* eval.c (evaluate_subexp_standard): Fix thinko in handling
[deliverable/binutils-gdb.git] / gold / output.h
1 // output.h -- manage the output file for gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
25
26 #include <list>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "mapfile.h"
31 #include "layout.h"
32 #include "reloc-types.h"
33
34 namespace gold
35 {
36
37 class General_options;
38 class Object;
39 class Symbol;
40 class Output_file;
41 class Output_merge_base;
42 class Output_section;
43 class Relocatable_relocs;
44 class Target;
45 template<int size, bool big_endian>
46 class Sized_target;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
51
52 // An abtract class for data which has to go into the output file.
53
54 class Output_data
55 {
56 public:
57 explicit Output_data()
58 : address_(0), data_size_(0), offset_(-1),
59 is_address_valid_(false), is_data_size_valid_(false),
60 is_offset_valid_(false), is_data_size_fixed_(false),
61 has_dynamic_reloc_(false)
62 { }
63
64 virtual
65 ~Output_data();
66
67 // Return the address. For allocated sections, this is only valid
68 // after Layout::finalize is finished.
69 uint64_t
70 address() const
71 {
72 gold_assert(this->is_address_valid_);
73 return this->address_;
74 }
75
76 // Return the size of the data. For allocated sections, this must
77 // be valid after Layout::finalize calls set_address, but need not
78 // be valid before then.
79 off_t
80 data_size() const
81 {
82 gold_assert(this->is_data_size_valid_);
83 return this->data_size_;
84 }
85
86 // Get the current data size.
87 off_t
88 current_data_size() const
89 { return this->current_data_size_for_child(); }
90
91 // Return true if data size is fixed.
92 bool
93 is_data_size_fixed() const
94 { return this->is_data_size_fixed_; }
95
96 // Return the file offset. This is only valid after
97 // Layout::finalize is finished. For some non-allocated sections,
98 // it may not be valid until near the end of the link.
99 off_t
100 offset() const
101 {
102 gold_assert(this->is_offset_valid_);
103 return this->offset_;
104 }
105
106 // Reset the address and file offset. This essentially disables the
107 // sanity testing about duplicate and unknown settings.
108 void
109 reset_address_and_file_offset()
110 {
111 this->is_address_valid_ = false;
112 this->is_offset_valid_ = false;
113 if (!this->is_data_size_fixed_)
114 this->is_data_size_valid_ = false;
115 this->do_reset_address_and_file_offset();
116 }
117
118 // Return true if address and file offset already have reset values. In
119 // other words, calling reset_address_and_file_offset will not change them.
120 bool
121 address_and_file_offset_have_reset_values() const
122 { return this->do_address_and_file_offset_have_reset_values(); }
123
124 // Return the required alignment.
125 uint64_t
126 addralign() const
127 { return this->do_addralign(); }
128
129 // Return whether this has a load address.
130 bool
131 has_load_address() const
132 { return this->do_has_load_address(); }
133
134 // Return the load address.
135 uint64_t
136 load_address() const
137 { return this->do_load_address(); }
138
139 // Return whether this is an Output_section.
140 bool
141 is_section() const
142 { return this->do_is_section(); }
143
144 // Return whether this is an Output_section of the specified type.
145 bool
146 is_section_type(elfcpp::Elf_Word stt) const
147 { return this->do_is_section_type(stt); }
148
149 // Return whether this is an Output_section with the specified flag
150 // set.
151 bool
152 is_section_flag_set(elfcpp::Elf_Xword shf) const
153 { return this->do_is_section_flag_set(shf); }
154
155 // Return the output section that this goes in, if there is one.
156 Output_section*
157 output_section()
158 { return this->do_output_section(); }
159
160 const Output_section*
161 output_section() const
162 { return this->do_output_section(); }
163
164 // Return the output section index, if there is an output section.
165 unsigned int
166 out_shndx() const
167 { return this->do_out_shndx(); }
168
169 // Set the output section index, if this is an output section.
170 void
171 set_out_shndx(unsigned int shndx)
172 { this->do_set_out_shndx(shndx); }
173
174 // Set the address and file offset of this data, and finalize the
175 // size of the data. This is called during Layout::finalize for
176 // allocated sections.
177 void
178 set_address_and_file_offset(uint64_t addr, off_t off)
179 {
180 this->set_address(addr);
181 this->set_file_offset(off);
182 this->finalize_data_size();
183 }
184
185 // Set the address.
186 void
187 set_address(uint64_t addr)
188 {
189 gold_assert(!this->is_address_valid_);
190 this->address_ = addr;
191 this->is_address_valid_ = true;
192 }
193
194 // Set the file offset.
195 void
196 set_file_offset(off_t off)
197 {
198 gold_assert(!this->is_offset_valid_);
199 this->offset_ = off;
200 this->is_offset_valid_ = true;
201 }
202
203 // Update the data size without finalizing it.
204 void
205 pre_finalize_data_size()
206 {
207 if (!this->is_data_size_valid_)
208 {
209 // Tell the child class to update the data size.
210 this->update_data_size();
211 }
212 }
213
214 // Finalize the data size.
215 void
216 finalize_data_size()
217 {
218 if (!this->is_data_size_valid_)
219 {
220 // Tell the child class to set the data size.
221 this->set_final_data_size();
222 gold_assert(this->is_data_size_valid_);
223 }
224 }
225
226 // Set the TLS offset. Called only for SHT_TLS sections.
227 void
228 set_tls_offset(uint64_t tls_base)
229 { this->do_set_tls_offset(tls_base); }
230
231 // Return the TLS offset, relative to the base of the TLS segment.
232 // Valid only for SHT_TLS sections.
233 uint64_t
234 tls_offset() const
235 { return this->do_tls_offset(); }
236
237 // Write the data to the output file. This is called after
238 // Layout::finalize is complete.
239 void
240 write(Output_file* file)
241 { this->do_write(file); }
242
243 // This is called by Layout::finalize to note that the sizes of
244 // allocated sections must now be fixed.
245 static void
246 layout_complete()
247 { Output_data::allocated_sizes_are_fixed = true; }
248
249 // Used to check that layout has been done.
250 static bool
251 is_layout_complete()
252 { return Output_data::allocated_sizes_are_fixed; }
253
254 // Note that a dynamic reloc has been applied to this data.
255 void
256 add_dynamic_reloc()
257 { this->has_dynamic_reloc_ = true; }
258
259 // Return whether a dynamic reloc has been applied.
260 bool
261 has_dynamic_reloc() const
262 { return this->has_dynamic_reloc_; }
263
264 // Whether the address is valid.
265 bool
266 is_address_valid() const
267 { return this->is_address_valid_; }
268
269 // Whether the file offset is valid.
270 bool
271 is_offset_valid() const
272 { return this->is_offset_valid_; }
273
274 // Whether the data size is valid.
275 bool
276 is_data_size_valid() const
277 { return this->is_data_size_valid_; }
278
279 // Print information to the map file.
280 void
281 print_to_mapfile(Mapfile* mapfile) const
282 { return this->do_print_to_mapfile(mapfile); }
283
284 protected:
285 // Functions that child classes may or in some cases must implement.
286
287 // Write the data to the output file.
288 virtual void
289 do_write(Output_file*) = 0;
290
291 // Return the required alignment.
292 virtual uint64_t
293 do_addralign() const = 0;
294
295 // Return whether this has a load address.
296 virtual bool
297 do_has_load_address() const
298 { return false; }
299
300 // Return the load address.
301 virtual uint64_t
302 do_load_address() const
303 { gold_unreachable(); }
304
305 // Return whether this is an Output_section.
306 virtual bool
307 do_is_section() const
308 { return false; }
309
310 // Return whether this is an Output_section of the specified type.
311 // This only needs to be implement by Output_section.
312 virtual bool
313 do_is_section_type(elfcpp::Elf_Word) const
314 { return false; }
315
316 // Return whether this is an Output_section with the specific flag
317 // set. This only needs to be implemented by Output_section.
318 virtual bool
319 do_is_section_flag_set(elfcpp::Elf_Xword) const
320 { return false; }
321
322 // Return the output section, if there is one.
323 virtual Output_section*
324 do_output_section()
325 { return NULL; }
326
327 virtual const Output_section*
328 do_output_section() const
329 { return NULL; }
330
331 // Return the output section index, if there is an output section.
332 virtual unsigned int
333 do_out_shndx() const
334 { gold_unreachable(); }
335
336 // Set the output section index, if this is an output section.
337 virtual void
338 do_set_out_shndx(unsigned int)
339 { gold_unreachable(); }
340
341 // This is a hook for derived classes to set the preliminary data size.
342 // This is called by pre_finalize_data_size, normally called during
343 // Layout::finalize, before the section address is set, and is used
344 // during an incremental update, when we need to know the size of a
345 // section before allocating space in the output file. For classes
346 // where the current data size is up to date, this default version of
347 // the method can be inherited.
348 virtual void
349 update_data_size()
350 { }
351
352 // This is a hook for derived classes to set the data size. This is
353 // called by finalize_data_size, normally called during
354 // Layout::finalize, when the section address is set.
355 virtual void
356 set_final_data_size()
357 { gold_unreachable(); }
358
359 // A hook for resetting the address and file offset.
360 virtual void
361 do_reset_address_and_file_offset()
362 { }
363
364 // Return true if address and file offset already have reset values. In
365 // other words, calling reset_address_and_file_offset will not change them.
366 // A child class overriding do_reset_address_and_file_offset may need to
367 // also override this.
368 virtual bool
369 do_address_and_file_offset_have_reset_values() const
370 { return !this->is_address_valid_ && !this->is_offset_valid_; }
371
372 // Set the TLS offset. Called only for SHT_TLS sections.
373 virtual void
374 do_set_tls_offset(uint64_t)
375 { gold_unreachable(); }
376
377 // Return the TLS offset, relative to the base of the TLS segment.
378 // Valid only for SHT_TLS sections.
379 virtual uint64_t
380 do_tls_offset() const
381 { gold_unreachable(); }
382
383 // Print to the map file. This only needs to be implemented by
384 // classes which may appear in a PT_LOAD segment.
385 virtual void
386 do_print_to_mapfile(Mapfile*) const
387 { gold_unreachable(); }
388
389 // Functions that child classes may call.
390
391 // Reset the address. The Output_section class needs this when an
392 // SHF_ALLOC input section is added to an output section which was
393 // formerly not SHF_ALLOC.
394 void
395 mark_address_invalid()
396 { this->is_address_valid_ = false; }
397
398 // Set the size of the data.
399 void
400 set_data_size(off_t data_size)
401 {
402 gold_assert(!this->is_data_size_valid_
403 && !this->is_data_size_fixed_);
404 this->data_size_ = data_size;
405 this->is_data_size_valid_ = true;
406 }
407
408 // Fix the data size. Once it is fixed, it cannot be changed
409 // and the data size remains always valid.
410 void
411 fix_data_size()
412 {
413 gold_assert(this->is_data_size_valid_);
414 this->is_data_size_fixed_ = true;
415 }
416
417 // Get the current data size--this is for the convenience of
418 // sections which build up their size over time.
419 off_t
420 current_data_size_for_child() const
421 { return this->data_size_; }
422
423 // Set the current data size--this is for the convenience of
424 // sections which build up their size over time.
425 void
426 set_current_data_size_for_child(off_t data_size)
427 {
428 gold_assert(!this->is_data_size_valid_);
429 this->data_size_ = data_size;
430 }
431
432 // Return default alignment for the target size.
433 static uint64_t
434 default_alignment();
435
436 // Return default alignment for a specified size--32 or 64.
437 static uint64_t
438 default_alignment_for_size(int size);
439
440 private:
441 Output_data(const Output_data&);
442 Output_data& operator=(const Output_data&);
443
444 // This is used for verification, to make sure that we don't try to
445 // change any sizes of allocated sections after we set the section
446 // addresses.
447 static bool allocated_sizes_are_fixed;
448
449 // Memory address in output file.
450 uint64_t address_;
451 // Size of data in output file.
452 off_t data_size_;
453 // File offset of contents in output file.
454 off_t offset_;
455 // Whether address_ is valid.
456 bool is_address_valid_ : 1;
457 // Whether data_size_ is valid.
458 bool is_data_size_valid_ : 1;
459 // Whether offset_ is valid.
460 bool is_offset_valid_ : 1;
461 // Whether data size is fixed.
462 bool is_data_size_fixed_ : 1;
463 // Whether any dynamic relocs have been applied to this section.
464 bool has_dynamic_reloc_ : 1;
465 };
466
467 // Output the section headers.
468
469 class Output_section_headers : public Output_data
470 {
471 public:
472 Output_section_headers(const Layout*,
473 const Layout::Segment_list*,
474 const Layout::Section_list*,
475 const Layout::Section_list*,
476 const Stringpool*,
477 const Output_section*);
478
479 protected:
480 // Write the data to the file.
481 void
482 do_write(Output_file*);
483
484 // Return the required alignment.
485 uint64_t
486 do_addralign() const
487 { return Output_data::default_alignment(); }
488
489 // Write to a map file.
490 void
491 do_print_to_mapfile(Mapfile* mapfile) const
492 { mapfile->print_output_data(this, _("** section headers")); }
493
494 // Update the data size.
495 void
496 update_data_size()
497 { this->set_data_size(this->do_size()); }
498
499 // Set final data size.
500 void
501 set_final_data_size()
502 { this->set_data_size(this->do_size()); }
503
504 private:
505 // Write the data to the file with the right size and endianness.
506 template<int size, bool big_endian>
507 void
508 do_sized_write(Output_file*);
509
510 // Compute data size.
511 off_t
512 do_size() const;
513
514 const Layout* layout_;
515 const Layout::Segment_list* segment_list_;
516 const Layout::Section_list* section_list_;
517 const Layout::Section_list* unattached_section_list_;
518 const Stringpool* secnamepool_;
519 const Output_section* shstrtab_section_;
520 };
521
522 // Output the segment headers.
523
524 class Output_segment_headers : public Output_data
525 {
526 public:
527 Output_segment_headers(const Layout::Segment_list& segment_list);
528
529 protected:
530 // Write the data to the file.
531 void
532 do_write(Output_file*);
533
534 // Return the required alignment.
535 uint64_t
536 do_addralign() const
537 { return Output_data::default_alignment(); }
538
539 // Write to a map file.
540 void
541 do_print_to_mapfile(Mapfile* mapfile) const
542 { mapfile->print_output_data(this, _("** segment headers")); }
543
544 // Set final data size.
545 void
546 set_final_data_size()
547 { this->set_data_size(this->do_size()); }
548
549 private:
550 // Write the data to the file with the right size and endianness.
551 template<int size, bool big_endian>
552 void
553 do_sized_write(Output_file*);
554
555 // Compute the current size.
556 off_t
557 do_size() const;
558
559 const Layout::Segment_list& segment_list_;
560 };
561
562 // Output the ELF file header.
563
564 class Output_file_header : public Output_data
565 {
566 public:
567 Output_file_header(const Target*,
568 const Symbol_table*,
569 const Output_segment_headers*);
570
571 // Add information about the section headers. We lay out the ELF
572 // file header before we create the section headers.
573 void set_section_info(const Output_section_headers*,
574 const Output_section* shstrtab);
575
576 protected:
577 // Write the data to the file.
578 void
579 do_write(Output_file*);
580
581 // Return the required alignment.
582 uint64_t
583 do_addralign() const
584 { return Output_data::default_alignment(); }
585
586 // Write to a map file.
587 void
588 do_print_to_mapfile(Mapfile* mapfile) const
589 { mapfile->print_output_data(this, _("** file header")); }
590
591 // Set final data size.
592 void
593 set_final_data_size(void)
594 { this->set_data_size(this->do_size()); }
595
596 private:
597 // Write the data to the file with the right size and endianness.
598 template<int size, bool big_endian>
599 void
600 do_sized_write(Output_file*);
601
602 // Return the value to use for the entry address.
603 template<int size>
604 typename elfcpp::Elf_types<size>::Elf_Addr
605 entry();
606
607 // Compute the current data size.
608 off_t
609 do_size() const;
610
611 const Target* target_;
612 const Symbol_table* symtab_;
613 const Output_segment_headers* segment_header_;
614 const Output_section_headers* section_header_;
615 const Output_section* shstrtab_;
616 };
617
618 // Output sections are mainly comprised of input sections. However,
619 // there are cases where we have data to write out which is not in an
620 // input section. Output_section_data is used in such cases. This is
621 // an abstract base class.
622
623 class Output_section_data : public Output_data
624 {
625 public:
626 Output_section_data(off_t data_size, uint64_t addralign,
627 bool is_data_size_fixed)
628 : Output_data(), output_section_(NULL), addralign_(addralign)
629 {
630 this->set_data_size(data_size);
631 if (is_data_size_fixed)
632 this->fix_data_size();
633 }
634
635 Output_section_data(uint64_t addralign)
636 : Output_data(), output_section_(NULL), addralign_(addralign)
637 { }
638
639 // Return the output section.
640 Output_section*
641 output_section()
642 { return this->output_section_; }
643
644 const Output_section*
645 output_section() const
646 { return this->output_section_; }
647
648 // Record the output section.
649 void
650 set_output_section(Output_section* os);
651
652 // Add an input section, for SHF_MERGE sections. This returns true
653 // if the section was handled.
654 bool
655 add_input_section(Relobj* object, unsigned int shndx)
656 { return this->do_add_input_section(object, shndx); }
657
658 // Given an input OBJECT, an input section index SHNDX within that
659 // object, and an OFFSET relative to the start of that input
660 // section, return whether or not the corresponding offset within
661 // the output section is known. If this function returns true, it
662 // sets *POUTPUT to the output offset. The value -1 indicates that
663 // this input offset is being discarded.
