Fix internal error when relaxing branches to STT_SECTION symbols.
[deliverable/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2016 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73 Output_section* output_section;
74 const Output_section::Input_section* owner;
75 };
76
77 inline bool
78 is_branch_reloc(unsigned int r_type);
79
80 template<int size, bool big_endian>
81 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
82 {
83 public:
84 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
85 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
86 typedef Unordered_map<Address, Section_refs> Access_from;
87
88 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
89 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
90 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
91 special_(0), has_small_toc_reloc_(false), opd_valid_(false),
92 opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
93 e_flags_(ehdr.get_e_flags()), st_other_()
94 {
95 this->set_abiversion(0);
96 }
97
98 ~Powerpc_relobj()
99 { }
100
101 // Read the symbols then set up st_other vector.
102 void
103 do_read_symbols(Read_symbols_data*);
104
105 // The .got2 section shndx.
106 unsigned int
107 got2_shndx() const
108 {
109 if (size == 32)
110 return this->special_;
111 else
112 return 0;
113 }
114
115 // The .opd section shndx.
116 unsigned int
117 opd_shndx() const
118 {
119 if (size == 32)
120 return 0;
121 else
122 return this->special_;
123 }
124
125 // Init OPD entry arrays.
126 void
127 init_opd(size_t opd_size)
128 {
129 size_t count = this->opd_ent_ndx(opd_size);
130 this->opd_ent_.resize(count);
131 }
132
133 // Return section and offset of function entry for .opd + R_OFF.
134 unsigned int
135 get_opd_ent(Address r_off, Address* value = NULL) const
136 {
137 size_t ndx = this->opd_ent_ndx(r_off);
138 gold_assert(ndx < this->opd_ent_.size());
139 gold_assert(this->opd_ent_[ndx].shndx != 0);
140 if (value != NULL)
141 *value = this->opd_ent_[ndx].off;
142 return this->opd_ent_[ndx].shndx;
143 }
144
145 // Set section and offset of function entry for .opd + R_OFF.
146 void
147 set_opd_ent(Address r_off, unsigned int shndx, Address value)
148 {
149 size_t ndx = this->opd_ent_ndx(r_off);
150 gold_assert(ndx < this->opd_ent_.size());
151 this->opd_ent_[ndx].shndx = shndx;
152 this->opd_ent_[ndx].off = value;
153 }
154
155 // Return discard flag for .opd + R_OFF.
156 bool
157 get_opd_discard(Address r_off) const
158 {
159 size_t ndx = this->opd_ent_ndx(r_off);
160 gold_assert(ndx < this->opd_ent_.size());
161 return this->opd_ent_[ndx].discard;
162 }
163
164 // Set discard flag for .opd + R_OFF.
165 void
166 set_opd_discard(Address r_off)
167 {
168 size_t ndx = this->opd_ent_ndx(r_off);
169 gold_assert(ndx < this->opd_ent_.size());
170 this->opd_ent_[ndx].discard = true;
171 }
172
173 bool
174 opd_valid() const
175 { return this->opd_valid_; }
176
177 void
178 set_opd_valid()
179 { this->opd_valid_ = true; }
180
181 // Examine .rela.opd to build info about function entry points.
182 void
183 scan_opd_relocs(size_t reloc_count,
184 const unsigned char* prelocs,
185 const unsigned char* plocal_syms);
186
187 // Perform the Sized_relobj_file method, then set up opd info from
188 // .opd relocs.
189 void
190 do_read_relocs(Read_relocs_data*);
191
192 bool
193 do_find_special_sections(Read_symbols_data* sd);
194
195 // Adjust this local symbol value. Return false if the symbol
196 // should be discarded from the output file.
197 bool
198 do_adjust_local_symbol(Symbol_value<size>* lv) const
199 {
200 if (size == 64 && this->opd_shndx() != 0)
201 {
202 bool is_ordinary;
203 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
204 return true;
205 if (this->get_opd_discard(lv->input_value()))
206 return false;
207 }
208 return true;
209 }
210
211 Access_from*
212 access_from_map()
213 { return &this->access_from_map_; }
214
215 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
216 // section at DST_OFF.
217 void
218 add_reference(Relobj* src_obj,
219 unsigned int src_indx,
220 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
221 {
222 Section_id src_id(src_obj, src_indx);
223 this->access_from_map_[dst_off].insert(src_id);
224 }
225
226 // Add a reference to the code section specified by the .opd entry
227 // at DST_OFF
228 void
229 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
230 {
231 size_t ndx = this->opd_ent_ndx(dst_off);
232 if (ndx >= this->opd_ent_.size())
233 this->opd_ent_.resize(ndx + 1);
234 this->opd_ent_[ndx].gc_mark = true;
235 }
236
237 void
238 process_gc_mark(Symbol_table* symtab)
239 {
240 for (size_t i = 0; i < this->opd_ent_.size(); i++)
241 if (this->opd_ent_[i].gc_mark)
242 {
243 unsigned int shndx = this->opd_ent_[i].shndx;
244 symtab->gc()->worklist().push_back(Section_id(this, shndx));
245 }
246 }
247
248 // Return offset in output GOT section that this object will use
249 // as a TOC pointer. Won't be just a constant with multi-toc support.
250 Address
251 toc_base_offset() const
252 { return 0x8000; }
253
254 void
255 set_has_small_toc_reloc()
256 { has_small_toc_reloc_ = true; }
257
258 bool
259 has_small_toc_reloc() const
260 { return has_small_toc_reloc_; }
261
262 void
263 set_has_14bit_branch(unsigned int shndx)
264 {
265 if (shndx >= this->has14_.size())
266 this->has14_.resize(shndx + 1);
267 this->has14_[shndx] = true;
268 }
269
270 bool
271 has_14bit_branch(unsigned int shndx) const
272 { return shndx < this->has14_.size() && this->has14_[shndx]; }
273
274 void
275 set_stub_table(unsigned int shndx, unsigned int stub_index)
276 {
277 if (shndx >= this->stub_table_index_.size())
278 this->stub_table_index_.resize(shndx + 1);
279 this->stub_table_index_[shndx] = stub_index;
280 }
281
282 Stub_table<size, big_endian>*
283 stub_table(unsigned int shndx)
284 {
285 if (shndx < this->stub_table_index_.size())
286 {
287 Target_powerpc<size, big_endian>* target
288 = static_cast<Target_powerpc<size, big_endian>*>(
289 parameters->sized_target<size, big_endian>());
290 unsigned int indx = this->stub_table_index_[shndx];
291 gold_assert(indx < target->stub_tables().size());
292 return target->stub_tables()[indx];
293 }
294 return NULL;
295 }
296
297 void
298 clear_stub_table()
299 {
300 this->stub_table_index_.clear();
301 }
302
303 int
304 abiversion() const
305 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
306
307 // Set ABI version for input and output
308 void
309 set_abiversion(int ver);
310
311 unsigned int
312 ppc64_local_entry_offset(const Symbol* sym) const
313 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
314
315 unsigned int
316 ppc64_local_entry_offset(unsigned int symndx) const
317 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
318
319 private:
320 struct Opd_ent
321 {
322 unsigned int shndx;
323 bool discard : 1;
324 bool gc_mark : 1;
325 Address off;
326 };
327
328 // Return index into opd_ent_ array for .opd entry at OFF.
329 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
330 // apart when the language doesn't use the last 8-byte word, the
331 // environment pointer. Thus dividing the entry section offset by
332 // 16 will give an index into opd_ent_ that works for either layout
333 // of .opd. (It leaves some elements of the vector unused when .opd
334 // entries are spaced 24 bytes apart, but we don't know the spacing
335 // until relocations are processed, and in any case it is possible
336 // for an object to have some entries spaced 16 bytes apart and
337 // others 24 bytes apart.)
338 size_t
339 opd_ent_ndx(size_t off) const
340 { return off >> 4;}
341
342 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
343 unsigned int special_;
344
345 // For 64-bit, whether this object uses small model relocs to access
346 // the toc.
347 bool has_small_toc_reloc_;
348
349 // Set at the start of gc_process_relocs, when we know opd_ent_
350 // vector is valid. The flag could be made atomic and set in
351 // do_read_relocs with memory_order_release and then tested with
352 // memory_order_acquire, potentially resulting in fewer entries in
353 // access_from_map_.
354 bool opd_valid_;
355
356 // The first 8-byte word of an OPD entry gives the address of the
357 // entry point of the function. Relocatable object files have a
358 // relocation on this word. The following vector records the
359 // section and offset specified by these relocations.
360 std::vector<Opd_ent> opd_ent_;
361
362 // References made to this object's .opd section when running
363 // gc_process_relocs for another object, before the opd_ent_ vector
364 // is valid for this object.
365 Access_from access_from_map_;
366
367 // Whether input section has a 14-bit branch reloc.
368 std::vector<bool> has14_;
369
370 // The stub table to use for a given input section.
371 std::vector<unsigned int> stub_table_index_;
372
373 // Header e_flags
374 elfcpp::Elf_Word e_flags_;
375
376 // ELF st_other field for local symbols.
377 std::vector<unsigned char> st_other_;
378 };
379
380 template<int size, bool big_endian>
381 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
382 {
383 public:
384 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
385
386 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
387 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
388 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
389 opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
390 {
391 this->set_abiversion(0);
392 }
393
394 ~Powerpc_dynobj()
395 { }
396
397 // Call Sized_dynobj::do_read_symbols to read the symbols then
398 // read .opd from a dynamic object, filling in opd_ent_ vector,
399 void
400 do_read_symbols(Read_symbols_data*);
401
402 // The .opd section shndx.
403 unsigned int
404 opd_shndx() const
405 {
406 return this->opd_shndx_;
407 }
408
409 // The .opd section address.
410 Address
411 opd_address() const
412 {
413 return this->opd_address_;
414 }
415
416 // Init OPD entry arrays.
417 void
418 init_opd(size_t opd_size)
419 {
420 size_t count = this->opd_ent_ndx(opd_size);
421 this->opd_ent_.resize(count);
422 }
423
424 // Return section and offset of function entry for .opd + R_OFF.
425 unsigned int
426 get_opd_ent(Address r_off, Address* value = NULL) const
427 {
428 size_t ndx = this->opd_ent_ndx(r_off);
429 gold_assert(ndx < this->opd_ent_.size());
430 gold_assert(this->opd_ent_[ndx].shndx != 0);
431 if (value != NULL)
432 *value = this->opd_ent_[ndx].off;
433 return this->opd_ent_[ndx].shndx;
434 }
435
436 // Set section and offset of function entry for .opd + R_OFF.
437 void
438 set_opd_ent(Address r_off, unsigned int shndx, Address value)
439 {
440 size_t ndx = this->opd_ent_ndx(r_off);
441 gold_assert(ndx < this->opd_ent_.size());
442 this->opd_ent_[ndx].shndx = shndx;
443 this->opd_ent_[ndx].off = value;
444 }
445
446 int
447 abiversion() const
448 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
449
450 // Set ABI version for input and output.
451 void
452 set_abiversion(int ver);
453
454 private:
455 // Used to specify extent of executable sections.
456 struct Sec_info
457 {
458 Sec_info(Address start_, Address len_, unsigned int shndx_)
459 : start(start_), len(len_), shndx(shndx_)
460 { }
461
462 bool
463 operator<(const Sec_info& that) const
464 { return this->start < that.start; }
465
466 Address start;
467 Address len;
468 unsigned int shndx;
469 };
470
471 struct Opd_ent
472 {
473 unsigned int shndx;
474 Address off;
475 };
476
477 // Return index into opd_ent_ array for .opd entry at OFF.
478 size_t
479 opd_ent_ndx(size_t off) const
480 { return off >> 4;}
481
482 // For 64-bit the .opd section shndx and address.
483 unsigned int opd_shndx_;
484 Address opd_address_;
485
486 // The first 8-byte word of an OPD entry gives the address of the
487 // entry point of the function. Records the section and offset
488 // corresponding to the address. Note that in dynamic objects,
489 // offset is *not* relative to the section.
490 std::vector<Opd_ent> opd_ent_;
491
492 // Header e_flags
493 elfcpp::Elf_Word e_flags_;
494 };
495
496 template<int size, bool big_endian>
497 class Target_powerpc : public Sized_target<size, big_endian>
498 {
499 public:
500 typedef
501 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
502 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
503 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
504 static const Address invalid_address = static_cast<Address>(0) - 1;
505 // Offset of tp and dtp pointers from start of TLS block.
506 static const Address tp_offset = 0x7000;
507 static const Address dtp_offset = 0x8000;
508
509 Target_powerpc()
510 : Sized_target<size, big_endian>(&powerpc_info),
511 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
512 glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
513 tlsld_got_offset_(-1U),
514 stub_tables_(), branch_lookup_table_(), branch_info_(),
515 plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
516 stub_group_size_(0), savres_section_(0)
517 {
518 }
519
520 // Process the relocations to determine unreferenced sections for
521 // garbage collection.
522 void
523 gc_process_relocs(Symbol_table* symtab,
524 Layout* layout,
525 Sized_relobj_file<size, big_endian>* object,
526 unsigned int data_shndx,
527 unsigned int sh_type,
528 const unsigned char* prelocs,
529 size_t reloc_count,
530 Output_section* output_section,
531 bool needs_special_offset_handling,
532 size_t local_symbol_count,
533 const unsigned char* plocal_symbols);
534
535 // Scan the relocations to look for symbol adjustments.
536 void
537 scan_relocs(Symbol_table* symtab,
538 Layout* layout,
539 Sized_relobj_file<size, big_endian>* object,
540 unsigned int data_shndx,
541 unsigned int sh_type,
542 const unsigned char* prelocs,
543 size_t reloc_count,
544 Output_section* output_section,
545 bool needs_special_offset_handling,
546 size_t local_symbol_count,
547 const unsigned char* plocal_symbols);
548
549 // Map input .toc section to output .got section.
550 const char*
551 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
552 {
553 if (size == 64 && strcmp(name, ".toc") == 0)
554 {
555 *plen = 4;
556 return ".got";
557 }
558 return NULL;
559 }
560
561 // Provide linker defined save/restore functions.
562 void
563 define_save_restore_funcs(Layout*, Symbol_table*);
564
565 // No stubs unless a final link.
566 bool
567 do_may_relax() const
568 { return !parameters->options().relocatable(); }
569
570 bool
571 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
572
573 void
574 do_plt_fde_location(const Output_data*, unsigned char*,
575 uint64_t*, off_t*) const;
576
577 // Stash info about branches, for stub generation.
578 void
579 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
580 unsigned int data_shndx, Address r_offset,
581 unsigned int r_type, unsigned int r_sym, Address addend)
582 {
583 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
584 this->branch_info_.push_back(info);
585 if (r_type == elfcpp::R_POWERPC_REL14
586 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
587 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
588 ppc_object->set_has_14bit_branch(data_shndx);
589 }
590
591 void
592 do_define_standard_symbols(Symbol_table*, Layout*);
593
594 // Finalize the sections.
595 void
596 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
597
598 // Return the value to use for a dynamic which requires special
599 // treatment.
600 uint64_t
601 do_dynsym_value(const Symbol*) const;
602
603 // Return the PLT address to use for a local symbol.
604 uint64_t
605 do_plt_address_for_local(const Relobj*, unsigned int) const;
606
607 // Return the PLT address to use for a global symbol.
608 uint64_t
609 do_plt_address_for_global(const Symbol*) const;
610
611 // Return the offset to use for the GOT_INDX'th got entry which is
612 // for a local tls symbol specified by OBJECT, SYMNDX.
613 int64_t
614 do_tls_offset_for_local(const Relobj* object,
615 unsigned int symndx,
616 unsigned int got_indx) const;
617
618 // Return the offset to use for the GOT_INDX'th got entry which is
619 // for global tls symbol GSYM.
620 int64_t
621 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
622
623 void
624 do_function_location(Symbol_location*) const;
625
626 bool
627 do_can_check_for_function_pointers() const
628 { return true; }
629
630 // Adjust -fsplit-stack code which calls non-split-stack code.
631 void
632 do_calls_non_split(Relobj* object, unsigned int shndx,
633 section_offset_type fnoffset, section_size_type fnsize,
634 const unsigned char* prelocs, size_t reloc_count,
635 unsigned char* view, section_size_type view_size,
636 std::string* from, std::string* to) const;
637
638 // Relocate a section.
639 void
640 relocate_section(const Relocate_info<size, big_endian>*,
641 unsigned int sh_type,
642 const unsigned char* prelocs,
643 size_t reloc_count,
644 Output_section* output_section,
645 bool needs_special_offset_handling,
646 unsigned char* view,
647 Address view_address,
648 section_size_type view_size,
649 const Reloc_symbol_changes*);
650
651 // Scan the relocs during a relocatable link.
652 void
653 scan_relocatable_relocs(Symbol_table* symtab,
654 Layout* layout,
655 Sized_relobj_file<size, big_endian>* object,
656 unsigned int data_shndx,
657 unsigned int sh_type,
658 const unsigned char* prelocs,
659 size_t reloc_count,
660 Output_section* output_section,
661 bool needs_special_offset_handling,
662 size_t local_symbol_count,
663 const unsigned char* plocal_symbols,
664 Relocatable_relocs*);
665
666 // Scan the relocs for --emit-relocs.
667 void
668 emit_relocs_scan(Symbol_table* symtab,
669 Layout* layout,
670 Sized_relobj_file<size, big_endian>* object,
671 unsigned int data_shndx,
672 unsigned int sh_type,
673 const unsigned char* prelocs,
674 size_t reloc_count,
675 Output_section* output_section,
676 bool needs_special_offset_handling,
677 size_t local_symbol_count,
678 const unsigned char* plocal_syms,
679 Relocatable_relocs* rr);
680
681 // Emit relocations for a section.
682 void
683 relocate_relocs(const Relocate_info<size, big_endian>*,
684 unsigned int sh_type,
685 const unsigned char* prelocs,
686 size_t reloc_count,
687 Output_section* output_section,
688 typename elfcpp::Elf_types<size>::Elf_Off
689 offset_in_output_section,
690 unsigned char*,
691 Address view_address,
692 section_size_type,
693 unsigned char* reloc_view,
694 section_size_type reloc_view_size);
695
696 // Return whether SYM is defined by the ABI.
697 bool
698 do_is_defined_by_abi(const Symbol* sym) const
699 {
700 return strcmp(sym->name(), "__tls_get_addr") == 0;
701 }
702
703 // Return the size of the GOT section.
704 section_size_type
705 got_size() const
706 {
707 gold_assert(this->got_ != NULL);
708 return this->got_->data_size();
709 }
710
711 // Get the PLT section.
712 const Output_data_plt_powerpc<size, big_endian>*
713 plt_section() const
714 {
715 gold_assert(this->plt_ != NULL);
716 return this->plt_;
717 }
718
719 // Get the IPLT section.
720 const Output_data_plt_powerpc<size, big_endian>*
721 iplt_section() const
722 {
723 gold_assert(this->iplt_ != NULL);
724 return this->iplt_;
725 }
726
727 // Get the .glink section.
728 const Output_data_glink<size, big_endian>*
729 glink_section() const
730 {
731 gold_assert(this->glink_ != NULL);
732 return this->glink_;
733 }
734
735 Output_data_glink<size, big_endian>*
736 glink_section()
737 {
738 gold_assert(this->glink_ != NULL);
739 return this->glink_;
740 }
741
742 bool has_glink() const
743 { return this->glink_ != NULL; }
744
745 // Get the GOT section.
746 const Output_data_got_powerpc<size, big_endian>*
747 got_section() const
748 {
749 gold_assert(this->got_ != NULL);
750 return this->got_;
751 }
752
753 // Get the GOT section, creating it if necessary.
754 Output_data_got_powerpc<size, big_endian>*
755 got_section(Symbol_table*, Layout*);
756
757 Object*
758 do_make_elf_object(const std::string&, Input_file*, off_t,
759 const elfcpp::Ehdr<size, big_endian>&);
760
761 // Return the number of entries in the GOT.
762 unsigned int
763 got_entry_count() const
764 {
765 if (this->got_ == NULL)
766 return 0;
767 return this->got_size() / (size / 8);
768 }
769
770 // Return the number of entries in the PLT.
771 unsigned int
772 plt_entry_count() const;
773
774 // Return the offset of the first non-reserved PLT entry.
775 unsigned int
776 first_plt_entry_offset() const
777 {
778 if (size == 32)
779 return 0;
780 if (this->abiversion() >= 2)
781 return 16;
782 return 24;
783 }
784
785 // Return the size of each PLT entry.
786 unsigned int
787 plt_entry_size() const
788 {
789 if (size == 32)
790 return 4;
791 if (this->abiversion() >= 2)
792 return 8;
793 return 24;
794 }
795
796 Output_data_save_res<size, big_endian>*
797 savres_section() const
798 {
799 return this->savres_section_;
800 }
801
802 // Add any special sections for this symbol to the gc work list.
803 // For powerpc64, this adds the code section of a function
804 // descriptor.
805 void
806 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
807
808 // Handle target specific gc actions when adding a gc reference from
809 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
810 // and DST_OFF. For powerpc64, this adds a referenc to the code
811 // section of a function descriptor.
812 void
813 do_gc_add_reference(Symbol_table* symtab,
814 Relobj* src_obj,
815 unsigned int src_shndx,
816 Relobj* dst_obj,
817 unsigned int dst_shndx,
818 Address dst_off) const;
819
820 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
821 const Stub_tables&
822 stub_tables() const
823 { return this->stub_tables_; }
824
825 const Output_data_brlt_powerpc<size, big_endian>*
826 brlt_section() const
827 { return this->brlt_section_; }
828
829 void
830 add_branch_lookup_table(Address to)
831 {
832 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
833 this->branch_lookup_table_.insert(std::make_pair(to, off));
834 }
835
836 Address
837 find_branch_lookup_table(Address to)
838 {
839 typename Branch_lookup_table::const_iterator p
840 = this->branch_lookup_table_.find(to);
841 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
842 }
843
844 void
845 write_branch_lookup_table(unsigned char *oview)
846 {
847 for (typename Branch_lookup_table::const_iterator p
848 = this->branch_lookup_table_.begin();
849 p != this->branch_lookup_table_.end();
850 ++p)
851 {
852 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
853 }
854 }
855
856 bool
857 plt_thread_safe() const
858 { return this->plt_thread_safe_; }
859
860 int
861 abiversion () const
862 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
863
864 void
865 set_abiversion (int ver)
866 {
867 elfcpp::Elf_Word flags = this->processor_specific_flags();
868 flags &= ~elfcpp::EF_PPC64_ABI;
869 flags |= ver & elfcpp::EF_PPC64_ABI;
870 this->set_processor_specific_flags(flags);
871 }
872
873 // Offset to to save stack slot
874 int
875 stk_toc () const
876 { return this->abiversion() < 2 ? 40 : 24; }
877
878 private:
879
880 class Track_tls
881 {
882 public:
883 enum Tls_get_addr
884 {
885 NOT_EXPECTED = 0,
886 EXPECTED = 1,
887 SKIP = 2,
888 NORMAL = 3
889 };
890
891 Track_tls()
892 : tls_get_addr_(NOT_EXPECTED),
893 relinfo_(NULL), relnum_(0), r_offset_(0)
894 { }
895
896 ~Track_tls()
897 {
898 if (this->tls_get_addr_ != NOT_EXPECTED)
899 this->missing();
900 }
901
902 void
903 missing(void)
904 {
905 if (this->relinfo_ != NULL)
906 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
907 _("missing expected __tls_get_addr call"));
908 }
909
910 void
911 expect_tls_get_addr_call(
912 const Relocate_info<size, big_endian>* relinfo,
913 size_t relnum,
914 Address r_offset)
915 {
916 this->tls_get_addr_ = EXPECTED;
917 this->relinfo_ = relinfo;
918 this->relnum_ = relnum;
919 this->r_offset_ = r_offset;
920 }
921
922 void
923 expect_tls_get_addr_call()
924 { this->tls_get_addr_ = EXPECTED; }
925
926 void
927 skip_next_tls_get_addr_call()
928 {this->tls_get_addr_ = SKIP; }
929
930 Tls_get_addr
931 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
932 {
933 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
934 || r_type == elfcpp::R_PPC_PLTREL24)
935 && gsym != NULL
936 && strcmp(gsym->name(), "__tls_get_addr") == 0);
937 Tls_get_addr last_tls = this->tls_get_addr_;
938 this->tls_get_addr_ = NOT_EXPECTED;
939 if (is_tls_call && last_tls != EXPECTED)
940 return last_tls;
941 else if (!is_tls_call && last_tls != NOT_EXPECTED)
942 {
943 this->missing();
944 return EXPECTED;
945 }
946 return NORMAL;
947 }
948
949 private:
950 // What we're up to regarding calls to __tls_get_addr.
951 // On powerpc, the branch and link insn making a call to
952 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
953 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
954 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
955 // The marker relocation always comes first, and has the same
956 // symbol as the reloc on the insn setting up the __tls_get_addr
957 // argument. This ties the arg setup insn with the call insn,
958 // allowing ld to safely optimize away the call. We check that
959 // every call to __tls_get_addr has a marker relocation, and that
960 // every marker relocation is on a call to __tls_get_addr.
961 Tls_get_addr tls_get_addr_;
962 // Info about the last reloc for error message.
963 const Relocate_info<size, big_endian>* relinfo_;
964 size_t relnum_;
965 Address r_offset_;
966 };
967
968 // The class which scans relocations.
969 class Scan : protected Track_tls
970 {
971 public:
972 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
973
974 Scan()
975 : Track_tls(), issued_non_pic_error_(false)
976 { }
977
978 static inline int
979 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
980
981 inline void
982 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
983 Sized_relobj_file<size, big_endian>* object,
984 unsigned int data_shndx,
985 Output_section* output_section,
986 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
987 const elfcpp::Sym<size, big_endian>& lsym,
988 bool is_discarded);
989
990 inline void
991 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
992 Sized_relobj_file<size, big_endian>* object,
993 unsigned int data_shndx,
994 Output_section* output_section,
995 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
996 Symbol* gsym);
997
998 inline bool
999 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1000 Target_powerpc* ,
1001 Sized_relobj_file<size, big_endian>* relobj,
1002 unsigned int ,
1003 Output_section* ,
1004 const elfcpp::Rela<size, big_endian>& ,
1005 unsigned int r_type,
1006 const elfcpp::Sym<size, big_endian>&)
1007 {
1008 // PowerPC64 .opd is not folded, so any identical function text
1009 // may be folded and we'll still keep function addresses distinct.
1010 // That means no reloc is of concern here.
1011 if (size == 64)
1012 {
1013 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1014 <Powerpc_relobj<size, big_endian>*>(relobj);
1015 if (ppcobj->abiversion() == 1)
1016 return false;
1017 }
1018 // For 32-bit and ELFv2, conservatively assume anything but calls to
1019 // function code might be taking the address of the function.
1020 return !is_branch_reloc(r_type);
1021 }
1022
1023 inline bool
1024 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1025 Target_powerpc* ,
1026 Sized_relobj_file<size, big_endian>* relobj,
1027 unsigned int ,
1028 Output_section* ,
1029 const elfcpp::Rela<size, big_endian>& ,
1030 unsigned int r_type,
1031 Symbol*)
1032 {
1033 // As above.
1034 if (size == 64)
1035 {
1036 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1037 <Powerpc_relobj<size, big_endian>*>(relobj);
1038 if (ppcobj->abiversion() == 1)
1039 return false;
1040 }
1041 return !is_branch_reloc(r_type);
1042 }
1043
1044 static bool
1045 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1046 Sized_relobj_file<size, big_endian>* object,
1047 unsigned int r_type, bool report_err);
1048
1049 private:
1050 static void
1051 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1052 unsigned int r_type);
1053
1054 static void
1055 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1056 unsigned int r_type, Symbol*);
1057
1058 static void
1059 generate_tls_call(Symbol_table* symtab, Layout* layout,
1060 Target_powerpc* target);
1061
1062 void
1063 check_non_pic(Relobj*, unsigned int r_type);
1064
1065 // Whether we have issued an error about a non-PIC compilation.
1066 bool issued_non_pic_error_;
1067 };
1068
1069 bool
1070 symval_for_branch(const Symbol_table* symtab,
1071 const Sized_symbol<size>* gsym,
1072 Powerpc_relobj<size, big_endian>* object,
1073 Address *value, unsigned int *dest_shndx);
1074
1075 // The class which implements relocation.
1076 class Relocate : protected Track_tls
1077 {
1078 public:
1079 // Use 'at' branch hints when true, 'y' when false.
1080 // FIXME maybe: set this with an option.
1081 static const bool is_isa_v2 = true;
1082
1083 Relocate()
1084 : Track_tls()
1085 { }
1086
1087 // Do a relocation. Return false if the caller should not issue
1088 // any warnings about this relocation.
1089 inline bool
1090 relocate(const Relocate_info<size, big_endian>*, unsigned int,
1091 Target_powerpc*, Output_section*, size_t, const unsigned char*,
1092 const Sized_symbol<size>*, const Symbol_value<size>*,
1093 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1094 section_size_type);
1095 };
1096
1097 class Relocate_comdat_behavior
1098 {
1099 public:
1100 // Decide what the linker should do for relocations that refer to
1101 // discarded comdat sections.
1102 inline Comdat_behavior
1103 get(const char* name)
1104 {
1105 gold::Default_comdat_behavior default_behavior;
1106 Comdat_behavior ret = default_behavior.get(name);
1107 if (ret == CB_WARNING)
1108 {
1109 if (size == 32
1110 && (strcmp(name, ".fixup") == 0
1111 || strcmp(name, ".got2") == 0))
1112 ret = CB_IGNORE;
1113 if (size == 64
1114 && (strcmp(name, ".opd") == 0
1115 || strcmp(name, ".toc") == 0
1116 || strcmp(name, ".toc1") == 0))
1117 ret = CB_IGNORE;
1118 }
1119 return ret;
1120 }
1121 };
1122
1123 // Optimize the TLS relocation type based on what we know about the
1124 // symbol. IS_FINAL is true if the final address of this symbol is
1125 // known at link time.
1126
1127 tls::Tls_optimization
1128 optimize_tls_gd(bool is_final)
1129 {
1130 // If we are generating a shared library, then we can't do anything
1131 // in the linker.
1132 if (parameters->options().shared())
1133 return tls::TLSOPT_NONE;
1134
1135 if (!is_final)
1136 return tls::TLSOPT_TO_IE;
1137 return tls::TLSOPT_TO_LE;
1138 }
1139
1140 tls::Tls_optimization
1141 optimize_tls_ld()
1142 {
1143 if (parameters->options().shared())
1144 return tls::TLSOPT_NONE;
1145
1146 return tls::TLSOPT_TO_LE;
1147 }
1148
1149 tls::Tls_optimization
1150 optimize_tls_ie(bool is_final)
1151 {
1152 if (!is_final || parameters->options().shared())
1153 return tls::TLSOPT_NONE;
1154
1155 return tls::TLSOPT_TO_LE;
1156 }
1157
1158 // Create glink.
1159 void
1160 make_glink_section(Layout*);
1161
1162 // Create the PLT section.
1163 void
1164 make_plt_section(Symbol_table*, Layout*);
1165
1166 void
1167 make_iplt_section(Symbol_table*, Layout*);
1168
1169 void
1170 make_brlt_section(Layout*);
1171
1172 // Create a PLT entry for a global symbol.
1173 void
1174 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1175
1176 // Create a PLT entry for a local IFUNC symbol.
1177 void
1178 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1179 Sized_relobj_file<size, big_endian>*,
1180 unsigned int);
1181
1182
1183 // Create a GOT entry for local dynamic __tls_get_addr.
1184 unsigned int
1185 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1186 Sized_relobj_file<size, big_endian>* object);
1187
1188 unsigned int
1189 tlsld_got_offset() const
1190 {
1191 return this->tlsld_got_offset_;
1192 }
1193
1194 // Get the dynamic reloc section, creating it if necessary.
1195 Reloc_section*
1196 rela_dyn_section(Layout*);
1197
1198 // Similarly, but for ifunc symbols get the one for ifunc.
1199 Reloc_section*
1200 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1201
1202 // Copy a relocation against a global symbol.
1203 void
1204 copy_reloc(Symbol_table* symtab, Layout* layout,
1205 Sized_relobj_file<size, big_endian>* object,
1206 unsigned int shndx, Output_section* output_section,
1207 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1208 {
1209 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1210 this->copy_relocs_.copy_reloc(symtab, layout,
1211 symtab->get_sized_symbol<size>(sym),
1212 object, shndx, output_section,
1213 r_type, reloc.get_r_offset(),
1214 reloc.get_r_addend(),
1215 this->rela_dyn_section(layout));
1216 }
1217
1218 // Look over all the input sections, deciding where to place stubs.
1219 void
1220 group_sections(Layout*, const Task*, bool);
1221
1222 // Sort output sections by address.
1223 struct Sort_sections
1224 {
1225 bool
1226 operator()(const Output_section* sec1, const Output_section* sec2)
1227 { return sec1->address() < sec2->address(); }
1228 };
1229
1230 class Branch_info
1231 {
1232 public:
1233 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1234 unsigned int data_shndx,
1235 Address r_offset,
1236 unsigned int r_type,
1237 unsigned int r_sym,
1238 Address addend)
1239 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1240 r_type_(r_type), r_sym_(r_sym), addend_(addend)
1241 { }
1242
1243 ~Branch_info()
1244 { }
1245
1246 // If this branch needs a plt call stub, or a long branch stub, make one.
1247 bool
1248 make_stub(Stub_table<size, big_endian>*,
1249 Stub_table<size, big_endian>*,
1250 Symbol_table*) const;
1251
1252 private:
1253 // The branch location..
1254 Powerpc_relobj<size, big_endian>* object_;
1255 unsigned int shndx_;
1256 Address offset_;
1257 // ..and the branch type and destination.
1258 unsigned int r_type_;
1259 unsigned int r_sym_;
1260 Address addend_;
1261 };
1262
1263 // Information about this specific target which we pass to the
1264 // general Target structure.
1265 static Target::Target_info powerpc_info;
1266
1267 // The types of GOT entries needed for this platform.
1268 // These values are exposed to the ABI in an incremental link.
1269 // Do not renumber existing values without changing the version
1270 // number of the .gnu_incremental_inputs section.
1271 enum Got_type
1272 {
1273 GOT_TYPE_STANDARD,
1274 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1275 GOT_TYPE_DTPREL, // entry for @got@dtprel
1276 GOT_TYPE_TPREL // entry for @got@tprel
1277 };
1278
1279 // The GOT section.
1280 Output_data_got_powerpc<size, big_endian>* got_;
1281 // The PLT section. This is a container for a table of addresses,
1282 // and their relocations. Each address in the PLT has a dynamic
1283 // relocation (R_*_JMP_SLOT) and each address will have a
1284 // corresponding entry in .glink for lazy resolution of the PLT.
