[GOLD] Add gcc-4.9 libgomp symbols requiring --plt-thread-safe for power7
[deliverable/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2014 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 inline bool
66 is_branch_reloc(unsigned int r_type);
67
68 template<int size, bool big_endian>
69 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
70 {
71 public:
72 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
73 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
74 typedef Unordered_map<Address, Section_refs> Access_from;
75
76 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
77 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
78 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
79 special_(0), has_small_toc_reloc_(false), opd_valid_(false),
80 opd_ent_(), access_from_map_(), has14_(), stub_table_(),
81 e_flags_(ehdr.get_e_flags()), st_other_()
82 {
83 this->set_abiversion(0);
84 }
85
86 ~Powerpc_relobj()
87 { }
88
89 // Read the symbols then set up st_other vector.
90 void
91 do_read_symbols(Read_symbols_data*);
92
93 // The .got2 section shndx.
94 unsigned int
95 got2_shndx() const
96 {
97 if (size == 32)
98 return this->special_;
99 else
100 return 0;
101 }
102
103 // The .opd section shndx.
104 unsigned int
105 opd_shndx() const
106 {
107 if (size == 32)
108 return 0;
109 else
110 return this->special_;
111 }
112
113 // Init OPD entry arrays.
114 void
115 init_opd(size_t opd_size)
116 {
117 size_t count = this->opd_ent_ndx(opd_size);
118 this->opd_ent_.resize(count);
119 }
120
121 // Return section and offset of function entry for .opd + R_OFF.
122 unsigned int
123 get_opd_ent(Address r_off, Address* value = NULL) const
124 {
125 size_t ndx = this->opd_ent_ndx(r_off);
126 gold_assert(ndx < this->opd_ent_.size());
127 gold_assert(this->opd_ent_[ndx].shndx != 0);
128 if (value != NULL)
129 *value = this->opd_ent_[ndx].off;
130 return this->opd_ent_[ndx].shndx;
131 }
132
133 // Set section and offset of function entry for .opd + R_OFF.
134 void
135 set_opd_ent(Address r_off, unsigned int shndx, Address value)
136 {
137 size_t ndx = this->opd_ent_ndx(r_off);
138 gold_assert(ndx < this->opd_ent_.size());
139 this->opd_ent_[ndx].shndx = shndx;
140 this->opd_ent_[ndx].off = value;
141 }
142
143 // Return discard flag for .opd + R_OFF.
144 bool
145 get_opd_discard(Address r_off) const
146 {
147 size_t ndx = this->opd_ent_ndx(r_off);
148 gold_assert(ndx < this->opd_ent_.size());
149 return this->opd_ent_[ndx].discard;
150 }
151
152 // Set discard flag for .opd + R_OFF.
153 void
154 set_opd_discard(Address r_off)
155 {
156 size_t ndx = this->opd_ent_ndx(r_off);
157 gold_assert(ndx < this->opd_ent_.size());
158 this->opd_ent_[ndx].discard = true;
159 }
160
161 bool
162 opd_valid() const
163 { return this->opd_valid_; }
164
165 void
166 set_opd_valid()
167 { this->opd_valid_ = true; }
168
169 // Examine .rela.opd to build info about function entry points.
170 void
171 scan_opd_relocs(size_t reloc_count,
172 const unsigned char* prelocs,
173 const unsigned char* plocal_syms);
174
175 // Perform the Sized_relobj_file method, then set up opd info from
176 // .opd relocs.
177 void
178 do_read_relocs(Read_relocs_data*);
179
180 bool
181 do_find_special_sections(Read_symbols_data* sd);
182
183 // Adjust this local symbol value. Return false if the symbol
184 // should be discarded from the output file.
185 bool
186 do_adjust_local_symbol(Symbol_value<size>* lv) const
187 {
188 if (size == 64 && this->opd_shndx() != 0)
189 {
190 bool is_ordinary;
191 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
192 return true;
193 if (this->get_opd_discard(lv->input_value()))
194 return false;
195 }
196 return true;
197 }
198
199 Access_from*
200 access_from_map()
201 { return &this->access_from_map_; }
202
203 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
204 // section at DST_OFF.
205 void
206 add_reference(Object* src_obj,
207 unsigned int src_indx,
208 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
209 {
210 Section_id src_id(src_obj, src_indx);
211 this->access_from_map_[dst_off].insert(src_id);
212 }
213
214 // Add a reference to the code section specified by the .opd entry
215 // at DST_OFF
216 void
217 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
218 {
219 size_t ndx = this->opd_ent_ndx(dst_off);
220 if (ndx >= this->opd_ent_.size())
221 this->opd_ent_.resize(ndx + 1);
222 this->opd_ent_[ndx].gc_mark = true;
223 }
224
225 void
226 process_gc_mark(Symbol_table* symtab)
227 {
228 for (size_t i = 0; i < this->opd_ent_.size(); i++)
229 if (this->opd_ent_[i].gc_mark)
230 {
231 unsigned int shndx = this->opd_ent_[i].shndx;
232 symtab->gc()->worklist().push(Section_id(this, shndx));
233 }
234 }
235
236 // Return offset in output GOT section that this object will use
237 // as a TOC pointer. Won't be just a constant with multi-toc support.
238 Address
239 toc_base_offset() const
240 { return 0x8000; }
241
242 void
243 set_has_small_toc_reloc()
244 { has_small_toc_reloc_ = true; }
245
246 bool
247 has_small_toc_reloc() const
248 { return has_small_toc_reloc_; }
249
250 void
251 set_has_14bit_branch(unsigned int shndx)
252 {
253 if (shndx >= this->has14_.size())
254 this->has14_.resize(shndx + 1);
255 this->has14_[shndx] = true;
256 }
257
258 bool
259 has_14bit_branch(unsigned int shndx) const
260 { return shndx < this->has14_.size() && this->has14_[shndx]; }
261
262 void
263 set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
264 {
265 if (shndx >= this->stub_table_.size())
266 this->stub_table_.resize(shndx + 1);
267 this->stub_table_[shndx] = stub_table;
268 }
269
270 Stub_table<size, big_endian>*
271 stub_table(unsigned int shndx)
272 {
273 if (shndx < this->stub_table_.size())
274 return this->stub_table_[shndx];
275 return NULL;
276 }
277
278 int
279 abiversion() const
280 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
281
282 // Set ABI version for input and output
283 void
284 set_abiversion(int ver);
285
286 unsigned int
287 ppc64_local_entry_offset(const Symbol* sym) const
288 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
289
290 unsigned int
291 ppc64_local_entry_offset(unsigned int symndx) const
292 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
293
294 private:
295 struct Opd_ent
296 {
297 unsigned int shndx;
298 bool discard : 1;
299 bool gc_mark : 1;
300 Address off;
301 };
302
303 // Return index into opd_ent_ array for .opd entry at OFF.
304 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
305 // apart when the language doesn't use the last 8-byte word, the
306 // environment pointer. Thus dividing the entry section offset by
307 // 16 will give an index into opd_ent_ that works for either layout
308 // of .opd. (It leaves some elements of the vector unused when .opd
309 // entries are spaced 24 bytes apart, but we don't know the spacing
310 // until relocations are processed, and in any case it is possible
311 // for an object to have some entries spaced 16 bytes apart and
312 // others 24 bytes apart.)
313 size_t
314 opd_ent_ndx(size_t off) const
315 { return off >> 4;}
316
317 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
318 unsigned int special_;
319
320 // For 64-bit, whether this object uses small model relocs to access
321 // the toc.
322 bool has_small_toc_reloc_;
323
324 // Set at the start of gc_process_relocs, when we know opd_ent_
325 // vector is valid. The flag could be made atomic and set in
326 // do_read_relocs with memory_order_release and then tested with
327 // memory_order_acquire, potentially resulting in fewer entries in
328 // access_from_map_.
329 bool opd_valid_;
330
331 // The first 8-byte word of an OPD entry gives the address of the
332 // entry point of the function. Relocatable object files have a
333 // relocation on this word. The following vector records the
334 // section and offset specified by these relocations.
335 std::vector<Opd_ent> opd_ent_;
336
337 // References made to this object's .opd section when running
338 // gc_process_relocs for another object, before the opd_ent_ vector
339 // is valid for this object.
340 Access_from access_from_map_;
341
342 // Whether input section has a 14-bit branch reloc.
343 std::vector<bool> has14_;
344
345 // The stub table to use for a given input section.
346 std::vector<Stub_table<size, big_endian>*> stub_table_;
347
348 // Header e_flags
349 elfcpp::Elf_Word e_flags_;
350
351 // ELF st_other field for local symbols.
352 std::vector<unsigned char> st_other_;
353 };
354
355 template<int size, bool big_endian>
356 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
357 {
358 public:
359 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
360
361 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
362 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
363 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
364 opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
365 {
366 this->set_abiversion(0);
367 }
368
369 ~Powerpc_dynobj()
370 { }
371
372 // Call Sized_dynobj::do_read_symbols to read the symbols then
373 // read .opd from a dynamic object, filling in opd_ent_ vector,
374 void
375 do_read_symbols(Read_symbols_data*);
376
377 // The .opd section shndx.
378 unsigned int
379 opd_shndx() const
380 {
381 return this->opd_shndx_;
382 }
383
384 // The .opd section address.
385 Address
386 opd_address() const
387 {
388 return this->opd_address_;
389 }
390
391 // Init OPD entry arrays.
392 void
393 init_opd(size_t opd_size)
394 {
395 size_t count = this->opd_ent_ndx(opd_size);
396 this->opd_ent_.resize(count);
397 }
398
399 // Return section and offset of function entry for .opd + R_OFF.
400 unsigned int
401 get_opd_ent(Address r_off, Address* value = NULL) const
402 {
403 size_t ndx = this->opd_ent_ndx(r_off);
404 gold_assert(ndx < this->opd_ent_.size());
405 gold_assert(this->opd_ent_[ndx].shndx != 0);
406 if (value != NULL)
407 *value = this->opd_ent_[ndx].off;
408 return this->opd_ent_[ndx].shndx;
409 }
410
411 // Set section and offset of function entry for .opd + R_OFF.
412 void
413 set_opd_ent(Address r_off, unsigned int shndx, Address value)
414 {
415 size_t ndx = this->opd_ent_ndx(r_off);
416 gold_assert(ndx < this->opd_ent_.size());
417 this->opd_ent_[ndx].shndx = shndx;
418 this->opd_ent_[ndx].off = value;
419 }
420
421 int
422 abiversion() const
423 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
424
425 // Set ABI version for input and output.
426 void
427 set_abiversion(int ver);
428
429 private:
430 // Used to specify extent of executable sections.
431 struct Sec_info
432 {
433 Sec_info(Address start_, Address len_, unsigned int shndx_)
434 : start(start_), len(len_), shndx(shndx_)
435 { }
436
437 bool
438 operator<(const Sec_info& that) const
439 { return this->start < that.start; }
440
441 Address start;
442 Address len;
443 unsigned int shndx;
444 };
445
446 struct Opd_ent
447 {
448 unsigned int shndx;
449 Address off;
450 };
451
452 // Return index into opd_ent_ array for .opd entry at OFF.
453 size_t
454 opd_ent_ndx(size_t off) const
455 { return off >> 4;}
456
457 // For 64-bit the .opd section shndx and address.
458 unsigned int opd_shndx_;
459 Address opd_address_;
460
461 // The first 8-byte word of an OPD entry gives the address of the
462 // entry point of the function. Records the section and offset
463 // corresponding to the address. Note that in dynamic objects,
464 // offset is *not* relative to the section.
465 std::vector<Opd_ent> opd_ent_;
466
467 // Header e_flags
468 elfcpp::Elf_Word e_flags_;
469 };
470
471 template<int size, bool big_endian>
472 class Target_powerpc : public Sized_target<size, big_endian>
473 {
474 public:
475 typedef
476 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
477 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
478 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
479 static const Address invalid_address = static_cast<Address>(0) - 1;
480 // Offset of tp and dtp pointers from start of TLS block.
481 static const Address tp_offset = 0x7000;
482 static const Address dtp_offset = 0x8000;
483
484 Target_powerpc()
485 : Sized_target<size, big_endian>(&powerpc_info),
486 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
487 glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
488 tlsld_got_offset_(-1U),
489 stub_tables_(), branch_lookup_table_(), branch_info_(),
490 plt_thread_safe_(false)
491 {
492 }
493
494 // Process the relocations to determine unreferenced sections for
495 // garbage collection.
496 void
497 gc_process_relocs(Symbol_table* symtab,
498 Layout* layout,
499 Sized_relobj_file<size, big_endian>* object,
500 unsigned int data_shndx,
501 unsigned int sh_type,
502 const unsigned char* prelocs,
503 size_t reloc_count,
504 Output_section* output_section,
505 bool needs_special_offset_handling,
506 size_t local_symbol_count,
507 const unsigned char* plocal_symbols);
508
509 // Scan the relocations to look for symbol adjustments.
510 void
511 scan_relocs(Symbol_table* symtab,
512 Layout* layout,
513 Sized_relobj_file<size, big_endian>* object,
514 unsigned int data_shndx,
515 unsigned int sh_type,
516 const unsigned char* prelocs,
517 size_t reloc_count,
518 Output_section* output_section,
519 bool needs_special_offset_handling,
520 size_t local_symbol_count,
521 const unsigned char* plocal_symbols);
522
523 // Map input .toc section to output .got section.
524 const char*
525 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
526 {
527 if (size == 64 && strcmp(name, ".toc") == 0)
528 {
529 *plen = 4;
530 return ".got";
531 }
532 return NULL;
533 }
534
535 // Provide linker defined save/restore functions.
536 void
537 define_save_restore_funcs(Layout*, Symbol_table*);
538
539 // No stubs unless a final link.
540 bool
541 do_may_relax() const
542 { return !parameters->options().relocatable(); }
543
544 bool
545 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
546
547 void
548 do_plt_fde_location(const Output_data*, unsigned char*,
549 uint64_t*, off_t*) const;
550
551 // Stash info about branches, for stub generation.
552 void
553 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
554 unsigned int data_shndx, Address r_offset,
555 unsigned int r_type, unsigned int r_sym, Address addend)
556 {
557 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
558 this->branch_info_.push_back(info);
559 if (r_type == elfcpp::R_POWERPC_REL14
560 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
561 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
562 ppc_object->set_has_14bit_branch(data_shndx);
563 }
564
565 Stub_table<size, big_endian>*
566 new_stub_table();
567
568 void
569 do_define_standard_symbols(Symbol_table*, Layout*);
570
571 // Finalize the sections.
572 void
573 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
574
575 // Return the value to use for a dynamic which requires special
576 // treatment.
577 uint64_t
578 do_dynsym_value(const Symbol*) const;
579
580 // Return the PLT address to use for a local symbol.
581 uint64_t
582 do_plt_address_for_local(const Relobj*, unsigned int) const;
583
584 // Return the PLT address to use for a global symbol.
585 uint64_t
586 do_plt_address_for_global(const Symbol*) const;
587
588 // Return the offset to use for the GOT_INDX'th got entry which is
589 // for a local tls symbol specified by OBJECT, SYMNDX.
590 int64_t
591 do_tls_offset_for_local(const Relobj* object,
592 unsigned int symndx,
593 unsigned int got_indx) const;
594
595 // Return the offset to use for the GOT_INDX'th got entry which is
596 // for global tls symbol GSYM.
597 int64_t
598 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
599
600 void
601 do_function_location(Symbol_location*) const;
602
603 bool
604 do_can_check_for_function_pointers() const
605 { return true; }
606
607 // Relocate a section.
608 void
609 relocate_section(const Relocate_info<size, big_endian>*,
610 unsigned int sh_type,
611 const unsigned char* prelocs,
612 size_t reloc_count,
613 Output_section* output_section,
614 bool needs_special_offset_handling,
615 unsigned char* view,
616 Address view_address,
617 section_size_type view_size,
618 const Reloc_symbol_changes*);
619
620 // Scan the relocs during a relocatable link.
621 void
622 scan_relocatable_relocs(Symbol_table* symtab,
623 Layout* layout,
624 Sized_relobj_file<size, big_endian>* object,
625 unsigned int data_shndx,
626 unsigned int sh_type,
627 const unsigned char* prelocs,
628 size_t reloc_count,
629 Output_section* output_section,
630 bool needs_special_offset_handling,
631 size_t local_symbol_count,
632 const unsigned char* plocal_symbols,
633 Relocatable_relocs*);
634
635 // Emit relocations for a section.
636 void
637 relocate_relocs(const Relocate_info<size, big_endian>*,
638 unsigned int sh_type,
639 const unsigned char* prelocs,
640 size_t reloc_count,
641 Output_section* output_section,
642 typename elfcpp::Elf_types<size>::Elf_Off
643 offset_in_output_section,
644 const Relocatable_relocs*,
645 unsigned char*,
646 Address view_address,
647 section_size_type,
648 unsigned char* reloc_view,
649 section_size_type reloc_view_size);
650
651 // Return whether SYM is defined by the ABI.
652 bool
653 do_is_defined_by_abi(const Symbol* sym) const
654 {
655 return strcmp(sym->name(), "__tls_get_addr") == 0;
656 }
657
658 // Return the size of the GOT section.
659 section_size_type
660 got_size() const
661 {
662 gold_assert(this->got_ != NULL);
663 return this->got_->data_size();
664 }
665
666 // Get the PLT section.
667 const Output_data_plt_powerpc<size, big_endian>*
668 plt_section() const
669 {
670 gold_assert(this->plt_ != NULL);
671 return this->plt_;
672 }
673
674 // Get the IPLT section.
675 const Output_data_plt_powerpc<size, big_endian>*
676 iplt_section() const
677 {
678 gold_assert(this->iplt_ != NULL);
679 return this->iplt_;
680 }
681
682 // Get the .glink section.
683 const Output_data_glink<size, big_endian>*
684 glink_section() const
685 {
686 gold_assert(this->glink_ != NULL);
687 return this->glink_;
688 }
689
690 Output_data_glink<size, big_endian>*
691 glink_section()
692 {
693 gold_assert(this->glink_ != NULL);
694 return this->glink_;
695 }
696
697 bool has_glink() const
698 { return this->glink_ != NULL; }
699
700 // Get the GOT section.
701 const Output_data_got_powerpc<size, big_endian>*
702 got_section() const
703 {
704 gold_assert(this->got_ != NULL);
705 return this->got_;
706 }
707
708 // Get the GOT section, creating it if necessary.
709 Output_data_got_powerpc<size, big_endian>*
710 got_section(Symbol_table*, Layout*);
711
712 Object*
713 do_make_elf_object(const std::string&, Input_file*, off_t,
714 const elfcpp::Ehdr<size, big_endian>&);
715
716 // Return the number of entries in the GOT.
