1 // output.h -- manage the output file for gold -*- C++ -*-
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "reloc-types.h"
37 class General_options
;
41 class Output_merge_base
;
43 class Relocatable_relocs
;
45 template<int size
, bool big_endian
>
47 template<int size
, bool big_endian
>
49 template<int size
, bool big_endian
>
50 class Sized_relobj_file
;
52 // An abtract class for data which has to go into the output file.
57 explicit Output_data()
58 : address_(0), data_size_(0), offset_(-1),
59 is_address_valid_(false), is_data_size_valid_(false),
60 is_offset_valid_(false), is_data_size_fixed_(false),
61 has_dynamic_reloc_(false)
67 // Return the address. For allocated sections, this is only valid
68 // after Layout::finalize is finished.
72 gold_assert(this->is_address_valid_
);
73 return this->address_
;
76 // Return the size of the data. For allocated sections, this must
77 // be valid after Layout::finalize calls set_address, but need not
78 // be valid before then.
82 gold_assert(this->is_data_size_valid_
);
83 return this->data_size_
;
86 // Get the current data size.
88 current_data_size() const
89 { return this->current_data_size_for_child(); }
91 // Return true if data size is fixed.
93 is_data_size_fixed() const
94 { return this->is_data_size_fixed_
; }
96 // Return the file offset. This is only valid after
97 // Layout::finalize is finished. For some non-allocated sections,
98 // it may not be valid until near the end of the link.
102 gold_assert(this->is_offset_valid_
);
103 return this->offset_
;
106 // Reset the address and file offset. This essentially disables the
107 // sanity testing about duplicate and unknown settings.
109 reset_address_and_file_offset()
111 this->is_address_valid_
= false;
112 this->is_offset_valid_
= false;
113 if (!this->is_data_size_fixed_
)
114 this->is_data_size_valid_
= false;
115 this->do_reset_address_and_file_offset();
118 // Return true if address and file offset already have reset values. In
119 // other words, calling reset_address_and_file_offset will not change them.
121 address_and_file_offset_have_reset_values() const
122 { return this->do_address_and_file_offset_have_reset_values(); }
124 // Return the required alignment.
127 { return this->do_addralign(); }
129 // Return whether this has a load address.
131 has_load_address() const
132 { return this->do_has_load_address(); }
134 // Return the load address.
137 { return this->do_load_address(); }
139 // Return whether this is an Output_section.
142 { return this->do_is_section(); }
144 // Return whether this is an Output_section of the specified type.
146 is_section_type(elfcpp::Elf_Word stt
) const
147 { return this->do_is_section_type(stt
); }
149 // Return whether this is an Output_section with the specified flag
152 is_section_flag_set(elfcpp::Elf_Xword shf
) const
153 { return this->do_is_section_flag_set(shf
); }
155 // Return the output section that this goes in, if there is one.
158 { return this->do_output_section(); }
160 const Output_section
*
161 output_section() const
162 { return this->do_output_section(); }
164 // Return the output section index, if there is an output section.
167 { return this->do_out_shndx(); }
169 // Set the output section index, if this is an output section.
171 set_out_shndx(unsigned int shndx
)
172 { this->do_set_out_shndx(shndx
); }
174 // Set the address and file offset of this data, and finalize the
175 // size of the data. This is called during Layout::finalize for
176 // allocated sections.
178 set_address_and_file_offset(uint64_t addr
, off_t off
)
180 this->set_address(addr
);
181 this->set_file_offset(off
);
182 this->finalize_data_size();
187 set_address(uint64_t addr
)
189 gold_assert(!this->is_address_valid_
);
190 this->address_
= addr
;
191 this->is_address_valid_
= true;
194 // Set the file offset.
196 set_file_offset(off_t off
)
198 gold_assert(!this->is_offset_valid_
);
200 this->is_offset_valid_
= true;
203 // Update the data size without finalizing it.
205 pre_finalize_data_size()
207 if (!this->is_data_size_valid_
)
209 // Tell the child class to update the data size.
210 this->update_data_size();
214 // Finalize the data size.
218 if (!this->is_data_size_valid_
)
220 // Tell the child class to set the data size.
221 this->set_final_data_size();
222 gold_assert(this->is_data_size_valid_
);
226 // Set the TLS offset. Called only for SHT_TLS sections.
228 set_tls_offset(uint64_t tls_base
)
229 { this->do_set_tls_offset(tls_base
); }
231 // Return the TLS offset, relative to the base of the TLS segment.
232 // Valid only for SHT_TLS sections.
235 { return this->do_tls_offset(); }
237 // Write the data to the output file. This is called after
238 // Layout::finalize is complete.
240 write(Output_file
* file
)
241 { this->do_write(file
); }
243 // This is called by Layout::finalize to note that the sizes of
244 // allocated sections must now be fixed.
247 { Output_data::allocated_sizes_are_fixed
= true; }
249 // Used to check that layout has been done.
252 { return Output_data::allocated_sizes_are_fixed
; }
254 // Note that a dynamic reloc has been applied to this data.
257 { this->has_dynamic_reloc_
= true; }
259 // Return whether a dynamic reloc has been applied.
261 has_dynamic_reloc() const
262 { return this->has_dynamic_reloc_
; }
264 // Whether the address is valid.
266 is_address_valid() const
267 { return this->is_address_valid_
; }
269 // Whether the file offset is valid.
271 is_offset_valid() const
272 { return this->is_offset_valid_
; }
274 // Whether the data size is valid.
276 is_data_size_valid() const
277 { return this->is_data_size_valid_
; }
279 // Print information to the map file.
281 print_to_mapfile(Mapfile
* mapfile
) const
282 { return this->do_print_to_mapfile(mapfile
); }
285 // Functions that child classes may or in some cases must implement.
287 // Write the data to the output file.
289 do_write(Output_file
*) = 0;
291 // Return the required alignment.
293 do_addralign() const = 0;
295 // Return whether this has a load address.
297 do_has_load_address() const
300 // Return the load address.
302 do_load_address() const
303 { gold_unreachable(); }
305 // Return whether this is an Output_section.
307 do_is_section() const
310 // Return whether this is an Output_section of the specified type.
311 // This only needs to be implement by Output_section.
313 do_is_section_type(elfcpp::Elf_Word
) const
316 // Return whether this is an Output_section with the specific flag
317 // set. This only needs to be implemented by Output_section.
319 do_is_section_flag_set(elfcpp::Elf_Xword
) const
322 // Return the output section, if there is one.
323 virtual Output_section
*
327 virtual const Output_section
*
328 do_output_section() const
331 // Return the output section index, if there is an output section.
334 { gold_unreachable(); }
336 // Set the output section index, if this is an output section.
338 do_set_out_shndx(unsigned int)
339 { gold_unreachable(); }
341 // This is a hook for derived classes to set the preliminary data size.
342 // This is called by pre_finalize_data_size, normally called during
343 // Layout::finalize, before the section address is set, and is used
344 // during an incremental update, when we need to know the size of a
345 // section before allocating space in the output file. For classes
346 // where the current data size is up to date, this default version of
347 // the method can be inherited.
352 // This is a hook for derived classes to set the data size. This is
353 // called by finalize_data_size, normally called during
354 // Layout::finalize, when the section address is set.
356 set_final_data_size()
357 { gold_unreachable(); }
359 // A hook for resetting the address and file offset.
361 do_reset_address_and_file_offset()
364 // Return true if address and file offset already have reset values. In
365 // other words, calling reset_address_and_file_offset will not change them.
366 // A child class overriding do_reset_address_and_file_offset may need to
367 // also override this.
369 do_address_and_file_offset_have_reset_values() const
370 { return !this->is_address_valid_
&& !this->is_offset_valid_
; }
372 // Set the TLS offset. Called only for SHT_TLS sections.
374 do_set_tls_offset(uint64_t)
375 { gold_unreachable(); }
377 // Return the TLS offset, relative to the base of the TLS segment.
378 // Valid only for SHT_TLS sections.
380 do_tls_offset() const
381 { gold_unreachable(); }
383 // Print to the map file. This only needs to be implemented by
384 // classes which may appear in a PT_LOAD segment.
386 do_print_to_mapfile(Mapfile
*) const
387 { gold_unreachable(); }
389 // Functions that child classes may call.
391 // Reset the address. The Output_section class needs this when an
392 // SHF_ALLOC input section is added to an output section which was
393 // formerly not SHF_ALLOC.
395 mark_address_invalid()
396 { this->is_address_valid_
= false; }
398 // Set the size of the data.
400 set_data_size(off_t data_size
)
402 gold_assert(!this->is_data_size_valid_
403 && !this->is_data_size_fixed_
);
404 this->data_size_
= data_size
;
405 this->is_data_size_valid_
= true;
408 // Fix the data size. Once it is fixed, it cannot be changed
409 // and the data size remains always valid.
413 gold_assert(this->is_data_size_valid_
);
414 this->is_data_size_fixed_
= true;
417 // Get the current data size--this is for the convenience of
418 // sections which build up their size over time.
420 current_data_size_for_child() const
421 { return this->data_size_
; }
423 // Set the current data size--this is for the convenience of
424 // sections which build up their size over time.
426 set_current_data_size_for_child(off_t data_size
)
428 gold_assert(!this->is_data_size_valid_
);
429 this->data_size_
= data_size
;
432 // Return default alignment for the target size.
436 // Return default alignment for a specified size--32 or 64.
438 default_alignment_for_size(int size
);
441 Output_data(const Output_data
&);
442 Output_data
& operator=(const Output_data
&);
444 // This is used for verification, to make sure that we don't try to
445 // change any sizes of allocated sections after we set the section
447 static bool allocated_sizes_are_fixed
;
449 // Memory address in output file.
451 // Size of data in output file.
453 // File offset of contents in output file.
455 // Whether address_ is valid.
456 bool is_address_valid_
: 1;
457 // Whether data_size_ is valid.
458 bool is_data_size_valid_
: 1;
459 // Whether offset_ is valid.
460 bool is_offset_valid_
: 1;
461 // Whether data size is fixed.
462 bool is_data_size_fixed_
: 1;
463 // Whether any dynamic relocs have been applied to this section.
464 bool has_dynamic_reloc_
: 1;
467 // Output the section headers.
469 class Output_section_headers
: public Output_data
472 Output_section_headers(const Layout
*,
473 const Layout::Segment_list
*,
474 const Layout::Section_list
*,
475 const Layout::Section_list
*,
477 const Output_section
*);
480 // Write the data to the file.
482 do_write(Output_file
*);
484 // Return the required alignment.
487 { return Output_data::default_alignment(); }
489 // Write to a map file.
491 do_print_to_mapfile(Mapfile
* mapfile
) const
492 { mapfile
->print_output_data(this, _("** section headers")); }
494 // Update the data size.
497 { this->set_data_size(this->do_size()); }
499 // Set final data size.
501 set_final_data_size()
502 { this->set_data_size(this->do_size()); }
505 // Write the data to the file with the right size and endianness.
506 template<int size
, bool big_endian
>
508 do_sized_write(Output_file
*);
510 // Compute data size.
514 const Layout
* layout_
;
515 const Layout::Segment_list
* segment_list_
;
516 const Layout::Section_list
* section_list_
;
517 const Layout::Section_list
* unattached_section_list_
;
518 const Stringpool
* secnamepool_
;
519 const Output_section
* shstrtab_section_
;
522 // Output the segment headers.
524 class Output_segment_headers
: public Output_data
527 Output_segment_headers(const Layout::Segment_list
& segment_list
);
530 // Write the data to the file.
532 do_write(Output_file
*);
534 // Return the required alignment.
537 { return Output_data::default_alignment(); }
539 // Write to a map file.
541 do_print_to_mapfile(Mapfile
* mapfile
) const
542 { mapfile
->print_output_data(this, _("** segment headers")); }
544 // Set final data size.
546 set_final_data_size()
547 { this->set_data_size(this->do_size()); }
550 // Write the data to the file with the right size and endianness.
551 template<int size
, bool big_endian
>
553 do_sized_write(Output_file
*);
555 // Compute the current size.
559 const Layout::Segment_list
& segment_list_
;
562 // Output the ELF file header.
564 class Output_file_header
: public Output_data
567 Output_file_header(const Target
*,
569 const Output_segment_headers
*);
571 // Add information about the section headers. We lay out the ELF
572 // file header before we create the section headers.
573 void set_section_info(const Output_section_headers
*,
574 const Output_section
* shstrtab
);
577 // Write the data to the file.
579 do_write(Output_file
*);
581 // Return the required alignment.
584 { return Output_data::default_alignment(); }
586 // Write to a map file.
588 do_print_to_mapfile(Mapfile
* mapfile
) const
589 { mapfile
->print_output_data(this, _("** file header")); }
591 // Set final data size.
593 set_final_data_size(void)
594 { this->set_data_size(this->do_size()); }
597 // Write the data to the file with the right size and endianness.
598 template<int size
, bool big_endian
>
600 do_sized_write(Output_file
*);
602 // Return the value to use for the entry address.
604 typename
elfcpp::Elf_types
<size
>::Elf_Addr
607 // Compute the current data size.
611 const Target
* target_
;
612 const Symbol_table
* symtab_
;
613 const Output_segment_headers
* segment_header_
;
614 const Output_section_headers
* section_header_
;
615 const Output_section
* shstrtab_
;
618 // Output sections are mainly comprised of input sections. However,
619 // there are cases where we have data to write out which is not in an
620 // input section. Output_section_data is used in such cases. This is
621 // an abstract base class.
623 class Output_section_data
: public Output_data
626 Output_section_data(off_t data_size
, uint64_t addralign
,
627 bool is_data_size_fixed
)
628 : Output_data(), output_section_(NULL
), addralign_(addralign
)
630 this->set_data_size(data_size
);
631 if (is_data_size_fixed
)
632 this->fix_data_size();
635 Output_section_data(uint64_t addralign
)
636 : Output_data(), output_section_(NULL
), addralign_(addralign
)
639 // Return the output section.
642 { return this->output_section_
; }
644 const Output_section
*
645 output_section() const
646 { return this->output_section_
; }
648 // Record the output section.
650 set_output_section(Output_section
* os
);
652 // Add an input section, for SHF_MERGE sections. This returns true
653 // if the section was handled.
655 add_input_section(Relobj
* object
, unsigned int shndx
)
656 { return this->do_add_input_section(object
, shndx
); }
658 // Given an input OBJECT, an input section index SHNDX within that
659 // object, and an OFFSET relative to the start of that input
660 // section, return whether or not the corresponding offset within
661 // the output section is known. If this function returns true, it
662 // sets *POUTPUT to the output offset. The value -1 indicates that
663 // this input offset is being discarded.
665 output_offset(const Relobj
* object
, unsigned int shndx
,
666 section_offset_type offset
,
667 section_offset_type
* poutput
) const
668 { return this->do_output_offset(object
, shndx
, offset
, poutput
); }
670 // Return whether this is the merge section for the input section
671 // SHNDX in OBJECT. This should return true when output_offset
672 // would return true for some values of OFFSET.
674 is_merge_section_for(const Relobj
* object
, unsigned int shndx
) const
675 { return this->do_is_merge_section_for(object
, shndx
); }
677 // Write the contents to a buffer. This is used for sections which
678 // require postprocessing, such as compression.
680 write_to_buffer(unsigned char* buffer
)
681 { this->do_write_to_buffer(buffer
); }
683 // Print merge stats to stderr. This should only be called for
684 // SHF_MERGE sections.
686 print_merge_stats(const char* section_name
)
687 { this->do_print_merge_stats(section_name
); }
690 // The child class must implement do_write.
692 // The child class may implement specific adjustments to the output
695 do_adjust_output_section(Output_section
*)
698 // May be implemented by child class. Return true if the section
701 do_add_input_section(Relobj
*, unsigned int)
702 { gold_unreachable(); }
704 // The child class may implement output_offset.
706 do_output_offset(const Relobj
*, unsigned int, section_offset_type
,
707 section_offset_type
*) const
710 // The child class may implement is_merge_section_for.
712 do_is_merge_section_for(const Relobj
*, unsigned int) const
715 // The child class may implement write_to_buffer. Most child
716 // classes can not appear in a compressed section, and they do not
719 do_write_to_buffer(unsigned char*)
720 { gold_unreachable(); }
722 // Print merge statistics.
724 do_print_merge_stats(const char*)
725 { gold_unreachable(); }
727 // Return the required alignment.
730 { return this->addralign_
; }
732 // Return the output section.
735 { return this->output_section_
; }
737 const Output_section
*
738 do_output_section() const
739 { return this->output_section_
; }
741 // Return the section index of the output section.