1285 // ppc32 initialises the PLT to point at the .glink entry, while
1286 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1287 // linker adds a stub that loads the PLT entry into ctr then
1288 // branches to ctr. There may be more than one stub for each PLT
1289 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1290 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1291 Output_data_plt_powerpc<size, big_endian>* plt_;
1292 // The IPLT section. Like plt_, this is a container for a table of
1293 // addresses and their relocations, specifically for STT_GNU_IFUNC
1294 // functions that resolve locally (STT_GNU_IFUNC functions that
1295 // don't resolve locally go in PLT). Unlike plt_, these have no
1296 // entry in .glink for lazy resolution, and the relocation section
1297 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1298 // the relocation section may contain relocations against
1299 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1300 // relocation section will appear at the end of other dynamic
1301 // relocations, so that ld.so applies these relocations after other
1302 // dynamic relocations. In a static executable, the relocation
1303 // section is emitted and marked with __rela_iplt_start and
1304 // __rela_iplt_end symbols.
1305 Output_data_plt_powerpc<size, big_endian>* iplt_;
1306 // Section holding long branch destinations.
1307 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1308 // The .glink section.
1309 Output_data_glink<size, big_endian>* glink_;
1310 // The dynamic reloc section.
1311 Reloc_section* rela_dyn_;
1312 // Relocs saved to avoid a COPY reloc.
1313 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1314 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1315 unsigned int tlsld_got_offset_;
1316
1317 Stub_tables stub_tables_;
1318 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1319 Branch_lookup_table branch_lookup_table_;
1320
1321 typedef std::vector<Branch_info> Branches;
1322 Branches branch_info_;
1323
1324 bool plt_thread_safe_;
1325
1326 bool relax_failed_;
1327 int relax_fail_count_;
1328 int32_t stub_group_size_;
1329
1330 Output_data_save_res<size, big_endian> *savres_section_;
1331 };
1332
1333 template<>
1334 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1335 {
1336 32, // size
1337 true, // is_big_endian
1338 elfcpp::EM_PPC, // machine_code
1339 false, // has_make_symbol
1340 false, // has_resolve
1341 false, // has_code_fill
1342 true, // is_default_stack_executable
1343 false, // can_icf_inline_merge_sections
1344 '\0', // wrap_char
1345 "/usr/lib/ld.so.1", // dynamic_linker
1346 0x10000000, // default_text_segment_address
1347 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1348 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1349 false, // isolate_execinstr
1350 0, // rosegment_gap
1351 elfcpp::SHN_UNDEF, // small_common_shndx
1352 elfcpp::SHN_UNDEF, // large_common_shndx
1353 0, // small_common_section_flags
1354 0, // large_common_section_flags
1355 NULL, // attributes_section
1356 NULL, // attributes_vendor
1357 "_start", // entry_symbol_name
1358 32, // hash_entry_size
1359 };
1360
1361 template<>
1362 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1363 {
1364 32, // size
1365 false, // is_big_endian
1366 elfcpp::EM_PPC, // machine_code
1367 false, // has_make_symbol
1368 false, // has_resolve
1369 false, // has_code_fill
1370 true, // is_default_stack_executable
1371 false, // can_icf_inline_merge_sections
1372 '\0', // wrap_char
1373 "/usr/lib/ld.so.1", // dynamic_linker
1374 0x10000000, // default_text_segment_address
1375 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1376 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1377 false, // isolate_execinstr
1378 0, // rosegment_gap
1379 elfcpp::SHN_UNDEF, // small_common_shndx
1380 elfcpp::SHN_UNDEF, // large_common_shndx
1381 0, // small_common_section_flags
1382 0, // large_common_section_flags
1383 NULL, // attributes_section
1384 NULL, // attributes_vendor
1385 "_start", // entry_symbol_name
1386 32, // hash_entry_size
1387 };
1388
1389 template<>
1390 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1391 {
1392 64, // size
1393 true, // is_big_endian
1394 elfcpp::EM_PPC64, // machine_code
1395 false, // has_make_symbol
1396 false, // has_resolve
1397 false, // has_code_fill
1398 true, // is_default_stack_executable
1399 false, // can_icf_inline_merge_sections
1400 '\0', // wrap_char
1401 "/usr/lib/ld.so.1", // dynamic_linker
1402 0x10000000, // default_text_segment_address
1403 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1404 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1405 false, // isolate_execinstr
1406 0, // rosegment_gap
1407 elfcpp::SHN_UNDEF, // small_common_shndx
1408 elfcpp::SHN_UNDEF, // large_common_shndx
1409 0, // small_common_section_flags
1410 0, // large_common_section_flags
1411 NULL, // attributes_section
1412 NULL, // attributes_vendor
1413 "_start", // entry_symbol_name
1414 32, // hash_entry_size
1415 };
1416
1417 template<>
1418 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1419 {
1420 64, // size
1421 false, // is_big_endian
1422 elfcpp::EM_PPC64, // machine_code
1423 false, // has_make_symbol
1424 false, // has_resolve
1425 false, // has_code_fill
1426 true, // is_default_stack_executable
1427 false, // can_icf_inline_merge_sections
1428 '\0', // wrap_char
1429 "/usr/lib/ld.so.1", // dynamic_linker
1430 0x10000000, // default_text_segment_address
1431 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1432 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1433 false, // isolate_execinstr
1434 0, // rosegment_gap
1435 elfcpp::SHN_UNDEF, // small_common_shndx
1436 elfcpp::SHN_UNDEF, // large_common_shndx
1437 0, // small_common_section_flags
1438 0, // large_common_section_flags
1439 NULL, // attributes_section
1440 NULL, // attributes_vendor
1441 "_start", // entry_symbol_name
1442 32, // hash_entry_size
1443 };
1444
1445 inline bool
1446 is_branch_reloc(unsigned int r_type)
1447 {
1448 return (r_type == elfcpp::R_POWERPC_REL24
1449 || r_type == elfcpp::R_PPC_PLTREL24
1450 || r_type == elfcpp::R_PPC_LOCAL24PC
1451 || r_type == elfcpp::R_POWERPC_REL14
1452 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1453 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1454 || r_type == elfcpp::R_POWERPC_ADDR24
1455 || r_type == elfcpp::R_POWERPC_ADDR14
1456 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1457 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1458 }
1459
1460 // If INSN is an opcode that may be used with an @tls operand, return
1461 // the transformed insn for TLS optimisation, otherwise return 0. If
1462 // REG is non-zero only match an insn with RB or RA equal to REG.
1463 uint32_t
1464 at_tls_transform(uint32_t insn, unsigned int reg)
1465 {
1466 if ((insn & (0x3f << 26)) != 31 << 26)
1467 return 0;
1468
1469 unsigned int rtra;
1470 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1471 rtra = insn & ((1 << 26) - (1 << 16));
1472 else if (((insn >> 16) & 0x1f) == reg)
1473 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1474 else
1475 return 0;
1476
1477 if ((insn & (0x3ff << 1)) == 266 << 1)
1478 // add -> addi
1479 insn = 14 << 26;
1480 else if ((insn & (0x1f << 1)) == 23 << 1
1481 && ((insn & (0x1f << 6)) < 14 << 6
1482 || ((insn & (0x1f << 6)) >= 16 << 6
1483 && (insn & (0x1f << 6)) < 24 << 6)))
1484 // load and store indexed -> dform
1485 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1486 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1487 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1488 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1489 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1490 // lwax -> lwa
1491 insn = (58 << 26) | 2;
1492 else
1493 return 0;
1494 insn |= rtra;
1495 return insn;
1496 }
1497
1498
1499 template<int size, bool big_endian>
1500 class Powerpc_relocate_functions
1501 {
1502 public:
1503 enum Overflow_check
1504 {
1505 CHECK_NONE,
1506 CHECK_SIGNED,
1507 CHECK_UNSIGNED,
1508 CHECK_BITFIELD,
1509 CHECK_LOW_INSN,
1510 CHECK_HIGH_INSN
1511 };
1512
1513 enum Status
1514 {
1515 STATUS_OK,
1516 STATUS_OVERFLOW
1517 };
1518
1519 private:
1520 typedef Powerpc_relocate_functions<size, big_endian> This;
1521 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1522 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1523
1524 template<int valsize>
1525 static inline bool
1526 has_overflow_signed(Address value)
1527 {
1528 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1529 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1530 limit <<= ((valsize - 1) >> 1);
1531 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1532 return value + limit > (limit << 1) - 1;
1533 }
1534
1535 template<int valsize>
1536 static inline bool
1537 has_overflow_unsigned(Address value)
1538 {
1539 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1540 limit <<= ((valsize - 1) >> 1);
1541 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1542 return value > (limit << 1) - 1;
1543 }
1544
1545 template<int valsize>
1546 static inline bool
1547 has_overflow_bitfield(Address value)
1548 {
1549 return (has_overflow_unsigned<valsize>(value)
1550 && has_overflow_signed<valsize>(value));
1551 }
1552
1553 template<int valsize>
1554 static inline Status
1555 overflowed(Address value, Overflow_check overflow)
1556 {
1557 if (overflow == CHECK_SIGNED)
1558 {
1559 if (has_overflow_signed<valsize>(value))
1560 return STATUS_OVERFLOW;
1561 }
1562 else if (overflow == CHECK_UNSIGNED)
1563 {
1564 if (has_overflow_unsigned<valsize>(value))
1565 return STATUS_OVERFLOW;
1566 }
1567 else if (overflow == CHECK_BITFIELD)
1568 {
1569 if (has_overflow_bitfield<valsize>(value))
1570 return STATUS_OVERFLOW;
1571 }
1572 return STATUS_OK;
1573 }
1574
1575 // Do a simple RELA relocation
1576 template<int fieldsize, int valsize>
1577 static inline Status
1578 rela(unsigned char* view, Address value, Overflow_check overflow)
1579 {
1580 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1581 Valtype* wv = reinterpret_cast<Valtype*>(view);
1582 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1583 return overflowed<valsize>(value, overflow);
1584 }
1585
1586 template<int fieldsize, int valsize>
1587 static inline Status
1588 rela(unsigned char* view,
1589 unsigned int right_shift,
1590 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1591 Address value,
1592 Overflow_check overflow)
1593 {
1594 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1595 Valtype* wv = reinterpret_cast<Valtype*>(view);
1596 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1597 Valtype reloc = value >> right_shift;
1598 val &= ~dst_mask;
1599 reloc &= dst_mask;
1600 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1601 return overflowed<valsize>(value >> right_shift, overflow);
1602 }
1603
1604 // Do a simple RELA relocation, unaligned.
1605 template<int fieldsize, int valsize>
1606 static inline Status
1607 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1608 {
1609 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1610 return overflowed<valsize>(value, overflow);
1611 }
1612
1613 template<int fieldsize, int valsize>
1614 static inline Status
1615 rela_ua(unsigned char* view,
1616 unsigned int right_shift,
1617 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1618 Address value,
1619 Overflow_check overflow)
1620 {
1621 typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1622 Valtype;
1623 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1624 Valtype reloc = value >> right_shift;
1625 val &= ~dst_mask;
1626 reloc &= dst_mask;
1627 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1628 return overflowed<valsize>(value >> right_shift, overflow);
1629 }
1630
1631 public:
1632 // R_PPC64_ADDR64: (Symbol + Addend)
1633 static inline void
1634 addr64(unsigned char* view, Address value)
1635 { This::template rela<64,64>(view, value, CHECK_NONE); }
1636
1637 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1638 static inline void
1639 addr64_u(unsigned char* view, Address value)
1640 { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1641
1642 // R_POWERPC_ADDR32: (Symbol + Addend)
1643 static inline Status
1644 addr32(unsigned char* view, Address value, Overflow_check overflow)
1645 { return This::template rela<32,32>(view, value, overflow); }
1646
1647 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1648 static inline Status
1649 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1650 { return This::template rela_ua<32,32>(view, value, overflow); }
1651
1652 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1653 static inline Status
1654 addr24(unsigned char* view, Address value, Overflow_check overflow)
1655 {
1656 Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1657 value, overflow);
1658 if (overflow != CHECK_NONE && (value & 3) != 0)
1659 stat = STATUS_OVERFLOW;
1660 return stat;
1661 }
1662
1663 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1664 static inline Status
1665 addr16(unsigned char* view, Address value, Overflow_check overflow)
1666 { return This::template rela<16,16>(view, value, overflow); }
1667
1668 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1669 static inline Status
1670 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1671 { return This::template rela_ua<16,16>(view, value, overflow); }
1672
1673 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1674 static inline Status
1675 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1676 {
1677 Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1678 if ((value & 3) != 0)
1679 stat = STATUS_OVERFLOW;
1680 return stat;
1681 }
1682
1683 // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
1684 static inline Status
1685 addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
1686 {
1687 Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
1688 if ((value & 15) != 0)
1689 stat = STATUS_OVERFLOW;
1690 return stat;
1691 }
1692
1693 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1694 static inline void
1695 addr16_hi(unsigned char* view, Address value)
1696 { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1697
1698 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1699 static inline void
1700 addr16_ha(unsigned char* view, Address value)
1701 { This::addr16_hi(view, value + 0x8000); }
1702
1703 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1704 static inline void
1705 addr16_hi2(unsigned char* view, Address value)
1706 { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1707
1708 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1709 static inline void
1710 addr16_ha2(unsigned char* view, Address value)
1711 { This::addr16_hi2(view, value + 0x8000); }
1712
1713 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1714 static inline void
1715 addr16_hi3(unsigned char* view, Address value)
1716 { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1717
1718 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1719 static inline void
1720 addr16_ha3(unsigned char* view, Address value)
1721 { This::addr16_hi3(view, value + 0x8000); }
1722
1723 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1724 static inline Status
1725 addr14(unsigned char* view, Address value, Overflow_check overflow)
1726 {
1727 Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1728 if (overflow != CHECK_NONE && (value & 3) != 0)
1729 stat = STATUS_OVERFLOW;
1730 return stat;
1731 }
1732
1733 // R_POWERPC_REL16DX_HA
1734 static inline Status
1735 addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
1736 {
1737 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1738 Valtype* wv = reinterpret_cast<Valtype*>(view);
1739 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
1740 value += 0x8000;
1741 value = static_cast<SignedAddress>(value) >> 16;
1742 val |= (value & 0xffc1) | ((value & 0x3e) << 15);
1743 elfcpp::Swap<32, big_endian>::writeval(wv, val);
1744 return overflowed<16>(value, overflow);
1745 }
1746 };
1747
1748 // Set ABI version for input and output.
1749
1750 template<int size, bool big_endian>
1751 void
1752 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1753 {
1754 this->e_flags_ |= ver;
1755 if (this->abiversion() != 0)
1756 {
1757 Target_powerpc<size, big_endian>* target =
1758 static_cast<Target_powerpc<size, big_endian>*>(
1759 parameters->sized_target<size, big_endian>());
1760 if (target->abiversion() == 0)
1761 target->set_abiversion(this->abiversion());
1762 else if (target->abiversion() != this->abiversion())
1763 gold_error(_("%s: ABI version %d is not compatible "
1764 "with ABI version %d output"),
1765 this->name().c_str(),
1766 this->abiversion(), target->abiversion());
1767
1768 }
1769 }
1770
1771 // Stash away the index of .got2 or .opd in a relocatable object, if
1772 // such a section exists.
1773
1774 template<int size, bool big_endian>
1775 bool
1776 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1777 Read_symbols_data* sd)
1778 {
1779 const unsigned char* const pshdrs = sd->section_headers->data();
1780 const unsigned char* namesu = sd->section_names->data();
1781 const char* names = reinterpret_cast<const char*>(namesu);
1782 section_size_type names_size = sd->section_names_size;
1783 const unsigned char* s;
1784
1785 s = this->template find_shdr<size, big_endian>(pshdrs,
1786 size == 32 ? ".got2" : ".opd",
1787 names, names_size, NULL);
1788 if (s != NULL)
1789 {
1790 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1791 this->special_ = ndx;
1792 if (size == 64)
1793 {
1794 if (this->abiversion() == 0)
1795 this->set_abiversion(1);
1796 else if (this->abiversion() > 1)
1797 gold_error(_("%s: .opd invalid in abiv%d"),
1798 this->name().c_str(), this->abiversion());
1799 }
1800 }
1801 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1802 }
1803
1804 // Examine .rela.opd to build info about function entry points.
1805
1806 template<int size, bool big_endian>
1807 void
1808 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1809 size_t reloc_count,
1810 const unsigned char* prelocs,
1811 const unsigned char* plocal_syms)
1812 {
1813 if (size == 64)
1814 {
1815 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1816 Reltype;
1817 const int reloc_size
1818 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1819 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1820 Address expected_off = 0;
1821 bool regular = true;
1822 unsigned int opd_ent_size = 0;
1823
1824 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1825 {
1826 Reltype reloc(prelocs);
1827 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1828 = reloc.get_r_info();
1829 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1830 if (r_type == elfcpp::R_PPC64_ADDR64)
1831 {
1832 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1833 typename elfcpp::Elf_types<size>::Elf_Addr value;
1834 bool is_ordinary;
1835 unsigned int shndx;
1836 if (r_sym < this->local_symbol_count())
1837 {
1838 typename elfcpp::Sym<size, big_endian>
1839 lsym(plocal_syms + r_sym * sym_size);
1840 shndx = lsym.get_st_shndx();
1841 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1842 value = lsym.get_st_value();
1843 }
1844 else
1845 shndx = this->symbol_section_and_value(r_sym, &value,
1846 &is_ordinary);
1847 this->set_opd_ent(reloc.get_r_offset(), shndx,
1848 value + reloc.get_r_addend());
1849 if (i == 2)
1850 {
1851 expected_off = reloc.get_r_offset();
1852 opd_ent_size = expected_off;
1853 }
1854 else if (expected_off != reloc.get_r_offset())
1855 regular = false;
1856 expected_off += opd_ent_size;
1857 }
1858 else if (r_type == elfcpp::R_PPC64_TOC)
1859 {
1860 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1861 regular = false;
1862 }
1863 else
1864 {
1865 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1866 this->name().c_str(), r_type);
1867 regular = false;
1868 }
1869 }
1870 if (reloc_count <= 2)
1871 opd_ent_size = this->section_size(this->opd_shndx());
1872 if (opd_ent_size != 24 && opd_ent_size != 16)
1873 regular = false;
1874 if (!regular)
1875 {
1876 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1877 this->name().c_str());
1878 opd_ent_size = 0;
1879 }
1880 }
1881 }
1882
1883 template<int size, bool big_endian>
1884 void
1885 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1886 {
1887 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1888 if (size == 64)
1889 {
1890 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1891 p != rd->relocs.end();
1892 ++p)
1893 {
1894 if (p->data_shndx == this->opd_shndx())
1895 {
1896 uint64_t opd_size = this->section_size(this->opd_shndx());
1897 gold_assert(opd_size == static_cast<size_t>(opd_size));
1898 if (opd_size != 0)
1899 {
1900 this->init_opd(opd_size);
1901 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1902 rd->local_symbols->data());
1903 }
1904 break;
1905 }
1906 }
1907 }
1908 }
1909
1910 // Read the symbols then set up st_other vector.
1911
1912 template<int size, bool big_endian>
1913 void
1914 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1915 {
1916 this->base_read_symbols(sd);
1917 if (size == 64)
1918 {
1919 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1920 const unsigned char* const pshdrs = sd->section_headers->data();
1921 const unsigned int loccount = this->do_local_symbol_count();
1922 if (loccount != 0)
1923 {
1924 this->st_other_.resize(loccount);
1925 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1926 off_t locsize = loccount * sym_size;
1927 const unsigned int symtab_shndx = this->symtab_shndx();
1928 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1929 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1930 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1931 locsize, true, false);
1932 psyms += sym_size;
1933 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1934 {
1935 elfcpp::Sym<size, big_endian> sym(psyms);
1936 unsigned char st_other = sym.get_st_other();
1937 this->st_other_[i] = st_other;
1938 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1939 {
1940 if (this->abiversion() == 0)
1941 this->set_abiversion(2);
1942 else if (this->abiversion() < 2)
1943 gold_error(_("%s: local symbol %d has invalid st_other"
1944 " for ABI version 1"),
1945 this->name().c_str(), i);
1946 }
1947 }
1948 }
1949 }
1950 }
1951
1952 template<int size, bool big_endian>
1953 void
1954 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1955 {
1956 this->e_flags_ |= ver;
1957 if (this->abiversion() != 0)
1958 {
1959 Target_powerpc<size, big_endian>* target =
1960 static_cast<Target_powerpc<size, big_endian>*>(
1961 parameters->sized_target<size, big_endian>());
1962 if (target->abiversion() == 0)
1963 target->set_abiversion(this->abiversion());
1964 else if (target->abiversion() != this->abiversion())
1965 gold_error(_("%s: ABI version %d is not compatible "
1966 "with ABI version %d output"),
1967 this->name().c_str(),
1968 this->abiversion(), target->abiversion());
1969
1970 }
1971 }
1972
1973 // Call Sized_dynobj::base_read_symbols to read the symbols then
1974 // read .opd from a dynamic object, filling in opd_ent_ vector,
1975
1976 template<int size, bool big_endian>
1977 void
1978 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1979 {
1980 this->base_read_symbols(sd);
1981 if (size == 64)
1982 {
1983 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1984 const unsigned char* const pshdrs = sd->section_headers->data();
1985 const unsigned char* namesu = sd->section_names->data();
1986 const char* names = reinterpret_cast<const char*>(namesu);
1987 const unsigned char* s = NULL;
1988 const unsigned char* opd;
1989 section_size_type opd_size;
1990
1991 // Find and read .opd section.
1992 while (1)
1993 {
1994 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1995 sd->section_names_size,
1996 s);
1997 if (s == NULL)
1998 return;
1999
2000 typename elfcpp::Shdr<size, big_endian> shdr(s);
2001 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2002 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2003 {
2004 if (this->abiversion() == 0)
2005 this->set_abiversion(1);
2006 else if (this->abiversion() > 1)
2007 gold_error(_("%s: .opd invalid in abiv%d"),
2008 this->name().c_str(), this->abiversion());
2009
2010 this->opd_shndx_ = (s - pshdrs) / shdr_size;
2011 this->opd_address_ = shdr.get_sh_addr();
2012 opd_size = convert_to_section_size_type(shdr.get_sh_size());
2013 opd = this->get_view(shdr.get_sh_offset(), opd_size,
2014 true, false);
2015 break;
2016 }
2017 }
2018
2019 // Build set of executable sections.
2020 // Using a set is probably overkill. There is likely to be only
2021 // a few executable sections, typically .init, .text and .fini,
2022 // and they are generally grouped together.
2023 typedef std::set<Sec_info> Exec_sections;
2024 Exec_sections exec_sections;
2025 s = pshdrs;
2026 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2027 {
2028 typename elfcpp::Shdr<size, big_endian> shdr(s);
2029 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2030 && ((shdr.get_sh_flags()
2031 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2032 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2033 && shdr.get_sh_size() != 0)
2034 {
2035 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2036 shdr.get_sh_size(), i));
2037 }
2038 }
2039 if (exec_sections.empty())
2040 return;
2041
2042 // Look over the OPD entries. This is complicated by the fact
2043 // that some binaries will use two-word entries while others
2044 // will use the standard three-word entries. In most cases
2045 // the third word (the environment pointer for languages like
2046 // Pascal) is unused and will be zero. If the third word is
2047 // used it should not be pointing into executable sections,
2048 // I think.
2049 this->init_opd(opd_size);
2050 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2051 {
2052 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2053 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2054 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2055 if (val == 0)
2056 // Chances are that this is the third word of an OPD entry.
2057 continue;
2058 typename Exec_sections::const_iterator e
2059 = exec_sections.upper_bound(Sec_info(val, 0, 0));
2060 if (e != exec_sections.begin())
2061 {
2062 --e;
2063 if (e->start <= val && val < e->start + e->len)
2064 {
2065 // We have an address in an executable section.
2066 // VAL ought to be the function entry, set it up.
2067 this->set_opd_ent(p - opd, e->shndx, val);
2068 // Skip second word of OPD entry, the TOC pointer.
2069 p += 8;
2070 }
2071 }
2072 // If we didn't match any executable sections, we likely
2073 // have a non-zero third word in the OPD entry.
2074 }
2075 }
2076 }
2077
2078 // Set up some symbols.
2079
2080 template<int size, bool big_endian>
2081 void
2082 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2083 Symbol_table* symtab,
2084 Layout* layout)
2085 {
2086 if (size == 32)
2087 {
2088 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2089 // undefined when scanning relocs (and thus requires
2090 // non-relative dynamic relocs). The proper value will be
2091 // updated later.
2092 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2093 if (gotsym != NULL && gotsym->is_undefined())
2094 {
2095 Target_powerpc<size, big_endian>* target =
2096 static_cast<Target_powerpc<size, big_endian>*>(
2097 parameters->sized_target<size, big_endian>());
2098 Output_data_got_powerpc<size, big_endian>* got
2099 = target->got_section(symtab, layout);
2100 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2101 Symbol_table::PREDEFINED,
2102 got, 0, 0,
2103 elfcpp::STT_OBJECT,
2104 elfcpp::STB_LOCAL,
2105 elfcpp::STV_HIDDEN, 0,
2106 false, false);
2107 }
2108
2109 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2110 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2111 if (sdasym != NULL && sdasym->is_undefined())
2112 {
2113 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2114 Output_section* os
2115 = layout->add_output_section_data(".sdata", 0,
2116 elfcpp::SHF_ALLOC
2117 | elfcpp::SHF_WRITE,
2118 sdata, ORDER_SMALL_DATA, false);
2119 symtab->define_in_output_data("_SDA_BASE_", NULL,
2120 Symbol_table::PREDEFINED,
2121 os, 32768, 0, elfcpp::STT_OBJECT,
2122 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2123 0, false, false);
2124 }
2125 }
2126 else
2127 {
2128 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2129 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2130 if (gotsym != NULL && gotsym->is_undefined())
2131 {
2132 Target_powerpc<size, big_endian>* target =
2133 static_cast<Target_powerpc<size, big_endian>*>(
2134 parameters->sized_target<size, big_endian>());
2135 Output_data_got_powerpc<size, big_endian>* got
2136 = target->got_section(symtab, layout);
2137 symtab->define_in_output_data(".TOC.", NULL,
2138 Symbol_table::PREDEFINED,
2139 got, 0x8000, 0,
2140 elfcpp::STT_OBJECT,
2141 elfcpp::STB_LOCAL,
2142 elfcpp::STV_HIDDEN, 0,
2143 false, false);
2144 }
2145 }
2146 }
2147
2148 // Set up PowerPC target specific relobj.
2149
2150 template<int size, bool big_endian>
2151 Object*
2152 Target_powerpc<size, big_endian>::do_make_elf_object(
2153 const std::string& name,
2154 Input_file* input_file,
2155 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2156 {
2157 int et = ehdr.get_e_type();
2158 // ET_EXEC files are valid input for --just-symbols/-R,
2159 // and we treat them as relocatable objects.
2160 if (et == elfcpp::ET_REL
2161 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2162 {
2163 Powerpc_relobj<size, big_endian>* obj =
2164 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2165 obj->setup();
2166 return obj;
2167 }
2168 else if (et == elfcpp::ET_DYN)
2169 {
2170 Powerpc_dynobj<size, big_endian>* obj =
2171 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2172 obj->setup();
2173 return obj;
2174 }
2175 else
2176 {
2177 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2178 return NULL;
2179 }
2180 }
2181
2182 template<int size, bool big_endian>
2183 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2184 {
2185 public:
2186 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2187 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2188
2189 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2190 : Output_data_got<size, big_endian>(),
2191 symtab_(symtab), layout_(layout),
2192 header_ent_cnt_(size == 32 ? 3 : 1),
2193 header_index_(size == 32 ? 0x2000 : 0)
2194 {
2195 if (size == 64)
2196 this->set_addralign(256);
2197 }
2198
2199 // Override all the Output_data_got methods we use so as to first call
2200 // reserve_ent().
2201 bool
2202 add_global(Symbol* gsym, unsigned int got_type)
2203 {
2204 this->reserve_ent();
2205 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2206 }
2207
2208 bool
2209 add_global_plt(Symbol* gsym, unsigned int got_type)
2210 {
2211 this->reserve_ent();
2212 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2213 }
2214
2215 bool
2216 add_global_tls(Symbol* gsym, unsigned int got_type)
2217 { return this->add_global_plt(gsym, got_type); }
2218
2219 void
2220 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2221 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2222 {
2223 this->reserve_ent();
2224 Output_data_got<size, big_endian>::
2225 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2226 }
2227
2228 void
2229 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2230 Output_data_reloc_generic* rel_dyn,
2231 unsigned int r_type_1, unsigned int r_type_2)
2232 {
2233 this->reserve_ent(2);
2234 Output_data_got<size, big_endian>::
2235 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2236 }
2237
2238 bool
2239 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2240 {
2241 this->reserve_ent();
2242 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2243 got_type);
2244 }
2245
2246 bool
2247 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2248 {
2249 this->reserve_ent();
2250 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2251 got_type);
2252 }
2253
2254 bool
2255 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2256 { return this->add_local_plt(object, sym_index, got_type); }
2257
2258 void
2259 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2260 unsigned int got_type,
2261 Output_data_reloc_generic* rel_dyn,
2262 unsigned int r_type)
2263 {
2264 this->reserve_ent(2);
2265 Output_data_got<size, big_endian>::
2266 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2267 }
2268
2269 unsigned int
2270 add_constant(Valtype constant)
2271 {
2272 this->reserve_ent();
2273 return Output_data_got<size, big_endian>::add_constant(constant);
2274 }
2275
2276 unsigned int
2277 add_constant_pair(Valtype c1, Valtype c2)
2278 {
2279 this->reserve_ent(2);
2280 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2281 }
2282
2283 // Offset of _GLOBAL_OFFSET_TABLE_.
2284 unsigned int
2285 g_o_t() const
2286 {
2287 return this->got_offset(this->header_index_);
2288 }
2289
2290 // Offset of base used to access the GOT/TOC.
2291 // The got/toc pointer reg will be set to this value.
2292 Valtype
2293 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2294 {
2295 if (size == 32)
2296 return this->g_o_t();
2297 else
2298 return (this->output_section()->address()
2299 + object->toc_base_offset()
2300 - this->address());
2301 }
2302
2303 // Ensure our GOT has a header.
2304 void
2305 set_final_data_size()
2306 {
2307 if (this->header_ent_cnt_ != 0)
2308 this->make_header();
2309 Output_data_got<size, big_endian>::set_final_data_size();
2310 }
2311
2312 // First word of GOT header needs some values that are not
2313 // handled by Output_data_got so poke them in here.
2314 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2315 void
2316 do_write(Output_file* of)
2317 {
2318 Valtype val = 0;
2319 if (size == 32 && this->layout_->dynamic_data() != NULL)
2320 val = this->layout_->dynamic_section()->address();
2321 if (size == 64)
2322 val = this->output_section()->address() + 0x8000;
2323 this->replace_constant(this->header_index_, val);
2324 Output_data_got<size, big_endian>::do_write(of);
2325 }
2326
2327 private:
2328 void
2329 reserve_ent(unsigned int cnt = 1)
2330 {
2331 if (this->header_ent_cnt_ == 0)
2332 return;
2333 if (this->num_entries() + cnt > this->header_index_)
2334 this->make_header();
2335 }
2336
2337 void
2338 make_header()
2339 {
2340 this->header_ent_cnt_ = 0;
2341 this->header_index_ = this->num_entries();
2342 if (size == 32)
2343 {
2344 Output_data_got<size, big_endian>::add_constant(0);
2345 Output_data_got<size, big_endian>::add_constant(0);
2346 Output_data_got<size, big_endian>::add_constant(0);
2347
2348 // Define _GLOBAL_OFFSET_TABLE_ at the header
2349 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2350 if (gotsym != NULL)
2351 {
2352 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2353 sym->set_value(this->g_o_t());
2354 }
2355 else
2356 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2357 Symbol_table::PREDEFINED,
2358 this, this->g_o_t(), 0,
2359 elfcpp::STT_OBJECT,
2360 elfcpp::STB_LOCAL,
2361 elfcpp::STV_HIDDEN, 0,
2362 false, false);
2363 }
2364 else
2365 Output_data_got<size, big_endian>::add_constant(0);
2366 }
2367
2368 // Stashed pointers.
2369 Symbol_table* symtab_;
2370 Layout* layout_;
2371
2372 // GOT header size.
2373 unsigned int header_ent_cnt_;
2374 // GOT header index.
2375 unsigned int header_index_;
2376 };
2377
2378 // Get the GOT section, creating it if necessary.
2379
2380 template<int size, bool big_endian>
2381 Output_data_got_powerpc<size, big_endian>*
2382 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2383 Layout* layout)
2384 {
2385 if (this->got_ == NULL)
2386 {
2387 gold_assert(symtab != NULL && layout != NULL);
2388
2389 this->got_
2390 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2391
2392 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2393 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2394 this->got_, ORDER_DATA, false);
2395 }
2396
2397 return this->got_;
2398 }
2399
2400 // Get the dynamic reloc section, creating it if necessary.
2401
2402 template<int size, bool big_endian>
2403 typename Target_powerpc<size, big_endian>::Reloc_section*
2404 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2405 {
2406 if (this->rela_dyn_ == NULL)
2407 {
2408 gold_assert(layout != NULL);
2409 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2410 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2411 elfcpp::SHF_ALLOC, this->rela_dyn_,
2412 ORDER_DYNAMIC_RELOCS, false);
2413 }
2414 return this->rela_dyn_;
2415 }
2416
2417 // Similarly, but for ifunc symbols get the one for ifunc.
2418
2419 template<int size, bool big_endian>
2420 typename Target_powerpc<size, big_endian>::Reloc_section*
2421 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2422 Layout* layout,
2423 bool for_ifunc)
2424 {
2425 if (!for_ifunc)
2426 return this->rela_dyn_section(layout);
2427
2428 if (this->iplt_ == NULL)
2429 this->make_iplt_section(symtab, layout);
2430 return this->iplt_->rel_plt();
2431 }
2432
2433 class Stub_control
2434 {
2435 public:
2436 // Determine the stub group size. The group size is the absolute
2437 // value of the parameter --stub-group-size. If --stub-group-size
2438 // is passed a negative value, we restrict stubs to be always before
2439 // the stubbed branches.
2440 Stub_control(int32_t size, bool no_size_errors)
2441 : state_(NO_GROUP), stub_group_size_(abs(size)),
2442 stubs_always_before_branch_(size < 0),
2443 suppress_size_errors_(no_size_errors), group_size_(0),
2444 group_end_addr_(0), owner_(NULL), output_section_(NULL)
2445 {
2446 }
2447
2448 // Return true iff input section can be handled by current stub
2449 // group.
2450 bool
2451 can_add_to_stub_group(Output_section* o,
2452 const Output_section::Input_section* i,
2453 bool has14);
2454
2455 const Output_section::Input_section*
2456 owner()
2457 { return owner_; }
2458
2459 Output_section*
2460 output_section()
2461 { return output_section_; }
2462
2463 void
2464 set_output_and_owner(Output_section* o,
2465 const Output_section::Input_section* i)
2466 {
2467 this->output_section_ = o;
2468 this->owner_ = i;
2469 }
2470
2471 private:
2472 typedef enum
2473 {
2474 NO_GROUP,
2475 FINDING_STUB_SECTION,
2476 HAS_STUB_SECTION
2477 } State;
2478
2479 State state_;
2480 uint32_t stub_group_size_;
2481 bool stubs_always_before_branch_;
2482 bool suppress_size_errors_;
2483 // Current max size of group. Starts at stub_group_size_ but is
2484 // reduced to stub_group_size_/1024 on seeing a section with
2485 // external conditional branches.
