031 // Functors for associative containers.
3032 struct equal_to
3033 {
3034 bool
3035 operator()(const Merge_section_properties& msp1,
3036 const Merge_section_properties& msp2) const
3037 { return msp1.eq(msp2); }
3038 };
3039
3040 struct hash
3041 {
3042 size_t
3043 operator()(const Merge_section_properties& msp) const
3044 { return msp.hash_value(); }
3045 };
3046
3047 private:
3048 // Whether this merge data section is for strings.
3049 bool is_string_;
3050 // Entsize of this merge data section.
3051 uint64_t entsize_;
3052 // Address alignment.
3053 uint64_t addralign_;
3054 };
3055
3056 // This class is used to speed up look up of special input sections in an
3057 // Output_section.
3058
3059 class Output_section_lookup_maps
3060 {
3061 public:
3062 Output_section_lookup_maps()
3063 : is_valid_(true), merge_sections_by_properties_(),
3064 relaxed_input_sections_by_id_()
3065 { }
3066
3067 // Whether the maps are valid.
3068 bool
3069 is_valid() const
3070 { return this->is_valid_; }
3071
3072 // Invalidate the maps.
3073 void
3074 invalidate()
3075 { this->is_valid_ = false; }
3076
3077 // Clear the maps.
3078 void
3079 clear()
3080 {
3081 this->merge_sections_by_properties_.clear();
3082 this->relaxed_input_sections_by_id_.clear();
3083 // A cleared map is valid.
3084 this->is_valid_ = true;
3085 }
3086
3087 // Find a merge section by merge section properties. Return NULL if none
3088 // is found.
3089 Output_merge_base*
3090 find_merge_section(const Merge_section_properties& msp) const
3091 {
3092 gold_assert(this->is_valid_);
3093 Merge_sections_by_properties::const_iterator p =
3094 this->merge_sections_by_properties_.find(msp);
3095 return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
3096 }
3097
3098 // Add a merge section pointed by POMB with properties MSP.
3099 void
3100 add_merge_section(const Merge_section_properties& msp,
3101 Output_merge_base* pomb)
3102 {
3103 std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
3104 std::pair<Merge_sections_by_properties::iterator, bool> result =
3105 this->merge_sections_by_properties_.insert(value);
3106 gold_assert(result.second);
3107 }
3108
3109 // Find a relaxed input section of OBJECT with index SHNDX.
3110 Output_relaxed_input_section*
3111 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const
3112 {
3113 gold_assert(this->is_valid_);
3114 Relaxed_input_sections_by_id::const_iterator p =
3115 this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
3116 return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
3117 }
3118
3119 // Add a relaxed input section pointed by POMB and whose original input
3120 // section is in OBJECT with index SHNDX.
3121 void
3122 add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
3123 Output_relaxed_input_section* poris)
3124 {
3125 Const_section_id csid(relobj, shndx);
3126 std::pair<Const_section_id, Output_relaxed_input_section*>
3127 value(csid, poris);
3128 std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
3129 this->relaxed_input_sections_by_id_.insert(value);
3130 gold_assert(result.second);
3131 }
3132
3133 private:
3134 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
3135 Merge_section_properties::hash,
3136 Merge_section_properties::equal_to>
3137 Merge_sections_by_properties;
3138
3139 typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
3140 Const_section_id_hash>
3141 Relaxed_input_sections_by_id;
3142
3143 // Whether this is valid
3144 bool is_valid_;
3145 // Merge sections by merge section properties.
3146 Merge_sections_by_properties merge_sections_by_properties_;
3147 // Relaxed sections by section IDs.
3148 Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
3149 };
3150
3151 // This abstract base class defines the interface for the
3152 // types of methods used to fill free space left in an output
3153 // section during an incremental link. These methods are used
3154 // to insert dummy compilation units into debug info so that
3155 // debug info consumers can scan the debug info serially.
3156
3157 class Output_fill
3158 {
3159 public:
3160 Output_fill()
3161 : is_big_endian_(parameters->target().is_big_endian())
3162 { }
3163
3164 virtual
3165 ~Output_fill()
3166 { }
3167
3168 // Return the smallest size chunk of free space that can be
3169 // filled with a dummy compilation unit.
3170 size_t
3171 minimum_hole_size() const
3172 { return this->do_minimum_hole_size(); }
3173
3174 // Write a fill pattern of length LEN at offset OFF in the file.
3175 void
3176 write(Output_file* of, off_t off, size_t len) const
3177 { this->do_write(of, off, len); }
3178
3179 protected:
3180 virtual size_t
3181 do_minimum_hole_size() const = 0;
3182
3183 virtual void
3184 do_write(Output_file* of, off_t off, size_t len) const = 0;
3185
3186 bool
3187 is_big_endian() const
3188 { return this->is_big_endian_; }
3189
3190 private:
3191 bool is_big_endian_;
3192 };
3193
3194 // Fill method that introduces a dummy compilation unit in
3195 // a .debug_info or .debug_types section.
3196
3197 class Output_fill_debug_info : public Output_fill
3198 {
3199 public:
3200 Output_fill_debug_info(bool is_debug_types)
3201 : is_debug_types_(is_debug_types)
3202 { }
3203
3204 protected:
3205 virtual size_t
3206 do_minimum_hole_size() const;
3207
3208 virtual void
3209 do_write(Output_file* of, off_t off, size_t len) const;
3210
3211 private:
3212 // Version of the header.
3213 static const int version = 4;
3214 // True if this is a .debug_types section.
3215 bool is_debug_types_;
3216 };
3217
3218 // Fill method that introduces a dummy compilation unit in
3219 // a .debug_line section.
3220
3221 class Output_fill_debug_line : public Output_fill
3222 {
3223 public:
3224 Output_fill_debug_line()
3225 { }
3226
3227 protected:
3228 virtual size_t
3229 do_minimum_hole_size() const;
3230
3231 virtual void
3232 do_write(Output_file* of, off_t off, size_t len) const;
3233
3234 private:
3235 // Version of the header. We write a DWARF-3 header because it's smaller
3236 // and many tools have not yet been updated to understand the DWARF-4 header.
3237 static const int version = 3;
3238 // Length of the portion of the header that follows the header_length
3239 // field. This includes the following fields:
3240 // minimum_instruction_length, default_is_stmt, line_base, line_range,
3241 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
3242 // The standard_opcode_lengths array is 12 bytes long, and the
3243 // include_directories and filenames fields each contain only a single
3244 // null byte.
3245 static const size_t header_length = 19;
3246 };
3247
3248 // An output section. We don't expect to have too many output
3249 // sections, so we don't bother to do a template on the size.
3250
3251 class Output_section : public Output_data
3252 {
3253 public:
3254 // Create an output section, giving the name, type, and flags.
3255 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
3256 virtual ~Output_section();
3257
3258 // Add a new input section SHNDX, named NAME, with header SHDR, from
3259 // object OBJECT. RELOC_SHNDX is the index of a relocation section
3260 // which applies to this section, or 0 if none, or -1 if more than
3261 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
3262 // in a linker script; in that case we need to keep track of input
3263 // sections associated with an output section. Return the offset
3264 // within the output section.
3265 template<int size, bool big_endian>
3266 off_t
3267 add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
3268 unsigned int shndx, const char* name,
3269 const elfcpp::Shdr<size, big_endian>& shdr,
3270 unsigned int reloc_shndx, bool have_sections_script);
3271
3272 // Add generated data POSD to this output section.
3273 void
3274 add_output_section_data(Output_section_data* posd);
3275
3276 // Add a relaxed input section PORIS called NAME to this output section
3277 // with LAYOUT.
3278 void
3279 add_relaxed_input_section(Layout* layout,
3280 Output_relaxed_input_section* poris,
3281 const std::string& name);
3282
3283 // Return the section name.