664 bool
665 output_offset(const Relobj* object, unsigned int shndx,
666 section_offset_type offset,
667 section_offset_type* poutput) const
668 { return this->do_output_offset(object, shndx, offset, poutput); }
669
670 // Return whether this is the merge section for the input section
671 // SHNDX in OBJECT. This should return true when output_offset
672 // would return true for some values of OFFSET.
673 bool
674 is_merge_section_for(const Relobj* object, unsigned int shndx) const
675 { return this->do_is_merge_section_for(object, shndx); }
676
677 // Write the contents to a buffer. This is used for sections which
678 // require postprocessing, such as compression.
679 void
680 write_to_buffer(unsigned char* buffer)
681 { this->do_write_to_buffer(buffer); }
682
683 // Print merge stats to stderr. This should only be called for
684 // SHF_MERGE sections.
685 void
686 print_merge_stats(const char* section_name)
687 { this->do_print_merge_stats(section_name); }
688
689 protected:
690 // The child class must implement do_write.
691
692 // The child class may implement specific adjustments to the output
693 // section.
694 virtual void
695 do_adjust_output_section(Output_section*)
696 { }
697
698 // May be implemented by child class. Return true if the section
699 // was handled.
700 virtual bool
701 do_add_input_section(Relobj*, unsigned int)
702 { gold_unreachable(); }
703
704 // The child class may implement output_offset.
705 virtual bool
706 do_output_offset(const Relobj*, unsigned int, section_offset_type,
707 section_offset_type*) const
708 { return false; }
709
710 // The child class may implement is_merge_section_for.
711 virtual bool
712 do_is_merge_section_for(const Relobj*, unsigned int) const
713 { return false; }
714
715 // The child class may implement write_to_buffer. Most child
716 // classes can not appear in a compressed section, and they do not
717 // implement this.
718 virtual void
719 do_write_to_buffer(unsigned char*)
720 { gold_unreachable(); }
721
722 // Print merge statistics.
723 virtual void
724 do_print_merge_stats(const char*)
725 { gold_unreachable(); }
726
727 // Return the required alignment.
728 uint64_t
729 do_addralign() const
730 { return this->addralign_; }
731
732 // Return the output section.
733 Output_section*
734 do_output_section()
735 { return this->output_section_; }
736
737 const Output_section*
738 do_output_section() const
739 { return this->output_section_; }
740
741 // Return the section index of the output section.
742 unsigned int
743 do_out_shndx() const;
744
745 // Set the alignment.
746 void
747 set_addralign(uint64_t addralign);
748
749 private:
750 // The output section for this section.
751 Output_section* output_section_;
752 // The required alignment.
753 uint64_t addralign_;
754 };
755
756 // Some Output_section_data classes build up their data step by step,
757 // rather than all at once. This class provides an interface for
758 // them.
759
760 class Output_section_data_build : public Output_section_data
761 {
762 public:
763 Output_section_data_build(uint64_t addralign)
764 : Output_section_data(addralign)
765 { }
766
767 Output_section_data_build(off_t data_size, uint64_t addralign)
768 : Output_section_data(data_size, addralign, false)
769 { }
770
771 // Set the current data size.
772 void
773 set_current_data_size(off_t data_size)
774 { this->set_current_data_size_for_child(data_size); }
775
776 protected:
777 // Set the final data size.
778 virtual void
779 set_final_data_size()
780 { this->set_data_size(this->current_data_size_for_child()); }
781 };
782
783 // A simple case of Output_data in which we have constant data to
784 // output.
785
786 class Output_data_const : public Output_section_data
787 {
788 public:
789 Output_data_const(const std::string& data, uint64_t addralign)
790 : Output_section_data(data.size(), addralign, true), data_(data)
791 { }
792
793 Output_data_const(const char* p, off_t len, uint64_t addralign)
794 : Output_section_data(len, addralign, true), data_(p, len)
795 { }
796
797 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
798 : Output_section_data(len, addralign, true),
799 data_(reinterpret_cast<const char*>(p), len)
800 { }
801
802 protected:
803 // Write the data to the output file.
804 void
805 do_write(Output_file*);
806
807 // Write the data to a buffer.
808 void
809 do_write_to_buffer(unsigned char* buffer)
810 { memcpy(buffer, this->data_.data(), this->data_.size()); }
811
812 // Write to a map file.
813 void
814 do_print_to_mapfile(Mapfile* mapfile) const
815 { mapfile->print_output_data(this, _("** fill")); }
816
817 private:
818 std::string data_;
819 };
820
821 // Another version of Output_data with constant data, in which the
822 // buffer is allocated by the caller.
823
824 class Output_data_const_buffer : public Output_section_data
825 {
826 public:
827 Output_data_const_buffer(const unsigned char* p, off_t len,
828 uint64_t addralign, const char* map_name)
829 : Output_section_data(len, addralign, true),
830 p_(p), map_name_(map_name)
831 { }
832
833 protected:
834 // Write the data the output file.
835 void
836 do_write(Output_file*);
837
838 // Write the data to a buffer.
839 void
840 do_write_to_buffer(unsigned char* buffer)
841 { memcpy(buffer, this->p_, this->data_size()); }
842
843 // Write to a map file.
844 void
845 do_print_to_mapfile(Mapfile* mapfile) const
846 { mapfile->print_output_data(this, _(this->map_name_)); }
847
848 private:
849 // The data to output.
850 const unsigned char* p_;
851 // Name to use in a map file. Maps are a rarely used feature, but
852 // the space usage is minor as aren't very many of these objects.
853 const char* map_name_;
854 };
855
856 // A place holder for a fixed amount of data written out via some
857 // other mechanism.
858
859 class Output_data_fixed_space : public Output_section_data
860 {
861 public:
862 Output_data_fixed_space(off_t data_size, uint64_t addralign,
863 const char* map_name)
864 : Output_section_data(data_size, addralign, true),
865 map_name_(map_name)
866 { }
867
868 protected:
869 // Write out the data--the actual data must be written out
870 // elsewhere.
871 void
872 do_write(Output_file*)
873 { }
874
875 // Write to a map file.
876 void
877 do_print_to_mapfile(Mapfile* mapfile) const
878 { mapfile->print_output_data(this, _(this->map_name_)); }
879
880 private:
881 // Name to use in a map file. Maps are a rarely used feature, but
882 // the space usage is minor as aren't very many of these objects.
883 const char* map_name_;
884 };
885
886 // A place holder for variable sized data written out via some other
887 // mechanism.
888
889 class Output_data_space : public Output_section_data_build
890 {
891 public:
892 explicit Output_data_space(uint64_t addralign, const char* map_name)
893 : Output_section_data_build(addralign),
894 map_name_(map_name)
895 { }
896
897 explicit Output_data_space(off_t data_size, uint64_t addralign,
898 const char* map_name)
899 : Output_section_data_build(data_size, addralign),
900 map_name_(map_name)
901 { }
902
903 // Set the alignment.
904 void
905 set_space_alignment(uint64_t align)
906 { this->set_addralign(align); }
907
908 protected:
909 // Write out the data--the actual data must be written out
910 // elsewhere.
911 void
912 do_write(Output_file*)
913 { }
914
915 // Write to a map file.
916 void
917 do_print_to_mapfile(Mapfile* mapfile) const
918 { mapfile->print_output_data(this, _(this->map_name_)); }
919
920 private:
921 // Name to use in a map file. Maps are a rarely used feature, but
922 // the space usage is minor as aren't very many of these objects.
923 const char* map_name_;
924 };
925
926 // Fill fixed space with zeroes. This is just like
927 // Output_data_fixed_space, except that the map name is known.
928
929 class Output_data_zero_fill : public Output_section_data
930 {
931 public:
932 Output_data_zero_fill(off_t data_size, uint64_t addralign)
933 : Output_section_data(data_size, addralign, true)
934 { }
935
936 protected:
937 // There is no data to write out.
938 void
939 do_write(Output_file*)
940 { }
941
942 // Write to a map file.
943 void
944 do_print_to_mapfile(Mapfile* mapfile) const
945 { mapfile->print_output_data(this, "** zero fill"); }
946 };
947
948 // A string table which goes into an output section.
949
950 class Output_data_strtab : public Output_section_data
951 {
952 public:
953 Output_data_strtab(Stringpool* strtab)
954 : Output_section_data(1), strtab_(strtab)
955 { }
956
957 protected:
958 // This is called to update the section size prior to assigning
959 // the address and file offset.
960 void
961 update_data_size()
962 { this->set_final_data_size(); }
963
964 // This is called to set the address and file offset. Here we make
965 // sure that the Stringpool is finalized.
966 void
967 set_final_data_size();
968
969 // Write out the data.
970 void
971 do_write(Output_file*);
972
973 // Write the data to a buffer.
974 void
975 do_write_to_buffer(unsigned char* buffer)
976 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
977
978 // Write to a map file.
979 void
980 do_print_to_mapfile(Mapfile* mapfile) const
981 { mapfile->print_output_data(this, _("** string table")); }
982
983 private:
984 Stringpool* strtab_;
985 };
986
987 // This POD class is used to represent a single reloc in the output
988 // file. This could be a private class within Output_data_reloc, but
989 // the templatization is complex enough that I broke it out into a
990 // separate class. The class is templatized on either elfcpp::SHT_REL
991 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
992 // relocation or an ordinary relocation.
993
994 // A relocation can be against a global symbol, a local symbol, a
995 // local section symbol, an output section, or the undefined symbol at
996 // index 0. We represent the latter by using a NULL global symbol.
997
998 template<int sh_type, bool dynamic, int size, bool big_endian>
999 class Output_reloc;
1000
1001 template<bool dynamic, int size, bool big_endian>
1002 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1003 {
1004 public:
1005 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1006 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1007
1008 static const Address invalid_address = static_cast<Address>(0) - 1;
1009
1010 // An uninitialized entry. We need this because we want to put
1011 // instances of this class into an STL container.
1012 Output_reloc()
1013 : local_sym_index_(INVALID_CODE)
1014 { }
1015
1016 // We have a bunch of different constructors. They come in pairs
1017 // depending on how the address of the relocation is specified. It
1018 // can either be an offset in an Output_data or an offset in an
1019 // input section.
1020
1021 // A reloc against a global symbol.
1022
1023 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1024 Address address, bool is_relative, bool is_symbolless,
1025 bool use_plt_offset);
1026
1027 Output_reloc(Symbol* gsym, unsigned int type,
1028 Sized_relobj<size, big_endian>* relobj,
1029 unsigned int shndx, Address address, bool is_relative,
1030 bool is_symbolless, bool use_plt_offset);
1031
1032 // A reloc against a local symbol or local section symbol.
1033
1034 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1035 unsigned int local_sym_index, unsigned int type,
1036 Output_data* od, Address address, bool is_relative,
1037 bool is_symbolless, bool is_section_symbol,
1038 bool use_plt_offset);
1039
1040 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1041 unsigned int local_sym_index, unsigned int type,
1042 unsigned int shndx, Address address, bool is_relative,
1043 bool is_symbolless, bool is_section_symbol,
1044 bool use_plt_offset);
1045
1046 // A reloc against the STT_SECTION symbol of an output section.
1047
1048 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1049 Address address);
1050
1051 Output_reloc(Output_section* os, unsigned int type,
1052 Sized_relobj<size, big_endian>* relobj,
1053 unsigned int shndx, Address address);
1054
1055 // An absolute relocation with no symbol.
1056
1057 Output_reloc(unsigned int type, Output_data* od, Address address);
1058
1059 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1060 unsigned int shndx, Address address);
1061
1062 // A target specific relocation. The target will be called to get
1063 // the symbol index, passing ARG. The type and offset will be set
1064 // as for other relocation types.
1065
1066 Output_reloc(unsigned int type, void* arg, Output_data* od,
1067 Address address);
1068
1069 Output_reloc(unsigned int type, void* arg,
1070 Sized_relobj<size, big_endian>* relobj,
1071 unsigned int shndx, Address address);
1072
1073 // Return the reloc type.
1074 unsigned int
1075 type() const
1076 { return this->type_; }
1077
1078 // Return whether this is a RELATIVE relocation.
1079 bool
1080 is_relative() const
1081 { return this->is_relative_; }
1082
1083 // Return whether this is a relocation which should not use
1084 // a symbol, but which obtains its addend from a symbol.
1085 bool
1086 is_symbolless() const
1087 { return this->is_symbolless_; }
1088
1089 // Return whether this is against a local section symbol.
1090 bool
1091 is_local_section_symbol() const
1092 {
1093 return (this->local_sym_index_ != GSYM_CODE
1094 && this->local_sym_index_ != SECTION_CODE
1095 && this->local_sym_index_ != INVALID_CODE
1096 && this->local_sym_index_ != TARGET_CODE
1097 && this->is_section_symbol_);
1098 }
1099
1100 // Return whether this is a target specific relocation.
1101 bool
1102 is_target_specific() const
1103 { return this->local_sym_index_ == TARGET_CODE; }
1104
1105 // Return the argument to pass to the target for a target specific
1106 // relocation.
1107 void*
1108 target_arg() const
1109 {
1110 gold_assert(this->local_sym_index_ == TARGET_CODE);
1111 return this->u1_.arg;
1112 }
1113
1114 // For a local section symbol, return the offset of the input
1115 // section within the output section. ADDEND is the addend being
1116 // applied to the input section.
1117 Address
1118 local_section_offset(Addend addend) const;
1119
1120 // Get the value of the symbol referred to by a Rel relocation when
1121 // we are adding the given ADDEND.
1122 Address
1123 symbol_value(Addend addend) const;
1124
1125 // If this relocation is against an input section, return the
1126 // relocatable object containing the input section.
1127 Sized_relobj<size, big_endian>*
1128 get_relobj() const
1129 {
1130 if (this->shndx_ == INVALID_CODE)
1131 return NULL;
1132 return this->u2_.relobj;
1133 }
1134
1135 // Write the reloc entry to an output view.
1136 void
1137 write(unsigned char* pov) const;
1138
1139 // Write the offset and info fields to Write_rel.
1140 template<typename Write_rel>
1141 void write_rel(Write_rel*) const;
1142
1143 // This is used when sorting dynamic relocs. Return -1 to sort this
1144 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1145 int
1146 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1147 const;
1148
1149 // Return whether this reloc should be sorted before the argument
1150 // when sorting dynamic relocs.
1151 bool
1152 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1153 r2) const
1154 { return this->compare(r2) < 0; }
1155
1156 private:
1157 // Record that we need a dynamic symbol index.
1158 void
1159 set_needs_dynsym_index();
1160
1161 // Return the symbol index.
1162 unsigned int
1163 get_symbol_index() const;
1164
1165 // Return the output address.
1166 Address
1167 get_address() const;
1168
1169 // Codes for local_sym_index_.
1170 enum
1171 {
1172 // Global symbol.
1173 GSYM_CODE = -1U,
1174 // Output section.
1175 SECTION_CODE = -2U,
1176 // Target specific.
1177 TARGET_CODE = -3U,
1178 // Invalid uninitialized entry.
1179 INVALID_CODE = -4U
1180 };
1181
1182 union
1183 {
1184 // For a local symbol or local section symbol
1185 // (this->local_sym_index_ >= 0), the object. We will never
1186 // generate a relocation against a local symbol in a dynamic
1187 // object; that doesn't make sense. And our callers will always
1188 // be templatized, so we use Sized_relobj here.
1189 Sized_relobj<size, big_endian>* relobj;
1190 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1191 // symbol. If this is NULL, it indicates a relocation against the
1192 // undefined 0 symbol.
1193 Symbol* gsym;
1194 // For a relocation against an output section
1195 // (this->local_sym_index_ == SECTION_CODE), the output section.
1196 Output_section* os;
1197 // For a target specific relocation, an argument to pass to the
1198 // target.
1199 void* arg;
1200 } u1_;
1201 union
1202 {
1203 // If this->shndx_ is not INVALID CODE, the object which holds the
1204 // input section being used to specify the reloc address.
1205 Sized_relobj<size, big_endian>* relobj;
1206 // If this->shndx_ is INVALID_CODE, the output data being used to
1207 // specify the reloc address. This may be NULL if the reloc
1208 // address is absolute.
1209 Output_data* od;
1210 } u2_;
1211 // The address offset within the input section or the Output_data.
1212 Address address_;
1213 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1214 // relocation against an output section, or TARGET_CODE for a target
1215 // specific relocation, or INVALID_CODE for an uninitialized value.
1216 // Otherwise, for a local symbol (this->is_section_symbol_ is
1217 // false), the local symbol index. For a local section symbol
1218 // (this->is_section_symbol_ is true), the section index in the
1219 // input file.
1220 unsigned int local_sym_index_;
1221 // The reloc type--a processor specific code.
1222 unsigned int type_ : 28;
1223 // True if the relocation is a RELATIVE relocation.
1224 bool is_relative_ : 1;
1225 // True if the relocation is one which should not use
1226 // a symbol, but which obtains its addend from a symbol.
1227 bool is_symbolless_ : 1;
1228 // True if the relocation is against a section symbol.
1229 bool is_section_symbol_ : 1;
1230 // True if the addend should be the PLT offset.
1231 // (Used only for RELA, but stored here for space.)
1232 bool use_plt_offset_ : 1;
1233 // If the reloc address is an input section in an object, the
1234 // section index. This is INVALID_CODE if the reloc address is
1235 // specified in some other way.
1236 unsigned int shndx_;
1237 };
1238
1239 // The SHT_RELA version of Output_reloc<>. This is just derived from
1240 // the SHT_REL version of Output_reloc, but it adds an addend.
1241
1242 template<bool dynamic, int size, bool big_endian>
1243 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1244 {
1245 public:
1246 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1247 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1248
1249 // An uninitialized entry.
1250 Output_reloc()
1251 : rel_()
1252 { }
1253
1254 // A reloc against a global symbol.