717 unsigned int
718 got_entry_count() const
719 {
720 if (this->got_ == NULL)
721 return 0;
722 return this->got_size() / (size / 8);
723 }
724
725 // Return the number of entries in the PLT.
726 unsigned int
727 plt_entry_count() const;
728
729 // Return the offset of the first non-reserved PLT entry.
730 unsigned int
731 first_plt_entry_offset() const
732 {
733 if (size == 32)
734 return 0;
735 if (this->abiversion() >= 2)
736 return 16;
737 return 24;
738 }
739
740 // Return the size of each PLT entry.
741 unsigned int
742 plt_entry_size() const
743 {
744 if (size == 32)
745 return 4;
746 if (this->abiversion() >= 2)
747 return 8;
748 return 24;
749 }
750
751 // Add any special sections for this symbol to the gc work list.
752 // For powerpc64, this adds the code section of a function
753 // descriptor.
754 void
755 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
756
757 // Handle target specific gc actions when adding a gc reference from
758 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
759 // and DST_OFF. For powerpc64, this adds a referenc to the code
760 // section of a function descriptor.
761 void
762 do_gc_add_reference(Symbol_table* symtab,
763 Object* src_obj,
764 unsigned int src_shndx,
765 Object* dst_obj,
766 unsigned int dst_shndx,
767 Address dst_off) const;
768
769 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
770 const Stub_tables&
771 stub_tables() const
772 { return this->stub_tables_; }
773
774 const Output_data_brlt_powerpc<size, big_endian>*
775 brlt_section() const
776 { return this->brlt_section_; }
777
778 void
779 add_branch_lookup_table(Address to)
780 {
781 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
782 this->branch_lookup_table_.insert(std::make_pair(to, off));
783 }
784
785 Address
786 find_branch_lookup_table(Address to)
787 {
788 typename Branch_lookup_table::const_iterator p
789 = this->branch_lookup_table_.find(to);
790 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
791 }
792
793 void
794 write_branch_lookup_table(unsigned char *oview)
795 {
796 for (typename Branch_lookup_table::const_iterator p
797 = this->branch_lookup_table_.begin();
798 p != this->branch_lookup_table_.end();
799 ++p)
800 {
801 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
802 }
803 }
804
805 bool
806 plt_thread_safe() const
807 { return this->plt_thread_safe_; }
808
809 int
810 abiversion () const
811 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
812
813 void
814 set_abiversion (int ver)
815 {
816 elfcpp::Elf_Word flags = this->processor_specific_flags();
817 flags &= ~elfcpp::EF_PPC64_ABI;
818 flags |= ver & elfcpp::EF_PPC64_ABI;
819 this->set_processor_specific_flags(flags);
820 }
821
822 // Offset to to save stack slot
823 int
824 stk_toc () const
825 { return this->abiversion() < 2 ? 40 : 24; }
826
827 private:
828
829 class Track_tls
830 {
831 public:
832 enum Tls_get_addr
833 {
834 NOT_EXPECTED = 0,
835 EXPECTED = 1,
836 SKIP = 2,
837 NORMAL = 3
838 };
839
840 Track_tls()
841 : tls_get_addr_(NOT_EXPECTED),
842 relinfo_(NULL), relnum_(0), r_offset_(0)
843 { }
844
845 ~Track_tls()
846 {
847 if (this->tls_get_addr_ != NOT_EXPECTED)
848 this->missing();
849 }
850
851 void
852 missing(void)
853 {
854 if (this->relinfo_ != NULL)
855 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
856 _("missing expected __tls_get_addr call"));
857 }
858
859 void
860 expect_tls_get_addr_call(
861 const Relocate_info<size, big_endian>* relinfo,
862 size_t relnum,
863 Address r_offset)
864 {
865 this->tls_get_addr_ = EXPECTED;
866 this->relinfo_ = relinfo;
867 this->relnum_ = relnum;
868 this->r_offset_ = r_offset;
869 }
870
871 void
872 expect_tls_get_addr_call()
873 { this->tls_get_addr_ = EXPECTED; }
874
875 void
876 skip_next_tls_get_addr_call()
877 {this->tls_get_addr_ = SKIP; }
878
879 Tls_get_addr
880 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
881 {
882 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
883 || r_type == elfcpp::R_PPC_PLTREL24)
884 && gsym != NULL
885 && strcmp(gsym->name(), "__tls_get_addr") == 0);
886 Tls_get_addr last_tls = this->tls_get_addr_;
887 this->tls_get_addr_ = NOT_EXPECTED;
888 if (is_tls_call && last_tls != EXPECTED)
889 return last_tls;
890 else if (!is_tls_call && last_tls != NOT_EXPECTED)
891 {
892 this->missing();
893 return EXPECTED;
894 }
895 return NORMAL;
896 }
897
898 private:
899 // What we're up to regarding calls to __tls_get_addr.
900 // On powerpc, the branch and link insn making a call to
901 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
902 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
903 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
904 // The marker relocation always comes first, and has the same
905 // symbol as the reloc on the insn setting up the __tls_get_addr
906 // argument. This ties the arg setup insn with the call insn,
907 // allowing ld to safely optimize away the call. We check that
908 // every call to __tls_get_addr has a marker relocation, and that
909 // every marker relocation is on a call to __tls_get_addr.
910 Tls_get_addr tls_get_addr_;
911 // Info about the last reloc for error message.
912 const Relocate_info<size, big_endian>* relinfo_;
913 size_t relnum_;
914 Address r_offset_;
915 };
916
917 // The class which scans relocations.
918 class Scan : protected Track_tls
919 {
920 public:
921 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
922
923 Scan()
924 : Track_tls(), issued_non_pic_error_(false)
925 { }
926
927 static inline int
928 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
929
930 inline void
931 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
932 Sized_relobj_file<size, big_endian>* object,
933 unsigned int data_shndx,
934 Output_section* output_section,
935 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
936 const elfcpp::Sym<size, big_endian>& lsym,
937 bool is_discarded);
938
939 inline void
940 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
941 Sized_relobj_file<size, big_endian>* object,
942 unsigned int data_shndx,
943 Output_section* output_section,
944 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
945 Symbol* gsym);
946
947 inline bool
948 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
949 Target_powerpc* ,
950 Sized_relobj_file<size, big_endian>* relobj,
951 unsigned int ,
952 Output_section* ,
953 const elfcpp::Rela<size, big_endian>& ,
954 unsigned int r_type,
955 const elfcpp::Sym<size, big_endian>&)
956 {
957 // PowerPC64 .opd is not folded, so any identical function text
958 // may be folded and we'll still keep function addresses distinct.
959 // That means no reloc is of concern here.
960 if (size == 64)
961 {
962 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
963 <Powerpc_relobj<size, big_endian>*>(relobj);
964 if (ppcobj->abiversion() == 1)
965 return false;
966 }
967 // For 32-bit and ELFv2, conservatively assume anything but calls to
968 // function code might be taking the address of the function.
969 return !is_branch_reloc(r_type);
970 }
971
972 inline bool
973 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
974 Target_powerpc* ,
975 Sized_relobj_file<size, big_endian>* relobj,
976 unsigned int ,
977 Output_section* ,
978 const elfcpp::Rela<size, big_endian>& ,
979 unsigned int r_type,
980 Symbol*)
981 {
982 // As above.
983 if (size == 64)
984 {
985 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
986 <Powerpc_relobj<size, big_endian>*>(relobj);
987 if (ppcobj->abiversion() == 1)
988 return false;
989 }
990 return !is_branch_reloc(r_type);
991 }
992
993 static bool
994 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
995 Sized_relobj_file<size, big_endian>* object,
996 unsigned int r_type, bool report_err);
997
998 private:
999 static void
1000 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1001 unsigned int r_type);
1002
1003 static void
1004 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1005 unsigned int r_type, Symbol*);
1006
1007 static void
1008 generate_tls_call(Symbol_table* symtab, Layout* layout,
1009 Target_powerpc* target);
1010
1011 void
1012 check_non_pic(Relobj*, unsigned int r_type);
1013
1014 // Whether we have issued an error about a non-PIC compilation.
1015 bool issued_non_pic_error_;
1016 };
1017
1018 Address
1019 symval_for_branch(const Symbol_table* symtab, Address value,
1020 const Sized_symbol<size>* gsym,
1021 Powerpc_relobj<size, big_endian>* object,
1022 unsigned int *dest_shndx);
1023
1024 // The class which implements relocation.
1025 class Relocate : protected Track_tls
1026 {
1027 public:
1028 // Use 'at' branch hints when true, 'y' when false.
1029 // FIXME maybe: set this with an option.
1030 static const bool is_isa_v2 = true;
1031
1032 Relocate()
1033 : Track_tls()
1034 { }
1035
1036 // Do a relocation. Return false if the caller should not issue
1037 // any warnings about this relocation.
1038 inline bool
1039 relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1040 Output_section*, size_t relnum,
1041 const elfcpp::Rela<size, big_endian>&,
1042 unsigned int r_type, const Sized_symbol<size>*,
1043 const Symbol_value<size>*,
1044 unsigned char*,
1045 typename elfcpp::Elf_types<size>::Elf_Addr,
1046 section_size_type);
1047 };
1048
1049 class Relocate_comdat_behavior
1050 {
1051 public:
1052 // Decide what the linker should do for relocations that refer to
1053 // discarded comdat sections.
1054 inline Comdat_behavior
1055 get(const char* name)
1056 {
1057 gold::Default_comdat_behavior default_behavior;
1058 Comdat_behavior ret = default_behavior.get(name);
1059 if (ret == CB_WARNING)
1060 {
1061 if (size == 32
1062 && (strcmp(name, ".fixup") == 0
1063 || strcmp(name, ".got2") == 0))
1064 ret = CB_IGNORE;
1065 if (size == 64
1066 && (strcmp(name, ".opd") == 0
1067 || strcmp(name, ".toc") == 0
1068 || strcmp(name, ".toc1") == 0))
1069 ret = CB_IGNORE;
1070 }
1071 return ret;
1072 }
1073 };
1074
1075 // A class which returns the size required for a relocation type,
1076 // used while scanning relocs during a relocatable link.
1077 class Relocatable_size_for_reloc
1078 {
1079 public:
1080 unsigned int
1081 get_size_for_reloc(unsigned int, Relobj*)
1082 {
1083 gold_unreachable();
1084 return 0;
1085 }
1086 };
1087
1088 // Optimize the TLS relocation type based on what we know about the
1089 // symbol. IS_FINAL is true if the final address of this symbol is
1090 // known at link time.
1091
1092 tls::Tls_optimization
1093 optimize_tls_gd(bool is_final)
1094 {
1095 // If we are generating a shared library, then we can't do anything
1096 // in the linker.
1097 if (parameters->options().shared())
1098 return tls::TLSOPT_NONE;
1099
1100 if (!is_final)
1101 return tls::TLSOPT_TO_IE;
1102 return tls::TLSOPT_TO_LE;
1103 }
1104
1105 tls::Tls_optimization
1106 optimize_tls_ld()
1107 {
1108 if (parameters->options().shared())
1109 return tls::TLSOPT_NONE;
1110
1111 return tls::TLSOPT_TO_LE;
1112 }
1113
1114 tls::Tls_optimization
1115 optimize_tls_ie(bool is_final)
1116 {
1117 if (!is_final || parameters->options().shared())
1118 return tls::TLSOPT_NONE;
1119
1120 return tls::TLSOPT_TO_LE;
1121 }
1122
1123 // Create glink.
1124 void
1125 make_glink_section(Layout*);
1126
1127 // Create the PLT section.
1128 void
1129 make_plt_section(Symbol_table*, Layout*);
1130
1131 void
1132 make_iplt_section(Symbol_table*, Layout*);
1133
1134 void
1135 make_brlt_section(Layout*);
1136
1137 // Create a PLT entry for a global symbol.
1138 void
1139 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1140
1141 // Create a PLT entry for a local IFUNC symbol.
1142 void
1143 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1144 Sized_relobj_file<size, big_endian>*,
1145 unsigned int);
1146
1147
1148 // Create a GOT entry for local dynamic __tls_get_addr.
1149 unsigned int
1150 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1151 Sized_relobj_file<size, big_endian>* object);
1152
1153 unsigned int
1154 tlsld_got_offset() const
1155 {
1156 return this->tlsld_got_offset_;
1157 }
1158
1159 // Get the dynamic reloc section, creating it if necessary.
1160 Reloc_section*
1161 rela_dyn_section(Layout*);
1162
1163 // Similarly, but for ifunc symbols get the one for ifunc.
1164 Reloc_section*
1165 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1166
1167 // Copy a relocation against a global symbol.
1168 void
1169 copy_reloc(Symbol_table* symtab, Layout* layout,
1170 Sized_relobj_file<size, big_endian>* object,
1171 unsigned int shndx, Output_section* output_section,
1172 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1173 {
1174 this->copy_relocs_.copy_reloc(symtab, layout,
1175 symtab->get_sized_symbol<size>(sym),
1176 object, shndx, output_section,
1177 reloc, this->rela_dyn_section(layout));
1178 }
1179
1180 // Look over all the input sections, deciding where to place stubs.
1181 void
1182 group_sections(Layout*, const Task*);
1183
1184 // Sort output sections by address.
1185 struct Sort_sections
1186 {
1187 bool
1188 operator()(const Output_section* sec1, const Output_section* sec2)
1189 { return sec1->address() < sec2->address(); }
1190 };
1191
1192 class Branch_info
1193 {
1194 public:
1195 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1196 unsigned int data_shndx,
1197 Address r_offset,
1198 unsigned int r_type,
1199 unsigned int r_sym,
1200 Address addend)
1201 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1202 r_type_(r_type), r_sym_(r_sym), addend_(addend)
1203 { }
1204
1205 ~Branch_info()
1206 { }
1207
1208 // If this branch needs a plt call stub, or a long branch stub, make one.
1209 void
1210 make_stub(Stub_table<size, big_endian>*,
1211 Stub_table<size, big_endian>*,
1212 Symbol_table*) const;
1213
1214 private:
1215 // The branch location..
1216 Powerpc_relobj<size, big_endian>* object_;
1217 unsigned int shndx_;
1218 Address offset_;
1219 // ..and the branch type and destination.
1220 unsigned int r_type_;
1221 unsigned int r_sym_;
1222 Address addend_;
1223 };
1224
1225 // Information about this specific target which we pass to the
1226 // general Target structure.
1227 static Target::Target_info powerpc_info;
1228
1229 // The types of GOT entries needed for this platform.
1230 // These values are exposed to the ABI in an incremental link.
1231 // Do not renumber existing values without changing the version
1232 // number of the .gnu_incremental_inputs section.
1233 enum Got_type
1234 {
1235 GOT_TYPE_STANDARD,
1236 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1237 GOT_TYPE_DTPREL, // entry for @got@dtprel
1238 GOT_TYPE_TPREL // entry for @got@tprel
1239 };
1240
1241 // The GOT section.
1242 Output_data_got_powerpc<size, big_endian>* got_;
1243 // The PLT section. This is a container for a table of addresses,
1244 // and their relocations. Each address in the PLT has a dynamic
1245 // relocation (R_*_JMP_SLOT) and each address will have a
1246 // corresponding entry in .glink for lazy resolution of the PLT.
1247 // ppc32 initialises the PLT to point at the .glink entry, while
1248 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1249 // linker adds a stub that loads the PLT entry into ctr then
1250 // branches to ctr. There may be more than one stub for each PLT
1251 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1252 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1253 Output_data_plt_powerpc<size, big_endian>* plt_;
1254 // The IPLT section. Like plt_, this is a container for a table of
1255 // addresses and their relocations, specifically for STT_GNU_IFUNC
1256 // functions that resolve locally (STT_GNU_IFUNC functions that
1257 // don't resolve locally go in PLT). Unlike plt_, these have no
1258 // entry in .glink for lazy resolution, and the relocation section
1259 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1260 // the relocation section may contain relocations against
1261 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1262 // relocation section will appear at the end of other dynamic
1263 // relocations, so that ld.so applies these relocations after other
1264 // dynamic relocations. In a static executable, the relocation
1265 // section is emitted and marked with __rela_iplt_start and
1266 // __rela_iplt_end symbols.
1267 Output_data_plt_powerpc<size, big_endian>* iplt_;
1268 // Section holding long branch destinations.
1269 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1270 // The .glink section.
1271 Output_data_glink<size, big_endian>* glink_;
1272 // The dynamic reloc section.
1273 Reloc_section* rela_dyn_;
1274 // Relocs saved to avoid a COPY reloc.
1275 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1276 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1277 unsigned int tlsld_got_offset_;
1278
1279 Stub_tables stub_tables_;
1280 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1281 Branch_lookup_table branch_lookup_table_;
1282
1283 typedef std::vector<Branch_info> Branches;
1284 Branches branch_info_;
1285
1286 bool plt_thread_safe_;
1287 };
1288
1289 template<>
1290 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1291 {
1292 32, // size
1293 true, // is_big_endian
1294 elfcpp::EM_PPC, // machine_code
1295 false, // has_make_symbol
1296 false, // has_resolve
1297 false, // has_code_fill
1298 true, // is_default_stack_executable
1299 false, // can_icf_inline_merge_sections
1300 '\0', // wrap_char
1301 "/usr/lib/ld.so.1", // dynamic_linker
1302 0x10000000, // default_text_segment_address
1303 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1304 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1305 false, // isolate_execinstr
1306 0, // rosegment_gap
1307 elfcpp::SHN_UNDEF, // small_common_shndx
1308 elfcpp::SHN_UNDEF, // large_common_shndx
1309 0, // small_common_section_flags
1310 0, // large_common_section_flags
1311 NULL, // attributes_section
1312 NULL, // attributes_vendor
1313 "_start" // entry_symbol_name
1314 };
1315
1316 template<>
1317 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1318 {
1319 32, // size
1320 false, // is_big_endian
1321 elfcpp::EM_PPC, // machine_code
1322 false, // has_make_symbol
1323 false, // has_resolve
1324 false, // has_code_fill
1325 true, // is_default_stack_executable
1326 false, // can_icf_inline_merge_sections
1327 '\0', // wrap_char
1328 "/usr/lib/ld.so.1", // dynamic_linker
1329 0x10000000, // default_text_segment_address
1330 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1331 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1332 false, // isolate_execinstr
1333 0, // rosegment_gap
1334 elfcpp::SHN_UNDEF, // small_common_shndx
1335 elfcpp::SHN_UNDEF, // large_common_shndx
1336 0, // small_common_section_flags
1337 0, // large_common_section_flags
1338 NULL, // attributes_section
1339 NULL, // attributes_vendor
1340 "_start" // entry_symbol_name
1341 };
1342
1343 template<>
1344 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1345 {
1346 64, // size
1347 true, // is_big_endian
1348 elfcpp::EM_PPC64, // machine_code
1349 false, // has_make_symbol
1350 false, // has_resolve
1351 false, // has_code_fill
1352 true, // is_default_stack_executable
1353 false, // can_icf_inline_merge_sections
1354 '\0', // wrap_char
1355 "/usr/lib/ld.so.1", // dynamic_linker
1356 0x10000000, // default_text_segment_address
1357 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1358 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1359 false, // isolate_execinstr
1360 0, // rosegment_gap
1361 elfcpp::SHN_UNDEF, // small_common_shndx
1362 elfcpp::SHN_UNDEF, // large_common_shndx
1363 0, // small_common_section_flags
1364 0, // large_common_section_flags
1365 NULL, // attributes_section
1366 NULL, // attributes_vendor
1367 "_start" // entry_symbol_name
1368 };
1369
1370 template<>
1371 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1372 {
1373 64, // size
1374 false, // is_big_endian
1375 elfcpp::EM_PPC64, // machine_code
1376 false, // has_make_symbol
1377 false, // has_resolve
1378 false, // has_code_fill
1379 true, // is_default_stack_executable
1380 false, // can_icf_inline_merge_sections
1381 '\0', // wrap_char
1382 "/usr/lib/ld.so.1", // dynamic_linker
1383 0x10000000, // default_text_segment_address
1384 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1385 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1386 false, // isolate_execinstr
1387 0, // rosegment_gap
1388 elfcpp::SHN_UNDEF, // small_common_shndx
1389 elfcpp::SHN_UNDEF, // large_common_shndx
1390 0, // small_common_section_flags
1391 0, // large_common_section_flags
1392 NULL, // attributes_section
1393 NULL, // attributes_vendor
1394 "_start" // entry_symbol_name
1395 };
1396
1397 inline bool
1398 is_branch_reloc(unsigned int r_type)
1399 {
1400 return (r_type == elfcpp::R_POWERPC_REL24
1401 || r_type == elfcpp::R_PPC_PLTREL24
1402 || r_type == elfcpp::R_PPC_LOCAL24PC
1403 || r_type == elfcpp::R_POWERPC_REL14
1404 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1405 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1406 || r_type == elfcpp::R_POWERPC_ADDR24
1407 || r_type == elfcpp::R_POWERPC_ADDR14
1408 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1409 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1410 }
1411
1412 // If INSN is an opcode that may be used with an @tls operand, return
1413 // the transformed insn for TLS optimisation, otherwise return 0. If
1414 // REG is non-zero only match an insn with RB or RA equal to REG.