3284 const char*
3285 name() const
3286 { return this->name_; }
3287
3288 // Return the section type.
3289 elfcpp::Elf_Word
3290 type() const
3291 { return this->type_; }
3292
3293 // Return the section flags.
3294 elfcpp::Elf_Xword
3295 flags() const
3296 { return this->flags_; }
3297
3298 typedef std::map<Section_id, unsigned int> Section_layout_order;
3299
3300 void
3301 update_section_layout(const Section_layout_order* order_map);
3302
3303 // Update the output section flags based on input section flags.
3304 void
3305 update_flags_for_input_section(elfcpp::Elf_Xword flags);
3306
3307 // Set the output section flags.
3308 void
3309 set_flags(elfcpp::Elf_Xword flags)
3310 { this->flags_ = flags; }
3311
3312 // Return the entsize field.
3313 uint64_t
3314 entsize() const
3315 { return this->entsize_; }
3316
3317 // Set the entsize field.
3318 void
3319 set_entsize(uint64_t v);
3320
3321 // Set the load address.
3322 void
3323 set_load_address(uint64_t load_address)
3324 {
3325 this->load_address_ = load_address;
3326 this->has_load_address_ = true;
3327 }
3328
3329 // Set the link field to the output section index of a section.
3330 void
3331 set_link_section(const Output_data* od)
3332 {
3333 gold_assert(this->link_ == 0
3334 && !this->should_link_to_symtab_
3335 && !this->should_link_to_dynsym_);
3336 this->link_section_ = od;
3337 }
3338
3339 // Set the link field to a constant.
3340 void
3341 set_link(unsigned int v)
3342 {
3343 gold_assert(this->link_section_ == NULL
3344 && !this->should_link_to_symtab_
3345 && !this->should_link_to_dynsym_);
3346 this->link_ = v;
3347 }
3348
3349 // Record that this section should link to the normal symbol table.
3350 void
3351 set_should_link_to_symtab()
3352 {
3353 gold_assert(this->link_section_ == NULL
3354 && this->link_ == 0
3355 && !this->should_link_to_dynsym_);
3356 this->should_link_to_symtab_ = true;
3357 }
3358
3359 // Record that this section should link to the dynamic symbol table.
3360 void
3361 set_should_link_to_dynsym()
3362 {
3363 gold_assert(this->link_section_ == NULL
3364 && this->link_ == 0
3365 && !this->should_link_to_symtab_);
3366 this->should_link_to_dynsym_ = true;
3367 }
3368
3369 // Return the info field.
3370 unsigned int
3371 info() const
3372 {
3373 gold_assert(this->info_section_ == NULL
3374 && this->info_symndx_ == NULL);
3375 return this->info_;
3376 }
3377
3378 // Set the info field to the output section index of a section.
3379 void
3380 set_info_section(const Output_section* os)
3381 {
3382 gold_assert((this->info_section_ == NULL
3383 || (this->info_section_ == os
3384 && this->info_uses_section_index_))
3385 && this->info_symndx_ == NULL
3386 && this->info_ == 0);
3387 this->info_section_ = os;
3388 this->info_uses_section_index_= true;
3389 }
3390
3391 // Set the info field to the symbol table index of a symbol.
3392 void
3393 set_info_symndx(const Symbol* sym)
3394 {
3395 gold_assert(this->info_section_ == NULL
3396 && (this->info_symndx_ == NULL
3397 || this->info_symndx_ == sym)
3398 && this->info_ == 0);
3399 this->info_symndx_ = sym;
3400 }
3401
3402 // Set the info field to the symbol table index of a section symbol.
3403 void
3404 set_info_section_symndx(const Output_section* os)
3405 {
3406 gold_assert((this->info_section_ == NULL
3407 || (this->info_section_ == os
3408 && !this->info_uses_section_index_))
3409 && this->info_symndx_ == NULL
3410 && this->info_ == 0);
3411 this->info_section_ = os;
3412 this->info_uses_section_index_ = false;
3413 }
3414
3415 // Set the info field to a constant.
3416 void
3417 set_info(unsigned int v)
3418 {
3419 gold_assert(this->info_section_ == NULL
3420 && this->info_symndx_ == NULL
3421 && (this->info_ == 0
3422 || this->info_ == v));
3423 this->info_ = v;
3424 }
3425
3426 // Set the addralign field.
3427 void
3428 set_addralign(uint64_t v)
3429 { this->addralign_ = v; }
3430
3431 void
3432 checkpoint_set_addralign(uint64_t val)
3433 {
3434 if (this->checkpoint_ != NULL)
3435 this->checkpoint_->set_addralign(val);
3436 }
3437
3438 // Whether the output section index has been set.
3439 bool
3440 has_out_shndx() const
3441 { return this->out_shndx_ != -1U; }
3442
3443 // Indicate that we need a symtab index.
3444 void
3445 set_needs_symtab_index()
3446 { this->needs_symtab_index_ = true; }
3447
3448 // Return whether we need a symtab index.
3449 bool
3450 needs_symtab_index() const
3451 { return this->needs_symtab_index_; }
3452
3453 // Get the symtab index.
3454 unsigned int
3455 symtab_index() const
3456 {
3457 gold_assert(this->symtab_index_ != 0);
3458 return this->symtab_index_;
3459 }
3460
3461 // Set the symtab index.
3462 void
3463 set_symtab_index(unsigned int index)
3464 {
3465 gold_assert(index != 0);
3466 this->symtab_index_ = index;
3467 }
3468
3469 // Indicate that we need a dynsym index.
3470 void
3471 set_needs_dynsym_index()
3472 { this->needs_dynsym_index_ = true; }
3473
3474 // Return whether we need a dynsym index.
3475 bool
3476 needs_dynsym_index() const
3477 { return this->needs_dynsym_index_; }
3478
3479 // Get the dynsym index.
3480 unsigned int
3481 dynsym_index() const
3482 {
3483 gold_assert(this->dynsym_index_ != 0);
3484 return this->dynsym_index_;
3485 }
3486
3487 // Set the dynsym index.
3488 void
3489 set_dynsym_index(unsigned int index)
3490 {
3491 gold_assert(index != 0);
3492 this->dynsym_index_ = index;
3493 }
3494
3495 // Sort the attached input sections.
3496 void
3497 sort_attached_input_sections();
3498
3499 // Return whether the input sections sections attachd to this output
3500 // section may require sorting. This is used to handle constructor
3501 // priorities compatibly with GNU ld.
3502 bool
3503 may_sort_attached_input_sections() const
3504 { return this->may_sort_attached_input_sections_; }
3505
3506 // Record that the input sections attached to this output section
3507 // may require sorting.
3508 void
3509 set_may_sort_attached_input_sections()
3510 { this->may_sort_attached_input_sections_ = true; }
3511
3512 // Returns true if input sections must be sorted according to the
3513 // order in which their name appear in the --section-ordering-file.
3514 bool
3515 input_section_order_specified()
3516 { return this->input_section_order_specified_; }
3517
3518 // Record that input sections must be sorted as some of their names
3519 // match the patterns specified through --section-ordering-file.
3520 void
3521 set_input_section_order_specified()
3522 { this->input_section_order_specified_ = true; }
3523
3524 // Return whether the input sections attached to this output section
3525 // require sorting. This is used to handle constructor priorities
3526 // compatibly with GNU ld.
3527 bool
3528 must_sort_attached_input_sections() const
3529 { return this->must_sort_attached_input_sections_; }
3530
3531 // Record that the input sections attached to this output section
3532 // require sorting.
3533 void
3534 set_must_sort_attached_input_sections()
3535 { this->must_sort_attached_input_sections_ = true; }
3536
3537 // Get the order in which this section appears in the PT_LOAD output
3538 // segment.
