Fix "overflow in PLT unwind data" warning
[deliverable/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2014 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 inline bool
66 is_branch_reloc(unsigned int r_type);
67
68 template<int size, bool big_endian>
69 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
70 {
71 public:
72 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
73 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
74 typedef Unordered_map<Address, Section_refs> Access_from;
75
76 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
77 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
78 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
79 special_(0), has_small_toc_reloc_(false), opd_valid_(false),
80 opd_ent_(), access_from_map_(), has14_(), stub_table_(),
81 e_flags_(ehdr.get_e_flags()), st_other_()
82 {
83 this->set_abiversion(0);
84 }
85
86 ~Powerpc_relobj()
87 { }
88
89 // Read the symbols then set up st_other vector.
90 void
91 do_read_symbols(Read_symbols_data*);
92
93 // The .got2 section shndx.
94 unsigned int
95 got2_shndx() const
96 {
97 if (size == 32)
98 return this->special_;
99 else
100 return 0;
101 }
102
103 // The .opd section shndx.
104 unsigned int
105 opd_shndx() const
106 {
107 if (size == 32)
108 return 0;
109 else
110 return this->special_;
111 }
112
113 // Init OPD entry arrays.
114 void
115 init_opd(size_t opd_size)
116 {
117 size_t count = this->opd_ent_ndx(opd_size);
118 this->opd_ent_.resize(count);
119 }
120
121 // Return section and offset of function entry for .opd + R_OFF.
122 unsigned int
123 get_opd_ent(Address r_off, Address* value = NULL) const
124 {
125 size_t ndx = this->opd_ent_ndx(r_off);
126 gold_assert(ndx < this->opd_ent_.size());
127 gold_assert(this->opd_ent_[ndx].shndx != 0);
128 if (value != NULL)
129 *value = this->opd_ent_[ndx].off;
130 return this->opd_ent_[ndx].shndx;
131 }
132
133 // Set section and offset of function entry for .opd + R_OFF.
134 void
135 set_opd_ent(Address r_off, unsigned int shndx, Address value)
136 {
137 size_t ndx = this->opd_ent_ndx(r_off);
138 gold_assert(ndx < this->opd_ent_.size());
139 this->opd_ent_[ndx].shndx = shndx;
140 this->opd_ent_[ndx].off = value;
141 }
142
143 // Return discard flag for .opd + R_OFF.
144 bool
145 get_opd_discard(Address r_off) const
146 {
147 size_t ndx = this->opd_ent_ndx(r_off);
148 gold_assert(ndx < this->opd_ent_.size());
149 return this->opd_ent_[ndx].discard;
150 }
151
152 // Set discard flag for .opd + R_OFF.
153 void
154 set_opd_discard(Address r_off)
155 {
156 size_t ndx = this->opd_ent_ndx(r_off);
157 gold_assert(ndx < this->opd_ent_.size());
158 this->opd_ent_[ndx].discard = true;
159 }
160
161 bool
162 opd_valid() const
163 { return this->opd_valid_; }
164
165 void
166 set_opd_valid()
167 { this->opd_valid_ = true; }
168
169 // Examine .rela.opd to build info about function entry points.
170 void
171 scan_opd_relocs(size_t reloc_count,
172 const unsigned char* prelocs,
173 const unsigned char* plocal_syms);
174
175 // Perform the Sized_relobj_file method, then set up opd info from
176 // .opd relocs.
177 void
178 do_read_relocs(Read_relocs_data*);
179
180 bool
181 do_find_special_sections(Read_symbols_data* sd);
182
183 // Adjust this local symbol value. Return false if the symbol
184 // should be discarded from the output file.
185 bool
186 do_adjust_local_symbol(Symbol_value<size>* lv) const
187 {
188 if (size == 64 && this->opd_shndx() != 0)
189 {
190 bool is_ordinary;
191 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
192 return true;
193 if (this->get_opd_discard(lv->input_value()))
194 return false;
195 }
196 return true;
197 }
198
199 Access_from*
200 access_from_map()
201 { return &this->access_from_map_; }
202
203 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
204 // section at DST_OFF.
205 void
206 add_reference(Object* src_obj,
207 unsigned int src_indx,
208 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
209 {
210 Section_id src_id(src_obj, src_indx);
211 this->access_from_map_[dst_off].insert(src_id);
212 }
213
214 // Add a reference to the code section specified by the .opd entry
215 // at DST_OFF
216 void
217 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
218 {
219 size_t ndx = this->opd_ent_ndx(dst_off);
220 if (ndx >= this->opd_ent_.size())
221 this->opd_ent_.resize(ndx + 1);
222 this->opd_ent_[ndx].gc_mark = true;
223 }
224
225 void
226 process_gc_mark(Symbol_table* symtab)
227 {
228 for (size_t i = 0; i < this->opd_ent_.size(); i++)
229 if (this->opd_ent_[i].gc_mark)
230 {
231 unsigned int shndx = this->opd_ent_[i].shndx;
232 symtab->gc()->worklist().push(Section_id(this, shndx));
233 }
234 }
235
236 // Return offset in output GOT section that this object will use
237 // as a TOC pointer. Won't be just a constant with multi-toc support.
238 Address
239 toc_base_offset() const
240 { return 0x8000; }
241
242 void
243 set_has_small_toc_reloc()
244 { has_small_toc_reloc_ = true; }
245
246 bool
247 has_small_toc_reloc() const
248 { return has_small_toc_reloc_; }
249
250 void
251 set_has_14bit_branch(unsigned int shndx)
252 {
253 if (shndx >= this->has14_.size())
254 this->has14_.resize(shndx + 1);
255 this->has14_[shndx] = true;
256 }
257
258 bool
259 has_14bit_branch(unsigned int shndx) const
260 { return shndx < this->has14_.size() && this->has14_[shndx]; }
261
262 void
263 set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
264 {
265 if (shndx >= this->stub_table_.size())
266 this->stub_table_.resize(shndx + 1);
267 this->stub_table_[shndx] = stub_table;
268 }
269
270 Stub_table<size, big_endian>*
271 stub_table(unsigned int shndx)
272 {
273 if (shndx < this->stub_table_.size())
274 return this->stub_table_[shndx];
275 return NULL;
276 }
277
278 int
279 abiversion() const
280 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
281
282 // Set ABI version for input and output
283 void
284 set_abiversion(int ver);
285
286 unsigned int
287 ppc64_local_entry_offset(const Symbol* sym) const
288 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
289
290 unsigned int
291 ppc64_local_entry_offset(unsigned int symndx) const
292 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
293
294 private:
295 struct Opd_ent
296 {
297 unsigned int shndx;
298 bool discard : 1;
299 bool gc_mark : 1;
300 Address off;
301 };
302
303 // Return index into opd_ent_ array for .opd entry at OFF.
304 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
305 // apart when the language doesn't use the last 8-byte word, the
306 // environment pointer. Thus dividing the entry section offset by
307 // 16 will give an index into opd_ent_ that works for either layout
308 // of .opd. (It leaves some elements of the vector unused when .opd
309 // entries are spaced 24 bytes apart, but we don't know the spacing
310 // until relocations are processed, and in any case it is possible
311 // for an object to have some entries spaced 16 bytes apart and
312 // others 24 bytes apart.)
313 size_t
314 opd_ent_ndx(size_t off) const
315 { return off >> 4;}
316
317 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
318 unsigned int special_;
319
320 // For 64-bit, whether this object uses small model relocs to access
321 // the toc.
322 bool has_small_toc_reloc_;
323
324 // Set at the start of gc_process_relocs, when we know opd_ent_
325 // vector is valid. The flag could be made atomic and set in
326 // do_read_relocs with memory_order_release and then tested with
327 // memory_order_acquire, potentially resulting in fewer entries in
328 // access_from_map_.
329 bool opd_valid_;
330
331 // The first 8-byte word of an OPD entry gives the address of the
332 // entry point of the function. Relocatable object files have a
333 // relocation on this word. The following vector records the
334 // section and offset specified by these relocations.
335 std::vector<Opd_ent> opd_ent_;
336
337 // References made to this object's .opd section when running
338 // gc_process_relocs for another object, before the opd_ent_ vector
339 // is valid for this object.
340 Access_from access_from_map_;
341
342 // Whether input section has a 14-bit branch reloc.
343 std::vector<bool> has14_;
344
345 // The stub table to use for a given input section.
346 std::vector<Stub_table<size, big_endian>*> stub_table_;
347
348 // Header e_flags
349 elfcpp::Elf_Word e_flags_;
350
351 // ELF st_other field for local symbols.
352 std::vector<unsigned char> st_other_;
353 };
354
355 template<int size, bool big_endian>
356 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
357 {
358 public:
359 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
360
361 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
362 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
363 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
364 opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
365 {
366 this->set_abiversion(0);
367 }
368
369 ~Powerpc_dynobj()
370 { }
371
372 // Call Sized_dynobj::do_read_symbols to read the symbols then
373 // read .opd from a dynamic object, filling in opd_ent_ vector,
374 void
375 do_read_symbols(Read_symbols_data*);
376
377 // The .opd section shndx.
378 unsigned int
379 opd_shndx() const
380 {
381 return this->opd_shndx_;
382 }
383
384 // The .opd section address.
385 Address
386 opd_address() const
387 {
388 return this->opd_address_;
389 }
390
391 // Init OPD entry arrays.
392 void
393 init_opd(size_t opd_size)
394 {
395 size_t count = this->opd_ent_ndx(opd_size);
396 this->opd_ent_.resize(count);
397 }
398
399 // Return section and offset of function entry for .opd + R_OFF.
400 unsigned int
401 get_opd_ent(Address r_off, Address* value = NULL) const
402 {
403 size_t ndx = this->opd_ent_ndx(r_off);
404 gold_assert(ndx < this->opd_ent_.size());
405 gold_assert(this->opd_ent_[ndx].shndx != 0);
406 if (value != NULL)
407 *value = this->opd_ent_[ndx].off;
408 return this->opd_ent_[ndx].shndx;
409 }
410
411 // Set section and offset of function entry for .opd + R_OFF.
412 void
413 set_opd_ent(Address r_off, unsigned int shndx, Address value)
414 {
415 size_t ndx = this->opd_ent_ndx(r_off);
416 gold_assert(ndx < this->opd_ent_.size());
417 this->opd_ent_[ndx].shndx = shndx;
418 this->opd_ent_[ndx].off = value;
419 }
420
421 int
422 abiversion() const
423 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
424
425 // Set ABI version for input and output.
426 void
427 set_abiversion(int ver);
428
429 private:
430 // Used to specify extent of executable sections.
431 struct Sec_info
432 {
433 Sec_info(Address start_, Address len_, unsigned int shndx_)
434 : start(start_), len(len_), shndx(shndx_)
435 { }
436
437 bool
438 operator<(const Sec_info& that) const
439 { return this->start < that.start; }
440
441 Address start;
442 Address len;
443 unsigned int shndx;
444 };
445
446 struct Opd_ent
447 {
448 unsigned int shndx;
449 Address off;
450 };
451
452 // Return index into opd_ent_ array for .opd entry at OFF.
453 size_t
454 opd_ent_ndx(size_t off) const
455 { return off >> 4;}
456
457 // For 64-bit the .opd section shndx and address.
458 unsigned int opd_shndx_;
459 Address opd_address_;
460
461 // The first 8-byte word of an OPD entry gives the address of the
462 // entry point of the function. Records the section and offset
463 // corresponding to the address. Note that in dynamic objects,
464 // offset is *not* relative to the section.
465 std::vector<Opd_ent> opd_ent_;
466
467 // Header e_flags
468 elfcpp::Elf_Word e_flags_;
469 };
470
471 template<int size, bool big_endian>
472 class Target_powerpc : public Sized_target<size, big_endian>
473 {
474 public:
475 typedef
476 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
477 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
478 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
479 static const Address invalid_address = static_cast<Address>(0) - 1;
480 // Offset of tp and dtp pointers from start of TLS block.
481 static const Address tp_offset = 0x7000;
482 static const Address dtp_offset = 0x8000;
483
484 Target_powerpc()
485 : Sized_target<size, big_endian>(&powerpc_info),
486 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
487 glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
488 tlsld_got_offset_(-1U),
489 stub_tables_(), branch_lookup_table_(), branch_info_(),
490 plt_thread_safe_(false)
491 {
492 }
493
494 // Process the relocations to determine unreferenced sections for
495 // garbage collection.
496 void
497 gc_process_relocs(Symbol_table* symtab,
498 Layout* layout,
499 Sized_relobj_file<size, big_endian>* object,
500 unsigned int data_shndx,
501 unsigned int sh_type,
502 const unsigned char* prelocs,
503 size_t reloc_count,
504 Output_section* output_section,
505 bool needs_special_offset_handling,
506 size_t local_symbol_count,
507 const unsigned char* plocal_symbols);
508
509 // Scan the relocations to look for symbol adjustments.
510 void
511 scan_relocs(Symbol_table* symtab,
512 Layout* layout,
513 Sized_relobj_file<size, big_endian>* object,
514 unsigned int data_shndx,
515 unsigned int sh_type,
516 const unsigned char* prelocs,
517 size_t reloc_count,
518 Output_section* output_section,
519 bool needs_special_offset_handling,
520 size_t local_symbol_count,
521 const unsigned char* plocal_symbols);
522
523 // Map input .toc section to output .got section.
524 const char*
525 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
526 {
527 if (size == 64 && strcmp(name, ".toc") == 0)
528 {
529 *plen = 4;
530 return ".got";
531 }
532 return NULL;
533 }
534
535 // Provide linker defined save/restore functions.
536 void
537 define_save_restore_funcs(Layout*, Symbol_table*);
538
539 // No stubs unless a final link.
540 bool
541 do_may_relax() const
542 { return !parameters->options().relocatable(); }
543
544 bool
545 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
546
547 void
548 do_plt_fde_location(const Output_data*, unsigned char*,
549 uint64_t*, off_t*) const;
550
551 // Stash info about branches, for stub generation.
552 void
553 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
554 unsigned int data_shndx, Address r_offset,
555 unsigned int r_type, unsigned int r_sym, Address addend)
556 {
557 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
558 this->branch_info_.push_back(info);
559 if (r_type == elfcpp::R_POWERPC_REL14
560 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
561 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
562 ppc_object->set_has_14bit_branch(data_shndx);
563 }
564
565 Stub_table<size, big_endian>*
566 new_stub_table();
567
568 void
569 do_define_standard_symbols(Symbol_table*, Layout*);
570
571 // Finalize the sections.
572 void
573 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
574
575 // Return the value to use for a dynamic which requires special
576 // treatment.
577 uint64_t
578 do_dynsym_value(const Symbol*) const;
579
580 // Return the PLT address to use for a local symbol.
581 uint64_t
582 do_plt_address_for_local(const Relobj*, unsigned int) const;
583
584 // Return the PLT address to use for a global symbol.
585 uint64_t
586 do_plt_address_for_global(const Symbol*) const;
587
588 // Return the offset to use for the GOT_INDX'th got entry which is
589 // for a local tls symbol specified by OBJECT, SYMNDX.
590 int64_t
591 do_tls_offset_for_local(const Relobj* object,
592 unsigned int symndx,
593 unsigned int got_indx) const;
594
595 // Return the offset to use for the GOT_INDX'th got entry which is
596 // for global tls symbol GSYM.
597 int64_t
598 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
599
600 void
601 do_function_location(Symbol_location*) const;
602
603 bool
604 do_can_check_for_function_pointers() const
605 { return true; }
606
607 // Relocate a section.
608 void
609 relocate_section(const Relocate_info<size, big_endian>*,
610 unsigned int sh_type,
611 const unsigned char* prelocs,
612 size_t reloc_count,
613 Output_section* output_section,
614 bool needs_special_offset_handling,
615 unsigned char* view,
616 Address view_address,
617 section_size_type view_size,
618 const Reloc_symbol_changes*);
619
620 // Scan the relocs during a relocatable link.
621 void
622 scan_relocatable_relocs(Symbol_table* symtab,
623 Layout* layout,
624 Sized_relobj_file<size, big_endian>* object,
625 unsigned int data_shndx,
626 unsigned int sh_type,
627 const unsigned char* prelocs,
628 size_t reloc_count,
629 Output_section* output_section,
630 bool needs_special_offset_handling,
631 size_t local_symbol_count,
632 const unsigned char* plocal_symbols,
633 Relocatable_relocs*);
634
635 // Emit relocations for a section.
636 void
637 relocate_relocs(const Relocate_info<size, big_endian>*,
638 unsigned int sh_type,
639 const unsigned char* prelocs,
640 size_t reloc_count,
641 Output_section* output_section,
642 typename elfcpp::Elf_types<size>::Elf_Off
643 offset_in_output_section,
644 const Relocatable_relocs*,
645 unsigned char*,
646 Address view_address,
647 section_size_type,
648 unsigned char* reloc_view,
649 section_size_type reloc_view_size);
650
651 // Return whether SYM is defined by the ABI.
652 bool
653 do_is_defined_by_abi(const Symbol* sym) const
654 {
655 return strcmp(sym->name(), "__tls_get_addr") == 0;
656 }
657
658 // Return the size of the GOT section.
659 section_size_type
660 got_size() const
661 {
662 gold_assert(this->got_ != NULL);
663 return this->got_->data_size();
664 }
665
666 // Get the PLT section.
667 const Output_data_plt_powerpc<size, big_endian>*
668 plt_section() const
669 {
670 gold_assert(this->plt_ != NULL);
671 return this->plt_;
672 }
673
674 // Get the IPLT section.
675 const Output_data_plt_powerpc<size, big_endian>*
676 iplt_section() const
677 {
678 gold_assert(this->iplt_ != NULL);
679 return this->iplt_;
680 }
681
682 // Get the .glink section.
683 const Output_data_glink<size, big_endian>*
684 glink_section() const
685 {
686 gold_assert(this->glink_ != NULL);
687 return this->glink_;
688 }
689
690 Output_data_glink<size, big_endian>*
691 glink_section()
692 {
693 gold_assert(this->glink_ != NULL);
694 return this->glink_;
695 }
696
697 bool has_glink() const
698 { return this->glink_ != NULL; }
699
700 // Get the GOT section.
701 const Output_data_got_powerpc<size, big_endian>*
702 got_section() const
703 {
704 gold_assert(this->got_ != NULL);
705 return this->got_;
706 }
707
708 // Get the GOT section, creating it if necessary.
709 Output_data_got_powerpc<size, big_endian>*
710 got_section(Symbol_table*, Layout*);
711
712 Object*
713 do_make_elf_object(const std::string&, Input_file*, off_t,
714 const elfcpp::Ehdr<size, big_endian>&);
715
716 // Return the number of entries in the GOT.
717 unsigned int
718 got_entry_count() const
719 {
720 if (this->got_ == NULL)
721 return 0;
722 return this->got_size() / (size / 8);
723 }
724
725 // Return the number of entries in the PLT.
726 unsigned int
727 plt_entry_count() const;
728
729 // Return the offset of the first non-reserved PLT entry.
730 unsigned int
731 first_plt_entry_offset() const
732 {
733 if (size == 32)
734 return 0;
735 if (this->abiversion() >= 2)
736 return 16;
737 return 24;
738 }
739
740 // Return the size of each PLT entry.
741 unsigned int
742 plt_entry_size() const
743 {
744 if (size == 32)
745 return 4;
746 if (this->abiversion() >= 2)
747 return 8;
748 return 24;
749 }
750
751 // Add any special sections for this symbol to the gc work list.
752 // For powerpc64, this adds the code section of a function
753 // descriptor.
754 void
755 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
756
757 // Handle target specific gc actions when adding a gc reference from
758 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
759 // and DST_OFF. For powerpc64, this adds a referenc to the code
760 // section of a function descriptor.
761 void
762 do_gc_add_reference(Symbol_table* symtab,
763 Object* src_obj,
764 unsigned int src_shndx,
765 Object* dst_obj,
766 unsigned int dst_shndx,
767 Address dst_off) const;
768
769 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
770 const Stub_tables&
771 stub_tables() const
772 { return this->stub_tables_; }
773
774 const Output_data_brlt_powerpc<size, big_endian>*
775 brlt_section() const
776 { return this->brlt_section_; }
777
778 void
779 add_branch_lookup_table(Address to)
780 {
781 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
782 this->branch_lookup_table_.insert(std::make_pair(to, off));
783 }
784
785 Address
786 find_branch_lookup_table(Address to)
787 {
788 typename Branch_lookup_table::const_iterator p
789 = this->branch_lookup_table_.find(to);
790 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
791 }
792
793 void
794 write_branch_lookup_table(unsigned char *oview)
795 {
796 for (typename Branch_lookup_table::const_iterator p
797 = this->branch_lookup_table_.begin();
798 p != this->branch_lookup_table_.end();
799 ++p)
800 {
801 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
802 }
803 }
804
805 bool
806 plt_thread_safe() const
807 { return this->plt_thread_safe_; }
808
809 int
810 abiversion () const
811 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
812
813 void
814 set_abiversion (int ver)
815 {
816 elfcpp::Elf_Word flags = this->processor_specific_flags();
817 flags &= ~elfcpp::EF_PPC64_ABI;
818 flags |= ver & elfcpp::EF_PPC64_ABI;
819 this->set_processor_specific_flags(flags);
820 }
821
822 // Offset to to save stack slot
823 int
824 stk_toc () const
825 { return this->abiversion() < 2 ? 40 : 24; }
826
827 private:
828
829 class Track_tls
830 {
831 public:
832 enum Tls_get_addr
833 {
834 NOT_EXPECTED = 0,
835 EXPECTED = 1,
836 SKIP = 2,
837 NORMAL = 3
838 };
839
840 Track_tls()
841 : tls_get_addr_(NOT_EXPECTED),
842 relinfo_(NULL), relnum_(0), r_offset_(0)
843 { }
844
845 ~Track_tls()
846 {
847 if (this->tls_get_addr_ != NOT_EXPECTED)
848 this->missing();
849 }
850
851 void
852 missing(void)
853 {
854 if (this->relinfo_ != NULL)
855 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
856 _("missing expected __tls_get_addr call"));
857 }
858
859 void
860 expect_tls_get_addr_call(
861 const Relocate_info<size, big_endian>* relinfo,
862 size_t relnum,
863 Address r_offset)
864 {
865 this->tls_get_addr_ = EXPECTED;
866 this->relinfo_ = relinfo;
867 this->relnum_ = relnum;
868 this->r_offset_ = r_offset;
869 }
870
871 void
872 expect_tls_get_addr_call()
873 { this->tls_get_addr_ = EXPECTED; }
874
875 void
876 skip_next_tls_get_addr_call()
877 {this->tls_get_addr_ = SKIP; }
878
879 Tls_get_addr
880 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
881 {
882 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
883 || r_type == elfcpp::R_PPC_PLTREL24)
884 && gsym != NULL
885 && strcmp(gsym->name(), "__tls_get_addr") == 0);
886 Tls_get_addr last_tls = this->tls_get_addr_;
887 this->tls_get_addr_ = NOT_EXPECTED;
888 if (is_tls_call && last_tls != EXPECTED)
889 return last_tls;
890 else if (!is_tls_call && last_tls != NOT_EXPECTED)
891 {
892 this->missing();
893 return EXPECTED;
894 }
895 return NORMAL;
896 }
897
898 private:
899 // What we're up to regarding calls to __tls_get_addr.
900 // On powerpc, the branch and link insn making a call to
901 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
902 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
903 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
904 // The marker relocation always comes first, and has the same
905 // symbol as the reloc on the insn setting up the __tls_get_addr
906 // argument. This ties the arg setup insn with the call insn,
907 // allowing ld to safely optimize away the call. We check that
908 // every call to __tls_get_addr has a marker relocation, and that
909 // every marker relocation is on a call to __tls_get_addr.
910 Tls_get_addr tls_get_addr_;
911 // Info about the last reloc for error message.
912 const Relocate_info<size, big_endian>* relinfo_;
913 size_t relnum_;
914 Address r_offset_;
915 };
916
917 // The class which scans relocations.
918 class Scan : protected Track_tls
919 {
920 public:
921 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
922
923 Scan()
924 : Track_tls(), issued_non_pic_error_(false)
925 { }
926
927 static inline int
928 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
929
930 inline void
931 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
932 Sized_relobj_file<size, big_endian>* object,
933 unsigned int data_shndx,
934 Output_section* output_section,
935 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
936 const elfcpp::Sym<size, big_endian>& lsym,
937 bool is_discarded);
938
939 inline void
940 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
941 Sized_relobj_file<size, big_endian>* object,
942 unsigned int data_shndx,
943 Output_section* output_section,
944 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
945 Symbol* gsym);
946
947 inline bool
948 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
949 Target_powerpc* ,
950 Sized_relobj_file<size, big_endian>* ,
951 unsigned int ,
952 Output_section* ,
953 const elfcpp::Rela<size, big_endian>& ,
954 unsigned int r_type,
955 const elfcpp::Sym<size, big_endian>&)
956 {
957 // PowerPC64 .opd is not folded, so any identical function text
958 // may be folded and we'll still keep function addresses distinct.
959 // That means no reloc is of concern here.
960 if (size == 64)
961 return false;
962 // For 32-bit, conservatively assume anything but calls to
963 // function code might be taking the address of the function.
964 return !is_branch_reloc(r_type);
965 }
966
967 inline bool
968 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
969 Target_powerpc* ,
970 Sized_relobj_file<size, big_endian>* ,
971 unsigned int ,
972 Output_section* ,
973 const elfcpp::Rela<size, big_endian>& ,
974 unsigned int r_type,
975 Symbol*)
976 {
977 // As above.
978 if (size == 64)
979 return false;
980 return !is_branch_reloc(r_type);
981 }
982
983 static bool
984 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
985 Sized_relobj_file<size, big_endian>* object,
986 unsigned int r_type, bool report_err);
987
988 private:
989 static void
990 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
991 unsigned int r_type);
992
993 static void
994 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
995 unsigned int r_type, Symbol*);
996
997 static void
998 generate_tls_call(Symbol_table* symtab, Layout* layout,
999 Target_powerpc* target);
1000
1001 void
1002 check_non_pic(Relobj*, unsigned int r_type);
1003
1004 // Whether we have issued an error about a non-PIC compilation.
1005 bool issued_non_pic_error_;
1006 };
1007
1008 Address
1009 symval_for_branch(const Symbol_table* symtab, Address value,
1010 const Sized_symbol<size>* gsym,
1011 Powerpc_relobj<size, big_endian>* object,
1012 unsigned int *dest_shndx);
1013
1014 // The class which implements relocation.
1015 class Relocate : protected Track_tls
1016 {
1017 public:
1018 // Use 'at' branch hints when true, 'y' when false.
1019 // FIXME maybe: set this with an option.
1020 static const bool is_isa_v2 = true;
1021
1022 Relocate()
1023 : Track_tls()
1024 { }
1025
1026 // Do a relocation. Return false if the caller should not issue
1027 // any warnings about this relocation.
1028 inline bool
1029 relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1030 Output_section*, size_t relnum,
1031 const elfcpp::Rela<size, big_endian>&,
1032 unsigned int r_type, const Sized_symbol<size>*,
1033 const Symbol_value<size>*,
1034 unsigned char*,
1035 typename elfcpp::Elf_types<size>::Elf_Addr,
1036 section_size_type);
1037 };
1038
1039 class Relocate_comdat_behavior
1040 {
1041 public:
1042 // Decide what the linker should do for relocations that refer to
1043 // discarded comdat sections.
1044 inline Comdat_behavior
1045 get(const char* name)
1046 {
1047 gold::Default_comdat_behavior default_behavior;
1048 Comdat_behavior ret = default_behavior.get(name);
1049 if (ret == CB_WARNING)
1050 {
1051 if (size == 32
1052 && (strcmp(name, ".fixup") == 0
1053 || strcmp(name, ".got2") == 0))
1054 ret = CB_IGNORE;
1055 if (size == 64
1056 && (strcmp(name, ".opd") == 0
1057 || strcmp(name, ".toc") == 0
1058 || strcmp(name, ".toc1") == 0))
1059 ret = CB_IGNORE;
1060 }
1061 return ret;
1062 }
1063 };
1064
1065 // A class which returns the size required for a relocation type,
1066 // used while scanning relocs during a relocatable link.
1067 class Relocatable_size_for_reloc
1068 {
1069 public:
1070 unsigned int
1071 get_size_for_reloc(unsigned int, Relobj*)
1072 {
1073 gold_unreachable();
1074 return 0;
1075 }
1076 };
1077
1078 // Optimize the TLS relocation type based on what we know about the
1079 // symbol. IS_FINAL is true if the final address of this symbol is
1080 // known at link time.
1081
1082 tls::Tls_optimization
1083 optimize_tls_gd(bool is_final)
1084 {
1085 // If we are generating a shared library, then we can't do anything
1086 // in the linker.
1087 if (parameters->options().shared())
1088 return tls::TLSOPT_NONE;
1089
1090 if (!is_final)
1091 return tls::TLSOPT_TO_IE;
1092 return tls::TLSOPT_TO_LE;
1093 }
1094
1095 tls::Tls_optimization
1096 optimize_tls_ld()
1097 {
1098 if (parameters->options().shared())
1099 return tls::TLSOPT_NONE;
1100
1101 return tls::TLSOPT_TO_LE;
1102 }
1103
1104 tls::Tls_optimization
1105 optimize_tls_ie(bool is_final)
1106 {
1107 if (!is_final || parameters->options().shared())
1108 return tls::TLSOPT_NONE;
1109
1110 return tls::TLSOPT_TO_LE;
1111 }
1112
1113 // Create glink.
1114 void
1115 make_glink_section(Layout*);
1116
1117 // Create the PLT section.
1118 void
1119 make_plt_section(Symbol_table*, Layout*);
1120
1121 void
1122 make_iplt_section(Symbol_table*, Layout*);
1123
1124 void
1125 make_brlt_section(Layout*);
1126
1127 // Create a PLT entry for a global symbol.
1128 void
1129 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1130
1131 // Create a PLT entry for a local IFUNC symbol.
1132 void
1133 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1134 Sized_relobj_file<size, big_endian>*,
1135 unsigned int);
1136
1137
1138 // Create a GOT entry for local dynamic __tls_get_addr.
1139 unsigned int
1140 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1141 Sized_relobj_file<size, big_endian>* object);
1142
1143 unsigned int
1144 tlsld_got_offset() const
1145 {
1146 return this->tlsld_got_offset_;
1147 }
1148
1149 // Get the dynamic reloc section, creating it if necessary.
1150 Reloc_section*
1151 rela_dyn_section(Layout*);
1152
1153 // Similarly, but for ifunc symbols get the one for ifunc.
1154 Reloc_section*
1155 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1156
1157 // Copy a relocation against a global symbol.
1158 void
1159 copy_reloc(Symbol_table* symtab, Layout* layout,
1160 Sized_relobj_file<size, big_endian>* object,
1161 unsigned int shndx, Output_section* output_section,
1162 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1163 {
1164 this->copy_relocs_.copy_reloc(symtab, layout,
1165 symtab->get_sized_symbol<size>(sym),
1166 object, shndx, output_section,
1167 reloc, this->rela_dyn_section(layout));
1168 }
1169
1170 // Look over all the input sections, deciding where to place stubs.
1171 void
1172 group_sections(Layout*, const Task*);
1173
1174 // Sort output sections by address.
1175 struct Sort_sections
1176 {
1177 bool
1178 operator()(const Output_section* sec1, const Output_section* sec2)
1179 { return sec1->address() < sec2->address(); }
1180 };
1181
1182 class Branch_info
1183 {
1184 public:
1185 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1186 unsigned int data_shndx,
1187 Address r_offset,
1188 unsigned int r_type,
1189 unsigned int r_sym,
1190 Address addend)
1191 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1192 r_type_(r_type), r_sym_(r_sym), addend_(addend)
1193 { }
1194
1195 ~Branch_info()
1196 { }
1197
1198 // If this branch needs a plt call stub, or a long branch stub, make one.
1199 void
1200 make_stub(Stub_table<size, big_endian>*,
1201 Stub_table<size, big_endian>*,
1202 Symbol_table*) const;
1203
1204 private:
1205 // The branch location..
1206 Powerpc_relobj<size, big_endian>* object_;
1207 unsigned int shndx_;
1208 Address offset_;
1209 // ..and the branch type and destination.