1415 uint32_t
1416 at_tls_transform(uint32_t insn, unsigned int reg)
1417 {
1418 if ((insn & (0x3f << 26)) != 31 << 26)
1419 return 0;
1420
1421 unsigned int rtra;
1422 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1423 rtra = insn & ((1 << 26) - (1 << 16));
1424 else if (((insn >> 16) & 0x1f) == reg)
1425 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1426 else
1427 return 0;
1428
1429 if ((insn & (0x3ff << 1)) == 266 << 1)
1430 // add -> addi
1431 insn = 14 << 26;
1432 else if ((insn & (0x1f << 1)) == 23 << 1
1433 && ((insn & (0x1f << 6)) < 14 << 6
1434 || ((insn & (0x1f << 6)) >= 16 << 6
1435 && (insn & (0x1f << 6)) < 24 << 6)))
1436 // load and store indexed -> dform
1437 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1438 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1439 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1440 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1441 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1442 // lwax -> lwa
1443 insn = (58 << 26) | 2;
1444 else
1445 return 0;
1446 insn |= rtra;
1447 return insn;
1448 }
1449
1450
1451 template<int size, bool big_endian>
1452 class Powerpc_relocate_functions
1453 {
1454 public:
1455 enum Overflow_check
1456 {
1457 CHECK_NONE,
1458 CHECK_SIGNED,
1459 CHECK_UNSIGNED,
1460 CHECK_BITFIELD,
1461 CHECK_LOW_INSN,
1462 CHECK_HIGH_INSN
1463 };
1464
1465 enum Status
1466 {
1467 STATUS_OK,
1468 STATUS_OVERFLOW
1469 };
1470
1471 private:
1472 typedef Powerpc_relocate_functions<size, big_endian> This;
1473 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1474
1475 template<int valsize>
1476 static inline bool
1477 has_overflow_signed(Address value)
1478 {
1479 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1480 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1481 limit <<= ((valsize - 1) >> 1);
1482 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1483 return value + limit > (limit << 1) - 1;
1484 }
1485
1486 template<int valsize>
1487 static inline bool
1488 has_overflow_unsigned(Address value)
1489 {
1490 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1491 limit <<= ((valsize - 1) >> 1);
1492 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1493 return value > (limit << 1) - 1;
1494 }
1495
1496 template<int valsize>
1497 static inline bool
1498 has_overflow_bitfield(Address value)
1499 {
1500 return (has_overflow_unsigned<valsize>(value)
1501 && has_overflow_signed<valsize>(value));
1502 }
1503
1504 template<int valsize>
1505 static inline Status
1506 overflowed(Address value, Overflow_check overflow)
1507 {
1508 if (overflow == CHECK_SIGNED)
1509 {
1510 if (has_overflow_signed<valsize>(value))
1511 return STATUS_OVERFLOW;
1512 }
1513 else if (overflow == CHECK_UNSIGNED)
1514 {
1515 if (has_overflow_unsigned<valsize>(value))
1516 return STATUS_OVERFLOW;
1517 }
1518 else if (overflow == CHECK_BITFIELD)
1519 {
1520 if (has_overflow_bitfield<valsize>(value))
1521 return STATUS_OVERFLOW;
1522 }
1523 return STATUS_OK;
1524 }
1525
1526 // Do a simple RELA relocation
1527 template<int valsize>
1528 static inline Status
1529 rela(unsigned char* view, Address value, Overflow_check overflow)
1530 {
1531 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1532 Valtype* wv = reinterpret_cast<Valtype*>(view);
1533 elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
1534 return overflowed<valsize>(value, overflow);
1535 }
1536
1537 template<int valsize>
1538 static inline Status
1539 rela(unsigned char* view,
1540 unsigned int right_shift,
1541 typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1542 Address value,
1543 Overflow_check overflow)
1544 {
1545 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1546 Valtype* wv = reinterpret_cast<Valtype*>(view);
1547 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
1548 Valtype reloc = value >> right_shift;
1549 val &= ~dst_mask;
1550 reloc &= dst_mask;
1551 elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
1552 return overflowed<valsize>(value >> right_shift, overflow);
1553 }
1554
1555 // Do a simple RELA relocation, unaligned.
1556 template<int valsize>
1557 static inline Status
1558 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1559 {
1560 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
1561 return overflowed<valsize>(value, overflow);
1562 }
1563
1564 template<int valsize>
1565 static inline Status
1566 rela_ua(unsigned char* view,
1567 unsigned int right_shift,
1568 typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1569 Address value,
1570 Overflow_check overflow)
1571 {
1572 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
1573 Valtype;
1574 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
1575 Valtype reloc = value >> right_shift;
1576 val &= ~dst_mask;
1577 reloc &= dst_mask;
1578 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
1579 return overflowed<valsize>(value >> right_shift, overflow);
1580 }
1581
1582 public:
1583 // R_PPC64_ADDR64: (Symbol + Addend)
1584 static inline void
1585 addr64(unsigned char* view, Address value)
1586 { This::template rela<64>(view, value, CHECK_NONE); }
1587
1588 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1589 static inline void
1590 addr64_u(unsigned char* view, Address value)
1591 { This::template rela_ua<64>(view, value, CHECK_NONE); }
1592
1593 // R_POWERPC_ADDR32: (Symbol + Addend)
1594 static inline Status
1595 addr32(unsigned char* view, Address value, Overflow_check overflow)
1596 { return This::template rela<32>(view, value, overflow); }
1597
1598 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1599 static inline Status
1600 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1601 { return This::template rela_ua<32>(view, value, overflow); }
1602
1603 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1604 static inline Status
1605 addr24(unsigned char* view, Address value, Overflow_check overflow)
1606 {
1607 Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
1608 if (overflow != CHECK_NONE && (value & 3) != 0)
1609 stat = STATUS_OVERFLOW;
1610 return stat;
1611 }
1612
1613 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1614 static inline Status
1615 addr16(unsigned char* view, Address value, Overflow_check overflow)
1616 { return This::template rela<16>(view, value, overflow); }
1617
1618 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1619 static inline Status
1620 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1621 { return This::template rela_ua<16>(view, value, overflow); }
1622
1623 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1624 static inline Status
1625 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1626 {
1627 Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1628 if (overflow != CHECK_NONE && (value & 3) != 0)
1629 stat = STATUS_OVERFLOW;
1630 return stat;
1631 }
1632
1633 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1634 static inline void
1635 addr16_hi(unsigned char* view, Address value)
1636 { This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
1637
1638 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1639 static inline void
1640 addr16_ha(unsigned char* view, Address value)
1641 { This::addr16_hi(view, value + 0x8000); }
1642
1643 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1644 static inline void
1645 addr16_hi2(unsigned char* view, Address value)
1646 { This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
1647
1648 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1649 static inline void
1650 addr16_ha2(unsigned char* view, Address value)
1651 { This::addr16_hi2(view, value + 0x8000); }
1652
1653 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1654 static inline void
1655 addr16_hi3(unsigned char* view, Address value)
1656 { This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
1657
1658 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1659 static inline void
1660 addr16_ha3(unsigned char* view, Address value)
1661 { This::addr16_hi3(view, value + 0x8000); }
1662
1663 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1664 static inline Status
1665 addr14(unsigned char* view, Address value, Overflow_check overflow)
1666 {
1667 Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1668 if (overflow != CHECK_NONE && (value & 3) != 0)
1669 stat = STATUS_OVERFLOW;
1670 return stat;
1671 }
1672 };
1673
1674 // Set ABI version for input and output.
1675
1676 template<int size, bool big_endian>
1677 void
1678 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1679 {
1680 this->e_flags_ |= ver;
1681 if (this->abiversion() != 0)
1682 {
1683 Target_powerpc<size, big_endian>* target =
1684 static_cast<Target_powerpc<size, big_endian>*>(
1685 parameters->sized_target<size, big_endian>());
1686 if (target->abiversion() == 0)
1687 target->set_abiversion(this->abiversion());
1688 else if (target->abiversion() != this->abiversion())
1689 gold_error(_("%s: ABI version %d is not compatible "
1690 "with ABI version %d output"),
1691 this->name().c_str(),
1692 this->abiversion(), target->abiversion());
1693
1694 }
1695 }
1696
1697 // Stash away the index of .got2 or .opd in a relocatable object, if
1698 // such a section exists.
1699
1700 template<int size, bool big_endian>
1701 bool
1702 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1703 Read_symbols_data* sd)
1704 {
1705 const unsigned char* const pshdrs = sd->section_headers->data();
1706 const unsigned char* namesu = sd->section_names->data();
1707 const char* names = reinterpret_cast<const char*>(namesu);
1708 section_size_type names_size = sd->section_names_size;
1709 const unsigned char* s;
1710
1711 s = this->template find_shdr<size, big_endian>(pshdrs,
1712 size == 32 ? ".got2" : ".opd",
1713 names, names_size, NULL);
1714 if (s != NULL)
1715 {
1716 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1717 this->special_ = ndx;
1718 if (size == 64)
1719 {
1720 if (this->abiversion() == 0)
1721 this->set_abiversion(1);
1722 else if (this->abiversion() > 1)
1723 gold_error(_("%s: .opd invalid in abiv%d"),
1724 this->name().c_str(), this->abiversion());
1725 }
1726 }
1727 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1728 }
1729
1730 // Examine .rela.opd to build info about function entry points.
1731
1732 template<int size, bool big_endian>
1733 void
1734 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1735 size_t reloc_count,
1736 const unsigned char* prelocs,
1737 const unsigned char* plocal_syms)
1738 {
1739 if (size == 64)
1740 {
1741 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1742 Reltype;
1743 const int reloc_size
1744 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1745 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1746 Address expected_off = 0;
1747 bool regular = true;
1748 unsigned int opd_ent_size = 0;
1749
1750 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1751 {
1752 Reltype reloc(prelocs);
1753 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1754 = reloc.get_r_info();
1755 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1756 if (r_type == elfcpp::R_PPC64_ADDR64)
1757 {
1758 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1759 typename elfcpp::Elf_types<size>::Elf_Addr value;
1760 bool is_ordinary;
1761 unsigned int shndx;
1762 if (r_sym < this->local_symbol_count())
1763 {
1764 typename elfcpp::Sym<size, big_endian>
1765 lsym(plocal_syms + r_sym * sym_size);
1766 shndx = lsym.get_st_shndx();
1767 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1768 value = lsym.get_st_value();
1769 }
1770 else
1771 shndx = this->symbol_section_and_value(r_sym, &value,
1772 &is_ordinary);
1773 this->set_opd_ent(reloc.get_r_offset(), shndx,
1774 value + reloc.get_r_addend());
1775 if (i == 2)
1776 {
1777 expected_off = reloc.get_r_offset();
1778 opd_ent_size = expected_off;
1779 }
1780 else if (expected_off != reloc.get_r_offset())
1781 regular = false;
1782 expected_off += opd_ent_size;
1783 }
1784 else if (r_type == elfcpp::R_PPC64_TOC)
1785 {
1786 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1787 regular = false;
1788 }
1789 else
1790 {
1791 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1792 this->name().c_str(), r_type);
1793 regular = false;
1794 }
1795 }
1796 if (reloc_count <= 2)
1797 opd_ent_size = this->section_size(this->opd_shndx());
1798 if (opd_ent_size != 24 && opd_ent_size != 16)
1799 regular = false;
1800 if (!regular)
1801 {
1802 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1803 this->name().c_str());
1804 opd_ent_size = 0;
1805 }
1806 }
1807 }
1808
1809 template<int size, bool big_endian>
1810 void
1811 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1812 {
1813 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1814 if (size == 64)
1815 {
1816 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1817 p != rd->relocs.end();
1818 ++p)
1819 {
1820 if (p->data_shndx == this->opd_shndx())
1821 {
1822 uint64_t opd_size = this->section_size(this->opd_shndx());
1823 gold_assert(opd_size == static_cast<size_t>(opd_size));
1824 if (opd_size != 0)
1825 {
1826 this->init_opd(opd_size);
1827 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1828 rd->local_symbols->data());
1829 }
1830 break;
1831 }
1832 }
1833 }
1834 }
1835
1836 // Read the symbols then set up st_other vector.
1837
1838 template<int size, bool big_endian>
1839 void
1840 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1841 {
1842 this->base_read_symbols(sd);
1843 if (size == 64)
1844 {
1845 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1846 const unsigned char* const pshdrs = sd->section_headers->data();
1847 const unsigned int loccount = this->do_local_symbol_count();
1848 if (loccount != 0)
1849 {
1850 this->st_other_.resize(loccount);
1851 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1852 off_t locsize = loccount * sym_size;
1853 const unsigned int symtab_shndx = this->symtab_shndx();
1854 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1855 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1856 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1857 locsize, true, false);
1858 psyms += sym_size;
1859 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1860 {
1861 elfcpp::Sym<size, big_endian> sym(psyms);
1862 unsigned char st_other = sym.get_st_other();
1863 this->st_other_[i] = st_other;
1864 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1865 {
1866 if (this->abiversion() == 0)
1867 this->set_abiversion(2);
1868 else if (this->abiversion() < 2)
1869 gold_error(_("%s: local symbol %d has invalid st_other"
1870 " for ABI version 1"),
1871 this->name().c_str(), i);
1872 }
1873 }
1874 }
1875 }
1876 }
1877
1878 template<int size, bool big_endian>
1879 void
1880 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1881 {
1882 this->e_flags_ |= ver;
1883 if (this->abiversion() != 0)
1884 {
1885 Target_powerpc<size, big_endian>* target =
1886 static_cast<Target_powerpc<size, big_endian>*>(
1887 parameters->sized_target<size, big_endian>());
1888 if (target->abiversion() == 0)
1889 target->set_abiversion(this->abiversion());
1890 else if (target->abiversion() != this->abiversion())
1891 gold_error(_("%s: ABI version %d is not compatible "
1892 "with ABI version %d output"),
1893 this->name().c_str(),
1894 this->abiversion(), target->abiversion());
1895
1896 }
1897 }
1898
1899 // Call Sized_dynobj::base_read_symbols to read the symbols then
1900 // read .opd from a dynamic object, filling in opd_ent_ vector,
1901
1902 template<int size, bool big_endian>
1903 void
1904 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1905 {
1906 this->base_read_symbols(sd);
1907 if (size == 64)
1908 {
1909 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1910 const unsigned char* const pshdrs = sd->section_headers->data();
1911 const unsigned char* namesu = sd->section_names->data();
1912 const char* names = reinterpret_cast<const char*>(namesu);
1913 const unsigned char* s = NULL;
1914 const unsigned char* opd;
1915 section_size_type opd_size;
1916
1917 // Find and read .opd section.
1918 while (1)
1919 {
1920 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1921 sd->section_names_size,
1922 s);
1923 if (s == NULL)
1924 return;
1925
1926 typename elfcpp::Shdr<size, big_endian> shdr(s);
1927 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1928 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1929 {
1930 if (this->abiversion() == 0)
1931 this->set_abiversion(1);
1932 else if (this->abiversion() > 1)
1933 gold_error(_("%s: .opd invalid in abiv%d"),
1934 this->name().c_str(), this->abiversion());
1935
1936 this->opd_shndx_ = (s - pshdrs) / shdr_size;
1937 this->opd_address_ = shdr.get_sh_addr();
1938 opd_size = convert_to_section_size_type(shdr.get_sh_size());
1939 opd = this->get_view(shdr.get_sh_offset(), opd_size,
1940 true, false);
1941 break;
1942 }
1943 }
1944
1945 // Build set of executable sections.
1946 // Using a set is probably overkill. There is likely to be only
1947 // a few executable sections, typically .init, .text and .fini,
1948 // and they are generally grouped together.
1949 typedef std::set<Sec_info> Exec_sections;
1950 Exec_sections exec_sections;
1951 s = pshdrs;
1952 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1953 {
1954 typename elfcpp::Shdr<size, big_endian> shdr(s);
1955 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1956 && ((shdr.get_sh_flags()
1957 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1958 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1959 && shdr.get_sh_size() != 0)
1960 {
1961 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1962 shdr.get_sh_size(), i));
1963 }
1964 }
1965 if (exec_sections.empty())
1966 return;
1967
1968 // Look over the OPD entries. This is complicated by the fact
1969 // that some binaries will use two-word entries while others
1970 // will use the standard three-word entries. In most cases
1971 // the third word (the environment pointer for languages like
1972 // Pascal) is unused and will be zero. If the third word is
1973 // used it should not be pointing into executable sections,
1974 // I think.