3539 Output_section_order
3540 order() const
3541 { return this->order_; }
3542
3543 // Set the order for this section.
3544 void
3545 set_order(Output_section_order order)
3546 { this->order_ = order; }
3547
3548 // Return whether this section holds relro data--data which has
3549 // dynamic relocations but which may be marked read-only after the
3550 // dynamic relocations have been completed.
3551 bool
3552 is_relro() const
3553 { return this->is_relro_; }
3554
3555 // Record that this section holds relro data.
3556 void
3557 set_is_relro()
3558 { this->is_relro_ = true; }
3559
3560 // Record that this section does not hold relro data.
3561 void
3562 clear_is_relro()
3563 { this->is_relro_ = false; }
3564
3565 // True if this is a small section: a section which holds small
3566 // variables.
3567 bool
3568 is_small_section() const
3569 { return this->is_small_section_; }
3570
3571 // Record that this is a small section.
3572 void
3573 set_is_small_section()
3574 { this->is_small_section_ = true; }
3575
3576 // True if this is a large section: a section which holds large
3577 // variables.
3578 bool
3579 is_large_section() const
3580 { return this->is_large_section_; }
3581
3582 // Record that this is a large section.
3583 void
3584 set_is_large_section()
3585 { this->is_large_section_ = true; }
3586
3587 // True if this is a large data (not BSS) section.
3588 bool
3589 is_large_data_section()
3590 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
3591
3592 // Return whether this section should be written after all the input
3593 // sections are complete.
3594 bool
3595 after_input_sections() const
3596 { return this->after_input_sections_; }
3597
3598 // Record that this section should be written after all the input
3599 // sections are complete.
3600 void
3601 set_after_input_sections()
3602 { this->after_input_sections_ = true; }
3603
3604 // Return whether this section requires postprocessing after all
3605 // relocations have been applied.
3606 bool
3607 requires_postprocessing() const
3608 { return this->requires_postprocessing_; }
3609
3610 bool
3611 is_unique_segment() const
3612 { return this->is_unique_segment_; }
3613
3614 void
3615 set_is_unique_segment()
3616 { this->is_unique_segment_ = true; }
3617
3618 uint64_t extra_segment_flags() const
3619 { return this->extra_segment_flags_; }
3620
3621 void
3622 set_extra_segment_flags(uint64_t flags)
3623 { this->extra_segment_flags_ = flags; }
3624
3625 uint64_t segment_alignment() const
3626 { return this->segment_alignment_; }
3627
3628 void
3629 set_segment_alignment(uint64_t align)
3630 { this->segment_alignment_ = align; }
3631
3632 // If a section requires postprocessing, return the buffer to use.
3633 unsigned char*
3634 postprocessing_buffer() const
3635 {
3636 gold_assert(this->postprocessing_buffer_ != NULL);
3637 return this->postprocessing_buffer_;
3638 }
3639
3640 // If a section requires postprocessing, create the buffer to use.
3641 void
3642 create_postprocessing_buffer();
3643
3644 // If a section requires postprocessing, this is the size of the
3645 // buffer to which relocations should be applied.
3646 off_t
3647 postprocessing_buffer_size() const
3648 { return this->current_data_size_for_child(); }
3649
3650 // Modify the section name. This is only permitted for an
3651 // unallocated section, and only before the size has been finalized.
3652 // Otherwise the name will not get into Layout::namepool_.
3653 void
3654 set_name(const char* newname)
3655 {
3656 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
3657 gold_assert(!this->is_data_size_valid());
3658 this->name_ = newname;
3659 }
3660
3661 // Return whether the offset OFFSET in the input section SHNDX in
3662 // object OBJECT is being included in the link.
3663 bool
3664 is_input_address_mapped(const Relobj* object, unsigned int shndx,
3665 off_t offset) const;
3666
3667 // Return the offset within the output section of OFFSET relative to
3668 // the start of input section SHNDX in object OBJECT.
3669 section_offset_type
3670 output_offset(const Relobj* object, unsigned int shndx,
3671 section_offset_type offset) const;
3672
3673 // Return the output virtual address of OFFSET relative to the start
3674 // of input section SHNDX in object OBJECT.
3675 uint64_t
3676 output_address(const Relobj* object, unsigned int shndx,
3677 off_t offset) const;
3678
3679 // Look for the merged section for input section SHNDX in object
3680 // OBJECT. If found, return true, and set *ADDR to the address of
3681 // the start of the merged section. This is not necessary the
3682 // output offset corresponding to input offset 0 in the section,
3683 // since the section may be mapped arbitrarily.
3684 bool
3685 find_starting_output_address(const Relobj* object, unsigned int shndx,
3686 uint64_t* addr) const;
3687
3688 // Record that this output section was found in the SECTIONS clause
3689 // of a linker script.
3690 void
3691 set_found_in_sections_clause()
3692 { this->found_in_sections_clause_ = true; }
3693
3694 // Return whether this output section was found in the SECTIONS
3695 // clause of a linker script.
3696 bool
3697 found_in_sections_clause() const
3698 { return this->found_in_sections_clause_; }
3699
3700 // Write the section header into *OPHDR.
3701 template<int size, bool big_endian>
3702 void
3703 write_header(const Layout*, const Stringpool*,
3704 elfcpp::Shdr_write<size, big_endian>*) const;
3705
3706 // The next few calls are for linker script support.
3707
3708 // In some cases we need to keep a list of the input sections
3709 // associated with this output section. We only need the list if we
3710 // might have to change the offsets of the input section within the
3711 // output section after we add the input section. The ordinary
3712 // input sections will be written out when we process the object
3713 // file, and as such we don't need to track them here. We do need
3714 // to track Output_section_data objects here. We store instances of
3715 // this structure in a std::vector, so it must be a POD. There can
3716 // be many instances of this structure, so we use a union to save
3717 // some space.
3718 class Input_section
3719 {
3720 public:
3721 Input_section()
3722 : shndx_(0), p2align_(0)
3723 {
3724 this->u1_.data_size = 0;
3725 this->u2_.object = NULL;
3726 }
3727
3728 // For an ordinary input section.
3729 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
3730 uint64_t addralign)
3731 : shndx_(shndx),
3732 p2align_(ffsll(static_cast<long long>(addralign))),
3733 section_order_index_(0)
3734 {
3735 gold_assert(shndx != OUTPUT_SECTION_CODE
3736 && shndx != MERGE_DATA_SECTION_CODE
3737 && shndx != MERGE_STRING_SECTION_CODE
3738 && shndx != RELAXED_INPUT_SECTION_CODE);
3739 this->u1_.data_size = data_size;
3740 this->u2_.object = object;
3741 }
3742
3743 // For a non-merge output section.
3744 Input_section(Output_section_data* posd)
3745 : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
3746 section_order_index_(0)
3747 {
3748 this->u1_.data_size = 0;
3749 this->u2_.posd = posd;
3750 }
3751
3752 // For a merge section.
3753 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
3754 : shndx_(is_string
3755 ? MERGE_STRING_SECTION_CODE
3756 : MERGE_DATA_SECTION_CODE),
3757 p2align_(0),
3758 section_order_index_(0)
3759 {
3760 this->u1_.entsize = entsize;
3761 this->u2_.posd = posd;
3762 }
3763
3764 // For a relaxed input section.
3765 Input_section(Output_relaxed_input_section* psection)
3766 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
3767 section_order_index_(0)
3768 {
3769 this->u1_.data_size = 0;
3770 this->u2_.poris = psection;
3771 }
3772
3773 unsigned int
3774 section_order_index() const
3775 {
3776 return this->section_order_index_;
3777 }
3778
3779 void
3780 set_section_order_index(unsigned int number)
3781 {
3782 this->section_order_index_ = number;
3783 }
3784
3785 // The required alignment.