2486 uint32_t group_size_;
2487 uint64_t group_end_addr_;
2488 // owner_ and output_section_ specify the section to which stubs are
2489 // attached. The stubs are placed at the end of this section.
2490 const Output_section::Input_section* owner_;
2491 Output_section* output_section_;
2492 };
2493
2494 // Return true iff input section can be handled by current stub
2495 // group. Sections are presented to this function in reverse order,
2496 // so the first section is the tail of the group.
2497
2498 bool
2499 Stub_control::can_add_to_stub_group(Output_section* o,
2500 const Output_section::Input_section* i,
2501 bool has14)
2502 {
2503 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2504 uint64_t this_size;
2505 uint64_t start_addr = o->address();
2506
2507 if (whole_sec)
2508 // .init and .fini sections are pasted together to form a single
2509 // function. We can't be adding stubs in the middle of the function.
2510 this_size = o->data_size();
2511 else
2512 {
2513 start_addr += i->relobj()->output_section_offset(i->shndx());
2514 this_size = i->data_size();
2515 }
2516
2517 uint32_t group_size = this->stub_group_size_;
2518 if (has14)
2519 this->group_size_ = group_size = group_size >> 10;
2520
2521 if (this_size > group_size && !this->suppress_size_errors_)
2522 gold_warning(_("%s:%s exceeds group size"),
2523 i->relobj()->name().c_str(),
2524 i->relobj()->section_name(i->shndx()).c_str());
2525
2526 gold_debug(DEBUG_TARGET, "maybe add%s %s:%s size=%#llx total=%#llx",
2527 has14 ? " 14bit" : "",
2528 i->relobj()->name().c_str(),
2529 i->relobj()->section_name(i->shndx()).c_str(),
2530 (long long) this_size,
2531 (long long) this->group_end_addr_ - start_addr);
2532
2533 uint64_t end_addr = start_addr + this_size;
2534 if (this->state_ == HAS_STUB_SECTION)
2535 {
2536 // Can we add this section, which is before the stubs, to the
2537 // group?
2538 if (this->group_end_addr_ - start_addr <= this->group_size_)
2539 return true;
2540 }
2541 else
2542 {
2543 // Stubs are added at the end of "owner_".
2544 // The current section can always be the stub owner, except when
2545 // whole_sec is true and the current section isn't the last of
2546 // the pasted sections. (This restriction for the whole_sec
2547 // case is just to simplify the corner case mentioned in
2548 // group_sections.)
2549 // Note that "owner_" itself is not necessarily part of the
2550 // group of sections served by these stubs!
2551 if (!whole_sec || this->output_section_ != o)
2552 {
2553 this->owner_ = i;
2554 this->output_section_ = o;
2555 }
2556
2557 if (this->state_ == FINDING_STUB_SECTION)
2558 {
2559 if (this->group_end_addr_ - start_addr <= this->group_size_)
2560 return true;
2561 // The group after the stubs has reached maximum size.
2562 // Now see about adding sections before the stubs to the
2563 // group. If the current section has a 14-bit branch and
2564 // the group after the stubs exceeds group_size_ (because
2565 // they didn't have 14-bit branches), don't add sections
2566 // before the stubs: The size of stubs for such a large
2567 // group may exceed the reach of a 14-bit branch.
2568 if (!this->stubs_always_before_branch_
2569 && this_size <= this->group_size_
2570 && this->group_end_addr_ - end_addr <= this->group_size_)
2571 {
2572 gold_debug(DEBUG_TARGET, "adding before stubs");
2573 this->state_ = HAS_STUB_SECTION;
2574 this->group_end_addr_ = end_addr;
2575 return true;
2576 }
2577 }
2578 else if (this->state_ == NO_GROUP)
2579 {
2580 // Only here on very first use of Stub_control
2581 this->state_ = FINDING_STUB_SECTION;
2582 this->group_size_ = group_size;
2583 this->group_end_addr_ = end_addr;
2584 return true;
2585 }
2586 else
2587 gold_unreachable();
2588 }
2589
2590 gold_debug(DEBUG_TARGET, "nope, didn't fit\n");
2591
2592 // The section fails to fit in the current group. Set up a few
2593 // things for the next group. owner_ and output_section_ will be
2594 // set later after we've retrieved those values for the current
2595 // group.
2596 this->state_ = FINDING_STUB_SECTION;
2597 this->group_size_ = group_size;
2598 this->group_end_addr_ = end_addr;
2599 return false;
2600 }
2601
2602 // Look over all the input sections, deciding where to place stubs.
2603
2604 template<int size, bool big_endian>
2605 void
2606 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2607 const Task*,
2608 bool no_size_errors)
2609 {
2610 Stub_control stub_control(this->stub_group_size_, no_size_errors);
2611
2612 // Group input sections and insert stub table
2613 Stub_table_owner* table_owner = NULL;
2614 std::vector<Stub_table_owner*> tables;
2615 Layout::Section_list section_list;
2616 layout->get_executable_sections(&section_list);
2617 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2618 for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2619 o != section_list.rend();
2620 ++o)
2621 {
2622 typedef Output_section::Input_section_list Input_section_list;
2623 for (Input_section_list::const_reverse_iterator i
2624 = (*o)->input_sections().rbegin();
2625 i != (*o)->input_sections().rend();
2626 ++i)
2627 {
2628 if (i->is_input_section()
2629 || i->is_relaxed_input_section())
2630 {
2631 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2632 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2633 bool has14 = ppcobj->has_14bit_branch(i->shndx());
2634 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2635 {
2636 table_owner->output_section = stub_control.output_section();
2637 table_owner->owner = stub_control.owner();
2638 stub_control.set_output_and_owner(*o, &*i);
2639 table_owner = NULL;
2640 }
2641 if (table_owner == NULL)
2642 {
2643 table_owner = new Stub_table_owner;
2644 tables.push_back(table_owner);
2645 }
2646 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2647 }
2648 }
2649 }
2650 if (table_owner != NULL)
2651 {
2652 const Output_section::Input_section* i = stub_control.owner();
2653
2654 if (tables.size() >= 2 && tables[tables.size() - 2]->owner == i)
2655 {
2656 // Corner case. A new stub group was made for the first
2657 // section (last one looked at here) for some reason, but
2658 // the first section is already being used as the owner for
2659 // a stub table for following sections. Force it into that
2660 // stub group.
2661 tables.pop_back();
2662 delete table_owner;
2663 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2664 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2665 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2666 }
2667 else
2668 {
2669 table_owner->output_section = stub_control.output_section();
2670 table_owner->owner = i;
2671 }
2672 }
2673 for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2674 t != tables.end();
2675 ++t)
2676 {
2677 Stub_table<size, big_endian>* stub_table;
2678
2679 if ((*t)->owner->is_input_section())
2680 stub_table = new Stub_table<size, big_endian>(this,
2681 (*t)->output_section,
2682 (*t)->owner);
2683 else if ((*t)->owner->is_relaxed_input_section())
2684 stub_table = static_cast<Stub_table<size, big_endian>*>(
2685 (*t)->owner->relaxed_input_section());
2686 else
2687 gold_unreachable();
2688 this->stub_tables_.push_back(stub_table);
2689 delete *t;
2690 }
2691 }
2692
2693 static unsigned long
2694 max_branch_delta (unsigned int r_type)
2695 {
2696 if (r_type == elfcpp::R_POWERPC_REL14
2697 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2698 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2699 return 1L << 15;
2700 if (r_type == elfcpp::R_POWERPC_REL24
2701 || r_type == elfcpp::R_PPC_PLTREL24
2702 || r_type == elfcpp::R_PPC_LOCAL24PC)
2703 return 1L << 25;
2704 return 0;
2705 }
2706
2707 // If this branch needs a plt call stub, or a long branch stub, make one.
2708
2709 template<int size, bool big_endian>
2710 bool
2711 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2712 Stub_table<size, big_endian>* stub_table,
2713 Stub_table<size, big_endian>* ifunc_stub_table,
2714 Symbol_table* symtab) const
2715 {
2716 Symbol* sym = this->object_->global_symbol(this->r_sym_);
2717 if (sym != NULL && sym->is_forwarder())
2718 sym = symtab->resolve_forwards(sym);
2719 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2720 Target_powerpc<size, big_endian>* target =
2721 static_cast<Target_powerpc<size, big_endian>*>(
2722 parameters->sized_target<size, big_endian>());
2723 if (gsym != NULL
2724 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2725 : this->object_->local_has_plt_offset(this->r_sym_))
2726 {
2727 if (size == 64
2728 && gsym != NULL
2729 && target->abiversion() >= 2
2730 && !parameters->options().output_is_position_independent()
2731 && !is_branch_reloc(this->r_type_))
2732 target->glink_section()->add_global_entry(gsym);
2733 else
2734 {
2735 if (stub_table == NULL)
2736 stub_table = this->object_->stub_table(this->shndx_);
2737 if (stub_table == NULL)
2738 {
2739 // This is a ref from a data section to an ifunc symbol.
2740 stub_table = ifunc_stub_table;
2741 }
2742 gold_assert(stub_table != NULL);
2743 Address from = this->object_->get_output_section_offset(this->shndx_);
2744 if (from != invalid_address)
2745 from += (this->object_->output_section(this->shndx_)->address()
2746 + this->offset_);
2747 if (gsym != NULL)
2748 return stub_table->add_plt_call_entry(from,
2749 this->object_, gsym,
2750 this->r_type_, this->addend_);
2751 else
2752 return stub_table->add_plt_call_entry(from,
2753 this->object_, this->r_sym_,
2754 this->r_type_, this->addend_);
2755 }
2756 }
2757 else
2758 {
2759 Address max_branch_offset = max_branch_delta(this->r_type_);
2760 if (max_branch_offset == 0)
2761 return true;
2762 Address from = this->object_->get_output_section_offset(this->shndx_);
2763 gold_assert(from != invalid_address);
2764 from += (this->object_->output_section(this->shndx_)->address()
2765 + this->offset_);
2766 Address to;
2767 if (gsym != NULL)
2768 {
2769 switch (gsym->source())
2770 {
2771 case Symbol::FROM_OBJECT:
2772 {
2773 Object* symobj = gsym->object();
2774 if (symobj->is_dynamic()
2775 || symobj->pluginobj() != NULL)
2776 return true;
2777 bool is_ordinary;
2778 unsigned int shndx = gsym->shndx(&is_ordinary);
2779 if (shndx == elfcpp::SHN_UNDEF)
2780 return true;
2781 }
2782 break;
2783
2784 case Symbol::IS_UNDEFINED:
2785 return true;
2786
2787 default:
2788 break;
2789 }
2790 Symbol_table::Compute_final_value_status status;
2791 to = symtab->compute_final_value<size>(gsym, &status);
2792 if (status != Symbol_table::CFVS_OK)
2793 return true;
2794 if (size == 64)
2795 to += this->object_->ppc64_local_entry_offset(gsym);
2796 }
2797 else
2798 {
2799 const Symbol_value<size>* psymval
2800 = this->object_->local_symbol(this->r_sym_);
2801 Symbol_value<size> symval;
2802 if (psymval->is_section_symbol())
2803 symval.set_is_section_symbol();
2804 typedef Sized_relobj_file<size, big_endian> ObjType;
2805 typename ObjType::Compute_final_local_value_status status
2806 = this->object_->compute_final_local_value(this->r_sym_, psymval,
2807 &symval, symtab);
2808 if (status != ObjType::CFLV_OK
2809 || !symval.has_output_value())
2810 return true;
2811 to = symval.value(this->object_, 0);
2812 if (size == 64)
2813 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2814 }
2815 if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2816 to += this->addend_;
2817 if (stub_table == NULL)
2818 stub_table = this->object_->stub_table(this->shndx_);
2819 if (size == 64 && target->abiversion() < 2)
2820 {
2821 unsigned int dest_shndx;
2822 if (!target->symval_for_branch(symtab, gsym, this->object_,
2823 &to, &dest_shndx))
2824 return true;
2825 }
2826 Address delta = to - from;
2827 if (delta + max_branch_offset >= 2 * max_branch_offset)
2828 {
2829 if (stub_table == NULL)
2830 {
2831 gold_warning(_("%s:%s: branch in non-executable section,"
2832 " no long branch stub for you"),
2833 this->object_->name().c_str(),
2834 this->object_->section_name(this->shndx_).c_str());
2835 return true;
2836 }
2837 bool save_res = (size == 64
2838 && gsym != NULL
2839 && gsym->source() == Symbol::IN_OUTPUT_DATA
2840 && gsym->output_data() == target->savres_section());
2841 return stub_table->add_long_branch_entry(this->object_,
2842 this->r_type_,
2843 from, to, save_res);
2844 }
2845 }
2846 return true;
2847 }
2848
2849 // Relaxation hook. This is where we do stub generation.
2850
2851 template<int size, bool big_endian>
2852 bool
2853 Target_powerpc<size, big_endian>::do_relax(int pass,
2854 const Input_objects*,
2855 Symbol_table* symtab,
2856 Layout* layout,
2857 const Task* task)
2858 {
2859 unsigned int prev_brlt_size = 0;
2860 if (pass == 1)
2861 {
2862 bool thread_safe
2863 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2864 if (size == 64
2865 && this->abiversion() < 2
2866 && !thread_safe
2867 && !parameters->options().user_set_plt_thread_safe())
2868 {
2869 static const char* const thread_starter[] =
2870 {
2871 "pthread_create",
2872 /* libstdc++ */
2873 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2874 /* librt */
2875 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2876 "mq_notify", "create_timer",
2877 /* libanl */
2878 "getaddrinfo_a",
2879 /* libgomp */
2880 "GOMP_parallel",
2881 "GOMP_parallel_start",
2882 "GOMP_parallel_loop_static",
2883 "GOMP_parallel_loop_static_start",
2884 "GOMP_parallel_loop_dynamic",
2885 "GOMP_parallel_loop_dynamic_start",
2886 "GOMP_parallel_loop_guided",
2887 "GOMP_parallel_loop_guided_start",
2888 "GOMP_parallel_loop_runtime",
2889 "GOMP_parallel_loop_runtime_start",
2890 "GOMP_parallel_sections",
2891 "GOMP_parallel_sections_start",
2892 /* libgo */
2893 "__go_go",
2894 };
2895
2896 if (parameters->options().shared())
2897 thread_safe = true;
2898 else
2899 {
2900 for (unsigned int i = 0;
2901 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2902 i++)
2903 {
2904 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2905 thread_safe = (sym != NULL
2906 && sym->in_reg()
2907 && sym->in_real_elf());
2908 if (thread_safe)
2909 break;
2910 }
2911 }
2912 }
2913 this->plt_thread_safe_ = thread_safe;
2914 }
2915
2916 if (pass == 1)
2917 {
2918 this->stub_group_size_ = parameters->options().stub_group_size();
2919 bool no_size_errors = true;
2920 if (this->stub_group_size_ == 1)
2921 this->stub_group_size_ = 0x1c00000;
2922 else if (this->stub_group_size_ == -1)
2923 this->stub_group_size_ = -0x1e00000;
2924 else
2925 no_size_errors = false;
2926 this->group_sections(layout, task, no_size_errors);
2927 }
2928 else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2929 {
2930 this->branch_lookup_table_.clear();
2931 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2932 p != this->stub_tables_.end();
2933 ++p)
2934 {
2935 (*p)->clear_stubs(true);
2936 }
2937 this->stub_tables_.clear();
2938 this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2939 gold_info(_("%s: stub group size is too large; retrying with %#x"),
2940 program_name, this->stub_group_size_);
2941 this->group_sections(layout, task, true);
2942 }
2943
2944 // We need address of stub tables valid for make_stub.
2945 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2946 p != this->stub_tables_.end();
2947 ++p)
2948 {
2949 const Powerpc_relobj<size, big_endian>* object
2950 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2951 Address off = object->get_output_section_offset((*p)->shndx());
2952 gold_assert(off != invalid_address);
2953 Output_section* os = (*p)->output_section();
2954 (*p)->set_address_and_size(os, off);
2955 }
2956
2957 if (pass != 1)
2958 {
2959 // Clear plt call stubs, long branch stubs and branch lookup table.
2960 prev_brlt_size = this->branch_lookup_table_.size();
2961 this->branch_lookup_table_.clear();
2962 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2963 p != this->stub_tables_.end();
2964 ++p)
2965 {
2966 (*p)->clear_stubs(false);
2967 }
2968 }
2969
2970 // Build all the stubs.
2971 this->relax_failed_ = false;
2972 Stub_table<size, big_endian>* ifunc_stub_table
2973 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2974 Stub_table<size, big_endian>* one_stub_table
2975 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2976 for (typename Branches::const_iterator b = this->branch_info_.begin();
2977 b != this->branch_info_.end();
2978 b++)
2979 {
2980 if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2981 && !this->relax_failed_)
2982 {
2983 this->relax_failed_ = true;
2984 this->relax_fail_count_++;
2985 if (this->relax_fail_count_ < 3)
2986 return true;
2987 }
2988 }
2989
2990 // Did anything change size?
2991 unsigned int num_huge_branches = this->branch_lookup_table_.size();
2992 bool again = num_huge_branches != prev_brlt_size;
2993 if (size == 64 && num_huge_branches != 0)
2994 this->make_brlt_section(layout);
2995 if (size == 64 && again)
2996 this->brlt_section_->set_current_size(num_huge_branches);
2997
2998 typedef Unordered_set<Output_section*> Output_sections;
2999 Output_sections os_need_update;
3000 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3001 p != this->stub_tables_.end();
3002 ++p)
3003 {
3004 if ((*p)->size_update())
3005 {
3006 again = true;
3007 (*p)->add_eh_frame(layout);
3008 os_need_update.insert((*p)->output_section());
3009 }
3010 }
3011
3012 // Set output section offsets for all input sections in an output
3013 // section that just changed size. Anything past the stubs will
3014 // need updating.
3015 for (typename Output_sections::iterator p = os_need_update.begin();
3016 p != os_need_update.end();
3017 p++)
3018 {
3019 Output_section* os = *p;
3020 Address off = 0;
3021 typedef Output_section::Input_section_list Input_section_list;
3022 for (Input_section_list::const_iterator i = os->input_sections().begin();
3023 i != os->input_sections().end();
3024 ++i)
3025 {
3026 off = align_address(off, i->addralign());
3027 if (i->is_input_section() || i->is_relaxed_input_section())
3028 i->relobj()->set_section_offset(i->shndx(), off);
3029 if (i->is_relaxed_input_section())
3030 {
3031 Stub_table<size, big_endian>* stub_table
3032 = static_cast<Stub_table<size, big_endian>*>(
3033 i->relaxed_input_section());
3034 Address stub_table_size = stub_table->set_address_and_size(os, off);
3035 off += stub_table_size;
3036 // After a few iterations, set current stub table size
3037 // as min size threshold, so later stub tables can only
3038 // grow in size.
3039 if (pass >= 4)
3040 stub_table->set_min_size_threshold(stub_table_size);
3041 }
3042 else
3043 off += i->data_size();
3044 }
3045 // If .branch_lt is part of this output section, then we have
3046 // just done the offset adjustment.
3047 os->clear_section_offsets_need_adjustment();
3048 }
3049
3050 if (size == 64
3051 && !again
3052 && num_huge_branches != 0
3053 && parameters->options().output_is_position_independent())
3054 {
3055 // Fill in the BRLT relocs.
3056 this->brlt_section_->reset_brlt_sizes();
3057 for (typename Branch_lookup_table::const_iterator p
3058 = this->branch_lookup_table_.begin();
3059 p != this->branch_lookup_table_.end();
3060 ++p)
3061 {
3062 this->brlt_section_->add_reloc(p->first, p->second);
3063 }
3064 this->brlt_section_->finalize_brlt_sizes();
3065 }
3066 return again;
3067 }
3068
3069 template<int size, bool big_endian>
3070 void
3071 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3072 unsigned char* oview,
3073 uint64_t* paddress,
3074 off_t* plen) const
3075 {
3076 uint64_t address = plt->address();
3077 off_t len = plt->data_size();
3078
3079 if (plt == this->glink_)
3080 {
3081 // See Output_data_glink::do_write() for glink contents.
3082 if (len == 0)
3083 {
3084 gold_assert(parameters->doing_static_link());
3085 // Static linking may need stubs, to support ifunc and long
3086 // branches. We need to create an output section for
3087 // .eh_frame early in the link process, to have a place to
3088 // attach stub .eh_frame info. We also need to have
3089 // registered a CIE that matches the stub CIE. Both of
3090 // these requirements are satisfied by creating an FDE and
3091 // CIE for .glink, even though static linking will leave
3092 // .glink zero length.
3093 // ??? Hopefully generating an FDE with a zero address range
3094 // won't confuse anything that consumes .eh_frame info.
3095 }
3096 else if (size == 64)
3097 {
3098 // There is one word before __glink_PLTresolve
3099 address += 8;
3100 len -= 8;
3101 }
3102 else if (parameters->options().output_is_position_independent())
3103 {
3104 // There are two FDEs for a position independent glink.
3105 // The first covers the branch table, the second
3106 // __glink_PLTresolve at the end of glink.
3107 off_t resolve_size = this->glink_->pltresolve_size;
3108 if (oview[9] == elfcpp::DW_CFA_nop)
3109 len -= resolve_size;
3110 else
3111 {
3112 address += len - resolve_size;
3113 len = resolve_size;
3114 }
3115 }
3116 }
3117 else
3118 {
3119 // Must be a stub table.
3120 const Stub_table<size, big_endian>* stub_table
3121 = static_cast<const Stub_table<size, big_endian>*>(plt);
3122 uint64_t stub_address = stub_table->stub_address();
3123 len -= stub_address - address;
3124 address = stub_address;
3125 }
3126
3127 *paddress = address;
3128 *plen = len;
3129 }
3130
3131 // A class to handle the PLT data.
3132
3133 template<int size, bool big_endian>
3134 class Output_data_plt_powerpc : public Output_section_data_build
3135 {
3136 public:
3137 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3138 size, big_endian> Reloc_section;
3139
3140 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3141 Reloc_section* plt_rel,
3142 const char* name)
3143 : Output_section_data_build(size == 32 ? 4 : 8),
3144 rel_(plt_rel),
3145 targ_(targ),
3146 name_(name)
3147 { }
3148
3149 // Add an entry to the PLT.
3150 void
3151 add_entry(Symbol*);
3152
3153 void
3154 add_ifunc_entry(Symbol*);
3155
3156 void
3157 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3158
3159 // Return the .rela.plt section data.
3160 Reloc_section*
3161 rel_plt() const
3162 {
3163 return this->rel_;
3164 }
3165
3166 // Return the number of PLT entries.
3167 unsigned int
3168 entry_count() const
3169 {
3170 if (this->current_data_size() == 0)
3171 return 0;
3172 return ((this->current_data_size() - this->first_plt_entry_offset())
3173 / this->plt_entry_size());
3174 }
3175
3176 protected:
3177 void
3178 do_adjust_output_section(Output_section* os)
3179 {
3180 os->set_entsize(0);
3181 }
3182
3183 // Write to a map file.
3184 void
3185 do_print_to_mapfile(Mapfile* mapfile) const
3186 { mapfile->print_output_data(this, this->name_); }
3187
3188 private:
3189 // Return the offset of the first non-reserved PLT entry.
3190 unsigned int
3191 first_plt_entry_offset() const
3192 {
3193 // IPLT has no reserved entry.
3194 if (this->name_[3] == 'I')
3195 return 0;
3196 return this->targ_->first_plt_entry_offset();
3197 }
3198
3199 // Return the size of each PLT entry.
3200 unsigned int
3201 plt_entry_size() const
3202 {
3203 return this->targ_->plt_entry_size();
3204 }
3205
3206 // Write out the PLT data.
3207 void
3208 do_write(Output_file*);
3209
3210 // The reloc section.
3211 Reloc_section* rel_;
3212 // Allows access to .glink for do_write.
3213 Target_powerpc<size, big_endian>* targ_;
3214 // What to report in map file.
3215 const char *name_;
3216 };
3217
3218 // Add an entry to the PLT.
3219
3220 template<int size, bool big_endian>
3221 void
3222 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3223 {
3224 if (!gsym->has_plt_offset())
3225 {
3226 section_size_type off = this->current_data_size();
3227 if (off == 0)
3228 off += this->first_plt_entry_offset();
3229 gsym->set_plt_offset(off);
3230 gsym->set_needs_dynsym_entry();
3231 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3232 this->rel_->add_global(gsym, dynrel, this, off, 0);
3233 off += this->plt_entry_size();
3234 this->set_current_data_size(off);
3235 }
3236 }
3237
3238 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3239
3240 template<int size, bool big_endian>
3241 void
3242 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3243 {
3244 if (!gsym->has_plt_offset())
3245 {
3246 section_size_type off = this->current_data_size();
3247 gsym->set_plt_offset(off);
3248 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3249 if (size == 64 && this->targ_->abiversion() < 2)
3250 dynrel = elfcpp::R_PPC64_JMP_IREL;
3251 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3252 off += this->plt_entry_size();
3253 this->set_current_data_size(off);
3254 }
3255 }
3256
3257 // Add an entry for a local ifunc symbol to the IPLT.
3258
3259 template<int size, bool big_endian>
3260 void
3261 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3262 Sized_relobj_file<size, big_endian>* relobj,
3263 unsigned int local_sym_index)
3264 {
3265 if (!relobj->local_has_plt_offset(local_sym_index))
3266 {
3267 section_size_type off = this->current_data_size();
3268 relobj->set_local_plt_offset(local_sym_index, off);
3269 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3270 if (size == 64 && this->targ_->abiversion() < 2)
3271 dynrel = elfcpp::R_PPC64_JMP_IREL;
3272 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3273 this, off, 0);
3274 off += this->plt_entry_size();
3275 this->set_current_data_size(off);
3276 }
3277 }
3278
3279 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3280 static const uint32_t add_2_2_11 = 0x7c425a14;
3281 static const uint32_t add_2_2_12 = 0x7c426214;
3282 static const uint32_t add_3_3_2 = 0x7c631214;
3283 static const uint32_t add_3_3_13 = 0x7c636a14;
3284 static const uint32_t add_11_0_11 = 0x7d605a14;
3285 static const uint32_t add_11_2_11 = 0x7d625a14;
3286 static const uint32_t add_11_11_2 = 0x7d6b1214;
3287 static const uint32_t addi_0_12 = 0x380c0000;
3288 static const uint32_t addi_2_2 = 0x38420000;
3289 static const uint32_t addi_3_3 = 0x38630000;
3290 static const uint32_t addi_11_11 = 0x396b0000;
3291 static const uint32_t addi_12_1 = 0x39810000;
3292 static const uint32_t addi_12_12 = 0x398c0000;
3293 static const uint32_t addis_0_2 = 0x3c020000;
3294 static const uint32_t addis_0_13 = 0x3c0d0000;
3295 static const uint32_t addis_2_12 = 0x3c4c0000;
3296 static const uint32_t addis_11_2 = 0x3d620000;
3297 static const uint32_t addis_11_11 = 0x3d6b0000;
3298 static const uint32_t addis_11_30 = 0x3d7e0000;
3299 static const uint32_t addis_12_1 = 0x3d810000;
3300 static const uint32_t addis_12_2 = 0x3d820000;
3301 static const uint32_t addis_12_12 = 0x3d8c0000;
3302 static const uint32_t b = 0x48000000;
3303 static const uint32_t bcl_20_31 = 0x429f0005;
3304 static const uint32_t bctr = 0x4e800420;
3305 static const uint32_t blr = 0x4e800020;
3306 static const uint32_t bnectr_p4 = 0x4ce20420;
3307 static const uint32_t cmpld_7_12_0 = 0x7fac0040;
3308 static const uint32_t cmpldi_2_0 = 0x28220000;
3309 static const uint32_t cror_15_15_15 = 0x4def7b82;
3310 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3311 static const uint32_t ld_0_1 = 0xe8010000;
3312 static const uint32_t ld_0_12 = 0xe80c0000;
3313 static const uint32_t ld_2_1 = 0xe8410000;
3314 static const uint32_t ld_2_2 = 0xe8420000;
3315 static const uint32_t ld_2_11 = 0xe84b0000;
3316 static const uint32_t ld_2_12 = 0xe84c0000;
3317 static const uint32_t ld_11_2 = 0xe9620000;
3318 static const uint32_t ld_11_11 = 0xe96b0000;
3319 static const uint32_t ld_12_2 = 0xe9820000;
3320 static const uint32_t ld_12_11 = 0xe98b0000;
3321 static const uint32_t ld_12_12 = 0xe98c0000;
3322 static const uint32_t lfd_0_1 = 0xc8010000;
3323 static const uint32_t li_0_0 = 0x38000000;
3324 static const uint32_t li_12_0 = 0x39800000;
3325 static const uint32_t lis_0 = 0x3c000000;
3326 static const uint32_t lis_2 = 0x3c400000;
3327 static const uint32_t lis_11 = 0x3d600000;
3328 static const uint32_t lis_12 = 0x3d800000;
3329 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3330 static const uint32_t lwz_0_12 = 0x800c0000;
3331 static const uint32_t lwz_11_11 = 0x816b0000;
3332 static const uint32_t lwz_11_30 = 0x817e0000;
3333 static const uint32_t lwz_12_12 = 0x818c0000;
3334 static const uint32_t lwzu_0_12 = 0x840c0000;
3335 static const uint32_t mflr_0 = 0x7c0802a6;
3336 static const uint32_t mflr_11 = 0x7d6802a6;
3337 static const uint32_t mflr_12 = 0x7d8802a6;
3338 static const uint32_t mtctr_0 = 0x7c0903a6;
3339 static const uint32_t mtctr_11 = 0x7d6903a6;
3340 static const uint32_t mtctr_12 = 0x7d8903a6;
3341 static const uint32_t mtlr_0 = 0x7c0803a6;
3342 static const uint32_t mtlr_12 = 0x7d8803a6;
3343 static const uint32_t nop = 0x60000000;
3344 static const uint32_t ori_0_0_0 = 0x60000000;
3345 static const uint32_t srdi_0_0_2 = 0x7800f082;
3346 static const uint32_t std_0_1 = 0xf8010000;
3347 static const uint32_t std_0_12 = 0xf80c0000;
3348 static const uint32_t std_2_1 = 0xf8410000;
3349 static const uint32_t stfd_0_1 = 0xd8010000;
3350 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3351 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3352 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3353 static const uint32_t xor_2_12_12 = 0x7d826278;
3354 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3355
3356 // Write out the PLT.
3357
3358 template<int size, bool big_endian>
3359 void
3360 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3361 {
3362 if (size == 32 && this->name_[3] != 'I')
3363 {
3364 const section_size_type offset = this->offset();
3365 const section_size_type oview_size
3366 = convert_to_section_size_type(this->data_size());
3367 unsigned char* const oview = of->get_output_view(offset, oview_size);
3368 unsigned char* pov = oview;
3369 unsigned char* endpov = oview + oview_size;
3370
3371 // The address of the .glink branch table
3372 const Output_data_glink<size, big_endian>* glink
3373 = this->targ_->glink_section();
3374 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3375
3376 while (pov < endpov)
3377 {
3378 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3379 pov += 4;
3380 branch_tab += 4;
3381 }
3382
3383 of->write_output_view(offset, oview_size, oview);
3384 }
3385 }
3386
3387 // Create the PLT section.
3388
3389 template<int size, bool big_endian>
3390 void
3391 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3392 Layout* layout)
3393 {
3394 if (this->plt_ == NULL)
3395 {
3396 if (this->got_ == NULL)
3397 this->got_section(symtab, layout);
3398
3399 if (this->glink_ == NULL)
3400 make_glink_section(layout);
3401
3402 // Ensure that .rela.dyn always appears before .rela.plt This is
3403 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3404 // needs to include .rela.plt in its range.
3405 this->rela_dyn_section(layout);
3406
3407 Reloc_section* plt_rel = new Reloc_section(false);
3408 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3409 elfcpp::SHF_ALLOC, plt_rel,
3410 ORDER_DYNAMIC_PLT_RELOCS, false);
3411 this->plt_
3412 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3413 "** PLT");
3414 layout->add_output_section_data(".plt",
3415 (size == 32
3416 ? elfcpp::SHT_PROGBITS
3417 : elfcpp::SHT_NOBITS),
3418 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3419 this->plt_,
3420 (size == 32
3421 ? ORDER_SMALL_DATA
3422 : ORDER_SMALL_BSS),
3423 false);
3424 }
3425 }
3426
3427 // Create the IPLT section.
3428
3429 template<int size, bool big_endian>
3430 void
3431 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3432 Layout* layout)
3433 {
3434 if (this->iplt_ == NULL)
3435 {
3436 this->make_plt_section(symtab, layout);
3437
3438 Reloc_section* iplt_rel = new Reloc_section(false);
3439 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3440 this->iplt_
3441 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3442 "** IPLT");
3443 this->plt_->output_section()->add_output_section_data(this->iplt_);
3444 }
3445 }
3446
3447 // A section for huge long branch addresses, similar to plt section.
3448
3449 template<int size, bool big_endian>
3450 class Output_data_brlt_powerpc : public Output_section_data_build
3451 {
3452 public:
3453 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3454 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3455 size, big_endian> Reloc_section;
3456
3457 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3458 Reloc_section* brlt_rel)
3459 : Output_section_data_build(size == 32 ? 4 : 8),
3460 rel_(brlt_rel),
3461 targ_(targ)
3462 { }
3463
3464 void
3465 reset_brlt_sizes()
3466 {
3467 this->reset_data_size();
3468 this->rel_->reset_data_size();
3469 }
3470
3471 void
3472 finalize_brlt_sizes()
3473 {
3474 this->finalize_data_size();
3475 this->rel_->finalize_data_size();
3476 }
3477
3478 // Add a reloc for an entry in the BRLT.
3479 void
3480 add_reloc(Address to, unsigned int off)
3481 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3482
3483 // Update section and reloc section size.
3484 void
3485 set_current_size(unsigned int num_branches)
3486 {
3487 this->reset_address_and_file_offset();
3488 this->set_current_data_size(num_branches * 16);
3489 this->finalize_data_size();
3490 Output_section* os = this->output_section();
3491 os->set_section_offsets_need_adjustment();
3492 if (this->rel_ != NULL)
3493 {
3494 unsigned int reloc_size
3495 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3496 this->rel_->reset_address_and_file_offset();
3497 this->rel_->set_current_data_size(num_branches * reloc_size);
3498 this->rel_->finalize_data_size();
3499 Output_section* os = this->rel_->output_section();
3500 os->set_section_offsets_need_adjustment();
3501 }
3502 }
3503
3504 protected:
3505 void
3506 do_adjust_output_section(Output_section* os)
3507 {
3508 os->set_entsize(0);
3509 }
3510
3511 // Write to a map file.