1975 this->init_opd(opd_size);
1976 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
1977 {
1978 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
1979 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
1980 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
1981 if (val == 0)
1982 // Chances are that this is the third word of an OPD entry.
1983 continue;
1984 typename Exec_sections::const_iterator e
1985 = exec_sections.upper_bound(Sec_info(val, 0, 0));
1986 if (e != exec_sections.begin())
1987 {
1988 --e;
1989 if (e->start <= val && val < e->start + e->len)
1990 {
1991 // We have an address in an executable section.
1992 // VAL ought to be the function entry, set it up.
1993 this->set_opd_ent(p - opd, e->shndx, val);
1994 // Skip second word of OPD entry, the TOC pointer.
1995 p += 8;
1996 }
1997 }
1998 // If we didn't match any executable sections, we likely
1999 // have a non-zero third word in the OPD entry.
2000 }
2001 }
2002 }
2003
2004 // Set up some symbols.
2005
2006 template<int size, bool big_endian>
2007 void
2008 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2009 Symbol_table* symtab,
2010 Layout* layout)
2011 {
2012 if (size == 32)
2013 {
2014 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2015 // undefined when scanning relocs (and thus requires
2016 // non-relative dynamic relocs). The proper value will be
2017 // updated later.
2018 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2019 if (gotsym != NULL && gotsym->is_undefined())
2020 {
2021 Target_powerpc<size, big_endian>* target =
2022 static_cast<Target_powerpc<size, big_endian>*>(
2023 parameters->sized_target<size, big_endian>());
2024 Output_data_got_powerpc<size, big_endian>* got
2025 = target->got_section(symtab, layout);
2026 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2027 Symbol_table::PREDEFINED,
2028 got, 0, 0,
2029 elfcpp::STT_OBJECT,
2030 elfcpp::STB_LOCAL,
2031 elfcpp::STV_HIDDEN, 0,
2032 false, false);
2033 }
2034
2035 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2036 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2037 if (sdasym != NULL && sdasym->is_undefined())
2038 {
2039 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2040 Output_section* os
2041 = layout->add_output_section_data(".sdata", 0,
2042 elfcpp::SHF_ALLOC
2043 | elfcpp::SHF_WRITE,
2044 sdata, ORDER_SMALL_DATA, false);
2045 symtab->define_in_output_data("_SDA_BASE_", NULL,
2046 Symbol_table::PREDEFINED,
2047 os, 32768, 0, elfcpp::STT_OBJECT,
2048 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2049 0, false, false);
2050 }
2051 }
2052 else
2053 {
2054 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2055 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2056 if (gotsym != NULL && gotsym->is_undefined())
2057 {
2058 Target_powerpc<size, big_endian>* target =
2059 static_cast<Target_powerpc<size, big_endian>*>(
2060 parameters->sized_target<size, big_endian>());
2061 Output_data_got_powerpc<size, big_endian>* got
2062 = target->got_section(symtab, layout);
2063 symtab->define_in_output_data(".TOC.", NULL,
2064 Symbol_table::PREDEFINED,
2065 got, 0x8000, 0,
2066 elfcpp::STT_OBJECT,
2067 elfcpp::STB_LOCAL,
2068 elfcpp::STV_HIDDEN, 0,
2069 false, false);
2070 }
2071 }
2072 }
2073
2074 // Set up PowerPC target specific relobj.
2075
2076 template<int size, bool big_endian>
2077 Object*
2078 Target_powerpc<size, big_endian>::do_make_elf_object(
2079 const std::string& name,
2080 Input_file* input_file,
2081 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2082 {
2083 int et = ehdr.get_e_type();
2084 // ET_EXEC files are valid input for --just-symbols/-R,
2085 // and we treat them as relocatable objects.
2086 if (et == elfcpp::ET_REL
2087 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2088 {
2089 Powerpc_relobj<size, big_endian>* obj =
2090 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2091 obj->setup();
2092 return obj;
2093 }
2094 else if (et == elfcpp::ET_DYN)
2095 {
2096 Powerpc_dynobj<size, big_endian>* obj =
2097 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2098 obj->setup();
2099 return obj;
2100 }
2101 else
2102 {
2103 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2104 return NULL;
2105 }
2106 }
2107
2108 template<int size, bool big_endian>
2109 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2110 {
2111 public:
2112 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2113 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2114
2115 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2116 : Output_data_got<size, big_endian>(),
2117 symtab_(symtab), layout_(layout),
2118 header_ent_cnt_(size == 32 ? 3 : 1),
2119 header_index_(size == 32 ? 0x2000 : 0)
2120 { }
2121
2122 // Override all the Output_data_got methods we use so as to first call
2123 // reserve_ent().
2124 bool
2125 add_global(Symbol* gsym, unsigned int got_type)
2126 {
2127 this->reserve_ent();
2128 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2129 }
2130
2131 bool
2132 add_global_plt(Symbol* gsym, unsigned int got_type)
2133 {
2134 this->reserve_ent();
2135 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2136 }
2137
2138 bool
2139 add_global_tls(Symbol* gsym, unsigned int got_type)
2140 { return this->add_global_plt(gsym, got_type); }
2141
2142 void
2143 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2144 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2145 {
2146 this->reserve_ent();
2147 Output_data_got<size, big_endian>::
2148 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2149 }
2150
2151 void
2152 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2153 Output_data_reloc_generic* rel_dyn,
2154 unsigned int r_type_1, unsigned int r_type_2)
2155 {
2156 this->reserve_ent(2);
2157 Output_data_got<size, big_endian>::
2158 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2159 }
2160
2161 bool
2162 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2163 {
2164 this->reserve_ent();
2165 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2166 got_type);
2167 }
2168
2169 bool
2170 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2171 {
2172 this->reserve_ent();
2173 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2174 got_type);
2175 }
2176
2177 bool
2178 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2179 { return this->add_local_plt(object, sym_index, got_type); }
2180
2181 void
2182 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2183 unsigned int got_type,
2184 Output_data_reloc_generic* rel_dyn,
2185 unsigned int r_type)
2186 {
2187 this->reserve_ent(2);
2188 Output_data_got<size, big_endian>::
2189 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2190 }
2191
2192 unsigned int
2193 add_constant(Valtype constant)
2194 {
2195 this->reserve_ent();
2196 return Output_data_got<size, big_endian>::add_constant(constant);
2197 }
2198
2199 unsigned int
2200 add_constant_pair(Valtype c1, Valtype c2)
2201 {
2202 this->reserve_ent(2);
2203 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2204 }
2205
2206 // Offset of _GLOBAL_OFFSET_TABLE_.
2207 unsigned int
2208 g_o_t() const
2209 {
2210 return this->got_offset(this->header_index_);
2211 }
2212
2213 // Offset of base used to access the GOT/TOC.
2214 // The got/toc pointer reg will be set to this value.
2215 Valtype
2216 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2217 {
2218 if (size == 32)
2219 return this->g_o_t();
2220 else
2221 return (this->output_section()->address()
2222 + object->toc_base_offset()
2223 - this->address());
2224 }
2225
2226 // Ensure our GOT has a header.
2227 void
2228 set_final_data_size()
2229 {
2230 if (this->header_ent_cnt_ != 0)
2231 this->make_header();
2232 Output_data_got<size, big_endian>::set_final_data_size();
2233 }
2234
2235 // First word of GOT header needs some values that are not
2236 // handled by Output_data_got so poke them in here.
2237 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2238 void
2239 do_write(Output_file* of)
2240 {
2241 Valtype val = 0;
2242 if (size == 32 && this->layout_->dynamic_data() != NULL)
2243 val = this->layout_->dynamic_section()->address();
2244 if (size == 64)
2245 val = this->output_section()->address() + 0x8000;
2246 this->replace_constant(this->header_index_, val);
2247 Output_data_got<size, big_endian>::do_write(of);
2248 }
2249
2250 private:
2251 void
2252 reserve_ent(unsigned int cnt = 1)
2253 {
2254 if (this->header_ent_cnt_ == 0)
2255 return;
2256 if (this->num_entries() + cnt > this->header_index_)
2257 this->make_header();
2258 }
2259
2260 void
2261 make_header()
2262 {
2263 this->header_ent_cnt_ = 0;
2264 this->header_index_ = this->num_entries();
2265 if (size == 32)
2266 {
2267 Output_data_got<size, big_endian>::add_constant(0);
2268 Output_data_got<size, big_endian>::add_constant(0);
2269 Output_data_got<size, big_endian>::add_constant(0);
2270
2271 // Define _GLOBAL_OFFSET_TABLE_ at the header
2272 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2273 if (gotsym != NULL)
2274 {
2275 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2276 sym->set_value(this->g_o_t());
2277 }
2278 else
2279 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2280 Symbol_table::PREDEFINED,
2281 this, this->g_o_t(), 0,
2282 elfcpp::STT_OBJECT,
2283 elfcpp::STB_LOCAL,
2284 elfcpp::STV_HIDDEN, 0,
2285 false, false);
2286 }
2287 else
2288 Output_data_got<size, big_endian>::add_constant(0);
2289 }
2290
2291 // Stashed pointers.
2292 Symbol_table* symtab_;
2293 Layout* layout_;
2294
2295 // GOT header size.
2296 unsigned int header_ent_cnt_;
2297 // GOT header index.
2298 unsigned int header_index_;
2299 };
2300
2301 // Get the GOT section, creating it if necessary.
2302
2303 template<int size, bool big_endian>
2304 Output_data_got_powerpc<size, big_endian>*
2305 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2306 Layout* layout)
2307 {
2308 if (this->got_ == NULL)
2309 {
2310 gold_assert(symtab != NULL && layout != NULL);
2311
2312 this->got_
2313 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2314
2315 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2316 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2317 this->got_, ORDER_DATA, false);
2318 }
2319
2320 return this->got_;
2321 }
2322
2323 // Get the dynamic reloc section, creating it if necessary.
2324
2325 template<int size, bool big_endian>
2326 typename Target_powerpc<size, big_endian>::Reloc_section*
2327 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2328 {
2329 if (this->rela_dyn_ == NULL)
2330 {
2331 gold_assert(layout != NULL);
2332 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2333 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2334 elfcpp::SHF_ALLOC, this->rela_dyn_,
2335 ORDER_DYNAMIC_RELOCS, false);
2336 }
2337 return this->rela_dyn_;
2338 }
2339
2340 // Similarly, but for ifunc symbols get the one for ifunc.
2341
2342 template<int size, bool big_endian>
2343 typename Target_powerpc<size, big_endian>::Reloc_section*
2344 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2345 Layout* layout,
2346 bool for_ifunc)
2347 {
2348 if (!for_ifunc)
2349 return this->rela_dyn_section(layout);
2350
2351 if (this->iplt_ == NULL)
2352 this->make_iplt_section(symtab, layout);
2353 return this->iplt_->rel_plt();
2354 }
2355
2356 class Stub_control
2357 {
2358 public:
2359 // Determine the stub group size. The group size is the absolute
2360 // value of the parameter --stub-group-size. If --stub-group-size
2361 // is passed a negative value, we restrict stubs to be always before
2362 // the stubbed branches.
2363 Stub_control(int32_t size)
2364 : state_(NO_GROUP), stub_group_size_(abs(size)),
2365 stub14_group_size_(abs(size)),
2366 stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
2367 group_end_addr_(0), owner_(NULL), output_section_(NULL)
2368 {
2369 if (stub_group_size_ == 1)
2370 {
2371 // Default values.
2372 if (stubs_always_before_branch_)
2373 {
2374 stub_group_size_ = 0x1e00000;
2375 stub14_group_size_ = 0x7800;
2376 }
2377 else
2378 {
2379 stub_group_size_ = 0x1c00000;
2380 stub14_group_size_ = 0x7000;
2381 }
2382 suppress_size_errors_ = true;
2383 }
2384 }
2385
2386 // Return true iff input section can be handled by current stub
2387 // group.
2388 bool
2389 can_add_to_stub_group(Output_section* o,
2390 const Output_section::Input_section* i,
2391 bool has14);
2392
2393 const Output_section::Input_section*
2394 owner()
2395 { return owner_; }
2396
2397 Output_section*
2398 output_section()
2399 { return output_section_; }
2400
2401 private:
2402 typedef enum
2403 {
2404 NO_GROUP,
2405 FINDING_STUB_SECTION,
2406 HAS_STUB_SECTION
2407 } State;
2408
2409 State state_;
2410 uint32_t stub_group_size_;
2411 uint32_t stub14_group_size_;
2412 bool stubs_always_before_branch_;
2413 bool suppress_size_errors_;
2414 uint64_t group_end_addr_;
2415 const Output_section::Input_section* owner_;
2416 Output_section* output_section_;
2417 };
2418
2419 // Return true iff input section can be handled by current stub
2420 // group.
2421
2422 bool
2423 Stub_control::can_add_to_stub_group(Output_section* o,
2424 const Output_section::Input_section* i,
2425 bool has14)
2426 {
2427 uint32_t group_size
2428 = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2429 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2430 uint64_t this_size;
2431 uint64_t start_addr = o->address();
2432
2433 if (whole_sec)
2434 // .init and .fini sections are pasted together to form a single
2435 // function. We can't be adding stubs in the middle of the function.
2436 this_size = o->data_size();
2437 else
2438 {
2439 start_addr += i->relobj()->output_section_offset(i->shndx());
2440 this_size = i->data_size();
2441 }
2442 uint64_t end_addr = start_addr + this_size;
2443 bool toobig = this_size > group_size;
2444
2445 if (toobig && !this->suppress_size_errors_)
2446 gold_warning(_("%s:%s exceeds group size"),
2447 i->relobj()->name().c_str(),
2448 i->relobj()->section_name(i->shndx()).c_str());
2449
2450 if (this->state_ != HAS_STUB_SECTION
2451 && (!whole_sec || this->output_section_ != o)
2452 && (this->state_ == NO_GROUP
2453 || this->group_end_addr_ - end_addr < group_size))
2454 {
2455 this->owner_ = i;
2456 this->output_section_ = o;
2457 }
2458
2459 if (this->state_ == NO_GROUP)
2460 {
2461 this->state_ = FINDING_STUB_SECTION;
2462 this->group_end_addr_ = end_addr;
2463 }
2464 else if (this->group_end_addr_ - start_addr < group_size)
2465 ;
2466 // Adding this section would make the group larger than GROUP_SIZE.
2467 else if (this->state_ == FINDING_STUB_SECTION
2468 && !this->stubs_always_before_branch_
2469 && !toobig)
2470 {
2471 // But wait, there's more! Input sections up to GROUP_SIZE
2472 // bytes before the stub table can be handled by it too.
2473 this->state_ = HAS_STUB_SECTION;
2474 this->group_end_addr_ = end_addr;
2475 }
2476 else
2477 {
2478 this->state_ = NO_GROUP;
2479 return false;
2480 }
2481 return true;
2482 }
2483
2484 // Look over all the input sections, deciding where to place stubs.
2485
2486 template<int size, bool big_endian>
2487 void
2488 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2489 const Task*)
2490 {
2491 Stub_control stub_control(parameters->options().stub_group_size());
2492
2493 // Group input sections and insert stub table
2494 Stub_table<size, big_endian>* stub_table = NULL;
2495 Layout::Section_list section_list;
2496 layout->get_executable_sections(&section_list);
2497 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2498 for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2499 o != section_list.rend();
2500 ++o)
2501 {
2502 typedef Output_section::Input_section_list Input_section_list;
2503 for (Input_section_list::const_reverse_iterator i
2504 = (*o)->input_sections().rbegin();
2505 i != (*o)->input_sections().rend();
2506 ++i)
2507 {
2508 if (i->is_input_section())
2509 {
2510 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2511 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2512 bool has14 = ppcobj->has_14bit_branch(i->shndx());
2513 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2514 {
2515 stub_table->init(stub_control.owner(),
2516 stub_control.output_section());
2517 stub_table = NULL;
2518 }
2519 if (stub_table == NULL)
2520 stub_table = this->new_stub_table();
2521 ppcobj->set_stub_table(i->shndx(), stub_table);
2522 }
2523 }
2524 }
2525 if (stub_table != NULL)
2526 {
2527 const Output_section::Input_section* i = stub_control.owner();
2528 if (!i->is_input_section())
2529 {
2530 // Corner case. A new stub group was made for the first
2531 // section (last one looked at here) for some reason, but
2532 // the first section is already being used as the owner for
2533 // a stub table for following sections. Force it into that
2534 // stub group.
2535 gold_assert(this->stub_tables_.size() >= 2);
2536 this->stub_tables_.pop_back();
2537 delete stub_table;
2538 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2539 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2540 ppcobj->set_stub_table(i->shndx(), this->stub_tables_.back());
2541 }
2542 else
2543 stub_table->init(i, stub_control.output_section());
2544 }
2545 }
2546
2547 // If this branch needs a plt call stub, or a long branch stub, make one.
2548
2549 template<int size, bool big_endian>
2550 void
2551 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2552 Stub_table<size, big_endian>* stub_table,
2553 Stub_table<size, big_endian>* ifunc_stub_table,
2554 Symbol_table* symtab) const
2555 {
2556 Symbol* sym = this->object_->global_symbol(this->r_sym_);
2557 if (sym != NULL && sym->is_forwarder())
2558 sym = symtab->resolve_forwards(sym);
2559 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2560 Target_powerpc<size, big_endian>* target =
2561 static_cast<Target_powerpc<size, big_endian>*>(
2562 parameters->sized_target<size, big_endian>());
2563 if (gsym != NULL
2564 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2565 : this->object_->local_has_plt_offset(this->r_sym_))
2566 {
2567 if (size == 64
2568 && gsym != NULL
2569 && target->abiversion() >= 2
2570 && !parameters->options().output_is_position_independent()
2571 && !is_branch_reloc(this->r_type_))
2572 target->glink_section()->add_global_entry(gsym);
2573 else
2574 {
2575 if (stub_table == NULL)
2576 stub_table = this->object_->stub_table(this->shndx_);
2577 if (stub_table == NULL)
2578 {
2579 // This is a ref from a data section to an ifunc symbol.