743 do_out_shndx() const;
745 // Set the alignment.
747 set_addralign(uint64_t addralign
);
750 // The output section for this section.
751 Output_section
* output_section_
;
752 // The required alignment.
756 // Some Output_section_data classes build up their data step by step,
757 // rather than all at once. This class provides an interface for
760 class Output_section_data_build
: public Output_section_data
763 Output_section_data_build(uint64_t addralign
)
764 : Output_section_data(addralign
)
767 Output_section_data_build(off_t data_size
, uint64_t addralign
)
768 : Output_section_data(data_size
, addralign
, false)
771 // Set the current data size.
773 set_current_data_size(off_t data_size
)
774 { this->set_current_data_size_for_child(data_size
); }
777 // Set the final data size.
779 set_final_data_size()
780 { this->set_data_size(this->current_data_size_for_child()); }
783 // A simple case of Output_data in which we have constant data to
786 class Output_data_const
: public Output_section_data
789 Output_data_const(const std::string
& data
, uint64_t addralign
)
790 : Output_section_data(data
.size(), addralign
, true), data_(data
)
793 Output_data_const(const char* p
, off_t len
, uint64_t addralign
)
794 : Output_section_data(len
, addralign
, true), data_(p
, len
)
797 Output_data_const(const unsigned char* p
, off_t len
, uint64_t addralign
)
798 : Output_section_data(len
, addralign
, true),
799 data_(reinterpret_cast<const char*>(p
), len
)
803 // Write the data to the output file.
805 do_write(Output_file
*);
807 // Write the data to a buffer.
809 do_write_to_buffer(unsigned char* buffer
)
810 { memcpy(buffer
, this->data_
.data(), this->data_
.size()); }
812 // Write to a map file.
814 do_print_to_mapfile(Mapfile
* mapfile
) const
815 { mapfile
->print_output_data(this, _("** fill")); }
821 // Another version of Output_data with constant data, in which the
822 // buffer is allocated by the caller.
824 class Output_data_const_buffer
: public Output_section_data
827 Output_data_const_buffer(const unsigned char* p
, off_t len
,
828 uint64_t addralign
, const char* map_name
)
829 : Output_section_data(len
, addralign
, true),
830 p_(p
), map_name_(map_name
)
834 // Write the data the output file.
836 do_write(Output_file
*);
838 // Write the data to a buffer.
840 do_write_to_buffer(unsigned char* buffer
)
841 { memcpy(buffer
, this->p_
, this->data_size()); }
843 // Write to a map file.
845 do_print_to_mapfile(Mapfile
* mapfile
) const
846 { mapfile
->print_output_data(this, _(this->map_name_
)); }
849 // The data to output.
850 const unsigned char* p_
;
851 // Name to use in a map file. Maps are a rarely used feature, but
852 // the space usage is minor as aren't very many of these objects.
853 const char* map_name_
;
856 // A place holder for a fixed amount of data written out via some
859 class Output_data_fixed_space
: public Output_section_data
862 Output_data_fixed_space(off_t data_size
, uint64_t addralign
,
863 const char* map_name
)
864 : Output_section_data(data_size
, addralign
, true),
869 // Write out the data--the actual data must be written out
872 do_write(Output_file
*)
875 // Write to a map file.
877 do_print_to_mapfile(Mapfile
* mapfile
) const
878 { mapfile
->print_output_data(this, _(this->map_name_
)); }
881 // Name to use in a map file. Maps are a rarely used feature, but
882 // the space usage is minor as aren't very many of these objects.
883 const char* map_name_
;
886 // A place holder for variable sized data written out via some other
889 class Output_data_space
: public Output_section_data_build
892 explicit Output_data_space(uint64_t addralign
, const char* map_name
)
893 : Output_section_data_build(addralign
),
897 explicit Output_data_space(off_t data_size
, uint64_t addralign
,
898 const char* map_name
)
899 : Output_section_data_build(data_size
, addralign
),
903 // Set the alignment.
905 set_space_alignment(uint64_t align
)
906 { this->set_addralign(align
); }
909 // Write out the data--the actual data must be written out
912 do_write(Output_file
*)
915 // Write to a map file.
917 do_print_to_mapfile(Mapfile
* mapfile
) const
918 { mapfile
->print_output_data(this, _(this->map_name_
)); }
921 // Name to use in a map file. Maps are a rarely used feature, but
922 // the space usage is minor as aren't very many of these objects.
923 const char* map_name_
;
926 // Fill fixed space with zeroes. This is just like
927 // Output_data_fixed_space, except that the map name is known.
929 class Output_data_zero_fill
: public Output_section_data
932 Output_data_zero_fill(off_t data_size
, uint64_t addralign
)
933 : Output_section_data(data_size
, addralign
, true)
937 // There is no data to write out.
939 do_write(Output_file
*)
942 // Write to a map file.
944 do_print_to_mapfile(Mapfile
* mapfile
) const
945 { mapfile
->print_output_data(this, "** zero fill"); }
948 // A string table which goes into an output section.
950 class Output_data_strtab
: public Output_section_data
953 Output_data_strtab(Stringpool
* strtab
)
954 : Output_section_data(1), strtab_(strtab
)
958 // This is called to update the section size prior to assigning
959 // the address and file offset.
962 { this->set_final_data_size(); }
964 // This is called to set the address and file offset. Here we make
965 // sure that the Stringpool is finalized.
967 set_final_data_size();
969 // Write out the data.
971 do_write(Output_file
*);
973 // Write the data to a buffer.
975 do_write_to_buffer(unsigned char* buffer
)
976 { this->strtab_
->write_to_buffer(buffer
, this->data_size()); }
978 // Write to a map file.
980 do_print_to_mapfile(Mapfile
* mapfile
) const
981 { mapfile
->print_output_data(this, _("** string table")); }
987 // This POD class is used to represent a single reloc in the output
988 // file. This could be a private class within Output_data_reloc, but
989 // the templatization is complex enough that I broke it out into a
990 // separate class. The class is templatized on either elfcpp::SHT_REL
991 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
992 // relocation or an ordinary relocation.
994 // A relocation can be against a global symbol, a local symbol, a
995 // local section symbol, an output section, or the undefined symbol at
996 // index 0. We represent the latter by using a NULL global symbol.
998 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1001 template<bool dynamic
, int size
, bool big_endian
>
1002 class Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>
1005 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Address
;
1006 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Addend
;
1008 static const Address invalid_address
= static_cast<Address
>(0) - 1;
1010 // An uninitialized entry. We need this because we want to put
1011 // instances of this class into an STL container.
1013 : local_sym_index_(INVALID_CODE
)
1016 // We have a bunch of different constructors. They come in pairs
1017 // depending on how the address of the relocation is specified. It
1018 // can either be an offset in an Output_data or an offset in an
1021 // A reloc against a global symbol.
1023 Output_reloc(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1024 Address address
, bool is_relative
, bool is_symbolless
,
1025 bool use_plt_offset
);
1027 Output_reloc(Symbol
* gsym
, unsigned int type
,
1028 Sized_relobj
<size
, big_endian
>* relobj
,
1029 unsigned int shndx
, Address address
, bool is_relative
,
1030 bool is_symbolless
, bool use_plt_offset
);
1032 // A reloc against a local symbol or local section symbol.
1034 Output_reloc(Sized_relobj
<size
, big_endian
>* relobj
,
1035 unsigned int local_sym_index
, unsigned int type
,
1036 Output_data
* od
, Address address
, bool is_relative
,
1037 bool is_symbolless
, bool is_section_symbol
,
1038 bool use_plt_offset
);
1040 Output_reloc(Sized_relobj
<size
, big_endian
>* relobj
,
1041 unsigned int local_sym_index
, unsigned int type
,
1042 unsigned int shndx
, Address address
, bool is_relative
,
1043 bool is_symbolless
, bool is_section_symbol
,
1044 bool use_plt_offset
);
1046 // A reloc against the STT_SECTION symbol of an output section.
1048 Output_reloc(Output_section
* os
, unsigned int type
, Output_data
* od
,
1051 Output_reloc(Output_section
* os
, unsigned int type
,
1052 Sized_relobj
<size
, big_endian
>* relobj
,
1053 unsigned int shndx
, Address address
);
1055 // An absolute relocation with no symbol.
1057 Output_reloc(unsigned int type
, Output_data
* od
, Address address
);
1059 Output_reloc(unsigned int type
, Sized_relobj
<size
, big_endian
>* relobj
,
1060 unsigned int shndx
, Address address
);
1062 // A target specific relocation. The target will be called to get
1063 // the symbol index, passing ARG. The type and offset will be set
1064 // as for other relocation types.
1066 Output_reloc(unsigned int type
, void* arg
, Output_data
* od
,
1069 Output_reloc(unsigned int type
, void* arg
,
1070 Sized_relobj
<size
, big_endian
>* relobj
,
1071 unsigned int shndx
, Address address
);
1073 // Return the reloc type.
1076 { return this->type_
; }
1078 // Return whether this is a RELATIVE relocation.
1081 { return this->is_relative_
; }
1083 // Return whether this is a relocation which should not use
1084 // a symbol, but which obtains its addend from a symbol.
1086 is_symbolless() const
1087 { return this->is_symbolless_
; }
1089 // Return whether this is against a local section symbol.
1091 is_local_section_symbol() const
1093 return (this->local_sym_index_
!= GSYM_CODE
1094 && this->local_sym_index_
!= SECTION_CODE
1095 && this->local_sym_index_
!= INVALID_CODE
1096 && this->local_sym_index_
!= TARGET_CODE
1097 && this->is_section_symbol_
);
1100 // Return whether this is a target specific relocation.
1102 is_target_specific() const
1103 { return this->local_sym_index_
== TARGET_CODE
; }
1105 // Return the argument to pass to the target for a target specific
1110 gold_assert(this->local_sym_index_
== TARGET_CODE
);
1111 return this->u1_
.arg
;
1114 // For a local section symbol, return the offset of the input
1115 // section within the output section. ADDEND is the addend being
1116 // applied to the input section.
1118 local_section_offset(Addend addend
) const;
1120 // Get the value of the symbol referred to by a Rel relocation when
1121 // we are adding the given ADDEND.
1123 symbol_value(Addend addend
) const;
1125 // If this relocation is against an input section, return the
1126 // relocatable object containing the input section.
1127 Sized_relobj
<size
, big_endian
>*
1130 if (this->shndx_
== INVALID_CODE
)
1132 return this->u2_
.relobj
;
1135 // Write the reloc entry to an output view.
1137 write(unsigned char* pov
) const;
1139 // Write the offset and info fields to Write_rel.
1140 template<typename Write_rel
>
1141 void write_rel(Write_rel
*) const;
1143 // This is used when sorting dynamic relocs. Return -1 to sort this
1144 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1146 compare(const Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>& r2
)
1149 // Return whether this reloc should be sorted before the argument
1150 // when sorting dynamic relocs.
1152 sort_before(const Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>&
1154 { return this->compare(r2
) < 0; }
1157 // Record that we need a dynamic symbol index.
1159 set_needs_dynsym_index();
1161 // Return the symbol index.
1163 get_symbol_index() const;
1165 // Return the output address.
1167 get_address() const;
1169 // Codes for local_sym_index_.
1178 // Invalid uninitialized entry.
1184 // For a local symbol or local section symbol
1185 // (this->local_sym_index_ >= 0), the object. We will never
1186 // generate a relocation against a local symbol in a dynamic
1187 // object; that doesn't make sense. And our callers will always
1188 // be templatized, so we use Sized_relobj here.
1189 Sized_relobj
<size
, big_endian
>* relobj
;
1190 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1191 // symbol. If this is NULL, it indicates a relocation against the
1192 // undefined 0 symbol.
1194 // For a relocation against an output section
1195 // (this->local_sym_index_ == SECTION_CODE), the output section.
1197 // For a target specific relocation, an argument to pass to the
1203 // If this->shndx_ is not INVALID CODE, the object which holds the
1204 // input section being used to specify the reloc address.
1205 Sized_relobj
<size
, big_endian
>* relobj
;
1206 // If this->shndx_ is INVALID_CODE, the output data being used to
1207 // specify the reloc address. This may be NULL if the reloc
1208 // address is absolute.
1211 // The address offset within the input section or the Output_data.
1213 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1214 // relocation against an output section, or TARGET_CODE for a target
1215 // specific relocation, or INVALID_CODE for an uninitialized value.
1216 // Otherwise, for a local symbol (this->is_section_symbol_ is
1217 // false), the local symbol index. For a local section symbol
1218 // (this->is_section_symbol_ is true), the section index in the
1220 unsigned int local_sym_index_
;
1221 // The reloc type--a processor specific code.
1222 unsigned int type_
: 28;
1223 // True if the relocation is a RELATIVE relocation.
1224 bool is_relative_
: 1;
1225 // True if the relocation is one which should not use
1226 // a symbol, but which obtains its addend from a symbol.
1227 bool is_symbolless_
: 1;
1228 // True if the relocation is against a section symbol.
1229 bool is_section_symbol_
: 1;
1230 // True if the addend should be the PLT offset.
1231 // (Used only for RELA, but stored here for space.)
1232 bool use_plt_offset_
: 1;
1233 // If the reloc address is an input section in an object, the
1234 // section index. This is INVALID_CODE if the reloc address is
1235 // specified in some other way.
1236 unsigned int shndx_
;
1239 // The SHT_RELA version of Output_reloc<>. This is just derived from
1240 // the SHT_REL version of Output_reloc, but it adds an addend.
1242 template<bool dynamic
, int size
, bool big_endian
>
1243 class Output_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>
1246 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Address
;
1247 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Addend
;
1249 // An uninitialized entry.
1254 // A reloc against a global symbol.
1256 Output_reloc(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1257 Address address
, Addend addend
, bool is_relative
,
1258 bool is_symbolless
, bool use_plt_offset
)
1259 : rel_(gsym
, type
, od
, address
, is_relative
, is_symbolless
,
1264 Output_reloc(Symbol
* gsym
, unsigned int type
,
1265 Sized_relobj
<size
, big_endian
>* relobj
,
1266 unsigned int shndx
, Address address
, Addend addend
,
1267 bool is_relative
, bool is_symbolless
, bool use_plt_offset
)
1268 : rel_(gsym
, type
, relobj
, shndx
, address
, is_relative
,
1269 is_symbolless
, use_plt_offset
), addend_(addend
)
1272 // A reloc against a local symbol.
1274 Output_reloc(Sized_relobj
<size
, big_endian
>* relobj
,
1275 unsigned int local_sym_index
, unsigned int type
,
1276 Output_data
* od
, Address address
,
1277 Addend addend
, bool is_relative
,
1278 bool is_symbolless
, bool is_section_symbol
,
1279 bool use_plt_offset
)
1280 : rel_(relobj
, local_sym_index
, type
, od
, address
, is_relative
,
1281 is_symbolless
, is_section_symbol
, use_plt_offset
),
1285 Output_reloc(Sized_relobj
<size
, big_endian
>* relobj
,
1286 unsigned int local_sym_index
, unsigned int type
,
1287 unsigned int shndx
, Address address
,
1288 Addend addend
, bool is_relative
,
1289 bool is_symbolless
, bool is_section_symbol
,
1290 bool use_plt_offset
)
1291 : rel_(relobj
, local_sym_index
, type
, shndx
, address
, is_relative
,
1292 is_symbolless
, is_section_symbol
, use_plt_offset
),
1296 // A reloc against the STT_SECTION symbol of an output section.
1298 Output_reloc(Output_section
* os
, unsigned int type
, Output_data
* od
,
1299 Address address
, Addend addend
)
1300 : rel_(os
, type
, od
, address
), addend_(addend
)
1303 Output_reloc(Output_section
* os
, unsigned int type
,
1304 Sized_relobj
<size
, big_endian
>* relobj
,
1305 unsigned int shndx
, Address address
, Addend addend
)
1306 : rel_(os
, type
, relobj
, shndx
, address
), addend_(addend
)
1309 // An absolute relocation with no symbol.
1311 Output_reloc(unsigned int type
, Output_data
* od
, Address address
,
1313 : rel_(type
, od
, address
), addend_(addend
)
1316 Output_reloc(unsigned int type
, Sized_relobj
<size
, big_endian
>* relobj
,
1317 unsigned int shndx
, Address address
, Addend addend
)
1318 : rel_(type
, relobj
, shndx
, address
), addend_(addend
)
1321 // A target specific relocation. The target will be called to get
1322 // the symbol index and the addend, passing ARG. The type and
1323 // offset will be set as for other relocation types.