3786 uint64_t
3787 addralign() const
3788 {
3789 if (this->p2align_ != 0)
3790 return static_cast<uint64_t>(1) << (this->p2align_ - 1);
3791 else if (!this->is_input_section())
3792 return this->u2_.posd->addralign();
3793 else
3794 return 0;
3795 }
3796
3797 // Set the required alignment, which must be either 0 or a power of 2.
3798 // For input sections that are sub-classes of Output_section_data, a
3799 // alignment of zero means asking the underlying object for alignment.
3800 void
3801 set_addralign(uint64_t addralign)
3802 {
3803 if (addralign == 0)
3804 this->p2align_ = 0;
3805 else
3806 {
3807 gold_assert((addralign & (addralign - 1)) == 0);
3808 this->p2align_ = ffsll(static_cast<long long>(addralign));
3809 }
3810 }
3811
3812 // Return the current required size, without finalization.
3813 off_t
3814 current_data_size() const;
3815
3816 // Return the required size.
3817 off_t
3818 data_size() const;
3819
3820 // Whether this is an input section.
3821 bool
3822 is_input_section() const
3823 {
3824 return (this->shndx_ != OUTPUT_SECTION_CODE
3825 && this->shndx_ != MERGE_DATA_SECTION_CODE
3826 && this->shndx_ != MERGE_STRING_SECTION_CODE
3827 && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3828 }
3829
3830 // Return whether this is a merge section which matches the
3831 // parameters.
3832 bool
3833 is_merge_section(bool is_string, uint64_t entsize,
3834 uint64_t addralign) const
3835 {
3836 return (this->shndx_ == (is_string
3837 ? MERGE_STRING_SECTION_CODE
3838 : MERGE_DATA_SECTION_CODE)
3839 && this->u1_.entsize == entsize
3840 && this->addralign() == addralign);
3841 }
3842
3843 // Return whether this is a merge section for some input section.
3844 bool
3845 is_merge_section() const
3846 {
3847 return (this->shndx_ == MERGE_DATA_SECTION_CODE
3848 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3849 }
3850
3851 // Return whether this is a relaxed input section.
3852 bool
3853 is_relaxed_input_section() const
3854 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3855
3856 // Return whether this is a generic Output_section_data.
3857 bool
3858 is_output_section_data() const
3859 {
3860 return this->shndx_ == OUTPUT_SECTION_CODE;
3861 }
3862
3863 // Return the object for an input section.
3864 Relobj*
3865 relobj() const;
3866
3867 // Return the input section index for an input section.
3868 unsigned int
3869 shndx() const;
3870
3871 // For non-input-sections, return the associated Output_section_data
3872 // object.
3873 Output_section_data*
3874 output_section_data() const
3875 {
3876 gold_assert(!this->is_input_section());
3877 return this->u2_.posd;
3878 }
3879
3880 // For a merge section, return the Output_merge_base pointer.
3881 Output_merge_base*
3882 output_merge_base() const
3883 {
3884 gold_assert(this->is_merge_section());
3885 return this->u2_.pomb;
3886 }
3887
3888 // Return the Output_relaxed_input_section object.
3889 Output_relaxed_input_section*
3890 relaxed_input_section() const
3891 {
3892 gold_assert(this->is_relaxed_input_section());
3893 return this->u2_.poris;
3894 }
3895
3896 // Set the output section.
3897 void
3898 set_output_section(Output_section* os)
3899 {
3900 gold_assert(!this->is_input_section());
3901 Output_section_data* posd =
3902 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3903 posd->set_output_section(os);
3904 }
3905
3906 // Set the address and file offset. This is called during
3907 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
3908 // the enclosing section.
3909 void
3910 set_address_and_file_offset(uint64_t address, off_t file_offset,
3911 off_t section_file_offset);
3912
3913 // Reset the address and file offset.
3914 void
3915 reset_address_and_file_offset();
3916
3917 // Finalize the data size.
3918 void
3919 finalize_data_size();
3920
3921 // Add an input section, for SHF_MERGE sections.
3922 bool
3923 add_input_section(Relobj* object, unsigned int shndx)
3924 {
3925 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3926 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3927 return this->u2_.posd->add_input_section(object, shndx);
3928 }
3929
3930 // Given an input OBJECT, an input section index SHNDX within that
3931 // object, and an OFFSET relative to the start of that input
3932 // section, return whether or not the output offset is known. If
3933 // this function returns true, it sets *POUTPUT to the offset in
3934 // the output section, relative to the start of the input section
3935 // in the output section. *POUTPUT may be different from OFFSET
3936 // for a merged section.
3937 bool
3938 output_offset(const Relobj* object, unsigned int shndx,
3939 section_offset_type offset,
3940 section_offset_type* poutput) const;
3941
3942 // Write out the data. This does nothing for an input section.
3943 void
3944 write(Output_file*);
3945
3946 // Write the data to a buffer. This does nothing for an input
3947 // section.
3948 void
3949 write_to_buffer(unsigned char*);
3950
3951 // Print to a map file.
3952 void
3953 print_to_mapfile(Mapfile*) const;
3954
3955 // Print statistics about merge sections to stderr.
3956 void
3957 print_merge_stats(const char* section_name)
3958 {
3959 if (this->shndx_ == MERGE_DATA_SECTION_CODE
3960 || this->shndx_ == MERGE_STRING_SECTION_CODE)
3961 this->u2_.posd->print_merge_stats(section_name);
3962 }
3963
3964 private:
3965 // Code values which appear in shndx_. If the value is not one of
3966 // these codes, it is the input section index in the object file.
3967 enum
3968 {
3969 // An Output_section_data.
3970 OUTPUT_SECTION_CODE = -1U,
3971 // An Output_section_data for an SHF_MERGE section with
3972 // SHF_STRINGS not set.
3973 MERGE_DATA_SECTION_CODE = -2U,
3974 // An Output_section_data for an SHF_MERGE section with
3975 // SHF_STRINGS set.
3976 MERGE_STRING_SECTION_CODE = -3U,
3977 // An Output_section_data for a relaxed input section.
3978 RELAXED_INPUT_SECTION_CODE = -4U
3979 };
3980
3981 // For an ordinary input section, this is the section index in the
3982 // input file. For an Output_section_data, this is
3983 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3984 // MERGE_STRING_SECTION_CODE.
3985 unsigned int shndx_;
3986 // The required alignment, stored as a power of 2.
3987 unsigned int p2align_;
3988 union
3989 {
3990 // For an ordinary input section, the section size.
3991 off_t data_size;
3992 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3993 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3994 // entity size.
3995 uint64_t entsize;
3996 } u1_;
3997 union
3998 {
3999 // For an ordinary input section, the object which holds the
4000 // input section.
4001 Relobj* object;
4002 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
4003 // MERGE_STRING_SECTION_CODE, the data.
4004 Output_section_data* posd;
4005 Output_merge_base* pomb;
4006 // For RELAXED_INPUT_SECTION_CODE, the data.
4007 Output_relaxed_input_section* poris;
4008 } u2_;
4009 // The line number of the pattern it matches in the --section-ordering-file
4010 // file. It is 0 if does not match any pattern.
4011 unsigned int section_order_index_;
4012 };
4013
4014 // Store the list of input sections for this Output_section into the
4015 // list passed in. This removes the input sections, leaving only
4016 // any Output_section_data elements. This returns the size of those
4017 // Output_section_data elements. ADDRESS is the address of this
4018 // output section. FILL is the fill value to use, in case there are
4019 // any spaces between the remaining Output_section_data elements.