2580 stub_table = ifunc_stub_table;
2581 }
2582 gold_assert(stub_table != NULL);
2583 if (gsym != NULL)
2584 stub_table->add_plt_call_entry(this->object_, gsym,
2585 this->r_type_, this->addend_);
2586 else
2587 stub_table->add_plt_call_entry(this->object_, this->r_sym_,
2588 this->r_type_, this->addend_);
2589 }
2590 }
2591 else
2592 {
2593 unsigned long max_branch_offset;
2594 if (this->r_type_ == elfcpp::R_POWERPC_REL14
2595 || this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
2596 || this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2597 max_branch_offset = 1 << 15;
2598 else if (this->r_type_ == elfcpp::R_POWERPC_REL24
2599 || this->r_type_ == elfcpp::R_PPC_PLTREL24
2600 || this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
2601 max_branch_offset = 1 << 25;
2602 else
2603 return;
2604 Address from = this->object_->get_output_section_offset(this->shndx_);
2605 gold_assert(from != invalid_address);
2606 from += (this->object_->output_section(this->shndx_)->address()
2607 + this->offset_);
2608 Address to;
2609 if (gsym != NULL)
2610 {
2611 switch (gsym->source())
2612 {
2613 case Symbol::FROM_OBJECT:
2614 {
2615 Object* symobj = gsym->object();
2616 if (symobj->is_dynamic()
2617 || symobj->pluginobj() != NULL)
2618 return;
2619 bool is_ordinary;
2620 unsigned int shndx = gsym->shndx(&is_ordinary);
2621 if (shndx == elfcpp::SHN_UNDEF)
2622 return;
2623 }
2624 break;
2625
2626 case Symbol::IS_UNDEFINED:
2627 return;
2628
2629 default:
2630 break;
2631 }
2632 Symbol_table::Compute_final_value_status status;
2633 to = symtab->compute_final_value<size>(gsym, &status);
2634 if (status != Symbol_table::CFVS_OK)
2635 return;
2636 if (size == 64)
2637 to += this->object_->ppc64_local_entry_offset(gsym);
2638 }
2639 else
2640 {
2641 const Symbol_value<size>* psymval
2642 = this->object_->local_symbol(this->r_sym_);
2643 Symbol_value<size> symval;
2644 typedef Sized_relobj_file<size, big_endian> ObjType;
2645 typename ObjType::Compute_final_local_value_status status
2646 = this->object_->compute_final_local_value(this->r_sym_, psymval,
2647 &symval, symtab);
2648 if (status != ObjType::CFLV_OK
2649 || !symval.has_output_value())
2650 return;
2651 to = symval.value(this->object_, 0);
2652 if (size == 64)
2653 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2654 }
2655 to += this->addend_;
2656 if (stub_table == NULL)
2657 stub_table = this->object_->stub_table(this->shndx_);
2658 if (size == 64 && target->abiversion() < 2)
2659 {
2660 unsigned int dest_shndx;
2661 to = target->symval_for_branch(symtab, to, gsym,
2662 this->object_, &dest_shndx);
2663 }
2664 Address delta = to - from;
2665 if (delta + max_branch_offset >= 2 * max_branch_offset)
2666 {
2667 if (stub_table == NULL)
2668 {
2669 gold_warning(_("%s:%s: branch in non-executable section,"
2670 " no long branch stub for you"),
2671 this->object_->name().c_str(),
2672 this->object_->section_name(this->shndx_).c_str());
2673 return;
2674 }
2675 stub_table->add_long_branch_entry(this->object_, to);
2676 }
2677 }
2678 }
2679
2680 // Relaxation hook. This is where we do stub generation.
2681
2682 template<int size, bool big_endian>
2683 bool
2684 Target_powerpc<size, big_endian>::do_relax(int pass,
2685 const Input_objects*,
2686 Symbol_table* symtab,
2687 Layout* layout,
2688 const Task* task)
2689 {
2690 unsigned int prev_brlt_size = 0;
2691 if (pass == 1)
2692 {
2693 bool thread_safe
2694 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2695 if (size == 64
2696 && this->abiversion() < 2
2697 && !thread_safe
2698 && !parameters->options().user_set_plt_thread_safe())
2699 {
2700 static const char* const thread_starter[] =
2701 {
2702 "pthread_create",
2703 /* libstdc++ */
2704 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2705 /* librt */
2706 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2707 "mq_notify", "create_timer",
2708 /* libanl */
2709 "getaddrinfo_a",
2710 /* libgomp */
2711 "GOMP_parallel",
2712 "GOMP_parallel_start",
2713 "GOMP_parallel_loop_static",
2714 "GOMP_parallel_loop_static_start",
2715 "GOMP_parallel_loop_dynamic",
2716 "GOMP_parallel_loop_dynamic_start",
2717 "GOMP_parallel_loop_guided",
2718 "GOMP_parallel_loop_guided_start",
2719 "GOMP_parallel_loop_runtime",
2720 "GOMP_parallel_loop_runtime_start",
2721 "GOMP_parallel_sections",
2722 "GOMP_parallel_sections_start",
2723 };
2724
2725 if (parameters->options().shared())
2726 thread_safe = true;
2727 else
2728 {
2729 for (unsigned int i = 0;
2730 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2731 i++)
2732 {
2733 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2734 thread_safe = (sym != NULL
2735 && sym->in_reg()
2736 && sym->in_real_elf());
2737 if (thread_safe)
2738 break;
2739 }
2740 }
2741 }
2742 this->plt_thread_safe_ = thread_safe;
2743 this->group_sections(layout, task);
2744 }
2745
2746 // We need address of stub tables valid for make_stub.
2747 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2748 p != this->stub_tables_.end();
2749 ++p)
2750 {
2751 const Powerpc_relobj<size, big_endian>* object
2752 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2753 Address off = object->get_output_section_offset((*p)->shndx());
2754 gold_assert(off != invalid_address);
2755 Output_section* os = (*p)->output_section();
2756 (*p)->set_address_and_size(os, off);
2757 }
2758
2759 if (pass != 1)
2760 {
2761 // Clear plt call stubs, long branch stubs and branch lookup table.
2762 prev_brlt_size = this->branch_lookup_table_.size();
2763 this->branch_lookup_table_.clear();
2764 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2765 p != this->stub_tables_.end();
2766 ++p)
2767 {
2768 (*p)->clear_stubs();
2769 }
2770 }
2771
2772 // Build all the stubs.
2773 Stub_table<size, big_endian>* ifunc_stub_table
2774 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2775 Stub_table<size, big_endian>* one_stub_table
2776 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2777 for (typename Branches::const_iterator b = this->branch_info_.begin();
2778 b != this->branch_info_.end();
2779 b++)
2780 {
2781 b->make_stub(one_stub_table, ifunc_stub_table, symtab);
2782 }
2783
2784 // Did anything change size?
2785 unsigned int num_huge_branches = this->branch_lookup_table_.size();
2786 bool again = num_huge_branches != prev_brlt_size;
2787 if (size == 64 && num_huge_branches != 0)
2788 this->make_brlt_section(layout);
2789 if (size == 64 && again)
2790 this->brlt_section_->set_current_size(num_huge_branches);
2791
2792 typedef Unordered_set<Output_section*> Output_sections;
2793 Output_sections os_need_update;
2794 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2795 p != this->stub_tables_.end();
2796 ++p)
2797 {
2798 if ((*p)->size_update())
2799 {
2800 again = true;
2801 (*p)->add_eh_frame(layout);
2802 os_need_update.insert((*p)->output_section());
2803 }
2804 }
2805
2806 // Set output section offsets for all input sections in an output
2807 // section that just changed size. Anything past the stubs will
2808 // need updating.
2809 for (typename Output_sections::iterator p = os_need_update.begin();
2810 p != os_need_update.end();
2811 p++)
2812 {
2813 Output_section* os = *p;
2814 Address off = 0;
2815 typedef Output_section::Input_section_list Input_section_list;
2816 for (Input_section_list::const_iterator i = os->input_sections().begin();
2817 i != os->input_sections().end();
2818 ++i)
2819 {
2820 off = align_address(off, i->addralign());
2821 if (i->is_input_section() || i->is_relaxed_input_section())
2822 i->relobj()->set_section_offset(i->shndx(), off);
2823 if (i->is_relaxed_input_section())
2824 {
2825 Stub_table<size, big_endian>* stub_table
2826 = static_cast<Stub_table<size, big_endian>*>(
2827 i->relaxed_input_section());
2828 off += stub_table->set_address_and_size(os, off);
2829 }
2830 else
2831 off += i->data_size();
2832 }
2833 // If .branch_lt is part of this output section, then we have
2834 // just done the offset adjustment.
2835 os->clear_section_offsets_need_adjustment();
2836 }
2837
2838 if (size == 64
2839 && !again
2840 && num_huge_branches != 0
2841 && parameters->options().output_is_position_independent())
2842 {
2843 // Fill in the BRLT relocs.
2844 this->brlt_section_->reset_brlt_sizes();
2845 for (typename Branch_lookup_table::const_iterator p
2846 = this->branch_lookup_table_.begin();
2847 p != this->branch_lookup_table_.end();
2848 ++p)
2849 {
2850 this->brlt_section_->add_reloc(p->first, p->second);
2851 }
2852 this->brlt_section_->finalize_brlt_sizes();
2853 }
2854 return again;
2855 }
2856
2857 template<int size, bool big_endian>
2858 void
2859 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2860 unsigned char* oview,
2861 uint64_t* paddress,
2862 off_t* plen) const
2863 {
2864 uint64_t address = plt->address();
2865 off_t len = plt->data_size();
2866
2867 if (plt == this->glink_)
2868 {
2869 // See Output_data_glink::do_write() for glink contents.
2870 if (len == 0)
2871 {
2872 gold_assert(parameters->doing_static_link());
2873 // Static linking may need stubs, to support ifunc and long
2874 // branches. We need to create an output section for
2875 // .eh_frame early in the link process, to have a place to
2876 // attach stub .eh_frame info. We also need to have
2877 // registered a CIE that matches the stub CIE. Both of
2878 // these requirements are satisfied by creating an FDE and
2879 // CIE for .glink, even though static linking will leave
2880 // .glink zero length.
2881 // ??? Hopefully generating an FDE with a zero address range
2882 // won't confuse anything that consumes .eh_frame info.
2883 }
2884 else if (size == 64)
2885 {
2886 // There is one word before __glink_PLTresolve
2887 address += 8;
2888 len -= 8;
2889 }
2890 else if (parameters->options().output_is_position_independent())
2891 {
2892 // There are two FDEs for a position independent glink.
2893 // The first covers the branch table, the second
2894 // __glink_PLTresolve at the end of glink.
2895 off_t resolve_size = this->glink_->pltresolve_size;
2896 if (oview[9] == elfcpp::DW_CFA_nop)
2897 len -= resolve_size;
2898 else
2899 {
2900 address += len - resolve_size;
2901 len = resolve_size;
2902 }
2903 }
2904 }
2905 else
2906 {
2907 // Must be a stub table.
2908 const Stub_table<size, big_endian>* stub_table
2909 = static_cast<const Stub_table<size, big_endian>*>(plt);
2910 uint64_t stub_address = stub_table->stub_address();
2911 len -= stub_address - address;
2912 address = stub_address;
2913 }
2914
2915 *paddress = address;
2916 *plen = len;
2917 }
2918
2919 // A class to handle the PLT data.
2920
2921 template<int size, bool big_endian>
2922 class Output_data_plt_powerpc : public Output_section_data_build
2923 {
2924 public:
2925 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2926 size, big_endian> Reloc_section;
2927
2928 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
2929 Reloc_section* plt_rel,
2930 const char* name)
2931 : Output_section_data_build(size == 32 ? 4 : 8),
2932 rel_(plt_rel),
2933 targ_(targ),
2934 name_(name)
2935 { }
2936
2937 // Add an entry to the PLT.
2938 void
2939 add_entry(Symbol*);
2940
2941 void
2942 add_ifunc_entry(Symbol*);
2943
2944 void
2945 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
2946
2947 // Return the .rela.plt section data.
2948 Reloc_section*
2949 rel_plt() const
2950 {
2951 return this->rel_;
2952 }
2953
2954 // Return the number of PLT entries.
2955 unsigned int
2956 entry_count() const
2957 {
2958 if (this->current_data_size() == 0)
2959 return 0;
2960 return ((this->current_data_size() - this->first_plt_entry_offset())
2961 / this->plt_entry_size());
2962 }
2963
2964 protected:
2965 void
2966 do_adjust_output_section(Output_section* os)
2967 {
2968 os->set_entsize(0);
2969 }
2970
2971 // Write to a map file.
2972 void
2973 do_print_to_mapfile(Mapfile* mapfile) const
2974 { mapfile->print_output_data(this, this->name_); }
2975
2976 private:
2977 // Return the offset of the first non-reserved PLT entry.
2978 unsigned int
2979 first_plt_entry_offset() const
2980 {
2981 // IPLT has no reserved entry.
2982 if (this->name_[3] == 'I')
2983 return 0;
2984 return this->targ_->first_plt_entry_offset();
2985 }
2986
2987 // Return the size of each PLT entry.
2988 unsigned int
2989 plt_entry_size() const
2990 {
2991 return this->targ_->plt_entry_size();
2992 }
2993
2994 // Write out the PLT data.
2995 void
2996 do_write(Output_file*);
2997
2998 // The reloc section.
2999 Reloc_section* rel_;
3000 // Allows access to .glink for do_write.
3001 Target_powerpc<size, big_endian>* targ_;
3002 // What to report in map file.
3003 const char *name_;
3004 };
3005
3006 // Add an entry to the PLT.
3007
3008 template<int size, bool big_endian>
3009 void
3010 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3011 {
3012 if (!gsym->has_plt_offset())
3013 {
3014 section_size_type off = this->current_data_size();
3015 if (off == 0)
3016 off += this->first_plt_entry_offset();
3017 gsym->set_plt_offset(off);
3018 gsym->set_needs_dynsym_entry();
3019 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3020 this->rel_->add_global(gsym, dynrel, this, off, 0);
3021 off += this->plt_entry_size();
3022 this->set_current_data_size(off);
3023 }
3024 }
3025
3026 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3027
3028 template<int size, bool big_endian>
3029 void
3030 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3031 {
3032 if (!gsym->has_plt_offset())
3033 {
3034 section_size_type off = this->current_data_size();
3035 gsym->set_plt_offset(off);
3036 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3037 if (size == 64 && this->targ_->abiversion() < 2)
3038 dynrel = elfcpp::R_PPC64_JMP_IREL;
3039 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3040 off += this->plt_entry_size();
3041 this->set_current_data_size(off);
3042 }
3043 }
3044
3045 // Add an entry for a local ifunc symbol to the IPLT.
3046
3047 template<int size, bool big_endian>
3048 void
3049 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3050 Sized_relobj_file<size, big_endian>* relobj,
3051 unsigned int local_sym_index)
3052 {
3053 if (!relobj->local_has_plt_offset(local_sym_index))
3054 {
3055 section_size_type off = this->current_data_size();
3056 relobj->set_local_plt_offset(local_sym_index, off);
3057 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3058 if (size == 64 && this->targ_->abiversion() < 2)
3059 dynrel = elfcpp::R_PPC64_JMP_IREL;
3060 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3061 this, off, 0);
3062 off += this->plt_entry_size();
3063 this->set_current_data_size(off);
3064 }
3065 }
3066
3067 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3068 static const uint32_t add_2_2_11 = 0x7c425a14;
3069 static const uint32_t add_3_3_2 = 0x7c631214;
3070 static const uint32_t add_3_3_13 = 0x7c636a14;
3071 static const uint32_t add_11_0_11 = 0x7d605a14;
3072 static const uint32_t add_11_2_11 = 0x7d625a14;
3073 static const uint32_t add_11_11_2 = 0x7d6b1214;
3074 static const uint32_t addi_0_12 = 0x380c0000;
3075 static const uint32_t addi_2_2 = 0x38420000;
3076 static const uint32_t addi_3_3 = 0x38630000;
3077 static const uint32_t addi_11_11 = 0x396b0000;
3078 static const uint32_t addi_12_12 = 0x398c0000;
3079 static const uint32_t addis_0_2 = 0x3c020000;
3080 static const uint32_t addis_0_13 = 0x3c0d0000;
3081 static const uint32_t addis_3_2 = 0x3c620000;
3082 static const uint32_t addis_3_13 = 0x3c6d0000;
3083 static const uint32_t addis_11_2 = 0x3d620000;
3084 static const uint32_t addis_11_11 = 0x3d6b0000;
3085 static const uint32_t addis_11_30 = 0x3d7e0000;
3086 static const uint32_t addis_12_2 = 0x3d820000;
3087 static const uint32_t addis_12_12 = 0x3d8c0000;
3088 static const uint32_t b = 0x48000000;
3089 static const uint32_t bcl_20_31 = 0x429f0005;
3090 static const uint32_t bctr = 0x4e800420;
3091 static const uint32_t blr = 0x4e800020;
3092 static const uint32_t bnectr_p4 = 0x4ce20420;
3093 static const uint32_t cmpldi_2_0 = 0x28220000;
3094 static const uint32_t cror_15_15_15 = 0x4def7b82;
3095 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3096 static const uint32_t ld_0_1 = 0xe8010000;
3097 static const uint32_t ld_0_12 = 0xe80c0000;
3098 static const uint32_t ld_2_1 = 0xe8410000;
3099 static const uint32_t ld_2_2 = 0xe8420000;
3100 static const uint32_t ld_2_11 = 0xe84b0000;
3101 static const uint32_t ld_11_2 = 0xe9620000;
3102 static const uint32_t ld_11_11 = 0xe96b0000;
3103 static const uint32_t ld_12_2 = 0xe9820000;
3104 static const uint32_t ld_12_11 = 0xe98b0000;
3105 static const uint32_t ld_12_12 = 0xe98c0000;
3106 static const uint32_t lfd_0_1 = 0xc8010000;
3107 static const uint32_t li_0_0 = 0x38000000;
3108 static const uint32_t li_12_0 = 0x39800000;
3109 static const uint32_t lis_0_0 = 0x3c000000;
3110 static const uint32_t lis_11 = 0x3d600000;
3111 static const uint32_t lis_12 = 0x3d800000;
3112 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3113 static const uint32_t lwz_0_12 = 0x800c0000;
3114 static const uint32_t lwz_11_11 = 0x816b0000;
3115 static const uint32_t lwz_11_30 = 0x817e0000;
3116 static const uint32_t lwz_12_12 = 0x818c0000;
3117 static const uint32_t lwzu_0_12 = 0x840c0000;
3118 static const uint32_t mflr_0 = 0x7c0802a6;
3119 static const uint32_t mflr_11 = 0x7d6802a6;
3120 static const uint32_t mflr_12 = 0x7d8802a6;
3121 static const uint32_t mtctr_0 = 0x7c0903a6;
3122 static const uint32_t mtctr_11 = 0x7d6903a6;
3123 static const uint32_t mtctr_12 = 0x7d8903a6;
3124 static const uint32_t mtlr_0 = 0x7c0803a6;
3125 static const uint32_t mtlr_12 = 0x7d8803a6;
3126 static const uint32_t nop = 0x60000000;
3127 static const uint32_t ori_0_0_0 = 0x60000000;
3128 static const uint32_t srdi_0_0_2 = 0x7800f082;
3129 static const uint32_t std_0_1 = 0xf8010000;
3130 static const uint32_t std_0_12 = 0xf80c0000;
3131 static const uint32_t std_2_1 = 0xf8410000;
3132 static const uint32_t stfd_0_1 = 0xd8010000;
3133 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3134 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3135 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3136 static const uint32_t xor_2_12_12 = 0x7d826278;
3137 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3138
3139 // Write out the PLT.