1255
1256 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1257 Address address, Addend addend, bool is_relative,
1258 bool is_symbolless, bool use_plt_offset)
1259 : rel_(gsym, type, od, address, is_relative, is_symbolless,
1260 use_plt_offset),
1261 addend_(addend)
1262 { }
1263
1264 Output_reloc(Symbol* gsym, unsigned int type,
1265 Sized_relobj<size, big_endian>* relobj,
1266 unsigned int shndx, Address address, Addend addend,
1267 bool is_relative, bool is_symbolless, bool use_plt_offset)
1268 : rel_(gsym, type, relobj, shndx, address, is_relative,
1269 is_symbolless, use_plt_offset), addend_(addend)
1270 { }
1271
1272 // A reloc against a local symbol.
1273
1274 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1275 unsigned int local_sym_index, unsigned int type,
1276 Output_data* od, Address address,
1277 Addend addend, bool is_relative,
1278 bool is_symbolless, bool is_section_symbol,
1279 bool use_plt_offset)
1280 : rel_(relobj, local_sym_index, type, od, address, is_relative,
1281 is_symbolless, is_section_symbol, use_plt_offset),
1282 addend_(addend)
1283 { }
1284
1285 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1286 unsigned int local_sym_index, unsigned int type,
1287 unsigned int shndx, Address address,
1288 Addend addend, bool is_relative,
1289 bool is_symbolless, bool is_section_symbol,
1290 bool use_plt_offset)
1291 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1292 is_symbolless, is_section_symbol, use_plt_offset),
1293 addend_(addend)
1294 { }
1295
1296 // A reloc against the STT_SECTION symbol of an output section.
1297
1298 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1299 Address address, Addend addend)
1300 : rel_(os, type, od, address), addend_(addend)
1301 { }
1302
1303 Output_reloc(Output_section* os, unsigned int type,
1304 Sized_relobj<size, big_endian>* relobj,
1305 unsigned int shndx, Address address, Addend addend)
1306 : rel_(os, type, relobj, shndx, address), addend_(addend)
1307 { }
1308
1309 // An absolute relocation with no symbol.
1310
1311 Output_reloc(unsigned int type, Output_data* od, Address address,
1312 Addend addend)
1313 : rel_(type, od, address), addend_(addend)
1314 { }
1315
1316 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1317 unsigned int shndx, Address address, Addend addend)
1318 : rel_(type, relobj, shndx, address), addend_(addend)
1319 { }
1320
1321 // A target specific relocation. The target will be called to get
1322 // the symbol index and the addend, passing ARG. The type and
1323 // offset will be set as for other relocation types.
1324
1325 Output_reloc(unsigned int type, void* arg, Output_data* od,
1326 Address address, Addend addend)
1327 : rel_(type, arg, od, address), addend_(addend)
1328 { }
1329
1330 Output_reloc(unsigned int type, void* arg,
1331 Sized_relobj<size, big_endian>* relobj,
1332 unsigned int shndx, Address address, Addend addend)
1333 : rel_(type, arg, relobj, shndx, address), addend_(addend)
1334 { }
1335
1336 // Return whether this is a RELATIVE relocation.
1337 bool
1338 is_relative() const
1339 { return this->rel_.is_relative(); }
1340
1341 // Return whether this is a relocation which should not use
1342 // a symbol, but which obtains its addend from a symbol.
1343 bool
1344 is_symbolless() const
1345 { return this->rel_.is_symbolless(); }
1346
1347 // If this relocation is against an input section, return the
1348 // relocatable object containing the input section.
1349 Sized_relobj<size, big_endian>*
1350 get_relobj() const
1351 { return this->rel_.get_relobj(); }
1352
1353 // Write the reloc entry to an output view.
1354 void
1355 write(unsigned char* pov) const;
1356
1357 // Return whether this reloc should be sorted before the argument
1358 // when sorting dynamic relocs.
1359 bool
1360 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1361 r2) const
1362 {
1363 int i = this->rel_.compare(r2.rel_);
1364 if (i < 0)
1365 return true;
1366 else if (i > 0)
1367 return false;
1368 else
1369 return this->addend_ < r2.addend_;
1370 }
1371
1372 private:
1373 // The basic reloc.
1374 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1375 // The addend.
1376 Addend addend_;
1377 };
1378
1379 // Output_data_reloc_generic is a non-template base class for
1380 // Output_data_reloc_base. This gives the generic code a way to hold
1381 // a pointer to a reloc section.
1382
1383 class Output_data_reloc_generic : public Output_section_data_build
1384 {
1385 public:
1386 Output_data_reloc_generic(int size, bool sort_relocs)
1387 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1388 relative_reloc_count_(0), sort_relocs_(sort_relocs)
1389 { }
1390
1391 // Return the number of relative relocs in this section.
1392 size_t
1393 relative_reloc_count() const
1394 { return this->relative_reloc_count_; }
1395
1396 // Whether we should sort the relocs.
1397 bool
1398 sort_relocs() const
1399 { return this->sort_relocs_; }
1400
1401 // Add a reloc of type TYPE against the global symbol GSYM. The
1402 // relocation applies to the data at offset ADDRESS within OD.
1403 virtual void
1404 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1405 uint64_t address, uint64_t addend) = 0;
1406
1407 // Add a reloc of type TYPE against the global symbol GSYM. The
1408 // relocation applies to data at offset ADDRESS within section SHNDX
1409 // of object file RELOBJ. OD is the associated output section.
1410 virtual void
1411 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1412 Relobj* relobj, unsigned int shndx, uint64_t address,
1413 uint64_t addend) = 0;
1414
1415 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1416 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1417 // within OD.
1418 virtual void
1419 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1420 unsigned int type, Output_data* od, uint64_t address,
1421 uint64_t addend) = 0;
1422
1423 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1424 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1425 // within section SHNDX of RELOBJ. OD is the associated output
1426 // section.
1427 virtual void
1428 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1429 unsigned int type, Output_data* od, unsigned int shndx,
1430 uint64_t address, uint64_t addend) = 0;
1431
1432 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1433 // output section OS. The relocation applies to the data at offset
1434 // ADDRESS within OD.
1435 virtual void
1436 add_output_section_generic(Output_section *os, unsigned int type,
1437 Output_data* od, uint64_t address,
1438 uint64_t addend) = 0;
1439
1440 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1441 // output section OS. The relocation applies to the data at offset
1442 // ADDRESS within section SHNDX of RELOBJ. OD is the associated
1443 // output section.
1444 virtual void
1445 add_output_section_generic(Output_section* os, unsigned int type,
1446 Output_data* od, Relobj* relobj,
1447 unsigned int shndx, uint64_t address,
1448 uint64_t addend) = 0;
1449
1450 protected:
1451 // Note that we've added another relative reloc.
1452 void
1453 bump_relative_reloc_count()
1454 { ++this->relative_reloc_count_; }
1455
1456 private:
1457 // The number of relative relocs added to this section. This is to
1458 // support DT_RELCOUNT.
1459 size_t relative_reloc_count_;
1460 // Whether to sort the relocations when writing them out, to make
1461 // the dynamic linker more efficient.
1462 bool sort_relocs_;
1463 };
1464
1465 // Output_data_reloc is used to manage a section containing relocs.
1466 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1467 // indicates whether this is a dynamic relocation or a normal
1468 // relocation. Output_data_reloc_base is a base class.
1469 // Output_data_reloc is the real class, which we specialize based on
1470 // the reloc type.
1471
1472 template<int sh_type, bool dynamic, int size, bool big_endian>
1473 class Output_data_reloc_base : public Output_data_reloc_generic
1474 {
1475 public:
1476 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1477 typedef typename Output_reloc_type::Address Address;
1478 static const int reloc_size =
1479 Reloc_types<sh_type, size, big_endian>::reloc_size;
1480
1481 // Construct the section.
1482 Output_data_reloc_base(bool sort_relocs)
1483 : Output_data_reloc_generic(size, sort_relocs)
1484 { }
1485
1486 protected:
1487 // Write out the data.
1488 void
1489 do_write(Output_file*);
1490
1491 // Set the entry size and the link.
1492 void
1493 do_adjust_output_section(Output_section* os);
1494
1495 // Write to a map file.
1496 void
1497 do_print_to_mapfile(Mapfile* mapfile) const
1498 {
1499 mapfile->print_output_data(this,
1500 (dynamic
1501 ? _("** dynamic relocs")
1502 : _("** relocs")));
1503 }
1504
1505 // Add a relocation entry.
1506 void
1507 add(Output_data* od, const Output_reloc_type& reloc)
1508 {
1509 this->relocs_.push_back(reloc);
1510 this->set_current_data_size(this->relocs_.size() * reloc_size);
1511 if (dynamic)
1512 od->add_dynamic_reloc();
1513 if (reloc.is_relative())
1514 this->bump_relative_reloc_count();
1515 Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
1516 if (relobj != NULL)
1517 relobj->add_dyn_reloc(this->relocs_.size() - 1);
1518 }
1519
1520 private:
1521 typedef std::vector<Output_reloc_type> Relocs;
1522
1523 // The class used to sort the relocations.
1524 struct Sort_relocs_comparison
1525 {
1526 bool
1527 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1528 { return r1.sort_before(r2); }
1529 };
1530
1531 // The relocations in this section.
1532 Relocs relocs_;
1533 };
1534
1535 // The class which callers actually create.
1536
1537 template<int sh_type, bool dynamic, int size, bool big_endian>
1538 class Output_data_reloc;
1539
1540 // The SHT_REL version of Output_data_reloc.
1541
1542 template<bool dynamic, int size, bool big_endian>
1543 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1544 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1545 {
1546 private:
1547 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1548 big_endian> Base;
1549
1550 public:
1551 typedef typename Base::Output_reloc_type Output_reloc_type;
1552 typedef typename Output_reloc_type::Address Address;
1553
1554 Output_data_reloc(bool sr)
1555 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1556 { }
1557
1558 // Add a reloc against a global symbol.
1559
1560 void
1561 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1562 { this->add(od, Output_reloc_type(gsym, type, od, address, false, false, false)); }
1563
1564 void
1565 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1566 Sized_relobj<size, big_endian>* relobj,
1567 unsigned int shndx, Address address)
1568 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1569 false, false, false)); }
1570
1571 void
1572 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1573 uint64_t address, uint64_t addend)
1574 {
1575 gold_assert(addend == 0);
1576 this->add(od, Output_reloc_type(gsym, type, od,
1577 convert_types<Address, uint64_t>(address),
1578 false, false, false));
1579 }
1580
1581 void
1582 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1583 Relobj* relobj, unsigned int shndx, uint64_t address,
1584 uint64_t addend)
1585 {
1586 gold_assert(addend == 0);
1587 Sized_relobj<size, big_endian>* sized_relobj =
1588 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1589 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1590 convert_types<Address, uint64_t>(address),
1591 false, false, false));
1592 }
1593
1594 // Add a RELATIVE reloc against a global symbol. The final relocation
1595 // will not reference the symbol.
1596
1597 void
1598 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1599 Address address)
1600 { this->add(od, Output_reloc_type(gsym, type, od, address, true, true,
1601 false)); }
1602
1603 void
1604 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1605 Sized_relobj<size, big_endian>* relobj,
1606 unsigned int shndx, Address address)
1607 {
1608 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1609 true, true, false));
1610 }
1611
1612 // Add a global relocation which does not use a symbol for the relocation,
1613 // but which gets its addend from a symbol.
1614
1615 void
1616 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1617 Output_data* od, Address address)
1618 { this->add(od, Output_reloc_type(gsym, type, od, address, false, true,
1619 false)); }
1620
1621 void
1622 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1623 Output_data* od,
1624 Sized_relobj<size, big_endian>* relobj,
1625 unsigned int shndx, Address address)
1626 {
1627 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1628 false, true, false));
1629 }
1630
1631 // Add a reloc against a local symbol.
1632
1633 void
1634 add_local(Sized_relobj<size, big_endian>* relobj,
1635 unsigned int local_sym_index, unsigned int type,
1636 Output_data* od, Address address)
1637 {
1638 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1639 address, false, false, false, false));
1640 }
1641
1642 void
1643 add_local(Sized_relobj<size, big_endian>* relobj,
1644 unsigned int local_sym_index, unsigned int type,
1645 Output_data* od, unsigned int shndx, Address address)
1646 {
1647 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1648 address, false, false, false, false));
1649 }
1650
1651 void
1652 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1653 unsigned int type, Output_data* od, uint64_t address,
1654 uint64_t addend)
1655 {
1656 gold_assert(addend == 0);
1657 Sized_relobj<size, big_endian>* sized_relobj =
1658 static_cast<Sized_relobj<size, big_endian> *>(relobj);
1659 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1660 convert_types<Address, uint64_t>(address),
1661 false, false, false, false));
1662 }
1663
1664 void
1665 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1666 unsigned int type, Output_data* od, unsigned int shndx,
1667 uint64_t address, uint64_t addend)
1668 {
1669 gold_assert(addend == 0);
1670 Sized_relobj<size, big_endian>* sized_relobj =
1671 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1672 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
1673 convert_types<Address, uint64_t>(address),
1674 false, false, false, false));
1675 }
1676
1677 // Add a RELATIVE reloc against a local symbol.
1678
1679 void
1680 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1681 unsigned int local_sym_index, unsigned int type,
1682 Output_data* od, Address address)
1683 {
1684 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1685 address, true, true, false, false));
1686 }
1687
1688 void
1689 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1690 unsigned int local_sym_index, unsigned int type,
1691 Output_data* od, unsigned int shndx, Address address)
1692 {
1693 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1694 address, true, true, false, false));
1695 }
1696
1697 // Add a local relocation which does not use a symbol for the relocation,
1698 // but which gets its addend from a symbol.
1699
1700 void
1701 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1702 unsigned int local_sym_index, unsigned int type,
1703 Output_data* od, Address address)
1704 {
1705 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1706 address, false, true, false, false));
1707 }
1708
1709 void
1710 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1711 unsigned int local_sym_index, unsigned int type,
1712 Output_data* od, unsigned int shndx,
1713 Address address)
1714 {
1715 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1716 address, false, true, false, false));
1717 }
1718
1719 // Add a reloc against a local section symbol. This will be
1720 // converted into a reloc against the STT_SECTION symbol of the
1721 // output section.
1722
1723 void
1724 add_local_section(Sized_relobj<size, big_endian>* relobj,
1725 unsigned int input_shndx, unsigned int type,
1726 Output_data* od, Address address)
1727 {
1728 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1729 address, false, false, true, false));
1730 }
1731
1732 void
1733 add_local_section(Sized_relobj<size, big_endian>* relobj,
1734 unsigned int input_shndx, unsigned int type,
1735 Output_data* od, unsigned int shndx, Address address)
1736 {
1737 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1738 address, false, false, true, false));
1739 }
1740
1741 // A reloc against the STT_SECTION symbol of an output section.
1742 // OS is the Output_section that the relocation refers to; OD is
1743 // the Output_data object being relocated.
1744
1745 void
1746 add_output_section(Output_section* os, unsigned int type,
1747 Output_data* od, Address address)
1748 { this->add(od, Output_reloc_type(os, type, od, address)); }
1749
1750 void
1751 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1752 Sized_relobj<size, big_endian>* relobj,
1753 unsigned int shndx, Address address)
1754 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
1755
1756 void
1757 add_output_section_generic(Output_section* os, unsigned int type,
1758 Output_data* od, uint64_t address,
1759 uint64_t addend)
1760 {
1761 gold_assert(addend == 0);
1762 this->add(od, Output_reloc_type(os, type, od,
1763 convert_types<Address, uint64_t>(address)));
1764 }
1765
1766 void
1767 add_output_section_generic(Output_section* os, unsigned int type,
1768 Output_data* od, Relobj* relobj,
1769 unsigned int shndx, uint64_t address,
1770 uint64_t addend)
1771 {
1772 gold_assert(addend == 0);
1773 Sized_relobj<size, big_endian>* sized_relobj =
1774 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1775 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
1776 convert_types<Address, uint64_t>(address)));
1777 }
1778
1779 // Add an absolute relocation.
1780
1781 void
1782 add_absolute(unsigned int type, Output_data* od, Address address)
1783 { this->add(od, Output_reloc_type(type, od, address)); }
1784
1785 void
1786 add_absolute(unsigned int type, Output_data* od,
1787 Sized_relobj<size, big_endian>* relobj,
1788 unsigned int shndx, Address address)
1789 { this->add(od, Output_reloc_type(type, relobj, shndx, address)); }
1790
1791 // Add a target specific relocation. A target which calls this must
1792 // define the reloc_symbol_index and reloc_addend virtual functions.
1793
1794 void
1795 add_target_specific(unsigned int type, void* arg, Output_data* od,
1796 Address address)
1797 { this->add(od, Output_reloc_type(type, arg, od, address)); }
1798
1799 void
1800 add_target_specific(unsigned int type, void* arg, Output_data* od,
1801 Sized_relobj<size, big_endian>* relobj,
1802 unsigned int shndx, Address address)
1803 { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
1804 };
1805
1806 // The SHT_RELA version of Output_data_reloc.
1807
1808 template<bool dynamic, int size, bool big_endian>
1809 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1810 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1811 {
1812 private:
1813 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1814 big_endian> Base;
1815
1816 public:
1817 typedef typename Base::Output_reloc_type Output_reloc_type;
1818 typedef typename Output_reloc_type::Address Address;
1819 typedef typename Output_reloc_type::Addend Addend;
1820
1821 Output_data_reloc(bool sr)
1822 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1823 { }
1824
1825 // Add a reloc against a global symbol.