3512 void
3513 do_print_to_mapfile(Mapfile* mapfile) const
3514 { mapfile->print_output_data(this, "** BRLT"); }
3515
3516 private:
3517 // Write out the BRLT data.
3518 void
3519 do_write(Output_file*);
3520
3521 // The reloc section.
3522 Reloc_section* rel_;
3523 Target_powerpc<size, big_endian>* targ_;
3524 };
3525
3526 // Make the branch lookup table section.
3527
3528 template<int size, bool big_endian>
3529 void
3530 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3531 {
3532 if (size == 64 && this->brlt_section_ == NULL)
3533 {
3534 Reloc_section* brlt_rel = NULL;
3535 bool is_pic = parameters->options().output_is_position_independent();
3536 if (is_pic)
3537 {
3538 // When PIC we can't fill in .branch_lt (like .plt it can be
3539 // a bss style section) but must initialise at runtime via
3540 // dynamic relocats.
3541 this->rela_dyn_section(layout);
3542 brlt_rel = new Reloc_section(false);
3543 this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3544 }
3545 this->brlt_section_
3546 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3547 if (this->plt_ && is_pic)
3548 this->plt_->output_section()
3549 ->add_output_section_data(this->brlt_section_);
3550 else
3551 layout->add_output_section_data(".branch_lt",
3552 (is_pic ? elfcpp::SHT_NOBITS
3553 : elfcpp::SHT_PROGBITS),
3554 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3555 this->brlt_section_,
3556 (is_pic ? ORDER_SMALL_BSS
3557 : ORDER_SMALL_DATA),
3558 false);
3559 }
3560 }
3561
3562 // Write out .branch_lt when non-PIC.
3563
3564 template<int size, bool big_endian>
3565 void
3566 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3567 {
3568 if (size == 64 && !parameters->options().output_is_position_independent())
3569 {
3570 const section_size_type offset = this->offset();
3571 const section_size_type oview_size
3572 = convert_to_section_size_type(this->data_size());
3573 unsigned char* const oview = of->get_output_view(offset, oview_size);
3574
3575 this->targ_->write_branch_lookup_table(oview);
3576 of->write_output_view(offset, oview_size, oview);
3577 }
3578 }
3579
3580 static inline uint32_t
3581 l(uint32_t a)
3582 {
3583 return a & 0xffff;
3584 }
3585
3586 static inline uint32_t
3587 hi(uint32_t a)
3588 {
3589 return l(a >> 16);
3590 }
3591
3592 static inline uint32_t
3593 ha(uint32_t a)
3594 {
3595 return hi(a + 0x8000);
3596 }
3597
3598 template<int size>
3599 struct Eh_cie
3600 {
3601 static const unsigned char eh_frame_cie[12];
3602 };
3603
3604 template<int size>
3605 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3606 {
3607 1, // CIE version.
3608 'z', 'R', 0, // Augmentation string.
3609 4, // Code alignment.
3610 0x80 - size / 8 , // Data alignment.
3611 65, // RA reg.
3612 1, // Augmentation size.
3613 (elfcpp::DW_EH_PE_pcrel
3614 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
3615 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
3616 };
3617
3618 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3619 static const unsigned char glink_eh_frame_fde_64v1[] =
3620 {
3621 0, 0, 0, 0, // Replaced with offset to .glink.
3622 0, 0, 0, 0, // Replaced with size of .glink.
3623 0, // Augmentation size.
3624 elfcpp::DW_CFA_advance_loc + 1,
3625 elfcpp::DW_CFA_register, 65, 12,
3626 elfcpp::DW_CFA_advance_loc + 4,
3627 elfcpp::DW_CFA_restore_extended, 65
3628 };
3629
3630 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3631 static const unsigned char glink_eh_frame_fde_64v2[] =
3632 {
3633 0, 0, 0, 0, // Replaced with offset to .glink.
3634 0, 0, 0, 0, // Replaced with size of .glink.
3635 0, // Augmentation size.
3636 elfcpp::DW_CFA_advance_loc + 1,
3637 elfcpp::DW_CFA_register, 65, 0,
3638 elfcpp::DW_CFA_advance_loc + 4,
3639 elfcpp::DW_CFA_restore_extended, 65
3640 };
3641
3642 // Describe __glink_PLTresolve use of LR, 32-bit version.
3643 static const unsigned char glink_eh_frame_fde_32[] =
3644 {
3645 0, 0, 0, 0, // Replaced with offset to .glink.
3646 0, 0, 0, 0, // Replaced with size of .glink.
3647 0, // Augmentation size.
3648 elfcpp::DW_CFA_advance_loc + 2,
3649 elfcpp::DW_CFA_register, 65, 0,
3650 elfcpp::DW_CFA_advance_loc + 4,
3651 elfcpp::DW_CFA_restore_extended, 65
3652 };
3653
3654 static const unsigned char default_fde[] =
3655 {
3656 0, 0, 0, 0, // Replaced with offset to stubs.
3657 0, 0, 0, 0, // Replaced with size of stubs.
3658 0, // Augmentation size.
3659 elfcpp::DW_CFA_nop, // Pad.
3660 elfcpp::DW_CFA_nop,
3661 elfcpp::DW_CFA_nop
3662 };
3663
3664 template<bool big_endian>
3665 static inline void
3666 write_insn(unsigned char* p, uint32_t v)
3667 {
3668 elfcpp::Swap<32, big_endian>::writeval(p, v);
3669 }
3670
3671 // Stub_table holds information about plt and long branch stubs.
3672 // Stubs are built in an area following some input section determined
3673 // by group_sections(). This input section is converted to a relaxed
3674 // input section allowing it to be resized to accommodate the stubs
3675
3676 template<int size, bool big_endian>
3677 class Stub_table : public Output_relaxed_input_section
3678 {
3679 public:
3680 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3681 static const Address invalid_address = static_cast<Address>(0) - 1;
3682
3683 Stub_table(Target_powerpc<size, big_endian>* targ,
3684 Output_section* output_section,
3685 const Output_section::Input_section* owner)
3686 : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3687 owner->relobj()
3688 ->section_addralign(owner->shndx())),
3689 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3690 orig_data_size_(owner->current_data_size()),
3691 plt_size_(0), last_plt_size_(0),
3692 branch_size_(0), last_branch_size_(0), min_size_threshold_(0),
3693 eh_frame_added_(false), need_save_res_(false)
3694 {
3695 this->set_output_section(output_section);
3696
3697 std::vector<Output_relaxed_input_section*> new_relaxed;
3698 new_relaxed.push_back(this);
3699 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3700 }
3701
3702 // Add a plt call stub.
3703 bool
3704 add_plt_call_entry(Address,
3705 const Sized_relobj_file<size, big_endian>*,
3706 const Symbol*,
3707 unsigned int,
3708 Address);
3709
3710 bool
3711 add_plt_call_entry(Address,
3712 const Sized_relobj_file<size, big_endian>*,
3713 unsigned int,
3714 unsigned int,
3715 Address);
3716
3717 // Find a given plt call stub.
3718 Address
3719 find_plt_call_entry(const Symbol*) const;
3720
3721 Address
3722 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3723 unsigned int) const;
3724
3725 Address
3726 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3727 const Symbol*,
3728 unsigned int,
3729 Address) const;
3730
3731 Address
3732 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3733 unsigned int,
3734 unsigned int,
3735 Address) const;
3736
3737 // Add a long branch stub.
3738 bool
3739 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3740 unsigned int, Address, Address, bool);
3741
3742 Address
3743 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3744 Address) const;
3745
3746 bool
3747 can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3748 {
3749 Address max_branch_offset = max_branch_delta(r_type);
3750 if (max_branch_offset == 0)
3751 return true;
3752 gold_assert(from != invalid_address);
3753 Address loc = off + this->stub_address();
3754 return loc - from + max_branch_offset < 2 * max_branch_offset;
3755 }
3756
3757 void
3758 clear_stubs(bool all)
3759 {
3760 this->plt_call_stubs_.clear();
3761 this->plt_size_ = 0;
3762 this->long_branch_stubs_.clear();
3763 this->branch_size_ = 0;
3764 this->need_save_res_ = false;
3765 if (all)
3766 {
3767 this->last_plt_size_ = 0;
3768 this->last_branch_size_ = 0;
3769 }
3770 }
3771
3772 Address
3773 set_address_and_size(const Output_section* os, Address off)
3774 {
3775 Address start_off = off;
3776 off += this->orig_data_size_;
3777 Address my_size = this->plt_size_ + this->branch_size_;
3778 if (this->need_save_res_)
3779 my_size += this->targ_->savres_section()->data_size();
3780 if (my_size != 0)
3781 off = align_address(off, this->stub_align());
3782 // Include original section size and alignment padding in size
3783 my_size += off - start_off;
3784 // Ensure new size is always larger than min size
3785 // threshold. Alignment requirement is included in "my_size", so
3786 // increase "my_size" does not invalidate alignment.
3787 if (my_size < this->min_size_threshold_)
3788 my_size = this->min_size_threshold_;
3789 this->reset_address_and_file_offset();
3790 this->set_current_data_size(my_size);
3791 this->set_address_and_file_offset(os->address() + start_off,
3792 os->offset() + start_off);
3793 return my_size;
3794 }
3795
3796 Address
3797 stub_address() const
3798 {
3799 return align_address(this->address() + this->orig_data_size_,
3800 this->stub_align());
3801 }
3802
3803 Address
3804 stub_offset() const
3805 {
3806 return align_address(this->offset() + this->orig_data_size_,
3807 this->stub_align());
3808 }
3809
3810 section_size_type
3811 plt_size() const
3812 { return this->plt_size_; }
3813
3814 void set_min_size_threshold(Address min_size)
3815 { this->min_size_threshold_ = min_size; }
3816
3817 bool
3818 size_update()
3819 {
3820 Output_section* os = this->output_section();
3821 if (os->addralign() < this->stub_align())
3822 {
3823 os->set_addralign(this->stub_align());
3824 // FIXME: get rid of the insane checkpointing.
3825 // We can't increase alignment of the input section to which
3826 // stubs are attached; The input section may be .init which
3827 // is pasted together with other .init sections to form a
3828 // function. Aligning might insert zero padding resulting in
3829 // sigill. However we do need to increase alignment of the
3830 // output section so that the align_address() on offset in
3831 // set_address_and_size() adds the same padding as the
3832 // align_address() on address in stub_address().
3833 // What's more, we need this alignment for the layout done in
3834 // relaxation_loop_body() so that the output section starts at
3835 // a suitably aligned address.
3836 os->checkpoint_set_addralign(this->stub_align());
3837 }
3838 if (this->last_plt_size_ != this->plt_size_
3839 || this->last_branch_size_ != this->branch_size_)
3840 {
3841 this->last_plt_size_ = this->plt_size_;
3842 this->last_branch_size_ = this->branch_size_;
3843 return true;
3844 }
3845 return false;
3846 }
3847
3848 // Add .eh_frame info for this stub section. Unlike other linker
3849 // generated .eh_frame this is added late in the link, because we
3850 // only want the .eh_frame info if this particular stub section is
3851 // non-empty.
3852 void
3853 add_eh_frame(Layout* layout)
3854 {
3855 if (!this->eh_frame_added_)
3856 {
3857 if (!parameters->options().ld_generated_unwind_info())
3858 return;
3859
3860 // Since we add stub .eh_frame info late, it must be placed
3861 // after all other linker generated .eh_frame info so that
3862 // merge mapping need not be updated for input sections.
3863 // There is no provision to use a different CIE to that used
3864 // by .glink.
3865 if (!this->targ_->has_glink())
3866 return;
3867
3868 layout->add_eh_frame_for_plt(this,
3869 Eh_cie<size>::eh_frame_cie,
3870 sizeof (Eh_cie<size>::eh_frame_cie),
3871 default_fde,
3872 sizeof (default_fde));
3873 this->eh_frame_added_ = true;
3874 }
3875 }
3876
3877 Target_powerpc<size, big_endian>*
3878 targ() const
3879 { return targ_; }
3880
3881 private:
3882 class Plt_stub_ent;
3883 class Plt_stub_ent_hash;
3884 typedef Unordered_map<Plt_stub_ent, unsigned int,
3885 Plt_stub_ent_hash> Plt_stub_entries;
3886
3887 // Alignment of stub section.
3888 unsigned int
3889 stub_align() const
3890 {
3891 if (size == 32)
3892 return 16;
3893 unsigned int min_align = 32;
3894 unsigned int user_align = 1 << parameters->options().plt_align();
3895 return std::max(user_align, min_align);
3896 }
3897
3898 // Return the plt offset for the given call stub.
3899 Address
3900 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3901 {
3902 const Symbol* gsym = p->first.sym_;
3903 if (gsym != NULL)
3904 {
3905 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3906 && gsym->can_use_relative_reloc(false));
3907 return gsym->plt_offset();
3908 }
3909 else
3910 {
3911 *is_iplt = true;
3912 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3913 unsigned int local_sym_index = p->first.locsym_;
3914 return relobj->local_plt_offset(local_sym_index);
3915 }
3916 }
3917
3918 // Size of a given plt call stub.
3919 unsigned int
3920 plt_call_size(typename Plt_stub_entries::const_iterator p) const
3921 {
3922 if (size == 32)
3923 return 16;
3924
3925 bool is_iplt;
3926 Address plt_addr = this->plt_off(p, &is_iplt);
3927 if (is_iplt)
3928 plt_addr += this->targ_->iplt_section()->address();
3929 else
3930 plt_addr += this->targ_->plt_section()->address();
3931 Address got_addr = this->targ_->got_section()->output_section()->address();
3932 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3933 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3934 got_addr += ppcobj->toc_base_offset();
3935 Address off = plt_addr - got_addr;
3936 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3937 if (this->targ_->abiversion() < 2)
3938 {
3939 bool static_chain = parameters->options().plt_static_chain();
3940 bool thread_safe = this->targ_->plt_thread_safe();
3941 bytes += (4
3942 + 4 * static_chain
3943 + 8 * thread_safe
3944 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3945 }
3946 unsigned int align = 1 << parameters->options().plt_align();
3947 if (align > 1)
3948 bytes = (bytes + align - 1) & -align;
3949 return bytes;
3950 }
3951
3952 // Return long branch stub size.
3953 unsigned int
3954 branch_stub_size(Address to)
3955 {
3956 Address loc
3957 = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3958 if (to - loc + (1 << 25) < 2 << 25)
3959 return 4;
3960 if (size == 64 || !parameters->options().output_is_position_independent())
3961 return 16;
3962 return 32;
3963 }
3964
3965 // Write out stubs.
3966 void
3967 do_write(Output_file*);
3968
3969 // Plt call stub keys.
3970 class Plt_stub_ent
3971 {
3972 public:
3973 Plt_stub_ent(const Symbol* sym)
3974 : sym_(sym), object_(0), addend_(0), locsym_(0)
3975 { }
3976
3977 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3978 unsigned int locsym_index)
3979 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3980 { }
3981
3982 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3983 const Symbol* sym,
3984 unsigned int r_type,
3985 Address addend)
3986 : sym_(sym), object_(0), addend_(0), locsym_(0)
3987 {
3988 if (size != 32)
3989 this->addend_ = addend;
3990 else if (parameters->options().output_is_position_independent()
3991 && r_type == elfcpp::R_PPC_PLTREL24)
3992 {
3993 this->addend_ = addend;
3994 if (this->addend_ >= 32768)
3995 this->object_ = object;
3996 }
3997 }
3998
3999 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
4000 unsigned int locsym_index,
4001 unsigned int r_type,
4002 Address addend)
4003 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4004 {
4005 if (size != 32)
4006 this->addend_ = addend;
4007 else if (parameters->options().output_is_position_independent()
4008 && r_type == elfcpp::R_PPC_PLTREL24)
4009 this->addend_ = addend;
4010 }
4011
4012 bool operator==(const Plt_stub_ent& that) const
4013 {
4014 return (this->sym_ == that.sym_
4015 && this->object_ == that.object_
4016 && this->addend_ == that.addend_
4017 && this->locsym_ == that.locsym_);
4018 }
4019
4020 const Symbol* sym_;
4021 const Sized_relobj_file<size, big_endian>* object_;
4022 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
4023 unsigned int locsym_;
4024 };
4025
4026 class Plt_stub_ent_hash
4027 {
4028 public:
4029 size_t operator()(const Plt_stub_ent& ent) const
4030 {
4031 return (reinterpret_cast<uintptr_t>(ent.sym_)
4032 ^ reinterpret_cast<uintptr_t>(ent.object_)
4033 ^ ent.addend_
4034 ^ ent.locsym_);
4035 }
4036 };
4037
4038 // Long branch stub keys.
4039 class Branch_stub_ent
4040 {
4041 public:
4042 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
4043 Address to, bool save_res)
4044 : dest_(to), toc_base_off_(0), save_res_(save_res)
4045 {
4046 if (size == 64)
4047 toc_base_off_ = obj->toc_base_offset();
4048 }
4049
4050 bool operator==(const Branch_stub_ent& that) const
4051 {
4052 return (this->dest_ == that.dest_
4053 && (size == 32
4054 || this->toc_base_off_ == that.toc_base_off_));
4055 }
4056
4057 Address dest_;
4058 unsigned int toc_base_off_;
4059 bool save_res_;
4060 };
4061
4062 class Branch_stub_ent_hash
4063 {
4064 public:
4065 size_t operator()(const Branch_stub_ent& ent) const
4066 { return ent.dest_ ^ ent.toc_base_off_; }
4067 };
4068
4069 // In a sane world this would be a global.
4070 Target_powerpc<size, big_endian>* targ_;
4071 // Map sym/object/addend to stub offset.
4072 Plt_stub_entries plt_call_stubs_;
4073 // Map destination address to stub offset.
4074 typedef Unordered_map<Branch_stub_ent, unsigned int,
4075 Branch_stub_ent_hash> Branch_stub_entries;
4076 Branch_stub_entries long_branch_stubs_;
4077 // size of input section
4078 section_size_type orig_data_size_;
4079 // size of stubs
4080 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4081 // Some rare cases cause (PR/20529) fluctuation in stub table
4082 // size, which leads to an endless relax loop. This is to be fixed
4083 // by, after the first few iterations, allowing only increase of
4084 // stub table size. This variable sets the minimal possible size of
4085 // a stub table, it is zero for the first few iterations, then
4086 // increases monotonically.
4087 Address min_size_threshold_;
4088 // Whether .eh_frame info has been created for this stub section.
4089 bool eh_frame_added_;
4090 // Set if this stub group needs a copy of out-of-line register
4091 // save/restore functions.
4092 bool need_save_res_;
4093 };
4094
4095 // Add a plt call stub, if we do not already have one for this
4096 // sym/object/addend combo.
4097
4098 template<int size, bool big_endian>
4099 bool
4100 Stub_table<size, big_endian>::add_plt_call_entry(
4101 Address from,
4102 const Sized_relobj_file<size, big_endian>* object,
4103 const Symbol* gsym,
4104 unsigned int r_type,
4105 Address addend)
4106 {
4107 Plt_stub_ent ent(object, gsym, r_type, addend);
4108 unsigned int off = this->plt_size_;
4109 std::pair<typename Plt_stub_entries::iterator, bool> p
4110 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4111 if (p.second)
4112 this->plt_size_ = off + this->plt_call_size(p.first);
4113 return this->can_reach_stub(from, off, r_type);
4114 }
4115
4116 template<int size, bool big_endian>
4117 bool
4118 Stub_table<size, big_endian>::add_plt_call_entry(
4119 Address from,
4120 const Sized_relobj_file<size, big_endian>* object,
4121 unsigned int locsym_index,
4122 unsigned int r_type,
4123 Address addend)
4124 {
4125 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4126 unsigned int off = this->plt_size_;
4127 std::pair<typename Plt_stub_entries::iterator, bool> p
4128 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4129 if (p.second)
4130 this->plt_size_ = off + this->plt_call_size(p.first);
4131 return this->can_reach_stub(from, off, r_type);
4132 }
4133
4134 // Find a plt call stub.
4135
4136 template<int size, bool big_endian>
4137 typename Stub_table<size, big_endian>::Address
4138 Stub_table<size, big_endian>::find_plt_call_entry(
4139 const Sized_relobj_file<size, big_endian>* object,
4140 const Symbol* gsym,
4141 unsigned int r_type,
4142 Address addend) const
4143 {
4144 Plt_stub_ent ent(object, gsym, r_type, addend);
4145 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4146 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4147 }
4148
4149 template<int size, bool big_endian>
4150 typename Stub_table<size, big_endian>::Address
4151 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4152 {
4153 Plt_stub_ent ent(gsym);
4154 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4155 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4156 }
4157
4158 template<int size, bool big_endian>
4159 typename Stub_table<size, big_endian>::Address
4160 Stub_table<size, big_endian>::find_plt_call_entry(
4161 const Sized_relobj_file<size, big_endian>* object,
4162 unsigned int locsym_index,
4163 unsigned int r_type,
4164 Address addend) const
4165 {
4166 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4167 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4168 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4169 }
4170
4171 template<int size, bool big_endian>
4172 typename Stub_table<size, big_endian>::Address
4173 Stub_table<size, big_endian>::find_plt_call_entry(
4174 const Sized_relobj_file<size, big_endian>* object,
4175 unsigned int locsym_index) const
4176 {
4177 Plt_stub_ent ent(object, locsym_index);
4178 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4179 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4180 }
4181
4182 // Add a long branch stub if we don't already have one to given
4183 // destination.
4184
4185 template<int size, bool big_endian>
4186 bool
4187 Stub_table<size, big_endian>::add_long_branch_entry(
4188 const Powerpc_relobj<size, big_endian>* object,
4189 unsigned int r_type,
4190 Address from,
4191 Address to,
4192 bool save_res)
4193 {
4194 Branch_stub_ent ent(object, to, save_res);
4195 Address off = this->branch_size_;
4196 if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4197 {
4198 if (save_res)
4199 this->need_save_res_ = true;
4200 else
4201 {
4202 unsigned int stub_size = this->branch_stub_size(to);
4203 this->branch_size_ = off + stub_size;
4204 if (size == 64 && stub_size != 4)
4205 this->targ_->add_branch_lookup_table(to);
4206 }
4207 }
4208 return this->can_reach_stub(from, off, r_type);
4209 }
4210
4211 // Find long branch stub offset.
4212
4213 template<int size, bool big_endian>
4214 typename Stub_table<size, big_endian>::Address
4215 Stub_table<size, big_endian>::find_long_branch_entry(
4216 const Powerpc_relobj<size, big_endian>* object,
4217 Address to) const
4218 {
4219 Branch_stub_ent ent(object, to, false);
4220 typename Branch_stub_entries::const_iterator p
4221 = this->long_branch_stubs_.find(ent);
4222 if (p == this->long_branch_stubs_.end())
4223 return invalid_address;
4224 if (p->first.save_res_)
4225 return to - this->targ_->savres_section()->address() + this->branch_size_;
4226 return p->second;
4227 }
4228
4229 // A class to handle .glink.
4230
4231 template<int size, bool big_endian>
4232 class Output_data_glink : public Output_section_data
4233 {
4234 public:
4235 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4236 static const Address invalid_address = static_cast<Address>(0) - 1;
4237 static const int pltresolve_size = 16*4;
4238
4239 Output_data_glink(Target_powerpc<size, big_endian>* targ)
4240 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4241 end_branch_table_(), ge_size_(0)
4242 { }
4243
4244 void
4245 add_eh_frame(Layout* layout);
4246
4247 void
4248 add_global_entry(const Symbol*);
4249
4250 Address
4251 find_global_entry(const Symbol*) const;
4252
4253 Address
4254 global_entry_address() const
4255 {
4256 gold_assert(this->is_data_size_valid());
4257 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4258 return this->address() + global_entry_off;
4259 }
4260
4261 protected:
4262 // Write to a map file.
4263 void
4264 do_print_to_mapfile(Mapfile* mapfile) const
4265 { mapfile->print_output_data(this, _("** glink")); }
4266
4267 private:
4268 void
4269 set_final_data_size();
4270
4271 // Write out .glink
4272 void
4273 do_write(Output_file*);
4274
4275 // Allows access to .got and .plt for do_write.
4276 Target_powerpc<size, big_endian>* targ_;
4277
4278 // Map sym to stub offset.
4279 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4280 Global_entry_stub_entries global_entry_stubs_;
4281
4282 unsigned int end_branch_table_, ge_size_;
4283 };
4284
4285 template<int size, bool big_endian>
4286 void
4287 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4288 {
4289 if (!parameters->options().ld_generated_unwind_info())
4290 return;
4291
4292 if (size == 64)
4293 {
4294 if (this->targ_->abiversion() < 2)
4295 layout->add_eh_frame_for_plt(this,
4296 Eh_cie<64>::eh_frame_cie,
4297 sizeof (Eh_cie<64>::eh_frame_cie),
4298 glink_eh_frame_fde_64v1,
4299 sizeof (glink_eh_frame_fde_64v1));
4300 else
4301 layout->add_eh_frame_for_plt(this,
4302 Eh_cie<64>::eh_frame_cie,
4303 sizeof (Eh_cie<64>::eh_frame_cie),
4304 glink_eh_frame_fde_64v2,
4305 sizeof (glink_eh_frame_fde_64v2));
4306 }
4307 else
4308 {
4309 // 32-bit .glink can use the default since the CIE return
4310 // address reg, LR, is valid.
4311 layout->add_eh_frame_for_plt(this,
4312 Eh_cie<32>::eh_frame_cie,
4313 sizeof (Eh_cie<32>::eh_frame_cie),
4314 default_fde,
4315 sizeof (default_fde));
4316 // Except where LR is used in a PIC __glink_PLTresolve.
4317 if (parameters->options().output_is_position_independent())
4318 layout->add_eh_frame_for_plt(this,
4319 Eh_cie<32>::eh_frame_cie,
4320 sizeof (Eh_cie<32>::eh_frame_cie),
4321 glink_eh_frame_fde_32,
4322 sizeof (glink_eh_frame_fde_32));
4323 }
4324 }
4325
4326 template<int size, bool big_endian>
4327 void
4328 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4329 {
4330 std::pair<typename Global_entry_stub_entries::iterator, bool> p
4331 = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4332 if (p.second)
4333 this->ge_size_ += 16;
4334 }
4335
4336 template<int size, bool big_endian>
4337 typename Output_data_glink<size, big_endian>::Address
4338 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4339 {
4340 typename Global_entry_stub_entries::const_iterator p
4341 = this->global_entry_stubs_.find(gsym);
4342 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4343 }
4344
4345 template<int size, bool big_endian>
4346 void
4347 Output_data_glink<size, big_endian>::set_final_data_size()
4348 {
4349 unsigned int count = this->targ_->plt_entry_count();
4350 section_size_type total = 0;
4351
4352 if (count != 0)
4353 {
4354 if (size == 32)
4355 {
4356 // space for branch table
4357 total += 4 * (count - 1);
4358
4359 total += -total & 15;
4360 total += this->pltresolve_size;
4361 }
4362 else
4363 {
4364 total += this->pltresolve_size;
4365
4366 // space for branch table
4367 total += 4 * count;
4368 if (this->targ_->abiversion() < 2)
4369 {
4370 total += 4 * count;
4371 if (count > 0x8000)
4372 total += 4 * (count - 0x8000);
4373 }
4374 }
4375 }
4376 this->end_branch_table_ = total;
4377 total = (total + 15) & -16;
4378 total += this->ge_size_;
4379
4380 this->set_data_size(total);
4381 }
4382
4383 // Write out plt and long branch stub code.
4384
4385 template<int size, bool big_endian>
4386 void
4387 Stub_table<size, big_endian>::do_write(Output_file* of)
4388 {
4389 if (this->plt_call_stubs_.empty()
4390 && this->long_branch_stubs_.empty())
4391 return;
4392
4393 const section_size_type start_off = this->offset();
4394 const section_size_type off = this->stub_offset();
4395 const section_size_type oview_size =
4396 convert_to_section_size_type(this->data_size() - (off - start_off));
4397 unsigned char* const oview = of->get_output_view(off, oview_size);
4398 unsigned char* p;
4399
4400 if (size == 64)
4401 {
4402 const Output_data_got_powerpc<size, big_endian>* got
4403 = this->targ_->got_section();
4404 Address got_os_addr = got->output_section()->address();
4405
4406 if (!this->plt_call_stubs_.empty())
4407 {
4408 // The base address of the .plt section.
4409 Address plt_base = this->targ_->plt_section()->address();
4410 Address iplt_base = invalid_address;
4411
4412 // Write out plt call stubs.
4413 typename Plt_stub_entries::const_iterator cs;
4414 for (cs = this->plt_call_stubs_.begin();
4415 cs != this->plt_call_stubs_.end();
4416 ++cs)
4417 {
4418 bool is_iplt;
4419 Address pltoff = this->plt_off(cs, &is_iplt);
4420 Address plt_addr = pltoff;
4421 if (is_iplt)
4422 {
4423 if (iplt_base == invalid_address)
4424 iplt_base = this->targ_->iplt_section()->address();
4425 plt_addr += iplt_base;
4426 }
4427 else
4428 plt_addr += plt_base;
4429 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4430 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4431 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4432 Address off = plt_addr - got_addr;
4433
4434 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4435 gold_error(_("%s: linkage table error against `%s'"),
4436 cs->first.object_->name().c_str(),
4437 cs->first.sym_->demangled_name().c_str());
4438
4439 bool plt_load_toc = this->targ_->abiversion() < 2;
4440 bool static_chain
4441 = plt_load_toc && parameters->options().plt_static_chain();
4442 bool thread_safe
4443 = plt_load_toc && this->targ_->plt_thread_safe();
4444 bool use_fake_dep = false;
4445 Address cmp_branch_off = 0;
4446 if (thread_safe)
4447 {
4448 unsigned int pltindex
4449 = ((pltoff - this->targ_->first_plt_entry_offset())
4450 / this->targ_->plt_entry_size());
4451 Address glinkoff
4452 = (this->targ_->glink_section()->pltresolve_size
4453 + pltindex * 8);
4454 if (pltindex > 32768)
4455 glinkoff += (pltindex - 32768) * 4;
4456 Address to
4457 = this->targ_->glink_section()->address() + glinkoff;
4458 Address from
4459 = (this->stub_address() + cs->second + 24
4460 + 4 * (ha(off) != 0)
4461 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4462 + 4 * static_chain);
4463 cmp_branch_off = to - from;
4464 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4465 }
4466
4467 p = oview + cs->second;
4468 if (ha(off) != 0)
4469 {
4470 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4471 p += 4;
4472 if (plt_load_toc)
4473 {
4474 write_insn<big_endian>(p, addis_11_2 + ha(off));
4475 p += 4;
4476 write_insn<big_endian>(p, ld_12_11 + l(off));
4477 p += 4;
4478 }
4479 else
4480 {
4481 write_insn<big_endian>(p, addis_12_2 + ha(off));
4482 p += 4;
4483 write_insn<big_endian>(p, ld_12_12 + l(off));
4484 p += 4;
4485 }
4486 if (plt_load_toc
4487 && ha(off + 8 + 8 * static_chain) != ha(off))
4488 {
4489 write_insn<big_endian>(p, addi_11_11 + l(off));
4490 p += 4;
4491 off = 0;
4492 }
4493 write_insn<big_endian>(p, mtctr_12);
4494 p += 4;
4495 if (plt_load_toc)
4496 {
4497 if (use_fake_dep)
4498 {
4499 write_insn<big_endian>(p, xor_2_12_12);
4500 p += 4;
4501 write_insn<big_endian>(p, add_11_11_2);
4502 p += 4;
4503 }
4504 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4505 p += 4;
4506 if (static_chain)
4507 {
4508 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4509 p += 4;
4510 }
4511 }
4512 }
4513 else
4514 {
4515 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4516 p += 4;
4517 write_insn<big_endian>(p, ld_12_2 + l(off));
4518 p += 4;
4519 if (plt_load_toc
4520 && ha(off + 8 + 8 * static_chain) != ha(off))
4521 {
4522 write_insn<big_endian>(p, addi_2_2 + l(off));
4523 p += 4;
4524 off = 0;
4525 }
4526 write_insn<big_endian>(p, mtctr_12);
4527 p += 4;
4528 if (plt_load_toc)
4529 {
4530 if (use_fake_dep)
4531 {
4532 write_insn<big_endian>(p, xor_11_12_12);
4533 p += 4;
4534 write_insn<big_endian>(p, add_2_2_11);
4535 p += 4;
4536 }
4537 if (static_chain)
4538 {
4539 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4540 p += 4;
4541 }
4542 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4543 p += 4;
4544 }
4545 }
4546 if (thread_safe && !use_fake_dep)
4547 {
4548 write_insn<big_endian>(p, cmpldi_2_0);
4549 p += 4;
4550 write_insn<big_endian>(p, bnectr_p4);
4551 p += 4;
4552 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4553 }
4554 else
4555 write_insn<big_endian>(p, bctr);
4556 }
4557 }
4558
4559 // Write out long branch stubs.
4560 typename Branch_stub_entries::const_iterator bs;
4561 for (bs = this->long_branch_stubs_.begin();
4562 bs != this->long_branch_stubs_.end();
4563 ++bs)
4564 {
4565 if (bs->first.save_res_)
4566 continue;
4567 p = oview + this->plt_size_ + bs->second;
4568 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4569 Address delta = bs->first.dest_ - loc;
4570 if (delta + (1 << 25) < 2 << 25)
4571 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4572 else
4573 {
4574 Address brlt_addr
4575 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4576 gold_assert(brlt_addr != invalid_address);
4577 brlt_addr += this->targ_->brlt_section()->address();
4578 Address got_addr = got_os_addr + bs->first.toc_base_off_;
4579 Address brltoff = brlt_addr - got_addr;
4580 if (ha(brltoff) == 0)
4581 {
4582 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
4583 }
4584 else
4585 {
4586 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
4587 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4;
4588 }
4589 write_insn<big_endian>(p, mtctr_12), p += 4;
4590 write_insn<big_endian>(p, bctr);
4591 }
4592 }
4593 }
4594 else
4595 {
4596 if (!this->plt_call_stubs_.empty())
4597 {
4598 // The base address of the .plt section.
4599 Address plt_base = this->targ_->plt_section()->address();
4600 Address iplt_base = invalid_address;
4601 // The address of _GLOBAL_OFFSET_TABLE_.
4602 Address g_o_t = invalid_address;
4603
4604 // Write out plt call stubs.