3140
3141 template<int size, bool big_endian>
3142 void
3143 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3144 {
3145 if (size == 32 && this->name_[3] != 'I')
3146 {
3147 const section_size_type offset = this->offset();
3148 const section_size_type oview_size
3149 = convert_to_section_size_type(this->data_size());
3150 unsigned char* const oview = of->get_output_view(offset, oview_size);
3151 unsigned char* pov = oview;
3152 unsigned char* endpov = oview + oview_size;
3153
3154 // The address of the .glink branch table
3155 const Output_data_glink<size, big_endian>* glink
3156 = this->targ_->glink_section();
3157 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3158
3159 while (pov < endpov)
3160 {
3161 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3162 pov += 4;
3163 branch_tab += 4;
3164 }
3165
3166 of->write_output_view(offset, oview_size, oview);
3167 }
3168 }
3169
3170 // Create the PLT section.
3171
3172 template<int size, bool big_endian>
3173 void
3174 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3175 Layout* layout)
3176 {
3177 if (this->plt_ == NULL)
3178 {
3179 if (this->got_ == NULL)
3180 this->got_section(symtab, layout);
3181
3182 if (this->glink_ == NULL)
3183 make_glink_section(layout);
3184
3185 // Ensure that .rela.dyn always appears before .rela.plt This is
3186 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3187 // needs to include .rela.plt in its range.
3188 this->rela_dyn_section(layout);
3189
3190 Reloc_section* plt_rel = new Reloc_section(false);
3191 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3192 elfcpp::SHF_ALLOC, plt_rel,
3193 ORDER_DYNAMIC_PLT_RELOCS, false);
3194 this->plt_
3195 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3196 "** PLT");
3197 layout->add_output_section_data(".plt",
3198 (size == 32
3199 ? elfcpp::SHT_PROGBITS
3200 : elfcpp::SHT_NOBITS),
3201 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3202 this->plt_,
3203 (size == 32
3204 ? ORDER_SMALL_DATA
3205 : ORDER_SMALL_BSS),
3206 false);
3207 }
3208 }
3209
3210 // Create the IPLT section.
3211
3212 template<int size, bool big_endian>
3213 void
3214 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3215 Layout* layout)
3216 {
3217 if (this->iplt_ == NULL)
3218 {
3219 this->make_plt_section(symtab, layout);
3220
3221 Reloc_section* iplt_rel = new Reloc_section(false);
3222 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3223 this->iplt_
3224 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3225 "** IPLT");
3226 this->plt_->output_section()->add_output_section_data(this->iplt_);
3227 }
3228 }
3229
3230 // A section for huge long branch addresses, similar to plt section.
3231
3232 template<int size, bool big_endian>
3233 class Output_data_brlt_powerpc : public Output_section_data_build
3234 {
3235 public:
3236 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3237 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3238 size, big_endian> Reloc_section;
3239
3240 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3241 Reloc_section* brlt_rel)
3242 : Output_section_data_build(size == 32 ? 4 : 8),
3243 rel_(brlt_rel),
3244 targ_(targ)
3245 { }
3246
3247 void
3248 reset_brlt_sizes()
3249 {
3250 this->reset_data_size();
3251 this->rel_->reset_data_size();
3252 }
3253
3254 void
3255 finalize_brlt_sizes()
3256 {
3257 this->finalize_data_size();
3258 this->rel_->finalize_data_size();
3259 }
3260
3261 // Add a reloc for an entry in the BRLT.
3262 void
3263 add_reloc(Address to, unsigned int off)
3264 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3265
3266 // Update section and reloc section size.
3267 void
3268 set_current_size(unsigned int num_branches)
3269 {
3270 this->reset_address_and_file_offset();
3271 this->set_current_data_size(num_branches * 16);
3272 this->finalize_data_size();
3273 Output_section* os = this->output_section();
3274 os->set_section_offsets_need_adjustment();
3275 if (this->rel_ != NULL)
3276 {
3277 unsigned int reloc_size
3278 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3279 this->rel_->reset_address_and_file_offset();
3280 this->rel_->set_current_data_size(num_branches * reloc_size);
3281 this->rel_->finalize_data_size();
3282 Output_section* os = this->rel_->output_section();
3283 os->set_section_offsets_need_adjustment();
3284 }
3285 }
3286
3287 protected:
3288 void
3289 do_adjust_output_section(Output_section* os)
3290 {
3291 os->set_entsize(0);
3292 }
3293
3294 // Write to a map file.
3295 void
3296 do_print_to_mapfile(Mapfile* mapfile) const
3297 { mapfile->print_output_data(this, "** BRLT"); }
3298
3299 private:
3300 // Write out the BRLT data.
3301 void
3302 do_write(Output_file*);
3303
3304 // The reloc section.
3305 Reloc_section* rel_;
3306 Target_powerpc<size, big_endian>* targ_;
3307 };
3308
3309 // Make the branch lookup table section.
3310
3311 template<int size, bool big_endian>
3312 void
3313 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3314 {
3315 if (size == 64 && this->brlt_section_ == NULL)
3316 {
3317 Reloc_section* brlt_rel = NULL;
3318 bool is_pic = parameters->options().output_is_position_independent();
3319 if (is_pic)
3320 {
3321 // When PIC we can't fill in .branch_lt (like .plt it can be
3322 // a bss style section) but must initialise at runtime via
3323 // dynamic relocats.
3324 this->rela_dyn_section(layout);
3325 brlt_rel = new Reloc_section(false);
3326 this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3327 }
3328 this->brlt_section_
3329 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3330 if (this->plt_ && is_pic)
3331 this->plt_->output_section()
3332 ->add_output_section_data(this->brlt_section_);
3333 else
3334 layout->add_output_section_data(".branch_lt",
3335 (is_pic ? elfcpp::SHT_NOBITS
3336 : elfcpp::SHT_PROGBITS),
3337 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3338 this->brlt_section_,
3339 (is_pic ? ORDER_SMALL_BSS
3340 : ORDER_SMALL_DATA),
3341 false);
3342 }
3343 }
3344
3345 // Write out .branch_lt when non-PIC.
3346
3347 template<int size, bool big_endian>
3348 void
3349 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3350 {
3351 if (size == 64 && !parameters->options().output_is_position_independent())
3352 {
3353 const section_size_type offset = this->offset();
3354 const section_size_type oview_size
3355 = convert_to_section_size_type(this->data_size());
3356 unsigned char* const oview = of->get_output_view(offset, oview_size);
3357
3358 this->targ_->write_branch_lookup_table(oview);
3359 of->write_output_view(offset, oview_size, oview);
3360 }
3361 }
3362
3363 static inline uint32_t
3364 l(uint32_t a)
3365 {
3366 return a & 0xffff;
3367 }
3368
3369 static inline uint32_t
3370 hi(uint32_t a)
3371 {
3372 return l(a >> 16);
3373 }
3374
3375 static inline uint32_t
3376 ha(uint32_t a)
3377 {
3378 return hi(a + 0x8000);
3379 }
3380
3381 template<int size>
3382 struct Eh_cie
3383 {
3384 static const unsigned char eh_frame_cie[12];
3385 };
3386
3387 template<int size>
3388 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3389 {
3390 1, // CIE version.
3391 'z', 'R', 0, // Augmentation string.
3392 4, // Code alignment.
3393 0x80 - size / 8 , // Data alignment.
3394 65, // RA reg.
3395 1, // Augmentation size.
3396 (elfcpp::DW_EH_PE_pcrel
3397 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
3398 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
3399 };
3400
3401 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3402 static const unsigned char glink_eh_frame_fde_64v1[] =
3403 {
3404 0, 0, 0, 0, // Replaced with offset to .glink.
3405 0, 0, 0, 0, // Replaced with size of .glink.
3406 0, // Augmentation size.
3407 elfcpp::DW_CFA_advance_loc + 1,
3408 elfcpp::DW_CFA_register, 65, 12,
3409 elfcpp::DW_CFA_advance_loc + 4,
3410 elfcpp::DW_CFA_restore_extended, 65
3411 };
3412
3413 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3414 static const unsigned char glink_eh_frame_fde_64v2[] =
3415 {
3416 0, 0, 0, 0, // Replaced with offset to .glink.
3417 0, 0, 0, 0, // Replaced with size of .glink.
3418 0, // Augmentation size.
3419 elfcpp::DW_CFA_advance_loc + 1,
3420 elfcpp::DW_CFA_register, 65, 0,
3421 elfcpp::DW_CFA_advance_loc + 4,
3422 elfcpp::DW_CFA_restore_extended, 65
3423 };
3424
3425 // Describe __glink_PLTresolve use of LR, 32-bit version.
3426 static const unsigned char glink_eh_frame_fde_32[] =
3427 {
3428 0, 0, 0, 0, // Replaced with offset to .glink.
3429 0, 0, 0, 0, // Replaced with size of .glink.
3430 0, // Augmentation size.
3431 elfcpp::DW_CFA_advance_loc + 2,
3432 elfcpp::DW_CFA_register, 65, 0,
3433 elfcpp::DW_CFA_advance_loc + 4,
3434 elfcpp::DW_CFA_restore_extended, 65
3435 };
3436
3437 static const unsigned char default_fde[] =
3438 {
3439 0, 0, 0, 0, // Replaced with offset to stubs.
3440 0, 0, 0, 0, // Replaced with size of stubs.
3441 0, // Augmentation size.
3442 elfcpp::DW_CFA_nop, // Pad.
3443 elfcpp::DW_CFA_nop,
3444 elfcpp::DW_CFA_nop
3445 };
3446
3447 template<bool big_endian>
3448 static inline void
3449 write_insn(unsigned char* p, uint32_t v)
3450 {
3451 elfcpp::Swap<32, big_endian>::writeval(p, v);
3452 }
3453
3454 // Stub_table holds information about plt and long branch stubs.
3455 // Stubs are built in an area following some input section determined
3456 // by group_sections(). This input section is converted to a relaxed
3457 // input section allowing it to be resized to accommodate the stubs
3458
3459 template<int size, bool big_endian>
3460 class Stub_table : public Output_relaxed_input_section
3461 {
3462 public:
3463 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3464 static const Address invalid_address = static_cast<Address>(0) - 1;
3465
3466 Stub_table(Target_powerpc<size, big_endian>* targ)
3467 : Output_relaxed_input_section(NULL, 0, 0),
3468 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3469 orig_data_size_(0), plt_size_(0), last_plt_size_(0),
3470 branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3471 { }
3472
3473 // Delayed Output_relaxed_input_section init.
3474 void
3475 init(const Output_section::Input_section*, Output_section*);
3476
3477 // Add a plt call stub.
3478 void
3479 add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3480 const Symbol*,
3481 unsigned int,
3482 Address);
3483
3484 void
3485 add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3486 unsigned int,
3487 unsigned int,
3488 Address);
3489
3490 // Find a given plt call stub.
3491 Address
3492 find_plt_call_entry(const Symbol*) const;
3493
3494 Address
3495 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3496 unsigned int) const;
3497
3498 Address
3499 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3500 const Symbol*,
3501 unsigned int,
3502 Address) const;
3503
3504 Address
3505 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3506 unsigned int,
3507 unsigned int,
3508 Address) const;
3509
3510 // Add a long branch stub.
3511 void
3512 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
3513
3514 Address
3515 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3516 Address) const;
3517
3518 void
3519 clear_stubs()
3520 {
3521 this->plt_call_stubs_.clear();
3522 this->plt_size_ = 0;
3523 this->long_branch_stubs_.clear();
3524 this->branch_size_ = 0;
3525 }
3526
3527 Address
3528 set_address_and_size(const Output_section* os, Address off)
3529 {
3530 Address start_off = off;
3531 off += this->orig_data_size_;
3532 Address my_size = this->plt_size_ + this->branch_size_;
3533 if (my_size != 0)
3534 off = align_address(off, this->stub_align());
3535 // Include original section size and alignment padding in size
3536 my_size += off - start_off;
3537 this->reset_address_and_file_offset();
3538 this->set_current_data_size(my_size);
3539 this->set_address_and_file_offset(os->address() + start_off,
3540 os->offset() + start_off);
3541 return my_size;
3542 }
3543
3544 Address
3545 stub_address() const
3546 {
3547 return align_address(this->address() + this->orig_data_size_,
3548 this->stub_align());
3549 }
3550
3551 Address
3552 stub_offset() const
3553 {
3554 return align_address(this->offset() + this->orig_data_size_,
3555 this->stub_align());
3556 }
3557
3558 section_size_type
3559 plt_size() const
3560 { return this->plt_size_; }
3561
3562 bool
3563 size_update()
3564 {
3565 Output_section* os = this->output_section();
3566 if (os->addralign() < this->stub_align())
3567 {
3568 os->set_addralign(this->stub_align());
3569 // FIXME: get rid of the insane checkpointing.
3570 // We can't increase alignment of the input section to which
3571 // stubs are attached; The input section may be .init which
3572 // is pasted together with other .init sections to form a
3573 // function. Aligning might insert zero padding resulting in
3574 // sigill. However we do need to increase alignment of the
3575 // output section so that the align_address() on offset in
3576 // set_address_and_size() adds the same padding as the
3577 // align_address() on address in stub_address().
3578 // What's more, we need this alignment for the layout done in
3579 // relaxation_loop_body() so that the output section starts at
3580 // a suitably aligned address.
3581 os->checkpoint_set_addralign(this->stub_align());
3582 }
3583 if (this->last_plt_size_ != this->plt_size_
3584 || this->last_branch_size_ != this->branch_size_)
3585 {
3586 this->last_plt_size_ = this->plt_size_;
3587 this->last_branch_size_ = this->branch_size_;
3588 return true;
3589 }
3590 return false;
3591 }
3592
3593 // Add .eh_frame info for this stub section. Unlike other linker
3594 // generated .eh_frame this is added late in the link, because we
3595 // only want the .eh_frame info if this particular stub section is
3596 // non-empty.
3597 void
3598 add_eh_frame(Layout* layout)
3599 {
3600 if (!this->eh_frame_added_)
3601 {
3602 if (!parameters->options().ld_generated_unwind_info())
3603 return;
3604
3605 // Since we add stub .eh_frame info late, it must be placed
3606 // after all other linker generated .eh_frame info so that
3607 // merge mapping need not be updated for input sections.
3608 // There is no provision to use a different CIE to that used
3609 // by .glink.
3610 if (!this->targ_->has_glink())
3611 return;
3612
3613 layout->add_eh_frame_for_plt(this,
3614 Eh_cie<size>::eh_frame_cie,
3615 sizeof (Eh_cie<size>::eh_frame_cie),
3616 default_fde,
3617 sizeof (default_fde));
3618 this->eh_frame_added_ = true;
3619 }
3620 }
3621
3622 Target_powerpc<size, big_endian>*
3623 targ() const
3624 { return targ_; }
3625
3626 private:
3627 class Plt_stub_ent;
3628 class Plt_stub_ent_hash;
3629 typedef Unordered_map<Plt_stub_ent, unsigned int,
3630 Plt_stub_ent_hash> Plt_stub_entries;
3631
3632 // Alignment of stub section.
3633 unsigned int
3634 stub_align() const
3635 {
3636 if (size == 32)
3637 return 16;
3638 unsigned int min_align = 32;
3639 unsigned int user_align = 1 << parameters->options().plt_align();
3640 return std::max(user_align, min_align);
3641 }
3642
3643 // Return the plt offset for the given call stub.
3644 Address
3645 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3646 {
3647 const Symbol* gsym = p->first.sym_;
3648 if (gsym != NULL)
3649 {
3650 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3651 && gsym->can_use_relative_reloc(false));
3652 return gsym->plt_offset();
3653 }
3654 else
3655 {
3656 *is_iplt = true;
3657 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3658 unsigned int local_sym_index = p->first.locsym_;
3659 return relobj->local_plt_offset(local_sym_index);
3660 }
3661 }
3662
3663 // Size of a given plt call stub.
3664 unsigned int
3665 plt_call_size(typename Plt_stub_entries::const_iterator p) const
3666 {
3667 if (size == 32)
3668 return 16;
3669
3670 bool is_iplt;
3671 Address plt_addr = this->plt_off(p, &is_iplt);
3672 if (is_iplt)
3673 plt_addr += this->targ_->iplt_section()->address();
3674 else
3675 plt_addr += this->targ_->plt_section()->address();
3676 Address got_addr = this->targ_->got_section()->output_section()->address();
3677 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3678 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3679 got_addr += ppcobj->toc_base_offset();
3680 Address off = plt_addr - got_addr;
3681 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3682 if (this->targ_->abiversion() < 2)
3683 {
3684 bool static_chain = parameters->options().plt_static_chain();
3685 bool thread_safe = this->targ_->plt_thread_safe();
3686 bytes += (4
3687 + 4 * static_chain
3688 + 8 * thread_safe
3689 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3690 }
3691 unsigned int align = 1 << parameters->options().plt_align();
3692 if (align > 1)
3693 bytes = (bytes + align - 1) & -align;
3694 return bytes;
3695 }
3696
3697 // Return long branch stub size.
3698 unsigned int
3699 branch_stub_size(Address to)
3700 {
3701 Address loc
3702 = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3703 if (to - loc + (1 << 25) < 2 << 25)
3704 return 4;
3705 if (size == 64 || !parameters->options().output_is_position_independent())
3706 return 16;
3707 return 32;
3708 }
3709
3710 // Write out stubs.
3711 void
3712 do_write(Output_file*);
3713
3714 // Plt call stub keys.
3715 class Plt_stub_ent
3716 {
3717 public:
3718 Plt_stub_ent(const Symbol* sym)
3719 : sym_(sym), object_(0), addend_(0), locsym_(0)
3720 { }
3721
3722 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3723 unsigned int locsym_index)
3724 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3725 { }
3726
3727 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3728 const Symbol* sym,
3729 unsigned int r_type,
3730 Address addend)
3731 : sym_(sym), object_(0), addend_(0), locsym_(0)
3732 {
3733 if (size != 32)
3734 this->addend_ = addend;
3735 else if (parameters->options().output_is_position_independent()
3736 && r_type == elfcpp::R_PPC_PLTREL24)
3737 {
3738 this->addend_ = addend;
3739 if (this->addend_ >= 32768)
3740 this->object_ = object;
3741 }
3742 }
3743
3744 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3745 unsigned int locsym_index,
3746 unsigned int r_type,
3747 Address addend)
3748 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3749 {
3750 if (size != 32)
3751 this->addend_ = addend;
3752 else if (parameters->options().output_is_position_independent()
3753 && r_type == elfcpp::R_PPC_PLTREL24)
3754 this->addend_ = addend;
3755 }
3756
3757 bool operator==(const Plt_stub_ent& that) const
3758 {
3759 return (this->sym_ == that.sym_
3760 && this->object_ == that.object_
3761 && this->addend_ == that.addend_
3762 && this->locsym_ == that.locsym_);
3763 }
3764
3765 const Symbol* sym_;
3766 const Sized_relobj_file<size, big_endian>* object_;
3767 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3768 unsigned int locsym_;
3769 };
3770
3771 class Plt_stub_ent_hash
3772 {
3773 public:
3774 size_t operator()(const Plt_stub_ent& ent) const
3775 {
3776 return (reinterpret_cast<uintptr_t>(ent.sym_)
3777 ^ reinterpret_cast<uintptr_t>(ent.object_)
3778 ^ ent.addend_
3779 ^ ent.locsym_);
3780 }
3781 };
3782
3783 // Long branch stub keys.