1826
1827 void
1828 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1829 Address address, Addend addend)
1830 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1831 false, false, false)); }
1832
1833 void
1834 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1835 Sized_relobj<size, big_endian>* relobj,
1836 unsigned int shndx, Address address,
1837 Addend addend)
1838 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1839 addend, false, false, false)); }
1840
1841 void
1842 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1843 uint64_t address, uint64_t addend)
1844 {
1845 this->add(od, Output_reloc_type(gsym, type, od,
1846 convert_types<Address, uint64_t>(address),
1847 convert_types<Addend, uint64_t>(addend),
1848 false, false, false));
1849 }
1850
1851 void
1852 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1853 Relobj* relobj, unsigned int shndx, uint64_t address,
1854 uint64_t addend)
1855 {
1856 Sized_relobj<size, big_endian>* sized_relobj =
1857 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1858 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1859 convert_types<Address, uint64_t>(address),
1860 convert_types<Addend, uint64_t>(addend),
1861 false, false, false));
1862 }
1863
1864 // Add a RELATIVE reloc against a global symbol. The final output
1865 // relocation will not reference the symbol, but we must keep the symbol
1866 // information long enough to set the addend of the relocation correctly
1867 // when it is written.
1868
1869 void
1870 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1871 Address address, Addend addend, bool use_plt_offset)
1872 { this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
1873 true, use_plt_offset)); }
1874
1875 void
1876 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1877 Sized_relobj<size, big_endian>* relobj,
1878 unsigned int shndx, Address address, Addend addend,
1879 bool use_plt_offset)
1880 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1881 addend, true, true, use_plt_offset)); }
1882
1883 // Add a global relocation which does not use a symbol for the relocation,
1884 // but which gets its addend from a symbol.
1885
1886 void
1887 add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
1888 Address address, Addend addend)
1889 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1890 false, true, false)); }
1891
1892 void
1893 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1894 Output_data* od,
1895 Sized_relobj<size, big_endian>* relobj,
1896 unsigned int shndx, Address address, Addend addend)
1897 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1898 addend, false, true, false)); }
1899
1900 // Add a reloc against a local symbol.
1901
1902 void
1903 add_local(Sized_relobj<size, big_endian>* relobj,
1904 unsigned int local_sym_index, unsigned int type,
1905 Output_data* od, Address address, Addend addend)
1906 {
1907 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1908 addend, false, false, false, false));
1909 }
1910
1911 void
1912 add_local(Sized_relobj<size, big_endian>* relobj,
1913 unsigned int local_sym_index, unsigned int type,
1914 Output_data* od, unsigned int shndx, Address address,
1915 Addend addend)
1916 {
1917 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1918 address, addend, false, false, false,
1919 false));
1920 }
1921
1922 void
1923 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1924 unsigned int type, Output_data* od, uint64_t address,
1925 uint64_t addend)
1926 {
1927 Sized_relobj<size, big_endian>* sized_relobj =
1928 static_cast<Sized_relobj<size, big_endian> *>(relobj);
1929 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1930 convert_types<Address, uint64_t>(address),
1931 convert_types<Addend, uint64_t>(addend),
1932 false, false, false, false));
1933 }
1934
1935 void
1936 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1937 unsigned int type, Output_data* od, unsigned int shndx,
1938 uint64_t address, uint64_t addend)
1939 {
1940 Sized_relobj<size, big_endian>* sized_relobj =
1941 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1942 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
1943 convert_types<Address, uint64_t>(address),
1944 convert_types<Addend, uint64_t>(addend),
1945 false, false, false, false));
1946 }
1947
1948 // Add a RELATIVE reloc against a local symbol.
1949
1950 void
1951 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1952 unsigned int local_sym_index, unsigned int type,
1953 Output_data* od, Address address, Addend addend,
1954 bool use_plt_offset)
1955 {
1956 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1957 addend, true, true, false,
1958 use_plt_offset));
1959 }
1960
1961 void
1962 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1963 unsigned int local_sym_index, unsigned int type,
1964 Output_data* od, unsigned int shndx, Address address,
1965 Addend addend, bool use_plt_offset)
1966 {
1967 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1968 address, addend, true, true, false,
1969 use_plt_offset));
1970 }
1971
1972 // Add a local relocation which does not use a symbol for the relocation,
1973 // but which gets it's addend from a symbol.
1974
1975 void
1976 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1977 unsigned int local_sym_index, unsigned int type,
1978 Output_data* od, Address address, Addend addend)
1979 {
1980 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1981 addend, false, true, false, false));
1982 }
1983
1984 void
1985 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1986 unsigned int local_sym_index, unsigned int type,
1987 Output_data* od, unsigned int shndx,
1988 Address address, Addend addend)
1989 {
1990 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1991 address, addend, false, true, false,
1992 false));
1993 }
1994
1995 // Add a reloc against a local section symbol. This will be
1996 // converted into a reloc against the STT_SECTION symbol of the
1997 // output section.
1998
1999 void
2000 add_local_section(Sized_relobj<size, big_endian>* relobj,
2001 unsigned int input_shndx, unsigned int type,
2002 Output_data* od, Address address, Addend addend)
2003 {
2004 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
2005 addend, false, false, true, false));
2006 }
2007
2008 void
2009 add_local_section(Sized_relobj<size, big_endian>* relobj,
2010 unsigned int input_shndx, unsigned int type,
2011 Output_data* od, unsigned int shndx, Address address,
2012 Addend addend)
2013 {
2014 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
2015 address, addend, false, false, true,
2016 false));
2017 }
2018
2019 // A reloc against the STT_SECTION symbol of an output section.
2020
2021 void
2022 add_output_section(Output_section* os, unsigned int type, Output_data* od,
2023 Address address, Addend addend)
2024 { this->add(od, Output_reloc_type(os, type, od, address, addend)); }
2025
2026 void
2027 add_output_section(Output_section* os, unsigned int type, Output_data* od,
2028 Sized_relobj<size, big_endian>* relobj,
2029 unsigned int shndx, Address address, Addend addend)
2030 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
2031 addend)); }
2032
2033 void
2034 add_output_section_generic(Output_section* os, unsigned int type,
2035 Output_data* od, uint64_t address,
2036 uint64_t addend)
2037 {
2038 this->add(od, Output_reloc_type(os, type, od,
2039 convert_types<Address, uint64_t>(address),
2040 convert_types<Addend, uint64_t>(addend)));
2041 }
2042
2043 void
2044 add_output_section_generic(Output_section* os, unsigned int type,
2045 Output_data* od, Relobj* relobj,
2046 unsigned int shndx, uint64_t address,
2047 uint64_t addend)
2048 {
2049 Sized_relobj<size, big_endian>* sized_relobj =
2050 static_cast<Sized_relobj<size, big_endian>*>(relobj);
2051 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
2052 convert_types<Address, uint64_t>(address),
2053 convert_types<Addend, uint64_t>(addend)));
2054 }
2055
2056 // Add an absolute relocation.
2057
2058 void
2059 add_absolute(unsigned int type, Output_data* od, Address address,
2060 Addend addend)
2061 { this->add(od, Output_reloc_type(type, od, address, addend)); }
2062
2063 void
2064 add_absolute(unsigned int type, Output_data* od,
2065 Sized_relobj<size, big_endian>* relobj,
2066 unsigned int shndx, Address address, Addend addend)
2067 { this->add(od, Output_reloc_type(type, relobj, shndx, address, addend)); }
2068
2069 // Add a target specific relocation. A target which calls this must
2070 // define the reloc_symbol_index and reloc_addend virtual functions.
2071
2072 void
2073 add_target_specific(unsigned int type, void* arg, Output_data* od,
2074 Address address, Addend addend)
2075 { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
2076
2077 void
2078 add_target_specific(unsigned int type, void* arg, Output_data* od,
2079 Sized_relobj<size, big_endian>* relobj,
2080 unsigned int shndx, Address address, Addend addend)
2081 {
2082 this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
2083 addend));
2084 }
2085 };
2086
2087 // Output_relocatable_relocs represents a relocation section in a
2088 // relocatable link. The actual data is written out in the target
2089 // hook relocate_for_relocatable. This just saves space for it.
2090
2091 template<int sh_type, int size, bool big_endian>
2092 class Output_relocatable_relocs : public Output_section_data
2093 {
2094 public:
2095 Output_relocatable_relocs(Relocatable_relocs* rr)
2096 : Output_section_data(Output_data::default_alignment_for_size(size)),
2097 rr_(rr)
2098 { }
2099
2100 void
2101 set_final_data_size();
2102
2103 // Write out the data. There is nothing to do here.
2104 void
2105 do_write(Output_file*)
2106 { }
2107
2108 // Write to a map file.
2109 void
2110 do_print_to_mapfile(Mapfile* mapfile) const
2111 { mapfile->print_output_data(this, _("** relocs")); }
2112
2113 private:
2114 // The relocs associated with this input section.
2115 Relocatable_relocs* rr_;
2116 };
2117
2118 // Handle a GROUP section.
2119
2120 template<int size, bool big_endian>
2121 class Output_data_group : public Output_section_data
2122 {
2123 public:
2124 // The constructor clears *INPUT_SHNDXES.
2125 Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
2126 section_size_type entry_count,
2127 elfcpp::Elf_Word flags,
2128 std::vector<unsigned int>* input_shndxes);
2129
2130 void
2131 do_write(Output_file*);
2132
2133 // Write to a map file.
2134 void
2135 do_print_to_mapfile(Mapfile* mapfile) const
2136 { mapfile->print_output_data(this, _("** group")); }
2137
2138 // Set final data size.
2139 void
2140 set_final_data_size()
2141 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
2142
2143 private:
2144 // The input object.
2145 Sized_relobj_file<size, big_endian>* relobj_;
2146 // The group flag word.
2147 elfcpp::Elf_Word flags_;
2148 // The section indexes of the input sections in this group.
2149 std::vector<unsigned int> input_shndxes_;
2150 };
2151
2152 // Output_data_got is used to manage a GOT. Each entry in the GOT is
2153 // for one symbol--either a global symbol or a local symbol in an
2154 // object. The target specific code adds entries to the GOT as
2155 // needed. The GOT_SIZE template parameter is the size in bits of a
2156 // GOT entry, typically 32 or 64.
2157
2158 class Output_data_got_base : public Output_section_data_build
2159 {
2160 public:
2161 Output_data_got_base(uint64_t align)
2162 : Output_section_data_build(align)
2163 { }
2164
2165 Output_data_got_base(off_t data_size, uint64_t align)
2166 : Output_section_data_build(data_size, align)
2167 { }
2168
2169 // Reserve the slot at index I in the GOT.
2170 void
2171 reserve_slot(unsigned int i)
2172 { this->do_reserve_slot(i); }
2173
2174 protected:
2175 // Reserve the slot at index I in the GOT.
2176 virtual void
2177 do_reserve_slot(unsigned int i) = 0;
2178 };
2179
2180 template<int got_size, bool big_endian>
2181 class Output_data_got : public Output_data_got_base
2182 {
2183 public:
2184 typedef typename elfcpp::Elf_types<got_size>::Elf_Addr Valtype;
2185
2186 Output_data_got()
2187 : Output_data_got_base(Output_data::default_alignment_for_size(got_size)),
2188 entries_(), free_list_()
2189 { }
2190
2191 Output_data_got(off_t data_size)
2192 : Output_data_got_base(data_size,
2193 Output_data::default_alignment_for_size(got_size)),
2194 entries_(), free_list_()
2195 {
2196 // For an incremental update, we have an existing GOT section.
2197 // Initialize the list of entries and the free list.
2198 this->entries_.resize(data_size / (got_size / 8));
2199 this->free_list_.init(data_size, false);
2200 }
2201
2202 // Add an entry for a global symbol to the GOT. Return true if this
2203 // is a new GOT entry, false if the symbol was already in the GOT.
2204 bool
2205 add_global(Symbol* gsym, unsigned int got_type);
2206
2207 // Like add_global, but use the PLT offset of the global symbol if
2208 // it has one.
2209 bool
2210 add_global_plt(Symbol* gsym, unsigned int got_type);
2211
2212 // Add an entry for a global symbol to the GOT, and add a dynamic
2213 // relocation of type R_TYPE for the GOT entry.
2214 void
2215 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2216 Output_data_reloc_generic* rel_dyn, unsigned int r_type);
2217
2218 // Add a pair of entries for a global symbol to the GOT, and add
2219 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2220 void
2221 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2222 Output_data_reloc_generic* rel_dyn,
2223 unsigned int r_type_1, unsigned int r_type_2);
2224
2225 // Add an entry for a local symbol to the GOT. This returns true if
2226 // this is a new GOT entry, false if the symbol already has a GOT
2227 // entry.
2228 bool
2229 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type);
2230
2231 // Like add_local, but use the PLT offset of the local symbol if it
2232 // has one.
2233 bool
2234 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type);
2235
2236 // Add an entry for a local symbol to the GOT, and add a dynamic
2237 // relocation of type R_TYPE for the GOT entry.
2238 void
2239 add_local_with_rel(Relobj* object, unsigned int sym_index,
2240 unsigned int got_type, Output_data_reloc_generic* rel_dyn,
2241 unsigned int r_type);
2242
2243 // Add a pair of entries for a local symbol to the GOT, and add
2244 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2245 void
2246 add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
2247 unsigned int shndx, unsigned int got_type,
2248 Output_data_reloc_generic* rel_dyn,
2249 unsigned int r_type_1, unsigned int r_type_2);
2250
2251 // Add a constant to the GOT. This returns the offset of the new
2252 // entry from the start of the GOT.
2253 unsigned int
2254 add_constant(Valtype constant)
2255 {
2256 unsigned int got_offset = this->add_got_entry(Got_entry(constant));
2257 return got_offset;
2258 }
2259
2260 // Reserve a slot in the GOT for a local symbol.
2261 void
2262 reserve_local(unsigned int i, Relobj* object, unsigned int sym_index,
2263 unsigned int got_type);
2264
2265 // Reserve a slot in the GOT for a global symbol.
2266 void
2267 reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type);
2268
2269 protected:
2270 // Write out the GOT table.
2271 void
2272 do_write(Output_file*);
2273
2274 // Write to a map file.
2275 void
2276 do_print_to_mapfile(Mapfile* mapfile) const
2277 { mapfile->print_output_data(this, _("** GOT")); }
2278
2279 // Reserve the slot at index I in the GOT.
2280 virtual void
2281 do_reserve_slot(unsigned int i)
2282 { this->free_list_.remove(i * got_size / 8, (i + 1) * got_size / 8); }
2283
2284 private:
2285 // This POD class holds a single GOT entry.
2286 class Got_entry
2287 {
2288 public:
2289 // Create a zero entry.
2290 Got_entry()
2291 : local_sym_index_(RESERVED_CODE), use_plt_offset_(false)
2292 { this->u_.constant = 0; }
2293
2294 // Create a global symbol entry.
2295 Got_entry(Symbol* gsym, bool use_plt_offset)
2296 : local_sym_index_(GSYM_CODE), use_plt_offset_(use_plt_offset)
2297 { this->u_.gsym = gsym; }
2298
2299 // Create a local symbol entry.
2300 Got_entry(Relobj* object, unsigned int local_sym_index,
2301 bool use_plt_offset)
2302 : local_sym_index_(local_sym_index), use_plt_offset_(use_plt_offset)
2303 {
2304 gold_assert(local_sym_index != GSYM_CODE
2305 && local_sym_index != CONSTANT_CODE
2306 && local_sym_index != RESERVED_CODE
2307 && local_sym_index == this->local_sym_index_);
2308 this->u_.object = object;
2309 }
2310
2311 // Create a constant entry. The constant is a host value--it will
2312 // be swapped, if necessary, when it is written out.
2313 explicit Got_entry(Valtype constant)
2314 : local_sym_index_(CONSTANT_CODE), use_plt_offset_(false)
2315 { this->u_.constant = constant; }
2316
2317 // Write the GOT entry to an output view.
2318 void
2319 write(unsigned char* pov) const;
2320
2321 private:
2322 enum
2323 {
2324 GSYM_CODE = 0x7fffffff,
2325 CONSTANT_CODE = 0x7ffffffe,
2326 RESERVED_CODE = 0x7ffffffd
2327 };
2328
2329 union
2330 {
2331 // For a local symbol, the object.
2332 Relobj* object;
2333 // For a global symbol, the symbol.
2334 Symbol* gsym;
2335 // For a constant, the constant.
2336 Valtype constant;
2337 } u_;
2338 // For a local symbol, the local symbol index. This is GSYM_CODE
2339 // for a global symbol, or CONSTANT_CODE for a constant.
2340 unsigned int local_sym_index_ : 31;
2341 // Whether to use the PLT offset of the symbol if it has one.
2342 bool use_plt_offset_ : 1;
2343 };
2344
2345 typedef std::vector<Got_entry> Got_entries;
2346
2347 // Create a new GOT entry and return its offset.
2348 unsigned int
2349 add_got_entry(Got_entry got_entry);
2350
2351 // Create a pair of new GOT entries and return the offset of the first.
2352 unsigned int
2353 add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
2354
2355 // Return the offset into the GOT of GOT entry I.
2356 unsigned int
2357 got_offset(unsigned int i) const
2358 { return i * (got_size / 8); }
2359
2360 // Return the offset into the GOT of the last entry added.
2361 unsigned int
2362 last_got_offset() const
2363 { return this->got_offset(this->entries_.size() - 1); }
2364
2365 // Set the size of the section.
2366 void
2367 set_got_size()
2368 { this->set_current_data_size(this->got_offset(this->entries_.size())); }
2369
2370 // The list of GOT entries.
2371 Got_entries entries_;
2372
2373 // List of available regions within the section, for incremental
2374 // update links.
2375 Free_list free_list_;
2376 };
2377
2378 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2379 // section.
2380
2381 class Output_data_dynamic : public Output_section_data
2382 {
2383 public:
2384 Output_data_dynamic(Stringpool* pool)
2385 : Output_section_data(Output_data::default_alignment()),
2386 entries_(), pool_(pool)
2387 { }
2388
2389 // Add a new dynamic entry with a fixed numeric value.