4605 typename Plt_stub_entries::const_iterator cs;
4606 for (cs = this->plt_call_stubs_.begin();
4607 cs != this->plt_call_stubs_.end();
4608 ++cs)
4609 {
4610 bool is_iplt;
4611 Address plt_addr = this->plt_off(cs, &is_iplt);
4612 if (is_iplt)
4613 {
4614 if (iplt_base == invalid_address)
4615 iplt_base = this->targ_->iplt_section()->address();
4616 plt_addr += iplt_base;
4617 }
4618 else
4619 plt_addr += plt_base;
4620
4621 p = oview + cs->second;
4622 if (parameters->options().output_is_position_independent())
4623 {
4624 Address got_addr;
4625 const Powerpc_relobj<size, big_endian>* ppcobj
4626 = (static_cast<const Powerpc_relobj<size, big_endian>*>
4627 (cs->first.object_));
4628 if (ppcobj != NULL && cs->first.addend_ >= 32768)
4629 {
4630 unsigned int got2 = ppcobj->got2_shndx();
4631 got_addr = ppcobj->get_output_section_offset(got2);
4632 gold_assert(got_addr != invalid_address);
4633 got_addr += (ppcobj->output_section(got2)->address()
4634 + cs->first.addend_);
4635 }
4636 else
4637 {
4638 if (g_o_t == invalid_address)
4639 {
4640 const Output_data_got_powerpc<size, big_endian>* got
4641 = this->targ_->got_section();
4642 g_o_t = got->address() + got->g_o_t();
4643 }
4644 got_addr = g_o_t;
4645 }
4646
4647 Address off = plt_addr - got_addr;
4648 if (ha(off) == 0)
4649 {
4650 write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
4651 write_insn<big_endian>(p + 4, mtctr_11);
4652 write_insn<big_endian>(p + 8, bctr);
4653 }
4654 else
4655 {
4656 write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
4657 write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
4658 write_insn<big_endian>(p + 8, mtctr_11);
4659 write_insn<big_endian>(p + 12, bctr);
4660 }
4661 }
4662 else
4663 {
4664 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
4665 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
4666 write_insn<big_endian>(p + 8, mtctr_11);
4667 write_insn<big_endian>(p + 12, bctr);
4668 }
4669 }
4670 }
4671
4672 // Write out long branch stubs.
4673 typename Branch_stub_entries::const_iterator bs;
4674 for (bs = this->long_branch_stubs_.begin();
4675 bs != this->long_branch_stubs_.end();
4676 ++bs)
4677 {
4678 if (bs->first.save_res_)
4679 continue;
4680 p = oview + this->plt_size_ + bs->second;
4681 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4682 Address delta = bs->first.dest_ - loc;
4683 if (delta + (1 << 25) < 2 << 25)
4684 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4685 else if (!parameters->options().output_is_position_independent())
4686 {
4687 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
4688 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
4689 write_insn<big_endian>(p + 8, mtctr_12);
4690 write_insn<big_endian>(p + 12, bctr);
4691 }
4692 else
4693 {
4694 delta -= 8;
4695 write_insn<big_endian>(p + 0, mflr_0);
4696 write_insn<big_endian>(p + 4, bcl_20_31);
4697 write_insn<big_endian>(p + 8, mflr_12);
4698 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4699 write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4700 write_insn<big_endian>(p + 20, mtlr_0);
4701 write_insn<big_endian>(p + 24, mtctr_12);
4702 write_insn<big_endian>(p + 28, bctr);
4703 }
4704 }
4705 }
4706 if (this->need_save_res_)
4707 {
4708 p = oview + this->plt_size_ + this->branch_size_;
4709 memcpy (p, this->targ_->savres_section()->contents(),
4710 this->targ_->savres_section()->data_size());
4711 }
4712 }
4713
4714 // Write out .glink.
4715
4716 template<int size, bool big_endian>
4717 void
4718 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4719 {
4720 const section_size_type off = this->offset();
4721 const section_size_type oview_size =
4722 convert_to_section_size_type(this->data_size());
4723 unsigned char* const oview = of->get_output_view(off, oview_size);
4724 unsigned char* p;
4725
4726 // The base address of the .plt section.
4727 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4728 Address plt_base = this->targ_->plt_section()->address();
4729
4730 if (size == 64)
4731 {
4732 if (this->end_branch_table_ != 0)
4733 {
4734 // Write pltresolve stub.
4735 p = oview;
4736 Address after_bcl = this->address() + 16;
4737 Address pltoff = plt_base - after_bcl;
4738
4739 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
4740
4741 if (this->targ_->abiversion() < 2)
4742 {
4743 write_insn<big_endian>(p, mflr_12), p += 4;
4744 write_insn<big_endian>(p, bcl_20_31), p += 4;
4745 write_insn<big_endian>(p, mflr_11), p += 4;
4746 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4747 write_insn<big_endian>(p, mtlr_12), p += 4;
4748 write_insn<big_endian>(p, add_11_2_11), p += 4;
4749 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4750 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
4751 write_insn<big_endian>(p, mtctr_12), p += 4;
4752 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
4753 }
4754 else
4755 {
4756 write_insn<big_endian>(p, mflr_0), p += 4;
4757 write_insn<big_endian>(p, bcl_20_31), p += 4;
4758 write_insn<big_endian>(p, mflr_11), p += 4;
4759 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4760 write_insn<big_endian>(p, mtlr_0), p += 4;
4761 write_insn<big_endian>(p, sub_12_12_11), p += 4;
4762 write_insn<big_endian>(p, add_11_2_11), p += 4;
4763 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
4764 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4765 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
4766 write_insn<big_endian>(p, mtctr_12), p += 4;
4767 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
4768 }
4769 write_insn<big_endian>(p, bctr), p += 4;
4770 while (p < oview + this->pltresolve_size)
4771 write_insn<big_endian>(p, nop), p += 4;
4772
4773 // Write lazy link call stubs.
4774 uint32_t indx = 0;
4775 while (p < oview + this->end_branch_table_)
4776 {
4777 if (this->targ_->abiversion() < 2)
4778 {
4779 if (indx < 0x8000)
4780 {
4781 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
4782 }
4783 else
4784 {
4785 write_insn<big_endian>(p, lis_0 + hi(indx)), p += 4;
4786 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
4787 }
4788 }
4789 uint32_t branch_off = 8 - (p - oview);
4790 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
4791 indx++;
4792 }
4793 }
4794
4795 Address plt_base = this->targ_->plt_section()->address();
4796 Address iplt_base = invalid_address;
4797 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4798 Address global_entry_base = this->address() + global_entry_off;
4799 typename Global_entry_stub_entries::const_iterator ge;
4800 for (ge = this->global_entry_stubs_.begin();
4801 ge != this->global_entry_stubs_.end();
4802 ++ge)
4803 {
4804 p = oview + global_entry_off + ge->second;
4805 Address plt_addr = ge->first->plt_offset();
4806 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4807 && ge->first->can_use_relative_reloc(false))
4808 {
4809 if (iplt_base == invalid_address)
4810 iplt_base = this->targ_->iplt_section()->address();
4811 plt_addr += iplt_base;
4812 }
4813 else
4814 plt_addr += plt_base;
4815 Address my_addr = global_entry_base + ge->second;
4816 Address off = plt_addr - my_addr;
4817
4818 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4819 gold_error(_("%s: linkage table error against `%s'"),
4820 ge->first->object()->name().c_str(),
4821 ge->first->demangled_name().c_str());
4822
4823 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
4824 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
4825 write_insn<big_endian>(p, mtctr_12), p += 4;
4826 write_insn<big_endian>(p, bctr);
4827 }
4828 }
4829 else
4830 {
4831 const Output_data_got_powerpc<size, big_endian>* got
4832 = this->targ_->got_section();
4833 // The address of _GLOBAL_OFFSET_TABLE_.
4834 Address g_o_t = got->address() + got->g_o_t();
4835
4836 // Write out pltresolve branch table.
4837 p = oview;
4838 unsigned int the_end = oview_size - this->pltresolve_size;
4839 unsigned char* end_p = oview + the_end;
4840 while (p < end_p - 8 * 4)
4841 write_insn<big_endian>(p, b + end_p - p), p += 4;
4842 while (p < end_p)
4843 write_insn<big_endian>(p, nop), p += 4;
4844
4845 // Write out pltresolve call stub.
4846 if (parameters->options().output_is_position_independent())
4847 {
4848 Address res0_off = 0;
4849 Address after_bcl_off = the_end + 12;
4850 Address bcl_res0 = after_bcl_off - res0_off;
4851
4852 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
4853 write_insn<big_endian>(p + 4, mflr_0);
4854 write_insn<big_endian>(p + 8, bcl_20_31);
4855 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4856 write_insn<big_endian>(p + 16, mflr_12);
4857 write_insn<big_endian>(p + 20, mtlr_0);
4858 write_insn<big_endian>(p + 24, sub_11_11_12);
4859
4860 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4861
4862 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4863 if (ha(got_bcl) == ha(got_bcl + 4))
4864 {
4865 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4866 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4867 }
4868 else
4869 {
4870 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4871 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4872 }
4873 write_insn<big_endian>(p + 40, mtctr_0);
4874 write_insn<big_endian>(p + 44, add_0_11_11);
4875 write_insn<big_endian>(p + 48, add_11_0_11);
4876 write_insn<big_endian>(p + 52, bctr);
4877 write_insn<big_endian>(p + 56, nop);
4878 write_insn<big_endian>(p + 60, nop);
4879 }
4880 else
4881 {
4882 Address res0 = this->address();
4883
4884 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4885 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4886 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4887 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4888 else
4889 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4890 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4891 write_insn<big_endian>(p + 16, mtctr_0);
4892 write_insn<big_endian>(p + 20, add_0_11_11);
4893 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4894 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4895 else
4896 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4897 write_insn<big_endian>(p + 28, add_11_0_11);
4898 write_insn<big_endian>(p + 32, bctr);
4899 write_insn<big_endian>(p + 36, nop);
4900 write_insn<big_endian>(p + 40, nop);
4901 write_insn<big_endian>(p + 44, nop);
4902 write_insn<big_endian>(p + 48, nop);
4903 write_insn<big_endian>(p + 52, nop);
4904 write_insn<big_endian>(p + 56, nop);
4905 write_insn<big_endian>(p + 60, nop);
4906 }
4907 p += 64;
4908 }
4909
4910 of->write_output_view(off, oview_size, oview);
4911 }
4912
4913
4914 // A class to handle linker generated save/restore functions.
4915
4916 template<int size, bool big_endian>
4917 class Output_data_save_res : public Output_section_data_build
4918 {
4919 public:
4920 Output_data_save_res(Symbol_table* symtab);
4921
4922 const unsigned char*
4923 contents() const
4924 {
4925 return contents_;
4926 }
4927
4928 protected:
4929 // Write to a map file.
4930 void
4931 do_print_to_mapfile(Mapfile* mapfile) const
4932 { mapfile->print_output_data(this, _("** save/restore")); }
4933
4934 void
4935 do_write(Output_file*);
4936
4937 private:
4938 // The maximum size of save/restore contents.
4939 static const unsigned int savres_max = 218*4;
4940
4941 void
4942 savres_define(Symbol_table* symtab,
4943 const char *name,
4944 unsigned int lo, unsigned int hi,
4945 unsigned char* write_ent(unsigned char*, int),
4946 unsigned char* write_tail(unsigned char*, int));
4947
4948 unsigned char *contents_;
4949 };
4950
4951 template<bool big_endian>
4952 static unsigned char*
4953 savegpr0(unsigned char* p, int r)
4954 {
4955 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4956 write_insn<big_endian>(p, insn);
4957 return p + 4;
4958 }
4959
4960 template<bool big_endian>
4961 static unsigned char*
4962 savegpr0_tail(unsigned char* p, int r)
4963 {
4964 p = savegpr0<big_endian>(p, r);
4965 uint32_t insn = std_0_1 + 16;
4966 write_insn<big_endian>(p, insn);
4967 p = p + 4;
4968 write_insn<big_endian>(p, blr);
4969 return p + 4;
4970 }
4971
4972 template<bool big_endian>
4973 static unsigned char*
4974 restgpr0(unsigned char* p, int r)
4975 {
4976 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4977 write_insn<big_endian>(p, insn);
4978 return p + 4;
4979 }
4980
4981 template<bool big_endian>
4982 static unsigned char*
4983 restgpr0_tail(unsigned char* p, int r)
4984 {
4985 uint32_t insn = ld_0_1 + 16;
4986 write_insn<big_endian>(p, insn);
4987 p = p + 4;
4988 p = restgpr0<big_endian>(p, r);
4989 write_insn<big_endian>(p, mtlr_0);
4990 p = p + 4;
4991 if (r == 29)
4992 {
4993 p = restgpr0<big_endian>(p, 30);
4994 p = restgpr0<big_endian>(p, 31);
4995 }
4996 write_insn<big_endian>(p, blr);
4997 return p + 4;
4998 }
4999
5000 template<bool big_endian>
5001 static unsigned char*
5002 savegpr1(unsigned char* p, int r)
5003 {
5004 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5005 write_insn<big_endian>(p, insn);
5006 return p + 4;
5007 }
5008
5009 template<bool big_endian>
5010 static unsigned char*
5011 savegpr1_tail(unsigned char* p, int r)
5012 {
5013 p = savegpr1<big_endian>(p, r);
5014 write_insn<big_endian>(p, blr);
5015 return p + 4;
5016 }
5017
5018 template<bool big_endian>
5019 static unsigned char*
5020 restgpr1(unsigned char* p, int r)
5021 {
5022 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5023 write_insn<big_endian>(p, insn);
5024 return p + 4;
5025 }
5026
5027 template<bool big_endian>
5028 static unsigned char*
5029 restgpr1_tail(unsigned char* p, int r)
5030 {
5031 p = restgpr1<big_endian>(p, r);
5032 write_insn<big_endian>(p, blr);
5033 return p + 4;
5034 }
5035
5036 template<bool big_endian>
5037 static unsigned char*
5038 savefpr(unsigned char* p, int r)
5039 {
5040 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5041 write_insn<big_endian>(p, insn);
5042 return p + 4;
5043 }
5044
5045 template<bool big_endian>
5046 static unsigned char*
5047 savefpr0_tail(unsigned char* p, int r)
5048 {
5049 p = savefpr<big_endian>(p, r);
5050 write_insn<big_endian>(p, std_0_1 + 16);
5051 p = p + 4;
5052 write_insn<big_endian>(p, blr);
5053 return p + 4;
5054 }
5055
5056 template<bool big_endian>
5057 static unsigned char*
5058 restfpr(unsigned char* p, int r)
5059 {
5060 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5061 write_insn<big_endian>(p, insn);
5062 return p + 4;
5063 }
5064
5065 template<bool big_endian>
5066 static unsigned char*
5067 restfpr0_tail(unsigned char* p, int r)
5068 {
5069 write_insn<big_endian>(p, ld_0_1 + 16);
5070 p = p + 4;
5071 p = restfpr<big_endian>(p, r);
5072 write_insn<big_endian>(p, mtlr_0);
5073 p = p + 4;
5074 if (r == 29)
5075 {
5076 p = restfpr<big_endian>(p, 30);
5077 p = restfpr<big_endian>(p, 31);
5078 }
5079 write_insn<big_endian>(p, blr);
5080 return p + 4;
5081 }
5082
5083 template<bool big_endian>
5084 static unsigned char*
5085 savefpr1_tail(unsigned char* p, int r)
5086 {
5087 p = savefpr<big_endian>(p, r);
5088 write_insn<big_endian>(p, blr);
5089 return p + 4;
5090 }
5091
5092 template<bool big_endian>
5093 static unsigned char*
5094 restfpr1_tail(unsigned char* p, int r)
5095 {
5096 p = restfpr<big_endian>(p, r);
5097 write_insn<big_endian>(p, blr);
5098 return p + 4;
5099 }
5100
5101 template<bool big_endian>
5102 static unsigned char*
5103 savevr(unsigned char* p, int r)
5104 {
5105 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5106 write_insn<big_endian>(p, insn);
5107 p = p + 4;
5108 insn = stvx_0_12_0 + (r << 21);
5109 write_insn<big_endian>(p, insn);
5110 return p + 4;
5111 }
5112
5113 template<bool big_endian>
5114 static unsigned char*
5115 savevr_tail(unsigned char* p, int r)
5116 {
5117 p = savevr<big_endian>(p, r);
5118 write_insn<big_endian>(p, blr);
5119 return p + 4;
5120 }
5121
5122 template<bool big_endian>
5123 static unsigned char*
5124 restvr(unsigned char* p, int r)
5125 {
5126 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5127 write_insn<big_endian>(p, insn);
5128 p = p + 4;
5129 insn = lvx_0_12_0 + (r << 21);
5130 write_insn<big_endian>(p, insn);
5131 return p + 4;
5132 }
5133
5134 template<bool big_endian>
5135 static unsigned char*
5136 restvr_tail(unsigned char* p, int r)
5137 {
5138 p = restvr<big_endian>(p, r);
5139 write_insn<big_endian>(p, blr);
5140 return p + 4;
5141 }
5142
5143
5144 template<int size, bool big_endian>
5145 Output_data_save_res<size, big_endian>::Output_data_save_res(
5146 Symbol_table* symtab)
5147 : Output_section_data_build(4),
5148 contents_(NULL)
5149 {
5150 this->savres_define(symtab,
5151 "_savegpr0_", 14, 31,
5152 savegpr0<big_endian>, savegpr0_tail<big_endian>);
5153 this->savres_define(symtab,
5154 "_restgpr0_", 14, 29,
5155 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5156 this->savres_define(symtab,
5157 "_restgpr0_", 30, 31,
5158 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5159 this->savres_define(symtab,
5160 "_savegpr1_", 14, 31,
5161 savegpr1<big_endian>, savegpr1_tail<big_endian>);
5162 this->savres_define(symtab,
5163 "_restgpr1_", 14, 31,
5164 restgpr1<big_endian>, restgpr1_tail<big_endian>);
5165 this->savres_define(symtab,
5166 "_savefpr_", 14, 31,
5167 savefpr<big_endian>, savefpr0_tail<big_endian>);
5168 this->savres_define(symtab,
5169 "_restfpr_", 14, 29,
5170 restfpr<big_endian>, restfpr0_tail<big_endian>);
5171 this->savres_define(symtab,
5172 "_restfpr_", 30, 31,
5173 restfpr<big_endian>, restfpr0_tail<big_endian>);
5174 this->savres_define(symtab,
5175 "._savef", 14, 31,
5176 savefpr<big_endian>, savefpr1_tail<big_endian>);
5177 this->savres_define(symtab,
5178 "._restf", 14, 31,
5179 restfpr<big_endian>, restfpr1_tail<big_endian>);
5180 this->savres_define(symtab,
5181 "_savevr_", 20, 31,
5182 savevr<big_endian>, savevr_tail<big_endian>);
5183 this->savres_define(symtab,
5184 "_restvr_", 20, 31,
5185 restvr<big_endian>, restvr_tail<big_endian>);
5186 }
5187
5188 template<int size, bool big_endian>
5189 void
5190 Output_data_save_res<size, big_endian>::savres_define(
5191 Symbol_table* symtab,
5192 const char *name,
5193 unsigned int lo, unsigned int hi,
5194 unsigned char* write_ent(unsigned char*, int),
5195 unsigned char* write_tail(unsigned char*, int))
5196 {
5197 size_t len = strlen(name);
5198 bool writing = false;
5199 char sym[16];
5200
5201 memcpy(sym, name, len);
5202 sym[len + 2] = 0;
5203
5204 for (unsigned int i = lo; i <= hi; i++)
5205 {
5206 sym[len + 0] = i / 10 + '0';
5207 sym[len + 1] = i % 10 + '0';
5208 Symbol* gsym = symtab->lookup(sym);
5209 bool refd = gsym != NULL && gsym->is_undefined();
5210 writing = writing || refd;
5211 if (writing)
5212 {
5213 if (this->contents_ == NULL)
5214 this->contents_ = new unsigned char[this->savres_max];
5215
5216 section_size_type value = this->current_data_size();
5217 unsigned char* p = this->contents_ + value;
5218 if (i != hi)
5219 p = write_ent(p, i);
5220 else
5221 p = write_tail(p, i);
5222 section_size_type cur_size = p - this->contents_;
5223 this->set_current_data_size(cur_size);
5224 if (refd)
5225 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5226 this, value, cur_size - value,
5227 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5228 elfcpp::STV_HIDDEN, 0, false, false);
5229 }
5230 }
5231 }
5232
5233 // Write out save/restore.
5234
5235 template<int size, bool big_endian>
5236 void
5237 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5238 {
5239 const section_size_type off = this->offset();
5240 const section_size_type oview_size =
5241 convert_to_section_size_type(this->data_size());
5242 unsigned char* const oview = of->get_output_view(off, oview_size);
5243 memcpy(oview, this->contents_, oview_size);
5244 of->write_output_view(off, oview_size, oview);
5245 }
5246
5247
5248 // Create the glink section.
5249
5250 template<int size, bool big_endian>
5251 void
5252 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5253 {
5254 if (this->glink_ == NULL)
5255 {
5256 this->glink_ = new Output_data_glink<size, big_endian>(this);
5257 this->glink_->add_eh_frame(layout);
5258 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5259 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5260 this->glink_, ORDER_TEXT, false);
5261 }
5262 }
5263
5264 // Create a PLT entry for a global symbol.
5265
5266 template<int size, bool big_endian>
5267 void
5268 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5269 Layout* layout,
5270 Symbol* gsym)
5271 {
5272 if (gsym->type() == elfcpp::STT_GNU_IFUNC
5273 && gsym->can_use_relative_reloc(false))
5274 {
5275 if (this->iplt_ == NULL)
5276 this->make_iplt_section(symtab, layout);
5277 this->iplt_->add_ifunc_entry(gsym);
5278 }
5279 else
5280 {
5281 if (this->plt_ == NULL)
5282 this->make_plt_section(symtab, layout);
5283 this->plt_->add_entry(gsym);
5284 }
5285 }
5286
5287 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5288
5289 template<int size, bool big_endian>
5290 void
5291 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5292 Symbol_table* symtab,
5293 Layout* layout,
5294 Sized_relobj_file<size, big_endian>* relobj,
5295 unsigned int r_sym)
5296 {
5297 if (this->iplt_ == NULL)
5298 this->make_iplt_section(symtab, layout);
5299 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5300 }
5301
5302 // Return the number of entries in the PLT.
5303
5304 template<int size, bool big_endian>
5305 unsigned int
5306 Target_powerpc<size, big_endian>::plt_entry_count() const
5307 {
5308 if (this->plt_ == NULL)
5309 return 0;
5310 return this->plt_->entry_count();
5311 }
5312
5313 // Create a GOT entry for local dynamic __tls_get_addr calls.
5314
5315 template<int size, bool big_endian>
5316 unsigned int
5317 Target_powerpc<size, big_endian>::tlsld_got_offset(
5318 Symbol_table* symtab,
5319 Layout* layout,
5320 Sized_relobj_file<size, big_endian>* object)
5321 {
5322 if (this->tlsld_got_offset_ == -1U)
5323 {
5324 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5325 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5326 Output_data_got_powerpc<size, big_endian>* got
5327 = this->got_section(symtab, layout);
5328 unsigned int got_offset = got->add_constant_pair(0, 0);
5329 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5330 got_offset, 0);
5331 this->tlsld_got_offset_ = got_offset;
5332 }
5333 return this->tlsld_got_offset_;
5334 }
5335
5336 // Get the Reference_flags for a particular relocation.
5337
5338 template<int size, bool big_endian>
5339 int
5340 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5341 unsigned int r_type,
5342 const Target_powerpc* target)
5343 {
5344 int ref = 0;
5345
5346 switch (r_type)
5347 {
5348 case elfcpp::R_POWERPC_NONE:
5349 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5350 case elfcpp::R_POWERPC_GNU_VTENTRY:
5351 case elfcpp::R_PPC64_TOC:
5352 // No symbol reference.
5353 break;
5354
5355 case elfcpp::R_PPC64_ADDR64:
5356 case elfcpp::R_PPC64_UADDR64:
5357 case elfcpp::R_POWERPC_ADDR32:
5358 case elfcpp::R_POWERPC_UADDR32:
5359 case elfcpp::R_POWERPC_ADDR16:
5360 case elfcpp::R_POWERPC_UADDR16:
5361 case elfcpp::R_POWERPC_ADDR16_LO:
5362 case elfcpp::R_POWERPC_ADDR16_HI:
5363 case elfcpp::R_POWERPC_ADDR16_HA:
5364 ref = Symbol::ABSOLUTE_REF;
5365 break;
5366
5367 case elfcpp::R_POWERPC_ADDR24:
5368 case elfcpp::R_POWERPC_ADDR14:
5369 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5370 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5371 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5372 break;
5373
5374 case elfcpp::R_PPC64_REL64:
5375 case elfcpp::R_POWERPC_REL32:
5376 case elfcpp::R_PPC_LOCAL24PC:
5377 case elfcpp::R_POWERPC_REL16:
5378 case elfcpp::R_POWERPC_REL16_LO:
5379 case elfcpp::R_POWERPC_REL16_HI:
5380 case elfcpp::R_POWERPC_REL16_HA:
5381 ref = Symbol::RELATIVE_REF;
5382 break;
5383
5384 case elfcpp::R_POWERPC_REL24:
5385 case elfcpp::R_PPC_PLTREL24:
5386 case elfcpp::R_POWERPC_REL14:
5387 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5388 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5389 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5390 break;
5391
5392 case elfcpp::R_POWERPC_GOT16:
5393 case elfcpp::R_POWERPC_GOT16_LO:
5394 case elfcpp::R_POWERPC_GOT16_HI:
5395 case elfcpp::R_POWERPC_GOT16_HA:
5396 case elfcpp::R_PPC64_GOT16_DS:
5397 case elfcpp::R_PPC64_GOT16_LO_DS:
5398 case elfcpp::R_PPC64_TOC16:
5399 case elfcpp::R_PPC64_TOC16_LO:
5400 case elfcpp::R_PPC64_TOC16_HI:
5401 case elfcpp::R_PPC64_TOC16_HA:
5402 case elfcpp::R_PPC64_TOC16_DS:
5403 case elfcpp::R_PPC64_TOC16_LO_DS:
5404 ref = Symbol::RELATIVE_REF;
5405 break;
5406
5407 case elfcpp::R_POWERPC_GOT_TPREL16:
5408 case elfcpp::R_POWERPC_TLS:
5409 ref = Symbol::TLS_REF;
5410 break;
5411
5412 case elfcpp::R_POWERPC_COPY:
5413 case elfcpp::R_POWERPC_GLOB_DAT:
5414 case elfcpp::R_POWERPC_JMP_SLOT:
5415 case elfcpp::R_POWERPC_RELATIVE:
5416 case elfcpp::R_POWERPC_DTPMOD:
5417 default:
5418 // Not expected. We will give an error later.
5419 break;
5420 }
5421
5422 if (size == 64 && target->abiversion() < 2)
5423 ref |= Symbol::FUNC_DESC_ABI;
5424 return ref;
5425 }
5426
5427 // Report an unsupported relocation against a local symbol.
5428
5429 template<int size, bool big_endian>
5430 void
5431 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5432 Sized_relobj_file<size, big_endian>* object,
5433 unsigned int r_type)
5434 {
5435 gold_error(_("%s: unsupported reloc %u against local symbol"),
5436 object->name().c_str(), r_type);
5437 }
5438
5439 // We are about to emit a dynamic relocation of type R_TYPE. If the
5440 // dynamic linker does not support it, issue an error.
5441
5442 template<int size, bool big_endian>
5443 void
5444 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5445 unsigned int r_type)
5446 {
5447 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5448
5449 // These are the relocation types supported by glibc for both 32-bit
5450 // and 64-bit powerpc.
5451 switch (r_type)
5452 {
5453 case elfcpp::R_POWERPC_NONE:
5454 case elfcpp::R_POWERPC_RELATIVE:
5455 case elfcpp::R_POWERPC_GLOB_DAT:
5456 case elfcpp::R_POWERPC_DTPMOD:
5457 case elfcpp::R_POWERPC_DTPREL:
5458 case elfcpp::R_POWERPC_TPREL:
5459 case elfcpp::R_POWERPC_JMP_SLOT:
5460 case elfcpp::R_POWERPC_COPY:
5461 case elfcpp::R_POWERPC_IRELATIVE:
5462 case elfcpp::R_POWERPC_ADDR32:
5463 case elfcpp::R_POWERPC_UADDR32:
5464 case elfcpp::R_POWERPC_ADDR24:
5465 case elfcpp::R_POWERPC_ADDR16:
5466 case elfcpp::R_POWERPC_UADDR16:
5467 case elfcpp::R_POWERPC_ADDR16_LO:
5468 case elfcpp::R_POWERPC_ADDR16_HI:
5469 case elfcpp::R_POWERPC_ADDR16_HA:
5470 case elfcpp::R_POWERPC_ADDR14:
5471 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5472 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5473 case elfcpp::R_POWERPC_REL32:
5474 case elfcpp::R_POWERPC_REL24:
5475 case elfcpp::R_POWERPC_TPREL16:
5476 case elfcpp::R_POWERPC_TPREL16_LO:
5477 case elfcpp::R_POWERPC_TPREL16_HI:
5478 case elfcpp::R_POWERPC_TPREL16_HA:
5479 return;
5480
5481 default:
5482 break;
5483 }
5484
5485 if (size == 64)
5486 {
5487 switch (r_type)
5488 {
5489 // These are the relocation types supported only on 64-bit.
5490 case elfcpp::R_PPC64_ADDR64:
5491 case elfcpp::R_PPC64_UADDR64:
5492 case elfcpp::R_PPC64_JMP_IREL:
5493 case elfcpp::R_PPC64_ADDR16_DS:
5494 case elfcpp::R_PPC64_ADDR16_LO_DS:
5495 case elfcpp::R_PPC64_ADDR16_HIGH:
5496 case elfcpp::R_PPC64_ADDR16_HIGHA:
5497 case elfcpp::R_PPC64_ADDR16_HIGHER:
5498 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5499 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5500 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5501 case elfcpp::R_PPC64_REL64:
5502 case elfcpp::R_POWERPC_ADDR30:
5503 case elfcpp::R_PPC64_TPREL16_DS:
5504 case elfcpp::R_PPC64_TPREL16_LO_DS:
5505 case elfcpp::R_PPC64_TPREL16_HIGH:
5506 case elfcpp::R_PPC64_TPREL16_HIGHA:
5507 case elfcpp::R_PPC64_TPREL16_HIGHER:
5508 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5509 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5510 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5511 return;
5512
5513 default:
5514 break;
5515 }
5516 }
5517 else
5518 {
5519 switch (r_type)
5520 {
5521 // These are the relocation types supported only on 32-bit.
5522 // ??? glibc ld.so doesn't need to support these.
5523 case elfcpp::R_POWERPC_DTPREL16:
5524 case elfcpp::R_POWERPC_DTPREL16_LO:
5525 case elfcpp::R_POWERPC_DTPREL16_HI:
5526 case elfcpp::R_POWERPC_DTPREL16_HA:
5527 return;
5528
5529 default:
5530 break;
5531 }
5532 }
5533
5534 // This prevents us from issuing more than one error per reloc
5535 // section. But we can still wind up issuing more than one
5536 // error per object file.
5537 if (this->issued_non_pic_error_)
5538 return;
5539 gold_assert(parameters->options().output_is_position_independent());
5540 object->error(_("requires unsupported dynamic reloc; "
5541 "recompile with -fPIC"));
5542 this->issued_non_pic_error_ = true;
5543 return;
5544 }
5545
5546 // Return whether we need to make a PLT entry for a relocation of the
5547 // given type against a STT_GNU_IFUNC symbol.
5548
5549 template<int size, bool big_endian>
5550 bool
5551 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5552 Target_powerpc<size, big_endian>* target,
5553 Sized_relobj_file<size, big_endian>* object,
5554 unsigned int r_type,
5555 bool report_err)
5556 {
5557 // In non-pic code any reference will resolve to the plt call stub
5558 // for the ifunc symbol.
5559 if ((size == 32 || target->abiversion() >= 2)
5560 && !parameters->options().output_is_position_independent())
5561 return true;
5562
5563 switch (r_type)
5564 {
5565 // Word size refs from data sections are OK, but don't need a PLT entry.
5566 case elfcpp::R_POWERPC_ADDR32:
5567 case elfcpp::R_POWERPC_UADDR32:
5568 if (size == 32)
5569 return false;
5570 break;
5571
5572 case elfcpp::R_PPC64_ADDR64:
5573 case elfcpp::R_PPC64_UADDR64:
5574 if (size == 64)
5575 return false;
5576 break;
5577
5578 // GOT refs are good, but also don't need a PLT entry.
5579 case elfcpp::R_POWERPC_GOT16:
5580 case elfcpp::R_POWERPC_GOT16_LO:
5581 case elfcpp::R_POWERPC_GOT16_HI:
5582 case elfcpp::R_POWERPC_GOT16_HA:
5583 case elfcpp::R_PPC64_GOT16_DS:
5584 case elfcpp::R_PPC64_GOT16_LO_DS:
5585 return false;
5586
5587 // Function calls are good, and these do need a PLT entry.
5588 case elfcpp::R_POWERPC_ADDR24:
5589 case elfcpp::R_POWERPC_ADDR14:
5590 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5591 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5592 case elfcpp::R_POWERPC_REL24:
5593 case elfcpp::R_PPC_PLTREL24:
5594 case elfcpp::R_POWERPC_REL14:
5595 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5596 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5597 return true;
5598
5599 default:
5600 break;
5601 }
5602
5603 // Anything else is a problem.
5604 // If we are building a static executable, the libc startup function
5605 // responsible for applying indirect function relocations is going
5606 // to complain about the reloc type.
5607 // If we are building a dynamic executable, we will have a text
5608 // relocation. The dynamic loader will set the text segment
5609 // writable and non-executable to apply text relocations. So we'll
5610 // segfault when trying to run the indirection function to resolve
5611 // the reloc.
5612 if (report_err)
5613 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5614 object->name().c_str(), r_type);
5615 return false;
5616 }
5617
5618 // Scan a relocation for a local symbol.