1210 unsigned int r_type_;
1211 unsigned int r_sym_;
1212 Address addend_;
1213 };
1214
1215 // Information about this specific target which we pass to the
1216 // general Target structure.
1217 static Target::Target_info powerpc_info;
1218
1219 // The types of GOT entries needed for this platform.
1220 // These values are exposed to the ABI in an incremental link.
1221 // Do not renumber existing values without changing the version
1222 // number of the .gnu_incremental_inputs section.
1223 enum Got_type
1224 {
1225 GOT_TYPE_STANDARD,
1226 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1227 GOT_TYPE_DTPREL, // entry for @got@dtprel
1228 GOT_TYPE_TPREL // entry for @got@tprel
1229 };
1230
1231 // The GOT section.
1232 Output_data_got_powerpc<size, big_endian>* got_;
1233 // The PLT section. This is a container for a table of addresses,
1234 // and their relocations. Each address in the PLT has a dynamic
1235 // relocation (R_*_JMP_SLOT) and each address will have a
1236 // corresponding entry in .glink for lazy resolution of the PLT.
1237 // ppc32 initialises the PLT to point at the .glink entry, while
1238 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1239 // linker adds a stub that loads the PLT entry into ctr then
1240 // branches to ctr. There may be more than one stub for each PLT
1241 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1242 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1243 Output_data_plt_powerpc<size, big_endian>* plt_;
1244 // The IPLT section. Like plt_, this is a container for a table of
1245 // addresses and their relocations, specifically for STT_GNU_IFUNC
1246 // functions that resolve locally (STT_GNU_IFUNC functions that
1247 // don't resolve locally go in PLT). Unlike plt_, these have no
1248 // entry in .glink for lazy resolution, and the relocation section
1249 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1250 // the relocation section may contain relocations against
1251 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1252 // relocation section will appear at the end of other dynamic
1253 // relocations, so that ld.so applies these relocations after other
1254 // dynamic relocations. In a static executable, the relocation
1255 // section is emitted and marked with __rela_iplt_start and
1256 // __rela_iplt_end symbols.
1257 Output_data_plt_powerpc<size, big_endian>* iplt_;
1258 // Section holding long branch destinations.
1259 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1260 // The .glink section.
1261 Output_data_glink<size, big_endian>* glink_;
1262 // The dynamic reloc section.
1263 Reloc_section* rela_dyn_;
1264 // Relocs saved to avoid a COPY reloc.
1265 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1266 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1267 unsigned int tlsld_got_offset_;
1268
1269 Stub_tables stub_tables_;
1270 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1271 Branch_lookup_table branch_lookup_table_;
1272
1273 typedef std::vector<Branch_info> Branches;
1274 Branches branch_info_;
1275
1276 bool plt_thread_safe_;
1277 };
1278
1279 template<>
1280 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1281 {
1282 32, // size
1283 true, // is_big_endian
1284 elfcpp::EM_PPC, // machine_code
1285 false, // has_make_symbol
1286 false, // has_resolve
1287 false, // has_code_fill
1288 true, // is_default_stack_executable
1289 false, // can_icf_inline_merge_sections
1290 '\0', // wrap_char
1291 "/usr/lib/ld.so.1", // dynamic_linker
1292 0x10000000, // default_text_segment_address
1293 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1294 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1295 false, // isolate_execinstr
1296 0, // rosegment_gap
1297 elfcpp::SHN_UNDEF, // small_common_shndx
1298 elfcpp::SHN_UNDEF, // large_common_shndx
1299 0, // small_common_section_flags
1300 0, // large_common_section_flags
1301 NULL, // attributes_section
1302 NULL, // attributes_vendor
1303 "_start" // entry_symbol_name
1304 };
1305
1306 template<>
1307 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1308 {
1309 32, // size
1310 false, // is_big_endian
1311 elfcpp::EM_PPC, // machine_code
1312 false, // has_make_symbol
1313 false, // has_resolve
1314 false, // has_code_fill
1315 true, // is_default_stack_executable
1316 false, // can_icf_inline_merge_sections
1317 '\0', // wrap_char
1318 "/usr/lib/ld.so.1", // dynamic_linker
1319 0x10000000, // default_text_segment_address
1320 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1321 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1322 false, // isolate_execinstr
1323 0, // rosegment_gap
1324 elfcpp::SHN_UNDEF, // small_common_shndx
1325 elfcpp::SHN_UNDEF, // large_common_shndx
1326 0, // small_common_section_flags
1327 0, // large_common_section_flags
1328 NULL, // attributes_section
1329 NULL, // attributes_vendor
1330 "_start" // entry_symbol_name
1331 };
1332
1333 template<>
1334 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1335 {
1336 64, // size
1337 true, // is_big_endian
1338 elfcpp::EM_PPC64, // machine_code
1339 false, // has_make_symbol
1340 false, // has_resolve
1341 false, // has_code_fill
1342 true, // is_default_stack_executable
1343 false, // can_icf_inline_merge_sections
1344 '\0', // wrap_char
1345 "/usr/lib/ld.so.1", // dynamic_linker
1346 0x10000000, // default_text_segment_address
1347 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1348 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1349 false, // isolate_execinstr
1350 0, // rosegment_gap
1351 elfcpp::SHN_UNDEF, // small_common_shndx
1352 elfcpp::SHN_UNDEF, // large_common_shndx
1353 0, // small_common_section_flags
1354 0, // large_common_section_flags
1355 NULL, // attributes_section
1356 NULL, // attributes_vendor
1357 "_start" // entry_symbol_name
1358 };
1359
1360 template<>
1361 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1362 {
1363 64, // size
1364 false, // is_big_endian
1365 elfcpp::EM_PPC64, // machine_code
1366 false, // has_make_symbol
1367 false, // has_resolve
1368 false, // has_code_fill
1369 true, // is_default_stack_executable
1370 false, // can_icf_inline_merge_sections
1371 '\0', // wrap_char
1372 "/usr/lib/ld.so.1", // dynamic_linker
1373 0x10000000, // default_text_segment_address
1374 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1375 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1376 false, // isolate_execinstr
1377 0, // rosegment_gap
1378 elfcpp::SHN_UNDEF, // small_common_shndx
1379 elfcpp::SHN_UNDEF, // large_common_shndx
1380 0, // small_common_section_flags
1381 0, // large_common_section_flags
1382 NULL, // attributes_section
1383 NULL, // attributes_vendor
1384 "_start" // entry_symbol_name
1385 };
1386
1387 inline bool
1388 is_branch_reloc(unsigned int r_type)
1389 {
1390 return (r_type == elfcpp::R_POWERPC_REL24
1391 || r_type == elfcpp::R_PPC_PLTREL24
1392 || r_type == elfcpp::R_PPC_LOCAL24PC
1393 || r_type == elfcpp::R_POWERPC_REL14
1394 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1395 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1396 || r_type == elfcpp::R_POWERPC_ADDR24
1397 || r_type == elfcpp::R_POWERPC_ADDR14
1398 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1399 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1400 }
1401
1402 // If INSN is an opcode that may be used with an @tls operand, return
1403 // the transformed insn for TLS optimisation, otherwise return 0. If
1404 // REG is non-zero only match an insn with RB or RA equal to REG.
1405 uint32_t
1406 at_tls_transform(uint32_t insn, unsigned int reg)
1407 {
1408 if ((insn & (0x3f << 26)) != 31 << 26)
1409 return 0;
1410
1411 unsigned int rtra;
1412 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1413 rtra = insn & ((1 << 26) - (1 << 16));
1414 else if (((insn >> 16) & 0x1f) == reg)
1415 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1416 else
1417 return 0;
1418
1419 if ((insn & (0x3ff << 1)) == 266 << 1)
1420 // add -> addi
1421 insn = 14 << 26;
1422 else if ((insn & (0x1f << 1)) == 23 << 1
1423 && ((insn & (0x1f << 6)) < 14 << 6
1424 || ((insn & (0x1f << 6)) >= 16 << 6
1425 && (insn & (0x1f << 6)) < 24 << 6)))
1426 // load and store indexed -> dform
1427 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1428 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1429 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1430 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1431 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1432 // lwax -> lwa
1433 insn = (58 << 26) | 2;
1434 else
1435 return 0;
1436 insn |= rtra;
1437 return insn;
1438 }
1439
1440
1441 template<int size, bool big_endian>
1442 class Powerpc_relocate_functions
1443 {
1444 public:
1445 enum Overflow_check
1446 {
1447 CHECK_NONE,
1448 CHECK_SIGNED,
1449 CHECK_UNSIGNED,
1450 CHECK_BITFIELD,
1451 CHECK_LOW_INSN,
1452 CHECK_HIGH_INSN
1453 };
1454
1455 enum Status
1456 {
1457 STATUS_OK,
1458 STATUS_OVERFLOW
1459 };
1460
1461 private:
1462 typedef Powerpc_relocate_functions<size, big_endian> This;
1463 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1464
1465 template<int valsize>
1466 static inline bool
1467 has_overflow_signed(Address value)
1468 {
1469 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1470 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1471 limit <<= ((valsize - 1) >> 1);
1472 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1473 return value + limit > (limit << 1) - 1;
1474 }
1475
1476 template<int valsize>
1477 static inline bool
1478 has_overflow_unsigned(Address value)
1479 {
1480 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1481 limit <<= ((valsize - 1) >> 1);
1482 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1483 return value > (limit << 1) - 1;
1484 }
1485
1486 template<int valsize>
1487 static inline bool
1488 has_overflow_bitfield(Address value)
1489 {
1490 return (has_overflow_unsigned<valsize>(value)
1491 && has_overflow_signed<valsize>(value));
1492 }
1493
1494 template<int valsize>
1495 static inline Status
1496 overflowed(Address value, Overflow_check overflow)
1497 {
1498 if (overflow == CHECK_SIGNED)
1499 {
1500 if (has_overflow_signed<valsize>(value))
1501 return STATUS_OVERFLOW;
1502 }
1503 else if (overflow == CHECK_UNSIGNED)
1504 {
1505 if (has_overflow_unsigned<valsize>(value))
1506 return STATUS_OVERFLOW;
1507 }
1508 else if (overflow == CHECK_BITFIELD)
1509 {
1510 if (has_overflow_bitfield<valsize>(value))
1511 return STATUS_OVERFLOW;
1512 }
1513 return STATUS_OK;
1514 }
1515
1516 // Do a simple RELA relocation
1517 template<int valsize>
1518 static inline Status
1519 rela(unsigned char* view, Address value, Overflow_check overflow)
1520 {
1521 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1522 Valtype* wv = reinterpret_cast<Valtype*>(view);
1523 elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
1524 return overflowed<valsize>(value, overflow);
1525 }
1526
1527 template<int valsize>
1528 static inline Status
1529 rela(unsigned char* view,
1530 unsigned int right_shift,
1531 typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1532 Address value,
1533 Overflow_check overflow)
1534 {
1535 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1536 Valtype* wv = reinterpret_cast<Valtype*>(view);
1537 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
1538 Valtype reloc = value >> right_shift;
1539 val &= ~dst_mask;
1540 reloc &= dst_mask;
1541 elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
1542 return overflowed<valsize>(value >> right_shift, overflow);
1543 }
1544
1545 // Do a simple RELA relocation, unaligned.
1546 template<int valsize>
1547 static inline Status
1548 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1549 {
1550 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
1551 return overflowed<valsize>(value, overflow);
1552 }
1553
1554 template<int valsize>
1555 static inline Status
1556 rela_ua(unsigned char* view,
1557 unsigned int right_shift,
1558 typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1559 Address value,
1560 Overflow_check overflow)
1561 {
1562 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
1563 Valtype;
1564 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
1565 Valtype reloc = value >> right_shift;
1566 val &= ~dst_mask;
1567 reloc &= dst_mask;
1568 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
1569 return overflowed<valsize>(value >> right_shift, overflow);
1570 }
1571
1572 public:
1573 // R_PPC64_ADDR64: (Symbol + Addend)
1574 static inline void
1575 addr64(unsigned char* view, Address value)
1576 { This::template rela<64>(view, value, CHECK_NONE); }
1577
1578 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1579 static inline void
1580 addr64_u(unsigned char* view, Address value)
1581 { This::template rela_ua<64>(view, value, CHECK_NONE); }
1582
1583 // R_POWERPC_ADDR32: (Symbol + Addend)
1584 static inline Status
1585 addr32(unsigned char* view, Address value, Overflow_check overflow)
1586 { return This::template rela<32>(view, value, overflow); }
1587
1588 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1589 static inline Status
1590 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1591 { return This::template rela_ua<32>(view, value, overflow); }
1592
1593 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1594 static inline Status
1595 addr24(unsigned char* view, Address value, Overflow_check overflow)
1596 {
1597 Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
1598 if (overflow != CHECK_NONE && (value & 3) != 0)
1599 stat = STATUS_OVERFLOW;
1600 return stat;
1601 }
1602
1603 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1604 static inline Status
1605 addr16(unsigned char* view, Address value, Overflow_check overflow)
1606 { return This::template rela<16>(view, value, overflow); }
1607
1608 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1609 static inline Status
1610 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1611 { return This::template rela_ua<16>(view, value, overflow); }
1612
1613 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1614 static inline Status
1615 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1616 {
1617 Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1618 if (overflow != CHECK_NONE && (value & 3) != 0)
1619 stat = STATUS_OVERFLOW;
1620 return stat;
1621 }
1622
1623 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1624 static inline void
1625 addr16_hi(unsigned char* view, Address value)
1626 { This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
1627
1628 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1629 static inline void
1630 addr16_ha(unsigned char* view, Address value)
1631 { This::addr16_hi(view, value + 0x8000); }
1632
1633 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1634 static inline void
1635 addr16_hi2(unsigned char* view, Address value)
1636 { This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
1637
1638 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1639 static inline void
1640 addr16_ha2(unsigned char* view, Address value)
1641 { This::addr16_hi2(view, value + 0x8000); }
1642
1643 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1644 static inline void
1645 addr16_hi3(unsigned char* view, Address value)
1646 { This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
1647
1648 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1649 static inline void
1650 addr16_ha3(unsigned char* view, Address value)
1651 { This::addr16_hi3(view, value + 0x8000); }
1652
1653 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1654 static inline Status
1655 addr14(unsigned char* view, Address value, Overflow_check overflow)
1656 {
1657 Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1658 if (overflow != CHECK_NONE && (value & 3) != 0)
1659 stat = STATUS_OVERFLOW;
1660 return stat;
1661 }
1662 };
1663
1664 // Set ABI version for input and output.
1665
1666 template<int size, bool big_endian>
1667 void
1668 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1669 {
1670 this->e_flags_ |= ver;
1671 if (this->abiversion() != 0)
1672 {
1673 Target_powerpc<size, big_endian>* target =
1674 static_cast<Target_powerpc<size, big_endian>*>(
1675 parameters->sized_target<size, big_endian>());
1676 if (target->abiversion() == 0)
1677 target->set_abiversion(this->abiversion());
1678 else if (target->abiversion() != this->abiversion())
1679 gold_error(_("%s: ABI version %d is not compatible "
1680 "with ABI version %d output"),
1681 this->name().c_str(),
1682 this->abiversion(), target->abiversion());
1683
1684 }
1685 }
1686
1687 // Stash away the index of .got2 or .opd in a relocatable object, if
1688 // such a section exists.
1689
1690 template<int size, bool big_endian>
1691 bool
1692 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1693 Read_symbols_data* sd)
1694 {
1695 const unsigned char* const pshdrs = sd->section_headers->data();
1696 const unsigned char* namesu = sd->section_names->data();
1697 const char* names = reinterpret_cast<const char*>(namesu);
1698 section_size_type names_size = sd->section_names_size;
1699 const unsigned char* s;
1700
1701 s = this->template find_shdr<size, big_endian>(pshdrs,
1702 size == 32 ? ".got2" : ".opd",
1703 names, names_size, NULL);
1704 if (s != NULL)
1705 {
1706 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1707 this->special_ = ndx;
1708 if (size == 64)
1709 {
1710 if (this->abiversion() == 0)
1711 this->set_abiversion(1);
1712 else if (this->abiversion() > 1)
1713 gold_error(_("%s: .opd invalid in abiv%d"),
1714 this->name().c_str(), this->abiversion());
1715 }
1716 }
1717 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1718 }
1719
1720 // Examine .rela.opd to build info about function entry points.
1721
1722 template<int size, bool big_endian>
1723 void
1724 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1725 size_t reloc_count,
1726 const unsigned char* prelocs,
1727 const unsigned char* plocal_syms)
1728 {
1729 if (size == 64)
1730 {
1731 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1732 Reltype;
1733 const int reloc_size
1734 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1735 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1736 Address expected_off = 0;
1737 bool regular = true;
1738 unsigned int opd_ent_size = 0;
1739
1740 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1741 {
1742 Reltype reloc(prelocs);
1743 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1744 = reloc.get_r_info();
1745 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1746 if (r_type == elfcpp::R_PPC64_ADDR64)
1747 {
1748 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1749 typename elfcpp::Elf_types<size>::Elf_Addr value;
1750 bool is_ordinary;
1751 unsigned int shndx;
1752 if (r_sym < this->local_symbol_count())
1753 {
1754 typename elfcpp::Sym<size, big_endian>
1755 lsym(plocal_syms + r_sym * sym_size);
1756 shndx = lsym.get_st_shndx();
1757 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1758 value = lsym.get_st_value();
1759 }
1760 else
1761 shndx = this->symbol_section_and_value(r_sym, &value,
1762 &is_ordinary);
1763 this->set_opd_ent(reloc.get_r_offset(), shndx,
1764 value + reloc.get_r_addend());
1765 if (i == 2)
1766 {
1767 expected_off = reloc.get_r_offset();
1768 opd_ent_size = expected_off;
1769 }
1770 else if (expected_off != reloc.get_r_offset())
1771 regular = false;
1772 expected_off += opd_ent_size;
1773 }
1774 else if (r_type == elfcpp::R_PPC64_TOC)
1775 {
1776 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1777 regular = false;
1778 }
1779 else
1780 {
1781 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1782 this->name().c_str(), r_type);
1783 regular = false;
1784 }
1785 }
1786 if (reloc_count <= 2)
1787 opd_ent_size = this->section_size(this->opd_shndx());
1788 if (opd_ent_size != 24 && opd_ent_size != 16)
1789 regular = false;
1790 if (!regular)
1791 {
1792 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1793 this->name().c_str());
1794 opd_ent_size = 0;
1795 }
1796 }
1797 }
1798
1799 template<int size, bool big_endian>
1800 void
1801 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1802 {
1803 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1804 if (size == 64)
1805 {
1806 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1807 p != rd->relocs.end();
1808 ++p)
1809 {
1810 if (p->data_shndx == this->opd_shndx())
1811 {
1812 uint64_t opd_size = this->section_size(this->opd_shndx());
1813 gold_assert(opd_size == static_cast<size_t>(opd_size));
1814 if (opd_size != 0)
1815 {
1816 this->init_opd(opd_size);
1817 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1818 rd->local_symbols->data());
1819 }
1820 break;
1821 }
1822 }
1823 }
1824 }
1825
1826 // Read the symbols then set up st_other vector.
1827
1828 template<int size, bool big_endian>
1829 void
1830 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1831 {
1832 Sized_relobj_file<size, big_endian>::do_read_symbols(sd);
1833 if (size == 64)
1834 {
1835 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1836 const unsigned char* const pshdrs = sd->section_headers->data();
1837 const unsigned int loccount = this->do_local_symbol_count();
1838 if (loccount != 0)
1839 {
1840 this->st_other_.resize(loccount);
1841 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1842 off_t locsize = loccount * sym_size;
1843 const unsigned int symtab_shndx = this->symtab_shndx();
1844 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1845 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1846 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1847 locsize, true, false);
1848 psyms += sym_size;
1849 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1850 {
1851 elfcpp::Sym<size, big_endian> sym(psyms);
1852 unsigned char st_other = sym.get_st_other();
1853 this->st_other_[i] = st_other;
1854 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1855 {
1856 if (this->abiversion() == 0)
1857 this->set_abiversion(2);
1858 else if (this->abiversion() < 2)
1859 gold_error(_("%s: local symbol %d has invalid st_other"
1860 " for ABI version 1"),
1861 this->name().c_str(), i);
1862 }
1863 }
1864 }
1865 }
1866 }
1867
1868 template<int size, bool big_endian>
1869 void
1870 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1871 {
1872 this->e_flags_ |= ver;
1873 if (this->abiversion() != 0)
1874 {
1875 Target_powerpc<size, big_endian>* target =
1876 static_cast<Target_powerpc<size, big_endian>*>(
1877 parameters->sized_target<size, big_endian>());
1878 if (target->abiversion() == 0)
1879 target->set_abiversion(this->abiversion());
1880 else if (target->abiversion() != this->abiversion())
1881 gold_error(_("%s: ABI version %d is not compatible "
1882 "with ABI version %d output"),
1883 this->name().c_str(),
1884 this->abiversion(), target->abiversion());
1885
1886 }
1887 }
1888
1889 // Call Sized_dynobj::do_read_symbols to read the symbols then
1890 // read .opd from a dynamic object, filling in opd_ent_ vector,
1891
1892 template<int size, bool big_endian>
1893 void
1894 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1895 {
1896 Sized_dynobj<size, big_endian>::do_read_symbols(sd);
1897 if (size == 64)
1898 {
1899 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1900 const unsigned char* const pshdrs = sd->section_headers->data();
1901 const unsigned char* namesu = sd->section_names->data();
1902 const char* names = reinterpret_cast<const char*>(namesu);
1903 const unsigned char* s = NULL;
1904 const unsigned char* opd;
1905 section_size_type opd_size;
1906
1907 // Find and read .opd section.
1908 while (1)
1909 {
1910 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1911 sd->section_names_size,
1912 s);
1913 if (s == NULL)
1914 return;
1915
1916 typename elfcpp::Shdr<size, big_endian> shdr(s);
1917 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1918 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1919 {
1920 if (this->abiversion() == 0)
1921 this->set_abiversion(1);
1922 else if (this->abiversion() > 1)
1923 gold_error(_("%s: .opd invalid in abiv%d"),
1924 this->name().c_str(), this->abiversion());
1925
1926 this->opd_shndx_ = (s - pshdrs) / shdr_size;
1927 this->opd_address_ = shdr.get_sh_addr();
1928 opd_size = convert_to_section_size_type(shdr.get_sh_size());
1929 opd = this->get_view(shdr.get_sh_offset(), opd_size,
1930 true, false);
1931 break;
1932 }
1933 }
1934
1935 // Build set of executable sections.
1936 // Using a set is probably overkill. There is likely to be only
1937 // a few executable sections, typically .init, .text and .fini,
1938 // and they are generally grouped together.
1939 typedef std::set<Sec_info> Exec_sections;
1940 Exec_sections exec_sections;
1941 s = pshdrs;
1942 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1943 {
1944 typename elfcpp::Shdr<size, big_endian> shdr(s);
1945 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1946 && ((shdr.get_sh_flags()
1947 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1948 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1949 && shdr.get_sh_size() != 0)
1950 {
1951 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1952 shdr.get_sh_size(), i));
1953 }
1954 }
1955 if (exec_sections.empty())
1956 return;
1957
1958 // Look over the OPD entries. This is complicated by the fact
1959 // that some binaries will use two-word entries while others
1960 // will use the standard three-word entries. In most cases
1961 // the third word (the environment pointer for languages like
1962 // Pascal) is unused and will be zero. If the third word is
1963 // used it should not be pointing into executable sections,
1964 // I think.
1965 this->init_opd(opd_size);
1966 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
1967 {
1968 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
1969 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
1970 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
1971 if (val == 0)
1972 // Chances are that this is the third word of an OPD entry.
1973 continue;
1974 typename Exec_sections::const_iterator e
1975 = exec_sections.upper_bound(Sec_info(val, 0, 0));
1976 if (e != exec_sections.begin())
1977 {
1978 --e;
1979 if (e->start <= val && val < e->start + e->len)
1980 {
1981 // We have an address in an executable section.
1982 // VAL ought to be the function entry, set it up.
1983 this->set_opd_ent(p - opd, e->shndx, val);
1984 // Skip second word of OPD entry, the TOC pointer.
1985 p += 8;
1986 }
1987 }
1988 // If we didn't match any executable sections, we likely
1989 // have a non-zero third word in the OPD entry.
1990 }
1991 }
1992 }
1993
1994 // Set up some symbols.
1995
1996 template<int size, bool big_endian>
1997 void
1998 Target_powerpc<size, big_endian>::do_define_standard_symbols(
1999 Symbol_table* symtab,
2000 Layout* layout)
2001 {
2002 if (size == 32)
2003 {
2004 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2005 // undefined when scanning relocs (and thus requires
2006 // non-relative dynamic relocs). The proper value will be
2007 // updated later.
2008 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2009 if (gotsym != NULL && gotsym->is_undefined())
2010 {
2011 Target_powerpc<size, big_endian>* target =
2012 static_cast<Target_powerpc<size, big_endian>*>(
2013 parameters->sized_target<size, big_endian>());
2014 Output_data_got_powerpc<size, big_endian>* got
2015 = target->got_section(symtab, layout);
2016 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2017 Symbol_table::PREDEFINED,
2018 got, 0, 0,
2019 elfcpp::STT_OBJECT,
2020 elfcpp::STB_LOCAL,
2021 elfcpp::STV_HIDDEN, 0,
2022 false, false);
2023 }
2024
2025 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2026 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2027 if (sdasym != NULL && sdasym->is_undefined())
2028 {
2029 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2030 Output_section* os
2031 = layout->add_output_section_data(".sdata", 0,
2032 elfcpp::SHF_ALLOC
2033 | elfcpp::SHF_WRITE,
2034 sdata, ORDER_SMALL_DATA, false);
2035 symtab->define_in_output_data("_SDA_BASE_", NULL,
2036 Symbol_table::PREDEFINED,
2037 os, 32768, 0, elfcpp::STT_OBJECT,
2038 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2039 0, false, false);
2040 }
2041 }
2042 else
2043 {
2044 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2045 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2046 if (gotsym != NULL && gotsym->is_undefined())
2047 {
2048 Target_powerpc<size, big_endian>* target =
2049 static_cast<Target_powerpc<size, big_endian>*>(
2050 parameters->sized_target<size, big_endian>());
2051 Output_data_got_powerpc<size, big_endian>* got
2052 = target->got_section(symtab, layout);
2053 symtab->define_in_output_data(".TOC.", NULL,
2054 Symbol_table::PREDEFINED,
2055 got, 0x8000, 0,
2056 elfcpp::STT_OBJECT,
2057 elfcpp::STB_LOCAL,
2058 elfcpp::STV_HIDDEN, 0,
2059 false, false);
2060 }
2061 }
2062 }
2063
2064 // Set up PowerPC target specific relobj.
2065
2066 template<int size, bool big_endian>
2067 Object*
2068 Target_powerpc<size, big_endian>::do_make_elf_object(
2069 const std::string& name,
2070 Input_file* input_file,
2071 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2072 {
2073 int et = ehdr.get_e_type();
2074 // ET_EXEC files are valid input for --just-symbols/-R,
2075 // and we treat them as relocatable objects.
2076 if (et == elfcpp::ET_REL
2077 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2078 {
2079 Powerpc_relobj<size, big_endian>* obj =
2080 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2081 obj->setup();
2082 return obj;
2083 }
2084 else if (et == elfcpp::ET_DYN)
2085 {
2086 Powerpc_dynobj<size, big_endian>* obj =
2087 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2088 obj->setup();
2089 return obj;
2090 }
2091 else
2092 {
2093 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2094 return NULL;
2095 }
2096 }
2097
2098 template<int size, bool big_endian>
2099 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2100 {
2101 public:
2102 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2103 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2104
2105 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2106 : Output_data_got<size, big_endian>(),
2107 symtab_(symtab), layout_(layout),
2108 header_ent_cnt_(size == 32 ? 3 : 1),
2109 header_index_(size == 32 ? 0x2000 : 0)
2110 { }
2111
2112 // Override all the Output_data_got methods we use so as to first call
2113 // reserve_ent().
2114 bool
2115 add_global(Symbol* gsym, unsigned int got_type)
2116 {
2117 this->reserve_ent();
2118 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2119 }
2120
2121 bool
2122 add_global_plt(Symbol* gsym, unsigned int got_type)
2123 {
2124 this->reserve_ent();
2125 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2126 }
2127
2128 bool
2129 add_global_tls(Symbol* gsym, unsigned int got_type)
2130 { return this->add_global_plt(gsym, got_type); }
2131
2132 void
2133 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2134 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2135 {
2136 this->reserve_ent();
2137 Output_data_got<size, big_endian>::
2138 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2139 }
2140
2141 void
2142 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2143 Output_data_reloc_generic* rel_dyn,
2144 unsigned int r_type_1, unsigned int r_type_2)
2145 {
2146 this->reserve_ent(2);
2147 Output_data_got<size, big_endian>::
2148 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2149 }
2150
2151 bool
2152 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2153 {
2154 this->reserve_ent();
2155 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2156 got_type);
2157 }
2158
2159 bool
2160 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2161 {
2162 this->reserve_ent();
2163 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2164 got_type);
2165 }
2166
2167 bool
2168 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2169 { return this->add_local_plt(object, sym_index, got_type); }
2170
2171 void
2172 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2173 unsigned int got_type,
2174 Output_data_reloc_generic* rel_dyn,
2175 unsigned int r_type)
2176 {
2177 this->reserve_ent(2);
2178 Output_data_got<size, big_endian>::
2179 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2180 }
2181
2182 unsigned int
2183 add_constant(Valtype constant)
2184 {
2185 this->reserve_ent();
2186 return Output_data_got<size, big_endian>::add_constant(constant);
2187 }
2188
2189 unsigned int
2190 add_constant_pair(Valtype c1, Valtype c2)
2191 {
2192 this->reserve_ent(2);
2193 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2194 }
2195
2196 // Offset of _GLOBAL_OFFSET_TABLE_.
2197 unsigned int
2198 g_o_t() const
2199 {
2200 return this->got_offset(this->header_index_);
2201 }
2202
2203 // Offset of base used to access the GOT/TOC.
2204 // The got/toc pointer reg will be set to this value.
2205 Valtype
2206 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2207 {
2208 if (size == 32)
2209 return this->g_o_t();
2210 else
2211 return (this->output_section()->address()
2212 + object->toc_base_offset()
2213 - this->address());
2214 }
2215
2216 // Ensure our GOT has a header.
2217 void
2218 set_final_data_size()
2219 {
2220 if (this->header_ent_cnt_ != 0)
2221 this->make_header();
2222 Output_data_got<size, big_endian>::set_final_data_size();
2223 }
2224
2225 // First word of GOT header needs some values that are not
2226 // handled by Output_data_got so poke them in here.
2227 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2228 void
2229 do_write(Output_file* of)
2230 {
2231 Valtype val = 0;
2232 if (size == 32 && this->layout_->dynamic_data() != NULL)
2233 val = this->layout_->dynamic_section()->address();
2234 if (size == 64)
2235 val = this->output_section()->address() + 0x8000;
2236 this->replace_constant(this->header_index_, val);
2237 Output_data_got<size, big_endian>::do_write(of);
2238 }
2239
2240 private:
2241 void
2242 reserve_ent(unsigned int cnt = 1)
2243 {
2244 if (this->header_ent_cnt_ == 0)
2245 return;
2246 if (this->num_entries() + cnt > this->header_index_)
2247 this->make_header();
2248 }
2249
2250 void
2251 make_header()
2252 {
2253 this->header_ent_cnt_ = 0;
2254 this->header_index_ = this->num_entries();
2255 if (size == 32)
2256 {
2257 Output_data_got<size, big_endian>::add_constant(0);
2258 Output_data_got<size, big_endian>::add_constant(0);
2259 Output_data_got<size, big_endian>::add_constant(0);
2260
2261 // Define _GLOBAL_OFFSET_TABLE_ at the header
2262 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2263 if (gotsym != NULL)
2264 {
2265 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2266 sym->set_value(this->g_o_t());
2267 }
2268 else
2269 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2270 Symbol_table::PREDEFINED,
2271 this, this->g_o_t(), 0,
2272 elfcpp::STT_OBJECT,
2273 elfcpp::STB_LOCAL,
2274 elfcpp::STV_HIDDEN, 0,
2275 false, false);
2276 }
2277 else
2278 Output_data_got<size, big_endian>::add_constant(0);
2279 }
2280
2281 // Stashed pointers.