4020 uint64_t
4021 get_input_sections(uint64_t address, const std::string& fill,
4022 std::list<Input_section>*);
4023
4024 // Add a script input section. A script input section can either be
4025 // a plain input section or a sub-class of Output_section_data.
4026 void
4027 add_script_input_section(const Input_section& input_section);
4028
4029 // Set the current size of the output section.
4030 void
4031 set_current_data_size(off_t size)
4032 { this->set_current_data_size_for_child(size); }
4033
4034 // End of linker script support.
4035
4036 // Save states before doing section layout.
4037 // This is used for relaxation.
4038 void
4039 save_states();
4040
4041 // Restore states prior to section layout.
4042 void
4043 restore_states();
4044
4045 // Discard states.
4046 void
4047 discard_states();
4048
4049 // Convert existing input sections to relaxed input sections.
4050 void
4051 convert_input_sections_to_relaxed_sections(
4052 const std::vector<Output_relaxed_input_section*>& sections);
4053
4054 // Find a relaxed input section to an input section in OBJECT
4055 // with index SHNDX. Return NULL if none is found.
4056 const Output_relaxed_input_section*
4057 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
4058
4059 // Whether section offsets need adjustment due to relaxation.
4060 bool
4061 section_offsets_need_adjustment() const
4062 { return this->section_offsets_need_adjustment_; }
4063
4064 // Set section_offsets_need_adjustment to be true.
4065 void
4066 set_section_offsets_need_adjustment()
4067 { this->section_offsets_need_adjustment_ = true; }
4068
4069 // Set section_offsets_need_adjustment to be false.
4070 void
4071 clear_section_offsets_need_adjustment()
4072 { this->section_offsets_need_adjustment_ = false; }
4073
4074 // Adjust section offsets of input sections in this. This is
4075 // requires if relaxation caused some input sections to change sizes.
4076 void
4077 adjust_section_offsets();
4078
4079 // Whether this is a NOLOAD section.
4080 bool
4081 is_noload() const
4082 { return this->is_noload_; }
4083
4084 // Set NOLOAD flag.
4085 void
4086 set_is_noload()
4087 { this->is_noload_ = true; }
4088
4089 // Print merge statistics to stderr.
4090 void
4091 print_merge_stats();
4092
4093 // Set a fixed layout for the section. Used for incremental update links.
4094 void
4095 set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
4096 uint64_t sh_addralign);
4097
4098 // Return TRUE if the section has a fixed layout.
4099 bool
4100 has_fixed_layout() const
4101 { return this->has_fixed_layout_; }
4102
4103 // Set flag to allow patch space for this section. Used for full
4104 // incremental links.
4105 void
4106 set_is_patch_space_allowed()
4107 { this->is_patch_space_allowed_ = true; }
4108
4109 // Set a fill method to use for free space left in the output section
4110 // during incremental links.
4111 void
4112 set_free_space_fill(Output_fill* free_space_fill)
4113 {
4114 this->free_space_fill_ = free_space_fill;
4115 this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size());
4116 }
4117
4118 // Reserve space within the fixed layout for the section. Used for
4119 // incremental update links.
4120 void
4121 reserve(uint64_t sh_offset, uint64_t sh_size);
4122
4123 // Allocate space from the free list for the section. Used for
4124 // incremental update links.
4125 off_t
4126 allocate(off_t len, uint64_t addralign);
4127
4128 typedef std::vector<Input_section> Input_section_list;
4129
4130 // Allow access to the input sections.
4131 const Input_section_list&
4132 input_sections() const
4133 { return this->input_sections_; }
4134
4135 Input_section_list&
4136 input_sections()
4137 { return this->input_sections_; }
4138
4139 protected:
4140 // Return the output section--i.e., the object itself.
4141 Output_section*
4142 do_output_section()
4143 { return this; }
4144
4145 const Output_section*
4146 do_output_section() const
4147 { return this; }
4148
4149 // Return the section index in the output file.
4150 unsigned int
4151 do_out_shndx() const
4152 {
4153 gold_assert(this->out_shndx_ != -1U);
4154 return this->out_shndx_;
4155 }
4156
4157 // Set the output section index.
4158 void
4159 do_set_out_shndx(unsigned int shndx)
4160 {
4161 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
4162 this->out_shndx_ = shndx;
4163 }
4164
4165 // Update the data size of the Output_section. For a typical
4166 // Output_section, there is nothing to do, but if there are any
4167 // Output_section_data objects we need to do a trial layout
4168 // here.
4169 virtual void
4170 update_data_size();
4171
4172 // Set the final data size of the Output_section. For a typical
4173 // Output_section, there is nothing to do, but if there are any
4174 // Output_section_data objects we need to set their final addresses
4175 // here.
4176 virtual void
4177 set_final_data_size();
4178
4179 // Reset the address and file offset.
4180 void
4181 do_reset_address_and_file_offset();
4182
4183 // Return true if address and file offset already have reset values. In
4184 // other words, calling reset_address_and_file_offset will not change them.
4185 bool
4186 do_address_and_file_offset_have_reset_values() const;
4187
4188 // Write the data to the file. For a typical Output_section, this
4189 // does nothing: the data is written out by calling Object::Relocate
4190 // on each input object. But if there are any Output_section_data
4191 // objects we do need to write them out here.
4192 virtual void
4193 do_write(Output_file*);
4194
4195 // Return the address alignment--function required by parent class.
4196 uint64_t
4197 do_addralign() const
4198 { return this->addralign_; }
4199
4200 // Return whether there is a load address.
4201 bool
4202 do_has_load_address() const
4203 { return this->has_load_address_; }
4204
4205 // Return the load address.
4206 uint64_t
4207 do_load_address() const
4208 {
4209 gold_assert(this->has_load_address_);
4210 return this->load_address_;
4211 }
4212
4213 // Return whether this is an Output_section.
4214 bool
4215 do_is_section() const
4216 { return true; }
4217
4218 // Return whether this is a section of the specified type.
4219 bool
4220 do_is_section_type(elfcpp::Elf_Word type) const
4221 { return this->type_ == type; }
4222
4223 // Return whether the specified section flag is set.
4224 bool
4225 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
4226 { return (this->flags_ & flag) != 0; }
4227
4228 // Set the TLS offset. Called only for SHT_TLS sections.
4229 void
4230 do_set_tls_offset(uint64_t tls_base);
4231
4232 // Return the TLS offset, relative to the base of the TLS segment.
4233 // Valid only for SHT_TLS sections.
4234 uint64_t
4235 do_tls_offset() const
4236 { return this->tls_offset_; }
4237
4238 // This may be implemented by a child class.
4239 virtual void
4240 do_finalize_name(Layout*)
4241 { }
4242
4243 // Print to the map file.
4244 virtual void
4245 do_print_to_mapfile(Mapfile*) const;
4246
4247 // Record that this section requires postprocessing after all
4248 // relocations have been applied. This is called by a child class.
4249 void
4250 set_requires_postprocessing()
4251 {
4252 this->requires_postprocessing_ = true;
4253 this->after_input_sections_ = true;
4254 }
4255
4256 // Write all the data of an Output_section into the postprocessing
4257 // buffer.
4258 void
4259 write_to_postprocessing_buffer();
4260
4261 // Whether this always keeps an input section list
4262 bool
4263 always_keeps_input_sections() const
4264 { return this->always_keeps_input_sections_; }
4265
4266 // Always keep an input section list.
4267 void
4268 set_always_keeps_input_sections()
4269 {
4270 gold_assert(this->current_data_size_for_child() == 0);
4271 this->always_keeps_input_sections_ = true;
4272 }
4273
4274 private:
4275 // We only save enough information to undo the effects of section layout.