5619
5620 template<int size, bool big_endian>
5621 inline void
5622 Target_powerpc<size, big_endian>::Scan::local(
5623 Symbol_table* symtab,
5624 Layout* layout,
5625 Target_powerpc<size, big_endian>* target,
5626 Sized_relobj_file<size, big_endian>* object,
5627 unsigned int data_shndx,
5628 Output_section* output_section,
5629 const elfcpp::Rela<size, big_endian>& reloc,
5630 unsigned int r_type,
5631 const elfcpp::Sym<size, big_endian>& lsym,
5632 bool is_discarded)
5633 {
5634 this->maybe_skip_tls_get_addr_call(r_type, NULL);
5635
5636 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5637 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5638 {
5639 this->expect_tls_get_addr_call();
5640 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5641 if (tls_type != tls::TLSOPT_NONE)
5642 this->skip_next_tls_get_addr_call();
5643 }
5644 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5645 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5646 {
5647 this->expect_tls_get_addr_call();
5648 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5649 if (tls_type != tls::TLSOPT_NONE)
5650 this->skip_next_tls_get_addr_call();
5651 }
5652
5653 Powerpc_relobj<size, big_endian>* ppc_object
5654 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5655
5656 if (is_discarded)
5657 {
5658 if (size == 64
5659 && data_shndx == ppc_object->opd_shndx()
5660 && r_type == elfcpp::R_PPC64_ADDR64)
5661 ppc_object->set_opd_discard(reloc.get_r_offset());
5662 return;
5663 }
5664
5665 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5666 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5667 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5668 {
5669 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5670 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5671 r_type, r_sym, reloc.get_r_addend());
5672 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5673 }
5674
5675 switch (r_type)
5676 {
5677 case elfcpp::R_POWERPC_NONE:
5678 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5679 case elfcpp::R_POWERPC_GNU_VTENTRY:
5680 case elfcpp::R_PPC64_TOCSAVE:
5681 case elfcpp::R_POWERPC_TLS:
5682 case elfcpp::R_PPC64_ENTRY:
5683 break;
5684
5685 case elfcpp::R_PPC64_TOC:
5686 {
5687 Output_data_got_powerpc<size, big_endian>* got
5688 = target->got_section(symtab, layout);
5689 if (parameters->options().output_is_position_independent())
5690 {
5691 Address off = reloc.get_r_offset();
5692 if (size == 64
5693 && target->abiversion() < 2
5694 && data_shndx == ppc_object->opd_shndx()
5695 && ppc_object->get_opd_discard(off - 8))
5696 break;
5697
5698 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5699 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5700 rela_dyn->add_output_section_relative(got->output_section(),
5701 elfcpp::R_POWERPC_RELATIVE,
5702 output_section,
5703 object, data_shndx, off,
5704 symobj->toc_base_offset());
5705 }
5706 }
5707 break;
5708
5709 case elfcpp::R_PPC64_ADDR64:
5710 case elfcpp::R_PPC64_UADDR64:
5711 case elfcpp::R_POWERPC_ADDR32:
5712 case elfcpp::R_POWERPC_UADDR32:
5713 case elfcpp::R_POWERPC_ADDR24:
5714 case elfcpp::R_POWERPC_ADDR16:
5715 case elfcpp::R_POWERPC_ADDR16_LO:
5716 case elfcpp::R_POWERPC_ADDR16_HI:
5717 case elfcpp::R_POWERPC_ADDR16_HA:
5718 case elfcpp::R_POWERPC_UADDR16:
5719 case elfcpp::R_PPC64_ADDR16_HIGH:
5720 case elfcpp::R_PPC64_ADDR16_HIGHA:
5721 case elfcpp::R_PPC64_ADDR16_HIGHER:
5722 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5723 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5724 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5725 case elfcpp::R_PPC64_ADDR16_DS:
5726 case elfcpp::R_PPC64_ADDR16_LO_DS:
5727 case elfcpp::R_POWERPC_ADDR14:
5728 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5729 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5730 // If building a shared library (or a position-independent
5731 // executable), we need to create a dynamic relocation for
5732 // this location.
5733 if (parameters->options().output_is_position_independent()
5734 || (size == 64 && is_ifunc && target->abiversion() < 2))
5735 {
5736 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5737 is_ifunc);
5738 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5739 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5740 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5741 {
5742 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5743 : elfcpp::R_POWERPC_RELATIVE);
5744 rela_dyn->add_local_relative(object, r_sym, dynrel,
5745 output_section, data_shndx,
5746 reloc.get_r_offset(),
5747 reloc.get_r_addend(), false);
5748 }
5749 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5750 {
5751 check_non_pic(object, r_type);
5752 rela_dyn->add_local(object, r_sym, r_type, output_section,
5753 data_shndx, reloc.get_r_offset(),
5754 reloc.get_r_addend());
5755 }
5756 else
5757 {
5758 gold_assert(lsym.get_st_value() == 0);
5759 unsigned int shndx = lsym.get_st_shndx();
5760 bool is_ordinary;
5761 shndx = object->adjust_sym_shndx(r_sym, shndx,
5762 &is_ordinary);
5763 if (!is_ordinary)
5764 object->error(_("section symbol %u has bad shndx %u"),
5765 r_sym, shndx);
5766 else
5767 rela_dyn->add_local_section(object, shndx, r_type,
5768 output_section, data_shndx,
5769 reloc.get_r_offset());
5770 }
5771 }
5772 break;
5773
5774 case elfcpp::R_POWERPC_REL24:
5775 case elfcpp::R_PPC_PLTREL24:
5776 case elfcpp::R_PPC_LOCAL24PC:
5777 case elfcpp::R_POWERPC_REL14:
5778 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5779 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5780 if (!is_ifunc)
5781 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5782 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5783 reloc.get_r_addend());
5784 break;
5785
5786 case elfcpp::R_PPC64_REL64:
5787 case elfcpp::R_POWERPC_REL32:
5788 case elfcpp::R_POWERPC_REL16:
5789 case elfcpp::R_POWERPC_REL16_LO:
5790 case elfcpp::R_POWERPC_REL16_HI:
5791 case elfcpp::R_POWERPC_REL16_HA:
5792 case elfcpp::R_POWERPC_REL16DX_HA:
5793 case elfcpp::R_POWERPC_SECTOFF:
5794 case elfcpp::R_POWERPC_SECTOFF_LO:
5795 case elfcpp::R_POWERPC_SECTOFF_HI:
5796 case elfcpp::R_POWERPC_SECTOFF_HA:
5797 case elfcpp::R_PPC64_SECTOFF_DS:
5798 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5799 case elfcpp::R_POWERPC_TPREL16:
5800 case elfcpp::R_POWERPC_TPREL16_LO:
5801 case elfcpp::R_POWERPC_TPREL16_HI:
5802 case elfcpp::R_POWERPC_TPREL16_HA:
5803 case elfcpp::R_PPC64_TPREL16_DS:
5804 case elfcpp::R_PPC64_TPREL16_LO_DS:
5805 case elfcpp::R_PPC64_TPREL16_HIGH:
5806 case elfcpp::R_PPC64_TPREL16_HIGHA:
5807 case elfcpp::R_PPC64_TPREL16_HIGHER:
5808 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5809 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5810 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5811 case elfcpp::R_POWERPC_DTPREL16:
5812 case elfcpp::R_POWERPC_DTPREL16_LO:
5813 case elfcpp::R_POWERPC_DTPREL16_HI:
5814 case elfcpp::R_POWERPC_DTPREL16_HA:
5815 case elfcpp::R_PPC64_DTPREL16_DS:
5816 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5817 case elfcpp::R_PPC64_DTPREL16_HIGH:
5818 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5819 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5820 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5821 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5822 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5823 case elfcpp::R_PPC64_TLSGD:
5824 case elfcpp::R_PPC64_TLSLD:
5825 case elfcpp::R_PPC64_ADDR64_LOCAL:
5826 break;
5827
5828 case elfcpp::R_POWERPC_GOT16:
5829 case elfcpp::R_POWERPC_GOT16_LO:
5830 case elfcpp::R_POWERPC_GOT16_HI:
5831 case elfcpp::R_POWERPC_GOT16_HA:
5832 case elfcpp::R_PPC64_GOT16_DS:
5833 case elfcpp::R_PPC64_GOT16_LO_DS:
5834 {
5835 // The symbol requires a GOT entry.
5836 Output_data_got_powerpc<size, big_endian>* got
5837 = target->got_section(symtab, layout);
5838 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5839
5840 if (!parameters->options().output_is_position_independent())
5841 {
5842 if (is_ifunc
5843 && (size == 32 || target->abiversion() >= 2))
5844 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5845 else
5846 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5847 }
5848 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5849 {
5850 // If we are generating a shared object or a pie, this
5851 // symbol's GOT entry will be set by a dynamic relocation.
5852 unsigned int off;
5853 off = got->add_constant(0);
5854 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5855
5856 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5857 is_ifunc);
5858 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5859 : elfcpp::R_POWERPC_RELATIVE);
5860 rela_dyn->add_local_relative(object, r_sym, dynrel,
5861 got, off, 0, false);
5862 }
5863 }
5864 break;
5865
5866 case elfcpp::R_PPC64_TOC16:
5867 case elfcpp::R_PPC64_TOC16_LO:
5868 case elfcpp::R_PPC64_TOC16_HI:
5869 case elfcpp::R_PPC64_TOC16_HA:
5870 case elfcpp::R_PPC64_TOC16_DS:
5871 case elfcpp::R_PPC64_TOC16_LO_DS:
5872 // We need a GOT section.
5873 target->got_section(symtab, layout);
5874 break;
5875
5876 case elfcpp::R_POWERPC_GOT_TLSGD16:
5877 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5878 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5879 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5880 {
5881 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5882 if (tls_type == tls::TLSOPT_NONE)
5883 {
5884 Output_data_got_powerpc<size, big_endian>* got
5885 = target->got_section(symtab, layout);
5886 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5887 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5888 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5889 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5890 }
5891 else if (tls_type == tls::TLSOPT_TO_LE)
5892 {
5893 // no GOT relocs needed for Local Exec.
5894 }
5895 else
5896 gold_unreachable();
5897 }
5898 break;
5899
5900 case elfcpp::R_POWERPC_GOT_TLSLD16:
5901 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5902 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5903 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5904 {
5905 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5906 if (tls_type == tls::TLSOPT_NONE)
5907 target->tlsld_got_offset(symtab, layout, object);
5908 else if (tls_type == tls::TLSOPT_TO_LE)
5909 {
5910 // no GOT relocs needed for Local Exec.
5911 if (parameters->options().emit_relocs())
5912 {
5913 Output_section* os = layout->tls_segment()->first_section();
5914 gold_assert(os != NULL);
5915 os->set_needs_symtab_index();
5916 }
5917 }
5918 else
5919 gold_unreachable();
5920 }
5921 break;
5922
5923 case elfcpp::R_POWERPC_GOT_DTPREL16:
5924 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5925 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5926 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5927 {
5928 Output_data_got_powerpc<size, big_endian>* got
5929 = target->got_section(symtab, layout);
5930 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5931 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5932 }
5933 break;
5934
5935 case elfcpp::R_POWERPC_GOT_TPREL16:
5936 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5937 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5938 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5939 {
5940 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5941 if (tls_type == tls::TLSOPT_NONE)
5942 {
5943 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5944 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5945 {
5946 Output_data_got_powerpc<size, big_endian>* got
5947 = target->got_section(symtab, layout);
5948 unsigned int off = got->add_constant(0);
5949 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5950
5951 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5952 rela_dyn->add_symbolless_local_addend(object, r_sym,
5953 elfcpp::R_POWERPC_TPREL,
5954 got, off, 0);
5955 }
5956 }
5957 else if (tls_type == tls::TLSOPT_TO_LE)
5958 {
5959 // no GOT relocs needed for Local Exec.
5960 }
5961 else
5962 gold_unreachable();
5963 }
5964 break;
5965
5966 default:
5967 unsupported_reloc_local(object, r_type);
5968 break;
5969 }
5970
5971 switch (r_type)
5972 {
5973 case elfcpp::R_POWERPC_GOT_TLSLD16:
5974 case elfcpp::R_POWERPC_GOT_TLSGD16:
5975 case elfcpp::R_POWERPC_GOT_TPREL16:
5976 case elfcpp::R_POWERPC_GOT_DTPREL16:
5977 case elfcpp::R_POWERPC_GOT16:
5978 case elfcpp::R_PPC64_GOT16_DS:
5979 case elfcpp::R_PPC64_TOC16:
5980 case elfcpp::R_PPC64_TOC16_DS:
5981 ppc_object->set_has_small_toc_reloc();
5982 default:
5983 break;
5984 }
5985 }
5986
5987 // Report an unsupported relocation against a global symbol.
5988
5989 template<int size, bool big_endian>
5990 void
5991 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5992 Sized_relobj_file<size, big_endian>* object,
5993 unsigned int r_type,
5994 Symbol* gsym)
5995 {
5996 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5997 object->name().c_str(), r_type, gsym->demangled_name().c_str());
5998 }
5999
6000 // Scan a relocation for a global symbol.
6001
6002 template<int size, bool big_endian>
6003 inline void
6004 Target_powerpc<size, big_endian>::Scan::global(
6005 Symbol_table* symtab,
6006 Layout* layout,
6007 Target_powerpc<size, big_endian>* target,
6008 Sized_relobj_file<size, big_endian>* object,
6009 unsigned int data_shndx,
6010 Output_section* output_section,
6011 const elfcpp::Rela<size, big_endian>& reloc,
6012 unsigned int r_type,
6013 Symbol* gsym)
6014 {
6015 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
6016 return;
6017
6018 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6019 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6020 {
6021 this->expect_tls_get_addr_call();
6022 const bool final = gsym->final_value_is_known();
6023 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6024 if (tls_type != tls::TLSOPT_NONE)
6025 this->skip_next_tls_get_addr_call();
6026 }
6027 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6028 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6029 {
6030 this->expect_tls_get_addr_call();
6031 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6032 if (tls_type != tls::TLSOPT_NONE)
6033 this->skip_next_tls_get_addr_call();
6034 }
6035
6036 Powerpc_relobj<size, big_endian>* ppc_object
6037 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6038
6039 // A STT_GNU_IFUNC symbol may require a PLT entry.
6040 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
6041 bool pushed_ifunc = false;
6042 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
6043 {
6044 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6045 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6046 reloc.get_r_addend());
6047 target->make_plt_entry(symtab, layout, gsym);
6048 pushed_ifunc = true;
6049 }
6050
6051 switch (r_type)
6052 {
6053 case elfcpp::R_POWERPC_NONE:
6054 case elfcpp::R_POWERPC_GNU_VTINHERIT:
6055 case elfcpp::R_POWERPC_GNU_VTENTRY:
6056 case elfcpp::R_PPC_LOCAL24PC:
6057 case elfcpp::R_POWERPC_TLS:
6058 case elfcpp::R_PPC64_ENTRY:
6059 break;
6060
6061 case elfcpp::R_PPC64_TOC:
6062 {
6063 Output_data_got_powerpc<size, big_endian>* got
6064 = target->got_section(symtab, layout);
6065 if (parameters->options().output_is_position_independent())
6066 {
6067 Address off = reloc.get_r_offset();
6068 if (size == 64
6069 && data_shndx == ppc_object->opd_shndx()
6070 && ppc_object->get_opd_discard(off - 8))
6071 break;
6072
6073 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6074 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6075 if (data_shndx != ppc_object->opd_shndx())
6076 symobj = static_cast
6077 <Powerpc_relobj<size, big_endian>*>(gsym->object());
6078 rela_dyn->add_output_section_relative(got->output_section(),
6079 elfcpp::R_POWERPC_RELATIVE,
6080 output_section,
6081 object, data_shndx, off,
6082 symobj->toc_base_offset());
6083 }
6084 }
6085 break;
6086
6087 case elfcpp::R_PPC64_ADDR64:
6088 if (size == 64
6089 && target->abiversion() < 2
6090 && data_shndx == ppc_object->opd_shndx()
6091 && (gsym->is_defined_in_discarded_section()
6092 || gsym->object() != object))
6093 {
6094 ppc_object->set_opd_discard(reloc.get_r_offset());
6095 break;
6096 }
6097 // Fall through.
6098 case elfcpp::R_PPC64_UADDR64:
6099 case elfcpp::R_POWERPC_ADDR32:
6100 case elfcpp::R_POWERPC_UADDR32:
6101 case elfcpp::R_POWERPC_ADDR24:
6102 case elfcpp::R_POWERPC_ADDR16:
6103 case elfcpp::R_POWERPC_ADDR16_LO:
6104 case elfcpp::R_POWERPC_ADDR16_HI:
6105 case elfcpp::R_POWERPC_ADDR16_HA:
6106 case elfcpp::R_POWERPC_UADDR16:
6107 case elfcpp::R_PPC64_ADDR16_HIGH:
6108 case elfcpp::R_PPC64_ADDR16_HIGHA:
6109 case elfcpp::R_PPC64_ADDR16_HIGHER:
6110 case elfcpp::R_PPC64_ADDR16_HIGHERA:
6111 case elfcpp::R_PPC64_ADDR16_HIGHEST:
6112 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6113 case elfcpp::R_PPC64_ADDR16_DS:
6114 case elfcpp::R_PPC64_ADDR16_LO_DS:
6115 case elfcpp::R_POWERPC_ADDR14:
6116 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6117 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6118 {
6119 // Make a PLT entry if necessary.
6120 if (gsym->needs_plt_entry())
6121 {
6122 // Since this is not a PC-relative relocation, we may be
6123 // taking the address of a function. In that case we need to
6124 // set the entry in the dynamic symbol table to the address of
6125 // the PLT call stub.
6126 bool need_ifunc_plt = false;
6127 if ((size == 32 || target->abiversion() >= 2)
6128 && gsym->is_from_dynobj()
6129 && !parameters->options().output_is_position_independent())
6130 {
6131 gsym->set_needs_dynsym_value();
6132 need_ifunc_plt = true;
6133 }
6134 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
6135 {
6136 target->push_branch(ppc_object, data_shndx,
6137 reloc.get_r_offset(), r_type,
6138 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6139 reloc.get_r_addend());
6140 target->make_plt_entry(symtab, layout, gsym);
6141 }
6142 }
6143 // Make a dynamic relocation if necessary.
6144 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
6145 || (size == 64 && is_ifunc && target->abiversion() < 2))
6146 {
6147 if (!parameters->options().output_is_position_independent()
6148 && gsym->may_need_copy_reloc())
6149 {
6150 target->copy_reloc(symtab, layout, object,
6151 data_shndx, output_section, gsym, reloc);
6152 }
6153 else if ((((size == 32
6154 && r_type == elfcpp::R_POWERPC_ADDR32)
6155 || (size == 64
6156 && r_type == elfcpp::R_PPC64_ADDR64
6157 && target->abiversion() >= 2))
6158 && gsym->can_use_relative_reloc(false)
6159 && !(gsym->visibility() == elfcpp::STV_PROTECTED
6160 && parameters->options().shared()))
6161 || (size == 64
6162 && r_type == elfcpp::R_PPC64_ADDR64
6163 && target->abiversion() < 2
6164 && (gsym->can_use_relative_reloc(false)
6165 || data_shndx == ppc_object->opd_shndx())))
6166 {
6167 Reloc_section* rela_dyn
6168 = target->rela_dyn_section(symtab, layout, is_ifunc);
6169 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6170 : elfcpp::R_POWERPC_RELATIVE);
6171 rela_dyn->add_symbolless_global_addend(
6172 gsym, dynrel, output_section, object, data_shndx,
6173 reloc.get_r_offset(), reloc.get_r_addend());
6174 }
6175 else
6176 {
6177 Reloc_section* rela_dyn
6178 = target->rela_dyn_section(symtab, layout, is_ifunc);
6179 check_non_pic(object, r_type);
6180 rela_dyn->add_global(gsym, r_type, output_section,
6181 object, data_shndx,
6182 reloc.get_r_offset(),
6183 reloc.get_r_addend());
6184 }
6185 }
6186 }
6187 break;
6188
6189 case elfcpp::R_PPC_PLTREL24:
6190 case elfcpp::R_POWERPC_REL24:
6191 if (!is_ifunc)
6192 {
6193 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6194 r_type,
6195 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6196 reloc.get_r_addend());
6197 if (gsym->needs_plt_entry()
6198 || (!gsym->final_value_is_known()
6199 && (gsym->is_undefined()
6200 || gsym->is_from_dynobj()
6201 || gsym->is_preemptible())))
6202 target->make_plt_entry(symtab, layout, gsym);
6203 }
6204 // Fall through.
6205
6206 case elfcpp::R_PPC64_REL64:
6207 case elfcpp::R_POWERPC_REL32:
6208 // Make a dynamic relocation if necessary.
6209 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6210 {
6211 if (!parameters->options().output_is_position_independent()
6212 && gsym->may_need_copy_reloc())
6213 {
6214 target->copy_reloc(symtab, layout, object,
6215 data_shndx, output_section, gsym,
6216 reloc);
6217 }
6218 else
6219 {
6220 Reloc_section* rela_dyn
6221 = target->rela_dyn_section(symtab, layout, is_ifunc);
6222 check_non_pic(object, r_type);
6223 rela_dyn->add_global(gsym, r_type, output_section, object,
6224 data_shndx, reloc.get_r_offset(),
6225 reloc.get_r_addend());
6226 }
6227 }
6228 break;
6229
6230 case elfcpp::R_POWERPC_REL14:
6231 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6232 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6233 if (!is_ifunc)
6234 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6235 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6236 reloc.get_r_addend());
6237 break;
6238
6239 case elfcpp::R_POWERPC_REL16:
6240 case elfcpp::R_POWERPC_REL16_LO:
6241 case elfcpp::R_POWERPC_REL16_HI:
6242 case elfcpp::R_POWERPC_REL16_HA:
6243 case elfcpp::R_POWERPC_REL16DX_HA:
6244 case elfcpp::R_POWERPC_SECTOFF:
6245 case elfcpp::R_POWERPC_SECTOFF_LO:
6246 case elfcpp::R_POWERPC_SECTOFF_HI:
6247 case elfcpp::R_POWERPC_SECTOFF_HA:
6248 case elfcpp::R_PPC64_SECTOFF_DS:
6249 case elfcpp::R_PPC64_SECTOFF_LO_DS:
6250 case elfcpp::R_POWERPC_TPREL16:
6251 case elfcpp::R_POWERPC_TPREL16_LO:
6252 case elfcpp::R_POWERPC_TPREL16_HI:
6253 case elfcpp::R_POWERPC_TPREL16_HA:
6254 case elfcpp::R_PPC64_TPREL16_DS:
6255 case elfcpp::R_PPC64_TPREL16_LO_DS:
6256 case elfcpp::R_PPC64_TPREL16_HIGH:
6257 case elfcpp::R_PPC64_TPREL16_HIGHA:
6258 case elfcpp::R_PPC64_TPREL16_HIGHER:
6259 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6260 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6261 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6262 case elfcpp::R_POWERPC_DTPREL16:
6263 case elfcpp::R_POWERPC_DTPREL16_LO:
6264 case elfcpp::R_POWERPC_DTPREL16_HI:
6265 case elfcpp::R_POWERPC_DTPREL16_HA:
6266 case elfcpp::R_PPC64_DTPREL16_DS:
6267 case elfcpp::R_PPC64_DTPREL16_LO_DS:
6268 case elfcpp::R_PPC64_DTPREL16_HIGH:
6269 case elfcpp::R_PPC64_DTPREL16_HIGHA:
6270 case elfcpp::R_PPC64_DTPREL16_HIGHER:
6271 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6272 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6273 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6274 case elfcpp::R_PPC64_TLSGD:
6275 case elfcpp::R_PPC64_TLSLD:
6276 case elfcpp::R_PPC64_ADDR64_LOCAL:
6277 break;
6278
6279 case elfcpp::R_POWERPC_GOT16:
6280 case elfcpp::R_POWERPC_GOT16_LO:
6281 case elfcpp::R_POWERPC_GOT16_HI:
6282 case elfcpp::R_POWERPC_GOT16_HA:
6283 case elfcpp::R_PPC64_GOT16_DS:
6284 case elfcpp::R_PPC64_GOT16_LO_DS:
6285 {
6286 // The symbol requires a GOT entry.
6287 Output_data_got_powerpc<size, big_endian>* got;
6288
6289 got = target->got_section(symtab, layout);
6290 if (gsym->final_value_is_known())
6291 {
6292 if (is_ifunc
6293 && (size == 32 || target->abiversion() >= 2))
6294 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6295 else
6296 got->add_global(gsym, GOT_TYPE_STANDARD);
6297 }
6298 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6299 {
6300 // If we are generating a shared object or a pie, this
6301 // symbol's GOT entry will be set by a dynamic relocation.
6302 unsigned int off = got->add_constant(0);
6303 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6304
6305 Reloc_section* rela_dyn
6306 = target->rela_dyn_section(symtab, layout, is_ifunc);
6307
6308 if (gsym->can_use_relative_reloc(false)
6309 && !((size == 32
6310 || target->abiversion() >= 2)
6311 && gsym->visibility() == elfcpp::STV_PROTECTED
6312 && parameters->options().shared()))
6313 {
6314 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6315 : elfcpp::R_POWERPC_RELATIVE);
6316 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6317 }
6318 else
6319 {
6320 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6321 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6322 }
6323 }
6324 }
6325 break;
6326
6327 case elfcpp::R_PPC64_TOC16:
6328 case elfcpp::R_PPC64_TOC16_LO:
6329 case elfcpp::R_PPC64_TOC16_HI:
6330 case elfcpp::R_PPC64_TOC16_HA:
6331 case elfcpp::R_PPC64_TOC16_DS:
6332 case elfcpp::R_PPC64_TOC16_LO_DS:
6333 // We need a GOT section.
6334 target->got_section(symtab, layout);
6335 break;
6336
6337 case elfcpp::R_POWERPC_GOT_TLSGD16:
6338 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6339 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6340 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6341 {
6342 const bool final = gsym->final_value_is_known();
6343 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6344 if (tls_type == tls::TLSOPT_NONE)
6345 {
6346 Output_data_got_powerpc<size, big_endian>* got
6347 = target->got_section(symtab, layout);
6348 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6349 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6350 elfcpp::R_POWERPC_DTPMOD,
6351 elfcpp::R_POWERPC_DTPREL);
6352 }
6353 else if (tls_type == tls::TLSOPT_TO_IE)
6354 {
6355 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6356 {
6357 Output_data_got_powerpc<size, big_endian>* got
6358 = target->got_section(symtab, layout);
6359 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6360 if (gsym->is_undefined()
6361 || gsym->is_from_dynobj())
6362 {
6363 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6364 elfcpp::R_POWERPC_TPREL);
6365 }
6366 else
6367 {
6368 unsigned int off = got->add_constant(0);
6369 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6370 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6371 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6372 got, off, 0);
6373 }
6374 }
6375 }
6376 else if (tls_type == tls::TLSOPT_TO_LE)
6377 {
6378 // no GOT relocs needed for Local Exec.
6379 }
6380 else
6381 gold_unreachable();
6382 }
6383 break;
6384
6385 case elfcpp::R_POWERPC_GOT_TLSLD16:
6386 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6387 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6388 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6389 {
6390 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6391 if (tls_type == tls::TLSOPT_NONE)
6392 target->tlsld_got_offset(symtab, layout, object);
6393 else if (tls_type == tls::TLSOPT_TO_LE)
6394 {
6395 // no GOT relocs needed for Local Exec.
6396 if (parameters->options().emit_relocs())
6397 {
6398 Output_section* os = layout->tls_segment()->first_section();
6399 gold_assert(os != NULL);
6400 os->set_needs_symtab_index();
6401 }
6402 }
6403 else
6404 gold_unreachable();
6405 }
6406 break;
6407
6408 case elfcpp::R_POWERPC_GOT_DTPREL16:
6409 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6410 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6411 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6412 {
6413 Output_data_got_powerpc<size, big_endian>* got
6414 = target->got_section(symtab, layout);
6415 if (!gsym->final_value_is_known()
6416 && (gsym->is_from_dynobj()
6417 || gsym->is_undefined()
6418 || gsym->is_preemptible()))
6419 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6420 target->rela_dyn_section(layout),
6421 elfcpp::R_POWERPC_DTPREL);
6422 else
6423 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6424 }
6425 break;
6426
6427 case elfcpp::R_POWERPC_GOT_TPREL16:
6428 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6429 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6430 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6431 {
6432 const bool final = gsym->final_value_is_known();
6433 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6434 if (tls_type == tls::TLSOPT_NONE)
6435 {
6436 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6437 {
6438 Output_data_got_powerpc<size, big_endian>* got
6439 = target->got_section(symtab, layout);
6440 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6441 if (gsym->is_undefined()
6442 || gsym->is_from_dynobj())
6443 {
6444 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6445 elfcpp::R_POWERPC_TPREL);
6446 }
6447 else
6448 {
6449 unsigned int off = got->add_constant(0);
6450 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6451 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6452 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6453 got, off, 0);
6454 }
6455 }
6456 }
6457 else if (tls_type == tls::TLSOPT_TO_LE)
6458 {
6459 // no GOT relocs needed for Local Exec.
6460 }
6461 else
6462 gold_unreachable();
6463 }
6464 break;
6465
6466 default:
6467 unsupported_reloc_global(object, r_type, gsym);
6468 break;
6469 }
6470
6471 switch (r_type)
6472 {
6473 case elfcpp::R_POWERPC_GOT_TLSLD16:
6474 case elfcpp::R_POWERPC_GOT_TLSGD16:
6475 case elfcpp::R_POWERPC_GOT_TPREL16:
6476 case elfcpp::R_POWERPC_GOT_DTPREL16:
6477 case elfcpp::R_POWERPC_GOT16:
6478 case elfcpp::R_PPC64_GOT16_DS:
6479 case elfcpp::R_PPC64_TOC16:
6480 case elfcpp::R_PPC64_TOC16_DS:
6481 ppc_object->set_has_small_toc_reloc();
6482 default:
6483 break;
6484 }
6485 }
6486
6487 // Process relocations for gc.
6488
6489 template<int size, bool big_endian>
6490 void
6491 Target_powerpc<size, big_endian>::gc_process_relocs(
6492 Symbol_table* symtab,
6493 Layout* layout,
6494 Sized_relobj_file<size, big_endian>* object,
6495 unsigned int data_shndx,
6496 unsigned int,
6497 const unsigned char* prelocs,
6498 size_t reloc_count,
6499 Output_section* output_section,
6500 bool needs_special_offset_handling,
6501 size_t local_symbol_count,
6502 const unsigned char* plocal_symbols)
6503 {
6504 typedef Target_powerpc<size, big_endian> Powerpc;
6505 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6506 Classify_reloc;
6507
6508 Powerpc_relobj<size, big_endian>* ppc_object
6509 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6510 if (size == 64)
6511 ppc_object->set_opd_valid();
6512 if (size == 64 && data_shndx == ppc_object->opd_shndx())
6513 {
6514 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6515 for (p = ppc_object->access_from_map()->begin();
6516 p != ppc_object->access_from_map()->end();
6517 ++p)
6518 {
6519 Address dst_off = p->first;
6520 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6521 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6522 for (s = p->second.begin(); s != p->second.end(); ++s)
6523 {
6524 Relobj* src_obj = s->first;
6525 unsigned int src_indx = s->second;
6526 symtab->gc()->add_reference(src_obj, src_indx,
6527 ppc_object, dst_indx);
6528 }
6529 p->second.clear();
6530 }
6531 ppc_object->access_from_map()->clear();
6532 ppc_object->process_gc_mark(symtab);
6533 // Don't look at .opd relocs as .opd will reference everything.
6534 return;
6535 }
6536
6537 gold::gc_process_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
6538 symtab,
6539 layout,
6540 this,
6541 object,
6542 data_shndx,
6543 prelocs,
6544 reloc_count,
6545 output_section,
6546 needs_special_offset_handling,
6547 local_symbol_count,
6548 plocal_symbols);
6549 }
6550
6551 // Handle target specific gc actions when adding a gc reference from
6552 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6553 // and DST_OFF. For powerpc64, this adds a referenc to the code
6554 // section of a function descriptor.
6555
6556 template<int size, bool big_endian>
6557 void
6558 Target_powerpc<size, big_endian>::do_gc_add_reference(
6559 Symbol_table* symtab,
6560 Relobj* src_obj,
6561 unsigned int src_shndx,
6562 Relobj* dst_obj,
6563 unsigned int dst_shndx,
6564 Address dst_off) const
6565 {
6566 if (size != 64 || dst_obj->is_dynamic())
6567 return;
6568
6569 Powerpc_relobj<size, big_endian>* ppc_object
6570 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6571 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6572 {
6573 if (ppc_object->opd_valid())
6574 {
6575 dst_shndx = ppc_object->get_opd_ent(dst_off);
6576 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6577 }
6578 else
6579 {
6580 // If we haven't run scan_opd_relocs, we must delay
6581 // processing this function descriptor reference.
6582 ppc_object->add_reference(src_obj, src_shndx, dst_off);
6583 }
6584 }
6585 }
6586
6587 // Add any special sections for this symbol to the gc work list.
6588 // For powerpc64, this adds the code section of a function
6589 // descriptor.
6590
6591 template<int size, bool big_endian>
6592 void
6593 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6594 Symbol_table* symtab,
6595 Symbol* sym) const
6596 {
6597 if (size == 64)
6598 {
6599 Powerpc_relobj<size, big_endian>* ppc_object
6600 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6601 bool is_ordinary;
6602 unsigned int shndx = sym->shndx(&is_ordinary);
6603 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6604 {
6605 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6606 Address dst_off = gsym->value();
6607 if (ppc_object->opd_valid())
6608 {
6609 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6610 symtab->gc()->worklist().push_back(Section_id(ppc_object,
6611 dst_indx));
6612 }
6613 else
6614 ppc_object->add_gc_mark(dst_off);
6615 }
6616 }
6617 }
6618
6619 // For a symbol location in .opd, set LOC to the location of the
6620 // function entry.
6621
6622 template<int size, bool big_endian>
6623 void
6624 Target_powerpc<size, big_endian>::do_function_location(
6625 Symbol_location* loc) const
6626 {
6627 if (size == 64 && loc->shndx != 0)
6628 {
6629 if (loc->object->is_dynamic())
6630 {
6631 Powerpc_dynobj<size, big_endian>* ppc_object
6632 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6633 if (loc->shndx == ppc_object->opd_shndx())
6634 {
6635 Address dest_off;
6636 Address off = loc->offset - ppc_object->opd_address();
6637 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6638 loc->offset = dest_off;
6639 }
6640 }
6641 else
6642 {
6643 const Powerpc_relobj<size, big_endian>* ppc_object
6644 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6645 if (loc->shndx == ppc_object->opd_shndx())
6646 {
6647 Address dest_off;
6648 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6649 loc->offset = dest_off;
6650 }
6651 }
6652 }
6653 }
6654
6655 // FNOFFSET in section SHNDX in OBJECT is the start of a function
6656 // compiled with -fsplit-stack. The function calls non-split-stack
6657 // code. Change the function to ensure it has enough stack space to
6658 // call some random function.
6659
6660 template<int size, bool big_endian>
6661 void
6662 Target_powerpc<size, big_endian>::do_calls_non_split(
6663 Relobj* object,
6664 unsigned int shndx,
6665 section_offset_type fnoffset,
6666 section_size_type fnsize,
6667 const unsigned char* prelocs,
6668 size_t reloc_count,
6669 unsigned char* view,
6670 section_size_type view_size,
6671 std::string* from,
6672 std::string* to) const
6673 {
6674 // 32-bit not supported.