2282 Symbol_table* symtab_;
2283 Layout* layout_;
2284
2285 // GOT header size.
2286 unsigned int header_ent_cnt_;
2287 // GOT header index.
2288 unsigned int header_index_;
2289 };
2290
2291 // Get the GOT section, creating it if necessary.
2292
2293 template<int size, bool big_endian>
2294 Output_data_got_powerpc<size, big_endian>*
2295 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2296 Layout* layout)
2297 {
2298 if (this->got_ == NULL)
2299 {
2300 gold_assert(symtab != NULL && layout != NULL);
2301
2302 this->got_
2303 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2304
2305 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2306 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2307 this->got_, ORDER_DATA, false);
2308 }
2309
2310 return this->got_;
2311 }
2312
2313 // Get the dynamic reloc section, creating it if necessary.
2314
2315 template<int size, bool big_endian>
2316 typename Target_powerpc<size, big_endian>::Reloc_section*
2317 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2318 {
2319 if (this->rela_dyn_ == NULL)
2320 {
2321 gold_assert(layout != NULL);
2322 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2323 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2324 elfcpp::SHF_ALLOC, this->rela_dyn_,
2325 ORDER_DYNAMIC_RELOCS, false);
2326 }
2327 return this->rela_dyn_;
2328 }
2329
2330 // Similarly, but for ifunc symbols get the one for ifunc.
2331
2332 template<int size, bool big_endian>
2333 typename Target_powerpc<size, big_endian>::Reloc_section*
2334 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2335 Layout* layout,
2336 bool for_ifunc)
2337 {
2338 if (!for_ifunc)
2339 return this->rela_dyn_section(layout);
2340
2341 if (this->iplt_ == NULL)
2342 this->make_iplt_section(symtab, layout);
2343 return this->iplt_->rel_plt();
2344 }
2345
2346 class Stub_control
2347 {
2348 public:
2349 // Determine the stub group size. The group size is the absolute
2350 // value of the parameter --stub-group-size. If --stub-group-size
2351 // is passed a negative value, we restrict stubs to be always before
2352 // the stubbed branches.
2353 Stub_control(int32_t size)
2354 : state_(NO_GROUP), stub_group_size_(abs(size)),
2355 stub14_group_size_(abs(size)),
2356 stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
2357 group_end_addr_(0), owner_(NULL), output_section_(NULL)
2358 {
2359 if (stub_group_size_ == 1)
2360 {
2361 // Default values.
2362 if (stubs_always_before_branch_)
2363 {
2364 stub_group_size_ = 0x1e00000;
2365 stub14_group_size_ = 0x7800;
2366 }
2367 else
2368 {
2369 stub_group_size_ = 0x1c00000;
2370 stub14_group_size_ = 0x7000;
2371 }
2372 suppress_size_errors_ = true;
2373 }
2374 }
2375
2376 // Return true iff input section can be handled by current stub
2377 // group.
2378 bool
2379 can_add_to_stub_group(Output_section* o,
2380 const Output_section::Input_section* i,
2381 bool has14);
2382
2383 const Output_section::Input_section*
2384 owner()
2385 { return owner_; }
2386
2387 Output_section*
2388 output_section()
2389 { return output_section_; }
2390
2391 private:
2392 typedef enum
2393 {
2394 NO_GROUP,
2395 FINDING_STUB_SECTION,
2396 HAS_STUB_SECTION
2397 } State;
2398
2399 State state_;
2400 uint32_t stub_group_size_;
2401 uint32_t stub14_group_size_;
2402 bool stubs_always_before_branch_;
2403 bool suppress_size_errors_;
2404 uint64_t group_end_addr_;
2405 const Output_section::Input_section* owner_;
2406 Output_section* output_section_;
2407 };
2408
2409 // Return true iff input section can be handled by current stub
2410 // group.
2411
2412 bool
2413 Stub_control::can_add_to_stub_group(Output_section* o,
2414 const Output_section::Input_section* i,
2415 bool has14)
2416 {
2417 uint32_t group_size
2418 = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2419 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2420 uint64_t this_size;
2421 uint64_t start_addr = o->address();
2422
2423 if (whole_sec)
2424 // .init and .fini sections are pasted together to form a single
2425 // function. We can't be adding stubs in the middle of the function.
2426 this_size = o->data_size();
2427 else
2428 {
2429 start_addr += i->relobj()->output_section_offset(i->shndx());
2430 this_size = i->data_size();
2431 }
2432 uint64_t end_addr = start_addr + this_size;
2433 bool toobig = this_size > group_size;
2434
2435 if (toobig && !this->suppress_size_errors_)
2436 gold_warning(_("%s:%s exceeds group size"),
2437 i->relobj()->name().c_str(),
2438 i->relobj()->section_name(i->shndx()).c_str());
2439
2440 if (this->state_ != HAS_STUB_SECTION
2441 && (!whole_sec || this->output_section_ != o)
2442 && (this->state_ == NO_GROUP
2443 || this->group_end_addr_ - end_addr < group_size))
2444 {
2445 this->owner_ = i;
2446 this->output_section_ = o;
2447 }
2448
2449 if (this->state_ == NO_GROUP)
2450 {
2451 this->state_ = FINDING_STUB_SECTION;
2452 this->group_end_addr_ = end_addr;
2453 }
2454 else if (this->group_end_addr_ - start_addr < group_size)
2455 ;
2456 // Adding this section would make the group larger than GROUP_SIZE.
2457 else if (this->state_ == FINDING_STUB_SECTION
2458 && !this->stubs_always_before_branch_
2459 && !toobig)
2460 {
2461 // But wait, there's more! Input sections up to GROUP_SIZE
2462 // bytes before the stub table can be handled by it too.
2463 this->state_ = HAS_STUB_SECTION;
2464 this->group_end_addr_ = end_addr;
2465 }
2466 else
2467 {
2468 this->state_ = NO_GROUP;
2469 return false;
2470 }
2471 return true;
2472 }
2473
2474 // Look over all the input sections, deciding where to place stubs.
2475
2476 template<int size, bool big_endian>
2477 void
2478 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2479 const Task*)
2480 {
2481 Stub_control stub_control(parameters->options().stub_group_size());
2482
2483 // Group input sections and insert stub table
2484 Stub_table<size, big_endian>* stub_table = NULL;
2485 Layout::Section_list section_list;
2486 layout->get_executable_sections(&section_list);
2487 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2488 for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2489 o != section_list.rend();
2490 ++o)
2491 {
2492 typedef Output_section::Input_section_list Input_section_list;
2493 for (Input_section_list::const_reverse_iterator i
2494 = (*o)->input_sections().rbegin();
2495 i != (*o)->input_sections().rend();
2496 ++i)
2497 {
2498 if (i->is_input_section())
2499 {
2500 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2501 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2502 bool has14 = ppcobj->has_14bit_branch(i->shndx());
2503 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2504 {
2505 stub_table->init(stub_control.owner(),
2506 stub_control.output_section());
2507 stub_table = NULL;
2508 }
2509 if (stub_table == NULL)
2510 stub_table = this->new_stub_table();
2511 ppcobj->set_stub_table(i->shndx(), stub_table);
2512 }
2513 }
2514 }
2515 if (stub_table != NULL)
2516 {
2517 const Output_section::Input_section* i = stub_control.owner();
2518 if (!i->is_input_section())
2519 {
2520 // Corner case. A new stub group was made for the first
2521 // section (last one looked at here) for some reason, but
2522 // the first section is already being used as the owner for
2523 // a stub table for following sections. Force it into that
2524 // stub group.
2525 gold_assert(this->stub_tables_.size() >= 2);
2526 this->stub_tables_.pop_back();
2527 delete stub_table;
2528 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2529 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2530 ppcobj->set_stub_table(i->shndx(), this->stub_tables_.back());
2531 }
2532 else
2533 stub_table->init(i, stub_control.output_section());
2534 }
2535 }
2536
2537 // If this branch needs a plt call stub, or a long branch stub, make one.
2538
2539 template<int size, bool big_endian>
2540 void
2541 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2542 Stub_table<size, big_endian>* stub_table,
2543 Stub_table<size, big_endian>* ifunc_stub_table,
2544 Symbol_table* symtab) const
2545 {
2546 Symbol* sym = this->object_->global_symbol(this->r_sym_);
2547 if (sym != NULL && sym->is_forwarder())
2548 sym = symtab->resolve_forwards(sym);
2549 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2550 Target_powerpc<size, big_endian>* target =
2551 static_cast<Target_powerpc<size, big_endian>*>(
2552 parameters->sized_target<size, big_endian>());
2553 if (gsym != NULL
2554 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2555 : this->object_->local_has_plt_offset(this->r_sym_))
2556 {
2557 if (size == 64
2558 && gsym != NULL
2559 && target->abiversion() >= 2
2560 && !parameters->options().output_is_position_independent()
2561 && !is_branch_reloc(this->r_type_))
2562 target->glink_section()->add_global_entry(gsym);
2563 else
2564 {
2565 if (stub_table == NULL)
2566 stub_table = this->object_->stub_table(this->shndx_);
2567 if (stub_table == NULL)
2568 {
2569 // This is a ref from a data section to an ifunc symbol.
2570 stub_table = ifunc_stub_table;
2571 }
2572 gold_assert(stub_table != NULL);
2573 if (gsym != NULL)
2574 stub_table->add_plt_call_entry(this->object_, gsym,
2575 this->r_type_, this->addend_);
2576 else
2577 stub_table->add_plt_call_entry(this->object_, this->r_sym_,
2578 this->r_type_, this->addend_);
2579 }
2580 }
2581 else
2582 {
2583 unsigned long max_branch_offset;
2584 if (this->r_type_ == elfcpp::R_POWERPC_REL14
2585 || this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
2586 || this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2587 max_branch_offset = 1 << 15;
2588 else if (this->r_type_ == elfcpp::R_POWERPC_REL24
2589 || this->r_type_ == elfcpp::R_PPC_PLTREL24
2590 || this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
2591 max_branch_offset = 1 << 25;
2592 else
2593 return;
2594 Address from = this->object_->get_output_section_offset(this->shndx_);
2595 gold_assert(from != invalid_address);
2596 from += (this->object_->output_section(this->shndx_)->address()
2597 + this->offset_);
2598 Address to;
2599 if (gsym != NULL)
2600 {
2601 switch (gsym->source())
2602 {
2603 case Symbol::FROM_OBJECT:
2604 {
2605 Object* symobj = gsym->object();
2606 if (symobj->is_dynamic()
2607 || symobj->pluginobj() != NULL)
2608 return;
2609 bool is_ordinary;
2610 unsigned int shndx = gsym->shndx(&is_ordinary);
2611 if (shndx == elfcpp::SHN_UNDEF)
2612 return;
2613 }
2614 break;
2615
2616 case Symbol::IS_UNDEFINED:
2617 return;
2618
2619 default:
2620 break;
2621 }
2622 Symbol_table::Compute_final_value_status status;
2623 to = symtab->compute_final_value<size>(gsym, &status);
2624 if (status != Symbol_table::CFVS_OK)
2625 return;
2626 if (size == 64)
2627 to += this->object_->ppc64_local_entry_offset(gsym);
2628 }
2629 else
2630 {
2631 const Symbol_value<size>* psymval
2632 = this->object_->local_symbol(this->r_sym_);
2633 Symbol_value<size> symval;
2634 typedef Sized_relobj_file<size, big_endian> ObjType;
2635 typename ObjType::Compute_final_local_value_status status
2636 = this->object_->compute_final_local_value(this->r_sym_, psymval,
2637 &symval, symtab);
2638 if (status != ObjType::CFLV_OK
2639 || !symval.has_output_value())
2640 return;
2641 to = symval.value(this->object_, 0);
2642 if (size == 64)
2643 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2644 }
2645 to += this->addend_;
2646 if (stub_table == NULL)
2647 stub_table = this->object_->stub_table(this->shndx_);
2648 if (size == 64 && target->abiversion() < 2)
2649 {
2650 unsigned int dest_shndx;
2651 to = target->symval_for_branch(symtab, to, gsym,
2652 this->object_, &dest_shndx);
2653 }
2654 Address delta = to - from;
2655 if (delta + max_branch_offset >= 2 * max_branch_offset)
2656 {
2657 if (stub_table == NULL)
2658 {
2659 gold_warning(_("%s:%s: branch in non-executable section,"
2660 " no long branch stub for you"),
2661 this->object_->name().c_str(),
2662 this->object_->section_name(this->shndx_).c_str());
2663 return;
2664 }
2665 stub_table->add_long_branch_entry(this->object_, to);
2666 }
2667 }
2668 }
2669
2670 // Relaxation hook. This is where we do stub generation.
2671
2672 template<int size, bool big_endian>
2673 bool
2674 Target_powerpc<size, big_endian>::do_relax(int pass,
2675 const Input_objects*,
2676 Symbol_table* symtab,
2677 Layout* layout,
2678 const Task* task)
2679 {
2680 unsigned int prev_brlt_size = 0;
2681 if (pass == 1)
2682 {
2683 bool thread_safe
2684 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2685 if (size == 64
2686 && this->abiversion() < 2
2687 && !thread_safe
2688 && !parameters->options().user_set_plt_thread_safe())
2689 {
2690 static const char* const thread_starter[] =
2691 {
2692 "pthread_create",
2693 /* libstdc++ */
2694 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2695 /* librt */
2696 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2697 "mq_notify", "create_timer",
2698 /* libanl */
2699 "getaddrinfo_a",
2700 /* libgomp */
2701 "GOMP_parallel_start",
2702 "GOMP_parallel_loop_static_start",
2703 "GOMP_parallel_loop_dynamic_start",
2704 "GOMP_parallel_loop_guided_start",
2705 "GOMP_parallel_loop_runtime_start",
2706 "GOMP_parallel_sections_start",
2707 };
2708
2709 if (parameters->options().shared())
2710 thread_safe = true;
2711 else
2712 {
2713 for (unsigned int i = 0;
2714 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2715 i++)
2716 {
2717 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2718 thread_safe = (sym != NULL
2719 && sym->in_reg()
2720 && sym->in_real_elf());
2721 if (thread_safe)
2722 break;
2723 }
2724 }
2725 }
2726 this->plt_thread_safe_ = thread_safe;
2727 this->group_sections(layout, task);
2728 }
2729
2730 // We need address of stub tables valid for make_stub.
2731 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2732 p != this->stub_tables_.end();
2733 ++p)
2734 {
2735 const Powerpc_relobj<size, big_endian>* object
2736 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2737 Address off = object->get_output_section_offset((*p)->shndx());
2738 gold_assert(off != invalid_address);
2739 Output_section* os = (*p)->output_section();
2740 (*p)->set_address_and_size(os, off);
2741 }
2742
2743 if (pass != 1)
2744 {
2745 // Clear plt call stubs, long branch stubs and branch lookup table.
2746 prev_brlt_size = this->branch_lookup_table_.size();
2747 this->branch_lookup_table_.clear();
2748 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2749 p != this->stub_tables_.end();
2750 ++p)
2751 {
2752 (*p)->clear_stubs();
2753 }
2754 }
2755
2756 // Build all the stubs.
2757 Stub_table<size, big_endian>* ifunc_stub_table
2758 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2759 Stub_table<size, big_endian>* one_stub_table
2760 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2761 for (typename Branches::const_iterator b = this->branch_info_.begin();
2762 b != this->branch_info_.end();
2763 b++)
2764 {
2765 b->make_stub(one_stub_table, ifunc_stub_table, symtab);
2766 }
2767
2768 // Did anything change size?
2769 unsigned int num_huge_branches = this->branch_lookup_table_.size();
2770 bool again = num_huge_branches != prev_brlt_size;
2771 if (size == 64 && num_huge_branches != 0)
2772 this->make_brlt_section(layout);
2773 if (size == 64 && again)
2774 this->brlt_section_->set_current_size(num_huge_branches);
2775
2776 typedef Unordered_set<Output_section*> Output_sections;
2777 Output_sections os_need_update;
2778 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2779 p != this->stub_tables_.end();
2780 ++p)
2781 {
2782 if ((*p)->size_update())
2783 {
2784 again = true;
2785 (*p)->add_eh_frame(layout);
2786 os_need_update.insert((*p)->output_section());
2787 }
2788 }
2789
2790 // Set output section offsets for all input sections in an output
2791 // section that just changed size. Anything past the stubs will
2792 // need updating.
2793 for (typename Output_sections::iterator p = os_need_update.begin();
2794 p != os_need_update.end();
2795 p++)
2796 {
2797 Output_section* os = *p;
2798 Address off = 0;
2799 typedef Output_section::Input_section_list Input_section_list;
2800 for (Input_section_list::const_iterator i = os->input_sections().begin();
2801 i != os->input_sections().end();
2802 ++i)
2803 {
2804 off = align_address(off, i->addralign());
2805 if (i->is_input_section() || i->is_relaxed_input_section())
2806 i->relobj()->set_section_offset(i->shndx(), off);
2807 if (i->is_relaxed_input_section())
2808 {
2809 Stub_table<size, big_endian>* stub_table
2810 = static_cast<Stub_table<size, big_endian>*>(
2811 i->relaxed_input_section());
2812 off += stub_table->set_address_and_size(os, off);
2813 }
2814 else
2815 off += i->data_size();
2816 }
2817 // If .branch_lt is part of this output section, then we have
2818 // just done the offset adjustment.
2819 os->clear_section_offsets_need_adjustment();
2820 }
2821
2822 if (size == 64
2823 && !again
2824 && num_huge_branches != 0
2825 && parameters->options().output_is_position_independent())
2826 {
2827 // Fill in the BRLT relocs.
2828 this->brlt_section_->reset_brlt_sizes();
2829 for (typename Branch_lookup_table::const_iterator p
2830 = this->branch_lookup_table_.begin();
2831 p != this->branch_lookup_table_.end();
2832 ++p)
2833 {
2834 this->brlt_section_->add_reloc(p->first, p->second);
2835 }
2836 this->brlt_section_->finalize_brlt_sizes();
2837 }
2838 return again;
2839 }
2840
2841 template<int size, bool big_endian>
2842 void
2843 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2844 unsigned char* oview,
2845 uint64_t* paddress,
2846 off_t* plen) const
2847 {
2848 uint64_t address = plt->address();
2849 off_t len = plt->data_size();
2850
2851 if (plt == this->glink_)
2852 {
2853 // See Output_data_glink::do_write() for glink contents.
2854 if (len == 0)
2855 {
2856 gold_assert(parameters->doing_static_link());
2857 // Static linking may need stubs, to support ifunc and long
2858 // branches. We need to create an output section for
2859 // .eh_frame early in the link process, to have a place to
2860 // attach stub .eh_frame info. We also need to have
2861 // registered a CIE that matches the stub CIE. Both of
2862 // these requirements are satisfied by creating an FDE and
2863 // CIE for .glink, even though static linking will leave
2864 // .glink zero length.
2865 // ??? Hopefully generating an FDE with a zero address range
2866 // won't confuse anything that consumes .eh_frame info.
2867 }
2868 else if (size == 64)
2869 {
2870 // There is one word before __glink_PLTresolve
2871 address += 8;
2872 len -= 8;
2873 }
2874 else if (parameters->options().output_is_position_independent())
2875 {
2876 // There are two FDEs for a position independent glink.
2877 // The first covers the branch table, the second
2878 // __glink_PLTresolve at the end of glink.
2879 off_t resolve_size = this->glink_->pltresolve_size;
2880 if (oview[9] == elfcpp::DW_CFA_nop)
2881 len -= resolve_size;
2882 else
2883 {
2884 address += len - resolve_size;
2885 len = resolve_size;
2886 }
2887 }
2888 }
2889 else
2890 {
2891 // Must be a stub table.
2892 const Stub_table<size, big_endian>* stub_table
2893 = static_cast<const Stub_table<size, big_endian>*>(plt);
2894 uint64_t stub_address = stub_table->stub_address();
2895 len -= stub_address - address;
2896 address = stub_address;
2897 }
2898
2899 *paddress = address;
2900 *plen = len;
2901 }
2902
2903 // A class to handle the PLT data.
2904
2905 template<int size, bool big_endian>
2906 class Output_data_plt_powerpc : public Output_section_data_build
2907 {
2908 public:
2909 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2910 size, big_endian> Reloc_section;
2911
2912 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
2913 Reloc_section* plt_rel,
2914 const char* name)
2915 : Output_section_data_build(size == 32 ? 4 : 8),
2916 rel_(plt_rel),
2917 targ_(targ),
2918 name_(name)
2919 { }
2920
2921 // Add an entry to the PLT.
2922 void
2923 add_entry(Symbol*);
2924
2925 void
2926 add_ifunc_entry(Symbol*);
2927
2928 void
2929 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
2930
2931 // Return the .rela.plt section data.
2932 Reloc_section*
2933 rel_plt() const
2934 {
2935 return this->rel_;
2936 }
2937
2938 // Return the number of PLT entries.
2939 unsigned int
2940 entry_count() const
2941 {
2942 if (this->current_data_size() == 0)
2943 return 0;
2944 return ((this->current_data_size() - this->first_plt_entry_offset())
2945 / this->plt_entry_size());
2946 }
2947
2948 protected:
2949 void
2950 do_adjust_output_section(Output_section* os)
2951 {
2952 os->set_entsize(0);
2953 }
2954
2955 // Write to a map file.
2956 void
2957 do_print_to_mapfile(Mapfile* mapfile) const
2958 { mapfile->print_output_data(this, this->name_); }
2959
2960 private:
2961 // Return the offset of the first non-reserved PLT entry.
2962 unsigned int
2963 first_plt_entry_offset() const
2964 {
2965 // IPLT has no reserved entry.
2966 if (this->name_[3] == 'I')
2967 return 0;
2968 return this->targ_->first_plt_entry_offset();
2969 }
2970
2971 // Return the size of each PLT entry.
2972 unsigned int
2973 plt_entry_size() const
2974 {
2975 return this->targ_->plt_entry_size();
2976 }
2977
2978 // Write out the PLT data.
2979 void
2980 do_write(Output_file*);
2981
2982 // The reloc section.
2983 Reloc_section* rel_;
2984 // Allows access to .glink for do_write.
2985 Target_powerpc<size, big_endian>* targ_;
2986 // What to report in map file.
2987 const char *name_;
2988 };
2989
2990 // Add an entry to the PLT.
2991
2992 template<int size, bool big_endian>
2993 void
2994 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
2995 {
2996 if (!gsym->has_plt_offset())
2997 {
2998 section_size_type off = this->current_data_size();
2999 if (off == 0)
3000 off += this->first_plt_entry_offset();
3001 gsym->set_plt_offset(off);
3002 gsym->set_needs_dynsym_entry();
3003 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3004 this->rel_->add_global(gsym, dynrel, this, off, 0);
3005 off += this->plt_entry_size();
3006 this->set_current_data_size(off);
3007 }
3008 }
3009
3010 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3011
3012 template<int size, bool big_endian>
3013 void
3014 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3015 {
3016 if (!gsym->has_plt_offset())
3017 {
3018 section_size_type off = this->current_data_size();
3019 gsym->set_plt_offset(off);
3020 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3021 if (size == 64 && this->targ_->abiversion() < 2)
3022 dynrel = elfcpp::R_PPC64_JMP_IREL;
3023 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3024 off += this->plt_entry_size();
3025 this->set_current_data_size(off);
3026 }
3027 }
3028
3029 // Add an entry for a local ifunc symbol to the IPLT.
3030
3031 template<int size, bool big_endian>
3032 void
3033 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3034 Sized_relobj_file<size, big_endian>* relobj,
3035 unsigned int local_sym_index)
3036 {
3037 if (!relobj->local_has_plt_offset(local_sym_index))
3038 {
3039 section_size_type off = this->current_data_size();
3040 relobj->set_local_plt_offset(local_sym_index, off);
3041 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3042 if (size == 64 && this->targ_->abiversion() < 2)
3043 dynrel = elfcpp::R_PPC64_JMP_IREL;
3044 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3045 this, off, 0);
3046 off += this->plt_entry_size();
3047 this->set_current_data_size(off);
3048 }
3049 }
3050
3051 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3052 static const uint32_t add_2_2_11 = 0x7c425a14;
3053 static const uint32_t add_3_3_2 = 0x7c631214;
3054 static const uint32_t add_3_3_13 = 0x7c636a14;
3055 static const uint32_t add_11_0_11 = 0x7d605a14;
3056 static const uint32_t add_11_2_11 = 0x7d625a14;
3057 static const uint32_t add_11_11_2 = 0x7d6b1214;
3058 static const uint32_t addi_0_12 = 0x380c0000;
3059 static const uint32_t addi_2_2 = 0x38420000;
3060 static const uint32_t addi_3_3 = 0x38630000;
3061 static const uint32_t addi_11_11 = 0x396b0000;
3062 static const uint32_t addi_12_12 = 0x398c0000;
3063 static const uint32_t addis_0_2 = 0x3c020000;
3064 static const uint32_t addis_0_13 = 0x3c0d0000;
3065 static const uint32_t addis_3_2 = 0x3c620000;
3066 static const uint32_t addis_3_13 = 0x3c6d0000;
3067 static const uint32_t addis_11_2 = 0x3d620000;
3068 static const uint32_t addis_11_11 = 0x3d6b0000;
3069 static const uint32_t addis_11_30 = 0x3d7e0000;
3070 static const uint32_t addis_12_12 = 0x3d8c0000;
3071 static const uint32_t b = 0x48000000;
3072 static const uint32_t bcl_20_31 = 0x429f0005;
3073 static const uint32_t bctr = 0x4e800420;
3074 static const uint32_t blr = 0x4e800020;
3075 static const uint32_t bnectr_p4 = 0x4ce20420;
3076 static const uint32_t cmpldi_2_0 = 0x28220000;
3077 static const uint32_t cror_15_15_15 = 0x4def7b82;
3078 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3079 static const uint32_t ld_0_1 = 0xe8010000;
3080 static const uint32_t ld_0_12 = 0xe80c0000;
3081 static const uint32_t ld_2_1 = 0xe8410000;
3082 static const uint32_t ld_2_2 = 0xe8420000;
3083 static const uint32_t ld_2_11 = 0xe84b0000;
3084 static const uint32_t ld_11_2 = 0xe9620000;
3085 static const uint32_t ld_11_11 = 0xe96b0000;
3086 static const uint32_t ld_12_2 = 0xe9820000;
3087 static const uint32_t ld_12_11 = 0xe98b0000;
3088 static const uint32_t ld_12_12 = 0xe98c0000;
3089 static const uint32_t lfd_0_1 = 0xc8010000;
3090 static const uint32_t li_0_0 = 0x38000000;
3091 static const uint32_t li_12_0 = 0x39800000;
3092 static const uint32_t lis_0_0 = 0x3c000000;
3093 static const uint32_t lis_11 = 0x3d600000;
3094 static const uint32_t lis_12 = 0x3d800000;
3095 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3096 static const uint32_t lwz_0_12 = 0x800c0000;
3097 static const uint32_t lwz_11_11 = 0x816b0000;
3098 static const uint32_t lwz_11_30 = 0x817e0000;
3099 static const uint32_t lwz_12_12 = 0x818c0000;
3100 static const uint32_t lwzu_0_12 = 0x840c0000;
3101 static const uint32_t mflr_0 = 0x7c0802a6;
3102 static const uint32_t mflr_11 = 0x7d6802a6;
3103 static const uint32_t mflr_12 = 0x7d8802a6;
3104 static const uint32_t mtctr_0 = 0x7c0903a6;
3105 static const uint32_t mtctr_11 = 0x7d6903a6;
3106 static const uint32_t mtctr_12 = 0x7d8903a6;
3107 static const uint32_t mtlr_0 = 0x7c0803a6;
3108 static const uint32_t mtlr_12 = 0x7d8803a6;
3109 static const uint32_t nop = 0x60000000;
3110 static const uint32_t ori_0_0_0 = 0x60000000;
3111 static const uint32_t srdi_0_0_2 = 0x7800f082;
3112 static const uint32_t std_0_1 = 0xf8010000;
3113 static const uint32_t std_0_12 = 0xf80c0000;
3114 static const uint32_t std_2_1 = 0xf8410000;
3115 static const uint32_t stfd_0_1 = 0xd8010000;
3116 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3117 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3118 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3119 static const uint32_t xor_2_12_12 = 0x7d826278;
3120 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3121
3122 // Write out the PLT.
3123
3124 template<int size, bool big_endian>
3125 void
3126 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3127 {
3128 if (size == 32 && this->name_[3] != 'I')
3129 {
3130 const section_size_type offset = this->offset();
3131 const section_size_type oview_size
3132 = convert_to_section_size_type(this->data_size());
3133 unsigned char* const oview = of->get_output_view(offset, oview_size);
3134 unsigned char* pov = oview;
3135 unsigned char* endpov = oview + oview_size;
3136
3137 // The address of the .glink branch table
3138 const Output_data_glink<size, big_endian>* glink
3139 = this->targ_->glink_section();
3140 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3141
3142 while (pov < endpov)
3143 {
3144 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3145 pov += 4;
3146 branch_tab += 4;
3147 }
3148
3149 of->write_output_view(offset, oview_size, oview);
3150 }
3151 }
3152
3153 // Create the PLT section.
3154
3155 template<int size, bool big_endian>
3156 void
3157 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3158 Layout* layout)
3159 {
3160 if (this->plt_ == NULL)
3161 {
3162 if (this->got_ == NULL)
3163 this->got_section(symtab, layout);
3164
3165 if (this->glink_ == NULL)
3166 make_glink_section(layout);
3167
3168 // Ensure that .rela.dyn always appears before .rela.plt This is
3169 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3170 // needs to include .rela.plt in its range.
3171 this->rela_dyn_section(layout);
3172
3173 Reloc_section* plt_rel = new Reloc_section(false);
3174 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3175 elfcpp::SHF_ALLOC, plt_rel,
3176 ORDER_DYNAMIC_PLT_RELOCS, false);
3177 this->plt_
3178 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3179 "** PLT");
3180 layout->add_output_section_data(".plt",
3181 (size == 32
3182 ? elfcpp::SHT_PROGBITS
3183 : elfcpp::SHT_NOBITS),
3184 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3185 this->plt_,
3186 (size == 32
3187 ? ORDER_SMALL_DATA
3188 : ORDER_SMALL_BSS),
3189 false);
3190 }
3191 }
3192
3193 // Create the IPLT section.
3194
3195 template<int size, bool big_endian>
3196 void
3197 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3198 Layout* layout)
3199 {
3200 if (this->iplt_ == NULL)
3201 {
3202 this->make_plt_section(symtab, layout);
3203
3204 Reloc_section* iplt_rel = new Reloc_section(false);
3205 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3206 this->iplt_
3207 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3208 "** IPLT");
3209 this->plt_->output_section()->add_output_section_data(this->iplt_);
3210 }
3211 }
3212
3213 // A section for huge long branch addresses, similar to plt section.
3214
3215 template<int size, bool big_endian>
3216 class Output_data_brlt_powerpc : public Output_section_data_build
3217 {
3218 public:
3219 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3220 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3221 size, big_endian> Reloc_section;
3222
3223 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3224 Reloc_section* brlt_rel)
3225 : Output_section_data_build(size == 32 ? 4 : 8),
3226 rel_(brlt_rel),
3227 targ_(targ)
3228 { }
3229
3230 void
3231 reset_brlt_sizes()
3232 {
3233 this->reset_data_size();
3234 this->rel_->reset_data_size();
3235 }
3236
3237 void
3238 finalize_brlt_sizes()
3239 {
3240 this->finalize_data_size();
3241 this->rel_->finalize_data_size();
3242 }
3243
3244 // Add a reloc for an entry in the BRLT.
3245 void
3246 add_reloc(Address to, unsigned int off)
3247 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3248
3249 // Update section and reloc section size.
3250 void
3251 set_current_size(unsigned int num_branches)
3252 {
3253 this->reset_address_and_file_offset();
3254 this->set_current_data_size(num_branches * 16);
3255 this->finalize_data_size();
3256 Output_section* os = this->output_section();
3257 os->set_section_offsets_need_adjustment();
3258 if (this->rel_ != NULL)
3259 {
3260 unsigned int reloc_size
3261 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3262 this->rel_->reset_address_and_file_offset();
3263 this->rel_->set_current_data_size(num_branches * reloc_size);
3264 this->rel_->finalize_data_size();
3265 Output_section* os = this->rel_->output_section();
3266 os->set_section_offsets_need_adjustment();
3267 }
3268 }
3269
3270 protected:
3271 void
3272 do_adjust_output_section(Output_section* os)
3273 {
3274 os->set_entsize(0);
3275 }
3276
3277 // Write to a map file.