1325 Output_reloc(unsigned int type
, void* arg
, Output_data
* od
,
1326 Address address
, Addend addend
)
1327 : rel_(type
, arg
, od
, address
), addend_(addend
)
1330 Output_reloc(unsigned int type
, void* arg
,
1331 Sized_relobj
<size
, big_endian
>* relobj
,
1332 unsigned int shndx
, Address address
, Addend addend
)
1333 : rel_(type
, arg
, relobj
, shndx
, address
), addend_(addend
)
1336 // Return whether this is a RELATIVE relocation.
1339 { return this->rel_
.is_relative(); }
1341 // Return whether this is a relocation which should not use
1342 // a symbol, but which obtains its addend from a symbol.
1344 is_symbolless() const
1345 { return this->rel_
.is_symbolless(); }
1347 // If this relocation is against an input section, return the
1348 // relocatable object containing the input section.
1349 Sized_relobj
<size
, big_endian
>*
1351 { return this->rel_
.get_relobj(); }
1353 // Write the reloc entry to an output view.
1355 write(unsigned char* pov
) const;
1357 // Return whether this reloc should be sorted before the argument
1358 // when sorting dynamic relocs.
1360 sort_before(const Output_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>&
1363 int i
= this->rel_
.compare(r2
.rel_
);
1369 return this->addend_
< r2
.addend_
;
1374 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
> rel_
;
1379 // Output_data_reloc_generic is a non-template base class for
1380 // Output_data_reloc_base. This gives the generic code a way to hold
1381 // a pointer to a reloc section.
1383 class Output_data_reloc_generic
: public Output_section_data_build
1386 Output_data_reloc_generic(int size
, bool sort_relocs
)
1387 : Output_section_data_build(Output_data::default_alignment_for_size(size
)),
1388 relative_reloc_count_(0), sort_relocs_(sort_relocs
)
1391 // Return the number of relative relocs in this section.
1393 relative_reloc_count() const
1394 { return this->relative_reloc_count_
; }
1396 // Whether we should sort the relocs.
1399 { return this->sort_relocs_
; }
1401 // Add a reloc of type TYPE against the global symbol GSYM. The
1402 // relocation applies to the data at offset ADDRESS within OD.
1404 add_global_generic(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1405 uint64_t address
, uint64_t addend
) = 0;
1407 // Add a reloc of type TYPE against the global symbol GSYM. The
1408 // relocation applies to data at offset ADDRESS within section SHNDX
1409 // of object file RELOBJ. OD is the associated output section.
1411 add_global_generic(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1412 Relobj
* relobj
, unsigned int shndx
, uint64_t address
,
1413 uint64_t addend
) = 0;
1415 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1416 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1419 add_local_generic(Relobj
* relobj
, unsigned int local_sym_index
,
1420 unsigned int type
, Output_data
* od
, uint64_t address
,
1421 uint64_t addend
) = 0;
1423 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1424 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1425 // within section SHNDX of RELOBJ. OD is the associated output
1428 add_local_generic(Relobj
* relobj
, unsigned int local_sym_index
,
1429 unsigned int type
, Output_data
* od
, unsigned int shndx
,
1430 uint64_t address
, uint64_t addend
) = 0;
1432 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1433 // output section OS. The relocation applies to the data at offset
1434 // ADDRESS within OD.
1436 add_output_section_generic(Output_section
*os
, unsigned int type
,
1437 Output_data
* od
, uint64_t address
,
1438 uint64_t addend
) = 0;
1440 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1441 // output section OS. The relocation applies to the data at offset
1442 // ADDRESS within section SHNDX of RELOBJ. OD is the associated
1445 add_output_section_generic(Output_section
* os
, unsigned int type
,
1446 Output_data
* od
, Relobj
* relobj
,
1447 unsigned int shndx
, uint64_t address
,
1448 uint64_t addend
) = 0;
1451 // Note that we've added another relative reloc.
1453 bump_relative_reloc_count()
1454 { ++this->relative_reloc_count_
; }
1457 // The number of relative relocs added to this section. This is to
1458 // support DT_RELCOUNT.
1459 size_t relative_reloc_count_
;
1460 // Whether to sort the relocations when writing them out, to make
1461 // the dynamic linker more efficient.
1465 // Output_data_reloc is used to manage a section containing relocs.
1466 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1467 // indicates whether this is a dynamic relocation or a normal
1468 // relocation. Output_data_reloc_base is a base class.
1469 // Output_data_reloc is the real class, which we specialize based on
1472 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1473 class Output_data_reloc_base
: public Output_data_reloc_generic
1476 typedef Output_reloc
<sh_type
, dynamic
, size
, big_endian
> Output_reloc_type
;
1477 typedef typename
Output_reloc_type::Address Address
;
1478 static const int reloc_size
=
1479 Reloc_types
<sh_type
, size
, big_endian
>::reloc_size
;
1481 // Construct the section.
1482 Output_data_reloc_base(bool sort_relocs
)
1483 : Output_data_reloc_generic(size
, sort_relocs
)
1487 // Write out the data.
1489 do_write(Output_file
*);
1491 // Set the entry size and the link.
1493 do_adjust_output_section(Output_section
* os
);
1495 // Write to a map file.
1497 do_print_to_mapfile(Mapfile
* mapfile
) const
1499 mapfile
->print_output_data(this,
1501 ? _("** dynamic relocs")
1505 // Add a relocation entry.
1507 add(Output_data
* od
, const Output_reloc_type
& reloc
)
1509 this->relocs_
.push_back(reloc
);
1510 this->set_current_data_size(this->relocs_
.size() * reloc_size
);
1512 od
->add_dynamic_reloc();
1513 if (reloc
.is_relative())
1514 this->bump_relative_reloc_count();
1515 Sized_relobj
<size
, big_endian
>* relobj
= reloc
.get_relobj();
1517 relobj
->add_dyn_reloc(this->relocs_
.size() - 1);
1521 typedef std::vector
<Output_reloc_type
> Relocs
;
1523 // The class used to sort the relocations.
1524 struct Sort_relocs_comparison
1527 operator()(const Output_reloc_type
& r1
, const Output_reloc_type
& r2
) const
1528 { return r1
.sort_before(r2
); }
1531 // The relocations in this section.
1535 // The class which callers actually create.
1537 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1538 class Output_data_reloc
;
1540 // The SHT_REL version of Output_data_reloc.
1542 template<bool dynamic
, int size
, bool big_endian
>
1543 class Output_data_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>
1544 : public Output_data_reloc_base
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>
1547 typedef Output_data_reloc_base
<elfcpp::SHT_REL
, dynamic
, size
,
1551 typedef typename
Base::Output_reloc_type Output_reloc_type
;
1552 typedef typename
Output_reloc_type::Address Address
;
1554 Output_data_reloc(bool sr
)
1555 : Output_data_reloc_base
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>(sr
)
1558 // Add a reloc against a global symbol.
1561 add_global(Symbol
* gsym
, unsigned int type
, Output_data
* od
, Address address
)
1562 { this->add(od
, Output_reloc_type(gsym
, type
, od
, address
, false, false, false)); }
1565 add_global(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1566 Sized_relobj
<size
, big_endian
>* relobj
,
1567 unsigned int shndx
, Address address
)
1568 { this->add(od
, Output_reloc_type(gsym
, type
, relobj
, shndx
, address
,
1569 false, false, false)); }
1572 add_global_generic(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1573 uint64_t address
, uint64_t addend
)
1575 gold_assert(addend
== 0);
1576 this->add(od
, Output_reloc_type(gsym
, type
, od
,
1577 convert_types
<Address
, uint64_t>(address
),
1578 false, false, false));
1582 add_global_generic(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1583 Relobj
* relobj
, unsigned int shndx
, uint64_t address
,
1586 gold_assert(addend
== 0);
1587 Sized_relobj
<size
, big_endian
>* sized_relobj
=
1588 static_cast<Sized_relobj
<size
, big_endian
>*>(relobj
);
1589 this->add(od
, Output_reloc_type(gsym
, type
, sized_relobj
, shndx
,
1590 convert_types
<Address
, uint64_t>(address
),
1591 false, false, false));
1594 // Add a RELATIVE reloc against a global symbol. The final relocation
1595 // will not reference the symbol.
1598 add_global_relative(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1600 { this->add(od
, Output_reloc_type(gsym
, type
, od
, address
, true, true,
1604 add_global_relative(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1605 Sized_relobj
<size
, big_endian
>* relobj
,
1606 unsigned int shndx
, Address address
)
1608 this->add(od
, Output_reloc_type(gsym
, type
, relobj
, shndx
, address
,
1609 true, true, false));
1612 // Add a global relocation which does not use a symbol for the relocation,
1613 // but which gets its addend from a symbol.
1616 add_symbolless_global_addend(Symbol
* gsym
, unsigned int type
,
1617 Output_data
* od
, Address address
)
1618 { this->add(od
, Output_reloc_type(gsym
, type
, od
, address
, false, true,
1622 add_symbolless_global_addend(Symbol
* gsym
, unsigned int type
,
1624 Sized_relobj
<size
, big_endian
>* relobj
,
1625 unsigned int shndx
, Address address
)
1627 this->add(od
, Output_reloc_type(gsym
, type
, relobj
, shndx
, address
,
1628 false, true, false));
1631 // Add a reloc against a local symbol.
1634 add_local(Sized_relobj
<size
, big_endian
>* relobj
,
1635 unsigned int local_sym_index
, unsigned int type
,
1636 Output_data
* od
, Address address
)
1638 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, od
,
1639 address
, false, false, false, false));
1643 add_local(Sized_relobj
<size
, big_endian
>* relobj
,
1644 unsigned int local_sym_index
, unsigned int type
,
1645 Output_data
* od
, unsigned int shndx
, Address address
)
1647 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, shndx
,
1648 address
, false, false, false, false));
1652 add_local_generic(Relobj
* relobj
, unsigned int local_sym_index
,
1653 unsigned int type
, Output_data
* od
, uint64_t address
,
1656 gold_assert(addend
== 0);
1657 Sized_relobj
<size
, big_endian
>* sized_relobj
=
1658 static_cast<Sized_relobj
<size
, big_endian
> *>(relobj
);
1659 this->add(od
, Output_reloc_type(sized_relobj
, local_sym_index
, type
, od
,
1660 convert_types
<Address
, uint64_t>(address
),
1661 false, false, false, false));
1665 add_local_generic(Relobj
* relobj
, unsigned int local_sym_index
,
1666 unsigned int type
, Output_data
* od
, unsigned int shndx
,
1667 uint64_t address
, uint64_t addend
)
1669 gold_assert(addend
== 0);
1670 Sized_relobj
<size
, big_endian
>* sized_relobj
=
1671 static_cast<Sized_relobj
<size
, big_endian
>*>(relobj
);
1672 this->add(od
, Output_reloc_type(sized_relobj
, local_sym_index
, type
, shndx
,
1673 convert_types
<Address
, uint64_t>(address
),
1674 false, false, false, false));
1677 // Add a RELATIVE reloc against a local symbol.
1680 add_local_relative(Sized_relobj
<size
, big_endian
>* relobj
,
1681 unsigned int local_sym_index
, unsigned int type
,
1682 Output_data
* od
, Address address
)
1684 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, od
,
1685 address
, true, true, false, false));
1689 add_local_relative(Sized_relobj
<size
, big_endian
>* relobj
,
1690 unsigned int local_sym_index
, unsigned int type
,
1691 Output_data
* od
, unsigned int shndx
, Address address
)
1693 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, shndx
,
1694 address
, true, true, false, false));
1697 // Add a local relocation which does not use a symbol for the relocation,
1698 // but which gets its addend from a symbol.
1701 add_symbolless_local_addend(Sized_relobj
<size
, big_endian
>* relobj
,
1702 unsigned int local_sym_index
, unsigned int type
,
1703 Output_data
* od
, Address address
)
1705 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, od
,
1706 address
, false, true, false, false));
1710 add_symbolless_local_addend(Sized_relobj
<size
, big_endian
>* relobj
,
1711 unsigned int local_sym_index
, unsigned int type
,
1712 Output_data
* od
, unsigned int shndx
,
1715 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, shndx
,
1716 address
, false, true, false, false));
1719 // Add a reloc against a local section symbol. This will be
1720 // converted into a reloc against the STT_SECTION symbol of the
1724 add_local_section(Sized_relobj
<size
, big_endian
>* relobj
,
1725 unsigned int input_shndx
, unsigned int type
,
1726 Output_data
* od
, Address address
)
1728 this->add(od
, Output_reloc_type(relobj
, input_shndx
, type
, od
,
1729 address
, false, false, true, false));
1733 add_local_section(Sized_relobj
<size
, big_endian
>* relobj
,
1734 unsigned int input_shndx
, unsigned int type
,
1735 Output_data
* od
, unsigned int shndx
, Address address
)
1737 this->add(od
, Output_reloc_type(relobj
, input_shndx
, type
, shndx
,
1738 address
, false, false, true, false));
1741 // A reloc against the STT_SECTION symbol of an output section.
1742 // OS is the Output_section that the relocation refers to; OD is
1743 // the Output_data object being relocated.
1746 add_output_section(Output_section
* os
, unsigned int type
,
1747 Output_data
* od
, Address address
)
1748 { this->add(od
, Output_reloc_type(os
, type
, od
, address
)); }
1751 add_output_section(Output_section
* os
, unsigned int type
, Output_data
* od
,
1752 Sized_relobj
<size
, big_endian
>* relobj
,
1753 unsigned int shndx
, Address address
)
1754 { this->add(od
, Output_reloc_type(os
, type
, relobj
, shndx
, address
)); }
1757 add_output_section_generic(Output_section
* os
, unsigned int type
,
1758 Output_data
* od
, uint64_t address
,
1761 gold_assert(addend
== 0);
1762 this->add(od
, Output_reloc_type(os
, type
, od
,
1763 convert_types
<Address
, uint64_t>(address
)));
1767 add_output_section_generic(Output_section
* os
, unsigned int type
,
1768 Output_data
* od
, Relobj
* relobj
,
1769 unsigned int shndx
, uint64_t address
,
1772 gold_assert(addend
== 0);
1773 Sized_relobj
<size
, big_endian
>* sized_relobj
=
1774 static_cast<Sized_relobj
<size
, big_endian
>*>(relobj
);
1775 this->add(od
, Output_reloc_type(os
, type
, sized_relobj
, shndx
,
1776 convert_types
<Address
, uint64_t>(address
)));
1779 // Add an absolute relocation.
1782 add_absolute(unsigned int type
, Output_data
* od
, Address address
)
1783 { this->add(od
, Output_reloc_type(type
, od
, address
)); }
1786 add_absolute(unsigned int type
, Output_data
* od
,
1787 Sized_relobj
<size
, big_endian
>* relobj
,
1788 unsigned int shndx
, Address address
)
1789 { this->add(od
, Output_reloc_type(type
, relobj
, shndx
, address
)); }
1791 // Add a target specific relocation. A target which calls this must
1792 // define the reloc_symbol_index and reloc_addend virtual functions.
1795 add_target_specific(unsigned int type
, void* arg
, Output_data
* od
,
1797 { this->add(od
, Output_reloc_type(type
, arg
, od
, address
)); }
1800 add_target_specific(unsigned int type
, void* arg
, Output_data
* od
,
1801 Sized_relobj
<size
, big_endian
>* relobj
,
1802 unsigned int shndx
, Address address
)
1803 { this->add(od
, Output_reloc_type(type
, arg
, relobj
, shndx
, address
)); }
1806 // The SHT_RELA version of Output_data_reloc.
1808 template<bool dynamic
, int size
, bool big_endian
>
1809 class Output_data_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>
1810 : public Output_data_reloc_base
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>
1813 typedef Output_data_reloc_base
<elfcpp::SHT_RELA
, dynamic
, size
,
1817 typedef typename
Base::Output_reloc_type Output_reloc_type
;
1818 typedef typename
Output_reloc_type::Address Address
;
1819 typedef typename
Output_reloc_type::Addend Addend
;
1821 Output_data_reloc(bool sr
)
1822 : Output_data_reloc_base
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>(sr
)
1825 // Add a reloc against a global symbol.