2390 void
2391 add_constant(elfcpp::DT tag, unsigned int val)
2392 { this->add_entry(Dynamic_entry(tag, val)); }
2393
2394 // Add a new dynamic entry with the address of output data.
2395 void
2396 add_section_address(elfcpp::DT tag, const Output_data* od)
2397 { this->add_entry(Dynamic_entry(tag, od, false)); }
2398
2399 // Add a new dynamic entry with the address of output data
2400 // plus a constant offset.
2401 void
2402 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2403 unsigned int offset)
2404 { this->add_entry(Dynamic_entry(tag, od, offset)); }
2405
2406 // Add a new dynamic entry with the size of output data.
2407 void
2408 add_section_size(elfcpp::DT tag, const Output_data* od)
2409 { this->add_entry(Dynamic_entry(tag, od, true)); }
2410
2411 // Add a new dynamic entry with the total size of two output datas.
2412 void
2413 add_section_size(elfcpp::DT tag, const Output_data* od,
2414 const Output_data* od2)
2415 { this->add_entry(Dynamic_entry(tag, od, od2)); }
2416
2417 // Add a new dynamic entry with the address of a symbol.
2418 void
2419 add_symbol(elfcpp::DT tag, const Symbol* sym)
2420 { this->add_entry(Dynamic_entry(tag, sym)); }
2421
2422 // Add a new dynamic entry with a string.
2423 void
2424 add_string(elfcpp::DT tag, const char* str)
2425 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2426
2427 void
2428 add_string(elfcpp::DT tag, const std::string& str)
2429 { this->add_string(tag, str.c_str()); }
2430
2431 protected:
2432 // Adjust the output section to set the entry size.
2433 void
2434 do_adjust_output_section(Output_section*);
2435
2436 // Set the final data size.
2437 void
2438 set_final_data_size();
2439
2440 // Write out the dynamic entries.
2441 void
2442 do_write(Output_file*);
2443
2444 // Write to a map file.
2445 void
2446 do_print_to_mapfile(Mapfile* mapfile) const
2447 { mapfile->print_output_data(this, _("** dynamic")); }
2448
2449 private:
2450 // This POD class holds a single dynamic entry.
2451 class Dynamic_entry
2452 {
2453 public:
2454 // Create an entry with a fixed numeric value.
2455 Dynamic_entry(elfcpp::DT tag, unsigned int val)
2456 : tag_(tag), offset_(DYNAMIC_NUMBER)
2457 { this->u_.val = val; }
2458
2459 // Create an entry with the size or address of a section.
2460 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2461 : tag_(tag),
2462 offset_(section_size
2463 ? DYNAMIC_SECTION_SIZE
2464 : DYNAMIC_SECTION_ADDRESS)
2465 {
2466 this->u_.od = od;
2467 this->od2 = NULL;
2468 }
2469
2470 // Create an entry with the size of two sections.
2471 Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2472 : tag_(tag),
2473 offset_(DYNAMIC_SECTION_SIZE)
2474 {
2475 this->u_.od = od;
2476 this->od2 = od2;
2477 }
2478
2479 // Create an entry with the address of a section plus a constant offset.
2480 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2481 : tag_(tag),
2482 offset_(offset)
2483 { this->u_.od = od; }
2484
2485 // Create an entry with the address of a symbol.
2486 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2487 : tag_(tag), offset_(DYNAMIC_SYMBOL)
2488 { this->u_.sym = sym; }
2489
2490 // Create an entry with a string.
2491 Dynamic_entry(elfcpp::DT tag, const char* str)
2492 : tag_(tag), offset_(DYNAMIC_STRING)
2493 { this->u_.str = str; }
2494
2495 // Return the tag of this entry.
2496 elfcpp::DT
2497 tag() const
2498 { return this->tag_; }
2499
2500 // Write the dynamic entry to an output view.
2501 template<int size, bool big_endian>
2502 void
2503 write(unsigned char* pov, const Stringpool*) const;
2504
2505 private:
2506 // Classification is encoded in the OFFSET field.
2507 enum Classification
2508 {
2509 // Section address.
2510 DYNAMIC_SECTION_ADDRESS = 0,
2511 // Number.
2512 DYNAMIC_NUMBER = -1U,
2513 // Section size.
2514 DYNAMIC_SECTION_SIZE = -2U,
2515 // Symbol adress.
2516 DYNAMIC_SYMBOL = -3U,
2517 // String.
2518 DYNAMIC_STRING = -4U
2519 // Any other value indicates a section address plus OFFSET.
2520 };
2521
2522 union
2523 {
2524 // For DYNAMIC_NUMBER.
2525 unsigned int val;
2526 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2527 const Output_data* od;
2528 // For DYNAMIC_SYMBOL.
2529 const Symbol* sym;
2530 // For DYNAMIC_STRING.
2531 const char* str;
2532 } u_;
2533 // For DYNAMIC_SYMBOL with two sections.
2534 const Output_data* od2;
2535 // The dynamic tag.
2536 elfcpp::DT tag_;
2537 // The type of entry (Classification) or offset within a section.
2538 unsigned int offset_;
2539 };
2540
2541 // Add an entry to the list.
2542 void
2543 add_entry(const Dynamic_entry& entry)
2544 { this->entries_.push_back(entry); }
2545
2546 // Sized version of write function.
2547 template<int size, bool big_endian>
2548 void
2549 sized_write(Output_file* of);
2550
2551 // The type of the list of entries.
2552 typedef std::vector<Dynamic_entry> Dynamic_entries;
2553
2554 // The entries.
2555 Dynamic_entries entries_;
2556 // The pool used for strings.
2557 Stringpool* pool_;
2558 };
2559
2560 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2561 // which may be required if the object file has more than
2562 // SHN_LORESERVE sections.
2563
2564 class Output_symtab_xindex : public Output_section_data
2565 {
2566 public:
2567 Output_symtab_xindex(size_t symcount)
2568 : Output_section_data(symcount * 4, 4, true),
2569 entries_()
2570 { }
2571
2572 // Add an entry: symbol number SYMNDX has section SHNDX.
2573 void
2574 add(unsigned int symndx, unsigned int shndx)
2575 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2576
2577 protected:
2578 void
2579 do_write(Output_file*);
2580
2581 // Write to a map file.
2582 void
2583 do_print_to_mapfile(Mapfile* mapfile) const
2584 { mapfile->print_output_data(this, _("** symtab xindex")); }
2585
2586 private:
2587 template<bool big_endian>
2588 void
2589 endian_do_write(unsigned char*);
2590
2591 // It is likely that most symbols will not require entries. Rather
2592 // than keep a vector for all symbols, we keep pairs of symbol index
2593 // and section index.
2594 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2595
2596 // The entries we need.
2597 Xindex_entries entries_;
2598 };
2599
2600 // A relaxed input section.
2601 class Output_relaxed_input_section : public Output_section_data_build
2602 {
2603 public:
2604 // We would like to call relobj->section_addralign(shndx) to get the
2605 // alignment but we do not want the constructor to fail. So callers
2606 // are repsonsible for ensuring that.
2607 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2608 uint64_t addralign)
2609 : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2610 { }
2611
2612 // Return the Relobj of this relaxed input section.
2613 Relobj*
2614 relobj() const
2615 { return this->relobj_; }
2616
2617 // Return the section index of this relaxed input section.
2618 unsigned int
2619 shndx() const
2620 { return this->shndx_; }
2621
2622 private:
2623 Relobj* relobj_;
2624 unsigned int shndx_;
2625 };
2626
2627 // This class describes properties of merge data sections. It is used
2628 // as a key type for maps.
2629 class Merge_section_properties
2630 {
2631 public:
2632 Merge_section_properties(bool is_string, uint64_t entsize,
2633 uint64_t addralign)
2634 : is_string_(is_string), entsize_(entsize), addralign_(addralign)
2635 { }
2636
2637 // Whether this equals to another Merge_section_properties MSP.
2638 bool
2639 eq(const Merge_section_properties& msp) const
2640 {
2641 return ((this->is_string_ == msp.is_string_)
2642 && (this->entsize_ == msp.entsize_)
2643 && (this->addralign_ == msp.addralign_));
2644 }
2645
2646 // Compute a hash value for this using 64-bit FNV-1a hash.
2647 size_t
2648 hash_value() const
2649 {
2650 uint64_t h = 14695981039346656037ULL; // FNV offset basis.
2651 uint64_t prime = 1099511628211ULL;
2652 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
2653 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
2654 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
2655 return h;
2656 }
2657
2658 // Functors for associative containers.
2659 struct equal_to
2660 {
2661 bool
2662 operator()(const Merge_section_properties& msp1,
2663 const Merge_section_properties& msp2) const
2664 { return msp1.eq(msp2); }
2665 };
2666
2667 struct hash
2668 {
2669 size_t
2670 operator()(const Merge_section_properties& msp) const
2671 { return msp.hash_value(); }
2672 };
2673
2674 private:
2675 // Whether this merge data section is for strings.
2676 bool is_string_;
2677 // Entsize of this merge data section.
2678 uint64_t entsize_;
2679 // Address alignment.
2680 uint64_t addralign_;
2681 };
2682
2683 // This class is used to speed up look up of special input sections in an
2684 // Output_section.
2685
2686 class Output_section_lookup_maps
2687 {
2688 public:
2689 Output_section_lookup_maps()
2690 : is_valid_(true), merge_sections_by_properties_(),
2691 merge_sections_by_id_(), relaxed_input_sections_by_id_()
2692 { }
2693
2694 // Whether the maps are valid.
2695 bool
2696 is_valid() const
2697 { return this->is_valid_; }
2698
2699 // Invalidate the maps.
2700 void
2701 invalidate()
2702 { this->is_valid_ = false; }
2703
2704 // Clear the maps.
2705 void
2706 clear()
2707 {
2708 this->merge_sections_by_properties_.clear();
2709 this->merge_sections_by_id_.clear();
2710 this->relaxed_input_sections_by_id_.clear();
2711 // A cleared map is valid.
2712 this->is_valid_ = true;
2713 }
2714
2715 // Find a merge section by merge section properties. Return NULL if none
2716 // is found.
2717 Output_merge_base*
2718 find_merge_section(const Merge_section_properties& msp) const
2719 {
2720 gold_assert(this->is_valid_);
2721 Merge_sections_by_properties::const_iterator p =
2722 this->merge_sections_by_properties_.find(msp);
2723 return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
2724 }
2725
2726 // Find a merge section by section ID of a merge input section. Return NULL
2727 // if none is found.
2728 Output_merge_base*
2729 find_merge_section(const Object* object, unsigned int shndx) const
2730 {
2731 gold_assert(this->is_valid_);
2732 Merge_sections_by_id::const_iterator p =
2733 this->merge_sections_by_id_.find(Const_section_id(object, shndx));
2734 return p != this->merge_sections_by_id_.end() ? p->second : NULL;
2735 }
2736
2737 // Add a merge section pointed by POMB with properties MSP.
2738 void
2739 add_merge_section(const Merge_section_properties& msp,
2740 Output_merge_base* pomb)
2741 {
2742 std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
2743 std::pair<Merge_sections_by_properties::iterator, bool> result =
2744 this->merge_sections_by_properties_.insert(value);
2745 gold_assert(result.second);
2746 }
2747
2748 // Add a mapping from a merged input section in OBJECT with index SHNDX
2749 // to a merge output section pointed by POMB.
2750 void
2751 add_merge_input_section(const Object* object, unsigned int shndx,
2752 Output_merge_base* pomb)
2753 {
2754 Const_section_id csid(object, shndx);
2755 std::pair<Const_section_id, Output_merge_base*> value(csid, pomb);
2756 std::pair<Merge_sections_by_id::iterator, bool> result =
2757 this->merge_sections_by_id_.insert(value);
2758 gold_assert(result.second);
2759 }
2760
2761 // Find a relaxed input section of OBJECT with index SHNDX.
2762 Output_relaxed_input_section*
2763 find_relaxed_input_section(const Object* object, unsigned int shndx) const
2764 {
2765 gold_assert(this->is_valid_);
2766 Relaxed_input_sections_by_id::const_iterator p =
2767 this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
2768 return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
2769 }
2770
2771 // Add a relaxed input section pointed by POMB and whose original input
2772 // section is in OBJECT with index SHNDX.
2773 void
2774 add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
2775 Output_relaxed_input_section* poris)
2776 {
2777 Const_section_id csid(relobj, shndx);
2778 std::pair<Const_section_id, Output_relaxed_input_section*>
2779 value(csid, poris);
2780 std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
2781 this->relaxed_input_sections_by_id_.insert(value);
2782 gold_assert(result.second);
2783 }
2784
2785 private:
2786 typedef Unordered_map<Const_section_id, Output_merge_base*,
2787 Const_section_id_hash>
2788 Merge_sections_by_id;
2789
2790 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
2791 Merge_section_properties::hash,
2792 Merge_section_properties::equal_to>
2793 Merge_sections_by_properties;
2794
2795 typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
2796 Const_section_id_hash>
2797 Relaxed_input_sections_by_id;
2798
2799 // Whether this is valid
2800 bool is_valid_;
2801 // Merge sections by merge section properties.
2802 Merge_sections_by_properties merge_sections_by_properties_;
2803 // Merge sections by section IDs.
2804 Merge_sections_by_id merge_sections_by_id_;
2805 // Relaxed sections by section IDs.
2806 Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
2807 };
2808
2809 // This abstract base class defines the interface for the
2810 // types of methods used to fill free space left in an output
2811 // section during an incremental link. These methods are used
2812 // to insert dummy compilation units into debug info so that
2813 // debug info consumers can scan the debug info serially.
2814
2815 class Output_fill
2816 {
2817 public:
2818 Output_fill()
2819 : is_big_endian_(parameters->target().is_big_endian())
2820 { }
2821
2822 virtual
2823 ~Output_fill()
2824 { }
2825
2826 // Return the smallest size chunk of free space that can be
2827 // filled with a dummy compilation unit.
2828 size_t
2829 minimum_hole_size() const
2830 { return this->do_minimum_hole_size(); }
2831
2832 // Write a fill pattern of length LEN at offset OFF in the file.
2833 void
2834 write(Output_file* of, off_t off, size_t len) const
2835 { this->do_write(of, off, len); }
2836
2837 protected:
2838 virtual size_t
2839 do_minimum_hole_size() const = 0;
2840
2841 virtual void
2842 do_write(Output_file* of, off_t off, size_t len) const = 0;
2843
2844 bool
2845 is_big_endian() const
2846 { return this->is_big_endian_; }
2847
2848 private:
2849 bool is_big_endian_;
2850 };
2851
2852 // Fill method that introduces a dummy compilation unit in
2853 // a .debug_info or .debug_types section.
2854
2855 class Output_fill_debug_info : public Output_fill
2856 {
2857 public:
2858 Output_fill_debug_info(bool is_debug_types)
2859 : is_debug_types_(is_debug_types)
2860 { }
2861
2862 protected:
2863 virtual size_t
2864 do_minimum_hole_size() const;
2865
2866 virtual void
2867 do_write(Output_file* of, off_t off, size_t len) const;
2868
2869 private:
2870 // Version of the header.
2871 static const int version = 4;
2872 // True if this is a .debug_types section.
2873 bool is_debug_types_;
2874 };
2875
2876 // Fill method that introduces a dummy compilation unit in
2877 // a .debug_line section.
2878
2879 class Output_fill_debug_line : public Output_fill
2880 {
2881 public:
2882 Output_fill_debug_line()
2883 { }
2884
2885 protected:
2886 virtual size_t
2887 do_minimum_hole_size() const;
2888
2889 virtual void
2890 do_write(Output_file* of, off_t off, size_t len) const;
2891
2892 private:
2893 // Version of the header. We write a DWARF-3 header because it's smaller
2894 // and many tools have not yet been updated to understand the DWARF-4 header.
2895 static const int version = 3;
2896 // Length of the portion of the header that follows the header_length
2897 // field. This includes the following fields:
2898 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2899 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2900 // The standard_opcode_lengths array is 12 bytes long, and the
2901 // include_directories and filenames fields each contain only a single
2902 // null byte.
2903 static const size_t header_length = 19;
2904 };
2905
2906 // An output section. We don't expect to have too many output
2907 // sections, so we don't bother to do a template on the size.
2908
2909 class Output_section : public Output_data
2910 {
2911 public:
2912 // Create an output section, giving the name, type, and flags.
2913 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
2914 virtual ~Output_section();
2915
2916 // Add a new input section SHNDX, named NAME, with header SHDR, from
2917 // object OBJECT. RELOC_SHNDX is the index of a relocation section
2918 // which applies to this section, or 0 if none, or -1 if more than
2919 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
2920 // in a linker script; in that case we need to keep track of input
2921 // sections associated with an output section. Return the offset
2922 // within the output section.
2923 template<int size, bool big_endian>
2924 off_t
2925 add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
2926 unsigned int shndx, const char* name,
2927 const elfcpp::Shdr<size, big_endian>& shdr,
2928 unsigned int reloc_shndx, bool have_sections_script);
2929
2930 // Add generated data POSD to this output section.
2931 void
2932 add_output_section_data(Output_section_data* posd);
2933
2934 // Add a relaxed input section PORIS called NAME to this output section
2935 // with LAYOUT.
2936 void
2937 add_relaxed_input_section(Layout* layout,
2938 Output_relaxed_input_section* poris,
2939 const std::string& name);
2940
2941 // Return the section name.
2942 const char*
2943 name() const
2944 { return this->name_; }
2945
2946 // Return the section type.
2947 elfcpp::Elf_Word
2948 type() const
2949 { return this->type_; }
2950
2951 // Return the section flags.
2952 elfcpp::Elf_Xword
2953 flags() const
2954 { return this->flags_; }
2955
2956 typedef std::map<Section_id, unsigned int> Section_layout_order;
2957
2958 void
2959 update_section_layout(const Section_layout_order* order_map);
2960
2961 // Update the output section flags based on input section flags.