3278 void
3279 do_print_to_mapfile(Mapfile* mapfile) const
3280 { mapfile->print_output_data(this, "** BRLT"); }
3281
3282 private:
3283 // Write out the BRLT data.
3284 void
3285 do_write(Output_file*);
3286
3287 // The reloc section.
3288 Reloc_section* rel_;
3289 Target_powerpc<size, big_endian>* targ_;
3290 };
3291
3292 // Make the branch lookup table section.
3293
3294 template<int size, bool big_endian>
3295 void
3296 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3297 {
3298 if (size == 64 && this->brlt_section_ == NULL)
3299 {
3300 Reloc_section* brlt_rel = NULL;
3301 bool is_pic = parameters->options().output_is_position_independent();
3302 if (is_pic)
3303 {
3304 // When PIC we can't fill in .branch_lt (like .plt it can be
3305 // a bss style section) but must initialise at runtime via
3306 // dynamic relocats.
3307 this->rela_dyn_section(layout);
3308 brlt_rel = new Reloc_section(false);
3309 this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3310 }
3311 this->brlt_section_
3312 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3313 if (this->plt_ && is_pic)
3314 this->plt_->output_section()
3315 ->add_output_section_data(this->brlt_section_);
3316 else
3317 layout->add_output_section_data(".branch_lt",
3318 (is_pic ? elfcpp::SHT_NOBITS
3319 : elfcpp::SHT_PROGBITS),
3320 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3321 this->brlt_section_,
3322 (is_pic ? ORDER_SMALL_BSS
3323 : ORDER_SMALL_DATA),
3324 false);
3325 }
3326 }
3327
3328 // Write out .branch_lt when non-PIC.
3329
3330 template<int size, bool big_endian>
3331 void
3332 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3333 {
3334 if (size == 64 && !parameters->options().output_is_position_independent())
3335 {
3336 const section_size_type offset = this->offset();
3337 const section_size_type oview_size
3338 = convert_to_section_size_type(this->data_size());
3339 unsigned char* const oview = of->get_output_view(offset, oview_size);
3340
3341 this->targ_->write_branch_lookup_table(oview);
3342 of->write_output_view(offset, oview_size, oview);
3343 }
3344 }
3345
3346 static inline uint32_t
3347 l(uint32_t a)
3348 {
3349 return a & 0xffff;
3350 }
3351
3352 static inline uint32_t
3353 hi(uint32_t a)
3354 {
3355 return l(a >> 16);
3356 }
3357
3358 static inline uint32_t
3359 ha(uint32_t a)
3360 {
3361 return hi(a + 0x8000);
3362 }
3363
3364 template<int size>
3365 struct Eh_cie
3366 {
3367 static const unsigned char eh_frame_cie[12];
3368 };
3369
3370 template<int size>
3371 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3372 {
3373 1, // CIE version.
3374 'z', 'R', 0, // Augmentation string.
3375 4, // Code alignment.
3376 0x80 - size / 8 , // Data alignment.
3377 65, // RA reg.
3378 1, // Augmentation size.
3379 (elfcpp::DW_EH_PE_pcrel
3380 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
3381 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
3382 };
3383
3384 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3385 static const unsigned char glink_eh_frame_fde_64v1[] =
3386 {
3387 0, 0, 0, 0, // Replaced with offset to .glink.
3388 0, 0, 0, 0, // Replaced with size of .glink.
3389 0, // Augmentation size.
3390 elfcpp::DW_CFA_advance_loc + 1,
3391 elfcpp::DW_CFA_register, 65, 12,
3392 elfcpp::DW_CFA_advance_loc + 4,
3393 elfcpp::DW_CFA_restore_extended, 65
3394 };
3395
3396 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3397 static const unsigned char glink_eh_frame_fde_64v2[] =
3398 {
3399 0, 0, 0, 0, // Replaced with offset to .glink.
3400 0, 0, 0, 0, // Replaced with size of .glink.
3401 0, // Augmentation size.
3402 elfcpp::DW_CFA_advance_loc + 1,
3403 elfcpp::DW_CFA_register, 65, 0,
3404 elfcpp::DW_CFA_advance_loc + 4,
3405 elfcpp::DW_CFA_restore_extended, 65
3406 };
3407
3408 // Describe __glink_PLTresolve use of LR, 32-bit version.
3409 static const unsigned char glink_eh_frame_fde_32[] =
3410 {
3411 0, 0, 0, 0, // Replaced with offset to .glink.
3412 0, 0, 0, 0, // Replaced with size of .glink.
3413 0, // Augmentation size.
3414 elfcpp::DW_CFA_advance_loc + 2,
3415 elfcpp::DW_CFA_register, 65, 0,
3416 elfcpp::DW_CFA_advance_loc + 4,
3417 elfcpp::DW_CFA_restore_extended, 65
3418 };
3419
3420 static const unsigned char default_fde[] =
3421 {
3422 0, 0, 0, 0, // Replaced with offset to stubs.
3423 0, 0, 0, 0, // Replaced with size of stubs.
3424 0, // Augmentation size.
3425 elfcpp::DW_CFA_nop, // Pad.
3426 elfcpp::DW_CFA_nop,
3427 elfcpp::DW_CFA_nop
3428 };
3429
3430 template<bool big_endian>
3431 static inline void
3432 write_insn(unsigned char* p, uint32_t v)
3433 {
3434 elfcpp::Swap<32, big_endian>::writeval(p, v);
3435 }
3436
3437 // Stub_table holds information about plt and long branch stubs.
3438 // Stubs are built in an area following some input section determined
3439 // by group_sections(). This input section is converted to a relaxed
3440 // input section allowing it to be resized to accommodate the stubs
3441
3442 template<int size, bool big_endian>
3443 class Stub_table : public Output_relaxed_input_section
3444 {
3445 public:
3446 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3447 static const Address invalid_address = static_cast<Address>(0) - 1;
3448
3449 Stub_table(Target_powerpc<size, big_endian>* targ)
3450 : Output_relaxed_input_section(NULL, 0, 0),
3451 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3452 orig_data_size_(0), plt_size_(0), last_plt_size_(0),
3453 branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3454 { }
3455
3456 // Delayed Output_relaxed_input_section init.
3457 void
3458 init(const Output_section::Input_section*, Output_section*);
3459
3460 // Add a plt call stub.
3461 void
3462 add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3463 const Symbol*,
3464 unsigned int,
3465 Address);
3466
3467 void
3468 add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3469 unsigned int,
3470 unsigned int,
3471 Address);
3472
3473 // Find a given plt call stub.
3474 Address
3475 find_plt_call_entry(const Symbol*) const;
3476
3477 Address
3478 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3479 unsigned int) const;
3480
3481 Address
3482 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3483 const Symbol*,
3484 unsigned int,
3485 Address) const;
3486
3487 Address
3488 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3489 unsigned int,
3490 unsigned int,
3491 Address) const;
3492
3493 // Add a long branch stub.
3494 void
3495 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
3496
3497 Address
3498 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3499 Address) const;
3500
3501 void
3502 clear_stubs()
3503 {
3504 this->plt_call_stubs_.clear();
3505 this->plt_size_ = 0;
3506 this->long_branch_stubs_.clear();
3507 this->branch_size_ = 0;
3508 }
3509
3510 Address
3511 set_address_and_size(const Output_section* os, Address off)
3512 {
3513 Address start_off = off;
3514 off += this->orig_data_size_;
3515 Address my_size = this->plt_size_ + this->branch_size_;
3516 if (my_size != 0)
3517 off = align_address(off, this->stub_align());
3518 // Include original section size and alignment padding in size
3519 my_size += off - start_off;
3520 this->reset_address_and_file_offset();
3521 this->set_current_data_size(my_size);
3522 this->set_address_and_file_offset(os->address() + start_off,
3523 os->offset() + start_off);
3524 return my_size;
3525 }
3526
3527 Address
3528 stub_address() const
3529 {
3530 return align_address(this->address() + this->orig_data_size_,
3531 this->stub_align());
3532 }
3533
3534 Address
3535 stub_offset() const
3536 {
3537 return align_address(this->offset() + this->orig_data_size_,
3538 this->stub_align());
3539 }
3540
3541 section_size_type
3542 plt_size() const
3543 { return this->plt_size_; }
3544
3545 bool
3546 size_update()
3547 {
3548 Output_section* os = this->output_section();
3549 if (os->addralign() < this->stub_align())
3550 {
3551 os->set_addralign(this->stub_align());
3552 // FIXME: get rid of the insane checkpointing.
3553 // We can't increase alignment of the input section to which
3554 // stubs are attached; The input section may be .init which
3555 // is pasted together with other .init sections to form a
3556 // function. Aligning might insert zero padding resulting in
3557 // sigill. However we do need to increase alignment of the
3558 // output section so that the align_address() on offset in
3559 // set_address_and_size() adds the same padding as the
3560 // align_address() on address in stub_address().
3561 // What's more, we need this alignment for the layout done in
3562 // relaxation_loop_body() so that the output section starts at
3563 // a suitably aligned address.
3564 os->checkpoint_set_addralign(this->stub_align());
3565 }
3566 if (this->last_plt_size_ != this->plt_size_
3567 || this->last_branch_size_ != this->branch_size_)
3568 {
3569 this->last_plt_size_ = this->plt_size_;
3570 this->last_branch_size_ = this->branch_size_;
3571 return true;
3572 }
3573 return false;
3574 }
3575
3576 // Add .eh_frame info for this stub section. Unlike other linker
3577 // generated .eh_frame this is added late in the link, because we
3578 // only want the .eh_frame info if this particular stub section is
3579 // non-empty.
3580 void
3581 add_eh_frame(Layout* layout)
3582 {
3583 if (!this->eh_frame_added_)
3584 {
3585 if (!parameters->options().ld_generated_unwind_info())
3586 return;
3587
3588 // Since we add stub .eh_frame info late, it must be placed
3589 // after all other linker generated .eh_frame info so that
3590 // merge mapping need not be updated for input sections.
3591 // There is no provision to use a different CIE to that used
3592 // by .glink.
3593 if (!this->targ_->has_glink())
3594 return;
3595
3596 layout->add_eh_frame_for_plt(this,
3597 Eh_cie<size>::eh_frame_cie,
3598 sizeof (Eh_cie<size>::eh_frame_cie),
3599 default_fde,
3600 sizeof (default_fde));
3601 this->eh_frame_added_ = true;
3602 }
3603 }
3604
3605 Target_powerpc<size, big_endian>*
3606 targ() const
3607 { return targ_; }
3608
3609 private:
3610 class Plt_stub_ent;
3611 class Plt_stub_ent_hash;
3612 typedef Unordered_map<Plt_stub_ent, unsigned int,
3613 Plt_stub_ent_hash> Plt_stub_entries;
3614
3615 // Alignment of stub section.
3616 unsigned int
3617 stub_align() const
3618 {
3619 if (size == 32)
3620 return 16;
3621 unsigned int min_align = 32;
3622 unsigned int user_align = 1 << parameters->options().plt_align();
3623 return std::max(user_align, min_align);
3624 }
3625
3626 // Return the plt offset for the given call stub.
3627 Address
3628 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3629 {
3630 const Symbol* gsym = p->first.sym_;
3631 if (gsym != NULL)
3632 {
3633 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3634 && gsym->can_use_relative_reloc(false));
3635 return gsym->plt_offset();
3636 }
3637 else
3638 {
3639 *is_iplt = true;
3640 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3641 unsigned int local_sym_index = p->first.locsym_;
3642 return relobj->local_plt_offset(local_sym_index);
3643 }
3644 }
3645
3646 // Size of a given plt call stub.
3647 unsigned int
3648 plt_call_size(typename Plt_stub_entries::const_iterator p) const
3649 {
3650 if (size == 32)
3651 return 16;
3652
3653 bool is_iplt;
3654 Address plt_addr = this->plt_off(p, &is_iplt);
3655 if (is_iplt)
3656 plt_addr += this->targ_->iplt_section()->address();
3657 else
3658 plt_addr += this->targ_->plt_section()->address();
3659 Address got_addr = this->targ_->got_section()->output_section()->address();
3660 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3661 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3662 got_addr += ppcobj->toc_base_offset();
3663 Address off = plt_addr - got_addr;
3664 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3665 if (this->targ_->abiversion() < 2)
3666 {
3667 bool static_chain = parameters->options().plt_static_chain();
3668 bool thread_safe = this->targ_->plt_thread_safe();
3669 bytes += (4
3670 + 4 * static_chain
3671 + 8 * thread_safe
3672 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3673 }
3674 unsigned int align = 1 << parameters->options().plt_align();
3675 if (align > 1)
3676 bytes = (bytes + align - 1) & -align;
3677 return bytes;
3678 }
3679
3680 // Return long branch stub size.
3681 unsigned int
3682 branch_stub_size(Address to)
3683 {
3684 Address loc
3685 = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3686 if (to - loc + (1 << 25) < 2 << 25)
3687 return 4;
3688 if (size == 64 || !parameters->options().output_is_position_independent())
3689 return 16;
3690 return 32;
3691 }
3692
3693 // Write out stubs.
3694 void
3695 do_write(Output_file*);
3696
3697 // Plt call stub keys.
3698 class Plt_stub_ent
3699 {
3700 public:
3701 Plt_stub_ent(const Symbol* sym)
3702 : sym_(sym), object_(0), addend_(0), locsym_(0)
3703 { }
3704
3705 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3706 unsigned int locsym_index)
3707 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3708 { }
3709
3710 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3711 const Symbol* sym,
3712 unsigned int r_type,
3713 Address addend)
3714 : sym_(sym), object_(0), addend_(0), locsym_(0)
3715 {
3716 if (size != 32)
3717 this->addend_ = addend;
3718 else if (parameters->options().output_is_position_independent()
3719 && r_type == elfcpp::R_PPC_PLTREL24)
3720 {
3721 this->addend_ = addend;
3722 if (this->addend_ >= 32768)
3723 this->object_ = object;
3724 }
3725 }
3726
3727 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3728 unsigned int locsym_index,
3729 unsigned int r_type,
3730 Address addend)
3731 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3732 {
3733 if (size != 32)
3734 this->addend_ = addend;
3735 else if (parameters->options().output_is_position_independent()
3736 && r_type == elfcpp::R_PPC_PLTREL24)
3737 this->addend_ = addend;
3738 }
3739
3740 bool operator==(const Plt_stub_ent& that) const
3741 {
3742 return (this->sym_ == that.sym_
3743 && this->object_ == that.object_
3744 && this->addend_ == that.addend_
3745 && this->locsym_ == that.locsym_);
3746 }
3747
3748 const Symbol* sym_;
3749 const Sized_relobj_file<size, big_endian>* object_;
3750 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3751 unsigned int locsym_;
3752 };
3753
3754 class Plt_stub_ent_hash
3755 {
3756 public:
3757 size_t operator()(const Plt_stub_ent& ent) const
3758 {
3759 return (reinterpret_cast<uintptr_t>(ent.sym_)
3760 ^ reinterpret_cast<uintptr_t>(ent.object_)
3761 ^ ent.addend_
3762 ^ ent.locsym_);
3763 }
3764 };
3765
3766 // Long branch stub keys.
3767 class Branch_stub_ent
3768 {
3769 public:
3770 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3771 : dest_(to), toc_base_off_(0)
3772 {
3773 if (size == 64)
3774 toc_base_off_ = obj->toc_base_offset();
3775 }
3776
3777 bool operator==(const Branch_stub_ent& that) const
3778 {
3779 return (this->dest_ == that.dest_
3780 && (size == 32
3781 || this->toc_base_off_ == that.toc_base_off_));
3782 }
3783
3784 Address dest_;
3785 unsigned int toc_base_off_;
3786 };
3787
3788 class Branch_stub_ent_hash
3789 {
3790 public:
3791 size_t operator()(const Branch_stub_ent& ent) const
3792 { return ent.dest_ ^ ent.toc_base_off_; }
3793 };
3794
3795 // In a sane world this would be a global.
3796 Target_powerpc<size, big_endian>* targ_;
3797 // Map sym/object/addend to stub offset.
3798 Plt_stub_entries plt_call_stubs_;
3799 // Map destination address to stub offset.
3800 typedef Unordered_map<Branch_stub_ent, unsigned int,
3801 Branch_stub_ent_hash> Branch_stub_entries;
3802 Branch_stub_entries long_branch_stubs_;
3803 // size of input section
3804 section_size_type orig_data_size_;
3805 // size of stubs
3806 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3807 // Whether .eh_frame info has been created for this stub section.
3808 bool eh_frame_added_;
3809 };
3810
3811 // Make a new stub table, and record.
3812
3813 template<int size, bool big_endian>
3814 Stub_table<size, big_endian>*
3815 Target_powerpc<size, big_endian>::new_stub_table()
3816 {
3817 Stub_table<size, big_endian>* stub_table
3818 = new Stub_table<size, big_endian>(this);
3819 this->stub_tables_.push_back(stub_table);
3820 return stub_table;
3821 }
3822
3823 // Delayed stub table initialisation, because we create the stub table
3824 // before we know to which section it will be attached.
3825
3826 template<int size, bool big_endian>
3827 void
3828 Stub_table<size, big_endian>::init(
3829 const Output_section::Input_section* owner,
3830 Output_section* output_section)
3831 {
3832 this->set_relobj(owner->relobj());
3833 this->set_shndx(owner->shndx());
3834 this->set_addralign(this->relobj()->section_addralign(this->shndx()));
3835 this->set_output_section(output_section);
3836 this->orig_data_size_ = owner->current_data_size();
3837
3838 std::vector<Output_relaxed_input_section*> new_relaxed;
3839 new_relaxed.push_back(this);
3840 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3841 }
3842
3843 // Add a plt call stub, if we do not already have one for this
3844 // sym/object/addend combo.
3845
3846 template<int size, bool big_endian>
3847 void
3848 Stub_table<size, big_endian>::add_plt_call_entry(
3849 const Sized_relobj_file<size, big_endian>* object,
3850 const Symbol* gsym,
3851 unsigned int r_type,
3852 Address addend)
3853 {
3854 Plt_stub_ent ent(object, gsym, r_type, addend);
3855 unsigned int off = this->plt_size_;
3856 std::pair<typename Plt_stub_entries::iterator, bool> p
3857 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3858 if (p.second)
3859 this->plt_size_ = off + this->plt_call_size(p.first);
3860 }
3861
3862 template<int size, bool big_endian>
3863 void
3864 Stub_table<size, big_endian>::add_plt_call_entry(
3865 const Sized_relobj_file<size, big_endian>* object,
3866 unsigned int locsym_index,
3867 unsigned int r_type,
3868 Address addend)
3869 {
3870 Plt_stub_ent ent(object, locsym_index, r_type, addend);
3871 unsigned int off = this->plt_size_;
3872 std::pair<typename Plt_stub_entries::iterator, bool> p
3873 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3874 if (p.second)
3875 this->plt_size_ = off + this->plt_call_size(p.first);
3876 }
3877
3878 // Find a plt call stub.
3879
3880 template<int size, bool big_endian>
3881 typename Stub_table<size, big_endian>::Address
3882 Stub_table<size, big_endian>::find_plt_call_entry(
3883 const Sized_relobj_file<size, big_endian>* object,
3884 const Symbol* gsym,
3885 unsigned int r_type,
3886 Address addend) const
3887 {
3888 Plt_stub_ent ent(object, gsym, r_type, addend);
3889 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3890 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3891 }
3892
3893 template<int size, bool big_endian>
3894 typename Stub_table<size, big_endian>::Address
3895 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
3896 {
3897 Plt_stub_ent ent(gsym);
3898 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3899 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3900 }
3901
3902 template<int size, bool big_endian>
3903 typename Stub_table<size, big_endian>::Address
3904 Stub_table<size, big_endian>::find_plt_call_entry(
3905 const Sized_relobj_file<size, big_endian>* object,
3906 unsigned int locsym_index,
3907 unsigned int r_type,
3908 Address addend) const
3909 {
3910 Plt_stub_ent ent(object, locsym_index, r_type, addend);
3911 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3912 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3913 }
3914
3915 template<int size, bool big_endian>
3916 typename Stub_table<size, big_endian>::Address
3917 Stub_table<size, big_endian>::find_plt_call_entry(
3918 const Sized_relobj_file<size, big_endian>* object,
3919 unsigned int locsym_index) const
3920 {
3921 Plt_stub_ent ent(object, locsym_index);
3922 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3923 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3924 }
3925
3926 // Add a long branch stub if we don't already have one to given
3927 // destination.
3928
3929 template<int size, bool big_endian>
3930 void
3931 Stub_table<size, big_endian>::add_long_branch_entry(
3932 const Powerpc_relobj<size, big_endian>* object,
3933 Address to)
3934 {
3935 Branch_stub_ent ent(object, to);
3936 Address off = this->branch_size_;
3937 if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
3938 {
3939 unsigned int stub_size = this->branch_stub_size(to);
3940 this->branch_size_ = off + stub_size;
3941 if (size == 64 && stub_size != 4)
3942 this->targ_->add_branch_lookup_table(to);
3943 }
3944 }
3945
3946 // Find long branch stub.
3947
3948 template<int size, bool big_endian>
3949 typename Stub_table<size, big_endian>::Address
3950 Stub_table<size, big_endian>::find_long_branch_entry(
3951 const Powerpc_relobj<size, big_endian>* object,
3952 Address to) const
3953 {
3954 Branch_stub_ent ent(object, to);
3955 typename Branch_stub_entries::const_iterator p
3956 = this->long_branch_stubs_.find(ent);
3957 return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
3958 }
3959
3960 // A class to handle .glink.
3961
3962 template<int size, bool big_endian>
3963 class Output_data_glink : public Output_section_data
3964 {
3965 public:
3966 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3967 static const Address invalid_address = static_cast<Address>(0) - 1;
3968 static const int pltresolve_size = 16*4;
3969
3970 Output_data_glink(Target_powerpc<size, big_endian>* targ)
3971 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
3972 end_branch_table_(), ge_size_(0)
3973 { }
3974
3975 void
3976 add_eh_frame(Layout* layout);
3977
3978 void
3979 add_global_entry(const Symbol*);
3980
3981 Address
3982 find_global_entry(const Symbol*) const;
3983
3984 Address
3985 global_entry_address() const
3986 {
3987 gold_assert(this->is_data_size_valid());
3988 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
3989 return this->address() + global_entry_off;
3990 }
3991
3992 protected:
3993 // Write to a map file.
3994 void
3995 do_print_to_mapfile(Mapfile* mapfile) const
3996 { mapfile->print_output_data(this, _("** glink")); }
3997
3998 private:
3999 void
4000 set_final_data_size();
4001
4002 // Write out .glink
4003 void
4004 do_write(Output_file*);
4005
4006 // Allows access to .got and .plt for do_write.
4007 Target_powerpc<size, big_endian>* targ_;
4008
4009 // Map sym to stub offset.
4010 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4011 Global_entry_stub_entries global_entry_stubs_;
4012
4013 unsigned int end_branch_table_, ge_size_;
4014 };
4015
4016 template<int size, bool big_endian>
4017 void
4018 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4019 {
4020 if (!parameters->options().ld_generated_unwind_info())
4021 return;
4022
4023 if (size == 64)
4024 {
4025 if (this->targ_->abiversion() < 2)
4026 layout->add_eh_frame_for_plt(this,
4027 Eh_cie<64>::eh_frame_cie,
4028 sizeof (Eh_cie<64>::eh_frame_cie),
4029 glink_eh_frame_fde_64v1,
4030 sizeof (glink_eh_frame_fde_64v1));
4031 else
4032 layout->add_eh_frame_for_plt(this,
4033 Eh_cie<64>::eh_frame_cie,
4034 sizeof (Eh_cie<64>::eh_frame_cie),
4035 glink_eh_frame_fde_64v2,
4036 sizeof (glink_eh_frame_fde_64v2));
4037 }
4038 else
4039 {
4040 // 32-bit .glink can use the default since the CIE return
4041 // address reg, LR, is valid.
4042 layout->add_eh_frame_for_plt(this,
4043 Eh_cie<32>::eh_frame_cie,
4044 sizeof (Eh_cie<32>::eh_frame_cie),
4045 default_fde,
4046 sizeof (default_fde));
4047 // Except where LR is used in a PIC __glink_PLTresolve.
4048 if (parameters->options().output_is_position_independent())
4049 layout->add_eh_frame_for_plt(this,
4050 Eh_cie<32>::eh_frame_cie,
4051 sizeof (Eh_cie<32>::eh_frame_cie),
4052 glink_eh_frame_fde_32,
4053 sizeof (glink_eh_frame_fde_32));
4054 }
4055 }
4056
4057 template<int size, bool big_endian>
4058 void
4059 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4060 {
4061 std::pair<typename Global_entry_stub_entries::iterator, bool> p
4062 = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4063 if (p.second)
4064 this->ge_size_ += 16;
4065 }
4066
4067 template<int size, bool big_endian>
4068 typename Output_data_glink<size, big_endian>::Address
4069 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4070 {
4071 typename Global_entry_stub_entries::const_iterator p
4072 = this->global_entry_stubs_.find(gsym);
4073 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4074 }
4075
4076 template<int size, bool big_endian>
4077 void
4078 Output_data_glink<size, big_endian>::set_final_data_size()
4079 {
4080 unsigned int count = this->targ_->plt_entry_count();
4081 section_size_type total = 0;
4082
4083 if (count != 0)
4084 {
4085 if (size == 32)
4086 {
4087 // space for branch table
4088 total += 4 * (count - 1);
4089
4090 total += -total & 15;
4091 total += this->pltresolve_size;
4092 }
4093 else
4094 {
4095 total += this->pltresolve_size;
4096
4097 // space for branch table
4098 total += 4 * count;
4099 if (this->targ_->abiversion() < 2)
4100 {
4101 total += 4 * count;
4102 if (count > 0x8000)
4103 total += 4 * (count - 0x8000);
4104 }
4105 }
4106 }
4107 this->end_branch_table_ = total;
4108 total = (total + 15) & -16;
4109 total += this->ge_size_;
4110
4111 this->set_data_size(total);
4112 }
4113
4114 // Write out plt and long branch stub code.
4115
4116 template<int size, bool big_endian>
4117 void
4118 Stub_table<size, big_endian>::do_write(Output_file* of)
4119 {
4120 if (this->plt_call_stubs_.empty()
4121 && this->long_branch_stubs_.empty())
4122 return;
4123
4124 const section_size_type start_off = this->offset();
4125 const section_size_type off = this->stub_offset();
4126 const section_size_type oview_size =
4127 convert_to_section_size_type(this->data_size() - (off - start_off));
4128 unsigned char* const oview = of->get_output_view(off, oview_size);
4129 unsigned char* p;
4130
4131 if (size == 64)
4132 {
4133 const Output_data_got_powerpc<size, big_endian>* got
4134 = this->targ_->got_section();
4135 Address got_os_addr = got->output_section()->address();
4136
4137 if (!this->plt_call_stubs_.empty())
4138 {
4139 // The base address of the .plt section.
4140 Address plt_base = this->targ_->plt_section()->address();
4141 Address iplt_base = invalid_address;
4142
4143 // Write out plt call stubs.
4144 typename Plt_stub_entries::const_iterator cs;
4145 for (cs = this->plt_call_stubs_.begin();
4146 cs != this->plt_call_stubs_.end();
4147 ++cs)
4148 {
4149 bool is_iplt;
4150 Address pltoff = this->plt_off(cs, &is_iplt);
4151 Address plt_addr = pltoff;
4152 if (is_iplt)
4153 {
4154 if (iplt_base == invalid_address)
4155 iplt_base = this->targ_->iplt_section()->address();
4156 plt_addr += iplt_base;
4157 }
4158 else
4159 plt_addr += plt_base;
4160 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4161 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4162 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4163 Address off = plt_addr - got_addr;
4164
4165 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4166 gold_error(_("%s: linkage table error against `%s'"),
4167 cs->first.object_->name().c_str(),
4168 cs->first.sym_->demangled_name().c_str());
4169
4170 bool plt_load_toc = this->targ_->abiversion() < 2;
4171 bool static_chain
4172 = plt_load_toc && parameters->options().plt_static_chain();
4173 bool thread_safe
4174 = plt_load_toc && this->targ_->plt_thread_safe();
4175 bool use_fake_dep = false;
4176 Address cmp_branch_off = 0;
4177 if (thread_safe)
4178 {
4179 unsigned int pltindex
4180 = ((pltoff - this->targ_->first_plt_entry_offset())
4181 / this->targ_->plt_entry_size());
4182 Address glinkoff
4183 = (this->targ_->glink_section()->pltresolve_size
4184 + pltindex * 8);
4185 if (pltindex > 32768)
4186 glinkoff += (pltindex - 32768) * 4;
4187 Address to
4188 = this->targ_->glink_section()->address() + glinkoff;
4189 Address from
4190 = (this->stub_address() + cs->second + 24
4191 + 4 * (ha(off) != 0)
4192 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4193 + 4 * static_chain);
4194 cmp_branch_off = to - from;
4195 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4196 }
4197
4198 p = oview + cs->second;
4199 if (ha(off) != 0)
4200 {
4201 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4202 p += 4;
4203 write_insn<big_endian>(p, addis_11_2 + ha(off));
4204 p += 4;
4205 write_insn<big_endian>(p, ld_12_11 + l(off));
4206 p += 4;
4207 if (plt_load_toc
4208 && ha(off + 8 + 8 * static_chain) != ha(off))
4209 {
4210 write_insn<big_endian>(p, addi_11_11 + l(off));
4211 p += 4;
4212 off = 0;
4213 }
4214 write_insn<big_endian>(p, mtctr_12);
4215 p += 4;
4216 if (plt_load_toc)
4217 {
4218 if (use_fake_dep)
4219 {
4220 write_insn<big_endian>(p, xor_2_12_12);
4221 p += 4;
4222 write_insn<big_endian>(p, add_11_11_2);
4223 p += 4;
4224 }
4225 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4226 p += 4;
4227 if (static_chain)
4228 {
4229 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4230 p += 4;
4231 }
4232 }
4233 }
4234 else
4235 {
4236 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4237 p += 4;
4238 write_insn<big_endian>(p, ld_12_2 + l(off));
4239 p += 4;
4240 if (plt_load_toc
4241 && ha(off + 8 + 8 * static_chain) != ha(off))
4242 {
4243 write_insn<big_endian>(p, addi_2_2 + l(off));
4244 p += 4;
4245 off = 0;
4246 }
4247 write_insn<big_endian>(p, mtctr_12);
4248 p += 4;
4249 if (plt_load_toc)
4250 {
4251 if (use_fake_dep)
4252 {
4253 write_insn<big_endian>(p, xor_11_12_12);
4254 p += 4;
4255 write_insn<big_endian>(p, add_2_2_11);
4256 p += 4;
4257 }
4258 if (static_chain)
4259 {
4260 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4261 p += 4;
4262 }
4263 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4264 p += 4;
4265 }
4266 }
4267 if (thread_safe && !use_fake_dep)
4268 {
4269 write_insn<big_endian>(p, cmpldi_2_0);
4270 p += 4;
4271 write_insn<big_endian>(p, bnectr_p4);
4272 p += 4;
4273 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4274 }
4275 else
4276 write_insn<big_endian>(p, bctr);
4277 }
4278 }
4279
4280 // Write out long branch stubs.