1828 add_global(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1829 Address address
, Addend addend
)
1830 { this->add(od
, Output_reloc_type(gsym
, type
, od
, address
, addend
,
1831 false, false, false)); }
1834 add_global(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1835 Sized_relobj
<size
, big_endian
>* relobj
,
1836 unsigned int shndx
, Address address
,
1838 { this->add(od
, Output_reloc_type(gsym
, type
, relobj
, shndx
, address
,
1839 addend
, false, false, false)); }
1842 add_global_generic(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1843 uint64_t address
, uint64_t addend
)
1845 this->add(od
, Output_reloc_type(gsym
, type
, od
,
1846 convert_types
<Address
, uint64_t>(address
),
1847 convert_types
<Addend
, uint64_t>(addend
),
1848 false, false, false));
1852 add_global_generic(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1853 Relobj
* relobj
, unsigned int shndx
, uint64_t address
,
1856 Sized_relobj
<size
, big_endian
>* sized_relobj
=
1857 static_cast<Sized_relobj
<size
, big_endian
>*>(relobj
);
1858 this->add(od
, Output_reloc_type(gsym
, type
, sized_relobj
, shndx
,
1859 convert_types
<Address
, uint64_t>(address
),
1860 convert_types
<Addend
, uint64_t>(addend
),
1861 false, false, false));
1864 // Add a RELATIVE reloc against a global symbol. The final output
1865 // relocation will not reference the symbol, but we must keep the symbol
1866 // information long enough to set the addend of the relocation correctly
1867 // when it is written.
1870 add_global_relative(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1871 Address address
, Addend addend
, bool use_plt_offset
)
1872 { this->add(od
, Output_reloc_type(gsym
, type
, od
, address
, addend
, true,
1873 true, use_plt_offset
)); }
1876 add_global_relative(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1877 Sized_relobj
<size
, big_endian
>* relobj
,
1878 unsigned int shndx
, Address address
, Addend addend
,
1879 bool use_plt_offset
)
1880 { this->add(od
, Output_reloc_type(gsym
, type
, relobj
, shndx
, address
,
1881 addend
, true, true, use_plt_offset
)); }
1883 // Add a global relocation which does not use a symbol for the relocation,
1884 // but which gets its addend from a symbol.
1887 add_symbolless_global_addend(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1888 Address address
, Addend addend
)
1889 { this->add(od
, Output_reloc_type(gsym
, type
, od
, address
, addend
,
1890 false, true, false)); }
1893 add_symbolless_global_addend(Symbol
* gsym
, unsigned int type
,
1895 Sized_relobj
<size
, big_endian
>* relobj
,
1896 unsigned int shndx
, Address address
, Addend addend
)
1897 { this->add(od
, Output_reloc_type(gsym
, type
, relobj
, shndx
, address
,
1898 addend
, false, true, false)); }
1900 // Add a reloc against a local symbol.
1903 add_local(Sized_relobj
<size
, big_endian
>* relobj
,
1904 unsigned int local_sym_index
, unsigned int type
,
1905 Output_data
* od
, Address address
, Addend addend
)
1907 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, od
, address
,
1908 addend
, false, false, false, false));
1912 add_local(Sized_relobj
<size
, big_endian
>* relobj
,
1913 unsigned int local_sym_index
, unsigned int type
,
1914 Output_data
* od
, unsigned int shndx
, Address address
,
1917 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, shndx
,
1918 address
, addend
, false, false, false,
1923 add_local_generic(Relobj
* relobj
, unsigned int local_sym_index
,
1924 unsigned int type
, Output_data
* od
, uint64_t address
,
1927 Sized_relobj
<size
, big_endian
>* sized_relobj
=
1928 static_cast<Sized_relobj
<size
, big_endian
> *>(relobj
);
1929 this->add(od
, Output_reloc_type(sized_relobj
, local_sym_index
, type
, od
,
1930 convert_types
<Address
, uint64_t>(address
),
1931 convert_types
<Addend
, uint64_t>(addend
),
1932 false, false, false, false));
1936 add_local_generic(Relobj
* relobj
, unsigned int local_sym_index
,
1937 unsigned int type
, Output_data
* od
, unsigned int shndx
,
1938 uint64_t address
, uint64_t addend
)
1940 Sized_relobj
<size
, big_endian
>* sized_relobj
=
1941 static_cast<Sized_relobj
<size
, big_endian
>*>(relobj
);
1942 this->add(od
, Output_reloc_type(sized_relobj
, local_sym_index
, type
, shndx
,
1943 convert_types
<Address
, uint64_t>(address
),
1944 convert_types
<Addend
, uint64_t>(addend
),
1945 false, false, false, false));
1948 // Add a RELATIVE reloc against a local symbol.
1951 add_local_relative(Sized_relobj
<size
, big_endian
>* relobj
,
1952 unsigned int local_sym_index
, unsigned int type
,
1953 Output_data
* od
, Address address
, Addend addend
,
1954 bool use_plt_offset
)
1956 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, od
, address
,
1957 addend
, true, true, false,
1962 add_local_relative(Sized_relobj
<size
, big_endian
>* relobj
,
1963 unsigned int local_sym_index
, unsigned int type
,
1964 Output_data
* od
, unsigned int shndx
, Address address
,
1965 Addend addend
, bool use_plt_offset
)
1967 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, shndx
,
1968 address
, addend
, true, true, false,
1972 // Add a local relocation which does not use a symbol for the relocation,
1973 // but which gets it's addend from a symbol.
1976 add_symbolless_local_addend(Sized_relobj
<size
, big_endian
>* relobj
,
1977 unsigned int local_sym_index
, unsigned int type
,
1978 Output_data
* od
, Address address
, Addend addend
)
1980 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, od
, address
,
1981 addend
, false, true, false, false));
1985 add_symbolless_local_addend(Sized_relobj
<size
, big_endian
>* relobj
,
1986 unsigned int local_sym_index
, unsigned int type
,
1987 Output_data
* od
, unsigned int shndx
,
1988 Address address
, Addend addend
)
1990 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, shndx
,
1991 address
, addend
, false, true, false,
1995 // Add a reloc against a local section symbol. This will be
1996 // converted into a reloc against the STT_SECTION symbol of the
2000 add_local_section(Sized_relobj
<size
, big_endian
>* relobj
,
2001 unsigned int input_shndx
, unsigned int type
,
2002 Output_data
* od
, Address address
, Addend addend
)
2004 this->add(od
, Output_reloc_type(relobj
, input_shndx
, type
, od
, address
,
2005 addend
, false, false, true, false));
2009 add_local_section(Sized_relobj
<size
, big_endian
>* relobj
,
2010 unsigned int input_shndx
, unsigned int type
,
2011 Output_data
* od
, unsigned int shndx
, Address address
,
2014 this->add(od
, Output_reloc_type(relobj
, input_shndx
, type
, shndx
,
2015 address
, addend
, false, false, true,
2019 // A reloc against the STT_SECTION symbol of an output section.
2022 add_output_section(Output_section
* os
, unsigned int type
, Output_data
* od
,
2023 Address address
, Addend addend
)
2024 { this->add(od
, Output_reloc_type(os
, type
, od
, address
, addend
)); }
2027 add_output_section(Output_section
* os
, unsigned int type
, Output_data
* od
,
2028 Sized_relobj
<size
, big_endian
>* relobj
,
2029 unsigned int shndx
, Address address
, Addend addend
)
2030 { this->add(od
, Output_reloc_type(os
, type
, relobj
, shndx
, address
,
2034 add_output_section_generic(Output_section
* os
, unsigned int type
,
2035 Output_data
* od
, uint64_t address
,
2038 this->add(od
, Output_reloc_type(os
, type
, od
,
2039 convert_types
<Address
, uint64_t>(address
),
2040 convert_types
<Addend
, uint64_t>(addend
)));
2044 add_output_section_generic(Output_section
* os
, unsigned int type
,
2045 Output_data
* od
, Relobj
* relobj
,
2046 unsigned int shndx
, uint64_t address
,
2049 Sized_relobj
<size
, big_endian
>* sized_relobj
=
2050 static_cast<Sized_relobj
<size
, big_endian
>*>(relobj
);
2051 this->add(od
, Output_reloc_type(os
, type
, sized_relobj
, shndx
,
2052 convert_types
<Address
, uint64_t>(address
),
2053 convert_types
<Addend
, uint64_t>(addend
)));
2056 // Add an absolute relocation.
2059 add_absolute(unsigned int type
, Output_data
* od
, Address address
,
2061 { this->add(od
, Output_reloc_type(type
, od
, address
, addend
)); }
2064 add_absolute(unsigned int type
, Output_data
* od
,
2065 Sized_relobj
<size
, big_endian
>* relobj
,
2066 unsigned int shndx
, Address address
, Addend addend
)
2067 { this->add(od
, Output_reloc_type(type
, relobj
, shndx
, address
, addend
)); }
2069 // Add a target specific relocation. A target which calls this must
2070 // define the reloc_symbol_index and reloc_addend virtual functions.
2073 add_target_specific(unsigned int type
, void* arg
, Output_data
* od
,
2074 Address address
, Addend addend
)
2075 { this->add(od
, Output_reloc_type(type
, arg
, od
, address
, addend
)); }
2078 add_target_specific(unsigned int type
, void* arg
, Output_data
* od
,
2079 Sized_relobj
<size
, big_endian
>* relobj
,
2080 unsigned int shndx
, Address address
, Addend addend
)
2082 this->add(od
, Output_reloc_type(type
, arg
, relobj
, shndx
, address
,
2087 // Output_relocatable_relocs represents a relocation section in a
2088 // relocatable link. The actual data is written out in the target
2089 // hook relocate_for_relocatable. This just saves space for it.
2091 template<int sh_type
, int size
, bool big_endian
>
2092 class Output_relocatable_relocs
: public Output_section_data
2095 Output_relocatable_relocs(Relocatable_relocs
* rr
)
2096 : Output_section_data(Output_data::default_alignment_for_size(size
)),
2101 set_final_data_size();
2103 // Write out the data. There is nothing to do here.
2105 do_write(Output_file
*)
2108 // Write to a map file.
2110 do_print_to_mapfile(Mapfile
* mapfile
) const
2111 { mapfile
->print_output_data(this, _("** relocs")); }
2114 // The relocs associated with this input section.
2115 Relocatable_relocs
* rr_
;
2118 // Handle a GROUP section.
2120 template<int size
, bool big_endian
>
2121 class Output_data_group
: public Output_section_data
2124 // The constructor clears *INPUT_SHNDXES.
2125 Output_data_group(Sized_relobj_file
<size
, big_endian
>* relobj
,
2126 section_size_type entry_count
,
2127 elfcpp::Elf_Word flags
,
2128 std::vector
<unsigned int>* input_shndxes
);
2131 do_write(Output_file
*);
2133 // Write to a map file.
2135 do_print_to_mapfile(Mapfile
* mapfile
) const
2136 { mapfile
->print_output_data(this, _("** group")); }
2138 // Set final data size.
2140 set_final_data_size()
2141 { this->set_data_size((this->input_shndxes_
.size() + 1) * 4); }
2144 // The input object.
2145 Sized_relobj_file
<size
, big_endian
>* relobj_
;
2146 // The group flag word.
2147 elfcpp::Elf_Word flags_
;
2148 // The section indexes of the input sections in this group.
2149 std::vector
<unsigned int> input_shndxes_
;
2152 // Output_data_got is used to manage a GOT. Each entry in the GOT is
2153 // for one symbol--either a global symbol or a local symbol in an
2154 // object. The target specific code adds entries to the GOT as
2155 // needed. The GOT_SIZE template parameter is the size in bits of a
2156 // GOT entry, typically 32 or 64.
2158 class Output_data_got_base
: public Output_section_data_build
2161 Output_data_got_base(uint64_t align
)
2162 : Output_section_data_build(align
)
2165 Output_data_got_base(off_t data_size
, uint64_t align
)
2166 : Output_section_data_build(data_size
, align
)
2169 // Reserve the slot at index I in the GOT.
2171 reserve_slot(unsigned int i
)
2172 { this->do_reserve_slot(i
); }
2175 // Reserve the slot at index I in the GOT.
2177 do_reserve_slot(unsigned int i
) = 0;
2180 template<int got_size
, bool big_endian
>
2181 class Output_data_got
: public Output_data_got_base
2184 typedef typename
elfcpp::Elf_types
<got_size
>::Elf_Addr Valtype
;
2187 : Output_data_got_base(Output_data::default_alignment_for_size(got_size
)),
2188 entries_(), free_list_()
2191 Output_data_got(off_t data_size
)
2192 : Output_data_got_base(data_size
,
2193 Output_data::default_alignment_for_size(got_size
)),
2194 entries_(), free_list_()
2196 // For an incremental update, we have an existing GOT section.
2197 // Initialize the list of entries and the free list.
2198 this->entries_
.resize(data_size
/ (got_size
/ 8));
2199 this->free_list_
.init(data_size
, false);
2202 // Add an entry for a global symbol to the GOT. Return true if this
2203 // is a new GOT entry, false if the symbol was already in the GOT.
2205 add_global(Symbol
* gsym
, unsigned int got_type
);
2207 // Like add_global, but use the PLT offset of the global symbol if
2210 add_global_plt(Symbol
* gsym
, unsigned int got_type
);
2212 // Add an entry for a global symbol to the GOT, and add a dynamic
2213 // relocation of type R_TYPE for the GOT entry.
2215 add_global_with_rel(Symbol
* gsym
, unsigned int got_type
,
2216 Output_data_reloc_generic
* rel_dyn
, unsigned int r_type
);
2218 // Add a pair of entries for a global symbol to the GOT, and add
2219 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2221 add_global_pair_with_rel(Symbol
* gsym
, unsigned int got_type
,
2222 Output_data_reloc_generic
* rel_dyn
,
2223 unsigned int r_type_1
, unsigned int r_type_2
);
2225 // Add an entry for a local symbol to the GOT. This returns true if
2226 // this is a new GOT entry, false if the symbol already has a GOT
2229 add_local(Relobj
* object
, unsigned int sym_index
, unsigned int got_type
);
2231 // Like add_local, but use the PLT offset of the local symbol if it
2234 add_local_plt(Relobj
* object
, unsigned int sym_index
, unsigned int got_type
);
2236 // Add an entry for a local symbol to the GOT, and add a dynamic
2237 // relocation of type R_TYPE for the GOT entry.
2239 add_local_with_rel(Relobj
* object
, unsigned int sym_index
,
2240 unsigned int got_type
, Output_data_reloc_generic
* rel_dyn
,
2241 unsigned int r_type
);
2243 // Add a pair of entries for a local symbol to the GOT, and add
2244 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2246 add_local_pair_with_rel(Relobj
* object
, unsigned int sym_index
,
2247 unsigned int shndx
, unsigned int got_type
,
2248 Output_data_reloc_generic
* rel_dyn
,
2249 unsigned int r_type_1
, unsigned int r_type_2
);
2251 // Add a constant to the GOT. This returns the offset of the new
2252 // entry from the start of the GOT.
2254 add_constant(Valtype constant
)
2256 unsigned int got_offset
= this->add_got_entry(Got_entry(constant
));
2260 // Reserve a slot in the GOT for a local symbol.
2262 reserve_local(unsigned int i
, Relobj
* object
, unsigned int sym_index
,
2263 unsigned int got_type
);
2265 // Reserve a slot in the GOT for a global symbol.
2267 reserve_global(unsigned int i
, Symbol
* gsym
, unsigned int got_type
);
2270 // Write out the GOT table.
2272 do_write(Output_file
*);
2274 // Write to a map file.
2276 do_print_to_mapfile(Mapfile
* mapfile
) const
2277 { mapfile
->print_output_data(this, _("** GOT")); }
2279 // Reserve the slot at index I in the GOT.
2281 do_reserve_slot(unsigned int i
)
2282 { this->free_list_
.remove(i
* got_size
/ 8, (i
+ 1) * got_size
/ 8); }
2285 // This POD class holds a single GOT entry.
2289 // Create a zero entry.
2291 : local_sym_index_(RESERVED_CODE
), use_plt_offset_(false)
2292 { this->u_
.constant
= 0; }
2294 // Create a global symbol entry.
2295 Got_entry(Symbol
* gsym
, bool use_plt_offset
)
2296 : local_sym_index_(GSYM_CODE
), use_plt_offset_(use_plt_offset
)
2297 { this->u_
.gsym
= gsym
; }
2299 // Create a local symbol entry.
2300 Got_entry(Relobj
* object
, unsigned int local_sym_index
,
2301 bool use_plt_offset
)
2302 : local_sym_index_(local_sym_index
), use_plt_offset_(use_plt_offset
)
2304 gold_assert(local_sym_index
!= GSYM_CODE
2305 && local_sym_index
!= CONSTANT_CODE
2306 && local_sym_index
!= RESERVED_CODE
2307 && local_sym_index
== this->local_sym_index_
);
2308 this->u_
.object
= object
;
2311 // Create a constant entry. The constant is a host value--it will
2312 // be swapped, if necessary, when it is written out.