2962 void
2963 update_flags_for_input_section(elfcpp::Elf_Xword flags);
2964
2965 // Return the entsize field.
2966 uint64_t
2967 entsize() const
2968 { return this->entsize_; }
2969
2970 // Set the entsize field.
2971 void
2972 set_entsize(uint64_t v);
2973
2974 // Set the load address.
2975 void
2976 set_load_address(uint64_t load_address)
2977 {
2978 this->load_address_ = load_address;
2979 this->has_load_address_ = true;
2980 }
2981
2982 // Set the link field to the output section index of a section.
2983 void
2984 set_link_section(const Output_data* od)
2985 {
2986 gold_assert(this->link_ == 0
2987 && !this->should_link_to_symtab_
2988 && !this->should_link_to_dynsym_);
2989 this->link_section_ = od;
2990 }
2991
2992 // Set the link field to a constant.
2993 void
2994 set_link(unsigned int v)
2995 {
2996 gold_assert(this->link_section_ == NULL
2997 && !this->should_link_to_symtab_
2998 && !this->should_link_to_dynsym_);
2999 this->link_ = v;
3000 }
3001
3002 // Record that this section should link to the normal symbol table.
3003 void
3004 set_should_link_to_symtab()
3005 {
3006 gold_assert(this->link_section_ == NULL
3007 && this->link_ == 0
3008 && !this->should_link_to_dynsym_);
3009 this->should_link_to_symtab_ = true;
3010 }
3011
3012 // Record that this section should link to the dynamic symbol table.
3013 void
3014 set_should_link_to_dynsym()
3015 {
3016 gold_assert(this->link_section_ == NULL
3017 && this->link_ == 0
3018 && !this->should_link_to_symtab_);
3019 this->should_link_to_dynsym_ = true;
3020 }
3021
3022 // Return the info field.
3023 unsigned int
3024 info() const
3025 {
3026 gold_assert(this->info_section_ == NULL
3027 && this->info_symndx_ == NULL);
3028 return this->info_;
3029 }
3030
3031 // Set the info field to the output section index of a section.
3032 void
3033 set_info_section(const Output_section* os)
3034 {
3035 gold_assert((this->info_section_ == NULL
3036 || (this->info_section_ == os
3037 && this->info_uses_section_index_))
3038 && this->info_symndx_ == NULL
3039 && this->info_ == 0);
3040 this->info_section_ = os;
3041 this->info_uses_section_index_= true;
3042 }
3043
3044 // Set the info field to the symbol table index of a symbol.
3045 void
3046 set_info_symndx(const Symbol* sym)
3047 {
3048 gold_assert(this->info_section_ == NULL
3049 && (this->info_symndx_ == NULL
3050 || this->info_symndx_ == sym)
3051 && this->info_ == 0);
3052 this->info_symndx_ = sym;
3053 }
3054
3055 // Set the info field to the symbol table index of a section symbol.
3056 void
3057 set_info_section_symndx(const Output_section* os)
3058 {
3059 gold_assert((this->info_section_ == NULL
3060 || (this->info_section_ == os
3061 && !this->info_uses_section_index_))
3062 && this->info_symndx_ == NULL
3063 && this->info_ == 0);
3064 this->info_section_ = os;
3065 this->info_uses_section_index_ = false;
3066 }
3067
3068 // Set the info field to a constant.
3069 void
3070 set_info(unsigned int v)
3071 {
3072 gold_assert(this->info_section_ == NULL
3073 && this->info_symndx_ == NULL
3074 && (this->info_ == 0
3075 || this->info_ == v));
3076 this->info_ = v;
3077 }
3078
3079 // Set the addralign field.
3080 void
3081 set_addralign(uint64_t v)
3082 { this->addralign_ = v; }
3083
3084 // Whether the output section index has been set.
3085 bool
3086 has_out_shndx() const
3087 { return this->out_shndx_ != -1U; }
3088
3089 // Indicate that we need a symtab index.
3090 void
3091 set_needs_symtab_index()
3092 { this->needs_symtab_index_ = true; }
3093
3094 // Return whether we need a symtab index.
3095 bool
3096 needs_symtab_index() const
3097 { return this->needs_symtab_index_; }
3098
3099 // Get the symtab index.
3100 unsigned int
3101 symtab_index() const
3102 {
3103 gold_assert(this->symtab_index_ != 0);
3104 return this->symtab_index_;
3105 }
3106
3107 // Set the symtab index.
3108 void
3109 set_symtab_index(unsigned int index)
3110 {
3111 gold_assert(index != 0);
3112 this->symtab_index_ = index;
3113 }
3114
3115 // Indicate that we need a dynsym index.
3116 void
3117 set_needs_dynsym_index()
3118 { this->needs_dynsym_index_ = true; }
3119
3120 // Return whether we need a dynsym index.
3121 bool
3122 needs_dynsym_index() const
3123 { return this->needs_dynsym_index_; }
3124
3125 // Get the dynsym index.
3126 unsigned int
3127 dynsym_index() const
3128 {
3129 gold_assert(this->dynsym_index_ != 0);
3130 return this->dynsym_index_;
3131 }
3132
3133 // Set the dynsym index.
3134 void
3135 set_dynsym_index(unsigned int index)
3136 {
3137 gold_assert(index != 0);
3138 this->dynsym_index_ = index;
3139 }
3140
3141 // Return whether the input sections sections attachd to this output
3142 // section may require sorting. This is used to handle constructor
3143 // priorities compatibly with GNU ld.
3144 bool
3145 may_sort_attached_input_sections() const
3146 { return this->may_sort_attached_input_sections_; }
3147
3148 // Record that the input sections attached to this output section
3149 // may require sorting.
3150 void
3151 set_may_sort_attached_input_sections()
3152 { this->may_sort_attached_input_sections_ = true; }
3153
3154 // Returns true if input sections must be sorted according to the
3155 // order in which their name appear in the --section-ordering-file.
3156 bool
3157 input_section_order_specified()
3158 { return this->input_section_order_specified_; }
3159
3160 // Record that input sections must be sorted as some of their names
3161 // match the patterns specified through --section-ordering-file.
3162 void
3163 set_input_section_order_specified()
3164 { this->input_section_order_specified_ = true; }
3165
3166 // Return whether the input sections attached to this output section
3167 // require sorting. This is used to handle constructor priorities
3168 // compatibly with GNU ld.
3169 bool
3170 must_sort_attached_input_sections() const
3171 { return this->must_sort_attached_input_sections_; }
3172
3173 // Record that the input sections attached to this output section
3174 // require sorting.
3175 void
3176 set_must_sort_attached_input_sections()
3177 { this->must_sort_attached_input_sections_ = true; }
3178
3179 // Get the order in which this section appears in the PT_LOAD output
3180 // segment.
3181 Output_section_order
3182 order() const
3183 { return this->order_; }
3184
3185 // Set the order for this section.
3186 void
3187 set_order(Output_section_order order)
3188 { this->order_ = order; }
3189
3190 // Return whether this section holds relro data--data which has
3191 // dynamic relocations but which may be marked read-only after the
3192 // dynamic relocations have been completed.
3193 bool
3194 is_relro() const
3195 { return this->is_relro_; }
3196
3197 // Record that this section holds relro data.
3198 void
3199 set_is_relro()
3200 { this->is_relro_ = true; }
3201
3202 // Record that this section does not hold relro data.
3203 void
3204 clear_is_relro()
3205 { this->is_relro_ = false; }
3206
3207 // True if this is a small section: a section which holds small
3208 // variables.
3209 bool
3210 is_small_section() const
3211 { return this->is_small_section_; }
3212
3213 // Record that this is a small section.
3214 void
3215 set_is_small_section()
3216 { this->is_small_section_ = true; }
3217
3218 // True if this is a large section: a section which holds large
3219 // variables.
3220 bool
3221 is_large_section() const
3222 { return this->is_large_section_; }
3223
3224 // Record that this is a large section.
3225 void
3226 set_is_large_section()
3227 { this->is_large_section_ = true; }
3228
3229 // True if this is a large data (not BSS) section.
3230 bool
3231 is_large_data_section()
3232 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
3233
3234 // Return whether this section should be written after all the input
3235 // sections are complete.
3236 bool
3237 after_input_sections() const
3238 { return this->after_input_sections_; }
3239
3240 // Record that this section should be written after all the input
3241 // sections are complete.
3242 void
3243 set_after_input_sections()
3244 { this->after_input_sections_ = true; }
3245
3246 // Return whether this section requires postprocessing after all
3247 // relocations have been applied.
3248 bool
3249 requires_postprocessing() const
3250 { return this->requires_postprocessing_; }
3251
3252 // If a section requires postprocessing, return the buffer to use.
3253 unsigned char*
3254 postprocessing_buffer() const
3255 {
3256 gold_assert(this->postprocessing_buffer_ != NULL);
3257 return this->postprocessing_buffer_;
3258 }
3259
3260 // If a section requires postprocessing, create the buffer to use.
3261 void
3262 create_postprocessing_buffer();
3263
3264 // If a section requires postprocessing, this is the size of the
3265 // buffer to which relocations should be applied.
3266 off_t
3267 postprocessing_buffer_size() const
3268 { return this->current_data_size_for_child(); }
3269
3270 // Modify the section name. This is only permitted for an
3271 // unallocated section, and only before the size has been finalized.
3272 // Otherwise the name will not get into Layout::namepool_.
3273 void
3274 set_name(const char* newname)
3275 {
3276 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
3277 gold_assert(!this->is_data_size_valid());
3278 this->name_ = newname;
3279 }
3280
3281 // Return whether the offset OFFSET in the input section SHNDX in
3282 // object OBJECT is being included in the link.
3283 bool
3284 is_input_address_mapped(const Relobj* object, unsigned int shndx,
3285 off_t offset) const;
3286
3287 // Return the offset within the output section of OFFSET relative to
3288 // the start of input section SHNDX in object OBJECT.
3289 section_offset_type
3290 output_offset(const Relobj* object, unsigned int shndx,
3291 section_offset_type offset) const;
3292
3293 // Return the output virtual address of OFFSET relative to the start
3294 // of input section SHNDX in object OBJECT.
3295 uint64_t
3296 output_address(const Relobj* object, unsigned int shndx,
3297 off_t offset) const;
3298
3299 // Look for the merged section for input section SHNDX in object
3300 // OBJECT. If found, return true, and set *ADDR to the address of
3301 // the start of the merged section. This is not necessary the
3302 // output offset corresponding to input offset 0 in the section,
3303 // since the section may be mapped arbitrarily.
3304 bool
3305 find_starting_output_address(const Relobj* object, unsigned int shndx,
3306 uint64_t* addr) const;
3307
3308 // Record that this output section was found in the SECTIONS clause
3309 // of a linker script.
3310 void
3311 set_found_in_sections_clause()
3312 { this->found_in_sections_clause_ = true; }
3313
3314 // Return whether this output section was found in the SECTIONS
3315 // clause of a linker script.
3316 bool
3317 found_in_sections_clause() const
3318 { return this->found_in_sections_clause_; }
3319
3320 // Write the section header into *OPHDR.
3321 template<int size, bool big_endian>
3322 void
3323 write_header(const Layout*, const Stringpool*,
3324 elfcpp::Shdr_write<size, big_endian>*) const;
3325
3326 // The next few calls are for linker script support.
3327
3328 // In some cases we need to keep a list of the input sections
3329 // associated with this output section. We only need the list if we
3330 // might have to change the offsets of the input section within the
3331 // output section after we add the input section. The ordinary
3332 // input sections will be written out when we process the object
3333 // file, and as such we don't need to track them here. We do need
3334 // to track Output_section_data objects here. We store instances of
3335 // this structure in a std::vector, so it must be a POD. There can
3336 // be many instances of this structure, so we use a union to save
3337 // some space.
3338 class Input_section
3339 {
3340 public:
3341 Input_section()
3342 : shndx_(0), p2align_(0)
3343 {
3344 this->u1_.data_size = 0;
3345 this->u2_.object = NULL;
3346 }
3347
3348 // For an ordinary input section.
3349 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
3350 uint64_t addralign)
3351 : shndx_(shndx),
3352 p2align_(ffsll(static_cast<long long>(addralign))),
3353 section_order_index_(0)
3354 {
3355 gold_assert(shndx != OUTPUT_SECTION_CODE
3356 && shndx != MERGE_DATA_SECTION_CODE
3357 && shndx != MERGE_STRING_SECTION_CODE
3358 && shndx != RELAXED_INPUT_SECTION_CODE);
3359 this->u1_.data_size = data_size;
3360 this->u2_.object = object;
3361 }
3362
3363 // For a non-merge output section.
3364 Input_section(Output_section_data* posd)
3365 : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
3366 section_order_index_(0)
3367 {
3368 this->u1_.data_size = 0;
3369 this->u2_.posd = posd;
3370 }
3371
3372 // For a merge section.
3373 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
3374 : shndx_(is_string
3375 ? MERGE_STRING_SECTION_CODE
3376 : MERGE_DATA_SECTION_CODE),
3377 p2align_(0),
3378 section_order_index_(0)
3379 {
3380 this->u1_.entsize = entsize;
3381 this->u2_.posd = posd;
3382 }
3383
3384 // For a relaxed input section.
3385 Input_section(Output_relaxed_input_section* psection)
3386 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
3387 section_order_index_(0)
3388 {
3389 this->u1_.data_size = 0;
3390 this->u2_.poris = psection;
3391 }
3392
3393 unsigned int
3394 section_order_index() const
3395 {
3396 return this->section_order_index_;
3397 }
3398
3399 void
3400 set_section_order_index(unsigned int number)
3401 {
3402 this->section_order_index_ = number;
3403 }
3404
3405 // The required alignment.
3406 uint64_t
3407 addralign() const
3408 {
3409 if (this->p2align_ != 0)
3410 return static_cast<uint64_t>(1) << (this->p2align_ - 1);
3411 else if (!this->is_input_section())
3412 return this->u2_.posd->addralign();
3413 else
3414 return 0;
3415 }
3416
3417 // Set the required alignment, which must be either 0 or a power of 2.
3418 // For input sections that are sub-classes of Output_section_data, a
3419 // alignment of zero means asking the underlying object for alignment.
3420 void
3421 set_addralign(uint64_t addralign)
3422 {
3423 if (addralign == 0)
3424 this->p2align_ = 0;
3425 else
3426 {
3427 gold_assert((addralign & (addralign - 1)) == 0);
3428 this->p2align_ = ffsll(static_cast<long long>(addralign));
3429 }
3430 }
3431
3432 // Return the current required size, without finalization.
3433 off_t
3434 current_data_size() const;
3435
3436 // Return the required size.
3437 off_t
3438 data_size() const;
3439
3440 // Whether this is an input section.
3441 bool
3442 is_input_section() const
3443 {
3444 return (this->shndx_ != OUTPUT_SECTION_CODE
3445 && this->shndx_ != MERGE_DATA_SECTION_CODE
3446 && this->shndx_ != MERGE_STRING_SECTION_CODE
3447 && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3448 }
3449
3450 // Return whether this is a merge section which matches the
3451 // parameters.
3452 bool
3453 is_merge_section(bool is_string, uint64_t entsize,
3454 uint64_t addralign) const
3455 {
3456 return (this->shndx_ == (is_string
3457 ? MERGE_STRING_SECTION_CODE
3458 : MERGE_DATA_SECTION_CODE)
3459 && this->u1_.entsize == entsize
3460 && this->addralign() == addralign);
3461 }
3462
3463 // Return whether this is a merge section for some input section.
3464 bool
3465 is_merge_section() const
3466 {
3467 return (this->shndx_ == MERGE_DATA_SECTION_CODE
3468 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3469 }
3470
3471 // Return whether this is a relaxed input section.
3472 bool
3473 is_relaxed_input_section() const
3474 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3475
3476 // Return whether this is a generic Output_section_data.
3477 bool
3478 is_output_section_data() const
3479 {
3480 return this->shndx_ == OUTPUT_SECTION_CODE;
3481 }
3482
3483 // Return the object for an input section.
3484 Relobj*
3485 relobj() const;
3486
3487 // Return the input section index for an input section.
3488 unsigned int
3489 shndx() const;
3490
3491 // For non-input-sections, return the associated Output_section_data
3492 // object.
3493 Output_section_data*
3494 output_section_data() const
3495 {
3496 gold_assert(!this->is_input_section());
3497 return this->u2_.posd;
3498 }
3499
3500 // For a merge section, return the Output_merge_base pointer.
3501 Output_merge_base*
3502 output_merge_base() const
3503 {
3504 gold_assert(this->is_merge_section());
3505 return this->u2_.pomb;
3506 }
3507
3508 // Return the Output_relaxed_input_section object.
3509 Output_relaxed_input_section*
3510 relaxed_input_section() const
3511 {
3512 gold_assert(this->is_relaxed_input_section());
3513 return this->u2_.poris;
3514 }
3515
3516 // Set the output section.
3517 void
3518 set_output_section(Output_section* os)
3519 {
3520 gold_assert(!this->is_input_section());
3521 Output_section_data* posd =
3522 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3523 posd->set_output_section(os);
3524 }
3525
3526 // Set the address and file offset. This is called during
3527 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
3528 // the enclosing section.
3529 void
3530 set_address_and_file_offset(uint64_t address, off_t file_offset,
3531 off_t section_file_offset);
3532
3533 // Reset the address and file offset.
3534 void
3535 reset_address_and_file_offset();
3536
3537 // Finalize the data size.
3538 void
3539 finalize_data_size();
3540
3541 // Add an input section, for SHF_MERGE sections.