3784 class Branch_stub_ent
3785 {
3786 public:
3787 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3788 : dest_(to), toc_base_off_(0)
3789 {
3790 if (size == 64)
3791 toc_base_off_ = obj->toc_base_offset();
3792 }
3793
3794 bool operator==(const Branch_stub_ent& that) const
3795 {
3796 return (this->dest_ == that.dest_
3797 && (size == 32
3798 || this->toc_base_off_ == that.toc_base_off_));
3799 }
3800
3801 Address dest_;
3802 unsigned int toc_base_off_;
3803 };
3804
3805 class Branch_stub_ent_hash
3806 {
3807 public:
3808 size_t operator()(const Branch_stub_ent& ent) const
3809 { return ent.dest_ ^ ent.toc_base_off_; }
3810 };
3811
3812 // In a sane world this would be a global.
3813 Target_powerpc<size, big_endian>* targ_;
3814 // Map sym/object/addend to stub offset.
3815 Plt_stub_entries plt_call_stubs_;
3816 // Map destination address to stub offset.
3817 typedef Unordered_map<Branch_stub_ent, unsigned int,
3818 Branch_stub_ent_hash> Branch_stub_entries;
3819 Branch_stub_entries long_branch_stubs_;
3820 // size of input section
3821 section_size_type orig_data_size_;
3822 // size of stubs
3823 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3824 // Whether .eh_frame info has been created for this stub section.
3825 bool eh_frame_added_;
3826 };
3827
3828 // Make a new stub table, and record.
3829
3830 template<int size, bool big_endian>
3831 Stub_table<size, big_endian>*
3832 Target_powerpc<size, big_endian>::new_stub_table()
3833 {
3834 Stub_table<size, big_endian>* stub_table
3835 = new Stub_table<size, big_endian>(this);
3836 this->stub_tables_.push_back(stub_table);
3837 return stub_table;
3838 }
3839
3840 // Delayed stub table initialisation, because we create the stub table
3841 // before we know to which section it will be attached.
3842
3843 template<int size, bool big_endian>
3844 void
3845 Stub_table<size, big_endian>::init(
3846 const Output_section::Input_section* owner,
3847 Output_section* output_section)
3848 {
3849 this->set_relobj(owner->relobj());
3850 this->set_shndx(owner->shndx());
3851 this->set_addralign(this->relobj()->section_addralign(this->shndx()));
3852 this->set_output_section(output_section);
3853 this->orig_data_size_ = owner->current_data_size();
3854
3855 std::vector<Output_relaxed_input_section*> new_relaxed;
3856 new_relaxed.push_back(this);
3857 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3858 }
3859
3860 // Add a plt call stub, if we do not already have one for this
3861 // sym/object/addend combo.
3862
3863 template<int size, bool big_endian>
3864 void
3865 Stub_table<size, big_endian>::add_plt_call_entry(
3866 const Sized_relobj_file<size, big_endian>* object,
3867 const Symbol* gsym,
3868 unsigned int r_type,
3869 Address addend)
3870 {
3871 Plt_stub_ent ent(object, gsym, r_type, addend);
3872 unsigned int off = this->plt_size_;
3873 std::pair<typename Plt_stub_entries::iterator, bool> p
3874 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3875 if (p.second)
3876 this->plt_size_ = off + this->plt_call_size(p.first);
3877 }
3878
3879 template<int size, bool big_endian>
3880 void
3881 Stub_table<size, big_endian>::add_plt_call_entry(
3882 const Sized_relobj_file<size, big_endian>* object,
3883 unsigned int locsym_index,
3884 unsigned int r_type,
3885 Address addend)
3886 {
3887 Plt_stub_ent ent(object, locsym_index, r_type, addend);
3888 unsigned int off = this->plt_size_;
3889 std::pair<typename Plt_stub_entries::iterator, bool> p
3890 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3891 if (p.second)
3892 this->plt_size_ = off + this->plt_call_size(p.first);
3893 }
3894
3895 // Find a plt call stub.
3896
3897 template<int size, bool big_endian>
3898 typename Stub_table<size, big_endian>::Address
3899 Stub_table<size, big_endian>::find_plt_call_entry(
3900 const Sized_relobj_file<size, big_endian>* object,
3901 const Symbol* gsym,
3902 unsigned int r_type,
3903 Address addend) const
3904 {
3905 Plt_stub_ent ent(object, gsym, r_type, addend);
3906 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3907 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3908 }
3909
3910 template<int size, bool big_endian>
3911 typename Stub_table<size, big_endian>::Address
3912 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
3913 {
3914 Plt_stub_ent ent(gsym);
3915 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3916 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3917 }
3918
3919 template<int size, bool big_endian>
3920 typename Stub_table<size, big_endian>::Address
3921 Stub_table<size, big_endian>::find_plt_call_entry(
3922 const Sized_relobj_file<size, big_endian>* object,
3923 unsigned int locsym_index,
3924 unsigned int r_type,
3925 Address addend) const
3926 {
3927 Plt_stub_ent ent(object, locsym_index, r_type, addend);
3928 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3929 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3930 }
3931
3932 template<int size, bool big_endian>
3933 typename Stub_table<size, big_endian>::Address
3934 Stub_table<size, big_endian>::find_plt_call_entry(
3935 const Sized_relobj_file<size, big_endian>* object,
3936 unsigned int locsym_index) const
3937 {
3938 Plt_stub_ent ent(object, locsym_index);
3939 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3940 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3941 }
3942
3943 // Add a long branch stub if we don't already have one to given
3944 // destination.
3945
3946 template<int size, bool big_endian>
3947 void
3948 Stub_table<size, big_endian>::add_long_branch_entry(
3949 const Powerpc_relobj<size, big_endian>* object,
3950 Address to)
3951 {
3952 Branch_stub_ent ent(object, to);
3953 Address off = this->branch_size_;
3954 if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
3955 {
3956 unsigned int stub_size = this->branch_stub_size(to);
3957 this->branch_size_ = off + stub_size;
3958 if (size == 64 && stub_size != 4)
3959 this->targ_->add_branch_lookup_table(to);
3960 }
3961 }
3962
3963 // Find long branch stub.
3964
3965 template<int size, bool big_endian>
3966 typename Stub_table<size, big_endian>::Address
3967 Stub_table<size, big_endian>::find_long_branch_entry(
3968 const Powerpc_relobj<size, big_endian>* object,
3969 Address to) const
3970 {
3971 Branch_stub_ent ent(object, to);
3972 typename Branch_stub_entries::const_iterator p
3973 = this->long_branch_stubs_.find(ent);
3974 return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
3975 }
3976
3977 // A class to handle .glink.
3978
3979 template<int size, bool big_endian>
3980 class Output_data_glink : public Output_section_data
3981 {
3982 public:
3983 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3984 static const Address invalid_address = static_cast<Address>(0) - 1;
3985 static const int pltresolve_size = 16*4;
3986
3987 Output_data_glink(Target_powerpc<size, big_endian>* targ)
3988 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
3989 end_branch_table_(), ge_size_(0)
3990 { }
3991
3992 void
3993 add_eh_frame(Layout* layout);
3994
3995 void
3996 add_global_entry(const Symbol*);
3997
3998 Address
3999 find_global_entry(const Symbol*) const;
4000
4001 Address
4002 global_entry_address() const
4003 {
4004 gold_assert(this->is_data_size_valid());
4005 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4006 return this->address() + global_entry_off;
4007 }
4008
4009 protected:
4010 // Write to a map file.
4011 void
4012 do_print_to_mapfile(Mapfile* mapfile) const
4013 { mapfile->print_output_data(this, _("** glink")); }
4014
4015 private:
4016 void
4017 set_final_data_size();
4018
4019 // Write out .glink
4020 void
4021 do_write(Output_file*);
4022
4023 // Allows access to .got and .plt for do_write.
4024 Target_powerpc<size, big_endian>* targ_;
4025
4026 // Map sym to stub offset.
4027 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4028 Global_entry_stub_entries global_entry_stubs_;
4029
4030 unsigned int end_branch_table_, ge_size_;
4031 };
4032
4033 template<int size, bool big_endian>
4034 void
4035 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4036 {
4037 if (!parameters->options().ld_generated_unwind_info())
4038 return;
4039
4040 if (size == 64)
4041 {
4042 if (this->targ_->abiversion() < 2)
4043 layout->add_eh_frame_for_plt(this,
4044 Eh_cie<64>::eh_frame_cie,
4045 sizeof (Eh_cie<64>::eh_frame_cie),
4046 glink_eh_frame_fde_64v1,
4047 sizeof (glink_eh_frame_fde_64v1));
4048 else
4049 layout->add_eh_frame_for_plt(this,
4050 Eh_cie<64>::eh_frame_cie,
4051 sizeof (Eh_cie<64>::eh_frame_cie),
4052 glink_eh_frame_fde_64v2,
4053 sizeof (glink_eh_frame_fde_64v2));
4054 }
4055 else
4056 {
4057 // 32-bit .glink can use the default since the CIE return
4058 // address reg, LR, is valid.
4059 layout->add_eh_frame_for_plt(this,
4060 Eh_cie<32>::eh_frame_cie,
4061 sizeof (Eh_cie<32>::eh_frame_cie),
4062 default_fde,
4063 sizeof (default_fde));
4064 // Except where LR is used in a PIC __glink_PLTresolve.
4065 if (parameters->options().output_is_position_independent())
4066 layout->add_eh_frame_for_plt(this,
4067 Eh_cie<32>::eh_frame_cie,
4068 sizeof (Eh_cie<32>::eh_frame_cie),
4069 glink_eh_frame_fde_32,
4070 sizeof (glink_eh_frame_fde_32));
4071 }
4072 }
4073
4074 template<int size, bool big_endian>
4075 void
4076 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4077 {
4078 std::pair<typename Global_entry_stub_entries::iterator, bool> p
4079 = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4080 if (p.second)
4081 this->ge_size_ += 16;
4082 }
4083
4084 template<int size, bool big_endian>
4085 typename Output_data_glink<size, big_endian>::Address
4086 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4087 {
4088 typename Global_entry_stub_entries::const_iterator p
4089 = this->global_entry_stubs_.find(gsym);
4090 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4091 }
4092
4093 template<int size, bool big_endian>
4094 void
4095 Output_data_glink<size, big_endian>::set_final_data_size()
4096 {
4097 unsigned int count = this->targ_->plt_entry_count();
4098 section_size_type total = 0;
4099
4100 if (count != 0)
4101 {
4102 if (size == 32)
4103 {
4104 // space for branch table
4105 total += 4 * (count - 1);
4106
4107 total += -total & 15;
4108 total += this->pltresolve_size;
4109 }
4110 else
4111 {
4112 total += this->pltresolve_size;
4113
4114 // space for branch table
4115 total += 4 * count;
4116 if (this->targ_->abiversion() < 2)
4117 {
4118 total += 4 * count;
4119 if (count > 0x8000)
4120 total += 4 * (count - 0x8000);
4121 }
4122 }
4123 }
4124 this->end_branch_table_ = total;
4125 total = (total + 15) & -16;
4126 total += this->ge_size_;
4127
4128 this->set_data_size(total);
4129 }
4130
4131 // Write out plt and long branch stub code.
4132
4133 template<int size, bool big_endian>
4134 void
4135 Stub_table<size, big_endian>::do_write(Output_file* of)
4136 {
4137 if (this->plt_call_stubs_.empty()
4138 && this->long_branch_stubs_.empty())
4139 return;
4140
4141 const section_size_type start_off = this->offset();
4142 const section_size_type off = this->stub_offset();
4143 const section_size_type oview_size =
4144 convert_to_section_size_type(this->data_size() - (off - start_off));
4145 unsigned char* const oview = of->get_output_view(off, oview_size);
4146 unsigned char* p;
4147
4148 if (size == 64)
4149 {
4150 const Output_data_got_powerpc<size, big_endian>* got
4151 = this->targ_->got_section();
4152 Address got_os_addr = got->output_section()->address();
4153
4154 if (!this->plt_call_stubs_.empty())
4155 {
4156 // The base address of the .plt section.
4157 Address plt_base = this->targ_->plt_section()->address();
4158 Address iplt_base = invalid_address;
4159
4160 // Write out plt call stubs.
4161 typename Plt_stub_entries::const_iterator cs;
4162 for (cs = this->plt_call_stubs_.begin();
4163 cs != this->plt_call_stubs_.end();
4164 ++cs)
4165 {
4166 bool is_iplt;
4167 Address pltoff = this->plt_off(cs, &is_iplt);
4168 Address plt_addr = pltoff;
4169 if (is_iplt)
4170 {
4171 if (iplt_base == invalid_address)
4172 iplt_base = this->targ_->iplt_section()->address();
4173 plt_addr += iplt_base;
4174 }
4175 else
4176 plt_addr += plt_base;
4177 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4178 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4179 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4180 Address off = plt_addr - got_addr;
4181
4182 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4183 gold_error(_("%s: linkage table error against `%s'"),
4184 cs->first.object_->name().c_str(),
4185 cs->first.sym_->demangled_name().c_str());
4186
4187 bool plt_load_toc = this->targ_->abiversion() < 2;
4188 bool static_chain
4189 = plt_load_toc && parameters->options().plt_static_chain();
4190 bool thread_safe
4191 = plt_load_toc && this->targ_->plt_thread_safe();
4192 bool use_fake_dep = false;
4193 Address cmp_branch_off = 0;
4194 if (thread_safe)
4195 {
4196 unsigned int pltindex
4197 = ((pltoff - this->targ_->first_plt_entry_offset())
4198 / this->targ_->plt_entry_size());
4199 Address glinkoff
4200 = (this->targ_->glink_section()->pltresolve_size
4201 + pltindex * 8);
4202 if (pltindex > 32768)
4203 glinkoff += (pltindex - 32768) * 4;
4204 Address to
4205 = this->targ_->glink_section()->address() + glinkoff;
4206 Address from
4207 = (this->stub_address() + cs->second + 24
4208 + 4 * (ha(off) != 0)
4209 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4210 + 4 * static_chain);
4211 cmp_branch_off = to - from;
4212 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4213 }
4214
4215 p = oview + cs->second;
4216 if (ha(off) != 0)
4217 {
4218 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4219 p += 4;
4220 if (plt_load_toc)
4221 {
4222 write_insn<big_endian>(p, addis_11_2 + ha(off));
4223 p += 4;
4224 write_insn<big_endian>(p, ld_12_11 + l(off));
4225 p += 4;
4226 }
4227 else
4228 {
4229 write_insn<big_endian>(p, addis_12_2 + ha(off));
4230 p += 4;
4231 write_insn<big_endian>(p, ld_12_12 + l(off));
4232 p += 4;
4233 }
4234 if (plt_load_toc
4235 && ha(off + 8 + 8 * static_chain) != ha(off))
4236 {
4237 write_insn<big_endian>(p, addi_11_11 + l(off));
4238 p += 4;
4239 off = 0;
4240 }
4241 write_insn<big_endian>(p, mtctr_12);
4242 p += 4;
4243 if (plt_load_toc)
4244 {
4245 if (use_fake_dep)
4246 {
4247 write_insn<big_endian>(p, xor_2_12_12);
4248 p += 4;
4249 write_insn<big_endian>(p, add_11_11_2);
4250 p += 4;
4251 }
4252 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4253 p += 4;
4254 if (static_chain)
4255 {
4256 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4257 p += 4;
4258 }
4259 }
4260 }
4261 else
4262 {
4263 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4264 p += 4;
4265 write_insn<big_endian>(p, ld_12_2 + l(off));
4266 p += 4;
4267 if (plt_load_toc
4268 && ha(off + 8 + 8 * static_chain) != ha(off))
4269 {
4270 write_insn<big_endian>(p, addi_2_2 + l(off));
4271 p += 4;
4272 off = 0;
4273 }
4274 write_insn<big_endian>(p, mtctr_12);
4275 p += 4;
4276 if (plt_load_toc)
4277 {
4278 if (use_fake_dep)
4279 {
4280 write_insn<big_endian>(p, xor_11_12_12);
4281 p += 4;
4282 write_insn<big_endian>(p, add_2_2_11);
4283 p += 4;
4284 }
4285 if (static_chain)
4286 {
4287 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4288 p += 4;
4289 }
4290 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4291 p += 4;
4292 }
4293 }
4294 if (thread_safe && !use_fake_dep)
4295 {
4296 write_insn<big_endian>(p, cmpldi_2_0);
4297 p += 4;
4298 write_insn<big_endian>(p, bnectr_p4);
4299 p += 4;
4300 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4301 }
4302 else
4303 write_insn<big_endian>(p, bctr);
4304 }
4305 }
4306
4307 // Write out long branch stubs.
4308 typename Branch_stub_entries::const_iterator bs;
4309 for (bs = this->long_branch_stubs_.begin();
4310 bs != this->long_branch_stubs_.end();
4311 ++bs)
4312 {
4313 p = oview + this->plt_size_ + bs->second;
4314 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4315 Address delta = bs->first.dest_ - loc;
4316 if (delta + (1 << 25) < 2 << 25)
4317 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4318 else
4319 {
4320 Address brlt_addr
4321 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4322 gold_assert(brlt_addr != invalid_address);
4323 brlt_addr += this->targ_->brlt_section()->address();
4324 Address got_addr = got_os_addr + bs->first.toc_base_off_;
4325 Address brltoff = brlt_addr - got_addr;
4326 if (ha(brltoff) == 0)
4327 {
4328 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
4329 }
4330 else
4331 {
4332 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
4333 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4;
4334 }
4335 write_insn<big_endian>(p, mtctr_12), p += 4;
4336 write_insn<big_endian>(p, bctr);
4337 }
4338 }
4339 }
4340 else
4341 {
4342 if (!this->plt_call_stubs_.empty())
4343 {
4344 // The base address of the .plt section.
4345 Address plt_base = this->targ_->plt_section()->address();
4346 Address iplt_base = invalid_address;
4347 // The address of _GLOBAL_OFFSET_TABLE_.