2313 explicit Got_entry(Valtype constant
)
2314 : local_sym_index_(CONSTANT_CODE
), use_plt_offset_(false)
2315 { this->u_
.constant
= constant
; }
2317 // Write the GOT entry to an output view.
2319 write(unsigned char* pov
) const;
2324 GSYM_CODE
= 0x7fffffff,
2325 CONSTANT_CODE
= 0x7ffffffe,
2326 RESERVED_CODE
= 0x7ffffffd
2331 // For a local symbol, the object.
2333 // For a global symbol, the symbol.
2335 // For a constant, the constant.
2338 // For a local symbol, the local symbol index. This is GSYM_CODE
2339 // for a global symbol, or CONSTANT_CODE for a constant.
2340 unsigned int local_sym_index_
: 31;
2341 // Whether to use the PLT offset of the symbol if it has one.
2342 bool use_plt_offset_
: 1;
2345 typedef std::vector
<Got_entry
> Got_entries
;
2347 // Create a new GOT entry and return its offset.
2349 add_got_entry(Got_entry got_entry
);
2351 // Create a pair of new GOT entries and return the offset of the first.
2353 add_got_entry_pair(Got_entry got_entry_1
, Got_entry got_entry_2
);
2355 // Return the offset into the GOT of GOT entry I.
2357 got_offset(unsigned int i
) const
2358 { return i
* (got_size
/ 8); }
2360 // Return the offset into the GOT of the last entry added.
2362 last_got_offset() const
2363 { return this->got_offset(this->entries_
.size() - 1); }
2365 // Set the size of the section.
2368 { this->set_current_data_size(this->got_offset(this->entries_
.size())); }
2370 // The list of GOT entries.
2371 Got_entries entries_
;
2373 // List of available regions within the section, for incremental
2375 Free_list free_list_
;
2378 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2381 class Output_data_dynamic
: public Output_section_data
2384 Output_data_dynamic(Stringpool
* pool
)
2385 : Output_section_data(Output_data::default_alignment()),
2386 entries_(), pool_(pool
)
2389 // Add a new dynamic entry with a fixed numeric value.
2391 add_constant(elfcpp::DT tag
, unsigned int val
)
2392 { this->add_entry(Dynamic_entry(tag
, val
)); }
2394 // Add a new dynamic entry with the address of output data.
2396 add_section_address(elfcpp::DT tag
, const Output_data
* od
)
2397 { this->add_entry(Dynamic_entry(tag
, od
, false)); }
2399 // Add a new dynamic entry with the address of output data
2400 // plus a constant offset.
2402 add_section_plus_offset(elfcpp::DT tag
, const Output_data
* od
,
2403 unsigned int offset
)
2404 { this->add_entry(Dynamic_entry(tag
, od
, offset
)); }
2406 // Add a new dynamic entry with the size of output data.
2408 add_section_size(elfcpp::DT tag
, const Output_data
* od
)
2409 { this->add_entry(Dynamic_entry(tag
, od
, true)); }
2411 // Add a new dynamic entry with the total size of two output datas.
2413 add_section_size(elfcpp::DT tag
, const Output_data
* od
,
2414 const Output_data
* od2
)
2415 { this->add_entry(Dynamic_entry(tag
, od
, od2
)); }
2417 // Add a new dynamic entry with the address of a symbol.
2419 add_symbol(elfcpp::DT tag
, const Symbol
* sym
)
2420 { this->add_entry(Dynamic_entry(tag
, sym
)); }
2422 // Add a new dynamic entry with a string.
2424 add_string(elfcpp::DT tag
, const char* str
)
2425 { this->add_entry(Dynamic_entry(tag
, this->pool_
->add(str
, true, NULL
))); }
2428 add_string(elfcpp::DT tag
, const std::string
& str
)
2429 { this->add_string(tag
, str
.c_str()); }
2432 // Adjust the output section to set the entry size.
2434 do_adjust_output_section(Output_section
*);
2436 // Set the final data size.
2438 set_final_data_size();
2440 // Write out the dynamic entries.
2442 do_write(Output_file
*);
2444 // Write to a map file.
2446 do_print_to_mapfile(Mapfile
* mapfile
) const
2447 { mapfile
->print_output_data(this, _("** dynamic")); }
2450 // This POD class holds a single dynamic entry.
2454 // Create an entry with a fixed numeric value.
2455 Dynamic_entry(elfcpp::DT tag
, unsigned int val
)
2456 : tag_(tag
), offset_(DYNAMIC_NUMBER
)
2457 { this->u_
.val
= val
; }
2459 // Create an entry with the size or address of a section.
2460 Dynamic_entry(elfcpp::DT tag
, const Output_data
* od
, bool section_size
)
2462 offset_(section_size
2463 ? DYNAMIC_SECTION_SIZE
2464 : DYNAMIC_SECTION_ADDRESS
)
2470 // Create an entry with the size of two sections.
2471 Dynamic_entry(elfcpp::DT tag
, const Output_data
* od
, const Output_data
* od2
)
2473 offset_(DYNAMIC_SECTION_SIZE
)
2479 // Create an entry with the address of a section plus a constant offset.
2480 Dynamic_entry(elfcpp::DT tag
, const Output_data
* od
, unsigned int offset
)
2483 { this->u_
.od
= od
; }
2485 // Create an entry with the address of a symbol.
2486 Dynamic_entry(elfcpp::DT tag
, const Symbol
* sym
)
2487 : tag_(tag
), offset_(DYNAMIC_SYMBOL
)
2488 { this->u_
.sym
= sym
; }
2490 // Create an entry with a string.
2491 Dynamic_entry(elfcpp::DT tag
, const char* str
)
2492 : tag_(tag
), offset_(DYNAMIC_STRING
)
2493 { this->u_
.str
= str
; }
2495 // Return the tag of this entry.
2498 { return this->tag_
; }
2500 // Write the dynamic entry to an output view.
2501 template<int size
, bool big_endian
>
2503 write(unsigned char* pov
, const Stringpool
*) const;
2506 // Classification is encoded in the OFFSET field.
2510 DYNAMIC_SECTION_ADDRESS
= 0,
2512 DYNAMIC_NUMBER
= -1U,
2514 DYNAMIC_SECTION_SIZE
= -2U,
2516 DYNAMIC_SYMBOL
= -3U,
2518 DYNAMIC_STRING
= -4U
2519 // Any other value indicates a section address plus OFFSET.
2524 // For DYNAMIC_NUMBER.
2526 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2527 const Output_data
* od
;
2528 // For DYNAMIC_SYMBOL.
2530 // For DYNAMIC_STRING.
2533 // For DYNAMIC_SYMBOL with two sections.
2534 const Output_data
* od2
;
2537 // The type of entry (Classification) or offset within a section.
2538 unsigned int offset_
;
2541 // Add an entry to the list.
2543 add_entry(const Dynamic_entry
& entry
)
2544 { this->entries_
.push_back(entry
); }
2546 // Sized version of write function.
2547 template<int size
, bool big_endian
>
2549 sized_write(Output_file
* of
);
2551 // The type of the list of entries.
2552 typedef std::vector
<Dynamic_entry
> Dynamic_entries
;
2555 Dynamic_entries entries_
;
2556 // The pool used for strings.
2560 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2561 // which may be required if the object file has more than
2562 // SHN_LORESERVE sections.
2564 class Output_symtab_xindex
: public Output_section_data
2567 Output_symtab_xindex(size_t symcount
)
2568 : Output_section_data(symcount
* 4, 4, true),
2572 // Add an entry: symbol number SYMNDX has section SHNDX.
2574 add(unsigned int symndx
, unsigned int shndx
)
2575 { this->entries_
.push_back(std::make_pair(symndx
, shndx
)); }
2579 do_write(Output_file
*);
2581 // Write to a map file.
2583 do_print_to_mapfile(Mapfile
* mapfile
) const
2584 { mapfile
->print_output_data(this, _("** symtab xindex")); }
2587 template<bool big_endian
>
2589 endian_do_write(unsigned char*);
2591 // It is likely that most symbols will not require entries. Rather
2592 // than keep a vector for all symbols, we keep pairs of symbol index
2593 // and section index.
2594 typedef std::vector
<std::pair
<unsigned int, unsigned int> > Xindex_entries
;
2596 // The entries we need.
2597 Xindex_entries entries_
;
2600 // A relaxed input section.
2601 class Output_relaxed_input_section
: public Output_section_data_build
2604 // We would like to call relobj->section_addralign(shndx) to get the
2605 // alignment but we do not want the constructor to fail. So callers
2606 // are repsonsible for ensuring that.
2607 Output_relaxed_input_section(Relobj
* relobj
, unsigned int shndx
,
2609 : Output_section_data_build(addralign
), relobj_(relobj
), shndx_(shndx
)
2612 // Return the Relobj of this relaxed input section.
2615 { return this->relobj_
; }
2617 // Return the section index of this relaxed input section.
2620 { return this->shndx_
; }
2624 unsigned int shndx_
;
2627 // This class describes properties of merge data sections. It is used
2628 // as a key type for maps.
2629 class Merge_section_properties
2632 Merge_section_properties(bool is_string
, uint64_t entsize
,
2634 : is_string_(is_string
), entsize_(entsize
), addralign_(addralign
)
2637 // Whether this equals to another Merge_section_properties MSP.
2639 eq(const Merge_section_properties
& msp
) const
2641 return ((this->is_string_
== msp
.is_string_
)
2642 && (this->entsize_
== msp
.entsize_
)
2643 && (this->addralign_
== msp
.addralign_
));
2646 // Compute a hash value for this using 64-bit FNV-1a hash.
2650 uint64_t h
= 14695981039346656037ULL; // FNV offset basis.
2651 uint64_t prime
= 1099511628211ULL;
2652 h
= (h
^ static_cast<uint64_t>(this->is_string_
)) * prime
;
2653 h
= (h
^ static_cast<uint64_t>(this->entsize_
)) * prime
;
2654 h
= (h
^ static_cast<uint64_t>(this->addralign_
)) * prime
;
2658 // Functors for associative containers.
2662 operator()(const Merge_section_properties
& msp1
,
2663 const Merge_section_properties
& msp2
) const
2664 { return msp1
.eq(msp2
); }
2670 operator()(const Merge_section_properties
& msp
) const
2671 { return msp
.hash_value(); }
2675 // Whether this merge data section is for strings.
2677 // Entsize of this merge data section.
2679 // Address alignment.
2680 uint64_t addralign_
;
2683 // This class is used to speed up look up of special input sections in an
2686 class Output_section_lookup_maps
2689 Output_section_lookup_maps()
2690 : is_valid_(true), merge_sections_by_properties_(),
2691 merge_sections_by_id_(), relaxed_input_sections_by_id_()
2694 // Whether the maps are valid.
2697 { return this->is_valid_
; }
2699 // Invalidate the maps.
2702 { this->is_valid_
= false; }
2708 this->merge_sections_by_properties_
.clear();
2709 this->merge_sections_by_id_
.clear();
2710 this->relaxed_input_sections_by_id_
.clear();
2711 // A cleared map is valid.
2712 this->is_valid_
= true;
2715 // Find a merge section by merge section properties. Return NULL if none
2718 find_merge_section(const Merge_section_properties
& msp
) const
2720 gold_assert(this->is_valid_
);
2721 Merge_sections_by_properties::const_iterator p
=
2722 this->merge_sections_by_properties_
.find(msp
);
2723 return p
!= this->merge_sections_by_properties_
.end() ? p
->second
: NULL
;
2726 // Find a merge section by section ID of a merge input section. Return NULL
2727 // if none is found.
2729 find_merge_section(const Object
* object
, unsigned int shndx
) const
2731 gold_assert(this->is_valid_
);
2732 Merge_sections_by_id::const_iterator p
=
2733 this->merge_sections_by_id_
.find(Const_section_id(object
, shndx
));
2734 return p
!= this->merge_sections_by_id_
.end() ? p
->second
: NULL
;
2737 // Add a merge section pointed by POMB with properties MSP.
2739 add_merge_section(const Merge_section_properties
& msp
,
2740 Output_merge_base
* pomb
)
2742 std::pair
<Merge_section_properties
, Output_merge_base
*> value(msp
, pomb
);
2743 std::pair
<Merge_sections_by_properties::iterator
, bool> result
=
2744 this->merge_sections_by_properties_
.insert(value
);
2745 gold_assert(result
.second
);
2748 // Add a mapping from a merged input section in OBJECT with index SHNDX
2749 // to a merge output section pointed by POMB.
2751 add_merge_input_section(const Object
* object
, unsigned int shndx
,
2752 Output_merge_base
* pomb
)
2754 Const_section_id
csid(object
, shndx
);
2755 std::pair
<Const_section_id
, Output_merge_base
*> value(csid
, pomb
);
2756 std::pair
<Merge_sections_by_id::iterator
, bool> result
=
2757 this->merge_sections_by_id_
.insert(value
);
2758 gold_assert(result
.second
);
2761 // Find a relaxed input section of OBJECT with index SHNDX.
2762 Output_relaxed_input_section
*
2763 find_relaxed_input_section(const Object
* object
, unsigned int shndx
) const
2765 gold_assert(this->is_valid_
);
2766 Relaxed_input_sections_by_id::const_iterator p
=
2767 this->relaxed_input_sections_by_id_
.find(Const_section_id(object
, shndx
));
2768 return p
!= this->relaxed_input_sections_by_id_
.end() ? p
->second
: NULL
;
2771 // Add a relaxed input section pointed by POMB and whose original input
2772 // section is in OBJECT with index SHNDX.
2774 add_relaxed_input_section(const Relobj
* relobj
, unsigned int shndx
,
2775 Output_relaxed_input_section
* poris
)
2777 Const_section_id
csid(relobj
, shndx
);
2778 std::pair
<Const_section_id
, Output_relaxed_input_section
*>
2780 std::pair
<Relaxed_input_sections_by_id::iterator
, bool> result
=
2781 this->relaxed_input_sections_by_id_
.insert(value
);
2782 gold_assert(result
.second
);
2786 typedef Unordered_map
<Const_section_id
, Output_merge_base
*,
2787 Const_section_id_hash
>
2788 Merge_sections_by_id
;
2790 typedef Unordered_map
<Merge_section_properties
, Output_merge_base
*,
2791 Merge_section_properties::hash
,
2792 Merge_section_properties::equal_to
>
2793 Merge_sections_by_properties
;
2795 typedef Unordered_map
<Const_section_id
, Output_relaxed_input_section
*,
2796 Const_section_id_hash
>
2797 Relaxed_input_sections_by_id
;
2799 // Whether this is valid
2801 // Merge sections by merge section properties.
2802 Merge_sections_by_properties merge_sections_by_properties_
;
2803 // Merge sections by section IDs.
2804 Merge_sections_by_id merge_sections_by_id_
;
2805 // Relaxed sections by section IDs.
2806 Relaxed_input_sections_by_id relaxed_input_sections_by_id_
;
2809 // This abstract base class defines the interface for the
2810 // types of methods used to fill free space left in an output
2811 // section during an incremental link. These methods are used
2812 // to insert dummy compilation units into debug info so that
2813 // debug info consumers can scan the debug info serially.
2819 : is_big_endian_(parameters
->target().is_big_endian())
2826 // Return the smallest size chunk of free space that can be
2827 // filled with a dummy compilation unit.
2829 minimum_hole_size() const
2830 { return this->do_minimum_hole_size(); }
2832 // Write a fill pattern of length LEN at offset OFF in the file.
2834 write(Output_file
* of
, off_t off
, size_t len
) const
2835 { this->do_write(of
, off
, len
); }
2839 do_minimum_hole_size() const = 0;
2842 do_write(Output_file
* of
, off_t off
, size_t len
) const = 0;
2845 is_big_endian() const
2846 { return this->is_big_endian_
; }
2849 bool is_big_endian_
;
2852 // Fill method that introduces a dummy compilation unit in
2853 // a .debug_info or .debug_types section.
2855 class Output_fill_debug_info
: public Output_fill
2858 Output_fill_debug_info(bool is_debug_types
)
2859 : is_debug_types_(is_debug_types
)
2864 do_minimum_hole_size() const;
2867 do_write(Output_file
* of
, off_t off
, size_t len
) const;
2870 // Version of the header.
2871 static const int version
= 4;
2872 // True if this is a .debug_types section.
2873 bool is_debug_types_
;
2876 // Fill method that introduces a dummy compilation unit in
2877 // a .debug_line section.