6675 if (size == 32)
6676 {
6677 // warn
6678 Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
6679 prelocs, reloc_count, view, view_size,
6680 from, to);
6681 return;
6682 }
6683
6684 // The function always starts with
6685 // ld %r0,-0x7000-64(%r13) # tcbhead_t.__private_ss
6686 // addis %r12,%r1,-allocate@ha
6687 // addi %r12,%r12,-allocate@l
6688 // cmpld %r12,%r0
6689 // but note that the addis or addi may be replaced with a nop
6690
6691 unsigned char *entry = view + fnoffset;
6692 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
6693
6694 if ((insn & 0xffff0000) == addis_2_12)
6695 {
6696 /* Skip ELFv2 global entry code. */
6697 entry += 8;
6698 insn = elfcpp::Swap<32, big_endian>::readval(entry);
6699 }
6700
6701 unsigned char *pinsn = entry;
6702 bool ok = false;
6703 const uint32_t ld_private_ss = 0xe80d8fc0;
6704 if (insn == ld_private_ss)
6705 {
6706 int32_t allocate = 0;
6707 while (1)
6708 {
6709 pinsn += 4;
6710 insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
6711 if ((insn & 0xffff0000) == addis_12_1)
6712 allocate += (insn & 0xffff) << 16;
6713 else if ((insn & 0xffff0000) == addi_12_1
6714 || (insn & 0xffff0000) == addi_12_12)
6715 allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
6716 else if (insn != nop)
6717 break;
6718 }
6719 if (insn == cmpld_7_12_0 && pinsn == entry + 12)
6720 {
6721 int extra = parameters->options().split_stack_adjust_size();
6722 allocate -= extra;
6723 if (allocate >= 0 || extra < 0)
6724 {
6725 object->error(_("split-stack stack size overflow at "
6726 "section %u offset %0zx"),
6727 shndx, static_cast<size_t>(fnoffset));
6728 return;
6729 }
6730 pinsn = entry + 4;
6731 insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
6732 if (insn != addis_12_1)
6733 {
6734 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6735 pinsn += 4;
6736 insn = addi_12_12 | (allocate & 0xffff);
6737 if (insn != addi_12_12)
6738 {
6739 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6740 pinsn += 4;
6741 }
6742 }
6743 else
6744 {
6745 insn = addi_12_1 | (allocate & 0xffff);
6746 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6747 pinsn += 4;
6748 }
6749 if (pinsn != entry + 12)
6750 elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
6751
6752 ok = true;
6753 }
6754 }
6755
6756 if (!ok)
6757 {
6758 if (!object->has_no_split_stack())
6759 object->error(_("failed to match split-stack sequence at "
6760 "section %u offset %0zx"),
6761 shndx, static_cast<size_t>(fnoffset));
6762 }
6763 }
6764
6765 // Scan relocations for a section.
6766
6767 template<int size, bool big_endian>
6768 void
6769 Target_powerpc<size, big_endian>::scan_relocs(
6770 Symbol_table* symtab,
6771 Layout* layout,
6772 Sized_relobj_file<size, big_endian>* object,
6773 unsigned int data_shndx,
6774 unsigned int sh_type,
6775 const unsigned char* prelocs,
6776 size_t reloc_count,
6777 Output_section* output_section,
6778 bool needs_special_offset_handling,
6779 size_t local_symbol_count,
6780 const unsigned char* plocal_symbols)
6781 {
6782 typedef Target_powerpc<size, big_endian> Powerpc;
6783 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6784 Classify_reloc;
6785
6786 if (sh_type == elfcpp::SHT_REL)
6787 {
6788 gold_error(_("%s: unsupported REL reloc section"),
6789 object->name().c_str());
6790 return;
6791 }
6792
6793 gold::scan_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
6794 symtab,
6795 layout,
6796 this,
6797 object,
6798 data_shndx,
6799 prelocs,
6800 reloc_count,
6801 output_section,
6802 needs_special_offset_handling,
6803 local_symbol_count,
6804 plocal_symbols);
6805 }
6806
6807 // Functor class for processing the global symbol table.
6808 // Removes symbols defined on discarded opd entries.
6809
6810 template<bool big_endian>
6811 class Global_symbol_visitor_opd
6812 {
6813 public:
6814 Global_symbol_visitor_opd()
6815 { }
6816
6817 void
6818 operator()(Sized_symbol<64>* sym)
6819 {
6820 if (sym->has_symtab_index()
6821 || sym->source() != Symbol::FROM_OBJECT
6822 || !sym->in_real_elf())
6823 return;
6824
6825 if (sym->object()->is_dynamic())
6826 return;
6827
6828 Powerpc_relobj<64, big_endian>* symobj
6829 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6830 if (symobj->opd_shndx() == 0)
6831 return;
6832
6833 bool is_ordinary;
6834 unsigned int shndx = sym->shndx(&is_ordinary);
6835 if (shndx == symobj->opd_shndx()
6836 && symobj->get_opd_discard(sym->value()))
6837 {
6838 sym->set_undefined();
6839 sym->set_visibility(elfcpp::STV_DEFAULT);
6840 sym->set_is_defined_in_discarded_section();
6841 sym->set_symtab_index(-1U);
6842 }
6843 }
6844 };
6845
6846 template<int size, bool big_endian>
6847 void
6848 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6849 Layout* layout,
6850 Symbol_table* symtab)
6851 {
6852 if (size == 64)
6853 {
6854 Output_data_save_res<size, big_endian>* savres
6855 = new Output_data_save_res<size, big_endian>(symtab);
6856 this->savres_section_ = savres;
6857 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6858 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6859 savres, ORDER_TEXT, false);
6860 }
6861 }
6862
6863 // Sort linker created .got section first (for the header), then input
6864 // sections belonging to files using small model code.
6865
6866 template<bool big_endian>
6867 class Sort_toc_sections
6868 {
6869 public:
6870 bool
6871 operator()(const Output_section::Input_section& is1,
6872 const Output_section::Input_section& is2) const
6873 {
6874 if (!is1.is_input_section() && is2.is_input_section())
6875 return true;
6876 bool small1
6877 = (is1.is_input_section()
6878 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6879 ->has_small_toc_reloc()));
6880 bool small2
6881 = (is2.is_input_section()
6882 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6883 ->has_small_toc_reloc()));
6884 return small1 && !small2;
6885 }
6886 };
6887
6888 // Finalize the sections.
6889
6890 template<int size, bool big_endian>
6891 void
6892 Target_powerpc<size, big_endian>::do_finalize_sections(
6893 Layout* layout,
6894 const Input_objects*,
6895 Symbol_table* symtab)
6896 {
6897 if (parameters->doing_static_link())
6898 {
6899 // At least some versions of glibc elf-init.o have a strong
6900 // reference to __rela_iplt marker syms. A weak ref would be
6901 // better..
6902 if (this->iplt_ != NULL)
6903 {
6904 Reloc_section* rel = this->iplt_->rel_plt();
6905 symtab->define_in_output_data("__rela_iplt_start", NULL,
6906 Symbol_table::PREDEFINED, rel, 0, 0,
6907 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6908 elfcpp::STV_HIDDEN, 0, false, true);
6909 symtab->define_in_output_data("__rela_iplt_end", NULL,
6910 Symbol_table::PREDEFINED, rel, 0, 0,
6911 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6912 elfcpp::STV_HIDDEN, 0, true, true);
6913 }
6914 else
6915 {
6916 symtab->define_as_constant("__rela_iplt_start", NULL,
6917 Symbol_table::PREDEFINED, 0, 0,
6918 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6919 elfcpp::STV_HIDDEN, 0, true, false);
6920 symtab->define_as_constant("__rela_iplt_end", NULL,
6921 Symbol_table::PREDEFINED, 0, 0,
6922 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6923 elfcpp::STV_HIDDEN, 0, true, false);
6924 }
6925 }
6926
6927 if (size == 64)
6928 {
6929 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6930 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6931
6932 if (!parameters->options().relocatable())
6933 {
6934 this->define_save_restore_funcs(layout, symtab);
6935
6936 // Annoyingly, we need to make these sections now whether or
6937 // not we need them. If we delay until do_relax then we
6938 // need to mess with the relaxation machinery checkpointing.
6939 this->got_section(symtab, layout);
6940 this->make_brlt_section(layout);
6941
6942 if (parameters->options().toc_sort())
6943 {
6944 Output_section* os = this->got_->output_section();
6945 if (os != NULL && os->input_sections().size() > 1)
6946 std::stable_sort(os->input_sections().begin(),
6947 os->input_sections().end(),
6948 Sort_toc_sections<big_endian>());
6949 }
6950 }
6951 }
6952
6953 // Fill in some more dynamic tags.
6954 Output_data_dynamic* odyn = layout->dynamic_data();
6955 if (odyn != NULL)
6956 {
6957 const Reloc_section* rel_plt = (this->plt_ == NULL
6958 ? NULL
6959 : this->plt_->rel_plt());
6960 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6961 this->rela_dyn_, true, size == 32);
6962
6963 if (size == 32)
6964 {
6965 if (this->got_ != NULL)
6966 {
6967 this->got_->finalize_data_size();
6968 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6969 this->got_, this->got_->g_o_t());
6970 }
6971 }
6972 else
6973 {
6974 if (this->glink_ != NULL)
6975 {
6976 this->glink_->finalize_data_size();
6977 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6978 this->glink_,
6979 (this->glink_->pltresolve_size
6980 - 32));
6981 }
6982 }
6983 }
6984
6985 // Emit any relocs we saved in an attempt to avoid generating COPY
6986 // relocs.
6987 if (this->copy_relocs_.any_saved_relocs())
6988 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6989 }
6990
6991 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6992 // reloc.
6993
6994 static bool
6995 ok_lo_toc_insn(uint32_t insn)
6996 {
6997 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6998 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6999 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
7000 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
7001 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
7002 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
7003 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
7004 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
7005 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
7006 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
7007 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
7008 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
7009 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
7010 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
7011 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
7012 && (insn & 3) != 1)
7013 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
7014 && ((insn & 3) == 0 || (insn & 3) == 3))
7015 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
7016 }
7017
7018 // Return the value to use for a branch relocation.
7019
7020 template<int size, bool big_endian>
7021 bool
7022 Target_powerpc<size, big_endian>::symval_for_branch(
7023 const Symbol_table* symtab,
7024 const Sized_symbol<size>* gsym,
7025 Powerpc_relobj<size, big_endian>* object,
7026 Address *value,
7027 unsigned int *dest_shndx)
7028 {
7029 if (size == 32 || this->abiversion() >= 2)
7030 gold_unreachable();
7031 *dest_shndx = 0;
7032
7033 // If the symbol is defined in an opd section, ie. is a function
7034 // descriptor, use the function descriptor code entry address
7035 Powerpc_relobj<size, big_endian>* symobj = object;
7036 if (gsym != NULL
7037 && gsym->source() != Symbol::FROM_OBJECT)
7038 return true;
7039 if (gsym != NULL)
7040 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
7041 unsigned int shndx = symobj->opd_shndx();
7042 if (shndx == 0)
7043 return true;
7044 Address opd_addr = symobj->get_output_section_offset(shndx);
7045 if (opd_addr == invalid_address)
7046 return true;
7047 opd_addr += symobj->output_section_address(shndx);
7048 if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
7049 {
7050 Address sec_off;
7051 *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
7052 if (symtab->is_section_folded(symobj, *dest_shndx))
7053 {
7054 Section_id folded
7055 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
7056 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
7057 *dest_shndx = folded.second;
7058 }
7059 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
7060 if (sec_addr == invalid_address)
7061 return false;
7062
7063 sec_addr += symobj->output_section(*dest_shndx)->address();
7064 *value = sec_addr + sec_off;
7065 }
7066 return true;
7067 }
7068
7069 // Perform a relocation.
7070
7071 template<int size, bool big_endian>
7072 inline bool
7073 Target_powerpc<size, big_endian>::Relocate::relocate(
7074 const Relocate_info<size, big_endian>* relinfo,
7075 unsigned int,
7076 Target_powerpc* target,
7077 Output_section* os,
7078 size_t relnum,
7079 const unsigned char* preloc,
7080 const Sized_symbol<size>* gsym,
7081 const Symbol_value<size>* psymval,
7082 unsigned char* view,
7083 Address address,
7084 section_size_type view_size)
7085 {
7086 if (view == NULL)
7087 return true;
7088
7089 const elfcpp::Rela<size, big_endian> rela(preloc);
7090 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
7091 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
7092 {
7093 case Track_tls::NOT_EXPECTED:
7094 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7095 _("__tls_get_addr call lacks marker reloc"));
7096 break;
7097 case Track_tls::EXPECTED:
7098 // We have already complained.
7099 break;
7100 case Track_tls::SKIP:
7101 return true;
7102 case Track_tls::NORMAL:
7103 break;
7104 }
7105
7106 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
7107 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
7108 typedef typename Reloc_types<elfcpp::SHT_RELA,
7109 size, big_endian>::Reloc Reltype;
7110 // Offset from start of insn to d-field reloc.
7111 const int d_offset = big_endian ? 2 : 0;
7112
7113 Powerpc_relobj<size, big_endian>* const object
7114 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7115 Address value = 0;
7116 bool has_stub_value = false;
7117 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7118 if ((gsym != NULL
7119 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
7120 : object->local_has_plt_offset(r_sym))
7121 && (!psymval->is_ifunc_symbol()
7122 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
7123 {
7124 if (size == 64
7125 && gsym != NULL
7126 && target->abiversion() >= 2
7127 && !parameters->options().output_is_position_independent()
7128 && !is_branch_reloc(r_type))
7129 {
7130 Address off = target->glink_section()->find_global_entry(gsym);
7131 if (off != invalid_address)
7132 {
7133 value = target->glink_section()->global_entry_address() + off;
7134 has_stub_value = true;
7135 }
7136 }
7137 else
7138 {
7139 Stub_table<size, big_endian>* stub_table
7140 = object->stub_table(relinfo->data_shndx);
7141 if (stub_table == NULL)
7142 {
7143 // This is a ref from a data section to an ifunc symbol.
7144 if (target->stub_tables().size() != 0)
7145 stub_table = target->stub_tables()[0];
7146 }
7147 if (stub_table != NULL)
7148 {
7149 Address off;
7150 if (gsym != NULL)
7151 off = stub_table->find_plt_call_entry(object, gsym, r_type,
7152 rela.get_r_addend());
7153 else
7154 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
7155 rela.get_r_addend());
7156 if (off != invalid_address)
7157 {
7158 value = stub_table->stub_address() + off;
7159 has_stub_value = true;
7160 }
7161 }
7162 }
7163 // We don't care too much about bogus debug references to
7164 // non-local functions, but otherwise there had better be a plt
7165 // call stub or global entry stub as appropriate.
7166 gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
7167 }
7168
7169 if (r_type == elfcpp::R_POWERPC_GOT16
7170 || r_type == elfcpp::R_POWERPC_GOT16_LO
7171 || r_type == elfcpp::R_POWERPC_GOT16_HI
7172 || r_type == elfcpp::R_POWERPC_GOT16_HA
7173 || r_type == elfcpp::R_PPC64_GOT16_DS
7174 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
7175 {
7176 if (gsym != NULL)
7177 {
7178 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7179 value = gsym->got_offset(GOT_TYPE_STANDARD);
7180 }
7181 else
7182 {
7183 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7184 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7185 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
7186 }
7187 value -= target->got_section()->got_base_offset(object);
7188 }
7189 else if (r_type == elfcpp::R_PPC64_TOC)
7190 {
7191 value = (target->got_section()->output_section()->address()
7192 + object->toc_base_offset());
7193 }
7194 else if (gsym != NULL
7195 && (r_type == elfcpp::R_POWERPC_REL24
7196 || r_type == elfcpp::R_PPC_PLTREL24)
7197 && has_stub_value)
7198 {
7199 if (size == 64)
7200 {
7201 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7202 Valtype* wv = reinterpret_cast<Valtype*>(view);
7203 bool can_plt_call = false;
7204 if (rela.get_r_offset() + 8 <= view_size)
7205 {
7206 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
7207 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
7208 if ((insn & 1) != 0
7209 && (insn2 == nop
7210 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
7211 {
7212 elfcpp::Swap<32, big_endian>::
7213 writeval(wv + 1, ld_2_1 + target->stk_toc());
7214 can_plt_call = true;
7215 }
7216 }
7217 if (!can_plt_call)
7218 {
7219 // If we don't have a branch and link followed by a nop,
7220 // we can't go via the plt because there is no place to
7221 // put a toc restoring instruction.
7222 // Unless we know we won't be returning.
7223 if (strcmp(gsym->name(), "__libc_start_main") == 0)
7224 can_plt_call = true;
7225 }
7226 if (!can_plt_call)
7227 {
7228 // g++ as of 20130507 emits self-calls without a
7229 // following nop. This is arguably wrong since we have
7230 // conflicting information. On the one hand a global
7231 // symbol and on the other a local call sequence, but
7232 // don't error for this special case.
7233 // It isn't possible to cheaply verify we have exactly
7234 // such a call. Allow all calls to the same section.
7235 bool ok = false;
7236 Address code = value;
7237 if (gsym->source() == Symbol::FROM_OBJECT
7238 && gsym->object() == object)
7239 {
7240 unsigned int dest_shndx = 0;
7241 if (target->abiversion() < 2)
7242 {
7243 Address addend = rela.get_r_addend();
7244 code = psymval->value(object, addend);
7245 target->symval_for_branch(relinfo->symtab, gsym, object,
7246 &code, &dest_shndx);
7247 }
7248 bool is_ordinary;
7249 if (dest_shndx == 0)
7250 dest_shndx = gsym->shndx(&is_ordinary);
7251 ok = dest_shndx == relinfo->data_shndx;
7252 }
7253 if (!ok)
7254 {
7255 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7256 _("call lacks nop, can't restore toc; "
7257 "recompile with -fPIC"));
7258 value = code;
7259 }
7260 }
7261 }
7262 }
7263 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7264 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7265 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7266 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7267 {
7268 // First instruction of a global dynamic sequence, arg setup insn.
7269 const bool final = gsym == NULL || gsym->final_value_is_known();
7270 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7271 enum Got_type got_type = GOT_TYPE_STANDARD;
7272 if (tls_type == tls::TLSOPT_NONE)
7273 got_type = GOT_TYPE_TLSGD;
7274 else if (tls_type == tls::TLSOPT_TO_IE)
7275 got_type = GOT_TYPE_TPREL;
7276 if (got_type != GOT_TYPE_STANDARD)
7277 {
7278 if (gsym != NULL)
7279 {
7280 gold_assert(gsym->has_got_offset(got_type));
7281 value = gsym->got_offset(got_type);
7282 }
7283 else
7284 {
7285 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7286 gold_assert(object->local_has_got_offset(r_sym, got_type));
7287 value = object->local_got_offset(r_sym, got_type);
7288 }
7289 value -= target->got_section()->got_base_offset(object);
7290 }
7291 if (tls_type == tls::TLSOPT_TO_IE)
7292 {
7293 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7294 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7295 {
7296 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7297 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7298 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
7299 if (size == 32)
7300 insn |= 32 << 26; // lwz
7301 else
7302 insn |= 58 << 26; // ld
7303 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7304 }
7305 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7306 - elfcpp::R_POWERPC_GOT_TLSGD16);
7307 }
7308 else if (tls_type == tls::TLSOPT_TO_LE)
7309 {
7310 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7311 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7312 {
7313 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7314 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7315 insn &= (1 << 26) - (1 << 21); // extract rt
7316 if (size == 32)
7317 insn |= addis_0_2;
7318 else
7319 insn |= addis_0_13;
7320 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7321 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7322 value = psymval->value(object, rela.get_r_addend());
7323 }
7324 else
7325 {
7326 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7327 Insn insn = nop;
7328 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7329 r_type = elfcpp::R_POWERPC_NONE;
7330 }
7331 }
7332 }
7333 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7334 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7335 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7336 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7337 {
7338 // First instruction of a local dynamic sequence, arg setup insn.
7339 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7340 if (tls_type == tls::TLSOPT_NONE)
7341 {
7342 value = target->tlsld_got_offset();
7343 value -= target->got_section()->got_base_offset(object);
7344 }
7345 else
7346 {
7347 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7348 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7349 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7350 {
7351 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7352 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7353 insn &= (1 << 26) - (1 << 21); // extract rt
7354 if (size == 32)
7355 insn |= addis_0_2;
7356 else
7357 insn |= addis_0_13;
7358 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7359 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7360 value = dtp_offset;
7361 }
7362 else
7363 {
7364 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7365 Insn insn = nop;
7366 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7367 r_type = elfcpp::R_POWERPC_NONE;
7368 }
7369 }
7370 }
7371 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7372 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7373 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7374 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7375 {
7376 // Accesses relative to a local dynamic sequence address,
7377 // no optimisation here.
7378 if (gsym != NULL)
7379 {
7380 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7381 value = gsym->got_offset(GOT_TYPE_DTPREL);
7382 }
7383 else
7384 {
7385 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7386 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7387 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7388 }
7389 value -= target->got_section()->got_base_offset(object);
7390 }
7391 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7392 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7393 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7394 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7395 {
7396 // First instruction of initial exec sequence.
7397 const bool final = gsym == NULL || gsym->final_value_is_known();
7398 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7399 if (tls_type == tls::TLSOPT_NONE)
7400 {
7401 if (gsym != NULL)
7402 {
7403 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7404 value = gsym->got_offset(GOT_TYPE_TPREL);
7405 }
7406 else
7407 {
7408 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7409 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7410 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7411 }
7412 value -= target->got_section()->got_base_offset(object);
7413 }
7414 else
7415 {
7416 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7417 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7418 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7419 {
7420 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7421 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7422 insn &= (1 << 26) - (1 << 21); // extract rt from ld
7423 if (size == 32)
7424 insn |= addis_0_2;
7425 else
7426 insn |= addis_0_13;
7427 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7428 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7429 value = psymval->value(object, rela.get_r_addend());
7430 }
7431 else
7432 {
7433 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7434 Insn insn = nop;
7435 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7436 r_type = elfcpp::R_POWERPC_NONE;
7437 }
7438 }
7439 }
7440 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7441 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7442 {
7443 // Second instruction of a global dynamic sequence,
7444 // the __tls_get_addr call
7445 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7446 const bool final = gsym == NULL || gsym->final_value_is_known();
7447 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7448 if (tls_type != tls::TLSOPT_NONE)
7449 {
7450 if (tls_type == tls::TLSOPT_TO_IE)
7451 {
7452 Insn* iview = reinterpret_cast<Insn*>(view);
7453 Insn insn = add_3_3_13;
7454 if (size == 32)
7455 insn = add_3_3_2;
7456 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7457 r_type = elfcpp::R_POWERPC_NONE;
7458 }
7459 else
7460 {
7461 Insn* iview = reinterpret_cast<Insn*>(view);
7462 Insn insn = addi_3_3;
7463 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7464 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7465 view += d_offset;
7466 value = psymval->value(object, rela.get_r_addend());
7467 }
7468 this->skip_next_tls_get_addr_call();
7469 }
7470 }
7471 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7472 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7473 {
7474 // Second instruction of a local dynamic sequence,
7475 // the __tls_get_addr call
7476 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7477 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7478 if (tls_type == tls::TLSOPT_TO_LE)
7479 {
7480 Insn* iview = reinterpret_cast<Insn*>(view);
7481 Insn insn = addi_3_3;
7482 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7483 this->skip_next_tls_get_addr_call();
7484 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7485 view += d_offset;
7486 value = dtp_offset;
7487 }
7488 }
7489 else if (r_type == elfcpp::R_POWERPC_TLS)
7490 {
7491 // Second instruction of an initial exec sequence
7492 const bool final = gsym == NULL || gsym->final_value_is_known();
7493 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7494 if (tls_type == tls::TLSOPT_TO_LE)
7495 {
7496 Insn* iview = reinterpret_cast<Insn*>(view);
7497 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7498 unsigned int reg = size == 32 ? 2 : 13;
7499 insn = at_tls_transform(insn, reg);
7500 gold_assert(insn != 0);
7501 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7502 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7503 view += d_offset;
7504 value = psymval->value(object, rela.get_r_addend());
7505 }
7506 }
7507 else if (!has_stub_value)
7508 {
7509 Address addend = 0;
7510 if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
7511 addend = rela.get_r_addend();
7512 value = psymval->value(object, addend);
7513 if (size == 64 && is_branch_reloc(r_type))
7514 {
7515 if (target->abiversion() >= 2)
7516 {
7517 if (gsym != NULL)
7518 value += object->ppc64_local_entry_offset(gsym);
7519 else
7520 value += object->ppc64_local_entry_offset(r_sym);
7521 }
7522 else
7523 {
7524 unsigned int dest_shndx;
7525 target->symval_for_branch(relinfo->symtab, gsym, object,
7526 &value, &dest_shndx);
7527 }
7528 }
7529 Address max_branch_offset = max_branch_delta(r_type);
7530 if (max_branch_offset != 0
7531 && value - address + max_branch_offset >= 2 * max_branch_offset)
7532 {
7533 Stub_table<size, big_endian>* stub_table
7534 = object->stub_table(relinfo->data_shndx);
7535 if (stub_table != NULL)
7536 {
7537 Address off = stub_table->find_long_branch_entry(object, value);
7538 if (off != invalid_address)
7539 {
7540 value = (stub_table->stub_address() + stub_table->plt_size()
7541 + off);
7542 has_stub_value = true;
7543 }
7544 }
7545 }
7546 }
7547
7548 switch (r_type)
7549 {
7550 case elfcpp::R_PPC64_REL64:
7551 case elfcpp::R_POWERPC_REL32:
7552 case elfcpp::R_POWERPC_REL24:
7553 case elfcpp::R_PPC_PLTREL24:
7554 case elfcpp::R_PPC_LOCAL24PC:
7555 case elfcpp::R_POWERPC_REL16:
7556 case elfcpp::R_POWERPC_REL16_LO:
7557 case elfcpp::R_POWERPC_REL16_HI:
7558 case elfcpp::R_POWERPC_REL16_HA:
7559 case elfcpp::R_POWERPC_REL16DX_HA:
7560 case elfcpp::R_POWERPC_REL14:
7561 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7562 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7563 value -= address;
7564 break;
7565
7566 case elfcpp::R_PPC64_TOC16:
7567 case elfcpp::R_PPC64_TOC16_LO:
7568 case elfcpp::R_PPC64_TOC16_HI:
7569 case elfcpp::R_PPC64_TOC16_HA:
7570 case elfcpp::R_PPC64_TOC16_DS:
7571 case elfcpp::R_PPC64_TOC16_LO_DS:
7572 // Subtract the TOC base address.
7573 value -= (target->got_section()->output_section()->address()
7574 + object->toc_base_offset());
7575 break;
7576
7577 case elfcpp::R_POWERPC_SECTOFF:
7578 case elfcpp::R_POWERPC_SECTOFF_LO:
7579 case elfcpp::R_POWERPC_SECTOFF_HI:
7580 case elfcpp::R_POWERPC_SECTOFF_HA:
7581 case elfcpp::R_PPC64_SECTOFF_DS:
7582 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7583 if (os != NULL)
7584 value -= os->address();
7585 break;
7586
7587 case elfcpp::R_PPC64_TPREL16_DS:
7588 case elfcpp::R_PPC64_TPREL16_LO_DS:
7589 case elfcpp::R_PPC64_TPREL16_HIGH:
7590 case elfcpp::R_PPC64_TPREL16_HIGHA:
7591 if (size != 64)
7592 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7593 break;
7594 // Fall through.
7595 case elfcpp::R_POWERPC_TPREL16:
7596 case elfcpp::R_POWERPC_TPREL16_LO:
7597 case elfcpp::R_POWERPC_TPREL16_HI:
7598 case elfcpp::R_POWERPC_TPREL16_HA:
7599 case elfcpp::R_POWERPC_TPREL:
7600 case elfcpp::R_PPC64_TPREL16_HIGHER:
7601 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7602 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7603 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7604 // tls symbol values are relative to tls_segment()->vaddr()
7605 value -= tp_offset;
7606 break;
7607
7608 case elfcpp::R_PPC64_DTPREL16_DS:
7609 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7610 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7611 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7612 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7613 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7614 if (size != 64)
7615 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7616 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7617 break;
7618 // Fall through.
7619 case elfcpp::R_POWERPC_DTPREL16:
7620 case elfcpp::R_POWERPC_DTPREL16_LO:
7621 case elfcpp::R_POWERPC_DTPREL16_HI:
7622 case elfcpp::R_POWERPC_DTPREL16_HA:
7623 case elfcpp::R_POWERPC_DTPREL:
7624 case elfcpp::R_PPC64_DTPREL16_HIGH:
7625 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7626 // tls symbol values are relative to tls_segment()->vaddr()
7627 value -= dtp_offset;
7628 break;
7629
7630 case elfcpp::R_PPC64_ADDR64_LOCAL:
7631 if (gsym != NULL)
7632 value += object->ppc64_local_entry_offset(gsym);
7633 else
7634 value += object->ppc64_local_entry_offset(r_sym);
7635 break;
7636
7637 default:
7638 break;
7639 }
7640
7641 Insn branch_bit = 0;
7642 switch (r_type)
7643 {
7644 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7645 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7646 branch_bit = 1 << 21;
7647 // Fall through.
7648 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7649 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7650 {
7651 Insn* iview = reinterpret_cast<Insn*>(view);
7652 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7653 insn &= ~(1 << 21);
7654 insn |= branch_bit;
7655 if (this->is_isa_v2)
7656 {
7657 // Set 'a' bit. This is 0b00010 in BO field for branch
7658 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7659 // for branch on CTR insns (BO == 1a00t or 1a01t).
7660 if ((insn & (0x14 << 21)) == (0x04 << 21))
7661 insn |= 0x02 << 21;
7662 else if ((insn & (0x14 << 21)) == (0x10 << 21))
7663 insn |= 0x08 << 21;
7664 else
7665 break;
7666 }
7667 else
7668 {
7669 // Invert 'y' bit if not the default.
7670 if (static_cast<Signed_address>(value) < 0)
7671 insn ^= 1 << 21;
7672 }
7673 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7674 }
7675 break;
7676
7677 default:
7678 break;
7679 }
7680
7681 if (size == 64)
7682 {
7683 // Multi-instruction sequences that access the TOC can be
7684 // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7685 // to nop; addi rb,r2,x;
7686 switch (r_type)
7687 {
7688 default:
7689 break;
7690
7691 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7692 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7693 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7694 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7695 case elfcpp::R_POWERPC_GOT16_HA:
7696 case elfcpp::R_PPC64_TOC16_HA:
7697 if (parameters->options().toc_optimize())
7698 {
7699 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7700 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7701 if ((insn & ((0x3f << 26) | 0x1f << 16))
7702 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7703 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7704 _("toc optimization is not supported "
7705 "for %#08x instruction"), insn);
7706 else if (value + 0x8000 < 0x10000)
7707 {
7708 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7709 return true;
7710 }
7711 }
7712 break;
7713
7714 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7715 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7716 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7717 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7718 case elfcpp::R_POWERPC_GOT16_LO:
7719 case elfcpp::R_PPC64_GOT16_LO_DS:
7720 case elfcpp::R_PPC64_TOC16_LO:
7721 case elfcpp::R_PPC64_TOC16_LO_DS:
7722 if (parameters->options().toc_optimize())
7723 {
7724 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7725 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7726 if (!ok_lo_toc_insn(insn))
7727 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7728 _("toc optimization is not supported "
7729 "for %#08x instruction"), insn);
7730 else if (value + 0x8000 < 0x10000)
7731 {
7732 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7733 {
7734 // Transform addic to addi when we change reg.
7735 insn &= ~((0x3f << 26) | (0x1f << 16));
7736 insn |= (14u << 26) | (2 << 16);
7737 }
7738 else
7739 {
7740 insn &= ~(0x1f << 16);
7741 insn |= 2 << 16;
7742 }
7743 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7744 }
7745 }
7746 break;
7747
7748 case elfcpp::R_PPC64_ENTRY:
7749 value = (target->got_section()->output_section()->address()
7750 + object->toc_base_offset());
7751 if (value + 0x80008000 <= 0xffffffff
7752 && !parameters->options().output_is_position_independent())
7753 {
7754 Insn* iview = reinterpret_cast<Insn*>(view);
7755 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7756 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7757
7758 if ((insn1 & ~0xfffc) == ld_2_12
7759 && insn2 == add_2_2_12)
7760 {
7761 insn1 = lis_2 + ha(value);
7762 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7763 insn2 = addi_2_2 + l(value);
7764 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7765 return true;
7766 }
7767 }
7768 else
7769 {
7770 value -= address;
7771 if (value + 0x80008000 <= 0xffffffff)
7772 {
7773 Insn* iview = reinterpret_cast<Insn*>(view);
7774 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7775 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7776
7777 if ((insn1 & ~0xfffc) == ld_2_12
7778 && insn2 == add_2_2_12)
7779 {
7780 insn1 = addis_2_12 + ha(value);
7781 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7782 insn2 = addi_2_2 + l(value);
7783 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7784 return true;
7785 }
7786 }
7787 }
7788 break;
7789
7790 case elfcpp::R_POWERPC_REL16_LO:
7791 // If we are generating a non-PIC executable, edit
7792 // 0: addis 2,12,.TOC.-0b@ha
7793 // addi 2,2,.TOC.-0b@l
7794 // used by ELFv2 global entry points to set up r2, to
7795 // lis 2,.TOC.@ha
7796 // addi 2,2,.TOC.@l
7797 // if .TOC. is in range. */
7798 if (value + address - 4 + 0x80008000 <= 0xffffffff
7799 && relnum != 0
7800 && preloc != NULL
7801 && target->abiversion() >= 2
7802 && !parameters->options().output_is_position_independent()
7803 && rela.get_r_addend() == d_offset + 4
7804 && gsym != NULL
7805 && strcmp(gsym->name(), ".TOC.") == 0)
7806 {
7807 const int reloc_size
7808 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7809 Reltype prev_rela(preloc - reloc_size);
7810 if ((prev_rela.get_r_info()
7811 == elfcpp::elf_r_info<size>(r_sym,
7812 elfcpp::R_POWERPC_REL16_HA))
7813 && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
7814 && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
7815 {
7816 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7817 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
7818 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
7819
7820 if ((insn1 & 0xffff0000) == addis_2_12
7821 && (insn2 & 0xffff0000) == addi_2_2)
7822 {
7823 insn1 = lis_2 + ha(value + address - 4);
7824 elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
7825 insn2 = addi_2_2 + l(value + address - 4);
7826 elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
7827 if (relinfo->rr)
7828 {
7829 relinfo->rr->set_strategy(relnum - 1,
7830 Relocatable_relocs::RELOC_SPECIAL);
7831 relinfo->rr->set_strategy(relnum,
7832 Relocatable_relocs::RELOC_SPECIAL);
7833 }
7834 return true;
7835 }
7836 }
7837 }
7838 break;
7839 }
7840 }
7841
7842 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7843 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7844 switch (r_type)
7845 {
7846 case elfcpp::R_POWERPC_ADDR32:
7847 case elfcpp::R_POWERPC_UADDR32:
7848 if (size == 64)
7849 overflow = Reloc::CHECK_BITFIELD;
7850 break;
7851
7852 case elfcpp::R_POWERPC_REL32:
7853 case elfcpp::R_POWERPC_REL16DX_HA:
7854 if (size == 64)
7855 overflow = Reloc::CHECK_SIGNED;
7856 break;
7857
7858 case elfcpp::R_POWERPC_UADDR16:
7859 overflow = Reloc::CHECK_BITFIELD;
7860 break;
7861
7862 case elfcpp::R_POWERPC_ADDR16:
7863 // We really should have three separate relocations,
7864 // one for 16-bit data, one for insns with 16-bit signed fields,
7865 // and one for insns with 16-bit unsigned fields.