4276 class Checkpoint_output_section
4277 {
4278 public:
4279 Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
4280 const Input_section_list& input_sections,
4281 off_t first_input_offset,
4282 bool attached_input_sections_are_sorted)
4283 : addralign_(addralign), flags_(flags),
4284 input_sections_(input_sections),
4285 input_sections_size_(input_sections_.size()),
4286 input_sections_copy_(), first_input_offset_(first_input_offset),
4287 attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
4288 { }
4289
4290 virtual
4291 ~Checkpoint_output_section()
4292 { }
4293
4294 // Return the address alignment.
4295 uint64_t
4296 addralign() const
4297 { return this->addralign_; }
4298
4299 void
4300 set_addralign(uint64_t val)
4301 { this->addralign_ = val; }
4302
4303 // Return the section flags.
4304 elfcpp::Elf_Xword
4305 flags() const
4306 { return this->flags_; }
4307
4308 // Return a reference to the input section list copy.
4309 Input_section_list*
4310 input_sections()
4311 { return &this->input_sections_copy_; }
4312
4313 // Return the size of input_sections at the time when checkpoint is
4314 // taken.
4315 size_t
4316 input_sections_size() const
4317 { return this->input_sections_size_; }
4318
4319 // Whether input sections are copied.
4320 bool
4321 input_sections_saved() const
4322 { return this->input_sections_copy_.size() == this->input_sections_size_; }
4323
4324 off_t
4325 first_input_offset() const
4326 { return this->first_input_offset_; }
4327
4328 bool
4329 attached_input_sections_are_sorted() const
4330 { return this->attached_input_sections_are_sorted_; }
4331
4332 // Save input sections.
4333 void
4334 save_input_sections()
4335 {
4336 this->input_sections_copy_.reserve(this->input_sections_size_);
4337 this->input_sections_copy_.clear();
4338 Input_section_list::const_iterator p = this->input_sections_.begin();
4339 gold_assert(this->input_sections_size_ >= this->input_sections_.size());
4340 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
4341 this->input_sections_copy_.push_back(*p);
4342 }
4343
4344 private:
4345 // The section alignment.
4346 uint64_t addralign_;
4347 // The section flags.
4348 elfcpp::Elf_Xword flags_;
4349 // Reference to the input sections to be checkpointed.
4350 const Input_section_list& input_sections_;
4351 // Size of the checkpointed portion of input_sections_;
4352 size_t input_sections_size_;
4353 // Copy of input sections.
4354 Input_section_list input_sections_copy_;
4355 // The offset of the first entry in input_sections_.
4356 off_t first_input_offset_;
4357 // True if the input sections attached to this output section have
4358 // already been sorted.
4359 bool attached_input_sections_are_sorted_;
4360 };
4361
4362 // This class is used to sort the input sections.
4363 class Input_section_sort_entry;
4364
4365 // This is the sort comparison function for ctors and dtors.
4366 struct Input_section_sort_compare
4367 {
4368 bool
4369 operator()(const Input_section_sort_entry&,
4370 const Input_section_sort_entry&) const;
4371 };
4372
4373 // This is the sort comparison function for .init_array and .fini_array.
4374 struct Input_section_sort_init_fini_compare
4375 {
4376 bool
4377 operator()(const Input_section_sort_entry&,
4378 const Input_section_sort_entry&) const;
4379 };
4380
4381 // This is the sort comparison function when a section order is specified
4382 // from an input file.
4383 struct Input_section_sort_section_order_index_compare
4384 {
4385 bool
4386 operator()(const Input_section_sort_entry&,
4387 const Input_section_sort_entry&) const;
4388 };
4389
4390 // This is the sort comparison function for .text to sort sections with
4391 // prefixes .text.{unlikely,exit,startup,hot} before other sections.
4392 struct Input_section_sort_section_prefix_special_ordering_compare
4393 {
4394 bool
4395 operator()(const Input_section_sort_entry&,
4396 const Input_section_sort_entry&) const;
4397 };
4398
4399 // This is the sort comparison function for sorting sections by name.
4400 struct Input_section_sort_section_name_compare
4401 {
4402 bool
4403 operator()(const Input_section_sort_entry&,
4404 const Input_section_sort_entry&) const;
4405 };
4406
4407 // Fill data. This is used to fill in data between input sections.
4408 // It is also used for data statements (BYTE, WORD, etc.) in linker
4409 // scripts. When we have to keep track of the input sections, we
4410 // can use an Output_data_const, but we don't want to have to keep
4411 // track of input sections just to implement fills.
4412 class Fill
4413 {
4414 public:
4415 Fill(off_t section_offset, off_t length)
4416 : section_offset_(section_offset),
4417 length_(convert_to_section_size_type(length))
4418 { }
4419
4420 // Return section offset.
4421 off_t
4422 section_offset() const
4423 { return this->section_offset_; }
4424
4425 // Return fill length.
4426 section_size_type
4427 length() const
4428 { return this->length_; }
4429
4430 private:
4431 // The offset within the output section.
4432 off_t section_offset_;
4433 // The length of the space to fill.
4434 section_size_type length_;
4435 };
4436
4437 typedef std::vector<Fill> Fill_list;
4438
4439 // Map used during relaxation of existing sections. This map
4440 // a section id an input section list index. We assume that
4441 // Input_section_list is a vector.
4442 typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
4443
4444 // Add a new output section by Input_section.
4445 void
4446 add_output_section_data(Input_section*);
4447
4448 // Add an SHF_MERGE input section. Returns true if the section was
4449 // handled. If KEEPS_INPUT_SECTIONS is true, the output merge section
4450 // stores information about the merged input sections.
4451 bool
4452 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
4453 uint64_t entsize, uint64_t addralign,
4454 bool keeps_input_sections);
4455
4456 // Add an output SHF_MERGE section POSD to this output section.
4457 // IS_STRING indicates whether it is a SHF_STRINGS section, and
4458 // ENTSIZE is the entity size. This returns the entry added to
4459 // input_sections_.
4460 void
4461 add_output_merge_section(Output_section_data* posd, bool is_string,
4462 uint64_t entsize);
4463
4464 // Find the merge section into which an input section with index SHNDX in
4465 // OBJECT has been added. Return NULL if none found.
4466 const Output_section_data*
4467 find_merge_section(const Relobj* object, unsigned int shndx) const;
4468
4469 // Build a relaxation map.
4470 void
4471 build_relaxation_map(
4472 const Input_section_list& input_sections,
4473 size_t limit,
4474 Relaxation_map* map) const;
4475
4476 // Convert input sections in an input section list into relaxed sections.
4477 void
4478 convert_input_sections_in_list_to_relaxed_sections(
4479 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
4480 const Relaxation_map& map,
4481 Input_section_list* input_sections);
4482
4483 // Build the lookup maps for merge and relaxed input sections.
4484 void
4485 build_lookup_maps() const;
4486
4487 // Most of these fields are only valid after layout.
4488
4489 // The name of the section. This will point into a Stringpool.
4490 const char* name_;
4491 // The section address is in the parent class.
4492 // The section alignment.
4493 uint64_t addralign_;
4494 // The section entry size.
4495 uint64_t entsize_;
4496 // The load address. This is only used when using a linker script
4497 // with a SECTIONS clause. The has_load_address_ field indicates
4498 // whether this field is valid.
4499 uint64_t load_address_;
4500 // The file offset is in the parent class.
4501 // Set the section link field to the index of this section.
4502 const Output_data* link_section_;
4503 // If link_section_ is NULL, this is the link field.
4504 unsigned int link_;
4505 // Set the section info field to the index of this section.
4506 const Output_section* info_section_;
4507 // If info_section_ is NULL, set the info field to the symbol table
4508 // index of this symbol.
4509 const Symbol* info_symndx_;
4510 // If info_section_ and info_symndx_ are NULL, this is the section
4511 // info field.
4512 unsigned int info_;
4513 // The section type.