4281 typename Branch_stub_entries::const_iterator bs;
4282 for (bs = this->long_branch_stubs_.begin();
4283 bs != this->long_branch_stubs_.end();
4284 ++bs)
4285 {
4286 p = oview + this->plt_size_ + bs->second;
4287 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4288 Address delta = bs->first.dest_ - loc;
4289 if (delta + (1 << 25) < 2 << 25)
4290 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4291 else
4292 {
4293 Address brlt_addr
4294 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4295 gold_assert(brlt_addr != invalid_address);
4296 brlt_addr += this->targ_->brlt_section()->address();
4297 Address got_addr = got_os_addr + bs->first.toc_base_off_;
4298 Address brltoff = brlt_addr - got_addr;
4299 if (ha(brltoff) == 0)
4300 {
4301 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
4302 }
4303 else
4304 {
4305 write_insn<big_endian>(p, addis_11_2 + ha(brltoff)), p += 4;
4306 write_insn<big_endian>(p, ld_12_11 + l(brltoff)), p += 4;
4307 }
4308 write_insn<big_endian>(p, mtctr_12), p += 4;
4309 write_insn<big_endian>(p, bctr);
4310 }
4311 }
4312 }
4313 else
4314 {
4315 if (!this->plt_call_stubs_.empty())
4316 {
4317 // The base address of the .plt section.
4318 Address plt_base = this->targ_->plt_section()->address();
4319 Address iplt_base = invalid_address;
4320 // The address of _GLOBAL_OFFSET_TABLE_.
4321 Address g_o_t = invalid_address;
4322
4323 // Write out plt call stubs.
4324 typename Plt_stub_entries::const_iterator cs;
4325 for (cs = this->plt_call_stubs_.begin();
4326 cs != this->plt_call_stubs_.end();
4327 ++cs)
4328 {
4329 bool is_iplt;
4330 Address plt_addr = this->plt_off(cs, &is_iplt);
4331 if (is_iplt)
4332 {
4333 if (iplt_base == invalid_address)
4334 iplt_base = this->targ_->iplt_section()->address();
4335 plt_addr += iplt_base;
4336 }
4337 else
4338 plt_addr += plt_base;
4339
4340 p = oview + cs->second;
4341 if (parameters->options().output_is_position_independent())
4342 {
4343 Address got_addr;
4344 const Powerpc_relobj<size, big_endian>* ppcobj
4345 = (static_cast<const Powerpc_relobj<size, big_endian>*>
4346 (cs->first.object_));
4347 if (ppcobj != NULL && cs->first.addend_ >= 32768)
4348 {
4349 unsigned int got2 = ppcobj->got2_shndx();
4350 got_addr = ppcobj->get_output_section_offset(got2);
4351 gold_assert(got_addr != invalid_address);
4352 got_addr += (ppcobj->output_section(got2)->address()
4353 + cs->first.addend_);
4354 }
4355 else
4356 {
4357 if (g_o_t == invalid_address)
4358 {
4359 const Output_data_got_powerpc<size, big_endian>* got
4360 = this->targ_->got_section();
4361 g_o_t = got->address() + got->g_o_t();
4362 }
4363 got_addr = g_o_t;
4364 }
4365
4366 Address off = plt_addr - got_addr;
4367 if (ha(off) == 0)
4368 {
4369 write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
4370 write_insn<big_endian>(p + 4, mtctr_11);
4371 write_insn<big_endian>(p + 8, bctr);
4372 }
4373 else
4374 {
4375 write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
4376 write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
4377 write_insn<big_endian>(p + 8, mtctr_11);
4378 write_insn<big_endian>(p + 12, bctr);
4379 }
4380 }
4381 else
4382 {
4383 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
4384 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
4385 write_insn<big_endian>(p + 8, mtctr_11);
4386 write_insn<big_endian>(p + 12, bctr);
4387 }
4388 }
4389 }
4390
4391 // Write out long branch stubs.
4392 typename Branch_stub_entries::const_iterator bs;
4393 for (bs = this->long_branch_stubs_.begin();
4394 bs != this->long_branch_stubs_.end();
4395 ++bs)
4396 {
4397 p = oview + this->plt_size_ + bs->second;
4398 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4399 Address delta = bs->first.dest_ - loc;
4400 if (delta + (1 << 25) < 2 << 25)
4401 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4402 else if (!parameters->options().output_is_position_independent())
4403 {
4404 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
4405 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
4406 write_insn<big_endian>(p + 8, mtctr_12);
4407 write_insn<big_endian>(p + 12, bctr);
4408 }
4409 else
4410 {
4411 delta -= 8;
4412 write_insn<big_endian>(p + 0, mflr_0);
4413 write_insn<big_endian>(p + 4, bcl_20_31);
4414 write_insn<big_endian>(p + 8, mflr_12);
4415 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4416 write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4417 write_insn<big_endian>(p + 20, mtlr_0);
4418 write_insn<big_endian>(p + 24, mtctr_12);
4419 write_insn<big_endian>(p + 28, bctr);
4420 }
4421 }
4422 }
4423 }
4424
4425 // Write out .glink.
4426
4427 template<int size, bool big_endian>
4428 void
4429 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4430 {
4431 const section_size_type off = this->offset();
4432 const section_size_type oview_size =
4433 convert_to_section_size_type(this->data_size());
4434 unsigned char* const oview = of->get_output_view(off, oview_size);
4435 unsigned char* p;
4436
4437 // The base address of the .plt section.
4438 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4439 Address plt_base = this->targ_->plt_section()->address();
4440
4441 if (size == 64)
4442 {
4443 if (this->end_branch_table_ != 0)
4444 {
4445 // Write pltresolve stub.
4446 p = oview;
4447 Address after_bcl = this->address() + 16;
4448 Address pltoff = plt_base - after_bcl;
4449
4450 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
4451
4452 if (this->targ_->abiversion() < 2)
4453 {
4454 write_insn<big_endian>(p, mflr_12), p += 4;
4455 write_insn<big_endian>(p, bcl_20_31), p += 4;
4456 write_insn<big_endian>(p, mflr_11), p += 4;
4457 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4458 write_insn<big_endian>(p, mtlr_12), p += 4;
4459 write_insn<big_endian>(p, add_11_2_11), p += 4;
4460 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4461 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
4462 write_insn<big_endian>(p, mtctr_12), p += 4;
4463 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
4464 }
4465 else
4466 {
4467 write_insn<big_endian>(p, mflr_0), p += 4;
4468 write_insn<big_endian>(p, bcl_20_31), p += 4;
4469 write_insn<big_endian>(p, mflr_11), p += 4;
4470 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4471 write_insn<big_endian>(p, mtlr_0), p += 4;
4472 write_insn<big_endian>(p, sub_12_12_11), p += 4;
4473 write_insn<big_endian>(p, add_11_2_11), p += 4;
4474 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
4475 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4476 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
4477 write_insn<big_endian>(p, mtctr_12), p += 4;
4478 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
4479 }
4480 write_insn<big_endian>(p, bctr), p += 4;
4481 while (p < oview + this->pltresolve_size)
4482 write_insn<big_endian>(p, nop), p += 4;
4483
4484 // Write lazy link call stubs.
4485 uint32_t indx = 0;
4486 while (p < oview + this->end_branch_table_)
4487 {
4488 if (this->targ_->abiversion() < 2)
4489 {
4490 if (indx < 0x8000)
4491 {
4492 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
4493 }
4494 else
4495 {
4496 write_insn<big_endian>(p, lis_0_0 + hi(indx)), p += 4;
4497 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
4498 }
4499 }
4500 uint32_t branch_off = 8 - (p - oview);
4501 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
4502 indx++;
4503 }
4504 }
4505
4506 Address plt_base = this->targ_->plt_section()->address();
4507 Address iplt_base = invalid_address;
4508 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4509 Address global_entry_base = this->address() + global_entry_off;
4510 typename Global_entry_stub_entries::const_iterator ge;
4511 for (ge = this->global_entry_stubs_.begin();
4512 ge != this->global_entry_stubs_.end();
4513 ++ge)
4514 {
4515 p = oview + global_entry_off + ge->second;
4516 Address plt_addr = ge->first->plt_offset();
4517 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4518 && ge->first->can_use_relative_reloc(false))
4519 {
4520 if (iplt_base == invalid_address)
4521 iplt_base = this->targ_->iplt_section()->address();
4522 plt_addr += iplt_base;
4523 }
4524 else
4525 plt_addr += plt_base;
4526 Address my_addr = global_entry_base + ge->second;
4527 Address off = plt_addr - my_addr;
4528
4529 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4530 gold_error(_("%s: linkage table error against `%s'"),
4531 ge->first->object()->name().c_str(),
4532 ge->first->demangled_name().c_str());
4533
4534 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
4535 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
4536 write_insn<big_endian>(p, mtctr_12), p += 4;
4537 write_insn<big_endian>(p, bctr);
4538 }
4539 }
4540 else
4541 {
4542 const Output_data_got_powerpc<size, big_endian>* got
4543 = this->targ_->got_section();
4544 // The address of _GLOBAL_OFFSET_TABLE_.
4545 Address g_o_t = got->address() + got->g_o_t();
4546
4547 // Write out pltresolve branch table.
4548 p = oview;
4549 unsigned int the_end = oview_size - this->pltresolve_size;
4550 unsigned char* end_p = oview + the_end;
4551 while (p < end_p - 8 * 4)
4552 write_insn<big_endian>(p, b + end_p - p), p += 4;
4553 while (p < end_p)
4554 write_insn<big_endian>(p, nop), p += 4;
4555
4556 // Write out pltresolve call stub.
4557 if (parameters->options().output_is_position_independent())
4558 {
4559 Address res0_off = 0;
4560 Address after_bcl_off = the_end + 12;
4561 Address bcl_res0 = after_bcl_off - res0_off;
4562
4563 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
4564 write_insn<big_endian>(p + 4, mflr_0);
4565 write_insn<big_endian>(p + 8, bcl_20_31);
4566 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4567 write_insn<big_endian>(p + 16, mflr_12);
4568 write_insn<big_endian>(p + 20, mtlr_0);
4569 write_insn<big_endian>(p + 24, sub_11_11_12);
4570
4571 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4572
4573 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4574 if (ha(got_bcl) == ha(got_bcl + 4))
4575 {
4576 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4577 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4578 }
4579 else
4580 {
4581 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4582 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4583 }
4584 write_insn<big_endian>(p + 40, mtctr_0);
4585 write_insn<big_endian>(p + 44, add_0_11_11);
4586 write_insn<big_endian>(p + 48, add_11_0_11);
4587 write_insn<big_endian>(p + 52, bctr);
4588 write_insn<big_endian>(p + 56, nop);
4589 write_insn<big_endian>(p + 60, nop);
4590 }
4591 else
4592 {
4593 Address res0 = this->address();
4594
4595 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4596 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4597 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4598 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4599 else
4600 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4601 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4602 write_insn<big_endian>(p + 16, mtctr_0);
4603 write_insn<big_endian>(p + 20, add_0_11_11);
4604 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4605 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4606 else
4607 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4608 write_insn<big_endian>(p + 28, add_11_0_11);
4609 write_insn<big_endian>(p + 32, bctr);
4610 write_insn<big_endian>(p + 36, nop);
4611 write_insn<big_endian>(p + 40, nop);
4612 write_insn<big_endian>(p + 44, nop);
4613 write_insn<big_endian>(p + 48, nop);
4614 write_insn<big_endian>(p + 52, nop);
4615 write_insn<big_endian>(p + 56, nop);
4616 write_insn<big_endian>(p + 60, nop);
4617 }
4618 p += 64;
4619 }
4620
4621 of->write_output_view(off, oview_size, oview);
4622 }
4623
4624
4625 // A class to handle linker generated save/restore functions.
4626
4627 template<int size, bool big_endian>
4628 class Output_data_save_res : public Output_section_data_build
4629 {
4630 public:
4631 Output_data_save_res(Symbol_table* symtab);
4632
4633 protected:
4634 // Write to a map file.
4635 void
4636 do_print_to_mapfile(Mapfile* mapfile) const
4637 { mapfile->print_output_data(this, _("** save/restore")); }
4638
4639 void
4640 do_write(Output_file*);
4641
4642 private:
4643 // The maximum size of save/restore contents.
4644 static const unsigned int savres_max = 218*4;
4645
4646 void
4647 savres_define(Symbol_table* symtab,
4648 const char *name,
4649 unsigned int lo, unsigned int hi,
4650 unsigned char* write_ent(unsigned char*, int),
4651 unsigned char* write_tail(unsigned char*, int));
4652
4653 unsigned char *contents_;
4654 };
4655
4656 template<bool big_endian>
4657 static unsigned char*
4658 savegpr0(unsigned char* p, int r)
4659 {
4660 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4661 write_insn<big_endian>(p, insn);
4662 return p + 4;
4663 }
4664
4665 template<bool big_endian>
4666 static unsigned char*
4667 savegpr0_tail(unsigned char* p, int r)
4668 {
4669 p = savegpr0<big_endian>(p, r);
4670 uint32_t insn = std_0_1 + 16;
4671 write_insn<big_endian>(p, insn);
4672 p = p + 4;
4673 write_insn<big_endian>(p, blr);
4674 return p + 4;
4675 }
4676
4677 template<bool big_endian>
4678 static unsigned char*
4679 restgpr0(unsigned char* p, int r)
4680 {
4681 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4682 write_insn<big_endian>(p, insn);
4683 return p + 4;
4684 }
4685
4686 template<bool big_endian>
4687 static unsigned char*
4688 restgpr0_tail(unsigned char* p, int r)
4689 {
4690 uint32_t insn = ld_0_1 + 16;
4691 write_insn<big_endian>(p, insn);
4692 p = p + 4;
4693 p = restgpr0<big_endian>(p, r);
4694 write_insn<big_endian>(p, mtlr_0);
4695 p = p + 4;
4696 if (r == 29)
4697 {
4698 p = restgpr0<big_endian>(p, 30);
4699 p = restgpr0<big_endian>(p, 31);
4700 }
4701 write_insn<big_endian>(p, blr);
4702 return p + 4;
4703 }
4704
4705 template<bool big_endian>
4706 static unsigned char*
4707 savegpr1(unsigned char* p, int r)
4708 {
4709 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4710 write_insn<big_endian>(p, insn);
4711 return p + 4;
4712 }
4713
4714 template<bool big_endian>
4715 static unsigned char*
4716 savegpr1_tail(unsigned char* p, int r)
4717 {
4718 p = savegpr1<big_endian>(p, r);
4719 write_insn<big_endian>(p, blr);
4720 return p + 4;
4721 }
4722
4723 template<bool big_endian>
4724 static unsigned char*
4725 restgpr1(unsigned char* p, int r)
4726 {
4727 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4728 write_insn<big_endian>(p, insn);
4729 return p + 4;
4730 }
4731
4732 template<bool big_endian>
4733 static unsigned char*
4734 restgpr1_tail(unsigned char* p, int r)
4735 {
4736 p = restgpr1<big_endian>(p, r);
4737 write_insn<big_endian>(p, blr);
4738 return p + 4;
4739 }
4740
4741 template<bool big_endian>
4742 static unsigned char*
4743 savefpr(unsigned char* p, int r)
4744 {
4745 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4746 write_insn<big_endian>(p, insn);
4747 return p + 4;
4748 }
4749
4750 template<bool big_endian>
4751 static unsigned char*
4752 savefpr0_tail(unsigned char* p, int r)
4753 {
4754 p = savefpr<big_endian>(p, r);
4755 write_insn<big_endian>(p, std_0_1 + 16);
4756 p = p + 4;
4757 write_insn<big_endian>(p, blr);
4758 return p + 4;
4759 }
4760
4761 template<bool big_endian>
4762 static unsigned char*
4763 restfpr(unsigned char* p, int r)
4764 {
4765 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4766 write_insn<big_endian>(p, insn);
4767 return p + 4;
4768 }
4769
4770 template<bool big_endian>
4771 static unsigned char*
4772 restfpr0_tail(unsigned char* p, int r)
4773 {
4774 write_insn<big_endian>(p, ld_0_1 + 16);
4775 p = p + 4;
4776 p = restfpr<big_endian>(p, r);
4777 write_insn<big_endian>(p, mtlr_0);
4778 p = p + 4;
4779 if (r == 29)
4780 {
4781 p = restfpr<big_endian>(p, 30);
4782 p = restfpr<big_endian>(p, 31);
4783 }
4784 write_insn<big_endian>(p, blr);
4785 return p + 4;
4786 }
4787
4788 template<bool big_endian>
4789 static unsigned char*
4790 savefpr1_tail(unsigned char* p, int r)
4791 {
4792 p = savefpr<big_endian>(p, r);
4793 write_insn<big_endian>(p, blr);
4794 return p + 4;
4795 }
4796
4797 template<bool big_endian>
4798 static unsigned char*
4799 restfpr1_tail(unsigned char* p, int r)
4800 {
4801 p = restfpr<big_endian>(p, r);
4802 write_insn<big_endian>(p, blr);
4803 return p + 4;
4804 }
4805
4806 template<bool big_endian>
4807 static unsigned char*
4808 savevr(unsigned char* p, int r)
4809 {
4810 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4811 write_insn<big_endian>(p, insn);
4812 p = p + 4;
4813 insn = stvx_0_12_0 + (r << 21);
4814 write_insn<big_endian>(p, insn);
4815 return p + 4;
4816 }
4817
4818 template<bool big_endian>
4819 static unsigned char*
4820 savevr_tail(unsigned char* p, int r)
4821 {
4822 p = savevr<big_endian>(p, r);
4823 write_insn<big_endian>(p, blr);
4824 return p + 4;
4825 }
4826
4827 template<bool big_endian>
4828 static unsigned char*
4829 restvr(unsigned char* p, int r)
4830 {
4831 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4832 write_insn<big_endian>(p, insn);
4833 p = p + 4;
4834 insn = lvx_0_12_0 + (r << 21);
4835 write_insn<big_endian>(p, insn);
4836 return p + 4;
4837 }
4838
4839 template<bool big_endian>
4840 static unsigned char*
4841 restvr_tail(unsigned char* p, int r)
4842 {
4843 p = restvr<big_endian>(p, r);
4844 write_insn<big_endian>(p, blr);
4845 return p + 4;
4846 }
4847
4848
4849 template<int size, bool big_endian>
4850 Output_data_save_res<size, big_endian>::Output_data_save_res(
4851 Symbol_table* symtab)
4852 : Output_section_data_build(4),
4853 contents_(NULL)
4854 {
4855 this->savres_define(symtab,
4856 "_savegpr0_", 14, 31,
4857 savegpr0<big_endian>, savegpr0_tail<big_endian>);
4858 this->savres_define(symtab,
4859 "_restgpr0_", 14, 29,
4860 restgpr0<big_endian>, restgpr0_tail<big_endian>);
4861 this->savres_define(symtab,
4862 "_restgpr0_", 30, 31,
4863 restgpr0<big_endian>, restgpr0_tail<big_endian>);
4864 this->savres_define(symtab,
4865 "_savegpr1_", 14, 31,
4866 savegpr1<big_endian>, savegpr1_tail<big_endian>);
4867 this->savres_define(symtab,
4868 "_restgpr1_", 14, 31,
4869 restgpr1<big_endian>, restgpr1_tail<big_endian>);
4870 this->savres_define(symtab,
4871 "_savefpr_", 14, 31,
4872 savefpr<big_endian>, savefpr0_tail<big_endian>);
4873 this->savres_define(symtab,
4874 "_restfpr_", 14, 29,
4875 restfpr<big_endian>, restfpr0_tail<big_endian>);
4876 this->savres_define(symtab,
4877 "_restfpr_", 30, 31,
4878 restfpr<big_endian>, restfpr0_tail<big_endian>);
4879 this->savres_define(symtab,
4880 "._savef", 14, 31,
4881 savefpr<big_endian>, savefpr1_tail<big_endian>);
4882 this->savres_define(symtab,
4883 "._restf", 14, 31,
4884 restfpr<big_endian>, restfpr1_tail<big_endian>);
4885 this->savres_define(symtab,
4886 "_savevr_", 20, 31,
4887 savevr<big_endian>, savevr_tail<big_endian>);
4888 this->savres_define(symtab,
4889 "_restvr_", 20, 31,
4890 restvr<big_endian>, restvr_tail<big_endian>);
4891 }
4892
4893 template<int size, bool big_endian>
4894 void
4895 Output_data_save_res<size, big_endian>::savres_define(
4896 Symbol_table* symtab,
4897 const char *name,
4898 unsigned int lo, unsigned int hi,
4899 unsigned char* write_ent(unsigned char*, int),
4900 unsigned char* write_tail(unsigned char*, int))
4901 {
4902 size_t len = strlen(name);
4903 bool writing = false;
4904 char sym[16];
4905
4906 memcpy(sym, name, len);
4907 sym[len + 2] = 0;
4908
4909 for (unsigned int i = lo; i <= hi; i++)
4910 {
4911 sym[len + 0] = i / 10 + '0';
4912 sym[len + 1] = i % 10 + '0';
4913 Symbol* gsym = symtab->lookup(sym);
4914 bool refd = gsym != NULL && gsym->is_undefined();
4915 writing = writing || refd;
4916 if (writing)
4917 {
4918 if (this->contents_ == NULL)
4919 this->contents_ = new unsigned char[this->savres_max];
4920
4921 section_size_type value = this->current_data_size();
4922 unsigned char* p = this->contents_ + value;
4923 if (i != hi)
4924 p = write_ent(p, i);
4925 else
4926 p = write_tail(p, i);
4927 section_size_type cur_size = p - this->contents_;
4928 this->set_current_data_size(cur_size);
4929 if (refd)
4930 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
4931 this, value, cur_size - value,
4932 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
4933 elfcpp::STV_HIDDEN, 0, false, false);
4934 }
4935 }
4936 }
4937
4938 // Write out save/restore.
4939
4940 template<int size, bool big_endian>
4941 void
4942 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
4943 {
4944 const section_size_type off = this->offset();
4945 const section_size_type oview_size =
4946 convert_to_section_size_type(this->data_size());
4947 unsigned char* const oview = of->get_output_view(off, oview_size);
4948 memcpy(oview, this->contents_, oview_size);
4949 of->write_output_view(off, oview_size, oview);
4950 }
4951
4952
4953 // Create the glink section.
4954
4955 template<int size, bool big_endian>
4956 void
4957 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
4958 {
4959 if (this->glink_ == NULL)
4960 {
4961 this->glink_ = new Output_data_glink<size, big_endian>(this);
4962 this->glink_->add_eh_frame(layout);
4963 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
4964 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
4965 this->glink_, ORDER_TEXT, false);
4966 }
4967 }
4968
4969 // Create a PLT entry for a global symbol.
4970
4971 template<int size, bool big_endian>
4972 void
4973 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
4974 Layout* layout,
4975 Symbol* gsym)
4976 {
4977 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4978 && gsym->can_use_relative_reloc(false))
4979 {
4980 if (this->iplt_ == NULL)
4981 this->make_iplt_section(symtab, layout);
4982 this->iplt_->add_ifunc_entry(gsym);
4983 }
4984 else
4985 {
4986 if (this->plt_ == NULL)
4987 this->make_plt_section(symtab, layout);
4988 this->plt_->add_entry(gsym);
4989 }
4990 }
4991
4992 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
4993
4994 template<int size, bool big_endian>
4995 void
4996 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
4997 Symbol_table* symtab,
4998 Layout* layout,
4999 Sized_relobj_file<size, big_endian>* relobj,
5000 unsigned int r_sym)
5001 {
5002 if (this->iplt_ == NULL)
5003 this->make_iplt_section(symtab, layout);
5004 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5005 }
5006
5007 // Return the number of entries in the PLT.
5008
5009 template<int size, bool big_endian>
5010 unsigned int
5011 Target_powerpc<size, big_endian>::plt_entry_count() const
5012 {
5013 if (this->plt_ == NULL)
5014 return 0;
5015 return this->plt_->entry_count();
5016 }
5017
5018 // Create a GOT entry for local dynamic __tls_get_addr calls.
5019
5020 template<int size, bool big_endian>
5021 unsigned int
5022 Target_powerpc<size, big_endian>::tlsld_got_offset(
5023 Symbol_table* symtab,
5024 Layout* layout,
5025 Sized_relobj_file<size, big_endian>* object)
5026 {
5027 if (this->tlsld_got_offset_ == -1U)
5028 {
5029 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5030 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5031 Output_data_got_powerpc<size, big_endian>* got
5032 = this->got_section(symtab, layout);
5033 unsigned int got_offset = got->add_constant_pair(0, 0);
5034 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5035 got_offset, 0);
5036 this->tlsld_got_offset_ = got_offset;
5037 }
5038 return this->tlsld_got_offset_;
5039 }
5040
5041 // Get the Reference_flags for a particular relocation.
5042
5043 template<int size, bool big_endian>
5044 int
5045 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5046 unsigned int r_type,
5047 const Target_powerpc* target)
5048 {
5049 int ref = 0;
5050
5051 switch (r_type)
5052 {
5053 case elfcpp::R_POWERPC_NONE:
5054 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5055 case elfcpp::R_POWERPC_GNU_VTENTRY:
5056 case elfcpp::R_PPC64_TOC:
5057 // No symbol reference.
5058 break;
5059
5060 case elfcpp::R_PPC64_ADDR64:
5061 case elfcpp::R_PPC64_UADDR64:
5062 case elfcpp::R_POWERPC_ADDR32:
5063 case elfcpp::R_POWERPC_UADDR32:
5064 case elfcpp::R_POWERPC_ADDR16:
5065 case elfcpp::R_POWERPC_UADDR16:
5066 case elfcpp::R_POWERPC_ADDR16_LO:
5067 case elfcpp::R_POWERPC_ADDR16_HI:
5068 case elfcpp::R_POWERPC_ADDR16_HA:
5069 ref = Symbol::ABSOLUTE_REF;
5070 break;
5071
5072 case elfcpp::R_POWERPC_ADDR24:
5073 case elfcpp::R_POWERPC_ADDR14:
5074 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5075 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5076 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5077 break;
5078
5079 case elfcpp::R_PPC64_REL64:
5080 case elfcpp::R_POWERPC_REL32:
5081 case elfcpp::R_PPC_LOCAL24PC:
5082 case elfcpp::R_POWERPC_REL16:
5083 case elfcpp::R_POWERPC_REL16_LO:
5084 case elfcpp::R_POWERPC_REL16_HI:
5085 case elfcpp::R_POWERPC_REL16_HA:
5086 ref = Symbol::RELATIVE_REF;
5087 break;
5088
5089 case elfcpp::R_POWERPC_REL24:
5090 case elfcpp::R_PPC_PLTREL24:
5091 case elfcpp::R_POWERPC_REL14:
5092 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5093 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5094 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5095 break;
5096
5097 case elfcpp::R_POWERPC_GOT16:
5098 case elfcpp::R_POWERPC_GOT16_LO:
5099 case elfcpp::R_POWERPC_GOT16_HI:
5100 case elfcpp::R_POWERPC_GOT16_HA:
5101 case elfcpp::R_PPC64_GOT16_DS:
5102 case elfcpp::R_PPC64_GOT16_LO_DS:
5103 case elfcpp::R_PPC64_TOC16:
5104 case elfcpp::R_PPC64_TOC16_LO:
5105 case elfcpp::R_PPC64_TOC16_HI:
5106 case elfcpp::R_PPC64_TOC16_HA:
5107 case elfcpp::R_PPC64_TOC16_DS:
5108 case elfcpp::R_PPC64_TOC16_LO_DS:
5109 // Absolute in GOT.
5110 ref = Symbol::ABSOLUTE_REF;
5111 break;
5112
5113 case elfcpp::R_POWERPC_GOT_TPREL16:
5114 case elfcpp::R_POWERPC_TLS:
5115 ref = Symbol::TLS_REF;
5116 break;
5117
5118 case elfcpp::R_POWERPC_COPY:
5119 case elfcpp::R_POWERPC_GLOB_DAT:
5120 case elfcpp::R_POWERPC_JMP_SLOT:
5121 case elfcpp::R_POWERPC_RELATIVE:
5122 case elfcpp::R_POWERPC_DTPMOD:
5123 default:
5124 // Not expected. We will give an error later.
5125 break;
5126 }
5127
5128 if (size == 64 && target->abiversion() < 2)
5129 ref |= Symbol::FUNC_DESC_ABI;
5130 return ref;
5131 }
5132
5133 // Report an unsupported relocation against a local symbol.
5134
5135 template<int size, bool big_endian>
5136 void
5137 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5138 Sized_relobj_file<size, big_endian>* object,
5139 unsigned int r_type)
5140 {
5141 gold_error(_("%s: unsupported reloc %u against local symbol"),
5142 object->name().c_str(), r_type);
5143 }
5144
5145 // We are about to emit a dynamic relocation of type R_TYPE. If the
5146 // dynamic linker does not support it, issue an error.
5147
5148 template<int size, bool big_endian>
5149 void
5150 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5151 unsigned int r_type)
5152 {
5153 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5154
5155 // These are the relocation types supported by glibc for both 32-bit
5156 // and 64-bit powerpc.
5157 switch (r_type)
5158 {
5159 case elfcpp::R_POWERPC_NONE:
5160 case elfcpp::R_POWERPC_RELATIVE:
5161 case elfcpp::R_POWERPC_GLOB_DAT:
5162 case elfcpp::R_POWERPC_DTPMOD:
5163 case elfcpp::R_POWERPC_DTPREL:
5164 case elfcpp::R_POWERPC_TPREL:
5165 case elfcpp::R_POWERPC_JMP_SLOT:
5166 case elfcpp::R_POWERPC_COPY:
5167 case elfcpp::R_POWERPC_IRELATIVE:
5168 case elfcpp::R_POWERPC_ADDR32:
5169 case elfcpp::R_POWERPC_UADDR32:
5170 case elfcpp::R_POWERPC_ADDR24:
5171 case elfcpp::R_POWERPC_ADDR16:
5172 case elfcpp::R_POWERPC_UADDR16:
5173 case elfcpp::R_POWERPC_ADDR16_LO:
5174 case elfcpp::R_POWERPC_ADDR16_HI:
5175 case elfcpp::R_POWERPC_ADDR16_HA:
5176 case elfcpp::R_POWERPC_ADDR14:
5177 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5178 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5179 case elfcpp::R_POWERPC_REL32:
5180 case elfcpp::R_POWERPC_REL24:
5181 case elfcpp::R_POWERPC_TPREL16:
5182 case elfcpp::R_POWERPC_TPREL16_LO:
5183 case elfcpp::R_POWERPC_TPREL16_HI:
5184 case elfcpp::R_POWERPC_TPREL16_HA:
5185 return;
5186
5187 default:
5188 break;
5189 }
5190
5191 if (size == 64)
5192 {
5193 switch (r_type)
5194 {
5195 // These are the relocation types supported only on 64-bit.
5196 case elfcpp::R_PPC64_ADDR64:
5197 case elfcpp::R_PPC64_UADDR64:
5198 case elfcpp::R_PPC64_JMP_IREL:
5199 case elfcpp::R_PPC64_ADDR16_DS:
5200 case elfcpp::R_PPC64_ADDR16_LO_DS:
5201 case elfcpp::R_PPC64_ADDR16_HIGH:
5202 case elfcpp::R_PPC64_ADDR16_HIGHA:
5203 case elfcpp::R_PPC64_ADDR16_HIGHER:
5204 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5205 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5206 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5207 case elfcpp::R_PPC64_REL64:
5208 case elfcpp::R_POWERPC_ADDR30:
5209 case elfcpp::R_PPC64_TPREL16_DS:
5210 case elfcpp::R_PPC64_TPREL16_LO_DS:
5211 case elfcpp::R_PPC64_TPREL16_HIGH:
5212 case elfcpp::R_PPC64_TPREL16_HIGHA:
5213 case elfcpp::R_PPC64_TPREL16_HIGHER:
5214 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5215 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5216 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5217 return;
5218
5219 default:
5220 break;
5221 }
5222 }
5223 else
5224 {
5225 switch (r_type)
5226 {
5227 // These are the relocation types supported only on 32-bit.
5228 // ??? glibc ld.so doesn't need to support these.
5229 case elfcpp::R_POWERPC_DTPREL16:
5230 case elfcpp::R_POWERPC_DTPREL16_LO:
5231 case elfcpp::R_POWERPC_DTPREL16_HI:
5232 case elfcpp::R_POWERPC_DTPREL16_HA:
5233 return;
5234
5235 default:
5236 break;
5237 }
5238 }
5239
5240 // This prevents us from issuing more than one error per reloc
5241 // section. But we can still wind up issuing more than one
5242 // error per object file.
5243 if (this->issued_non_pic_error_)
5244 return;
5245 gold_assert(parameters->options().output_is_position_independent());
5246 object->error(_("requires unsupported dynamic reloc; "
5247 "recompile with -fPIC"));
5248 this->issued_non_pic_error_ = true;
5249 return;
5250 }
5251
5252 // Return whether we need to make a PLT entry for a relocation of the
5253 // given type against a STT_GNU_IFUNC symbol.