7866 overflow = Reloc::CHECK_BITFIELD;
7867 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7868 overflow = Reloc::CHECK_LOW_INSN;
7869 break;
7870
7871 case elfcpp::R_POWERPC_ADDR16_HI:
7872 case elfcpp::R_POWERPC_ADDR16_HA:
7873 case elfcpp::R_POWERPC_GOT16_HI:
7874 case elfcpp::R_POWERPC_GOT16_HA:
7875 case elfcpp::R_POWERPC_PLT16_HI:
7876 case elfcpp::R_POWERPC_PLT16_HA:
7877 case elfcpp::R_POWERPC_SECTOFF_HI:
7878 case elfcpp::R_POWERPC_SECTOFF_HA:
7879 case elfcpp::R_PPC64_TOC16_HI:
7880 case elfcpp::R_PPC64_TOC16_HA:
7881 case elfcpp::R_PPC64_PLTGOT16_HI:
7882 case elfcpp::R_PPC64_PLTGOT16_HA:
7883 case elfcpp::R_POWERPC_TPREL16_HI:
7884 case elfcpp::R_POWERPC_TPREL16_HA:
7885 case elfcpp::R_POWERPC_DTPREL16_HI:
7886 case elfcpp::R_POWERPC_DTPREL16_HA:
7887 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7888 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7889 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7890 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7891 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7892 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7893 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7894 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7895 case elfcpp::R_POWERPC_REL16_HI:
7896 case elfcpp::R_POWERPC_REL16_HA:
7897 if (size != 32)
7898 overflow = Reloc::CHECK_HIGH_INSN;
7899 break;
7900
7901 case elfcpp::R_POWERPC_REL16:
7902 case elfcpp::R_PPC64_TOC16:
7903 case elfcpp::R_POWERPC_GOT16:
7904 case elfcpp::R_POWERPC_SECTOFF:
7905 case elfcpp::R_POWERPC_TPREL16:
7906 case elfcpp::R_POWERPC_DTPREL16:
7907 case elfcpp::R_POWERPC_GOT_TLSGD16:
7908 case elfcpp::R_POWERPC_GOT_TLSLD16:
7909 case elfcpp::R_POWERPC_GOT_TPREL16:
7910 case elfcpp::R_POWERPC_GOT_DTPREL16:
7911 overflow = Reloc::CHECK_LOW_INSN;
7912 break;
7913
7914 case elfcpp::R_POWERPC_ADDR24:
7915 case elfcpp::R_POWERPC_ADDR14:
7916 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7917 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7918 case elfcpp::R_PPC64_ADDR16_DS:
7919 case elfcpp::R_POWERPC_REL24:
7920 case elfcpp::R_PPC_PLTREL24:
7921 case elfcpp::R_PPC_LOCAL24PC:
7922 case elfcpp::R_PPC64_TPREL16_DS:
7923 case elfcpp::R_PPC64_DTPREL16_DS:
7924 case elfcpp::R_PPC64_TOC16_DS:
7925 case elfcpp::R_PPC64_GOT16_DS:
7926 case elfcpp::R_PPC64_SECTOFF_DS:
7927 case elfcpp::R_POWERPC_REL14:
7928 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7929 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7930 overflow = Reloc::CHECK_SIGNED;
7931 break;
7932 }
7933
7934 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7935 Insn insn = 0;
7936
7937 if (overflow == Reloc::CHECK_LOW_INSN
7938 || overflow == Reloc::CHECK_HIGH_INSN)
7939 {
7940 insn = elfcpp::Swap<32, big_endian>::readval(iview);
7941
7942 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7943 overflow = Reloc::CHECK_BITFIELD;
7944 else if (overflow == Reloc::CHECK_LOW_INSN
7945 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7946 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7947 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7948 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7949 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7950 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7951 overflow = Reloc::CHECK_UNSIGNED;
7952 else
7953 overflow = Reloc::CHECK_SIGNED;
7954 }
7955
7956 bool maybe_dq_reloc = false;
7957 typename Powerpc_relocate_functions<size, big_endian>::Status status
7958 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7959 switch (r_type)
7960 {
7961 case elfcpp::R_POWERPC_NONE:
7962 case elfcpp::R_POWERPC_TLS:
7963 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7964 case elfcpp::R_POWERPC_GNU_VTENTRY:
7965 break;
7966
7967 case elfcpp::R_PPC64_ADDR64:
7968 case elfcpp::R_PPC64_REL64:
7969 case elfcpp::R_PPC64_TOC:
7970 case elfcpp::R_PPC64_ADDR64_LOCAL:
7971 Reloc::addr64(view, value);
7972 break;
7973
7974 case elfcpp::R_POWERPC_TPREL:
7975 case elfcpp::R_POWERPC_DTPREL:
7976 if (size == 64)
7977 Reloc::addr64(view, value);
7978 else
7979 status = Reloc::addr32(view, value, overflow);
7980 break;
7981
7982 case elfcpp::R_PPC64_UADDR64:
7983 Reloc::addr64_u(view, value);
7984 break;
7985
7986 case elfcpp::R_POWERPC_ADDR32:
7987 status = Reloc::addr32(view, value, overflow);
7988 break;
7989
7990 case elfcpp::R_POWERPC_REL32:
7991 case elfcpp::R_POWERPC_UADDR32:
7992 status = Reloc::addr32_u(view, value, overflow);
7993 break;
7994
7995 case elfcpp::R_POWERPC_ADDR24:
7996 case elfcpp::R_POWERPC_REL24:
7997 case elfcpp::R_PPC_PLTREL24:
7998 case elfcpp::R_PPC_LOCAL24PC:
7999 status = Reloc::addr24(view, value, overflow);
8000 break;
8001
8002 case elfcpp::R_POWERPC_GOT_DTPREL16:
8003 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
8004 case elfcpp::R_POWERPC_GOT_TPREL16:
8005 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
8006 if (size == 64)
8007 {
8008 // On ppc64 these are all ds form
8009 maybe_dq_reloc = true;
8010 break;
8011 }
8012 // Fall through.
8013 case elfcpp::R_POWERPC_ADDR16:
8014 case elfcpp::R_POWERPC_REL16:
8015 case elfcpp::R_PPC64_TOC16:
8016 case elfcpp::R_POWERPC_GOT16:
8017 case elfcpp::R_POWERPC_SECTOFF:
8018 case elfcpp::R_POWERPC_TPREL16:
8019 case elfcpp::R_POWERPC_DTPREL16:
8020 case elfcpp::R_POWERPC_GOT_TLSGD16:
8021 case elfcpp::R_POWERPC_GOT_TLSLD16:
8022 case elfcpp::R_POWERPC_ADDR16_LO:
8023 case elfcpp::R_POWERPC_REL16_LO:
8024 case elfcpp::R_PPC64_TOC16_LO:
8025 case elfcpp::R_POWERPC_GOT16_LO:
8026 case elfcpp::R_POWERPC_SECTOFF_LO:
8027 case elfcpp::R_POWERPC_TPREL16_LO:
8028 case elfcpp::R_POWERPC_DTPREL16_LO:
8029 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8030 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8031 if (size == 64)
8032 status = Reloc::addr16(view, value, overflow);
8033 else
8034 maybe_dq_reloc = true;
8035 break;
8036
8037 case elfcpp::R_POWERPC_UADDR16:
8038 status = Reloc::addr16_u(view, value, overflow);
8039 break;
8040
8041 case elfcpp::R_PPC64_ADDR16_HIGH:
8042 case elfcpp::R_PPC64_TPREL16_HIGH:
8043 case elfcpp::R_PPC64_DTPREL16_HIGH:
8044 if (size == 32)
8045 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
8046 goto unsupp;
8047 // Fall through.
8048 case elfcpp::R_POWERPC_ADDR16_HI:
8049 case elfcpp::R_POWERPC_REL16_HI:
8050 case elfcpp::R_PPC64_TOC16_HI:
8051 case elfcpp::R_POWERPC_GOT16_HI:
8052 case elfcpp::R_POWERPC_SECTOFF_HI:
8053 case elfcpp::R_POWERPC_TPREL16_HI:
8054 case elfcpp::R_POWERPC_DTPREL16_HI:
8055 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
8056 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
8057 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
8058 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
8059 Reloc::addr16_hi(view, value);
8060 break;
8061
8062 case elfcpp::R_PPC64_ADDR16_HIGHA:
8063 case elfcpp::R_PPC64_TPREL16_HIGHA:
8064 case elfcpp::R_PPC64_DTPREL16_HIGHA:
8065 if (size == 32)
8066 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
8067 goto unsupp;
8068 // Fall through.
8069 case elfcpp::R_POWERPC_ADDR16_HA:
8070 case elfcpp::R_POWERPC_REL16_HA:
8071 case elfcpp::R_PPC64_TOC16_HA:
8072 case elfcpp::R_POWERPC_GOT16_HA:
8073 case elfcpp::R_POWERPC_SECTOFF_HA:
8074 case elfcpp::R_POWERPC_TPREL16_HA:
8075 case elfcpp::R_POWERPC_DTPREL16_HA:
8076 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8077 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8078 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8079 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8080 Reloc::addr16_ha(view, value);
8081 break;
8082
8083 case elfcpp::R_POWERPC_REL16DX_HA:
8084 status = Reloc::addr16dx_ha(view, value, overflow);
8085 break;
8086
8087 case elfcpp::R_PPC64_DTPREL16_HIGHER:
8088 if (size == 32)
8089 // R_PPC_EMB_NADDR16_LO
8090 goto unsupp;
8091 // Fall through.
8092 case elfcpp::R_PPC64_ADDR16_HIGHER:
8093 case elfcpp::R_PPC64_TPREL16_HIGHER:
8094 Reloc::addr16_hi2(view, value);
8095 break;
8096
8097 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8098 if (size == 32)
8099 // R_PPC_EMB_NADDR16_HI
8100 goto unsupp;
8101 // Fall through.
8102 case elfcpp::R_PPC64_ADDR16_HIGHERA:
8103 case elfcpp::R_PPC64_TPREL16_HIGHERA:
8104 Reloc::addr16_ha2(view, value);
8105 break;
8106
8107 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8108 if (size == 32)
8109 // R_PPC_EMB_NADDR16_HA
8110 goto unsupp;
8111 // Fall through.
8112 case elfcpp::R_PPC64_ADDR16_HIGHEST:
8113 case elfcpp::R_PPC64_TPREL16_HIGHEST:
8114 Reloc::addr16_hi3(view, value);
8115 break;
8116
8117 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8118 if (size == 32)
8119 // R_PPC_EMB_SDAI16
8120 goto unsupp;
8121 // Fall through.
8122 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
8123 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8124 Reloc::addr16_ha3(view, value);
8125 break;
8126
8127 case elfcpp::R_PPC64_DTPREL16_DS:
8128 case elfcpp::R_PPC64_DTPREL16_LO_DS:
8129 if (size == 32)
8130 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
8131 goto unsupp;
8132 // Fall through.
8133 case elfcpp::R_PPC64_TPREL16_DS:
8134 case elfcpp::R_PPC64_TPREL16_LO_DS:
8135 if (size == 32)
8136 // R_PPC_TLSGD, R_PPC_TLSLD
8137 break;
8138 // Fall through.
8139 case elfcpp::R_PPC64_ADDR16_DS:
8140 case elfcpp::R_PPC64_ADDR16_LO_DS:
8141 case elfcpp::R_PPC64_TOC16_DS:
8142 case elfcpp::R_PPC64_TOC16_LO_DS:
8143 case elfcpp::R_PPC64_GOT16_DS:
8144 case elfcpp::R_PPC64_GOT16_LO_DS:
8145 case elfcpp::R_PPC64_SECTOFF_DS:
8146 case elfcpp::R_PPC64_SECTOFF_LO_DS:
8147 maybe_dq_reloc = true;
8148 break;
8149
8150 case elfcpp::R_POWERPC_ADDR14:
8151 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8152 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8153 case elfcpp::R_POWERPC_REL14:
8154 case elfcpp::R_POWERPC_REL14_BRTAKEN:
8155 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8156 status = Reloc::addr14(view, value, overflow);
8157 break;
8158
8159 case elfcpp::R_POWERPC_COPY:
8160 case elfcpp::R_POWERPC_GLOB_DAT:
8161 case elfcpp::R_POWERPC_JMP_SLOT:
8162 case elfcpp::R_POWERPC_RELATIVE:
8163 case elfcpp::R_POWERPC_DTPMOD:
8164 case elfcpp::R_PPC64_JMP_IREL:
8165 case elfcpp::R_POWERPC_IRELATIVE:
8166 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8167 _("unexpected reloc %u in object file"),
8168 r_type);
8169 break;
8170
8171 case elfcpp::R_PPC_EMB_SDA21:
8172 if (size == 32)
8173 goto unsupp;
8174 else
8175 {
8176 // R_PPC64_TOCSAVE. For the time being this can be ignored.
8177 }
8178 break;
8179
8180 case elfcpp::R_PPC_EMB_SDA2I16:
8181 case elfcpp::R_PPC_EMB_SDA2REL:
8182 if (size == 32)
8183 goto unsupp;
8184 // R_PPC64_TLSGD, R_PPC64_TLSLD
8185 break;
8186
8187 case elfcpp::R_POWERPC_PLT32:
8188 case elfcpp::R_POWERPC_PLTREL32:
8189 case elfcpp::R_POWERPC_PLT16_LO:
8190 case elfcpp::R_POWERPC_PLT16_HI:
8191 case elfcpp::R_POWERPC_PLT16_HA:
8192 case elfcpp::R_PPC_SDAREL16:
8193 case elfcpp::R_POWERPC_ADDR30:
8194 case elfcpp::R_PPC64_PLT64:
8195 case elfcpp::R_PPC64_PLTREL64:
8196 case elfcpp::R_PPC64_PLTGOT16:
8197 case elfcpp::R_PPC64_PLTGOT16_LO:
8198 case elfcpp::R_PPC64_PLTGOT16_HI:
8199 case elfcpp::R_PPC64_PLTGOT16_HA:
8200 case elfcpp::R_PPC64_PLT16_LO_DS:
8201 case elfcpp::R_PPC64_PLTGOT16_DS:
8202 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
8203 case elfcpp::R_PPC_EMB_RELSDA:
8204 case elfcpp::R_PPC_TOC16:
8205 default:
8206 unsupp:
8207 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8208 _("unsupported reloc %u"),
8209 r_type);
8210 break;
8211 }
8212
8213 if (maybe_dq_reloc)
8214 {
8215 if (insn == 0)
8216 insn = elfcpp::Swap<32, big_endian>::readval(iview);
8217
8218 if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
8219 || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
8220 && (insn & 3) == 1))
8221 status = Reloc::addr16_dq(view, value, overflow);
8222 else if (size == 64
8223 || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
8224 || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
8225 || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
8226 || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
8227 status = Reloc::addr16_ds(view, value, overflow);
8228 else
8229 status = Reloc::addr16(view, value, overflow);
8230 }
8231
8232 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
8233 && (has_stub_value
8234 || !(gsym != NULL
8235 && gsym->is_undefined()
8236 && is_branch_reloc(r_type))))
8237 {
8238 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8239 _("relocation overflow"));
8240 if (has_stub_value)
8241 gold_info(_("try relinking with a smaller --stub-group-size"));
8242 }
8243
8244 return true;
8245 }
8246
8247 // Relocate section data.
8248
8249 template<int size, bool big_endian>
8250 void
8251 Target_powerpc<size, big_endian>::relocate_section(
8252 const Relocate_info<size, big_endian>* relinfo,
8253 unsigned int sh_type,
8254 const unsigned char* prelocs,
8255 size_t reloc_count,
8256 Output_section* output_section,
8257 bool needs_special_offset_handling,
8258 unsigned char* view,
8259 Address address,
8260 section_size_type view_size,
8261 const Reloc_symbol_changes* reloc_symbol_changes)
8262 {
8263 typedef Target_powerpc<size, big_endian> Powerpc;
8264 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
8265 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
8266 Powerpc_comdat_behavior;
8267 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8268 Classify_reloc;
8269
8270 gold_assert(sh_type == elfcpp::SHT_RELA);
8271
8272 gold::relocate_section<size, big_endian, Powerpc, Powerpc_relocate,
8273 Powerpc_comdat_behavior, Classify_reloc>(
8274 relinfo,
8275 this,
8276 prelocs,
8277 reloc_count,
8278 output_section,
8279 needs_special_offset_handling,
8280 view,
8281 address,
8282 view_size,
8283 reloc_symbol_changes);
8284 }
8285
8286 template<int size, bool big_endian>
8287 class Powerpc_scan_relocatable_reloc
8288 {
8289 public:
8290 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8291 Reltype;
8292 static const int reloc_size =
8293 Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8294 static const int sh_type = elfcpp::SHT_RELA;
8295
8296 // Return the symbol referred to by the relocation.
8297 static inline unsigned int
8298 get_r_sym(const Reltype* reloc)
8299 { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
8300
8301 // Return the type of the relocation.
8302 static inline unsigned int
8303 get_r_type(const Reltype* reloc)
8304 { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
8305
8306 // Return the strategy to use for a local symbol which is not a
8307 // section symbol, given the relocation type.
8308 inline Relocatable_relocs::Reloc_strategy
8309 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
8310 {
8311 if (r_type == 0 && r_sym == 0)
8312 return Relocatable_relocs::RELOC_DISCARD;
8313 return Relocatable_relocs::RELOC_COPY;
8314 }
8315
8316 // Return the strategy to use for a local symbol which is a section
8317 // symbol, given the relocation type.
8318 inline Relocatable_relocs::Reloc_strategy
8319 local_section_strategy(unsigned int, Relobj*)
8320 {
8321 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
8322 }
8323
8324 // Return the strategy to use for a global symbol, given the
8325 // relocation type, the object, and the symbol index.
8326 inline Relocatable_relocs::Reloc_strategy
8327 global_strategy(unsigned int r_type, Relobj*, unsigned int)
8328 {
8329 if (r_type == elfcpp::R_PPC_PLTREL24)
8330 return Relocatable_relocs::RELOC_SPECIAL;
8331 return Relocatable_relocs::RELOC_COPY;
8332 }
8333 };
8334
8335 // Scan the relocs during a relocatable link.
8336
8337 template<int size, bool big_endian>
8338 void
8339 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
8340 Symbol_table* symtab,
8341 Layout* layout,
8342 Sized_relobj_file<size, big_endian>* object,
8343 unsigned int data_shndx,
8344 unsigned int sh_type,
8345 const unsigned char* prelocs,
8346 size_t reloc_count,
8347 Output_section* output_section,
8348 bool needs_special_offset_handling,
8349 size_t local_symbol_count,
8350 const unsigned char* plocal_symbols,
8351 Relocatable_relocs* rr)
8352 {
8353 typedef Powerpc_scan_relocatable_reloc<size, big_endian> Scan_strategy;
8354
8355 gold_assert(sh_type == elfcpp::SHT_RELA);
8356
8357 gold::scan_relocatable_relocs<size, big_endian, Scan_strategy>(
8358 symtab,
8359 layout,
8360 object,
8361 data_shndx,
8362 prelocs,
8363 reloc_count,
8364 output_section,
8365 needs_special_offset_handling,
8366 local_symbol_count,
8367 plocal_symbols,
8368 rr);
8369 }
8370
8371 // Scan the relocs for --emit-relocs.
8372
8373 template<int size, bool big_endian>
8374 void
8375 Target_powerpc<size, big_endian>::emit_relocs_scan(
8376 Symbol_table* symtab,
8377 Layout* layout,
8378 Sized_relobj_file<size, big_endian>* object,
8379 unsigned int data_shndx,
8380 unsigned int sh_type,
8381 const unsigned char* prelocs,
8382 size_t reloc_count,
8383 Output_section* output_section,
8384 bool needs_special_offset_handling,
8385 size_t local_symbol_count,
8386 const unsigned char* plocal_syms,
8387 Relocatable_relocs* rr)
8388 {
8389 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8390 Classify_reloc;
8391 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
8392 Emit_relocs_strategy;
8393
8394 gold_assert(sh_type == elfcpp::SHT_RELA);
8395
8396 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
8397 symtab,
8398 layout,
8399 object,
8400 data_shndx,
8401 prelocs,
8402 reloc_count,
8403 output_section,
8404 needs_special_offset_handling,
8405 local_symbol_count,
8406 plocal_syms,
8407 rr);
8408 }
8409
8410 // Emit relocations for a section.
8411 // This is a modified version of the function by the same name in
8412 // target-reloc.h. Using relocate_special_relocatable for
8413 // R_PPC_PLTREL24 would require duplication of the entire body of the
8414 // loop, so we may as well duplicate the whole thing.
8415
8416 template<int size, bool big_endian>
8417 void
8418 Target_powerpc<size, big_endian>::relocate_relocs(
8419 const Relocate_info<size, big_endian>* relinfo,
8420 unsigned int sh_type,
8421 const unsigned char* prelocs,
8422 size_t reloc_count,
8423 Output_section* output_section,
8424 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8425 unsigned char*,
8426 Address view_address,
8427 section_size_type,
8428 unsigned char* reloc_view,
8429 section_size_type reloc_view_size)
8430 {
8431 gold_assert(sh_type == elfcpp::SHT_RELA);
8432
8433 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8434 Reltype;
8435 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
8436 Reltype_write;
8437 const int reloc_size
8438 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8439 // Offset from start of insn to d-field reloc.
8440 const int d_offset = big_endian ? 2 : 0;
8441
8442 Powerpc_relobj<size, big_endian>* const object
8443 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8444 const unsigned int local_count = object->local_symbol_count();
8445 unsigned int got2_shndx = object->got2_shndx();
8446 Address got2_addend = 0;
8447 if (got2_shndx != 0)
8448 {
8449 got2_addend = object->get_output_section_offset(got2_shndx);
8450 gold_assert(got2_addend != invalid_address);
8451 }
8452
8453 unsigned char* pwrite = reloc_view;
8454 bool zap_next = false;
8455 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
8456 {
8457 Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
8458 if (strategy == Relocatable_relocs::RELOC_DISCARD)
8459 continue;
8460
8461 Reltype reloc(prelocs);
8462 Reltype_write reloc_write(pwrite);
8463
8464 Address offset = reloc.get_r_offset();
8465 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
8466 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8467 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8468 const unsigned int orig_r_sym = r_sym;
8469 typename elfcpp::Elf_types<size>::Elf_Swxword addend
8470 = reloc.get_r_addend();
8471 const Symbol* gsym = NULL;
8472
8473 if (zap_next)
8474 {
8475 // We could arrange to discard these and other relocs for
8476 // tls optimised sequences in the strategy methods, but for
8477 // now do as BFD ld does.
8478 r_type = elfcpp::R_POWERPC_NONE;
8479 zap_next = false;
8480 }
8481
8482 // Get the new symbol index.
8483 Output_section* os = NULL;
8484 if (r_sym < local_count)
8485 {
8486 switch (strategy)
8487 {
8488 case Relocatable_relocs::RELOC_COPY:
8489 case Relocatable_relocs::RELOC_SPECIAL:
8490 if (r_sym != 0)
8491 {
8492 r_sym = object->symtab_index(r_sym);
8493 gold_assert(r_sym != -1U);
8494 }
8495 break;
8496
8497 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
8498 {
8499 // We are adjusting a section symbol. We need to find
8500 // the symbol table index of the section symbol for
8501 // the output section corresponding to input section
8502 // in which this symbol is defined.
8503 gold_assert(r_sym < local_count);
8504 bool is_ordinary;
8505 unsigned int shndx =
8506 object->local_symbol_input_shndx(r_sym, &is_ordinary);
8507 gold_assert(is_ordinary);
8508 os = object->output_section(shndx);
8509 gold_assert(os != NULL);
8510 gold_assert(os->needs_symtab_index());
8511 r_sym = os->symtab_index();
8512 }
8513 break;
8514
8515 default:
8516 gold_unreachable();
8517 }
8518 }
8519 else
8520 {
8521 gsym = object->global_symbol(r_sym);
8522 gold_assert(gsym != NULL);
8523 if (gsym->is_forwarder())
8524 gsym = relinfo->symtab->resolve_forwards(gsym);
8525
8526 gold_assert(gsym->has_symtab_index());
8527 r_sym = gsym->symtab_index();
8528 }
8529
8530 // Get the new offset--the location in the output section where
8531 // this relocation should be applied.
8532 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8533 offset += offset_in_output_section;
8534 else
8535 {
8536 section_offset_type sot_offset =
8537 convert_types<section_offset_type, Address>(offset);
8538 section_offset_type new_sot_offset =
8539 output_section->output_offset(object, relinfo->data_shndx,
8540 sot_offset);
8541 gold_assert(new_sot_offset != -1);
8542 offset = new_sot_offset;
8543 }
8544
8545 // In an object file, r_offset is an offset within the section.
8546 // In an executable or dynamic object, generated by
8547 // --emit-relocs, r_offset is an absolute address.
8548 if (!parameters->options().relocatable())
8549 {
8550 offset += view_address;
8551 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8552 offset -= offset_in_output_section;
8553 }
8554
8555 // Handle the reloc addend based on the strategy.
8556 if (strategy == Relocatable_relocs::RELOC_COPY)
8557 ;
8558 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8559 {
8560 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8561 gold_assert(os != NULL);
8562 addend = psymval->value(object, addend) - os->address();
8563 }
8564 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8565 {
8566 if (size == 32)
8567 {
8568 if (addend >= 32768)
8569 addend += got2_addend;
8570 }
8571 else if (r_type == elfcpp::R_POWERPC_REL16_HA)
8572 {
8573 r_type = elfcpp::R_POWERPC_ADDR16_HA;
8574 addend -= d_offset;
8575 }
8576 else if (r_type == elfcpp::R_POWERPC_REL16_LO)
8577 {
8578 r_type = elfcpp::R_POWERPC_ADDR16_LO;
8579 addend -= d_offset + 4;
8580 }
8581 }
8582 else
8583 gold_unreachable();
8584
8585 if (!parameters->options().relocatable())
8586 {
8587 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8588 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8589 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8590 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8591 {
8592 // First instruction of a global dynamic sequence,
8593 // arg setup insn.
8594 const bool final = gsym == NULL || gsym->final_value_is_known();
8595 switch (this->optimize_tls_gd(final))
8596 {
8597 case tls::TLSOPT_TO_IE:
8598 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8599 - elfcpp::R_POWERPC_GOT_TLSGD16);
8600 break;
8601 case tls::TLSOPT_TO_LE:
8602 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8603 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8604 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8605 else
8606 {
8607 r_type = elfcpp::R_POWERPC_NONE;
8608 offset -= d_offset;
8609 }
8610 break;
8611 default:
8612 break;
8613 }
8614 }
8615 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8616 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8617 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8618 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8619 {
8620 // First instruction of a local dynamic sequence,
8621 // arg setup insn.
8622 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8623 {
8624 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8625 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8626 {
8627 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8628 const Output_section* os = relinfo->layout->tls_segment()
8629 ->first_section();
8630 gold_assert(os != NULL);
8631 gold_assert(os->needs_symtab_index());
8632 r_sym = os->symtab_index();
8633 addend = dtp_offset;
8634 }
8635 else
8636 {
8637 r_type = elfcpp::R_POWERPC_NONE;
8638 offset -= d_offset;
8639 }
8640 }
8641 }
8642 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8643 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8644 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8645 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8646 {
8647 // First instruction of initial exec sequence.
8648 const bool final = gsym == NULL || gsym->final_value_is_known();
8649 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8650 {
8651 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8652 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8653 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8654 else
8655 {
8656 r_type = elfcpp::R_POWERPC_NONE;
8657 offset -= d_offset;
8658 }
8659 }
8660 }
8661 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8662 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8663 {
8664 // Second instruction of a global dynamic sequence,
8665 // the __tls_get_addr call
8666 const bool final = gsym == NULL || gsym->final_value_is_known();
8667 switch (this->optimize_tls_gd(final))
8668 {
8669 case tls::TLSOPT_TO_IE:
8670 r_type = elfcpp::R_POWERPC_NONE;
8671 zap_next = true;
8672 break;
8673 case tls::TLSOPT_TO_LE:
8674 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8675 offset += d_offset;
8676 zap_next = true;
8677 break;
8678 default:
8679 break;
8680 }
8681 }
8682 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8683 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8684 {
8685 // Second instruction of a local dynamic sequence,
8686 // the __tls_get_addr call
8687 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8688 {
8689 const Output_section* os = relinfo->layout->tls_segment()
8690 ->first_section();
8691 gold_assert(os != NULL);
8692 gold_assert(os->needs_symtab_index());
8693 r_sym = os->symtab_index();
8694 addend = dtp_offset;
8695 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8696 offset += d_offset;
8697 zap_next = true;
8698 }
8699 }
8700 else if (r_type == elfcpp::R_POWERPC_TLS)
8701 {
8702 // Second instruction of an initial exec sequence
8703 const bool final = gsym == NULL || gsym->final_value_is_known();
8704 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8705 {
8706 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8707 offset += d_offset;
8708 }
8709 }
8710 }
8711
8712 reloc_write.put_r_offset(offset);
8713 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8714 reloc_write.put_r_addend(addend);
8715
8716 pwrite += reloc_size;
8717 }
8718
8719 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8720 == reloc_view_size);
8721 }
8722
8723 // Return the value to use for a dynamic symbol which requires special
8724 // treatment. This is how we support equality comparisons of function
8725 // pointers across shared library boundaries, as described in the
8726 // processor specific ABI supplement.
8727
8728 template<int size, bool big_endian>
8729 uint64_t
8730 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8731 {
8732 if (size == 32)
8733 {
8734 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8735 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8736 p != this->stub_tables_.end();
8737 ++p)
8738 {
8739 Address off = (*p)->find_plt_call_entry(gsym);
8740 if (off != invalid_address)
8741 return (*p)->stub_address() + off;
8742 }
8743 }
8744 else if (this->abiversion() >= 2)
8745 {
8746 Address off = this->glink_section()->find_global_entry(gsym);
8747 if (off != invalid_address)
8748 return this->glink_section()->global_entry_address() + off;
8749 }
8750 gold_unreachable();
8751 }
8752
8753 // Return the PLT address to use for a local symbol.
8754 template<int size, bool big_endian>
8755 uint64_t
8756 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8757 const Relobj* object,
8758 unsigned int symndx) const
8759 {
8760 if (size == 32)
8761 {
8762 const Sized_relobj<size, big_endian>* relobj
8763 = static_cast<const Sized_relobj<size, big_endian>*>(object);
8764 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8765 p != this->stub_tables_.end();
8766 ++p)
8767 {
8768 Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8769 symndx);
8770 if (off != invalid_address)
8771 return (*p)->stub_address() + off;
8772 }
8773 }
8774 gold_unreachable();
8775 }
8776
8777 // Return the PLT address to use for a global symbol.
8778 template<int size, bool big_endian>
8779 uint64_t
8780 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8781 const Symbol* gsym) const
8782 {
8783 if (size == 32)
8784 {
8785 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8786 p != this->stub_tables_.end();
8787 ++p)
8788 {
8789 Address off = (*p)->find_plt_call_entry(gsym);
8790 if (off != invalid_address)
8791 return (*p)->stub_address() + off;
8792 }
8793 }
8794 else if (this->abiversion() >= 2)
8795 {
8796 Address off = this->glink_section()->find_global_entry(gsym);
8797 if (off != invalid_address)
8798 return this->glink_section()->global_entry_address() + off;
8799 }
8800 gold_unreachable();
8801 }
8802
8803 // Return the offset to use for the GOT_INDX'th got entry which is
8804 // for a local tls symbol specified by OBJECT, SYMNDX.
8805 template<int size, bool big_endian>
8806 int64_t
8807 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8808 const Relobj* object,
8809 unsigned int symndx,
8810 unsigned int got_indx) const
8811 {
8812 const Powerpc_relobj<size, big_endian>* ppc_object
8813 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8814 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8815 {
8816 for (Got_type got_type = GOT_TYPE_TLSGD;
8817 got_type <= GOT_TYPE_TPREL;
8818 got_type = Got_type(got_type + 1))
8819 if (ppc_object->local_has_got_offset(symndx, got_type))
8820 {
8821 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8822 if (got_type == GOT_TYPE_TLSGD)
8823 off += size / 8;
8824 if (off == got_indx * (size / 8))
8825 {
8826 if (got_type == GOT_TYPE_TPREL)
8827 return -tp_offset;
8828 else
8829 return -dtp_offset;
8830 }
8831 }
8832 }
8833 gold_unreachable();
8834 }
8835
8836 // Return the offset to use for the GOT_INDX'th got entry which is
8837 // for global tls symbol GSYM.
8838 template<int size, bool big_endian>
8839 int64_t
8840 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8841 Symbol* gsym,
8842 unsigned int got_indx) const
8843 {
8844 if (gsym->type() == elfcpp::STT_TLS)
8845 {
8846 for (Got_type got_type = GOT_TYPE_TLSGD;
8847 got_type <= GOT_TYPE_TPREL;
8848 got_type = Got_type(got_type + 1))
8849 if (gsym->has_got_offset(got_type))
8850 {
8851 unsigned int off = gsym->got_offset(got_type);
8852 if (got_type == GOT_TYPE_TLSGD)
8853 off += size / 8;
8854 if (off == got_indx * (size / 8))
8855 {
8856 if (got_type == GOT_TYPE_TPREL)
8857 return -tp_offset;
8858 else
8859 return -dtp_offset;
8860 }
8861 }
8862 }
8863 gold_unreachable();
8864 }
8865
8866 // The selector for powerpc object files.
8867
8868 template<int size, bool big_endian>
8869 class Target_selector_powerpc : public Target_selector
8870 {
8871 public:
8872 Target_selector_powerpc()
8873 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8874 size, big_endian,
8875 (size == 64
8876 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8877 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8878 (size == 64
8879 ? (big_endian ? "elf64ppc" : "elf64lppc")
8880 : (big_endian ? "elf32ppc" : "elf32lppc")))
8881 { }
8882
8883 virtual Target*
8884 do_instantiate_target()
8885 { return new Target_powerpc<size, big_endian>(); }
8886 };
8887
8888 Target_selector_powerpc<32, true> target_selector_ppc32;
8889 Target_selector_powerpc<32, false> target_selector_ppc32le;
8890 Target_selector_powerpc<64, true> target_selector_ppc64;
8891 Target_selector_powerpc<64, false> target_selector_ppc64le;
8892
8893 // Instantiate these constants for -O0
8894 template<int size, bool big_endian>
8895 const int Output_data_glink<size, big_endian>::pltresolve_size;
8896 template<int size, bool big_endian>
8897 const typename Output_data_glink<size, big_endian>::Address
8898 Output_data_glink<size, big_endian>::invalid_address;
8899 template<int size, bool big_endian>
8900 const typename Stub_table<size, big_endian>::Address
8901 Stub_table<size, big_endian>::invalid_address;
8902 template<int size, bool big_endian>
8903 const typename Target_powerpc<size, big_endian>::Address
8904 Target_powerpc<size, big_endian>::invalid_address;
8905
8906 } // End anonymous namespace.
This page took 0.288578 seconds and 5 git commands to generate.