2879 class Output_fill_debug_line
: public Output_fill
2882 Output_fill_debug_line()
2887 do_minimum_hole_size() const;
2890 do_write(Output_file
* of
, off_t off
, size_t len
) const;
2893 // Version of the header. We write a DWARF-3 header because it's smaller
2894 // and many tools have not yet been updated to understand the DWARF-4 header.
2895 static const int version
= 3;
2896 // Length of the portion of the header that follows the header_length
2897 // field. This includes the following fields:
2898 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2899 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2900 // The standard_opcode_lengths array is 12 bytes long, and the
2901 // include_directories and filenames fields each contain only a single
2903 static const size_t header_length
= 19;
2906 // An output section. We don't expect to have too many output
2907 // sections, so we don't bother to do a template on the size.
2909 class Output_section
: public Output_data
2912 // Create an output section, giving the name, type, and flags.
2913 Output_section(const char* name
, elfcpp::Elf_Word
, elfcpp::Elf_Xword
);
2914 virtual ~Output_section();
2916 // Add a new input section SHNDX, named NAME, with header SHDR, from
2917 // object OBJECT. RELOC_SHNDX is the index of a relocation section
2918 // which applies to this section, or 0 if none, or -1 if more than
2919 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
2920 // in a linker script; in that case we need to keep track of input
2921 // sections associated with an output section. Return the offset
2922 // within the output section.
2923 template<int size
, bool big_endian
>
2925 add_input_section(Layout
* layout
, Sized_relobj_file
<size
, big_endian
>* object
,
2926 unsigned int shndx
, const char* name
,
2927 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
2928 unsigned int reloc_shndx
, bool have_sections_script
);
2930 // Add generated data POSD to this output section.
2932 add_output_section_data(Output_section_data
* posd
);
2934 // Add a relaxed input section PORIS called NAME to this output section
2937 add_relaxed_input_section(Layout
* layout
,
2938 Output_relaxed_input_section
* poris
,
2939 const std::string
& name
);
2941 // Return the section name.
2944 { return this->name_
; }
2946 // Return the section type.
2949 { return this->type_
; }
2951 // Return the section flags.
2954 { return this->flags_
; }
2956 typedef std::map
<Section_id
, unsigned int> Section_layout_order
;
2959 update_section_layout(const Section_layout_order
* order_map
);
2961 // Update the output section flags based on input section flags.
2963 update_flags_for_input_section(elfcpp::Elf_Xword flags
);
2965 // Return the entsize field.
2968 { return this->entsize_
; }
2970 // Set the entsize field.
2972 set_entsize(uint64_t v
);
2974 // Set the load address.
2976 set_load_address(uint64_t load_address
)
2978 this->load_address_
= load_address
;
2979 this->has_load_address_
= true;
2982 // Set the link field to the output section index of a section.
2984 set_link_section(const Output_data
* od
)
2986 gold_assert(this->link_
== 0
2987 && !this->should_link_to_symtab_
2988 && !this->should_link_to_dynsym_
);
2989 this->link_section_
= od
;
2992 // Set the link field to a constant.
2994 set_link(unsigned int v
)
2996 gold_assert(this->link_section_
== NULL
2997 && !this->should_link_to_symtab_
2998 && !this->should_link_to_dynsym_
);
3002 // Record that this section should link to the normal symbol table.
3004 set_should_link_to_symtab()
3006 gold_assert(this->link_section_
== NULL
3008 && !this->should_link_to_dynsym_
);
3009 this->should_link_to_symtab_
= true;
3012 // Record that this section should link to the dynamic symbol table.
3014 set_should_link_to_dynsym()
3016 gold_assert(this->link_section_
== NULL
3018 && !this->should_link_to_symtab_
);
3019 this->should_link_to_dynsym_
= true;
3022 // Return the info field.
3026 gold_assert(this->info_section_
== NULL
3027 && this->info_symndx_
== NULL
);
3031 // Set the info field to the output section index of a section.
3033 set_info_section(const Output_section
* os
)
3035 gold_assert((this->info_section_
== NULL
3036 || (this->info_section_
== os
3037 && this->info_uses_section_index_
))
3038 && this->info_symndx_
== NULL
3039 && this->info_
== 0);
3040 this->info_section_
= os
;
3041 this->info_uses_section_index_
= true;
3044 // Set the info field to the symbol table index of a symbol.
3046 set_info_symndx(const Symbol
* sym
)
3048 gold_assert(this->info_section_
== NULL
3049 && (this->info_symndx_
== NULL
3050 || this->info_symndx_
== sym
)
3051 && this->info_
== 0);
3052 this->info_symndx_
= sym
;
3055 // Set the info field to the symbol table index of a section symbol.
3057 set_info_section_symndx(const Output_section
* os
)
3059 gold_assert((this->info_section_
== NULL
3060 || (this->info_section_
== os
3061 && !this->info_uses_section_index_
))
3062 && this->info_symndx_
== NULL
3063 && this->info_
== 0);
3064 this->info_section_
= os
;
3065 this->info_uses_section_index_
= false;
3068 // Set the info field to a constant.
3070 set_info(unsigned int v
)
3072 gold_assert(this->info_section_
== NULL
3073 && this->info_symndx_
== NULL
3074 && (this->info_
== 0
3075 || this->info_
== v
));
3079 // Set the addralign field.
3081 set_addralign(uint64_t v
)
3082 { this->addralign_
= v
; }
3084 // Whether the output section index has been set.
3086 has_out_shndx() const
3087 { return this->out_shndx_
!= -1U; }
3089 // Indicate that we need a symtab index.
3091 set_needs_symtab_index()
3092 { this->needs_symtab_index_
= true; }
3094 // Return whether we need a symtab index.
3096 needs_symtab_index() const
3097 { return this->needs_symtab_index_
; }
3099 // Get the symtab index.
3101 symtab_index() const
3103 gold_assert(this->symtab_index_
!= 0);
3104 return this->symtab_index_
;
3107 // Set the symtab index.
3109 set_symtab_index(unsigned int index
)
3111 gold_assert(index
!= 0);
3112 this->symtab_index_
= index
;
3115 // Indicate that we need a dynsym index.
3117 set_needs_dynsym_index()
3118 { this->needs_dynsym_index_
= true; }
3120 // Return whether we need a dynsym index.
3122 needs_dynsym_index() const
3123 { return this->needs_dynsym_index_
; }
3125 // Get the dynsym index.
3127 dynsym_index() const
3129 gold_assert(this->dynsym_index_
!= 0);
3130 return this->dynsym_index_
;
3133 // Set the dynsym index.
3135 set_dynsym_index(unsigned int index
)
3137 gold_assert(index
!= 0);
3138 this->dynsym_index_
= index
;
3141 // Return whether the input sections sections attachd to this output
3142 // section may require sorting. This is used to handle constructor
3143 // priorities compatibly with GNU ld.
3145 may_sort_attached_input_sections() const
3146 { return this->may_sort_attached_input_sections_
; }
3148 // Record that the input sections attached to this output section
3149 // may require sorting.
3151 set_may_sort_attached_input_sections()
3152 { this->may_sort_attached_input_sections_
= true; }
3154 // Returns true if input sections must be sorted according to the
3155 // order in which their name appear in the --section-ordering-file.
3157 input_section_order_specified()
3158 { return this->input_section_order_specified_
; }
3160 // Record that input sections must be sorted as some of their names
3161 // match the patterns specified through --section-ordering-file.
3163 set_input_section_order_specified()
3164 { this->input_section_order_specified_
= true; }
3166 // Return whether the input sections attached to this output section
3167 // require sorting. This is used to handle constructor priorities
3168 // compatibly with GNU ld.
3170 must_sort_attached_input_sections() const
3171 { return this->must_sort_attached_input_sections_
; }
3173 // Record that the input sections attached to this output section
3176 set_must_sort_attached_input_sections()
3177 { this->must_sort_attached_input_sections_
= true; }
3179 // Get the order in which this section appears in the PT_LOAD output
3181 Output_section_order
3183 { return this->order_
; }
3185 // Set the order for this section.
3187 set_order(Output_section_order order
)
3188 { this->order_
= order
; }
3190 // Return whether this section holds relro data--data which has
3191 // dynamic relocations but which may be marked read-only after the
3192 // dynamic relocations have been completed.
3195 { return this->is_relro_
; }
3197 // Record that this section holds relro data.
3200 { this->is_relro_
= true; }
3202 // Record that this section does not hold relro data.
3205 { this->is_relro_
= false; }
3207 // True if this is a small section: a section which holds small
3210 is_small_section() const
3211 { return this->is_small_section_
; }
3213 // Record that this is a small section.
3215 set_is_small_section()
3216 { this->is_small_section_
= true; }
3218 // True if this is a large section: a section which holds large
3221 is_large_section() const
3222 { return this->is_large_section_
; }
3224 // Record that this is a large section.
3226 set_is_large_section()
3227 { this->is_large_section_
= true; }
3229 // True if this is a large data (not BSS) section.
3231 is_large_data_section()
3232 { return this->is_large_section_
&& this->type_
!= elfcpp::SHT_NOBITS
; }
3234 // Return whether this section should be written after all the input
3235 // sections are complete.
3237 after_input_sections() const
3238 { return this->after_input_sections_
; }
3240 // Record that this section should be written after all the input
3241 // sections are complete.
3243 set_after_input_sections()
3244 { this->after_input_sections_
= true; }
3246 // Return whether this section requires postprocessing after all
3247 // relocations have been applied.
3249 requires_postprocessing() const
3250 { return this->requires_postprocessing_
; }
3252 // If a section requires postprocessing, return the buffer to use.
3254 postprocessing_buffer() const
3256 gold_assert(this->postprocessing_buffer_
!= NULL
);
3257 return this->postprocessing_buffer_
;
3260 // If a section requires postprocessing, create the buffer to use.
3262 create_postprocessing_buffer();
3264 // If a section requires postprocessing, this is the size of the
3265 // buffer to which relocations should be applied.
3267 postprocessing_buffer_size() const
3268 { return this->current_data_size_for_child(); }
3270 // Modify the section name. This is only permitted for an
3271 // unallocated section, and only before the size has been finalized.
3272 // Otherwise the name will not get into Layout::namepool_.
3274 set_name(const char* newname
)
3276 gold_assert((this->flags_
& elfcpp::SHF_ALLOC
) == 0);
3277 gold_assert(!this->is_data_size_valid());
3278 this->name_
= newname
;
3281 // Return whether the offset OFFSET in the input section SHNDX in
3282 // object OBJECT is being included in the link.
3284 is_input_address_mapped(const Relobj
* object
, unsigned int shndx
,
3285 off_t offset
) const;
3287 // Return the offset within the output section of OFFSET relative to
3288 // the start of input section SHNDX in object OBJECT.
3290 output_offset(const Relobj
* object
, unsigned int shndx
,
3291 section_offset_type offset
) const;
3293 // Return the output virtual address of OFFSET relative to the start
3294 // of input section SHNDX in object OBJECT.
3296 output_address(const Relobj
* object
, unsigned int shndx
,
3297 off_t offset
) const;
3299 // Look for the merged section for input section SHNDX in object
3300 // OBJECT. If found, return true, and set *ADDR to the address of
3301 // the start of the merged section. This is not necessary the
3302 // output offset corresponding to input offset 0 in the section,
3303 // since the section may be mapped arbitrarily.
3305 find_starting_output_address(const Relobj
* object
, unsigned int shndx
,
3306 uint64_t* addr
) const;
3308 // Record that this output section was found in the SECTIONS clause
3309 // of a linker script.
3311 set_found_in_sections_clause()
3312 { this->found_in_sections_clause_
= true; }
3314 // Return whether this output section was found in the SECTIONS
3315 // clause of a linker script.
3317 found_in_sections_clause() const
3318 { return this->found_in_sections_clause_
; }
3320 // Write the section header into *OPHDR.
3321 template<int size
, bool big_endian
>
3323 write_header(const Layout
*, const Stringpool
*,
3324 elfcpp::Shdr_write
<size
, big_endian
>*) const;
3326 // The next few calls are for linker script support.
3328 // In some cases we need to keep a list of the input sections
3329 // associated with this output section. We only need the list if we
3330 // might have to change the offsets of the input section within the
3331 // output section after we add the input section. The ordinary
3332 // input sections will be written out when we process the object
3333 // file, and as such we don't need to track them here. We do need
3334 // to track Output_section_data objects here. We store instances of
3335 // this structure in a std::vector, so it must be a POD. There can
3336 // be many instances of this structure, so we use a union to save
3342 : shndx_(0), p2align_(0)
3344 this->u1_
.data_size
= 0;
3345 this->u2_
.object
= NULL
;
3348 // For an ordinary input section.
3349 Input_section(Relobj
* object
, unsigned int shndx
, off_t data_size
,
3352 p2align_(ffsll(static_cast<long long>(addralign
))),
3353 section_order_index_(0)
3355 gold_assert(shndx
!= OUTPUT_SECTION_CODE
3356 && shndx
!= MERGE_DATA_SECTION_CODE
3357 && shndx
!= MERGE_STRING_SECTION_CODE
3358 && shndx
!= RELAXED_INPUT_SECTION_CODE
);
3359 this->u1_
.data_size
= data_size
;
3360 this->u2_
.object
= object
;
3363 // For a non-merge output section.
3364 Input_section(Output_section_data
* posd
)
3365 : shndx_(OUTPUT_SECTION_CODE
), p2align_(0),
3366 section_order_index_(0)
3368 this->u1_
.data_size
= 0;
3369 this->u2_
.posd
= posd
;
3372 // For a merge section.
3373 Input_section(Output_section_data
* posd
, bool is_string
, uint64_t entsize
)
3375 ? MERGE_STRING_SECTION_CODE
3376 : MERGE_DATA_SECTION_CODE
),
3378 section_order_index_(0)
3380 this->u1_
.entsize
= entsize
;
3381 this->u2_
.posd
= posd
;
3384 // For a relaxed input section.
3385 Input_section(Output_relaxed_input_section
* psection
)
3386 : shndx_(RELAXED_INPUT_SECTION_CODE
), p2align_(0),
3387 section_order_index_(0)
3389 this->u1_
.data_size
= 0;
3390 this->u2_
.poris
= psection
;
3394 section_order_index() const
3396 return this->section_order_index_
;
3400 set_section_order_index(unsigned int number
)
3402 this->section_order_index_
= number
;
3405 // The required alignment.
3409 if (this->p2align_
!= 0)
3410 return static_cast<uint64_t>(1) << (this->p2align_
- 1);
3411 else if (!this->is_input_section())
3412 return this->u2_
.posd
->addralign();
3417 // Set the required alignment, which must be either 0 or a power of 2.
3418 // For input sections that are sub-classes of Output_section_data, a
3419 // alignment of zero means asking the underlying object for alignment.
3421 set_addralign(uint64_t addralign
)
3427 gold_assert((addralign
& (addralign
- 1)) == 0);
3428 this->p2align_
= ffsll(static_cast<long long>(addralign
));
3432 // Return the current required size, without finalization.
3434 current_data_size() const;
3436 // Return the required size.
3440 // Whether this is an input section.
3442 is_input_section() const
3444 return (this->shndx_
!= OUTPUT_SECTION_CODE
3445 && this->shndx_
!= MERGE_DATA_SECTION_CODE
3446 && this->shndx_
!= MERGE_STRING_SECTION_CODE
3447 && this->shndx_
!= RELAXED_INPUT_SECTION_CODE
);
3450 // Return whether this is a merge section which matches the
3453 is_merge_section(bool is_string
, uint64_t entsize
,
3454 uint64_t addralign
) const
3456 return (this->shndx_
== (is_string
3457 ? MERGE_STRING_SECTION_CODE
3458 : MERGE_DATA_SECTION_CODE
)
3459 && this->u1_
.entsize
== entsize
3460 && this->addralign() == addralign
);
3463 // Return whether this is a merge section for some input section.
3465 is_merge_section() const
3467 return (this->shndx_
== MERGE_DATA_SECTION_CODE
3468 || this->shndx_
== MERGE_STRING_SECTION_CODE
);
3471 // Return whether this is a relaxed input section.
3473 is_relaxed_input_section() const
3474 { return this->shndx_
== RELAXED_INPUT_SECTION_CODE
; }
3476 // Return whether this is a generic Output_section_data.
3478 is_output_section_data() const
3480 return this->shndx_
== OUTPUT_SECTION_CODE
;
3483 // Return the object for an input section.
3487 // Return the input section index for an input section.