5254
5255 template<int size, bool big_endian>
5256 bool
5257 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5258 Target_powerpc<size, big_endian>* target,
5259 Sized_relobj_file<size, big_endian>* object,
5260 unsigned int r_type,
5261 bool report_err)
5262 {
5263 // In non-pic code any reference will resolve to the plt call stub
5264 // for the ifunc symbol.
5265 if ((size == 32 || target->abiversion() >= 2)
5266 && !parameters->options().output_is_position_independent())
5267 return true;
5268
5269 switch (r_type)
5270 {
5271 // Word size refs from data sections are OK, but don't need a PLT entry.
5272 case elfcpp::R_POWERPC_ADDR32:
5273 case elfcpp::R_POWERPC_UADDR32:
5274 if (size == 32)
5275 return false;
5276 break;
5277
5278 case elfcpp::R_PPC64_ADDR64:
5279 case elfcpp::R_PPC64_UADDR64:
5280 if (size == 64)
5281 return false;
5282 break;
5283
5284 // GOT refs are good, but also don't need a PLT entry.
5285 case elfcpp::R_POWERPC_GOT16:
5286 case elfcpp::R_POWERPC_GOT16_LO:
5287 case elfcpp::R_POWERPC_GOT16_HI:
5288 case elfcpp::R_POWERPC_GOT16_HA:
5289 case elfcpp::R_PPC64_GOT16_DS:
5290 case elfcpp::R_PPC64_GOT16_LO_DS:
5291 return false;
5292
5293 // Function calls are good, and these do need a PLT entry.
5294 case elfcpp::R_POWERPC_ADDR24:
5295 case elfcpp::R_POWERPC_ADDR14:
5296 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5297 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5298 case elfcpp::R_POWERPC_REL24:
5299 case elfcpp::R_PPC_PLTREL24:
5300 case elfcpp::R_POWERPC_REL14:
5301 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5302 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5303 return true;
5304
5305 default:
5306 break;
5307 }
5308
5309 // Anything else is a problem.
5310 // If we are building a static executable, the libc startup function
5311 // responsible for applying indirect function relocations is going
5312 // to complain about the reloc type.
5313 // If we are building a dynamic executable, we will have a text
5314 // relocation. The dynamic loader will set the text segment
5315 // writable and non-executable to apply text relocations. So we'll
5316 // segfault when trying to run the indirection function to resolve
5317 // the reloc.
5318 if (report_err)
5319 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5320 object->name().c_str(), r_type);
5321 return false;
5322 }
5323
5324 // Scan a relocation for a local symbol.
5325
5326 template<int size, bool big_endian>
5327 inline void
5328 Target_powerpc<size, big_endian>::Scan::local(
5329 Symbol_table* symtab,
5330 Layout* layout,
5331 Target_powerpc<size, big_endian>* target,
5332 Sized_relobj_file<size, big_endian>* object,
5333 unsigned int data_shndx,
5334 Output_section* output_section,
5335 const elfcpp::Rela<size, big_endian>& reloc,
5336 unsigned int r_type,
5337 const elfcpp::Sym<size, big_endian>& lsym,
5338 bool is_discarded)
5339 {
5340 this->maybe_skip_tls_get_addr_call(r_type, NULL);
5341
5342 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5343 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5344 {
5345 this->expect_tls_get_addr_call();
5346 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5347 if (tls_type != tls::TLSOPT_NONE)
5348 this->skip_next_tls_get_addr_call();
5349 }
5350 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5351 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5352 {
5353 this->expect_tls_get_addr_call();
5354 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5355 if (tls_type != tls::TLSOPT_NONE)
5356 this->skip_next_tls_get_addr_call();
5357 }
5358
5359 Powerpc_relobj<size, big_endian>* ppc_object
5360 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5361
5362 if (is_discarded)
5363 {
5364 if (size == 64
5365 && data_shndx == ppc_object->opd_shndx()
5366 && r_type == elfcpp::R_PPC64_ADDR64)
5367 ppc_object->set_opd_discard(reloc.get_r_offset());
5368 return;
5369 }
5370
5371 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5372 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5373 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5374 {
5375 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5376 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5377 r_type, r_sym, reloc.get_r_addend());
5378 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5379 }
5380
5381 switch (r_type)
5382 {
5383 case elfcpp::R_POWERPC_NONE:
5384 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5385 case elfcpp::R_POWERPC_GNU_VTENTRY:
5386 case elfcpp::R_PPC64_TOCSAVE:
5387 case elfcpp::R_POWERPC_TLS:
5388 break;
5389
5390 case elfcpp::R_PPC64_TOC:
5391 {
5392 Output_data_got_powerpc<size, big_endian>* got
5393 = target->got_section(symtab, layout);
5394 if (parameters->options().output_is_position_independent())
5395 {
5396 Address off = reloc.get_r_offset();
5397 if (size == 64
5398 && target->abiversion() < 2
5399 && data_shndx == ppc_object->opd_shndx()
5400 && ppc_object->get_opd_discard(off - 8))
5401 break;
5402
5403 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5404 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5405 rela_dyn->add_output_section_relative(got->output_section(),
5406 elfcpp::R_POWERPC_RELATIVE,
5407 output_section,
5408 object, data_shndx, off,
5409 symobj->toc_base_offset());
5410 }
5411 }
5412 break;
5413
5414 case elfcpp::R_PPC64_ADDR64:
5415 case elfcpp::R_PPC64_UADDR64:
5416 case elfcpp::R_POWERPC_ADDR32:
5417 case elfcpp::R_POWERPC_UADDR32:
5418 case elfcpp::R_POWERPC_ADDR24:
5419 case elfcpp::R_POWERPC_ADDR16:
5420 case elfcpp::R_POWERPC_ADDR16_LO:
5421 case elfcpp::R_POWERPC_ADDR16_HI:
5422 case elfcpp::R_POWERPC_ADDR16_HA:
5423 case elfcpp::R_POWERPC_UADDR16:
5424 case elfcpp::R_PPC64_ADDR16_HIGH:
5425 case elfcpp::R_PPC64_ADDR16_HIGHA:
5426 case elfcpp::R_PPC64_ADDR16_HIGHER:
5427 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5428 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5429 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5430 case elfcpp::R_PPC64_ADDR16_DS:
5431 case elfcpp::R_PPC64_ADDR16_LO_DS:
5432 case elfcpp::R_POWERPC_ADDR14:
5433 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5434 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5435 // If building a shared library (or a position-independent
5436 // executable), we need to create a dynamic relocation for
5437 // this location.
5438 if (parameters->options().output_is_position_independent()
5439 || (size == 64 && is_ifunc && target->abiversion() < 2))
5440 {
5441 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5442 is_ifunc);
5443 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5444 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5445 {
5446 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5447 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5448 : elfcpp::R_POWERPC_RELATIVE);
5449 rela_dyn->add_local_relative(object, r_sym, dynrel,
5450 output_section, data_shndx,
5451 reloc.get_r_offset(),
5452 reloc.get_r_addend(), false);
5453 }
5454 else
5455 {
5456 check_non_pic(object, r_type);
5457 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5458 rela_dyn->add_local(object, r_sym, r_type, output_section,
5459 data_shndx, reloc.get_r_offset(),
5460 reloc.get_r_addend());
5461 }
5462 }
5463 break;
5464
5465 case elfcpp::R_POWERPC_REL24:
5466 case elfcpp::R_PPC_PLTREL24:
5467 case elfcpp::R_PPC_LOCAL24PC:
5468 case elfcpp::R_POWERPC_REL14:
5469 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5470 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5471 if (!is_ifunc)
5472 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5473 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5474 reloc.get_r_addend());
5475 break;
5476
5477 case elfcpp::R_PPC64_REL64:
5478 case elfcpp::R_POWERPC_REL32:
5479 case elfcpp::R_POWERPC_REL16:
5480 case elfcpp::R_POWERPC_REL16_LO:
5481 case elfcpp::R_POWERPC_REL16_HI:
5482 case elfcpp::R_POWERPC_REL16_HA:
5483 case elfcpp::R_POWERPC_SECTOFF:
5484 case elfcpp::R_POWERPC_SECTOFF_LO:
5485 case elfcpp::R_POWERPC_SECTOFF_HI:
5486 case elfcpp::R_POWERPC_SECTOFF_HA:
5487 case elfcpp::R_PPC64_SECTOFF_DS:
5488 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5489 case elfcpp::R_POWERPC_TPREL16:
5490 case elfcpp::R_POWERPC_TPREL16_LO:
5491 case elfcpp::R_POWERPC_TPREL16_HI:
5492 case elfcpp::R_POWERPC_TPREL16_HA:
5493 case elfcpp::R_PPC64_TPREL16_DS:
5494 case elfcpp::R_PPC64_TPREL16_LO_DS:
5495 case elfcpp::R_PPC64_TPREL16_HIGH:
5496 case elfcpp::R_PPC64_TPREL16_HIGHA:
5497 case elfcpp::R_PPC64_TPREL16_HIGHER:
5498 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5499 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5500 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5501 case elfcpp::R_POWERPC_DTPREL16:
5502 case elfcpp::R_POWERPC_DTPREL16_LO:
5503 case elfcpp::R_POWERPC_DTPREL16_HI:
5504 case elfcpp::R_POWERPC_DTPREL16_HA:
5505 case elfcpp::R_PPC64_DTPREL16_DS:
5506 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5507 case elfcpp::R_PPC64_DTPREL16_HIGH:
5508 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5509 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5510 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5511 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5512 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5513 case elfcpp::R_PPC64_TLSGD:
5514 case elfcpp::R_PPC64_TLSLD:
5515 case elfcpp::R_PPC64_ADDR64_LOCAL:
5516 break;
5517
5518 case elfcpp::R_POWERPC_GOT16:
5519 case elfcpp::R_POWERPC_GOT16_LO:
5520 case elfcpp::R_POWERPC_GOT16_HI:
5521 case elfcpp::R_POWERPC_GOT16_HA:
5522 case elfcpp::R_PPC64_GOT16_DS:
5523 case elfcpp::R_PPC64_GOT16_LO_DS:
5524 {
5525 // The symbol requires a GOT entry.
5526 Output_data_got_powerpc<size, big_endian>* got
5527 = target->got_section(symtab, layout);
5528 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5529
5530 if (!parameters->options().output_is_position_independent())
5531 {
5532 if ((size == 32 && is_ifunc)
5533 || (size == 64 && target->abiversion() >= 2))
5534 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5535 else
5536 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5537 }
5538 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5539 {
5540 // If we are generating a shared object or a pie, this
5541 // symbol's GOT entry will be set by a dynamic relocation.
5542 unsigned int off;
5543 off = got->add_constant(0);
5544 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5545
5546 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5547 is_ifunc);
5548 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5549 : elfcpp::R_POWERPC_RELATIVE);
5550 rela_dyn->add_local_relative(object, r_sym, dynrel,
5551 got, off, 0, false);
5552 }
5553 }
5554 break;
5555
5556 case elfcpp::R_PPC64_TOC16:
5557 case elfcpp::R_PPC64_TOC16_LO:
5558 case elfcpp::R_PPC64_TOC16_HI:
5559 case elfcpp::R_PPC64_TOC16_HA:
5560 case elfcpp::R_PPC64_TOC16_DS:
5561 case elfcpp::R_PPC64_TOC16_LO_DS:
5562 // We need a GOT section.
5563 target->got_section(symtab, layout);
5564 break;
5565
5566 case elfcpp::R_POWERPC_GOT_TLSGD16:
5567 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5568 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5569 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5570 {
5571 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5572 if (tls_type == tls::TLSOPT_NONE)
5573 {
5574 Output_data_got_powerpc<size, big_endian>* got
5575 = target->got_section(symtab, layout);
5576 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5577 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5578 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5579 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5580 }
5581 else if (tls_type == tls::TLSOPT_TO_LE)
5582 {
5583 // no GOT relocs needed for Local Exec.
5584 }
5585 else
5586 gold_unreachable();
5587 }
5588 break;
5589
5590 case elfcpp::R_POWERPC_GOT_TLSLD16:
5591 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5592 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5593 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5594 {
5595 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5596 if (tls_type == tls::TLSOPT_NONE)
5597 target->tlsld_got_offset(symtab, layout, object);
5598 else if (tls_type == tls::TLSOPT_TO_LE)
5599 {
5600 // no GOT relocs needed for Local Exec.
5601 if (parameters->options().emit_relocs())
5602 {
5603 Output_section* os = layout->tls_segment()->first_section();
5604 gold_assert(os != NULL);
5605 os->set_needs_symtab_index();
5606 }
5607 }
5608 else
5609 gold_unreachable();
5610 }
5611 break;
5612
5613 case elfcpp::R_POWERPC_GOT_DTPREL16:
5614 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5615 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5616 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5617 {
5618 Output_data_got_powerpc<size, big_endian>* got
5619 = target->got_section(symtab, layout);
5620 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5621 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5622 }
5623 break;
5624
5625 case elfcpp::R_POWERPC_GOT_TPREL16:
5626 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5627 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5628 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5629 {
5630 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5631 if (tls_type == tls::TLSOPT_NONE)
5632 {
5633 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5634 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5635 {
5636 Output_data_got_powerpc<size, big_endian>* got
5637 = target->got_section(symtab, layout);
5638 unsigned int off = got->add_constant(0);
5639 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5640
5641 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5642 rela_dyn->add_symbolless_local_addend(object, r_sym,
5643 elfcpp::R_POWERPC_TPREL,
5644 got, off, 0);
5645 }
5646 }
5647 else if (tls_type == tls::TLSOPT_TO_LE)
5648 {
5649 // no GOT relocs needed for Local Exec.
5650 }
5651 else
5652 gold_unreachable();
5653 }
5654 break;
5655
5656 default:
5657 unsupported_reloc_local(object, r_type);
5658 break;
5659 }
5660
5661 switch (r_type)
5662 {
5663 case elfcpp::R_POWERPC_GOT_TLSLD16:
5664 case elfcpp::R_POWERPC_GOT_TLSGD16:
5665 case elfcpp::R_POWERPC_GOT_TPREL16:
5666 case elfcpp::R_POWERPC_GOT_DTPREL16:
5667 case elfcpp::R_POWERPC_GOT16:
5668 case elfcpp::R_PPC64_GOT16_DS:
5669 case elfcpp::R_PPC64_TOC16:
5670 case elfcpp::R_PPC64_TOC16_DS:
5671 ppc_object->set_has_small_toc_reloc();
5672 default:
5673 break;
5674 }
5675 }
5676
5677 // Report an unsupported relocation against a global symbol.
5678
5679 template<int size, bool big_endian>
5680 void
5681 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5682 Sized_relobj_file<size, big_endian>* object,
5683 unsigned int r_type,
5684 Symbol* gsym)
5685 {
5686 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5687 object->name().c_str(), r_type, gsym->demangled_name().c_str());
5688 }
5689
5690 // Scan a relocation for a global symbol.
5691
5692 template<int size, bool big_endian>
5693 inline void
5694 Target_powerpc<size, big_endian>::Scan::global(
5695 Symbol_table* symtab,
5696 Layout* layout,
5697 Target_powerpc<size, big_endian>* target,
5698 Sized_relobj_file<size, big_endian>* object,
5699 unsigned int data_shndx,
5700 Output_section* output_section,
5701 const elfcpp::Rela<size, big_endian>& reloc,
5702 unsigned int r_type,
5703 Symbol* gsym)
5704 {
5705 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5706 return;
5707
5708 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5709 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5710 {
5711 this->expect_tls_get_addr_call();
5712 const bool final = gsym->final_value_is_known();
5713 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5714 if (tls_type != tls::TLSOPT_NONE)
5715 this->skip_next_tls_get_addr_call();
5716 }
5717 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5718 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5719 {
5720 this->expect_tls_get_addr_call();
5721 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5722 if (tls_type != tls::TLSOPT_NONE)
5723 this->skip_next_tls_get_addr_call();
5724 }
5725
5726 Powerpc_relobj<size, big_endian>* ppc_object
5727 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5728
5729 // A STT_GNU_IFUNC symbol may require a PLT entry.
5730 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5731 bool pushed_ifunc = false;
5732 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5733 {
5734 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5735 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5736 reloc.get_r_addend());
5737 target->make_plt_entry(symtab, layout, gsym);
5738 pushed_ifunc = true;
5739 }
5740
5741 switch (r_type)
5742 {
5743 case elfcpp::R_POWERPC_NONE:
5744 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5745 case elfcpp::R_POWERPC_GNU_VTENTRY:
5746 case elfcpp::R_PPC_LOCAL24PC:
5747 case elfcpp::R_POWERPC_TLS:
5748 break;
5749
5750 case elfcpp::R_PPC64_TOC:
5751 {
5752 Output_data_got_powerpc<size, big_endian>* got
5753 = target->got_section(symtab, layout);
5754 if (parameters->options().output_is_position_independent())
5755 {
5756 Address off = reloc.get_r_offset();
5757 if (size == 64
5758 && data_shndx == ppc_object->opd_shndx()
5759 && ppc_object->get_opd_discard(off - 8))
5760 break;
5761
5762 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5763 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5764 if (data_shndx != ppc_object->opd_shndx())
5765 symobj = static_cast
5766 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5767 rela_dyn->add_output_section_relative(got->output_section(),
5768 elfcpp::R_POWERPC_RELATIVE,
5769 output_section,
5770 object, data_shndx, off,
5771 symobj->toc_base_offset());
5772 }
5773 }
5774 break;
5775
5776 case elfcpp::R_PPC64_ADDR64:
5777 if (size == 64
5778 && target->abiversion() < 2
5779 && data_shndx == ppc_object->opd_shndx()
5780 && (gsym->is_defined_in_discarded_section()
5781 || gsym->object() != object))
5782 {
5783 ppc_object->set_opd_discard(reloc.get_r_offset());
5784 break;
5785 }
5786 // Fall thru
5787 case elfcpp::R_PPC64_UADDR64:
5788 case elfcpp::R_POWERPC_ADDR32:
5789 case elfcpp::R_POWERPC_UADDR32:
5790 case elfcpp::R_POWERPC_ADDR24:
5791 case elfcpp::R_POWERPC_ADDR16:
5792 case elfcpp::R_POWERPC_ADDR16_LO:
5793 case elfcpp::R_POWERPC_ADDR16_HI:
5794 case elfcpp::R_POWERPC_ADDR16_HA:
5795 case elfcpp::R_POWERPC_UADDR16:
5796 case elfcpp::R_PPC64_ADDR16_HIGH:
5797 case elfcpp::R_PPC64_ADDR16_HIGHA:
5798 case elfcpp::R_PPC64_ADDR16_HIGHER:
5799 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5800 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5801 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5802 case elfcpp::R_PPC64_ADDR16_DS:
5803 case elfcpp::R_PPC64_ADDR16_LO_DS:
5804 case elfcpp::R_POWERPC_ADDR14:
5805 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5806 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5807 {
5808 // Make a PLT entry if necessary.
5809 if (gsym->needs_plt_entry())
5810 {
5811 // Since this is not a PC-relative relocation, we may be
5812 // taking the address of a function. In that case we need to
5813 // set the entry in the dynamic symbol table to the address of
5814 // the PLT call stub.
5815 bool need_ifunc_plt = false;
5816 if ((size == 32 || target->abiversion() >= 2)
5817 && gsym->is_from_dynobj()
5818 && !parameters->options().output_is_position_independent())
5819 {
5820 gsym->set_needs_dynsym_value();
5821 need_ifunc_plt = true;
5822 }
5823 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
5824 {
5825 target->push_branch(ppc_object, data_shndx,
5826 reloc.get_r_offset(), r_type,
5827 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5828 reloc.get_r_addend());
5829 target->make_plt_entry(symtab, layout, gsym);
5830 }
5831 }
5832 // Make a dynamic relocation if necessary.
5833 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
5834 || (size == 64 && is_ifunc && target->abiversion() < 2))
5835 {
5836 if (!parameters->options().output_is_position_independent()
5837 && gsym->may_need_copy_reloc())
5838 {
5839 target->copy_reloc(symtab, layout, object,
5840 data_shndx, output_section, gsym, reloc);
5841 }
5842 else if ((((size == 32
5843 && r_type == elfcpp::R_POWERPC_ADDR32)
5844 || (size == 64
5845 && r_type == elfcpp::R_PPC64_ADDR64
5846 && target->abiversion() >= 2))
5847 && gsym->can_use_relative_reloc(false)
5848 && !(gsym->visibility() == elfcpp::STV_PROTECTED
5849 && parameters->options().shared()))
5850 || (size == 64
5851 && r_type == elfcpp::R_PPC64_ADDR64
5852 && target->abiversion() < 2
5853 && (gsym->can_use_relative_reloc(false)
5854 || data_shndx == ppc_object->opd_shndx())))
5855 {
5856 Reloc_section* rela_dyn
5857 = target->rela_dyn_section(symtab, layout, is_ifunc);
5858 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5859 : elfcpp::R_POWERPC_RELATIVE);
5860 rela_dyn->add_symbolless_global_addend(
5861 gsym, dynrel, output_section, object, data_shndx,
5862 reloc.get_r_offset(), reloc.get_r_addend());
5863 }
5864 else
5865 {
5866 Reloc_section* rela_dyn
5867 = target->rela_dyn_section(symtab, layout, is_ifunc);
5868 check_non_pic(object, r_type);
5869 rela_dyn->add_global(gsym, r_type, output_section,
5870 object, data_shndx,
5871 reloc.get_r_offset(),
5872 reloc.get_r_addend());
5873 }
5874 }
5875 }
5876 break;
5877
5878 case elfcpp::R_PPC_PLTREL24:
5879 case elfcpp::R_POWERPC_REL24:
5880 if (!is_ifunc)
5881 {
5882 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5883 r_type,
5884 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5885 reloc.get_r_addend());
5886 if (gsym->needs_plt_entry()
5887 || (!gsym->final_value_is_known()
5888 && (gsym->is_undefined()
5889 || gsym->is_from_dynobj()
5890 || gsym->is_preemptible())))
5891 target->make_plt_entry(symtab, layout, gsym);
5892 }
5893 // Fall thru
5894
5895 case elfcpp::R_PPC64_REL64:
5896 case elfcpp::R_POWERPC_REL32:
5897 // Make a dynamic relocation if necessary.
5898 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
5899 {
5900 if (!parameters->options().output_is_position_independent()
5901 && gsym->may_need_copy_reloc())
5902 {
5903 target->copy_reloc(symtab, layout, object,
5904 data_shndx, output_section, gsym,
5905 reloc);
5906 }
5907 else
5908 {
5909 Reloc_section* rela_dyn
5910 = target->rela_dyn_section(symtab, layout, is_ifunc);
5911 check_non_pic(object, r_type);
5912 rela_dyn->add_global(gsym, r_type, output_section, object,
5913 data_shndx, reloc.get_r_offset(),
5914 reloc.get_r_addend());
5915 }
5916 }
5917 break;
5918
5919 case elfcpp::R_POWERPC_REL14:
5920 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5921 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5922 if (!is_ifunc)
5923 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5924 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5925 reloc.get_r_addend());
5926 break;
5927
5928 case elfcpp::R_POWERPC_REL16:
5929 case elfcpp::R_POWERPC_REL16_LO:
5930 case elfcpp::R_POWERPC_REL16_HI:
5931 case elfcpp::R_POWERPC_REL16_HA:
5932 case elfcpp::R_POWERPC_SECTOFF:
5933 case elfcpp::R_POWERPC_SECTOFF_LO:
5934 case elfcpp::R_POWERPC_SECTOFF_HI:
5935 case elfcpp::R_POWERPC_SECTOFF_HA:
5936 case elfcpp::R_PPC64_SECTOFF_DS:
5937 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5938 case elfcpp::R_POWERPC_TPREL16:
5939 case elfcpp::R_POWERPC_TPREL16_LO:
5940 case elfcpp::R_POWERPC_TPREL16_HI:
5941 case elfcpp::R_POWERPC_TPREL16_HA:
5942 case elfcpp::R_PPC64_TPREL16_DS:
5943 case elfcpp::R_PPC64_TPREL16_LO_DS:
5944 case elfcpp::R_PPC64_TPREL16_HIGH:
5945 case elfcpp::R_PPC64_TPREL16_HIGHA:
5946 case elfcpp::R_PPC64_TPREL16_HIGHER:
5947 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5948 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5949 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5950 case elfcpp::R_POWERPC_DTPREL16:
5951 case elfcpp::R_POWERPC_DTPREL16_LO:
5952 case elfcpp::R_POWERPC_DTPREL16_HI:
5953 case elfcpp::R_POWERPC_DTPREL16_HA:
5954 case elfcpp::R_PPC64_DTPREL16_DS:
5955 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5956 case elfcpp::R_PPC64_DTPREL16_HIGH:
5957 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5958 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5959 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5960 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5961 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5962 case elfcpp::R_PPC64_TLSGD:
5963 case elfcpp::R_PPC64_TLSLD:
5964 case elfcpp::R_PPC64_ADDR64_LOCAL:
5965 break;
5966
5967 case elfcpp::R_POWERPC_GOT16:
5968 case elfcpp::R_POWERPC_GOT16_LO:
5969 case elfcpp::R_POWERPC_GOT16_HI:
5970 case elfcpp::R_POWERPC_GOT16_HA:
5971 case elfcpp::R_PPC64_GOT16_DS:
5972 case elfcpp::R_PPC64_GOT16_LO_DS:
5973 {
5974 // The symbol requires a GOT entry.
5975 Output_data_got_powerpc<size, big_endian>* got;
5976
5977 got = target->got_section(symtab, layout);
5978 if (gsym->final_value_is_known())
5979 {
5980 if ((size == 32 && is_ifunc)
5981 || (size == 64 && target->abiversion() >= 2))
5982 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5983 else
5984 got->add_global(gsym, GOT_TYPE_STANDARD);
5985 }
5986 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
5987 {
5988 // If we are generating a shared object or a pie, this
5989 // symbol's GOT entry will be set by a dynamic relocation.
5990 unsigned int off = got->add_constant(0);
5991 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
5992
5993 Reloc_section* rela_dyn
5994 = target->rela_dyn_section(symtab, layout, is_ifunc);
5995
5996 if (gsym->can_use_relative_reloc(false)
5997 && !((size == 32
5998 || target->abiversion() >= 2)
5999 && gsym->visibility() == elfcpp::STV_PROTECTED
6000 && parameters->options().shared()))
6001 {
6002 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6003 : elfcpp::R_POWERPC_RELATIVE);
6004 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6005 }
6006 else
6007 {
6008 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6009 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6010 }
6011 }
6012 }
6013 break;
6014
6015 case elfcpp::R_PPC64_TOC16:
6016 case elfcpp::R_PPC64_TOC16_LO:
6017 case elfcpp::R_PPC64_TOC16_HI:
6018 case elfcpp::R_PPC64_TOC16_HA:
6019 case elfcpp::R_PPC64_TOC16_DS:
6020 case elfcpp::R_PPC64_TOC16_LO_DS:
6021 // We need a GOT section.
6022 target->got_section(symtab, layout);
6023 break;
6024
6025 case elfcpp::R_POWERPC_GOT_TLSGD16:
6026 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6027 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6028 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6029 {
6030 const bool final = gsym->final_value_is_known();
6031 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6032 if (tls_type == tls::TLSOPT_NONE)
6033 {
6034 Output_data_got_powerpc<size, big_endian>* got
6035 = target->got_section(symtab, layout);
6036 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6037 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6038 elfcpp::R_POWERPC_DTPMOD,
6039 elfcpp::R_POWERPC_DTPREL);
6040 }
6041 else if (tls_type == tls::TLSOPT_TO_IE)
6042 {
6043 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6044 {
6045 Output_data_got_powerpc<size, big_endian>* got
6046 = target->got_section(symtab, layout);
6047 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6048 if (gsym->is_undefined()
6049 || gsym->is_from_dynobj())
6050 {
6051 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6052 elfcpp::R_POWERPC_TPREL);
6053 }
6054 else
6055 {
6056 unsigned int off = got->add_constant(0);
6057 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6058 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6059 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6060 got, off, 0);
6061 }
6062 }
6063 }
6064 else if (tls_type == tls::TLSOPT_TO_LE)
6065 {
6066 // no GOT relocs needed for Local Exec.
6067 }
6068 else
6069 gold_unreachable();
6070 }
6071 break;
6072
6073 case elfcpp::R_POWERPC_GOT_TLSLD16:
6074 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6075 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6076 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6077 {
6078 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6079 if (tls_type == tls::TLSOPT_NONE)
6080 target->tlsld_got_offset(symtab, layout, object);
6081 else if (tls_type == tls::TLSOPT_TO_LE)
6082 {
6083 // no GOT relocs needed for Local Exec.
6084 if (parameters->options().emit_relocs())
6085 {
6086 Output_section* os = layout->tls_segment()->first_section();
6087 gold_assert(os != NULL);
6088 os->set_needs_symtab_index();
6089 }
6090 }
6091 else
6092 gold_unreachable();
6093 }
6094 break;
6095
6096 case elfcpp::R_POWERPC_GOT_DTPREL16:
6097 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6098 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6099 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6100 {
6101 Output_data_got_powerpc<size, big_endian>* got
6102 = target->got_section(symtab, layout);
6103 if (!gsym->final_value_is_known()
6104 && (gsym->is_from_dynobj()
6105 || gsym->is_undefined()
6106 || gsym->is_preemptible()))
6107 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6108 target->rela_dyn_section(layout),
6109 elfcpp::R_POWERPC_DTPREL);
6110 else
6111 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6112 }
6113 break;
6114
6115 case elfcpp::R_POWERPC_GOT_TPREL16:
6116 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6117 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6118 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6119 {
6120 const bool final = gsym->final_value_is_known();
6121 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6122 if (tls_type == tls::TLSOPT_NONE)
6123 {
6124 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6125 {
6126 Output_data_got_powerpc<size, big_endian>* got
6127 = target->got_section(symtab, layout);
6128 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6129 if (gsym->is_undefined()
6130 || gsym->is_from_dynobj())
6131 {
6132 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6133 elfcpp::R_POWERPC_TPREL);
6134 }
6135 else
6136 {
6137 unsigned int off = got->add_constant(0);
6138 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6139 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6140 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6141 got, off, 0);
6142 }
6143 }
6144 }
6145 else if (tls_type == tls::TLSOPT_TO_LE)
6146 {
6147 // no GOT relocs needed for Local Exec.
6148 }
6149 else
6150 gold_unreachable();
6151 }
6152 break;
6153
6154 default:
6155 unsupported_reloc_global(object, r_type, gsym);
6156 break;
6157 }
6158
6159 switch (r_type)
6160 {
6161 case elfcpp::R_POWERPC_GOT_TLSLD16:
6162 case elfcpp::R_POWERPC_GOT_TLSGD16:
6163 case elfcpp::R_POWERPC_GOT_TPREL16:
6164 case elfcpp::R_POWERPC_GOT_DTPREL16:
6165 case elfcpp::R_POWERPC_GOT16:
6166 case elfcpp::R_PPC64_GOT16_DS:
6167 case elfcpp::R_PPC64_TOC16:
6168 case elfcpp::R_PPC64_TOC16_DS:
6169 ppc_object->set_has_small_toc_reloc();
6170 default:
6171 break;
6172 }
6173 }
6174
6175 // Process relocations for gc.
6176
6177 template<int size, bool big_endian>
6178 void
6179 Target_powerpc<size, big_endian>::gc_process_relocs(
6180 Symbol_table* symtab,
6181 Layout* layout,
6182 Sized_relobj_file<size, big_endian>* object,
6183 unsigned int data_shndx,
6184 unsigned int,
6185 const unsigned char* prelocs,
6186 size_t reloc_count,
6187 Output_section* output_section,
6188 bool needs_special_offset_handling,
6189 size_t local_symbol_count,
6190 const unsigned char* plocal_symbols)
6191 {
6192 typedef Target_powerpc<size, big_endian> Powerpc;
6193 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6194 Powerpc_relobj<size, big_endian>* ppc_object
6195 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6196 if (size == 64)
6197 ppc_object->set_opd_valid();
6198 if (size == 64 && data_shndx == ppc_object->opd_shndx())
6199 {
6200 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6201 for (p = ppc_object->access_from_map()->begin();
6202 p != ppc_object->access_from_map()->end();
6203 ++p)
6204 {
6205 Address dst_off = p->first;
6206 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6207 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6208 for (s = p->second.begin(); s != p->second.end(); ++s)
6209 {
6210 Object* src_obj = s->first;
6211 unsigned int src_indx = s->second;
6212 symtab->gc()->add_reference(src_obj, src_indx,
6213 ppc_object, dst_indx);
6214 }
6215 p->second.clear();
6216 }
6217 ppc_object->access_from_map()->clear();
6218 ppc_object->process_gc_mark(symtab);
6219 // Don't look at .opd relocs as .opd will reference everything.