4514 const elfcpp::Elf_Word type_;
4515 // The section flags.
4516 elfcpp::Elf_Xword flags_;
4517 // The order of this section in the output segment.
4518 Output_section_order order_;
4519 // The section index.
4520 unsigned int out_shndx_;
4521 // If there is a STT_SECTION for this output section in the normal
4522 // symbol table, this is the symbol index. This starts out as zero.
4523 // It is initialized in Layout::finalize() to be the index, or -1U
4524 // if there isn't one.
4525 unsigned int symtab_index_;
4526 // If there is a STT_SECTION for this output section in the dynamic
4527 // symbol table, this is the symbol index. This starts out as zero.
4528 // It is initialized in Layout::finalize() to be the index, or -1U
4529 // if there isn't one.
4530 unsigned int dynsym_index_;
4531 // The input sections. This will be empty in cases where we don't
4532 // need to keep track of them.
4533 Input_section_list input_sections_;
4534 // The offset of the first entry in input_sections_.
4535 off_t first_input_offset_;
4536 // The fill data. This is separate from input_sections_ because we
4537 // often will need fill sections without needing to keep track of
4538 // input sections.
4539 Fill_list fills_;
4540 // If the section requires postprocessing, this buffer holds the
4541 // section contents during relocation.
4542 unsigned char* postprocessing_buffer_;
4543 // Whether this output section needs a STT_SECTION symbol in the
4544 // normal symbol table. This will be true if there is a relocation
4545 // which needs it.
4546 bool needs_symtab_index_ : 1;
4547 // Whether this output section needs a STT_SECTION symbol in the
4548 // dynamic symbol table. This will be true if there is a dynamic
4549 // relocation which needs it.
4550 bool needs_dynsym_index_ : 1;
4551 // Whether the link field of this output section should point to the
4552 // normal symbol table.
4553 bool should_link_to_symtab_ : 1;
4554 // Whether the link field of this output section should point to the
4555 // dynamic symbol table.
4556 bool should_link_to_dynsym_ : 1;
4557 // Whether this section should be written after all the input
4558 // sections are complete.
4559 bool after_input_sections_ : 1;
4560 // Whether this section requires post processing after all
4561 // relocations have been applied.
4562 bool requires_postprocessing_ : 1;
4563 // Whether an input section was mapped to this output section
4564 // because of a SECTIONS clause in a linker script.
4565 bool found_in_sections_clause_ : 1;
4566 // Whether this section has an explicitly specified load address.
4567 bool has_load_address_ : 1;
4568 // True if the info_section_ field means the section index of the
4569 // section, false if it means the symbol index of the corresponding
4570 // section symbol.
4571 bool info_uses_section_index_ : 1;
4572 // True if input sections attached to this output section have to be
4573 // sorted according to a specified order.
4574 bool input_section_order_specified_ : 1;
4575 // True if the input sections attached to this output section may
4576 // need sorting.
4577 bool may_sort_attached_input_sections_ : 1;
4578 // True if the input sections attached to this output section must
4579 // be sorted.
4580 bool must_sort_attached_input_sections_ : 1;
4581 // True if the input sections attached to this output section have
4582 // already been sorted.
4583 bool attached_input_sections_are_sorted_ : 1;
4584 // True if this section holds relro data.
4585 bool is_relro_ : 1;
4586 // True if this is a small section.
4587 bool is_small_section_ : 1;
4588 // True if this is a large section.
4589 bool is_large_section_ : 1;
4590 // Whether code-fills are generated at write.
4591 bool generate_code_fills_at_write_ : 1;
4592 // Whether the entry size field should be zero.
4593 bool is_entsize_zero_ : 1;
4594 // Whether section offsets need adjustment due to relaxation.
4595 bool section_offsets_need_adjustment_ : 1;
4596 // Whether this is a NOLOAD section.
4597 bool is_noload_ : 1;
4598 // Whether this always keeps input section.
4599 bool always_keeps_input_sections_ : 1;
4600 // Whether this section has a fixed layout, for incremental update links.
4601 bool has_fixed_layout_ : 1;
4602 // True if we can add patch space to this section.
4603 bool is_patch_space_allowed_ : 1;
4604 // True if this output section goes into a unique segment.
4605 bool is_unique_segment_ : 1;
4606 // For SHT_TLS sections, the offset of this section relative to the base
4607 // of the TLS segment.
4608 uint64_t tls_offset_;
4609 // Additional segment flags, specified via linker plugin, when mapping some
4610 // input sections to unique segments.
4611 uint64_t extra_segment_flags_;
4612 // Segment alignment specified via linker plugin, when mapping some
4613 // input sections to unique segments.
4614 uint64_t segment_alignment_;
4615 // Saved checkpoint.
4616 Checkpoint_output_section* checkpoint_;
4617 // Fast lookup maps for merged and relaxed input sections.
4618 Output_section_lookup_maps* lookup_maps_;
4619 // List of available regions within the section, for incremental
4620 // update links.
4621 Free_list free_list_;
4622 // Method for filling chunks of free space.
4623 Output_fill* free_space_fill_;
4624 // Amount added as patch space for incremental linking.
4625 off_t patch_space_;
4626 };
4627
4628 // An output segment. PT_LOAD segments are built from collections of
4629 // output sections. Other segments typically point within PT_LOAD
4630 // segments, and are built directly as needed.
4631 //
4632 // NOTE: We want to use the copy constructor for this class. During
4633 // relaxation, we may try built the segments multiple times. We do
4634 // that by copying the original segment list before lay-out, doing
4635 // a trial lay-out and roll-back to the saved copied if we need to
4636 // to the lay-out again.
4637
4638 class Output_segment
4639 {
4640 public:
4641 // Create an output segment, specifying the type and flags.
4642 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
4643
4644 // Return the virtual address.
4645 uint64_t
4646 vaddr() const
4647 { return this->vaddr_; }
4648
4649 // Return the physical address.
4650 uint64_t
4651 paddr() const
4652 { return this->paddr_; }
4653
4654 // Return the segment type.
4655 elfcpp::Elf_Word
4656 type() const
4657 { return this->type_; }
4658
4659 // Return the segment flags.
4660 elfcpp::Elf_Word
4661 flags() const
4662 { return this->flags_; }
4663
4664 // Return the memory size.
4665 uint64_t
4666 memsz() const
4667 { return this->memsz_; }
4668
4669 // Return the file size.
4670 off_t
4671 filesz() const
4672 { return this->filesz_; }
4673
4674 // Return the file offset.
4675 off_t
4676 offset() const
4677 { return this->offset_; }
4678
4679 // Whether this is a segment created to hold large data sections.
4680 bool
4681 is_large_data_segment() const
4682 { return this->is_large_data_segment_; }
4683
4684 // Record that this is a segment created to hold large data
4685 // sections.
4686 void
4687 set_is_large_data_segment()
4688 { this->is_large_data_segment_ = true; }
4689
4690 bool
4691 is_unique_segment() const
4692 { return this->is_unique_segment_; }
4693
4694 // Mark segment as unique, happens when linker plugins request that
4695 // certain input sections be mapped to unique segments.
4696 void
4697 set_is_unique_segment()
4698 { this->is_unique_segment_ = true; }
4699
4700 // Return the maximum alignment of the Output_data.
4701 uint64_t
4702 maximum_alignment();
4703
4704 // Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is
4705 // the segment flags to use.
4706 void
4707 add_output_section_to_load(Layout* layout, Output_section* os,
4708 elfcpp::Elf_Word seg_flags);
4709
4710 // Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS
4711 // is the segment flags to use.
4712 void
4713 add_output_section_to_nonload(Output_section* os,
4714 elfcpp::Elf_Word seg_flags);
4715
4716 // Remove an Output_section from this segment. It is an error if it
4717 // is not present.