3491 // For non-input-sections, return the associated Output_section_data
3493 Output_section_data
*
3494 output_section_data() const
3496 gold_assert(!this->is_input_section());
3497 return this->u2_
.posd
;
3500 // For a merge section, return the Output_merge_base pointer.
3502 output_merge_base() const
3504 gold_assert(this->is_merge_section());
3505 return this->u2_
.pomb
;
3508 // Return the Output_relaxed_input_section object.
3509 Output_relaxed_input_section
*
3510 relaxed_input_section() const
3512 gold_assert(this->is_relaxed_input_section());
3513 return this->u2_
.poris
;
3516 // Set the output section.
3518 set_output_section(Output_section
* os
)
3520 gold_assert(!this->is_input_section());
3521 Output_section_data
* posd
=
3522 this->is_relaxed_input_section() ? this->u2_
.poris
: this->u2_
.posd
;
3523 posd
->set_output_section(os
);
3526 // Set the address and file offset. This is called during
3527 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
3528 // the enclosing section.
3530 set_address_and_file_offset(uint64_t address
, off_t file_offset
,
3531 off_t section_file_offset
);
3533 // Reset the address and file offset.
3535 reset_address_and_file_offset();
3537 // Finalize the data size.
3539 finalize_data_size();
3541 // Add an input section, for SHF_MERGE sections.
3543 add_input_section(Relobj
* object
, unsigned int shndx
)
3545 gold_assert(this->shndx_
== MERGE_DATA_SECTION_CODE
3546 || this->shndx_
== MERGE_STRING_SECTION_CODE
);
3547 return this->u2_
.posd
->add_input_section(object
, shndx
);
3550 // Given an input OBJECT, an input section index SHNDX within that
3551 // object, and an OFFSET relative to the start of that input
3552 // section, return whether or not the output offset is known. If
3553 // this function returns true, it sets *POUTPUT to the offset in
3554 // the output section, relative to the start of the input section
3555 // in the output section. *POUTPUT may be different from OFFSET
3556 // for a merged section.
3558 output_offset(const Relobj
* object
, unsigned int shndx
,
3559 section_offset_type offset
,
3560 section_offset_type
* poutput
) const;
3562 // Return whether this is the merge section for the input section
3565 is_merge_section_for(const Relobj
* object
, unsigned int shndx
) const;
3567 // Write out the data. This does nothing for an input section.
3569 write(Output_file
*);
3571 // Write the data to a buffer. This does nothing for an input
3574 write_to_buffer(unsigned char*);
3576 // Print to a map file.
3578 print_to_mapfile(Mapfile
*) const;
3580 // Print statistics about merge sections to stderr.
3582 print_merge_stats(const char* section_name
)
3584 if (this->shndx_
== MERGE_DATA_SECTION_CODE
3585 || this->shndx_
== MERGE_STRING_SECTION_CODE
)
3586 this->u2_
.posd
->print_merge_stats(section_name
);
3590 // Code values which appear in shndx_. If the value is not one of
3591 // these codes, it is the input section index in the object file.
3594 // An Output_section_data.
3595 OUTPUT_SECTION_CODE
= -1U,
3596 // An Output_section_data for an SHF_MERGE section with
3597 // SHF_STRINGS not set.
3598 MERGE_DATA_SECTION_CODE
= -2U,
3599 // An Output_section_data for an SHF_MERGE section with
3601 MERGE_STRING_SECTION_CODE
= -3U,
3602 // An Output_section_data for a relaxed input section.
3603 RELAXED_INPUT_SECTION_CODE
= -4U
3606 // For an ordinary input section, this is the section index in the
3607 // input file. For an Output_section_data, this is
3608 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3609 // MERGE_STRING_SECTION_CODE.
3610 unsigned int shndx_
;
3611 // The required alignment, stored as a power of 2.
3612 unsigned int p2align_
;
3615 // For an ordinary input section, the section size.
3617 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3618 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3624 // For an ordinary input section, the object which holds the
3627 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3628 // MERGE_STRING_SECTION_CODE, the data.
3629 Output_section_data
* posd
;
3630 Output_merge_base
* pomb
;
3631 // For RELAXED_INPUT_SECTION_CODE, the data.
3632 Output_relaxed_input_section
* poris
;
3634 // The line number of the pattern it matches in the --section-ordering-file
3635 // file. It is 0 if does not match any pattern.
3636 unsigned int section_order_index_
;
3639 // Store the list of input sections for this Output_section into the
3640 // list passed in. This removes the input sections, leaving only
3641 // any Output_section_data elements. This returns the size of those
3642 // Output_section_data elements. ADDRESS is the address of this
3643 // output section. FILL is the fill value to use, in case there are
3644 // any spaces between the remaining Output_section_data elements.
3646 get_input_sections(uint64_t address
, const std::string
& fill
,
3647 std::list
<Input_section
>*);
3649 // Add a script input section. A script input section can either be
3650 // a plain input section or a sub-class of Output_section_data.
3652 add_script_input_section(const Input_section
& input_section
);
3654 // Set the current size of the output section.
3656 set_current_data_size(off_t size
)
3657 { this->set_current_data_size_for_child(size
); }
3659 // End of linker script support.
3661 // Save states before doing section layout.
3662 // This is used for relaxation.
3666 // Restore states prior to section layout.
3674 // Convert existing input sections to relaxed input sections.
3676 convert_input_sections_to_relaxed_sections(
3677 const std::vector
<Output_relaxed_input_section
*>& sections
);
3679 // Find a relaxed input section to an input section in OBJECT
3680 // with index SHNDX. Return NULL if none is found.
3681 const Output_relaxed_input_section
*
3682 find_relaxed_input_section(const Relobj
* object
, unsigned int shndx
) const;
3684 // Whether section offsets need adjustment due to relaxation.
3686 section_offsets_need_adjustment() const
3687 { return this->section_offsets_need_adjustment_
; }
3689 // Set section_offsets_need_adjustment to be true.
3691 set_section_offsets_need_adjustment()
3692 { this->section_offsets_need_adjustment_
= true; }
3694 // Adjust section offsets of input sections in this. This is
3695 // requires if relaxation caused some input sections to change sizes.
3697 adjust_section_offsets();
3699 // Whether this is a NOLOAD section.
3702 { return this->is_noload_
; }
3707 { this->is_noload_
= true; }
3709 // Print merge statistics to stderr.
3711 print_merge_stats();
3713 // Set a fixed layout for the section. Used for incremental update links.
3715 set_fixed_layout(uint64_t sh_addr
, off_t sh_offset
, off_t sh_size
,
3716 uint64_t sh_addralign
);
3718 // Return TRUE if the section has a fixed layout.
3720 has_fixed_layout() const
3721 { return this->has_fixed_layout_
; }
3723 // Set flag to allow patch space for this section. Used for full
3724 // incremental links.
3726 set_is_patch_space_allowed()
3727 { this->is_patch_space_allowed_
= true; }
3729 // Set a fill method to use for free space left in the output section
3730 // during incremental links.
3732 set_free_space_fill(Output_fill
* free_space_fill
)
3734 this->free_space_fill_
= free_space_fill
;
3735 this->free_list_
.set_min_hole_size(free_space_fill
->minimum_hole_size());
3738 // Reserve space within the fixed layout for the section. Used for
3739 // incremental update links.
3741 reserve(uint64_t sh_offset
, uint64_t sh_size
);
3743 // Allocate space from the free list for the section. Used for
3744 // incremental update links.
3746 allocate(off_t len
, uint64_t addralign
);
3749 // Return the output section--i.e., the object itself.
3754 const Output_section
*
3755 do_output_section() const
3758 // Return the section index in the output file.
3760 do_out_shndx() const
3762 gold_assert(this->out_shndx_
!= -1U);
3763 return this->out_shndx_
;
3766 // Set the output section index.
3768 do_set_out_shndx(unsigned int shndx
)
3770 gold_assert(this->out_shndx_
== -1U || this->out_shndx_
== shndx
);
3771 this->out_shndx_
= shndx
;
3774 // Update the data size of the Output_section. For a typical
3775 // Output_section, there is nothing to do, but if there are any
3776 // Output_section_data objects we need to do a trial layout
3781 // Set the final data size of the Output_section. For a typical
3782 // Output_section, there is nothing to do, but if there are any
3783 // Output_section_data objects we need to set their final addresses
3786 set_final_data_size();
3788 // Reset the address and file offset.
3790 do_reset_address_and_file_offset();
3792 // Return true if address and file offset already have reset values. In
3793 // other words, calling reset_address_and_file_offset will not change them.
3795 do_address_and_file_offset_have_reset_values() const;
3797 // Write the data to the file. For a typical Output_section, this
3798 // does nothing: the data is written out by calling Object::Relocate
3799 // on each input object. But if there are any Output_section_data
3800 // objects we do need to write them out here.
3802 do_write(Output_file
*);
3804 // Return the address alignment--function required by parent class.
3806 do_addralign() const
3807 { return this->addralign_
; }
3809 // Return whether there is a load address.
3811 do_has_load_address() const
3812 { return this->has_load_address_
; }
3814 // Return the load address.
3816 do_load_address() const
3818 gold_assert(this->has_load_address_
);
3819 return this->load_address_
;
3822 // Return whether this is an Output_section.
3824 do_is_section() const
3827 // Return whether this is a section of the specified type.
3829 do_is_section_type(elfcpp::Elf_Word type
) const
3830 { return this->type_
== type
; }
3832 // Return whether the specified section flag is set.
3834 do_is_section_flag_set(elfcpp::Elf_Xword flag
) const
3835 { return (this->flags_
& flag
) != 0; }
3837 // Set the TLS offset. Called only for SHT_TLS sections.
3839 do_set_tls_offset(uint64_t tls_base
);
3841 // Return the TLS offset, relative to the base of the TLS segment.
3842 // Valid only for SHT_TLS sections.
3844 do_tls_offset() const
3845 { return this->tls_offset_
; }
3847 // This may be implemented by a child class.
3849 do_finalize_name(Layout
*)
3852 // Print to the map file.
3854 do_print_to_mapfile(Mapfile
*) const;
3856 // Record that this section requires postprocessing after all
3857 // relocations have been applied. This is called by a child class.
3859 set_requires_postprocessing()
3861 this->requires_postprocessing_
= true;
3862 this->after_input_sections_
= true;
3865 // Write all the data of an Output_section into the postprocessing
3868 write_to_postprocessing_buffer();
3870 typedef std::vector
<Input_section
> Input_section_list
;
3872 // Allow a child class to access the input sections.
3873 const Input_section_list
&
3874 input_sections() const
3875 { return this->input_sections_
; }
3877 // Whether this always keeps an input section list
3879 always_keeps_input_sections() const
3880 { return this->always_keeps_input_sections_
; }
3882 // Always keep an input section list.
3884 set_always_keeps_input_sections()
3886 gold_assert(this->current_data_size_for_child() == 0);
3887 this->always_keeps_input_sections_
= true;
3891 // We only save enough information to undo the effects of section layout.
3892 class Checkpoint_output_section
3895 Checkpoint_output_section(uint64_t addralign
, elfcpp::Elf_Xword flags
,
3896 const Input_section_list
& input_sections
,
3897 off_t first_input_offset
,
3898 bool attached_input_sections_are_sorted
)
3899 : addralign_(addralign
), flags_(flags
),
3900 input_sections_(input_sections
),
3901 input_sections_size_(input_sections_
.size()),
3902 input_sections_copy_(), first_input_offset_(first_input_offset
),
3903 attached_input_sections_are_sorted_(attached_input_sections_are_sorted
)
3907 ~Checkpoint_output_section()
3910 // Return the address alignment.
3913 { return this->addralign_
; }
3915 // Return the section flags.
3918 { return this->flags_
; }
3920 // Return a reference to the input section list copy.
3923 { return &this->input_sections_copy_
; }
3925 // Return the size of input_sections at the time when checkpoint is
3928 input_sections_size() const
3929 { return this->input_sections_size_
; }
3931 // Whether input sections are copied.
3933 input_sections_saved() const
3934 { return this->input_sections_copy_
.size() == this->input_sections_size_
; }
3937 first_input_offset() const
3938 { return this->first_input_offset_
; }
3941 attached_input_sections_are_sorted() const
3942 { return this->attached_input_sections_are_sorted_
; }
3944 // Save input sections.
3946 save_input_sections()
3948 this->input_sections_copy_
.reserve(this->input_sections_size_
);
3949 this->input_sections_copy_
.clear();
3950 Input_section_list::const_iterator p
= this->input_sections_
.begin();
3951 gold_assert(this->input_sections_size_
>= this->input_sections_
.size());
3952 for(size_t i
= 0; i
< this->input_sections_size_
; i
++, ++p
)
3953 this->input_sections_copy_
.push_back(*p
);
3957 // The section alignment.
3958 uint64_t addralign_
;
3959 // The section flags.
3960 elfcpp::Elf_Xword flags_
;
3961 // Reference to the input sections to be checkpointed.
3962 const Input_section_list
& input_sections_
;
3963 // Size of the checkpointed portion of input_sections_;
3964 size_t input_sections_size_
;
3965 // Copy of input sections.
3966 Input_section_list input_sections_copy_
;
3967 // The offset of the first entry in input_sections_.
3968 off_t first_input_offset_
;
3969 // True if the input sections attached to this output section have
3970 // already been sorted.
3971 bool attached_input_sections_are_sorted_
;
3974 // This class is used to sort the input sections.
3975 class Input_section_sort_entry
;
3977 // This is the sort comparison function for ctors and dtors.
3978 struct Input_section_sort_compare
3981 operator()(const Input_section_sort_entry
&,
3982 const Input_section_sort_entry
&) const;
3985 // This is the sort comparison function for .init_array and .fini_array.
3986 struct Input_section_sort_init_fini_compare
3989 operator()(const Input_section_sort_entry
&,
3990 const Input_section_sort_entry
&) const;
3993 // This is the sort comparison function when a section order is specified
3994 // from an input file.
3995 struct Input_section_sort_section_order_index_compare
3998 operator()(const Input_section_sort_entry
&,
3999 const Input_section_sort_entry
&) const;
4002 // Fill data. This is used to fill in data between input sections.
4003 // It is also used for data statements (BYTE, WORD, etc.) in linker
4004 // scripts. When we have to keep track of the input sections, we
4005 // can use an Output_data_const, but we don't want to have to keep
4006 // track of input sections just to implement fills.
4010 Fill(off_t section_offset
, off_t length
)
4011 : section_offset_(section_offset
),
4012 length_(convert_to_section_size_type(length
))
4015 // Return section offset.
4017 section_offset() const
4018 { return this->section_offset_
; }
4020 // Return fill length.
4023 { return this->length_
; }
4026 // The offset within the output section.
4027 off_t section_offset_
;
4028 // The length of the space to fill.
4029 section_size_type length_
;
4032 typedef std::vector
<Fill
> Fill_list
;
4034 // Map used during relaxation of existing sections. This map
4035 // a section id an input section list index. We assume that
4036 // Input_section_list is a vector.
4037 typedef Unordered_map
<Section_id
, size_t, Section_id_hash
> Relaxation_map
;
4039 // Add a new output section by Input_section.
4041 add_output_section_data(Input_section
*);
4043 // Add an SHF_MERGE input section. Returns true if the section was
4044 // handled. If KEEPS_INPUT_SECTIONS is true, the output merge section
4045 // stores information about the merged input sections.
4047 add_merge_input_section(Relobj
* object
, unsigned int shndx
, uint64_t flags
,
4048 uint64_t entsize
, uint64_t addralign
,
4049 bool keeps_input_sections
);
4051 // Add an output SHF_MERGE section POSD to this output section.
4052 // IS_STRING indicates whether it is a SHF_STRINGS section, and
4053 // ENTSIZE is the entity size. This returns the entry added to
4056 add_output_merge_section(Output_section_data
* posd
, bool is_string
,
4059 // Sort the attached input sections.
4061 sort_attached_input_sections();
4063 // Find the merge section into which an input section with index SHNDX in
4064 // OBJECT has been added. Return NULL if none found.
4065 Output_section_data
*
4066 find_merge_section(const Relobj
* object
, unsigned int shndx
) const;
4068 // Build a relaxation map.
4070 build_relaxation_map(
4071 const Input_section_list
& input_sections
,
4073 Relaxation_map
* map
) const;
4075 // Convert input sections in an input section list into relaxed sections.
4077 convert_input_sections_in_list_to_relaxed_sections(
4078 const std::vector
<Output_relaxed_input_section
*>& relaxed_sections
,
4079 const Relaxation_map
& map
,
4080 Input_section_list
* input_sections
);
4082 // Build the lookup maps for merge and relaxed input sections.