6220 return;
6221 }
6222
6223 gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6224 typename Target_powerpc::Relocatable_size_for_reloc>(
6225 symtab,
6226 layout,
6227 this,
6228 object,
6229 data_shndx,
6230 prelocs,
6231 reloc_count,
6232 output_section,
6233 needs_special_offset_handling,
6234 local_symbol_count,
6235 plocal_symbols);
6236 }
6237
6238 // Handle target specific gc actions when adding a gc reference from
6239 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6240 // and DST_OFF. For powerpc64, this adds a referenc to the code
6241 // section of a function descriptor.
6242
6243 template<int size, bool big_endian>
6244 void
6245 Target_powerpc<size, big_endian>::do_gc_add_reference(
6246 Symbol_table* symtab,
6247 Object* src_obj,
6248 unsigned int src_shndx,
6249 Object* dst_obj,
6250 unsigned int dst_shndx,
6251 Address dst_off) const
6252 {
6253 if (size != 64 || dst_obj->is_dynamic())
6254 return;
6255
6256 Powerpc_relobj<size, big_endian>* ppc_object
6257 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6258 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6259 {
6260 if (ppc_object->opd_valid())
6261 {
6262 dst_shndx = ppc_object->get_opd_ent(dst_off);
6263 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6264 }
6265 else
6266 {
6267 // If we haven't run scan_opd_relocs, we must delay
6268 // processing this function descriptor reference.
6269 ppc_object->add_reference(src_obj, src_shndx, dst_off);
6270 }
6271 }
6272 }
6273
6274 // Add any special sections for this symbol to the gc work list.
6275 // For powerpc64, this adds the code section of a function
6276 // descriptor.
6277
6278 template<int size, bool big_endian>
6279 void
6280 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6281 Symbol_table* symtab,
6282 Symbol* sym) const
6283 {
6284 if (size == 64)
6285 {
6286 Powerpc_relobj<size, big_endian>* ppc_object
6287 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6288 bool is_ordinary;
6289 unsigned int shndx = sym->shndx(&is_ordinary);
6290 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6291 {
6292 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6293 Address dst_off = gsym->value();
6294 if (ppc_object->opd_valid())
6295 {
6296 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6297 symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
6298 }
6299 else
6300 ppc_object->add_gc_mark(dst_off);
6301 }
6302 }
6303 }
6304
6305 // For a symbol location in .opd, set LOC to the location of the
6306 // function entry.
6307
6308 template<int size, bool big_endian>
6309 void
6310 Target_powerpc<size, big_endian>::do_function_location(
6311 Symbol_location* loc) const
6312 {
6313 if (size == 64 && loc->shndx != 0)
6314 {
6315 if (loc->object->is_dynamic())
6316 {
6317 Powerpc_dynobj<size, big_endian>* ppc_object
6318 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6319 if (loc->shndx == ppc_object->opd_shndx())
6320 {
6321 Address dest_off;
6322 Address off = loc->offset - ppc_object->opd_address();
6323 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6324 loc->offset = dest_off;
6325 }
6326 }
6327 else
6328 {
6329 const Powerpc_relobj<size, big_endian>* ppc_object
6330 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6331 if (loc->shndx == ppc_object->opd_shndx())
6332 {
6333 Address dest_off;
6334 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6335 loc->offset = dest_off;
6336 }
6337 }
6338 }
6339 }
6340
6341 // Scan relocations for a section.
6342
6343 template<int size, bool big_endian>
6344 void
6345 Target_powerpc<size, big_endian>::scan_relocs(
6346 Symbol_table* symtab,
6347 Layout* layout,
6348 Sized_relobj_file<size, big_endian>* object,
6349 unsigned int data_shndx,
6350 unsigned int sh_type,
6351 const unsigned char* prelocs,
6352 size_t reloc_count,
6353 Output_section* output_section,
6354 bool needs_special_offset_handling,
6355 size_t local_symbol_count,
6356 const unsigned char* plocal_symbols)
6357 {
6358 typedef Target_powerpc<size, big_endian> Powerpc;
6359 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6360
6361 if (sh_type == elfcpp::SHT_REL)
6362 {
6363 gold_error(_("%s: unsupported REL reloc section"),
6364 object->name().c_str());
6365 return;
6366 }
6367
6368 gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6369 symtab,
6370 layout,
6371 this,
6372 object,
6373 data_shndx,
6374 prelocs,
6375 reloc_count,
6376 output_section,
6377 needs_special_offset_handling,
6378 local_symbol_count,
6379 plocal_symbols);
6380 }
6381
6382 // Functor class for processing the global symbol table.
6383 // Removes symbols defined on discarded opd entries.
6384
6385 template<bool big_endian>
6386 class Global_symbol_visitor_opd
6387 {
6388 public:
6389 Global_symbol_visitor_opd()
6390 { }
6391
6392 void
6393 operator()(Sized_symbol<64>* sym)
6394 {
6395 if (sym->has_symtab_index()
6396 || sym->source() != Symbol::FROM_OBJECT
6397 || !sym->in_real_elf())
6398 return;
6399
6400 if (sym->object()->is_dynamic())
6401 return;
6402
6403 Powerpc_relobj<64, big_endian>* symobj
6404 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6405 if (symobj->opd_shndx() == 0)
6406 return;
6407
6408 bool is_ordinary;
6409 unsigned int shndx = sym->shndx(&is_ordinary);
6410 if (shndx == symobj->opd_shndx()
6411 && symobj->get_opd_discard(sym->value()))
6412 sym->set_symtab_index(-1U);
6413 }
6414 };
6415
6416 template<int size, bool big_endian>
6417 void
6418 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6419 Layout* layout,
6420 Symbol_table* symtab)
6421 {
6422 if (size == 64)
6423 {
6424 Output_data_save_res<64, big_endian>* savres
6425 = new Output_data_save_res<64, big_endian>(symtab);
6426 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6427 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6428 savres, ORDER_TEXT, false);
6429 }
6430 }
6431
6432 // Sort linker created .got section first (for the header), then input
6433 // sections belonging to files using small model code.
6434
6435 template<bool big_endian>
6436 class Sort_toc_sections
6437 {
6438 public:
6439 bool
6440 operator()(const Output_section::Input_section& is1,
6441 const Output_section::Input_section& is2) const
6442 {
6443 if (!is1.is_input_section() && is2.is_input_section())
6444 return true;
6445 bool small1
6446 = (is1.is_input_section()
6447 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6448 ->has_small_toc_reloc()));
6449 bool small2
6450 = (is2.is_input_section()
6451 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6452 ->has_small_toc_reloc()));
6453 return small1 && !small2;
6454 }
6455 };
6456
6457 // Finalize the sections.
6458
6459 template<int size, bool big_endian>
6460 void
6461 Target_powerpc<size, big_endian>::do_finalize_sections(
6462 Layout* layout,
6463 const Input_objects*,
6464 Symbol_table* symtab)
6465 {
6466 if (parameters->doing_static_link())
6467 {
6468 // At least some versions of glibc elf-init.o have a strong
6469 // reference to __rela_iplt marker syms. A weak ref would be
6470 // better..
6471 if (this->iplt_ != NULL)
6472 {
6473 Reloc_section* rel = this->iplt_->rel_plt();
6474 symtab->define_in_output_data("__rela_iplt_start", NULL,
6475 Symbol_table::PREDEFINED, rel, 0, 0,
6476 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6477 elfcpp::STV_HIDDEN, 0, false, true);
6478 symtab->define_in_output_data("__rela_iplt_end", NULL,
6479 Symbol_table::PREDEFINED, rel, 0, 0,
6480 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6481 elfcpp::STV_HIDDEN, 0, true, true);
6482 }
6483 else
6484 {
6485 symtab->define_as_constant("__rela_iplt_start", NULL,
6486 Symbol_table::PREDEFINED, 0, 0,
6487 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6488 elfcpp::STV_HIDDEN, 0, true, false);
6489 symtab->define_as_constant("__rela_iplt_end", NULL,
6490 Symbol_table::PREDEFINED, 0, 0,
6491 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6492 elfcpp::STV_HIDDEN, 0, true, false);
6493 }
6494 }
6495
6496 if (size == 64)
6497 {
6498 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6499 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6500
6501 if (!parameters->options().relocatable())
6502 {
6503 this->define_save_restore_funcs(layout, symtab);
6504
6505 // Annoyingly, we need to make these sections now whether or
6506 // not we need them. If we delay until do_relax then we
6507 // need to mess with the relaxation machinery checkpointing.
6508 this->got_section(symtab, layout);
6509 this->make_brlt_section(layout);
6510
6511 if (parameters->options().toc_sort())
6512 {
6513 Output_section* os = this->got_->output_section();
6514 if (os != NULL && os->input_sections().size() > 1)
6515 std::stable_sort(os->input_sections().begin(),
6516 os->input_sections().end(),
6517 Sort_toc_sections<big_endian>());
6518 }
6519 }
6520 }
6521
6522 // Fill in some more dynamic tags.
6523 Output_data_dynamic* odyn = layout->dynamic_data();
6524 if (odyn != NULL)
6525 {
6526 const Reloc_section* rel_plt = (this->plt_ == NULL
6527 ? NULL
6528 : this->plt_->rel_plt());
6529 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6530 this->rela_dyn_, true, size == 32);
6531
6532 if (size == 32)
6533 {
6534 if (this->got_ != NULL)
6535 {
6536 this->got_->finalize_data_size();
6537 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6538 this->got_, this->got_->g_o_t());
6539 }
6540 }
6541 else
6542 {
6543 if (this->glink_ != NULL)
6544 {
6545 this->glink_->finalize_data_size();
6546 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6547 this->glink_,
6548 (this->glink_->pltresolve_size
6549 - 32));
6550 }
6551 }
6552 }
6553
6554 // Emit any relocs we saved in an attempt to avoid generating COPY
6555 // relocs.
6556 if (this->copy_relocs_.any_saved_relocs())
6557 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6558 }
6559
6560 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6561 // reloc.
6562
6563 static bool
6564 ok_lo_toc_insn(uint32_t insn)
6565 {
6566 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6567 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6568 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6569 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6570 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6571 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6572 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6573 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6574 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6575 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6576 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6577 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6578 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6579 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6580 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6581 && (insn & 3) != 1)
6582 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6583 && ((insn & 3) == 0 || (insn & 3) == 3))
6584 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6585 }
6586
6587 // Return the value to use for a branch relocation.
6588
6589 template<int size, bool big_endian>
6590 typename Target_powerpc<size, big_endian>::Address
6591 Target_powerpc<size, big_endian>::symval_for_branch(
6592 const Symbol_table* symtab,
6593 Address value,
6594 const Sized_symbol<size>* gsym,
6595 Powerpc_relobj<size, big_endian>* object,
6596 unsigned int *dest_shndx)
6597 {
6598 if (size == 32 || this->abiversion() >= 2)
6599 gold_unreachable();
6600 *dest_shndx = 0;
6601
6602 // If the symbol is defined in an opd section, ie. is a function
6603 // descriptor, use the function descriptor code entry address
6604 Powerpc_relobj<size, big_endian>* symobj = object;
6605 if (gsym != NULL
6606 && gsym->source() != Symbol::FROM_OBJECT)
6607 return value;
6608 if (gsym != NULL)
6609 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6610 unsigned int shndx = symobj->opd_shndx();
6611 if (shndx == 0)
6612 return value;
6613 Address opd_addr = symobj->get_output_section_offset(shndx);
6614 if (opd_addr == invalid_address)
6615 return value;
6616 opd_addr += symobj->output_section_address(shndx);
6617 if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
6618 {
6619 Address sec_off;
6620 *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
6621 if (symtab->is_section_folded(symobj, *dest_shndx))
6622 {
6623 Section_id folded
6624 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6625 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6626 *dest_shndx = folded.second;
6627 }
6628 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6629 gold_assert(sec_addr != invalid_address);
6630 sec_addr += symobj->output_section(*dest_shndx)->address();
6631 value = sec_addr + sec_off;
6632 }
6633 return value;
6634 }
6635
6636 // Perform a relocation.
6637
6638 template<int size, bool big_endian>
6639 inline bool
6640 Target_powerpc<size, big_endian>::Relocate::relocate(
6641 const Relocate_info<size, big_endian>* relinfo,
6642 Target_powerpc* target,
6643 Output_section* os,
6644 size_t relnum,
6645 const elfcpp::Rela<size, big_endian>& rela,
6646 unsigned int r_type,
6647 const Sized_symbol<size>* gsym,
6648 const Symbol_value<size>* psymval,
6649 unsigned char* view,
6650 Address address,
6651 section_size_type view_size)
6652 {
6653 if (view == NULL)
6654 return true;
6655
6656 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6657 {
6658 case Track_tls::NOT_EXPECTED:
6659 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6660 _("__tls_get_addr call lacks marker reloc"));
6661 break;
6662 case Track_tls::EXPECTED:
6663 // We have already complained.
6664 break;
6665 case Track_tls::SKIP:
6666 return true;
6667 case Track_tls::NORMAL:
6668 break;
6669 }
6670
6671 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6672 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6673 Powerpc_relobj<size, big_endian>* const object
6674 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6675 Address value = 0;
6676 bool has_plt_value = false;
6677 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6678 if ((gsym != NULL
6679 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
6680 : object->local_has_plt_offset(r_sym))
6681 && (!psymval->is_ifunc_symbol()
6682 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
6683 {
6684 if (size == 64
6685 && gsym != NULL
6686 && target->abiversion() >= 2
6687 && !parameters->options().output_is_position_independent()
6688 && !is_branch_reloc(r_type))
6689 {
6690 unsigned int off = target->glink_section()->find_global_entry(gsym);
6691 gold_assert(off != (unsigned int)-1);
6692 value = target->glink_section()->global_entry_address() + off;
6693 }
6694 else
6695 {
6696 Stub_table<size, big_endian>* stub_table
6697 = object->stub_table(relinfo->data_shndx);
6698 if (stub_table == NULL)
6699 {
6700 // This is a ref from a data section to an ifunc symbol.
6701 if (target->stub_tables().size() != 0)
6702 stub_table = target->stub_tables()[0];
6703 }
6704 gold_assert(stub_table != NULL);
6705 Address off;
6706 if (gsym != NULL)
6707 off = stub_table->find_plt_call_entry(object, gsym, r_type,
6708 rela.get_r_addend());
6709 else
6710 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6711 rela.get_r_addend());
6712 gold_assert(off != invalid_address);
6713 value = stub_table->stub_address() + off;
6714 }
6715 has_plt_value = true;
6716 }
6717
6718 if (r_type == elfcpp::R_POWERPC_GOT16
6719 || r_type == elfcpp::R_POWERPC_GOT16_LO
6720 || r_type == elfcpp::R_POWERPC_GOT16_HI
6721 || r_type == elfcpp::R_POWERPC_GOT16_HA
6722 || r_type == elfcpp::R_PPC64_GOT16_DS
6723 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6724 {
6725 if (gsym != NULL)
6726 {
6727 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6728 value = gsym->got_offset(GOT_TYPE_STANDARD);
6729 }
6730 else
6731 {
6732 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6733 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6734 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6735 }
6736 value -= target->got_section()->got_base_offset(object);
6737 }
6738 else if (r_type == elfcpp::R_PPC64_TOC)
6739 {
6740 value = (target->got_section()->output_section()->address()
6741 + object->toc_base_offset());
6742 }
6743 else if (gsym != NULL
6744 && (r_type == elfcpp::R_POWERPC_REL24
6745 || r_type == elfcpp::R_PPC_PLTREL24)
6746 && has_plt_value)
6747 {
6748 if (size == 64)
6749 {
6750 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6751 Valtype* wv = reinterpret_cast<Valtype*>(view);
6752 bool can_plt_call = false;
6753 if (rela.get_r_offset() + 8 <= view_size)
6754 {
6755 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6756 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6757 if ((insn & 1) != 0
6758 && (insn2 == nop
6759 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6760 {
6761 elfcpp::Swap<32, big_endian>::
6762 writeval(wv + 1, ld_2_1 + target->stk_toc());
6763 can_plt_call = true;
6764 }
6765 }
6766 if (!can_plt_call)
6767 {
6768 // If we don't have a branch and link followed by a nop,
6769 // we can't go via the plt because there is no place to
6770 // put a toc restoring instruction.
6771 // Unless we know we won't be returning.
6772 if (strcmp(gsym->name(), "__libc_start_main") == 0)
6773 can_plt_call = true;
6774 }
6775 if (!can_plt_call)
6776 {
6777 // g++ as of 20130507 emits self-calls without a
6778 // following nop. This is arguably wrong since we have
6779 // conflicting information. On the one hand a global
6780 // symbol and on the other a local call sequence, but
6781 // don't error for this special case.
6782 // It isn't possible to cheaply verify we have exactly
6783 // such a call. Allow all calls to the same section.
6784 bool ok = false;
6785 Address code = value;
6786 if (gsym->source() == Symbol::FROM_OBJECT
6787 && gsym->object() == object)
6788 {
6789 unsigned int dest_shndx = 0;
6790 if (target->abiversion() < 2)
6791 {
6792 Address addend = rela.get_r_addend();
6793 Address opdent = psymval->value(object, addend);
6794 code = target->symval_for_branch(relinfo->symtab,
6795 opdent, gsym, object,
6796 &dest_shndx);
6797 }
6798 bool is_ordinary;
6799 if (dest_shndx == 0)
6800 dest_shndx = gsym->shndx(&is_ordinary);
6801 ok = dest_shndx == relinfo->data_shndx;
6802 }
6803 if (!ok)
6804 {
6805 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6806 _("call lacks nop, can't restore toc; "
6807 "recompile with -fPIC"));
6808 value = code;
6809 }
6810 }
6811 }
6812 }
6813 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6814 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6815 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6816 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6817 {
6818 // First instruction of a global dynamic sequence, arg setup insn.
6819 const bool final = gsym == NULL || gsym->final_value_is_known();
6820 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6821 enum Got_type got_type = GOT_TYPE_STANDARD;
6822 if (tls_type == tls::TLSOPT_NONE)
6823 got_type = GOT_TYPE_TLSGD;
6824 else if (tls_type == tls::TLSOPT_TO_IE)
6825 got_type = GOT_TYPE_TPREL;
6826 if (got_type != GOT_TYPE_STANDARD)
6827 {
6828 if (gsym != NULL)
6829 {
6830 gold_assert(gsym->has_got_offset(got_type));
6831 value = gsym->got_offset(got_type);
6832 }
6833 else
6834 {
6835 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6836 gold_assert(object->local_has_got_offset(r_sym, got_type));
6837 value = object->local_got_offset(r_sym, got_type);
6838 }
6839 value -= target->got_section()->got_base_offset(object);
6840 }
6841 if (tls_type == tls::TLSOPT_TO_IE)
6842 {
6843 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6844 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6845 {
6846 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6847 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6848 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6849 if (size == 32)
6850 insn |= 32 << 26; // lwz
6851 else
6852 insn |= 58 << 26; // ld
6853 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6854 }
6855 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
6856 - elfcpp::R_POWERPC_GOT_TLSGD16);
6857 }
6858 else if (tls_type == tls::TLSOPT_TO_LE)
6859 {
6860 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6861 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6862 {
6863 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6864 Insn insn = addis_3_13;
6865 if (size == 32)
6866 insn = addis_3_2;
6867 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6868 r_type = elfcpp::R_POWERPC_TPREL16_HA;
6869 value = psymval->value(object, rela.get_r_addend());
6870 }
6871 else
6872 {
6873 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6874 Insn insn = nop;
6875 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6876 r_type = elfcpp::R_POWERPC_NONE;
6877 }
6878 }
6879 }
6880 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6881 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
6882 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
6883 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
6884 {
6885 // First instruction of a local dynamic sequence, arg setup insn.
6886 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6887 if (tls_type == tls::TLSOPT_NONE)
6888 {
6889 value = target->tlsld_got_offset();
6890 value -= target->got_section()->got_base_offset(object);
6891 }
6892 else
6893 {
6894 gold_assert(tls_type == tls::TLSOPT_TO_LE);
6895 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6896 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
6897 {
6898 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6899 Insn insn = addis_3_13;
6900 if (size == 32)
6901 insn = addis_3_2;
6902 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6903 r_type = elfcpp::R_POWERPC_TPREL16_HA;
6904 value = dtp_offset;
6905 }
6906 else
6907 {
6908 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6909 Insn insn = nop;
6910 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6911 r_type = elfcpp::R_POWERPC_NONE;
6912 }
6913 }
6914 }
6915 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
6916 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
6917 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
6918 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
6919 {
6920 // Accesses relative to a local dynamic sequence address,
6921 // no optimisation here.
6922 if (gsym != NULL)
6923 {
6924 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
6925 value = gsym->got_offset(GOT_TYPE_DTPREL);
6926 }
6927 else
6928 {
6929 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6930 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
6931 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
6932 }
6933 value -= target->got_section()->got_base_offset(object);
6934 }
6935 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6936 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
6937 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
6938 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
6939 {
6940 // First instruction of initial exec sequence.
6941 const bool final = gsym == NULL || gsym->final_value_is_known();
6942 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6943 if (tls_type == tls::TLSOPT_NONE)
6944 {
6945 if (gsym != NULL)
6946 {
6947 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
6948 value = gsym->got_offset(GOT_TYPE_TPREL);
6949 }
6950 else
6951 {
6952 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6953 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
6954 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
6955 }
6956 value -= target->got_section()->got_base_offset(object);
6957 }
6958 else
6959 {
6960 gold_assert(tls_type == tls::TLSOPT_TO_LE);
6961 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6962 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
6963 {
6964 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6965 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6966 insn &= (1 << 26) - (1 << 21); // extract rt from ld
6967 if (size == 32)
6968 insn |= addis_0_2;
6969 else
6970 insn |= addis_0_13;
6971 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6972 r_type = elfcpp::R_POWERPC_TPREL16_HA;
6973 value = psymval->value(object, rela.get_r_addend());
6974 }
6975 else
6976 {
6977 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6978 Insn insn = nop;
6979 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6980 r_type = elfcpp::R_POWERPC_NONE;
6981 }
6982 }
6983 }
6984 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6985 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6986 {
6987 // Second instruction of a global dynamic sequence,
6988 // the __tls_get_addr call
6989 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6990 const bool final = gsym == NULL || gsym->final_value_is_known();
6991 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6992 if (tls_type != tls::TLSOPT_NONE)
6993 {
6994 if (tls_type == tls::TLSOPT_TO_IE)
6995 {
6996 Insn* iview = reinterpret_cast<Insn*>(view);
6997 Insn insn = add_3_3_13;
6998 if (size == 32)
6999 insn = add_3_3_2;
7000 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7001 r_type = elfcpp::R_POWERPC_NONE;
7002 }
7003 else
7004 {
7005 Insn* iview = reinterpret_cast<Insn*>(view);
7006 Insn insn = addi_3_3;
7007 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7008 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7009 view += 2 * big_endian;
7010 value = psymval->value(object, rela.get_r_addend());
7011 }
7012 this->skip_next_tls_get_addr_call();
7013 }
7014 }
7015 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7016 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7017 {
7018 // Second instruction of a local dynamic sequence,
7019 // the __tls_get_addr call
7020 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7021 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7022 if (tls_type == tls::TLSOPT_TO_LE)
7023 {
7024 Insn* iview = reinterpret_cast<Insn*>(view);
7025 Insn insn = addi_3_3;
7026 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7027 this->skip_next_tls_get_addr_call();
7028 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7029 view += 2 * big_endian;
7030 value = dtp_offset;
7031 }
7032 }
7033 else if (r_type == elfcpp::R_POWERPC_TLS)
7034 {
7035 // Second instruction of an initial exec sequence
7036 const bool final = gsym == NULL || gsym->final_value_is_known();
7037 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7038 if (tls_type == tls::TLSOPT_TO_LE)
7039 {
7040 Insn* iview = reinterpret_cast<Insn*>(view);
7041 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7042 unsigned int reg = size == 32 ? 2 : 13;
7043 insn = at_tls_transform(insn, reg);
7044 gold_assert(insn != 0);
7045 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7046 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7047 view += 2 * big_endian;
7048 value = psymval->value(object, rela.get_r_addend());
7049 }
7050 }
7051 else if (!has_plt_value)
7052 {
7053 Address addend = 0;
7054 unsigned int dest_shndx;
7055 if (r_type != elfcpp::R_PPC_PLTREL24)
7056 addend = rela.get_r_addend();
7057 value = psymval->value(object, addend);
7058 if (size == 64 && is_branch_reloc(r_type))
7059 {
7060 if (target->abiversion() >= 2)
7061 {
7062 if (gsym != NULL)
7063 value += object->ppc64_local_entry_offset(gsym);
7064 else
7065 value += object->ppc64_local_entry_offset(r_sym);
7066 }
7067 else
7068 value = target->symval_for_branch(relinfo->symtab, value,
7069 gsym, object, &dest_shndx);
7070 }
7071 unsigned int max_branch_offset = 0;
7072 if (r_type == elfcpp::R_POWERPC_REL24
7073 || r_type == elfcpp::R_PPC_PLTREL24
7074 || r_type == elfcpp::R_PPC_LOCAL24PC)
7075 max_branch_offset = 1 << 25;
7076 else if (r_type == elfcpp::R_POWERPC_REL14
7077 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
7078 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
7079 max_branch_offset = 1 << 15;
7080 if (max_branch_offset != 0
7081 && value - address + max_branch_offset >= 2 * max_branch_offset)
7082 {
7083 Stub_table<size, big_endian>* stub_table
7084 = object->stub_table(relinfo->data_shndx);
7085 if (stub_table != NULL)
7086 {
7087 Address off = stub_table->find_long_branch_entry(object, value);
7088 if (off != invalid_address)
7089 value = (stub_table->stub_address() + stub_table->plt_size()
7090 + off);
7091 }
7092 }
7093 }
7094
7095 switch (r_type)
7096 {
7097 case elfcpp::R_PPC64_REL64:
7098 case elfcpp::R_POWERPC_REL32:
7099 case elfcpp::R_POWERPC_REL24:
7100 case elfcpp::R_PPC_PLTREL24:
7101 case elfcpp::R_PPC_LOCAL24PC:
7102 case elfcpp::R_POWERPC_REL16:
7103 case elfcpp::R_POWERPC_REL16_LO:
7104 case elfcpp::R_POWERPC_REL16_HI:
7105 case elfcpp::R_POWERPC_REL16_HA:
7106 case elfcpp::R_POWERPC_REL14:
7107 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7108 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7109 value -= address;
7110 break;
7111
7112 case elfcpp::R_PPC64_TOC16:
7113 case elfcpp::R_PPC64_TOC16_LO:
7114 case elfcpp::R_PPC64_TOC16_HI:
7115 case elfcpp::R_PPC64_TOC16_HA:
7116 case elfcpp::R_PPC64_TOC16_DS:
7117 case elfcpp::R_PPC64_TOC16_LO_DS:
7118 // Subtract the TOC base address.
7119 value -= (target->got_section()->output_section()->address()
7120 + object->toc_base_offset());
7121 break;
7122
7123 case elfcpp::R_POWERPC_SECTOFF:
7124 case elfcpp::R_POWERPC_SECTOFF_LO:
7125 case elfcpp::R_POWERPC_SECTOFF_HI:
7126 case elfcpp::R_POWERPC_SECTOFF_HA:
7127 case elfcpp::R_PPC64_SECTOFF_DS:
7128 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7129 if (os != NULL)
7130 value -= os->address();
7131 break;
7132
7133 case elfcpp::R_PPC64_TPREL16_DS:
7134 case elfcpp::R_PPC64_TPREL16_LO_DS:
7135 case elfcpp::R_PPC64_TPREL16_HIGH:
7136 case elfcpp::R_PPC64_TPREL16_HIGHA:
7137 if (size != 64)
7138 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7139 break;
7140 case elfcpp::R_POWERPC_TPREL16:
7141 case elfcpp::R_POWERPC_TPREL16_LO:
7142 case elfcpp::R_POWERPC_TPREL16_HI:
7143 case elfcpp::R_POWERPC_TPREL16_HA:
7144 case elfcpp::R_POWERPC_TPREL:
7145 case elfcpp::R_PPC64_TPREL16_HIGHER:
7146 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7147 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7148 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7149 // tls symbol values are relative to tls_segment()->vaddr()
7150 value -= tp_offset;
7151 break;
7152
7153 case elfcpp::R_PPC64_DTPREL16_DS:
7154 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7155 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7156 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7157 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7158 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7159 if (size != 64)
7160 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7161 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7162 break;
7163 case elfcpp::R_POWERPC_DTPREL16:
7164 case elfcpp::R_POWERPC_DTPREL16_LO:
7165 case elfcpp::R_POWERPC_DTPREL16_HI:
7166 case elfcpp::R_POWERPC_DTPREL16_HA:
7167 case elfcpp::R_POWERPC_DTPREL:
7168 case elfcpp::R_PPC64_DTPREL16_HIGH:
7169 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7170 // tls symbol values are relative to tls_segment()->vaddr()
7171 value -= dtp_offset;
7172 break;
7173
7174 case elfcpp::R_PPC64_ADDR64_LOCAL:
7175 if (gsym != NULL)
7176 value += object->ppc64_local_entry_offset(gsym);
7177 else
7178 value += object->ppc64_local_entry_offset(r_sym);
7179 break;
7180
7181 default:
7182 break;
7183 }
7184
7185 Insn branch_bit = 0;
7186 switch (r_type)
7187 {
7188 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7189 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7190 branch_bit = 1 << 21;
7191 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7192 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7193 {
7194 Insn* iview = reinterpret_cast<Insn*>(view);
7195 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7196 insn &= ~(1 << 21);
7197 insn |= branch_bit;
7198 if (this->is_isa_v2)
7199 {
7200 // Set 'a' bit. This is 0b00010 in BO field for branch
7201 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7202 // for branch on CTR insns (BO == 1a00t or 1a01t).
7203 if ((insn & (0x14 << 21)) == (0x04 << 21))
7204 insn |= 0x02 << 21;
7205 else if ((insn & (0x14 << 21)) == (0x10 << 21))
7206 insn |= 0x08 << 21;
7207 else
7208 break;
7209 }
7210 else
7211 {
7212 // Invert 'y' bit if not the default.
7213 if (static_cast<Signed_address>(value) < 0)
7214 insn ^= 1 << 21;
7215 }
7216 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7217 }
7218 break;
7219
7220 default:
7221 break;
7222 }
7223
7224 if (size == 64)
7225 {
7226 // Multi-instruction sequences that access the TOC can be
7227 // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7228 // to nop; addi rb,r2,x;
7229 switch (r_type)
7230 {
7231 default:
7232 break;
7233
7234 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7235 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7236 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7237 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7238 case elfcpp::R_POWERPC_GOT16_HA:
7239 case elfcpp::R_PPC64_TOC16_HA:
7240 if (parameters->options().toc_optimize())
7241 {
7242 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7243 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7244 if ((insn & ((0x3f << 26) | 0x1f << 16))
7245 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7246 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7247 _("toc optimization is not supported "
7248 "for %#08x instruction"), insn);
7249 else if (value + 0x8000 < 0x10000)
7250 {
7251 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7252 return true;
7253 }
7254 }
7255 break;
7256
7257 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7258 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7259 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7260 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7261 case elfcpp::R_POWERPC_GOT16_LO:
7262 case elfcpp::R_PPC64_GOT16_LO_DS:
7263 case elfcpp::R_PPC64_TOC16_LO:
7264 case elfcpp::R_PPC64_TOC16_LO_DS:
7265 if (parameters->options().toc_optimize())
7266 {
7267 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7268 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7269 if (!ok_lo_toc_insn(insn))
7270 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7271 _("toc optimization is not supported "
7272 "for %#08x instruction"), insn);
7273 else if (value + 0x8000 < 0x10000)
7274 {
7275 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7276 {
7277 // Transform addic to addi when we change reg.