3542 bool
3543 add_input_section(Relobj* object, unsigned int shndx)
3544 {
3545 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3546 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3547 return this->u2_.posd->add_input_section(object, shndx);
3548 }
3549
3550 // Given an input OBJECT, an input section index SHNDX within that
3551 // object, and an OFFSET relative to the start of that input
3552 // section, return whether or not the output offset is known. If
3553 // this function returns true, it sets *POUTPUT to the offset in
3554 // the output section, relative to the start of the input section
3555 // in the output section. *POUTPUT may be different from OFFSET
3556 // for a merged section.
3557 bool
3558 output_offset(const Relobj* object, unsigned int shndx,
3559 section_offset_type offset,
3560 section_offset_type* poutput) const;
3561
3562 // Return whether this is the merge section for the input section
3563 // SHNDX in OBJECT.
3564 bool
3565 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
3566
3567 // Write out the data. This does nothing for an input section.
3568 void
3569 write(Output_file*);
3570
3571 // Write the data to a buffer. This does nothing for an input
3572 // section.
3573 void
3574 write_to_buffer(unsigned char*);
3575
3576 // Print to a map file.
3577 void
3578 print_to_mapfile(Mapfile*) const;
3579
3580 // Print statistics about merge sections to stderr.
3581 void
3582 print_merge_stats(const char* section_name)
3583 {
3584 if (this->shndx_ == MERGE_DATA_SECTION_CODE
3585 || this->shndx_ == MERGE_STRING_SECTION_CODE)
3586 this->u2_.posd->print_merge_stats(section_name);
3587 }
3588
3589 private:
3590 // Code values which appear in shndx_. If the value is not one of
3591 // these codes, it is the input section index in the object file.
3592 enum
3593 {
3594 // An Output_section_data.
3595 OUTPUT_SECTION_CODE = -1U,
3596 // An Output_section_data for an SHF_MERGE section with
3597 // SHF_STRINGS not set.
3598 MERGE_DATA_SECTION_CODE = -2U,
3599 // An Output_section_data for an SHF_MERGE section with
3600 // SHF_STRINGS set.
3601 MERGE_STRING_SECTION_CODE = -3U,
3602 // An Output_section_data for a relaxed input section.
3603 RELAXED_INPUT_SECTION_CODE = -4U
3604 };
3605
3606 // For an ordinary input section, this is the section index in the
3607 // input file. For an Output_section_data, this is
3608 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3609 // MERGE_STRING_SECTION_CODE.
3610 unsigned int shndx_;
3611 // The required alignment, stored as a power of 2.
3612 unsigned int p2align_;
3613 union
3614 {
3615 // For an ordinary input section, the section size.
3616 off_t data_size;
3617 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3618 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3619 // entity size.
3620 uint64_t entsize;
3621 } u1_;
3622 union
3623 {
3624 // For an ordinary input section, the object which holds the
3625 // input section.
3626 Relobj* object;
3627 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3628 // MERGE_STRING_SECTION_CODE, the data.
3629 Output_section_data* posd;
3630 Output_merge_base* pomb;
3631 // For RELAXED_INPUT_SECTION_CODE, the data.
3632 Output_relaxed_input_section* poris;
3633 } u2_;
3634 // The line number of the pattern it matches in the --section-ordering-file
3635 // file. It is 0 if does not match any pattern.
3636 unsigned int section_order_index_;
3637 };
3638
3639 // Store the list of input sections for this Output_section into the
3640 // list passed in. This removes the input sections, leaving only
3641 // any Output_section_data elements. This returns the size of those
3642 // Output_section_data elements. ADDRESS is the address of this
3643 // output section. FILL is the fill value to use, in case there are
3644 // any spaces between the remaining Output_section_data elements.
3645 uint64_t
3646 get_input_sections(uint64_t address, const std::string& fill,
3647 std::list<Input_section>*);
3648
3649 // Add a script input section. A script input section can either be
3650 // a plain input section or a sub-class of Output_section_data.
3651 void
3652 add_script_input_section(const Input_section& input_section);
3653
3654 // Set the current size of the output section.
3655 void
3656 set_current_data_size(off_t size)
3657 { this->set_current_data_size_for_child(size); }
3658
3659 // End of linker script support.
3660
3661 // Save states before doing section layout.
3662 // This is used for relaxation.
3663 void
3664 save_states();
3665
3666 // Restore states prior to section layout.
3667 void
3668 restore_states();
3669
3670 // Discard states.
3671 void
3672 discard_states();
3673
3674 // Convert existing input sections to relaxed input sections.
3675 void
3676 convert_input_sections_to_relaxed_sections(
3677 const std::vector<Output_relaxed_input_section*>& sections);
3678
3679 // Find a relaxed input section to an input section in OBJECT
3680 // with index SHNDX. Return NULL if none is found.
3681 const Output_relaxed_input_section*
3682 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
3683
3684 // Whether section offsets need adjustment due to relaxation.
3685 bool
3686 section_offsets_need_adjustment() const
3687 { return this->section_offsets_need_adjustment_; }
3688
3689 // Set section_offsets_need_adjustment to be true.
3690 void
3691 set_section_offsets_need_adjustment()
3692 { this->section_offsets_need_adjustment_ = true; }
3693
3694 // Adjust section offsets of input sections in this. This is
3695 // requires if relaxation caused some input sections to change sizes.
3696 void
3697 adjust_section_offsets();
3698
3699 // Whether this is a NOLOAD section.
3700 bool
3701 is_noload() const
3702 { return this->is_noload_; }
3703
3704 // Set NOLOAD flag.
3705 void
3706 set_is_noload()
3707 { this->is_noload_ = true; }
3708
3709 // Print merge statistics to stderr.
3710 void
3711 print_merge_stats();
3712
3713 // Set a fixed layout for the section. Used for incremental update links.
3714 void
3715 set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
3716 uint64_t sh_addralign);
3717
3718 // Return TRUE if the section has a fixed layout.
3719 bool
3720 has_fixed_layout() const
3721 { return this->has_fixed_layout_; }
3722
3723 // Set flag to allow patch space for this section. Used for full
3724 // incremental links.
3725 void
3726 set_is_patch_space_allowed()
3727 { this->is_patch_space_allowed_ = true; }
3728
3729 // Set a fill method to use for free space left in the output section
3730 // during incremental links.
3731 void
3732 set_free_space_fill(Output_fill* free_space_fill)
3733 {
3734 this->free_space_fill_ = free_space_fill;
3735 this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size());
3736 }
3737
3738 // Reserve space within the fixed layout for the section. Used for
3739 // incremental update links.
3740 void
3741 reserve(uint64_t sh_offset, uint64_t sh_size);
3742
3743 // Allocate space from the free list for the section. Used for
3744 // incremental update links.
3745 off_t
3746 allocate(off_t len, uint64_t addralign);
3747
3748 protected:
3749 // Return the output section--i.e., the object itself.
3750 Output_section*
3751 do_output_section()
3752 { return this; }
3753
3754 const Output_section*
3755 do_output_section() const
3756 { return this; }
3757
3758 // Return the section index in the output file.
3759 unsigned int
3760 do_out_shndx() const
3761 {
3762 gold_assert(this->out_shndx_ != -1U);
3763 return this->out_shndx_;
3764 }
3765
3766 // Set the output section index.
3767 void
3768 do_set_out_shndx(unsigned int shndx)
3769 {
3770 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
3771 this->out_shndx_ = shndx;
3772 }
3773
3774 // Update the data size of the Output_section. For a typical
3775 // Output_section, there is nothing to do, but if there are any
3776 // Output_section_data objects we need to do a trial layout
3777 // here.
3778 virtual void
3779 update_data_size();
3780
3781 // Set the final data size of the Output_section. For a typical
3782 // Output_section, there is nothing to do, but if there are any
3783 // Output_section_data objects we need to set their final addresses
3784 // here.
3785 virtual void
3786 set_final_data_size();
3787
3788 // Reset the address and file offset.
3789 void
3790 do_reset_address_and_file_offset();
3791
3792 // Return true if address and file offset already have reset values. In
3793 // other words, calling reset_address_and_file_offset will not change them.
3794 bool
3795 do_address_and_file_offset_have_reset_values() const;
3796
3797 // Write the data to the file. For a typical Output_section, this
3798 // does nothing: the data is written out by calling Object::Relocate
3799 // on each input object. But if there are any Output_section_data
3800 // objects we do need to write them out here.
3801 virtual void
3802 do_write(Output_file*);
3803
3804 // Return the address alignment--function required by parent class.
3805 uint64_t
3806 do_addralign() const
3807 { return this->addralign_; }
3808
3809 // Return whether there is a load address.
3810 bool
3811 do_has_load_address() const
3812 { return this->has_load_address_; }
3813
3814 // Return the load address.
3815 uint64_t
3816 do_load_address() const
3817 {
3818 gold_assert(this->has_load_address_);
3819 return this->load_address_;
3820 }
3821
3822 // Return whether this is an Output_section.
3823 bool
3824 do_is_section() const
3825 { return true; }
3826
3827 // Return whether this is a section of the specified type.
3828 bool
3829 do_is_section_type(elfcpp::Elf_Word type) const
3830 { return this->type_ == type; }
3831
3832 // Return whether the specified section flag is set.
3833 bool
3834 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
3835 { return (this->flags_ & flag) != 0; }
3836
3837 // Set the TLS offset. Called only for SHT_TLS sections.
3838 void
3839 do_set_tls_offset(uint64_t tls_base);
3840
3841 // Return the TLS offset, relative to the base of the TLS segment.
3842 // Valid only for SHT_TLS sections.
3843 uint64_t
3844 do_tls_offset() const
3845 { return this->tls_offset_; }
3846
3847 // This may be implemented by a child class.
3848 virtual void
3849 do_finalize_name(Layout*)
3850 { }
3851
3852 // Print to the map file.
3853 virtual void
3854 do_print_to_mapfile(Mapfile*) const;
3855
3856 // Record that this section requires postprocessing after all
3857 // relocations have been applied. This is called by a child class.
3858 void
3859 set_requires_postprocessing()
3860 {
3861 this->requires_postprocessing_ = true;
3862 this->after_input_sections_ = true;
3863 }
3864
3865 // Write all the data of an Output_section into the postprocessing
3866 // buffer.
3867 void
3868 write_to_postprocessing_buffer();
3869
3870 typedef std::vector<Input_section> Input_section_list;
3871
3872 // Allow a child class to access the input sections.
3873 const Input_section_list&
3874 input_sections() const
3875 { return this->input_sections_; }
3876
3877 // Whether this always keeps an input section list
3878 bool
3879 always_keeps_input_sections() const
3880 { return this->always_keeps_input_sections_; }
3881
3882 // Always keep an input section list.
3883 void
3884 set_always_keeps_input_sections()
3885 {
3886 gold_assert(this->current_data_size_for_child() == 0);
3887 this->always_keeps_input_sections_ = true;
3888 }
3889
3890 private:
3891 // We only save enough information to undo the effects of section layout.
3892 class Checkpoint_output_section
3893 {
3894 public:
3895 Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
3896 const Input_section_list& input_sections,
3897 off_t first_input_offset,
3898 bool attached_input_sections_are_sorted)
3899 : addralign_(addralign), flags_(flags),
3900 input_sections_(input_sections),
3901 input_sections_size_(input_sections_.size()),
3902 input_sections_copy_(), first_input_offset_(first_input_offset),
3903 attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
3904 { }
3905
3906 virtual
3907 ~Checkpoint_output_section()
3908 { }
3909
3910 // Return the address alignment.
3911 uint64_t
3912 addralign() const
3913 { return this->addralign_; }
3914
3915 // Return the section flags.
3916 elfcpp::Elf_Xword
3917 flags() const
3918 { return this->flags_; }
3919
3920 // Return a reference to the input section list copy.
3921 Input_section_list*
3922 input_sections()
3923 { return &this->input_sections_copy_; }
3924
3925 // Return the size of input_sections at the time when checkpoint is
3926 // taken.
3927 size_t
3928 input_sections_size() const
3929 { return this->input_sections_size_; }
3930
3931 // Whether input sections are copied.
3932 bool
3933 input_sections_saved() const
3934 { return this->input_sections_copy_.size() == this->input_sections_size_; }
3935
3936 off_t
3937 first_input_offset() const
3938 { return this->first_input_offset_; }
3939
3940 bool
3941 attached_input_sections_are_sorted() const
3942 { return this->attached_input_sections_are_sorted_; }
3943
3944 // Save input sections.
3945 void
3946 save_input_sections()
3947 {
3948 this->input_sections_copy_.reserve(this->input_sections_size_);
3949 this->input_sections_copy_.clear();
3950 Input_section_list::const_iterator p = this->input_sections_.begin();
3951 gold_assert(this->input_sections_size_ >= this->input_sections_.size());
3952 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
3953 this->input_sections_copy_.push_back(*p);
3954 }
3955
3956 private:
3957 // The section alignment.
3958 uint64_t addralign_;
3959 // The section flags.
3960 elfcpp::Elf_Xword flags_;
3961 // Reference to the input sections to be checkpointed.
3962 const Input_section_list& input_sections_;
3963 // Size of the checkpointed portion of input_sections_;
3964 size_t input_sections_size_;
3965 // Copy of input sections.
3966 Input_section_list input_sections_copy_;
3967 // The offset of the first entry in input_sections_.
3968 off_t first_input_offset_;
3969 // True if the input sections attached to this output section have
3970 // already been sorted.
3971 bool attached_input_sections_are_sorted_;
3972 };
3973
3974 // This class is used to sort the input sections.
3975 class Input_section_sort_entry;
3976
3977 // This is the sort comparison function for ctors and dtors.
3978 struct Input_section_sort_compare
3979 {
3980 bool
3981 operator()(const Input_section_sort_entry&,
3982 const Input_section_sort_entry&) const;
3983 };
3984
3985 // This is the sort comparison function for .init_array and .fini_array.
3986 struct Input_section_sort_init_fini_compare
3987 {
3988 bool
3989 operator()(const Input_section_sort_entry&,
3990 const Input_section_sort_entry&) const;
3991 };
3992
3993 // This is the sort comparison function when a section order is specified
3994 // from an input file.
3995 struct Input_section_sort_section_order_index_compare
3996 {
3997 bool
3998 operator()(const Input_section_sort_entry&,
3999 const Input_section_sort_entry&) const;
4000 };
4001
4002 // Fill data. This is used to fill in data between input sections.
4003 // It is also used for data statements (BYTE, WORD, etc.) in linker
4004 // scripts. When we have to keep track of the input sections, we
4005 // can use an Output_data_const, but we don't want to have to keep
4006 // track of input sections just to implement fills.
4007 class Fill
4008 {
4009 public:
4010 Fill(off_t section_offset, off_t length)
4011 : section_offset_(section_offset),
4012 length_(convert_to_section_size_type(length))
4013 { }
4014
4015 // Return section offset.
4016 off_t
4017 section_offset() const
4018 { return this->section_offset_; }
4019
4020 // Return fill length.
4021 section_size_type
4022 length() const
4023 { return this->length_; }
4024
4025 private:
4026 // The offset within the output section.
4027 off_t section_offset_;
4028 // The length of the space to fill.
4029 section_size_type length_;
4030 };
4031
4032 typedef std::vector<Fill> Fill_list;
4033
4034 // Map used during relaxation of existing sections. This map
4035 // a section id an input section list index. We assume that
4036 // Input_section_list is a vector.
4037 typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
4038
4039 // Add a new output section by Input_section.
4040 void
4041 add_output_section_data(Input_section*);
4042
4043 // Add an SHF_MERGE input section. Returns true if the section was
4044 // handled. If KEEPS_INPUT_SECTIONS is true, the output merge section
4045 // stores information about the merged input sections.
4046 bool
4047 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
4048 uint64_t entsize, uint64_t addralign,
4049 bool keeps_input_sections);
4050
4051 // Add an output SHF_MERGE section POSD to this output section.
4052 // IS_STRING indicates whether it is a SHF_STRINGS section, and
4053 // ENTSIZE is the entity size. This returns the entry added to
4054 // input_sections_.
4055 void
4056 add_output_merge_section(Output_section_data* posd, bool is_string,
4057 uint64_t entsize);
4058
4059 // Sort the attached input sections.
4060 void
4061 sort_attached_input_sections();
4062
4063 // Find the merge section into which an input section with index SHNDX in
4064 // OBJECT has been added. Return NULL if none found.
4065 Output_section_data*
4066 find_merge_section(const Relobj* object, unsigned int shndx) const;
4067
4068 // Build a relaxation map.
4069 void
4070 build_relaxation_map(
4071 const Input_section_list& input_sections,
4072 size_t limit,
4073 Relaxation_map* map) const;
4074
4075 // Convert input sections in an input section list into relaxed sections.
4076 void
4077 convert_input_sections_in_list_to_relaxed_sections(
4078 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
4079 const Relaxation_map& map,
4080 Input_section_list* input_sections);
4081
4082 // Build the lookup maps for merge and relaxed input sections.
4083 void
4084 build_lookup_maps() const;
4085
4086 // Most of these fields are only valid after layout.
4087
4088 // The name of the section. This will point into a Stringpool.
4089 const char* name_;
4090 // The section address is in the parent class.
4091 // The section alignment.
4092 uint64_t addralign_;
4093 // The section entry size.
4094 uint64_t entsize_;
4095 // The load address. This is only used when using a linker script
4096 // with a SECTIONS clause. The has_load_address_ field indicates
4097 // whether this field is valid.
4098 uint64_t load_address_;
4099 // The file offset is in the parent class.
4100 // Set the section link field to the index of this section.
4101 const Output_data* link_section_;
4102 // If link_section_ is NULL, this is the link field.
4103 unsigned int link_;
4104 // Set the section info field to the index of this section.
4105 const Output_section* info_section_;
4106 // If info_section_ is NULL, set the info field to the symbol table
4107 // index of this symbol.
4108 const Symbol* info_symndx_;
4109 // If info_section_ and info_symndx_ are NULL, this is the section
4110 // info field.