4084 build_lookup_maps() const;
4086 // Most of these fields are only valid after layout.
4088 // The name of the section. This will point into a Stringpool.
4090 // The section address is in the parent class.
4091 // The section alignment.
4092 uint64_t addralign_
;
4093 // The section entry size.
4095 // The load address. This is only used when using a linker script
4096 // with a SECTIONS clause. The has_load_address_ field indicates
4097 // whether this field is valid.
4098 uint64_t load_address_
;
4099 // The file offset is in the parent class.
4100 // Set the section link field to the index of this section.
4101 const Output_data
* link_section_
;
4102 // If link_section_ is NULL, this is the link field.
4104 // Set the section info field to the index of this section.
4105 const Output_section
* info_section_
;
4106 // If info_section_ is NULL, set the info field to the symbol table
4107 // index of this symbol.
4108 const Symbol
* info_symndx_
;
4109 // If info_section_ and info_symndx_ are NULL, this is the section
4112 // The section type.
4113 const elfcpp::Elf_Word type_
;
4114 // The section flags.
4115 elfcpp::Elf_Xword flags_
;
4116 // The order of this section in the output segment.
4117 Output_section_order order_
;
4118 // The section index.
4119 unsigned int out_shndx_
;
4120 // If there is a STT_SECTION for this output section in the normal
4121 // symbol table, this is the symbol index. This starts out as zero.
4122 // It is initialized in Layout::finalize() to be the index, or -1U
4123 // if there isn't one.
4124 unsigned int symtab_index_
;
4125 // If there is a STT_SECTION for this output section in the dynamic
4126 // symbol table, this is the symbol index. This starts out as zero.
4127 // It is initialized in Layout::finalize() to be the index, or -1U
4128 // if there isn't one.
4129 unsigned int dynsym_index_
;
4130 // The input sections. This will be empty in cases where we don't
4131 // need to keep track of them.
4132 Input_section_list input_sections_
;
4133 // The offset of the first entry in input_sections_.
4134 off_t first_input_offset_
;
4135 // The fill data. This is separate from input_sections_ because we
4136 // often will need fill sections without needing to keep track of
4139 // If the section requires postprocessing, this buffer holds the
4140 // section contents during relocation.
4141 unsigned char* postprocessing_buffer_
;
4142 // Whether this output section needs a STT_SECTION symbol in the
4143 // normal symbol table. This will be true if there is a relocation
4145 bool needs_symtab_index_
: 1;
4146 // Whether this output section needs a STT_SECTION symbol in the
4147 // dynamic symbol table. This will be true if there is a dynamic
4148 // relocation which needs it.
4149 bool needs_dynsym_index_
: 1;
4150 // Whether the link field of this output section should point to the
4151 // normal symbol table.
4152 bool should_link_to_symtab_
: 1;
4153 // Whether the link field of this output section should point to the
4154 // dynamic symbol table.
4155 bool should_link_to_dynsym_
: 1;
4156 // Whether this section should be written after all the input
4157 // sections are complete.
4158 bool after_input_sections_
: 1;
4159 // Whether this section requires post processing after all
4160 // relocations have been applied.
4161 bool requires_postprocessing_
: 1;
4162 // Whether an input section was mapped to this output section
4163 // because of a SECTIONS clause in a linker script.
4164 bool found_in_sections_clause_
: 1;
4165 // Whether this section has an explicitly specified load address.
4166 bool has_load_address_
: 1;
4167 // True if the info_section_ field means the section index of the
4168 // section, false if it means the symbol index of the corresponding
4170 bool info_uses_section_index_
: 1;
4171 // True if input sections attached to this output section have to be
4172 // sorted according to a specified order.
4173 bool input_section_order_specified_
: 1;
4174 // True if the input sections attached to this output section may
4176 bool may_sort_attached_input_sections_
: 1;
4177 // True if the input sections attached to this output section must
4179 bool must_sort_attached_input_sections_
: 1;
4180 // True if the input sections attached to this output section have
4181 // already been sorted.
4182 bool attached_input_sections_are_sorted_
: 1;
4183 // True if this section holds relro data.
4185 // True if this is a small section.
4186 bool is_small_section_
: 1;
4187 // True if this is a large section.
4188 bool is_large_section_
: 1;
4189 // Whether code-fills are generated at write.
4190 bool generate_code_fills_at_write_
: 1;
4191 // Whether the entry size field should be zero.
4192 bool is_entsize_zero_
: 1;
4193 // Whether section offsets need adjustment due to relaxation.
4194 bool section_offsets_need_adjustment_
: 1;
4195 // Whether this is a NOLOAD section.
4196 bool is_noload_
: 1;
4197 // Whether this always keeps input section.
4198 bool always_keeps_input_sections_
: 1;
4199 // Whether this section has a fixed layout, for incremental update links.
4200 bool has_fixed_layout_
: 1;
4201 // True if we can add patch space to this section.
4202 bool is_patch_space_allowed_
: 1;
4203 // For SHT_TLS sections, the offset of this section relative to the base
4204 // of the TLS segment.
4205 uint64_t tls_offset_
;
4206 // Saved checkpoint.
4207 Checkpoint_output_section
* checkpoint_
;
4208 // Fast lookup maps for merged and relaxed input sections.
4209 Output_section_lookup_maps
* lookup_maps_
;
4210 // List of available regions within the section, for incremental
4212 Free_list free_list_
;
4213 // Method for filling chunks of free space.
4214 Output_fill
* free_space_fill_
;
4215 // Amount added as patch space for incremental linking.
4219 // An output segment. PT_LOAD segments are built from collections of
4220 // output sections. Other segments typically point within PT_LOAD
4221 // segments, and are built directly as needed.
4223 // NOTE: We want to use the copy constructor for this class. During
4224 // relaxation, we may try built the segments multiple times. We do
4225 // that by copying the original segment list before lay-out, doing
4226 // a trial lay-out and roll-back to the saved copied if we need to
4227 // to the lay-out again.
4229 class Output_segment
4232 // Create an output segment, specifying the type and flags.
4233 Output_segment(elfcpp::Elf_Word
, elfcpp::Elf_Word
);
4235 // Return the virtual address.
4238 { return this->vaddr_
; }
4240 // Return the physical address.
4243 { return this->paddr_
; }
4245 // Return the segment type.
4248 { return this->type_
; }
4250 // Return the segment flags.
4253 { return this->flags_
; }
4255 // Return the memory size.
4258 { return this->memsz_
; }
4260 // Return the file size.
4263 { return this->filesz_
; }
4265 // Return the file offset.
4268 { return this->offset_
; }
4270 // Whether this is a segment created to hold large data sections.
4272 is_large_data_segment() const
4273 { return this->is_large_data_segment_
; }
4275 // Record that this is a segment created to hold large data
4278 set_is_large_data_segment()
4279 { this->is_large_data_segment_
= true; }
4281 // Return the maximum alignment of the Output_data.
4283 maximum_alignment();
4285 // Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is
4286 // the segment flags to use.
4288 add_output_section_to_load(Layout
* layout
, Output_section
* os
,
4289 elfcpp::Elf_Word seg_flags
);
4291 // Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS
4292 // is the segment flags to use.
4294 add_output_section_to_nonload(Output_section
* os
,
4295 elfcpp::Elf_Word seg_flags
);
4297 // Remove an Output_section from this segment. It is an error if it
4300 remove_output_section(Output_section
* os
);
4302 // Add an Output_data (which need not be an Output_section) to the
4303 // start of this segment.
4305 add_initial_output_data(Output_data
*);
4307 // Return true if this segment has any sections which hold actual
4308 // data, rather than being a BSS section.
4310 has_any_data_sections() const;
4312 // Whether this segment has a dynamic relocs.
4314 has_dynamic_reloc() const;
4316 // Return the address of the first section.
4318 first_section_load_address() const;
4320 // Return whether the addresses have been set already.
4322 are_addresses_set() const
4323 { return this->are_addresses_set_
; }
4325 // Set the addresses.
4327 set_addresses(uint64_t vaddr
, uint64_t paddr
)
4329 this->vaddr_
= vaddr
;
4330 this->paddr_
= paddr
;
4331 this->are_addresses_set_
= true;
4334 // Update the flags for the flags of an output section added to this
4337 update_flags_for_output_section(elfcpp::Elf_Xword flags
)
4339 // The ELF ABI specifies that a PT_TLS segment should always have
4340 // PF_R as the flags.
4341 if (this->type() != elfcpp::PT_TLS
)
4342 this->flags_
|= flags
;
4345 // Set the segment flags. This is only used if we have a PHDRS
4346 // clause which explicitly specifies the flags.
4348 set_flags(elfcpp::Elf_Word flags
)
4349 { this->flags_
= flags
; }
4351 // Set the address of the segment to ADDR and the offset to *POFF
4352 // and set the addresses and offsets of all contained output
4353 // sections accordingly. Set the section indexes of all contained
4354 // output sections starting with *PSHNDX. If RESET is true, first
4355 // reset the addresses of the contained sections. Return the
4356 // address of the immediately following segment. Update *POFF and
4357 // *PSHNDX. This should only be called for a PT_LOAD segment.
4359 set_section_addresses(Layout
*, bool reset
, uint64_t addr
,
4360 unsigned int* increase_relro
, bool* has_relro
,
4361 off_t
* poff
, unsigned int* pshndx
);
4363 // Set the minimum alignment of this segment. This may be adjusted
4364 // upward based on the section alignments.
4366 set_minimum_p_align(uint64_t align
)
4368 if (align
> this->min_p_align_
)
4369 this->min_p_align_
= align
;
4372 // Set the offset of this segment based on the section. This should
4373 // only be called for a non-PT_LOAD segment.
4375 set_offset(unsigned int increase
);
4377 // Set the TLS offsets of the sections contained in the PT_TLS segment.
4381 // Return the number of output sections.
4383 output_section_count() const;
4385 // Return the section attached to the list segment with the lowest
4386 // load address. This is used when handling a PHDRS clause in a
4389 section_with_lowest_load_address() const;
4391 // Write the segment header into *OPHDR.
4392 template<int size
, bool big_endian
>
4394 write_header(elfcpp::Phdr_write
<size
, big_endian
>*);
4396 // Write the section headers of associated sections into V.
4397 template<int size
, bool big_endian
>
4399 write_section_headers(const Layout
*, const Stringpool
*, unsigned char* v
,
4400 unsigned int* pshndx
) const;
4402 // Print the output sections in the map file.
4404 print_sections_to_mapfile(Mapfile
*) const;
4407 typedef std::vector
<Output_data
*> Output_data_list
;
4409 // Find the maximum alignment in an Output_data_list.
4411 maximum_alignment_list(const Output_data_list
*);
4413 // Return whether the first data section is a relro section.
4415 is_first_section_relro() const;
4417 // Set the section addresses in an Output_data_list.
4419 set_section_list_addresses(Layout
*, bool reset
, Output_data_list
*,
4420 uint64_t addr
, off_t
* poff
, unsigned int* pshndx
,
4423 // Return the number of Output_sections in an Output_data_list.
4425 output_section_count_list(const Output_data_list
*) const;
4427 // Return whether an Output_data_list has a dynamic reloc.
4429 has_dynamic_reloc_list(const Output_data_list
*) const;
4431 // Find the section with the lowest load address in an
4432 // Output_data_list.
4434 lowest_load_address_in_list(const Output_data_list
* pdl
,
4435 Output_section
** found
,
4436 uint64_t* found_lma
) const;
4438 // Find the first and last entries by address.
4440 find_first_and_last_list(const Output_data_list
* pdl
,
4441 const Output_data
** pfirst
,
4442 const Output_data
** plast
) const;
4444 // Write the section headers in the list into V.
4445 template<int size
, bool big_endian
>
4447 write_section_headers_list(const Layout
*, const Stringpool
*,
4448 const Output_data_list
*, unsigned char* v
,
4449 unsigned int* pshdx
) const;
4451 // Print a section list to the mapfile.
4453 print_section_list_to_mapfile(Mapfile
*, const Output_data_list
*) const;
4455 // NOTE: We want to use the copy constructor. Currently, shallow copy
4456 // works for us so we do not need to write our own copy constructor.
4458 // The list of output data attached to this segment.
4459 Output_data_list output_lists_
[ORDER_MAX
];
4460 // The segment virtual address.
4462 // The segment physical address.
4464 // The size of the segment in memory.
4466 // The maximum section alignment. The is_max_align_known_ field
4467 // indicates whether this has been finalized.
4468 uint64_t max_align_
;
4469 // The required minimum value for the p_align field. This is used
4470 // for PT_LOAD segments. Note that this does not mean that
4471 // addresses should be aligned to this value; it means the p_paddr
4472 // and p_vaddr fields must be congruent modulo this value. For
4473 // non-PT_LOAD segments, the dynamic linker works more efficiently
4474 // if the p_align field has the more conventional value, although it
4475 // can align as needed.
4476 uint64_t min_p_align_
;
4477 // The offset of the segment data within the file.
4479 // The size of the segment data in the file.
4481 // The segment type;
4482 elfcpp::Elf_Word type_
;
4483 // The segment flags.
4484 elfcpp::Elf_Word flags_
;
4485 // Whether we have finalized max_align_.
4486 bool is_max_align_known_
: 1;
4487 // Whether vaddr and paddr were set by a linker script.
4488 bool are_addresses_set_
: 1;
4489 // Whether this segment holds large data sections.
4490 bool is_large_data_segment_
: 1;
4493 // This class represents the output file.
4498 Output_file(const char* name
);
4500 // Indicate that this is a temporary file which should not be
4504 { this->is_temporary_
= true; }
4506 // Try to open an existing file. Returns false if the file doesn't
4507 // exist, has a size of 0 or can't be mmaped. This method is
4508 // thread-unsafe. If BASE_NAME is not NULL, use the contents of
4509 // that file as the base for incremental linking.
4511 open_base_file(const char* base_name
, bool writable
);
4513 // Open the output file. FILE_SIZE is the final size of the file.
4514 // If the file already exists, it is deleted/truncated. This method
4515 // is thread-unsafe.
4517 open(off_t file_size
);
4519 // Resize the output file. This method is thread-unsafe.
4521 resize(off_t file_size
);
4523 // Close the output file (flushing all buffered data) and make sure
4524 // there are no errors. This method is thread-unsafe.
4528 // Return the size of this file.
4531 { return this->file_size_
; }
4533 // Return the name of this file.
4536 { return this->name_
; }
4538 // We currently always use mmap which makes the view handling quite
4539 // simple. In the future we may support other approaches.
4541 // Write data to the output file.
4543 write(off_t offset
, const void* data
, size_t len
)
4544 { memcpy(this->base_
+ offset
, data
, len
); }
4546 // Get a buffer to use to write to the file, given the offset into
4547 // the file and the size.
4549 get_output_view(off_t start
, size_t size
)
4551 gold_assert(start
>= 0
4552 && start
+ static_cast<off_t
>(size
) <= this->file_size_
);
4553 return this->base_
+ start
;
4556 // VIEW must have been returned by get_output_view. Write the
4557 // buffer to the file, passing in the offset and the size.
4559 write_output_view(off_t
, size_t, unsigned char*)
4562 // Get a read/write buffer. This is used when we want to write part
4563 // of the file, read it in, and write it again.
4565 get_input_output_view(off_t start
, size_t size
)
4566 { return this->get_output_view(start
, size
); }
4568 // Write a read/write buffer back to the file.
4570 write_input_output_view(off_t
, size_t, unsigned char*)
4573 // Get a read buffer. This is used when we just want to read part
4574 // of the file back it in.
4575 const unsigned char*
4576 get_input_view(off_t start
, size_t size
)
4577 { return this->get_output_view(start
, size
); }
4579 // Release a read bfufer.
4581 free_input_view(off_t
, size_t, const unsigned char*)
4585 // Map the file into memory or, if that fails, allocate anonymous
4590 // Allocate anonymous memory for the file.
4594 // Map the file into memory.
4596 map_no_anonymous(bool);
4598 // Unmap the file from memory (and flush to disk buffers).
4608 // Base of file mapped into memory.
4609 unsigned char* base_
;
4610 // True iff base_ points to a memory buffer rather than an output file.
4611 bool map_is_anonymous_
;
4612 // True if base_ was allocated using new rather than mmap.
4613 bool map_is_allocated_
;
4614 // True if this is a temporary file which should not be output.
4618 } // End namespace gold.
4620 #endif // !defined(GOLD_OUTPUT_H)