7278 insn &= ~((0x3f << 26) | (0x1f << 16));
7279 insn |= (14u << 26) | (2 << 16);
7280 }
7281 else
7282 {
7283 insn &= ~(0x1f << 16);
7284 insn |= 2 << 16;
7285 }
7286 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7287 }
7288 }
7289 break;
7290 }
7291 }
7292
7293 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7294 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7295 switch (r_type)
7296 {
7297 case elfcpp::R_POWERPC_ADDR32:
7298 case elfcpp::R_POWERPC_UADDR32:
7299 if (size == 64)
7300 overflow = Reloc::CHECK_BITFIELD;
7301 break;
7302
7303 case elfcpp::R_POWERPC_REL32:
7304 if (size == 64)
7305 overflow = Reloc::CHECK_SIGNED;
7306 break;
7307
7308 case elfcpp::R_POWERPC_UADDR16:
7309 overflow = Reloc::CHECK_BITFIELD;
7310 break;
7311
7312 case elfcpp::R_POWERPC_ADDR16:
7313 // We really should have three separate relocations,
7314 // one for 16-bit data, one for insns with 16-bit signed fields,
7315 // and one for insns with 16-bit unsigned fields.
7316 overflow = Reloc::CHECK_BITFIELD;
7317 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7318 overflow = Reloc::CHECK_LOW_INSN;
7319 break;
7320
7321 case elfcpp::R_POWERPC_ADDR16_HI:
7322 case elfcpp::R_POWERPC_ADDR16_HA:
7323 case elfcpp::R_POWERPC_GOT16_HI:
7324 case elfcpp::R_POWERPC_GOT16_HA:
7325 case elfcpp::R_POWERPC_PLT16_HI:
7326 case elfcpp::R_POWERPC_PLT16_HA:
7327 case elfcpp::R_POWERPC_SECTOFF_HI:
7328 case elfcpp::R_POWERPC_SECTOFF_HA:
7329 case elfcpp::R_PPC64_TOC16_HI:
7330 case elfcpp::R_PPC64_TOC16_HA:
7331 case elfcpp::R_PPC64_PLTGOT16_HI:
7332 case elfcpp::R_PPC64_PLTGOT16_HA:
7333 case elfcpp::R_POWERPC_TPREL16_HI:
7334 case elfcpp::R_POWERPC_TPREL16_HA:
7335 case elfcpp::R_POWERPC_DTPREL16_HI:
7336 case elfcpp::R_POWERPC_DTPREL16_HA:
7337 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7338 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7339 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7340 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7341 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7342 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7343 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7344 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7345 case elfcpp::R_POWERPC_REL16_HI:
7346 case elfcpp::R_POWERPC_REL16_HA:
7347 if (size != 32)
7348 overflow = Reloc::CHECK_HIGH_INSN;
7349 break;
7350
7351 case elfcpp::R_POWERPC_REL16:
7352 case elfcpp::R_PPC64_TOC16:
7353 case elfcpp::R_POWERPC_GOT16:
7354 case elfcpp::R_POWERPC_SECTOFF:
7355 case elfcpp::R_POWERPC_TPREL16:
7356 case elfcpp::R_POWERPC_DTPREL16:
7357 case elfcpp::R_POWERPC_GOT_TLSGD16:
7358 case elfcpp::R_POWERPC_GOT_TLSLD16:
7359 case elfcpp::R_POWERPC_GOT_TPREL16:
7360 case elfcpp::R_POWERPC_GOT_DTPREL16:
7361 overflow = Reloc::CHECK_LOW_INSN;
7362 break;
7363
7364 case elfcpp::R_POWERPC_ADDR24:
7365 case elfcpp::R_POWERPC_ADDR14:
7366 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7367 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7368 case elfcpp::R_PPC64_ADDR16_DS:
7369 case elfcpp::R_POWERPC_REL24:
7370 case elfcpp::R_PPC_PLTREL24:
7371 case elfcpp::R_PPC_LOCAL24PC:
7372 case elfcpp::R_PPC64_TPREL16_DS:
7373 case elfcpp::R_PPC64_DTPREL16_DS:
7374 case elfcpp::R_PPC64_TOC16_DS:
7375 case elfcpp::R_PPC64_GOT16_DS:
7376 case elfcpp::R_PPC64_SECTOFF_DS:
7377 case elfcpp::R_POWERPC_REL14:
7378 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7379 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7380 overflow = Reloc::CHECK_SIGNED;
7381 break;
7382 }
7383
7384 if (overflow == Reloc::CHECK_LOW_INSN
7385 || overflow == Reloc::CHECK_HIGH_INSN)
7386 {
7387 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7388 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7389
7390 overflow = Reloc::CHECK_SIGNED;
7391 if (overflow == Reloc::CHECK_LOW_INSN
7392 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7393 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7394 || (insn & (0x3f << 26)) == 26u << 26 /* xori */
7395 || (insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7396 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7397 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7398 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7399 overflow = Reloc::CHECK_UNSIGNED;
7400 }
7401
7402 typename Powerpc_relocate_functions<size, big_endian>::Status status
7403 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7404 switch (r_type)
7405 {
7406 case elfcpp::R_POWERPC_NONE:
7407 case elfcpp::R_POWERPC_TLS:
7408 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7409 case elfcpp::R_POWERPC_GNU_VTENTRY:
7410 break;
7411
7412 case elfcpp::R_PPC64_ADDR64:
7413 case elfcpp::R_PPC64_REL64:
7414 case elfcpp::R_PPC64_TOC:
7415 case elfcpp::R_PPC64_ADDR64_LOCAL:
7416 Reloc::addr64(view, value);
7417 break;
7418
7419 case elfcpp::R_POWERPC_TPREL:
7420 case elfcpp::R_POWERPC_DTPREL:
7421 if (size == 64)
7422 Reloc::addr64(view, value);
7423 else
7424 status = Reloc::addr32(view, value, overflow);
7425 break;
7426
7427 case elfcpp::R_PPC64_UADDR64:
7428 Reloc::addr64_u(view, value);
7429 break;
7430
7431 case elfcpp::R_POWERPC_ADDR32:
7432 status = Reloc::addr32(view, value, overflow);
7433 break;
7434
7435 case elfcpp::R_POWERPC_REL32:
7436 case elfcpp::R_POWERPC_UADDR32:
7437 status = Reloc::addr32_u(view, value, overflow);
7438 break;
7439
7440 case elfcpp::R_POWERPC_ADDR24:
7441 case elfcpp::R_POWERPC_REL24:
7442 case elfcpp::R_PPC_PLTREL24:
7443 case elfcpp::R_PPC_LOCAL24PC:
7444 status = Reloc::addr24(view, value, overflow);
7445 break;
7446
7447 case elfcpp::R_POWERPC_GOT_DTPREL16:
7448 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7449 if (size == 64)
7450 {
7451 status = Reloc::addr16_ds(view, value, overflow);
7452 break;
7453 }
7454 case elfcpp::R_POWERPC_ADDR16:
7455 case elfcpp::R_POWERPC_REL16:
7456 case elfcpp::R_PPC64_TOC16:
7457 case elfcpp::R_POWERPC_GOT16:
7458 case elfcpp::R_POWERPC_SECTOFF:
7459 case elfcpp::R_POWERPC_TPREL16:
7460 case elfcpp::R_POWERPC_DTPREL16:
7461 case elfcpp::R_POWERPC_GOT_TLSGD16:
7462 case elfcpp::R_POWERPC_GOT_TLSLD16:
7463 case elfcpp::R_POWERPC_GOT_TPREL16:
7464 case elfcpp::R_POWERPC_ADDR16_LO:
7465 case elfcpp::R_POWERPC_REL16_LO:
7466 case elfcpp::R_PPC64_TOC16_LO:
7467 case elfcpp::R_POWERPC_GOT16_LO:
7468 case elfcpp::R_POWERPC_SECTOFF_LO:
7469 case elfcpp::R_POWERPC_TPREL16_LO:
7470 case elfcpp::R_POWERPC_DTPREL16_LO:
7471 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7472 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7473 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7474 status = Reloc::addr16(view, value, overflow);
7475 break;
7476
7477 case elfcpp::R_POWERPC_UADDR16:
7478 status = Reloc::addr16_u(view, value, overflow);
7479 break;
7480
7481 case elfcpp::R_PPC64_ADDR16_HIGH:
7482 case elfcpp::R_PPC64_TPREL16_HIGH:
7483 case elfcpp::R_PPC64_DTPREL16_HIGH:
7484 if (size == 32)
7485 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7486 goto unsupp;
7487 case elfcpp::R_POWERPC_ADDR16_HI:
7488 case elfcpp::R_POWERPC_REL16_HI:
7489 case elfcpp::R_PPC64_TOC16_HI:
7490 case elfcpp::R_POWERPC_GOT16_HI:
7491 case elfcpp::R_POWERPC_SECTOFF_HI:
7492 case elfcpp::R_POWERPC_TPREL16_HI:
7493 case elfcpp::R_POWERPC_DTPREL16_HI:
7494 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7495 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7496 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7497 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7498 Reloc::addr16_hi(view, value);
7499 break;
7500
7501 case elfcpp::R_PPC64_ADDR16_HIGHA:
7502 case elfcpp::R_PPC64_TPREL16_HIGHA:
7503 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7504 if (size == 32)
7505 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7506 goto unsupp;
7507 case elfcpp::R_POWERPC_ADDR16_HA:
7508 case elfcpp::R_POWERPC_REL16_HA:
7509 case elfcpp::R_PPC64_TOC16_HA:
7510 case elfcpp::R_POWERPC_GOT16_HA:
7511 case elfcpp::R_POWERPC_SECTOFF_HA:
7512 case elfcpp::R_POWERPC_TPREL16_HA:
7513 case elfcpp::R_POWERPC_DTPREL16_HA:
7514 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7515 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7516 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7517 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7518 Reloc::addr16_ha(view, value);
7519 break;
7520
7521 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7522 if (size == 32)
7523 // R_PPC_EMB_NADDR16_LO
7524 goto unsupp;
7525 case elfcpp::R_PPC64_ADDR16_HIGHER:
7526 case elfcpp::R_PPC64_TPREL16_HIGHER:
7527 Reloc::addr16_hi2(view, value);
7528 break;
7529
7530 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7531 if (size == 32)
7532 // R_PPC_EMB_NADDR16_HI
7533 goto unsupp;
7534 case elfcpp::R_PPC64_ADDR16_HIGHERA:
7535 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7536 Reloc::addr16_ha2(view, value);
7537 break;
7538
7539 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7540 if (size == 32)
7541 // R_PPC_EMB_NADDR16_HA
7542 goto unsupp;
7543 case elfcpp::R_PPC64_ADDR16_HIGHEST:
7544 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7545 Reloc::addr16_hi3(view, value);
7546 break;
7547
7548 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7549 if (size == 32)
7550 // R_PPC_EMB_SDAI16
7551 goto unsupp;
7552 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7553 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7554 Reloc::addr16_ha3(view, value);
7555 break;
7556
7557 case elfcpp::R_PPC64_DTPREL16_DS:
7558 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7559 if (size == 32)
7560 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7561 goto unsupp;
7562 case elfcpp::R_PPC64_TPREL16_DS:
7563 case elfcpp::R_PPC64_TPREL16_LO_DS:
7564 if (size == 32)
7565 // R_PPC_TLSGD, R_PPC_TLSLD
7566 break;
7567 case elfcpp::R_PPC64_ADDR16_DS:
7568 case elfcpp::R_PPC64_ADDR16_LO_DS:
7569 case elfcpp::R_PPC64_TOC16_DS:
7570 case elfcpp::R_PPC64_TOC16_LO_DS:
7571 case elfcpp::R_PPC64_GOT16_DS:
7572 case elfcpp::R_PPC64_GOT16_LO_DS:
7573 case elfcpp::R_PPC64_SECTOFF_DS:
7574 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7575 status = Reloc::addr16_ds(view, value, overflow);
7576 break;
7577
7578 case elfcpp::R_POWERPC_ADDR14:
7579 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7580 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7581 case elfcpp::R_POWERPC_REL14:
7582 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7583 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7584 status = Reloc::addr14(view, value, overflow);
7585 break;
7586
7587 case elfcpp::R_POWERPC_COPY:
7588 case elfcpp::R_POWERPC_GLOB_DAT:
7589 case elfcpp::R_POWERPC_JMP_SLOT:
7590 case elfcpp::R_POWERPC_RELATIVE:
7591 case elfcpp::R_POWERPC_DTPMOD:
7592 case elfcpp::R_PPC64_JMP_IREL:
7593 case elfcpp::R_POWERPC_IRELATIVE:
7594 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7595 _("unexpected reloc %u in object file"),
7596 r_type);
7597 break;
7598
7599 case elfcpp::R_PPC_EMB_SDA21:
7600 if (size == 32)
7601 goto unsupp;
7602 else
7603 {
7604 // R_PPC64_TOCSAVE. For the time being this can be ignored.
7605 }
7606 break;
7607
7608 case elfcpp::R_PPC_EMB_SDA2I16:
7609 case elfcpp::R_PPC_EMB_SDA2REL:
7610 if (size == 32)
7611 goto unsupp;
7612 // R_PPC64_TLSGD, R_PPC64_TLSLD
7613 break;
7614
7615 case elfcpp::R_POWERPC_PLT32:
7616 case elfcpp::R_POWERPC_PLTREL32:
7617 case elfcpp::R_POWERPC_PLT16_LO:
7618 case elfcpp::R_POWERPC_PLT16_HI:
7619 case elfcpp::R_POWERPC_PLT16_HA:
7620 case elfcpp::R_PPC_SDAREL16:
7621 case elfcpp::R_POWERPC_ADDR30:
7622 case elfcpp::R_PPC64_PLT64:
7623 case elfcpp::R_PPC64_PLTREL64:
7624 case elfcpp::R_PPC64_PLTGOT16:
7625 case elfcpp::R_PPC64_PLTGOT16_LO:
7626 case elfcpp::R_PPC64_PLTGOT16_HI:
7627 case elfcpp::R_PPC64_PLTGOT16_HA:
7628 case elfcpp::R_PPC64_PLT16_LO_DS:
7629 case elfcpp::R_PPC64_PLTGOT16_DS:
7630 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7631 case elfcpp::R_PPC_EMB_RELSDA:
7632 case elfcpp::R_PPC_TOC16:
7633 default:
7634 unsupp:
7635 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7636 _("unsupported reloc %u"),
7637 r_type);
7638 break;
7639 }
7640 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
7641 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7642 _("relocation overflow"));
7643
7644 return true;
7645 }
7646
7647 // Relocate section data.
7648
7649 template<int size, bool big_endian>
7650 void
7651 Target_powerpc<size, big_endian>::relocate_section(
7652 const Relocate_info<size, big_endian>* relinfo,
7653 unsigned int sh_type,
7654 const unsigned char* prelocs,
7655 size_t reloc_count,
7656 Output_section* output_section,
7657 bool needs_special_offset_handling,
7658 unsigned char* view,
7659 Address address,
7660 section_size_type view_size,
7661 const Reloc_symbol_changes* reloc_symbol_changes)
7662 {
7663 typedef Target_powerpc<size, big_endian> Powerpc;
7664 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7665 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7666 Powerpc_comdat_behavior;
7667
7668 gold_assert(sh_type == elfcpp::SHT_RELA);
7669
7670 gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7671 Powerpc_relocate, Powerpc_comdat_behavior>(
7672 relinfo,
7673 this,
7674 prelocs,
7675 reloc_count,
7676 output_section,
7677 needs_special_offset_handling,
7678 view,
7679 address,
7680 view_size,
7681 reloc_symbol_changes);
7682 }
7683
7684 class Powerpc_scan_relocatable_reloc
7685 {
7686 public:
7687 // Return the strategy to use for a local symbol which is not a
7688 // section symbol, given the relocation type.
7689 inline Relocatable_relocs::Reloc_strategy
7690 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7691 {
7692 if (r_type == 0 && r_sym == 0)
7693 return Relocatable_relocs::RELOC_DISCARD;
7694 return Relocatable_relocs::RELOC_COPY;
7695 }
7696
7697 // Return the strategy to use for a local symbol which is a section
7698 // symbol, given the relocation type.
7699 inline Relocatable_relocs::Reloc_strategy
7700 local_section_strategy(unsigned int, Relobj*)
7701 {
7702 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7703 }
7704
7705 // Return the strategy to use for a global symbol, given the
7706 // relocation type, the object, and the symbol index.
7707 inline Relocatable_relocs::Reloc_strategy
7708 global_strategy(unsigned int r_type, Relobj*, unsigned int)
7709 {
7710 if (r_type == elfcpp::R_PPC_PLTREL24)
7711 return Relocatable_relocs::RELOC_SPECIAL;
7712 return Relocatable_relocs::RELOC_COPY;
7713 }
7714 };
7715
7716 // Scan the relocs during a relocatable link.
7717
7718 template<int size, bool big_endian>
7719 void
7720 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7721 Symbol_table* symtab,
7722 Layout* layout,
7723 Sized_relobj_file<size, big_endian>* object,
7724 unsigned int data_shndx,
7725 unsigned int sh_type,
7726 const unsigned char* prelocs,
7727 size_t reloc_count,
7728 Output_section* output_section,
7729 bool needs_special_offset_handling,
7730 size_t local_symbol_count,
7731 const unsigned char* plocal_symbols,
7732 Relocatable_relocs* rr)
7733 {
7734 gold_assert(sh_type == elfcpp::SHT_RELA);
7735
7736 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7737 Powerpc_scan_relocatable_reloc>(
7738 symtab,
7739 layout,
7740 object,
7741 data_shndx,
7742 prelocs,
7743 reloc_count,
7744 output_section,
7745 needs_special_offset_handling,
7746 local_symbol_count,
7747 plocal_symbols,
7748 rr);
7749 }
7750
7751 // Emit relocations for a section.
7752 // This is a modified version of the function by the same name in
7753 // target-reloc.h. Using relocate_special_relocatable for
7754 // R_PPC_PLTREL24 would require duplication of the entire body of the
7755 // loop, so we may as well duplicate the whole thing.
7756
7757 template<int size, bool big_endian>
7758 void
7759 Target_powerpc<size, big_endian>::relocate_relocs(
7760 const Relocate_info<size, big_endian>* relinfo,
7761 unsigned int sh_type,
7762 const unsigned char* prelocs,
7763 size_t reloc_count,
7764 Output_section* output_section,
7765 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7766 const Relocatable_relocs* rr,
7767 unsigned char*,
7768 Address view_address,
7769 section_size_type,
7770 unsigned char* reloc_view,
7771 section_size_type reloc_view_size)
7772 {
7773 gold_assert(sh_type == elfcpp::SHT_RELA);
7774
7775 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7776 Reltype;
7777 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7778 Reltype_write;
7779 const int reloc_size
7780 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7781
7782 Powerpc_relobj<size, big_endian>* const object
7783 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7784 const unsigned int local_count = object->local_symbol_count();
7785 unsigned int got2_shndx = object->got2_shndx();
7786 Address got2_addend = 0;
7787 if (got2_shndx != 0)
7788 {
7789 got2_addend = object->get_output_section_offset(got2_shndx);
7790 gold_assert(got2_addend != invalid_address);
7791 }
7792
7793 unsigned char* pwrite = reloc_view;
7794 bool zap_next = false;
7795 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7796 {
7797 Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7798 if (strategy == Relocatable_relocs::RELOC_DISCARD)
7799 continue;
7800
7801 Reltype reloc(prelocs);
7802 Reltype_write reloc_write(pwrite);
7803
7804 Address offset = reloc.get_r_offset();
7805 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7806 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7807 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7808 const unsigned int orig_r_sym = r_sym;
7809 typename elfcpp::Elf_types<size>::Elf_Swxword addend
7810 = reloc.get_r_addend();
7811 const Symbol* gsym = NULL;
7812
7813 if (zap_next)
7814 {
7815 // We could arrange to discard these and other relocs for
7816 // tls optimised sequences in the strategy methods, but for
7817 // now do as BFD ld does.
7818 r_type = elfcpp::R_POWERPC_NONE;
7819 zap_next = false;
7820 }
7821
7822 // Get the new symbol index.
7823 if (r_sym < local_count)
7824 {
7825 switch (strategy)
7826 {
7827 case Relocatable_relocs::RELOC_COPY:
7828 case Relocatable_relocs::RELOC_SPECIAL:
7829 if (r_sym != 0)
7830 {
7831 r_sym = object->symtab_index(r_sym);
7832 gold_assert(r_sym != -1U);
7833 }
7834 break;
7835
7836 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7837 {
7838 // We are adjusting a section symbol. We need to find
7839 // the symbol table index of the section symbol for
7840 // the output section corresponding to input section
7841 // in which this symbol is defined.
7842 gold_assert(r_sym < local_count);
7843 bool is_ordinary;
7844 unsigned int shndx =
7845 object->local_symbol_input_shndx(r_sym, &is_ordinary);
7846 gold_assert(is_ordinary);
7847 Output_section* os = object->output_section(shndx);
7848 gold_assert(os != NULL);
7849 gold_assert(os->needs_symtab_index());
7850 r_sym = os->symtab_index();
7851 }
7852 break;
7853
7854 default:
7855 gold_unreachable();
7856 }
7857 }
7858 else
7859 {
7860 gsym = object->global_symbol(r_sym);
7861 gold_assert(gsym != NULL);
7862 if (gsym->is_forwarder())
7863 gsym = relinfo->symtab->resolve_forwards(gsym);
7864
7865 gold_assert(gsym->has_symtab_index());
7866 r_sym = gsym->symtab_index();
7867 }
7868
7869 // Get the new offset--the location in the output section where
7870 // this relocation should be applied.
7871 if (static_cast<Address>(offset_in_output_section) != invalid_address)
7872 offset += offset_in_output_section;
7873 else
7874 {
7875 section_offset_type sot_offset =
7876 convert_types<section_offset_type, Address>(offset);
7877 section_offset_type new_sot_offset =
7878 output_section->output_offset(object, relinfo->data_shndx,
7879 sot_offset);
7880 gold_assert(new_sot_offset != -1);
7881 offset = new_sot_offset;
7882 }
7883
7884 // In an object file, r_offset is an offset within the section.
7885 // In an executable or dynamic object, generated by
7886 // --emit-relocs, r_offset is an absolute address.
7887 if (!parameters->options().relocatable())
7888 {
7889 offset += view_address;
7890 if (static_cast<Address>(offset_in_output_section) != invalid_address)
7891 offset -= offset_in_output_section;
7892 }
7893
7894 // Handle the reloc addend based on the strategy.
7895 if (strategy == Relocatable_relocs::RELOC_COPY)
7896 ;
7897 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
7898 {
7899 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
7900 addend = psymval->value(object, addend);
7901 }
7902 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
7903 {
7904 if (addend >= 32768)
7905 addend += got2_addend;
7906 }
7907 else
7908 gold_unreachable();
7909
7910 if (!parameters->options().relocatable())
7911 {
7912 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7913 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7914 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7915 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7916 {
7917 // First instruction of a global dynamic sequence,
7918 // arg setup insn.
7919 const bool final = gsym == NULL || gsym->final_value_is_known();
7920 switch (this->optimize_tls_gd(final))
7921 {
7922 case tls::TLSOPT_TO_IE:
7923 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7924 - elfcpp::R_POWERPC_GOT_TLSGD16);
7925 break;
7926 case tls::TLSOPT_TO_LE:
7927 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7928 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7929 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7930 else
7931 {
7932 r_type = elfcpp::R_POWERPC_NONE;
7933 offset -= 2 * big_endian;
7934 }
7935 break;
7936 default:
7937 break;
7938 }
7939 }
7940 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7941 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7942 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7943 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7944 {
7945 // First instruction of a local dynamic sequence,
7946 // arg setup insn.
7947 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7948 {
7949 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7950 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7951 {
7952 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7953 const Output_section* os = relinfo->layout->tls_segment()
7954 ->first_section();
7955 gold_assert(os != NULL);
7956 gold_assert(os->needs_symtab_index());
7957 r_sym = os->symtab_index();
7958 addend = dtp_offset;
7959 }
7960 else
7961 {
7962 r_type = elfcpp::R_POWERPC_NONE;
7963 offset -= 2 * big_endian;
7964 }
7965 }
7966 }
7967 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7968 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7969 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7970 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7971 {
7972 // First instruction of initial exec sequence.
7973 const bool final = gsym == NULL || gsym->final_value_is_known();
7974 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7975 {
7976 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7977 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7978 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7979 else
7980 {
7981 r_type = elfcpp::R_POWERPC_NONE;
7982 offset -= 2 * big_endian;
7983 }
7984 }
7985 }
7986 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7987 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7988 {
7989 // Second instruction of a global dynamic sequence,
7990 // the __tls_get_addr call
7991 const bool final = gsym == NULL || gsym->final_value_is_known();
7992 switch (this->optimize_tls_gd(final))
7993 {
7994 case tls::TLSOPT_TO_IE:
7995 r_type = elfcpp::R_POWERPC_NONE;
7996 zap_next = true;
7997 break;
7998 case tls::TLSOPT_TO_LE:
7999 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8000 offset += 2 * big_endian;
8001 zap_next = true;
8002 break;
8003 default:
8004 break;
8005 }
8006 }
8007 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8008 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8009 {
8010 // Second instruction of a local dynamic sequence,
8011 // the __tls_get_addr call
8012 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8013 {
8014 const Output_section* os = relinfo->layout->tls_segment()
8015 ->first_section();
8016 gold_assert(os != NULL);
8017 gold_assert(os->needs_symtab_index());
8018 r_sym = os->symtab_index();
8019 addend = dtp_offset;
8020 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8021 offset += 2 * big_endian;
8022 zap_next = true;
8023 }
8024 }
8025 else if (r_type == elfcpp::R_POWERPC_TLS)
8026 {
8027 // Second instruction of an initial exec sequence
8028 const bool final = gsym == NULL || gsym->final_value_is_known();
8029 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8030 {
8031 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8032 offset += 2 * big_endian;
8033 }
8034 }
8035 }
8036
8037 reloc_write.put_r_offset(offset);
8038 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8039 reloc_write.put_r_addend(addend);
8040
8041 pwrite += reloc_size;
8042 }
8043
8044 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8045 == reloc_view_size);
8046 }
8047
8048 // Return the value to use for a dynamic symbol which requires special
8049 // treatment. This is how we support equality comparisons of function
8050 // pointers across shared library boundaries, as described in the
8051 // processor specific ABI supplement.
8052
8053 template<int size, bool big_endian>
8054 uint64_t
8055 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8056 {
8057 if (size == 32)
8058 {
8059 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8060 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8061 p != this->stub_tables_.end();
8062 ++p)
8063 {
8064 Address off = (*p)->find_plt_call_entry(gsym);
8065 if (off != invalid_address)
8066 return (*p)->stub_address() + off;
8067 }
8068 }
8069 else if (this->abiversion() >= 2)
8070 {
8071 unsigned int off = this->glink_section()->find_global_entry(gsym);
8072 if (off != (unsigned int)-1)
8073 return this->glink_section()->global_entry_address() + off;
8074 }
8075 gold_unreachable();
8076 }
8077
8078 // Return the PLT address to use for a local symbol.
8079 template<int size, bool big_endian>
8080 uint64_t
8081 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8082 const Relobj* object,
8083 unsigned int symndx) const
8084 {
8085 if (size == 32)
8086 {
8087 const Sized_relobj<size, big_endian>* relobj
8088 = static_cast<const Sized_relobj<size, big_endian>*>(object);
8089 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8090 p != this->stub_tables_.end();
8091 ++p)
8092 {
8093 Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8094 symndx);
8095 if (off != invalid_address)
8096 return (*p)->stub_address() + off;
8097 }
8098 }
8099 gold_unreachable();
8100 }
8101
8102 // Return the PLT address to use for a global symbol.
8103 template<int size, bool big_endian>
8104 uint64_t
8105 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8106 const Symbol* gsym) const
8107 {
8108 if (size == 32)
8109 {
8110 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8111 p != this->stub_tables_.end();
8112 ++p)
8113 {
8114 Address off = (*p)->find_plt_call_entry(gsym);
8115 if (off != invalid_address)
8116 return (*p)->stub_address() + off;
8117 }
8118 }
8119 else if (this->abiversion() >= 2)
8120 {
8121 unsigned int off = this->glink_section()->find_global_entry(gsym);
8122 if (off != (unsigned int)-1)
8123 return this->glink_section()->global_entry_address() + off;
8124 }
8125 gold_unreachable();
8126 }
8127
8128 // Return the offset to use for the GOT_INDX'th got entry which is
8129 // for a local tls symbol specified by OBJECT, SYMNDX.
8130 template<int size, bool big_endian>
8131 int64_t
8132 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8133 const Relobj* object,
8134 unsigned int symndx,
8135 unsigned int got_indx) const
8136 {
8137 const Powerpc_relobj<size, big_endian>* ppc_object
8138 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8139 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8140 {
8141 for (Got_type got_type = GOT_TYPE_TLSGD;
8142 got_type <= GOT_TYPE_TPREL;
8143 got_type = Got_type(got_type + 1))
8144 if (ppc_object->local_has_got_offset(symndx, got_type))
8145 {
8146 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8147 if (got_type == GOT_TYPE_TLSGD)
8148 off += size / 8;
8149 if (off == got_indx * (size / 8))
8150 {
8151 if (got_type == GOT_TYPE_TPREL)
8152 return -tp_offset;
8153 else
8154 return -dtp_offset;
8155 }
8156 }
8157 }
8158 gold_unreachable();
8159 }
8160
8161 // Return the offset to use for the GOT_INDX'th got entry which is
8162 // for global tls symbol GSYM.
8163 template<int size, bool big_endian>
8164 int64_t
8165 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8166 Symbol* gsym,
8167 unsigned int got_indx) const
8168 {
8169 if (gsym->type() == elfcpp::STT_TLS)
8170 {
8171 for (Got_type got_type = GOT_TYPE_TLSGD;
8172 got_type <= GOT_TYPE_TPREL;
8173 got_type = Got_type(got_type + 1))
8174 if (gsym->has_got_offset(got_type))
8175 {
8176 unsigned int off = gsym->got_offset(got_type);
8177 if (got_type == GOT_TYPE_TLSGD)
8178 off += size / 8;
8179 if (off == got_indx * (size / 8))
8180 {
8181 if (got_type == GOT_TYPE_TPREL)
8182 return -tp_offset;
8183 else
8184 return -dtp_offset;
8185 }
8186 }
8187 }
8188 gold_unreachable();
8189 }
8190
8191 // The selector for powerpc object files.
8192
8193 template<int size, bool big_endian>
8194 class Target_selector_powerpc : public Target_selector
8195 {
8196 public:
8197 Target_selector_powerpc()
8198 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8199 size, big_endian,
8200 (size == 64
8201 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8202 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8203 (size == 64
8204 ? (big_endian ? "elf64ppc" : "elf64lppc")
8205 : (big_endian ? "elf32ppc" : "elf32lppc")))
8206 { }
8207
8208 virtual Target*
8209 do_instantiate_target()
8210 { return new Target_powerpc<size, big_endian>(); }
8211 };
8212
8213 Target_selector_powerpc<32, true> target_selector_ppc32;
8214 Target_selector_powerpc<32, false> target_selector_ppc32le;
8215 Target_selector_powerpc<64, true> target_selector_ppc64;
8216 Target_selector_powerpc<64, false> target_selector_ppc64le;
8217
8218 // Instantiate these constants for -O0
8219 template<int size, bool big_endian>
8220 const int Output_data_glink<size, big_endian>::pltresolve_size;
8221 template<int size, bool big_endian>
8222 const typename Output_data_glink<size, big_endian>::Address
8223 Output_data_glink<size, big_endian>::invalid_address;
8224 template<int size, bool big_endian>
8225 const typename Stub_table<size, big_endian>::Address
8226 Stub_table<size, big_endian>::invalid_address;
8227 template<int size, bool big_endian>
8228 const typename Target_powerpc<size, big_endian>::Address
8229 Target_powerpc<size, big_endian>::invalid_address;
8230
8231 } // End anonymous namespace.
This page took 0.204737 seconds and 5 git commands to generate.