4718 void
4719 remove_output_section(Output_section* os);
4720
4721 // Add an Output_data (which need not be an Output_section) to the
4722 // start of this segment.
4723 void
4724 add_initial_output_data(Output_data*);
4725
4726 // Return true if this segment has any sections which hold actual
4727 // data, rather than being a BSS section.
4728 bool
4729 has_any_data_sections() const;
4730
4731 // Whether this segment has a dynamic relocs.
4732 bool
4733 has_dynamic_reloc() const;
4734
4735 // Return the first section.
4736 Output_section*
4737 first_section() const;
4738
4739 // Return the address of the first section.
4740 uint64_t
4741 first_section_load_address() const
4742 {
4743 const Output_section* os = this->first_section();
4744 gold_assert(os != NULL);
4745 return os->has_load_address() ? os->load_address() : os->address();
4746 }
4747
4748 // Return whether the addresses have been set already.
4749 bool
4750 are_addresses_set() const
4751 { return this->are_addresses_set_; }
4752
4753 // Set the addresses.
4754 void
4755 set_addresses(uint64_t vaddr, uint64_t paddr)
4756 {
4757 this->vaddr_ = vaddr;
4758 this->paddr_ = paddr;
4759 this->are_addresses_set_ = true;
4760 }
4761
4762 // Update the flags for the flags of an output section added to this
4763 // segment.
4764 void
4765 update_flags_for_output_section(elfcpp::Elf_Xword flags)
4766 {
4767 // The ELF ABI specifies that a PT_TLS segment should always have
4768 // PF_R as the flags.
4769 if (this->type() != elfcpp::PT_TLS)
4770 this->flags_ |= flags;
4771 }
4772
4773 // Set the segment flags. This is only used if we have a PHDRS
4774 // clause which explicitly specifies the flags.
4775 void
4776 set_flags(elfcpp::Elf_Word flags)
4777 { this->flags_ = flags; }
4778
4779 // Set the address of the segment to ADDR and the offset to *POFF
4780 // and set the addresses and offsets of all contained output
4781 // sections accordingly. Set the section indexes of all contained
4782 // output sections starting with *PSHNDX. If RESET is true, first
4783 // reset the addresses of the contained sections. Return the
4784 // address of the immediately following segment. Update *POFF and
4785 // *PSHNDX. This should only be called for a PT_LOAD segment.
4786 uint64_t
4787 set_section_addresses(const Target*, Layout*, bool reset, uint64_t addr,
4788 unsigned int* increase_relro, bool* has_relro,
4789 off_t* poff, unsigned int* pshndx);
4790
4791 // Set the minimum alignment of this segment. This may be adjusted
4792 // upward based on the section alignments.
4793 void
4794 set_minimum_p_align(uint64_t align)
4795 {
4796 if (align > this->min_p_align_)
4797 this->min_p_align_ = align;
4798 }
4799
4800 // Set the memory size of this segment.
4801 void
4802 set_size(uint64_t size)
4803 {
4804 this->memsz_ = size;
4805 }
4806
4807 // Set the offset of this segment based on the section. This should
4808 // only be called for a non-PT_LOAD segment.
4809 void
4810 set_offset(unsigned int increase);
4811
4812 // Set the TLS offsets of the sections contained in the PT_TLS segment.
4813 void
4814 set_tls_offsets();
4815
4816 // Return the number of output sections.
4817 unsigned int
4818 output_section_count() const;
4819
4820 // Return the section attached to the list segment with the lowest
4821 // load address. This is used when handling a PHDRS clause in a
4822 // linker script.
4823 Output_section*
4824 section_with_lowest_load_address() const;
4825
4826 // Write the segment header into *OPHDR.
4827 template<int size, bool big_endian>
4828 void
4829 write_header(elfcpp::Phdr_write<size, big_endian>*);
4830
4831 // Write the section headers of associated sections into V.
4832 template<int size, bool big_endian>
4833 unsigned char*
4834 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
4835 unsigned int* pshndx) const;
4836
4837 // Print the output sections in the map file.
4838 void
4839 print_sections_to_mapfile(Mapfile*) const;
4840
4841 private:
4842 typedef std::vector<Output_data*> Output_data_list;
4843
4844 // Find the maximum alignment in an Output_data_list.
4845 static uint64_t
4846 maximum_alignment_list(const Output_data_list*);
4847
4848 // Return whether the first data section is a relro section.
4849 bool
4850 is_first_section_relro() const;
4851
4852 // Set the section addresses in an Output_data_list.
4853 uint64_t
4854 set_section_list_addresses(Layout*, bool reset, Output_data_list*,
4855 uint64_t addr, off_t* poff, off_t* fpoff,
4856 unsigned int* pshndx, bool* in_tls);
4857
4858 // Return the number of Output_sections in an Output_data_list.
4859 unsigned int
4860 output_section_count_list(const Output_data_list*) const;
4861
4862 // Return whether an Output_data_list has a dynamic reloc.
4863 bool
4864 has_dynamic_reloc_list(const Output_data_list*) const;
4865
4866 // Find the section with the lowest load address in an
4867 // Output_data_list.
4868 void
4869 lowest_load_address_in_list(const Output_data_list* pdl,
4870 Output_section** found,
4871 uint64_t* found_lma) const;
4872
4873 // Find the first and last entries by address.
4874 void
4875 find_first_and_last_list(const Output_data_list* pdl,
4876 const Output_data** pfirst,
4877 const Output_data** plast) const;
4878
4879 // Write the section headers in the list into V.
4880 template<int size, bool big_endian>
4881 unsigned char*
4882 write_section_headers_list(const Layout*, const Stringpool*,
4883 const Output_data_list*, unsigned char* v,
4884 unsigned int* pshdx) const;
4885
4886 // Print a section list to the mapfile.
4887 void
4888 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
4889
4890 // NOTE: We want to use the copy constructor. Currently, shallow copy
4891 // works for us so we do not need to write our own copy constructor.
4892
4893 // The list of output data attached to this segment.
4894 Output_data_list output_lists_[ORDER_MAX];
4895 // The segment virtual address.
4896 uint64_t vaddr_;
4897 // The segment physical address.
4898 uint64_t paddr_;
4899 // The size of the segment in memory.
4900 uint64_t memsz_;
4901 // The maximum section alignment. The is_max_align_known_ field
4902 // indicates whether this has been finalized.
4903 uint64_t max_align_;
4904 // The required minimum value for the p_align field. This is used
4905 // for PT_LOAD segments. Note that this does not mean that
4906 // addresses should be aligned to this value; it means the p_paddr
4907 // and p_vaddr fields must be congruent modulo this value. For
4908 // non-PT_LOAD segments, the dynamic linker works more efficiently
4909 // if the p_align field has the more conventional value, although it
4910 // can align as needed.
4911 uint64_t min_p_align_;
4912 // The offset of the segment data within the file.
4913 off_t offset_;
4914 // The size of the segment data in the file.
4915 off_t filesz_;
4916 // The segment type;
4917 elfcpp::Elf_Word type_;
4918 // The segment flags.
4919 elfcpp::Elf_Word flags_;
4920 // Whether we have finalized max_align_.
4921 bool is_max_align_known_ : 1;
4922 // Whether vaddr and paddr were set by a linker script.
4923 bool are_addresses_set_ : 1;
4924 // Whether this segment holds large data sections.
4925 bool is_large_data_segment_ : 1;
4926 // Whether this was marked as a unique segment via a linker plugin.
4927 bool is_unique_segment_ : 1;
4928 };
4929
4930 } // End namespace gold.
4931
4932 #endif // !defined(GOLD_OUTPUT_H)
This page took 0.161628 seconds and 4 git commands to generate.