4111 unsigned int info_;
4112 // The section type.
4113 const elfcpp::Elf_Word type_;
4114 // The section flags.
4115 elfcpp::Elf_Xword flags_;
4116 // The order of this section in the output segment.
4117 Output_section_order order_;
4118 // The section index.
4119 unsigned int out_shndx_;
4120 // If there is a STT_SECTION for this output section in the normal
4121 // symbol table, this is the symbol index. This starts out as zero.
4122 // It is initialized in Layout::finalize() to be the index, or -1U
4123 // if there isn't one.
4124 unsigned int symtab_index_;
4125 // If there is a STT_SECTION for this output section in the dynamic
4126 // symbol table, this is the symbol index. This starts out as zero.
4127 // It is initialized in Layout::finalize() to be the index, or -1U
4128 // if there isn't one.
4129 unsigned int dynsym_index_;
4130 // The input sections. This will be empty in cases where we don't
4131 // need to keep track of them.
4132 Input_section_list input_sections_;
4133 // The offset of the first entry in input_sections_.
4134 off_t first_input_offset_;
4135 // The fill data. This is separate from input_sections_ because we
4136 // often will need fill sections without needing to keep track of
4137 // input sections.
4138 Fill_list fills_;
4139 // If the section requires postprocessing, this buffer holds the
4140 // section contents during relocation.
4141 unsigned char* postprocessing_buffer_;
4142 // Whether this output section needs a STT_SECTION symbol in the
4143 // normal symbol table. This will be true if there is a relocation
4144 // which needs it.
4145 bool needs_symtab_index_ : 1;
4146 // Whether this output section needs a STT_SECTION symbol in the
4147 // dynamic symbol table. This will be true if there is a dynamic
4148 // relocation which needs it.
4149 bool needs_dynsym_index_ : 1;
4150 // Whether the link field of this output section should point to the
4151 // normal symbol table.
4152 bool should_link_to_symtab_ : 1;
4153 // Whether the link field of this output section should point to the
4154 // dynamic symbol table.
4155 bool should_link_to_dynsym_ : 1;
4156 // Whether this section should be written after all the input
4157 // sections are complete.
4158 bool after_input_sections_ : 1;
4159 // Whether this section requires post processing after all
4160 // relocations have been applied.
4161 bool requires_postprocessing_ : 1;
4162 // Whether an input section was mapped to this output section
4163 // because of a SECTIONS clause in a linker script.
4164 bool found_in_sections_clause_ : 1;
4165 // Whether this section has an explicitly specified load address.
4166 bool has_load_address_ : 1;
4167 // True if the info_section_ field means the section index of the
4168 // section, false if it means the symbol index of the corresponding
4169 // section symbol.
4170 bool info_uses_section_index_ : 1;
4171 // True if input sections attached to this output section have to be
4172 // sorted according to a specified order.
4173 bool input_section_order_specified_ : 1;
4174 // True if the input sections attached to this output section may
4175 // need sorting.
4176 bool may_sort_attached_input_sections_ : 1;
4177 // True if the input sections attached to this output section must
4178 // be sorted.
4179 bool must_sort_attached_input_sections_ : 1;
4180 // True if the input sections attached to this output section have
4181 // already been sorted.
4182 bool attached_input_sections_are_sorted_ : 1;
4183 // True if this section holds relro data.
4184 bool is_relro_ : 1;
4185 // True if this is a small section.
4186 bool is_small_section_ : 1;
4187 // True if this is a large section.
4188 bool is_large_section_ : 1;
4189 // Whether code-fills are generated at write.
4190 bool generate_code_fills_at_write_ : 1;
4191 // Whether the entry size field should be zero.
4192 bool is_entsize_zero_ : 1;
4193 // Whether section offsets need adjustment due to relaxation.
4194 bool section_offsets_need_adjustment_ : 1;
4195 // Whether this is a NOLOAD section.
4196 bool is_noload_ : 1;
4197 // Whether this always keeps input section.
4198 bool always_keeps_input_sections_ : 1;
4199 // Whether this section has a fixed layout, for incremental update links.
4200 bool has_fixed_layout_ : 1;
4201 // True if we can add patch space to this section.
4202 bool is_patch_space_allowed_ : 1;
4203 // For SHT_TLS sections, the offset of this section relative to the base
4204 // of the TLS segment.
4205 uint64_t tls_offset_;
4206 // Saved checkpoint.
4207 Checkpoint_output_section* checkpoint_;
4208 // Fast lookup maps for merged and relaxed input sections.
4209 Output_section_lookup_maps* lookup_maps_;
4210 // List of available regions within the section, for incremental
4211 // update links.
4212 Free_list free_list_;
4213 // Method for filling chunks of free space.
4214 Output_fill* free_space_fill_;
4215 // Amount added as patch space for incremental linking.
4216 off_t patch_space_;
4217 };
4218
4219 // An output segment. PT_LOAD segments are built from collections of
4220 // output sections. Other segments typically point within PT_LOAD
4221 // segments, and are built directly as needed.
4222 //
4223 // NOTE: We want to use the copy constructor for this class. During
4224 // relaxation, we may try built the segments multiple times. We do
4225 // that by copying the original segment list before lay-out, doing
4226 // a trial lay-out and roll-back to the saved copied if we need to
4227 // to the lay-out again.
4228
4229 class Output_segment
4230 {
4231 public:
4232 // Create an output segment, specifying the type and flags.
4233 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
4234
4235 // Return the virtual address.
4236 uint64_t
4237 vaddr() const
4238 { return this->vaddr_; }
4239
4240 // Return the physical address.
4241 uint64_t
4242 paddr() const
4243 { return this->paddr_; }
4244
4245 // Return the segment type.
4246 elfcpp::Elf_Word
4247 type() const
4248 { return this->type_; }
4249
4250 // Return the segment flags.
4251 elfcpp::Elf_Word
4252 flags() const
4253 { return this->flags_; }
4254
4255 // Return the memory size.
4256 uint64_t
4257 memsz() const
4258 { return this->memsz_; }
4259
4260 // Return the file size.
4261 off_t
4262 filesz() const
4263 { return this->filesz_; }
4264
4265 // Return the file offset.
4266 off_t
4267 offset() const
4268 { return this->offset_; }
4269
4270 // Whether this is a segment created to hold large data sections.
4271 bool
4272 is_large_data_segment() const
4273 { return this->is_large_data_segment_; }
4274
4275 // Record that this is a segment created to hold large data
4276 // sections.
4277 void
4278 set_is_large_data_segment()
4279 { this->is_large_data_segment_ = true; }
4280
4281 // Return the maximum alignment of the Output_data.
4282 uint64_t
4283 maximum_alignment();
4284
4285 // Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is
4286 // the segment flags to use.
4287 void
4288 add_output_section_to_load(Layout* layout, Output_section* os,
4289 elfcpp::Elf_Word seg_flags);
4290
4291 // Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS
4292 // is the segment flags to use.
4293 void
4294 add_output_section_to_nonload(Output_section* os,
4295 elfcpp::Elf_Word seg_flags);
4296
4297 // Remove an Output_section from this segment. It is an error if it
4298 // is not present.
4299 void
4300 remove_output_section(Output_section* os);
4301
4302 // Add an Output_data (which need not be an Output_section) to the
4303 // start of this segment.
4304 void
4305 add_initial_output_data(Output_data*);
4306
4307 // Return true if this segment has any sections which hold actual
4308 // data, rather than being a BSS section.
4309 bool
4310 has_any_data_sections() const;
4311
4312 // Whether this segment has a dynamic relocs.
4313 bool
4314 has_dynamic_reloc() const;
4315
4316 // Return the address of the first section.
4317 uint64_t
4318 first_section_load_address() const;
4319
4320 // Return whether the addresses have been set already.
4321 bool
4322 are_addresses_set() const
4323 { return this->are_addresses_set_; }
4324
4325 // Set the addresses.
4326 void
4327 set_addresses(uint64_t vaddr, uint64_t paddr)
4328 {
4329 this->vaddr_ = vaddr;
4330 this->paddr_ = paddr;
4331 this->are_addresses_set_ = true;
4332 }
4333
4334 // Update the flags for the flags of an output section added to this
4335 // segment.
4336 void
4337 update_flags_for_output_section(elfcpp::Elf_Xword flags)
4338 {
4339 // The ELF ABI specifies that a PT_TLS segment should always have
4340 // PF_R as the flags.
4341 if (this->type() != elfcpp::PT_TLS)
4342 this->flags_ |= flags;
4343 }
4344
4345 // Set the segment flags. This is only used if we have a PHDRS
4346 // clause which explicitly specifies the flags.
4347 void
4348 set_flags(elfcpp::Elf_Word flags)
4349 { this->flags_ = flags; }
4350
4351 // Set the address of the segment to ADDR and the offset to *POFF
4352 // and set the addresses and offsets of all contained output
4353 // sections accordingly. Set the section indexes of all contained
4354 // output sections starting with *PSHNDX. If RESET is true, first
4355 // reset the addresses of the contained sections. Return the
4356 // address of the immediately following segment. Update *POFF and
4357 // *PSHNDX. This should only be called for a PT_LOAD segment.
4358 uint64_t
4359 set_section_addresses(Layout*, bool reset, uint64_t addr,
4360 unsigned int* increase_relro, bool* has_relro,
4361 off_t* poff, unsigned int* pshndx);
4362
4363 // Set the minimum alignment of this segment. This may be adjusted
4364 // upward based on the section alignments.
4365 void
4366 set_minimum_p_align(uint64_t align)
4367 {
4368 if (align > this->min_p_align_)
4369 this->min_p_align_ = align;
4370 }
4371
4372 // Set the offset of this segment based on the section. This should
4373 // only be called for a non-PT_LOAD segment.
4374 void
4375 set_offset(unsigned int increase);
4376
4377 // Set the TLS offsets of the sections contained in the PT_TLS segment.
4378 void
4379 set_tls_offsets();
4380
4381 // Return the number of output sections.
4382 unsigned int
4383 output_section_count() const;
4384
4385 // Return the section attached to the list segment with the lowest
4386 // load address. This is used when handling a PHDRS clause in a
4387 // linker script.
4388 Output_section*
4389 section_with_lowest_load_address() const;
4390
4391 // Write the segment header into *OPHDR.
4392 template<int size, bool big_endian>
4393 void
4394 write_header(elfcpp::Phdr_write<size, big_endian>*);
4395
4396 // Write the section headers of associated sections into V.
4397 template<int size, bool big_endian>
4398 unsigned char*
4399 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
4400 unsigned int* pshndx) const;
4401
4402 // Print the output sections in the map file.
4403 void
4404 print_sections_to_mapfile(Mapfile*) const;
4405
4406 private:
4407 typedef std::vector<Output_data*> Output_data_list;
4408
4409 // Find the maximum alignment in an Output_data_list.
4410 static uint64_t
4411 maximum_alignment_list(const Output_data_list*);
4412
4413 // Return whether the first data section is a relro section.
4414 bool
4415 is_first_section_relro() const;
4416
4417 // Set the section addresses in an Output_data_list.
4418 uint64_t
4419 set_section_list_addresses(Layout*, bool reset, Output_data_list*,
4420 uint64_t addr, off_t* poff, unsigned int* pshndx,
4421 bool* in_tls);
4422
4423 // Return the number of Output_sections in an Output_data_list.
4424 unsigned int
4425 output_section_count_list(const Output_data_list*) const;
4426
4427 // Return whether an Output_data_list has a dynamic reloc.
4428 bool
4429 has_dynamic_reloc_list(const Output_data_list*) const;
4430
4431 // Find the section with the lowest load address in an
4432 // Output_data_list.
4433 void
4434 lowest_load_address_in_list(const Output_data_list* pdl,
4435 Output_section** found,
4436 uint64_t* found_lma) const;
4437
4438 // Find the first and last entries by address.
4439 void
4440 find_first_and_last_list(const Output_data_list* pdl,
4441 const Output_data** pfirst,
4442 const Output_data** plast) const;
4443
4444 // Write the section headers in the list into V.
4445 template<int size, bool big_endian>
4446 unsigned char*
4447 write_section_headers_list(const Layout*, const Stringpool*,
4448 const Output_data_list*, unsigned char* v,
4449 unsigned int* pshdx) const;
4450
4451 // Print a section list to the mapfile.
4452 void
4453 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
4454
4455 // NOTE: We want to use the copy constructor. Currently, shallow copy
4456 // works for us so we do not need to write our own copy constructor.
4457
4458 // The list of output data attached to this segment.
4459 Output_data_list output_lists_[ORDER_MAX];
4460 // The segment virtual address.
4461 uint64_t vaddr_;
4462 // The segment physical address.
4463 uint64_t paddr_;
4464 // The size of the segment in memory.
4465 uint64_t memsz_;
4466 // The maximum section alignment. The is_max_align_known_ field
4467 // indicates whether this has been finalized.
4468 uint64_t max_align_;
4469 // The required minimum value for the p_align field. This is used
4470 // for PT_LOAD segments. Note that this does not mean that
4471 // addresses should be aligned to this value; it means the p_paddr
4472 // and p_vaddr fields must be congruent modulo this value. For
4473 // non-PT_LOAD segments, the dynamic linker works more efficiently
4474 // if the p_align field has the more conventional value, although it
4475 // can align as needed.
4476 uint64_t min_p_align_;
4477 // The offset of the segment data within the file.
4478 off_t offset_;
4479 // The size of the segment data in the file.
4480 off_t filesz_;
4481 // The segment type;
4482 elfcpp::Elf_Word type_;
4483 // The segment flags.
4484 elfcpp::Elf_Word flags_;
4485 // Whether we have finalized max_align_.
4486 bool is_max_align_known_ : 1;
4487 // Whether vaddr and paddr were set by a linker script.
4488 bool are_addresses_set_ : 1;
4489 // Whether this segment holds large data sections.
4490 bool is_large_data_segment_ : 1;
4491 };
4492
4493 // This class represents the output file.
4494
4495 class Output_file
4496 {
4497 public:
4498 Output_file(const char* name);
4499
4500 // Indicate that this is a temporary file which should not be
4501 // output.
4502 void
4503 set_is_temporary()
4504 { this->is_temporary_ = true; }
4505
4506 // Try to open an existing file. Returns false if the file doesn't
4507 // exist, has a size of 0 or can't be mmaped. This method is
4508 // thread-unsafe. If BASE_NAME is not NULL, use the contents of
4509 // that file as the base for incremental linking.
4510 bool
4511 open_base_file(const char* base_name, bool writable);
4512
4513 // Open the output file. FILE_SIZE is the final size of the file.
4514 // If the file already exists, it is deleted/truncated. This method
4515 // is thread-unsafe.
4516 void
4517 open(off_t file_size);
4518
4519 // Resize the output file. This method is thread-unsafe.
4520 void
4521 resize(off_t file_size);
4522
4523 // Close the output file (flushing all buffered data) and make sure
4524 // there are no errors. This method is thread-unsafe.
4525 void
4526 close();
4527
4528 // Return the size of this file.
4529 off_t
4530 filesize()
4531 { return this->file_size_; }
4532
4533 // Return the name of this file.
4534 const char*
4535 filename()
4536 { return this->name_; }
4537
4538 // We currently always use mmap which makes the view handling quite
4539 // simple. In the future we may support other approaches.
4540
4541 // Write data to the output file.
4542 void
4543 write(off_t offset, const void* data, size_t len)
4544 { memcpy(this->base_ + offset, data, len); }
4545
4546 // Get a buffer to use to write to the file, given the offset into
4547 // the file and the size.
4548 unsigned char*
4549 get_output_view(off_t start, size_t size)
4550 {
4551 gold_assert(start >= 0
4552 && start + static_cast<off_t>(size) <= this->file_size_);
4553 return this->base_ + start;
4554 }
4555
4556 // VIEW must have been returned by get_output_view. Write the
4557 // buffer to the file, passing in the offset and the size.
4558 void
4559 write_output_view(off_t, size_t, unsigned char*)
4560 { }
4561
4562 // Get a read/write buffer. This is used when we want to write part
4563 // of the file, read it in, and write it again.
4564 unsigned char*
4565 get_input_output_view(off_t start, size_t size)
4566 { return this->get_output_view(start, size); }
4567
4568 // Write a read/write buffer back to the file.
4569 void
4570 write_input_output_view(off_t, size_t, unsigned char*)
4571 { }
4572
4573 // Get a read buffer. This is used when we just want to read part
4574 // of the file back it in.
4575 const unsigned char*
4576 get_input_view(off_t start, size_t size)
4577 { return this->get_output_view(start, size); }
4578
4579 // Release a read bfufer.
4580 void
4581 free_input_view(off_t, size_t, const unsigned char*)
4582 { }
4583
4584 private:
4585 // Map the file into memory or, if that fails, allocate anonymous
4586 // memory.
4587 void
4588 map();
4589
4590 // Allocate anonymous memory for the file.
4591 bool
4592 map_anonymous();
4593
4594 // Map the file into memory.
4595 bool
4596 map_no_anonymous(bool);
4597
4598 // Unmap the file from memory (and flush to disk buffers).
4599 void
4600 unmap();
4601
4602 // File name.
4603 const char* name_;
4604 // File descriptor.
4605 int o_;
4606 // File size.
4607 off_t file_size_;
4608 // Base of file mapped into memory.
4609 unsigned char* base_;
4610 // True iff base_ points to a memory buffer rather than an output file.
4611 bool map_is_anonymous_;
4612 // True if base_ was allocated using new rather than mmap.
4613 bool map_is_allocated_;
4614 // True if this is a temporary file which should not be output.
4615 bool is_temporary_;
4616 };
4617
4618 } // End namespace gold.
4619
4620 #endif // !defined(GOLD_OUTPUT_H)
This page took 0.135886 seconds and 4 git commands to generate.