4348 Address g_o_t = invalid_address;
4349
4350 // Write out plt call stubs.
4351 typename Plt_stub_entries::const_iterator cs;
4352 for (cs = this->plt_call_stubs_.begin();
4353 cs != this->plt_call_stubs_.end();
4354 ++cs)
4355 {
4356 bool is_iplt;
4357 Address plt_addr = this->plt_off(cs, &is_iplt);
4358 if (is_iplt)
4359 {
4360 if (iplt_base == invalid_address)
4361 iplt_base = this->targ_->iplt_section()->address();
4362 plt_addr += iplt_base;
4363 }
4364 else
4365 plt_addr += plt_base;
4366
4367 p = oview + cs->second;
4368 if (parameters->options().output_is_position_independent())
4369 {
4370 Address got_addr;
4371 const Powerpc_relobj<size, big_endian>* ppcobj
4372 = (static_cast<const Powerpc_relobj<size, big_endian>*>
4373 (cs->first.object_));
4374 if (ppcobj != NULL && cs->first.addend_ >= 32768)
4375 {
4376 unsigned int got2 = ppcobj->got2_shndx();
4377 got_addr = ppcobj->get_output_section_offset(got2);
4378 gold_assert(got_addr != invalid_address);
4379 got_addr += (ppcobj->output_section(got2)->address()
4380 + cs->first.addend_);
4381 }
4382 else
4383 {
4384 if (g_o_t == invalid_address)
4385 {
4386 const Output_data_got_powerpc<size, big_endian>* got
4387 = this->targ_->got_section();
4388 g_o_t = got->address() + got->g_o_t();
4389 }
4390 got_addr = g_o_t;
4391 }
4392
4393 Address off = plt_addr - got_addr;
4394 if (ha(off) == 0)
4395 {
4396 write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
4397 write_insn<big_endian>(p + 4, mtctr_11);
4398 write_insn<big_endian>(p + 8, bctr);
4399 }
4400 else
4401 {
4402 write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
4403 write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
4404 write_insn<big_endian>(p + 8, mtctr_11);
4405 write_insn<big_endian>(p + 12, bctr);
4406 }
4407 }
4408 else
4409 {
4410 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
4411 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
4412 write_insn<big_endian>(p + 8, mtctr_11);
4413 write_insn<big_endian>(p + 12, bctr);
4414 }
4415 }
4416 }
4417
4418 // Write out long branch stubs.
4419 typename Branch_stub_entries::const_iterator bs;
4420 for (bs = this->long_branch_stubs_.begin();
4421 bs != this->long_branch_stubs_.end();
4422 ++bs)
4423 {
4424 p = oview + this->plt_size_ + bs->second;
4425 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4426 Address delta = bs->first.dest_ - loc;
4427 if (delta + (1 << 25) < 2 << 25)
4428 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4429 else if (!parameters->options().output_is_position_independent())
4430 {
4431 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
4432 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
4433 write_insn<big_endian>(p + 8, mtctr_12);
4434 write_insn<big_endian>(p + 12, bctr);
4435 }
4436 else
4437 {
4438 delta -= 8;
4439 write_insn<big_endian>(p + 0, mflr_0);
4440 write_insn<big_endian>(p + 4, bcl_20_31);
4441 write_insn<big_endian>(p + 8, mflr_12);
4442 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4443 write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4444 write_insn<big_endian>(p + 20, mtlr_0);
4445 write_insn<big_endian>(p + 24, mtctr_12);
4446 write_insn<big_endian>(p + 28, bctr);
4447 }
4448 }
4449 }
4450 }
4451
4452 // Write out .glink.
4453
4454 template<int size, bool big_endian>
4455 void
4456 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4457 {
4458 const section_size_type off = this->offset();
4459 const section_size_type oview_size =
4460 convert_to_section_size_type(this->data_size());
4461 unsigned char* const oview = of->get_output_view(off, oview_size);
4462 unsigned char* p;
4463
4464 // The base address of the .plt section.
4465 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4466 Address plt_base = this->targ_->plt_section()->address();
4467
4468 if (size == 64)
4469 {
4470 if (this->end_branch_table_ != 0)
4471 {
4472 // Write pltresolve stub.
4473 p = oview;
4474 Address after_bcl = this->address() + 16;
4475 Address pltoff = plt_base - after_bcl;
4476
4477 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
4478
4479 if (this->targ_->abiversion() < 2)
4480 {
4481 write_insn<big_endian>(p, mflr_12), p += 4;
4482 write_insn<big_endian>(p, bcl_20_31), p += 4;
4483 write_insn<big_endian>(p, mflr_11), p += 4;
4484 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4485 write_insn<big_endian>(p, mtlr_12), p += 4;
4486 write_insn<big_endian>(p, add_11_2_11), p += 4;
4487 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4488 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
4489 write_insn<big_endian>(p, mtctr_12), p += 4;
4490 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
4491 }
4492 else
4493 {
4494 write_insn<big_endian>(p, mflr_0), p += 4;
4495 write_insn<big_endian>(p, bcl_20_31), p += 4;
4496 write_insn<big_endian>(p, mflr_11), p += 4;
4497 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4498 write_insn<big_endian>(p, mtlr_0), p += 4;
4499 write_insn<big_endian>(p, sub_12_12_11), p += 4;
4500 write_insn<big_endian>(p, add_11_2_11), p += 4;
4501 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
4502 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4503 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
4504 write_insn<big_endian>(p, mtctr_12), p += 4;
4505 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
4506 }
4507 write_insn<big_endian>(p, bctr), p += 4;
4508 while (p < oview + this->pltresolve_size)
4509 write_insn<big_endian>(p, nop), p += 4;
4510
4511 // Write lazy link call stubs.
4512 uint32_t indx = 0;
4513 while (p < oview + this->end_branch_table_)
4514 {
4515 if (this->targ_->abiversion() < 2)
4516 {
4517 if (indx < 0x8000)
4518 {
4519 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
4520 }
4521 else
4522 {
4523 write_insn<big_endian>(p, lis_0_0 + hi(indx)), p += 4;
4524 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
4525 }
4526 }
4527 uint32_t branch_off = 8 - (p - oview);
4528 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
4529 indx++;
4530 }
4531 }
4532
4533 Address plt_base = this->targ_->plt_section()->address();
4534 Address iplt_base = invalid_address;
4535 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4536 Address global_entry_base = this->address() + global_entry_off;
4537 typename Global_entry_stub_entries::const_iterator ge;
4538 for (ge = this->global_entry_stubs_.begin();
4539 ge != this->global_entry_stubs_.end();
4540 ++ge)
4541 {
4542 p = oview + global_entry_off + ge->second;
4543 Address plt_addr = ge->first->plt_offset();
4544 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4545 && ge->first->can_use_relative_reloc(false))
4546 {
4547 if (iplt_base == invalid_address)
4548 iplt_base = this->targ_->iplt_section()->address();
4549 plt_addr += iplt_base;
4550 }
4551 else
4552 plt_addr += plt_base;
4553 Address my_addr = global_entry_base + ge->second;
4554 Address off = plt_addr - my_addr;
4555
4556 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4557 gold_error(_("%s: linkage table error against `%s'"),
4558 ge->first->object()->name().c_str(),
4559 ge->first->demangled_name().c_str());
4560
4561 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
4562 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
4563 write_insn<big_endian>(p, mtctr_12), p += 4;
4564 write_insn<big_endian>(p, bctr);
4565 }
4566 }
4567 else
4568 {
4569 const Output_data_got_powerpc<size, big_endian>* got
4570 = this->targ_->got_section();
4571 // The address of _GLOBAL_OFFSET_TABLE_.
4572 Address g_o_t = got->address() + got->g_o_t();
4573
4574 // Write out pltresolve branch table.
4575 p = oview;
4576 unsigned int the_end = oview_size - this->pltresolve_size;
4577 unsigned char* end_p = oview + the_end;
4578 while (p < end_p - 8 * 4)
4579 write_insn<big_endian>(p, b + end_p - p), p += 4;
4580 while (p < end_p)
4581 write_insn<big_endian>(p, nop), p += 4;
4582
4583 // Write out pltresolve call stub.
4584 if (parameters->options().output_is_position_independent())
4585 {
4586 Address res0_off = 0;
4587 Address after_bcl_off = the_end + 12;
4588 Address bcl_res0 = after_bcl_off - res0_off;
4589
4590 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
4591 write_insn<big_endian>(p + 4, mflr_0);
4592 write_insn<big_endian>(p + 8, bcl_20_31);
4593 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4594 write_insn<big_endian>(p + 16, mflr_12);
4595 write_insn<big_endian>(p + 20, mtlr_0);
4596 write_insn<big_endian>(p + 24, sub_11_11_12);
4597
4598 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4599
4600 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4601 if (ha(got_bcl) == ha(got_bcl + 4))
4602 {
4603 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4604 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4605 }
4606 else
4607 {
4608 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4609 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4610 }
4611 write_insn<big_endian>(p + 40, mtctr_0);
4612 write_insn<big_endian>(p + 44, add_0_11_11);
4613 write_insn<big_endian>(p + 48, add_11_0_11);
4614 write_insn<big_endian>(p + 52, bctr);
4615 write_insn<big_endian>(p + 56, nop);
4616 write_insn<big_endian>(p + 60, nop);
4617 }
4618 else
4619 {
4620 Address res0 = this->address();
4621
4622 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4623 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4624 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4625 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4626 else
4627 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4628 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4629 write_insn<big_endian>(p + 16, mtctr_0);
4630 write_insn<big_endian>(p + 20, add_0_11_11);
4631 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4632 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4633 else
4634 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4635 write_insn<big_endian>(p + 28, add_11_0_11);
4636 write_insn<big_endian>(p + 32, bctr);
4637 write_insn<big_endian>(p + 36, nop);
4638 write_insn<big_endian>(p + 40, nop);
4639 write_insn<big_endian>(p + 44, nop);
4640 write_insn<big_endian>(p + 48, nop);
4641 write_insn<big_endian>(p + 52, nop);
4642 write_insn<big_endian>(p + 56, nop);
4643 write_insn<big_endian>(p + 60, nop);
4644 }
4645 p += 64;
4646 }
4647
4648 of->write_output_view(off, oview_size, oview);
4649 }
4650
4651
4652 // A class to handle linker generated save/restore functions.
4653
4654 template<int size, bool big_endian>
4655 class Output_data_save_res : public Output_section_data_build
4656 {
4657 public:
4658 Output_data_save_res(Symbol_table* symtab);
4659
4660 protected:
4661 // Write to a map file.
4662 void
4663 do_print_to_mapfile(Mapfile* mapfile) const
4664 { mapfile->print_output_data(this, _("** save/restore")); }
4665
4666 void
4667 do_write(Output_file*);
4668
4669 private:
4670 // The maximum size of save/restore contents.
4671 static const unsigned int savres_max = 218*4;
4672
4673 void
4674 savres_define(Symbol_table* symtab,
4675 const char *name,
4676 unsigned int lo, unsigned int hi,
4677 unsigned char* write_ent(unsigned char*, int),
4678 unsigned char* write_tail(unsigned char*, int));
4679
4680 unsigned char *contents_;
4681 };
4682
4683 template<bool big_endian>
4684 static unsigned char*
4685 savegpr0(unsigned char* p, int r)
4686 {
4687 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4688 write_insn<big_endian>(p, insn);
4689 return p + 4;
4690 }
4691
4692 template<bool big_endian>
4693 static unsigned char*
4694 savegpr0_tail(unsigned char* p, int r)
4695 {
4696 p = savegpr0<big_endian>(p, r);
4697 uint32_t insn = std_0_1 + 16;
4698 write_insn<big_endian>(p, insn);
4699 p = p + 4;
4700 write_insn<big_endian>(p, blr);
4701 return p + 4;
4702 }
4703
4704 template<bool big_endian>
4705 static unsigned char*
4706 restgpr0(unsigned char* p, int r)
4707 {
4708 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4709 write_insn<big_endian>(p, insn);
4710 return p + 4;
4711 }
4712
4713 template<bool big_endian>
4714 static unsigned char*
4715 restgpr0_tail(unsigned char* p, int r)
4716 {
4717 uint32_t insn = ld_0_1 + 16;
4718 write_insn<big_endian>(p, insn);
4719 p = p + 4;
4720 p = restgpr0<big_endian>(p, r);
4721 write_insn<big_endian>(p, mtlr_0);
4722 p = p + 4;
4723 if (r == 29)
4724 {
4725 p = restgpr0<big_endian>(p, 30);
4726 p = restgpr0<big_endian>(p, 31);
4727 }
4728 write_insn<big_endian>(p, blr);
4729 return p + 4;
4730 }
4731
4732 template<bool big_endian>
4733 static unsigned char*
4734 savegpr1(unsigned char* p, int r)
4735 {
4736 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4737 write_insn<big_endian>(p, insn);
4738 return p + 4;
4739 }
4740
4741 template<bool big_endian>
4742 static unsigned char*
4743 savegpr1_tail(unsigned char* p, int r)
4744 {
4745 p = savegpr1<big_endian>(p, r);
4746 write_insn<big_endian>(p, blr);
4747 return p + 4;
4748 }
4749
4750 template<bool big_endian>
4751 static unsigned char*
4752 restgpr1(unsigned char* p, int r)
4753 {
4754 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4755 write_insn<big_endian>(p, insn);
4756 return p + 4;
4757 }
4758
4759 template<bool big_endian>
4760 static unsigned char*
4761 restgpr1_tail(unsigned char* p, int r)
4762 {
4763 p = restgpr1<big_endian>(p, r);
4764 write_insn<big_endian>(p, blr);
4765 return p + 4;
4766 }
4767
4768 template<bool big_endian>
4769 static unsigned char*
4770 savefpr(unsigned char* p, int r)
4771 {
4772 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4773 write_insn<big_endian>(p, insn);
4774 return p + 4;
4775 }
4776
4777 template<bool big_endian>
4778 static unsigned char*
4779 savefpr0_tail(unsigned char* p, int r)
4780 {
4781 p = savefpr<big_endian>(p, r);
4782 write_insn<big_endian>(p, std_0_1 + 16);
4783 p = p + 4;
4784 write_insn<big_endian>(p, blr);
4785 return p + 4;
4786 }
4787
4788 template<bool big_endian>
4789 static unsigned char*
4790 restfpr(unsigned char* p, int r)
4791 {
4792 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4793 write_insn<big_endian>(p, insn);
4794 return p + 4;
4795 }
4796
4797 template<bool big_endian>
4798 static unsigned char*
4799 restfpr0_tail(unsigned char* p, int r)
4800 {
4801 write_insn<big_endian>(p, ld_0_1 + 16);
4802 p = p + 4;
4803 p = restfpr<big_endian>(p, r);
4804 write_insn<big_endian>(p, mtlr_0);
4805 p = p + 4;
4806 if (r == 29)
4807 {
4808 p = restfpr<big_endian>(p, 30);
4809 p = restfpr<big_endian>(p, 31);
4810 }
4811 write_insn<big_endian>(p, blr);
4812 return p + 4;
4813 }
4814
4815 template<bool big_endian>
4816 static unsigned char*
4817 savefpr1_tail(unsigned char* p, int r)
4818 {
4819 p = savefpr<big_endian>(p, r);
4820 write_insn<big_endian>(p, blr);
4821 return p + 4;
4822 }
4823
4824 template<bool big_endian>
4825 static unsigned char*
4826 restfpr1_tail(unsigned char* p, int r)
4827 {
4828 p = restfpr<big_endian>(p, r);
4829 write_insn<big_endian>(p, blr);
4830 return p + 4;
4831 }
4832
4833 template<bool big_endian>
4834 static unsigned char*
4835 savevr(unsigned char* p, int r)
4836 {
4837 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4838 write_insn<big_endian>(p, insn);
4839 p = p + 4;
4840 insn = stvx_0_12_0 + (r << 21);
4841 write_insn<big_endian>(p, insn);
4842 return p + 4;
4843 }
4844
4845 template<bool big_endian>
4846 static unsigned char*
4847 savevr_tail(unsigned char* p, int r)
4848 {
4849 p = savevr<big_endian>(p, r);
4850 write_insn<big_endian>(p, blr);
4851 return p + 4;
4852 }
4853
4854 template<bool big_endian>
4855 static unsigned char*
4856 restvr(unsigned char* p, int r)
4857 {
4858 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4859 write_insn<big_endian>(p, insn);
4860 p = p + 4;
4861 insn = lvx_0_12_0 + (r << 21);
4862 write_insn<big_endian>(p, insn);
4863 return p + 4;
4864 }
4865
4866 template<bool big_endian>
4867 static unsigned char*
4868 restvr_tail(unsigned char* p, int r)
4869 {
4870 p = restvr<big_endian>(p, r);
4871 write_insn<big_endian>(p, blr);
4872 return p + 4;
4873 }
4874
4875
4876 template<int size, bool big_endian>
4877 Output_data_save_res<size, big_endian>::Output_data_save_res(
4878 Symbol_table* symtab)
4879 : Output_section_data_build(4),
4880 contents_(NULL)
4881 {
4882 this->savres_define(symtab,
4883 "_savegpr0_", 14, 31,
4884 savegpr0<big_endian>, savegpr0_tail<big_endian>);
4885 this->savres_define(symtab,
4886 "_restgpr0_", 14, 29,
4887 restgpr0<big_endian>, restgpr0_tail<big_endian>);
4888 this->savres_define(symtab,
4889 "_restgpr0_", 30, 31,
4890 restgpr0<big_endian>, restgpr0_tail<big_endian>);
4891 this->savres_define(symtab,
4892 "_savegpr1_", 14, 31,
4893 savegpr1<big_endian>, savegpr1_tail<big_endian>);
4894 this->savres_define(symtab,
4895 "_restgpr1_", 14, 31,
4896 restgpr1<big_endian>, restgpr1_tail<big_endian>);
4897 this->savres_define(symtab,
4898 "_savefpr_", 14, 31,
4899 savefpr<big_endian>, savefpr0_tail<big_endian>);
4900 this->savres_define(symtab,
4901 "_restfpr_", 14, 29,
4902 restfpr<big_endian>, restfpr0_tail<big_endian>);
4903 this->savres_define(symtab,
4904 "_restfpr_", 30, 31,
4905 restfpr<big_endian>, restfpr0_tail<big_endian>);
4906 this->savres_define(symtab,
4907 "._savef", 14, 31,
4908 savefpr<big_endian>, savefpr1_tail<big_endian>);
4909 this->savres_define(symtab,
4910 "._restf", 14, 31,
4911 restfpr<big_endian>, restfpr1_tail<big_endian>);
4912 this->savres_define(symtab,
4913 "_savevr_", 20, 31,
4914 savevr<big_endian>, savevr_tail<big_endian>);
4915 this->savres_define(symtab,
4916 "_restvr_", 20, 31,
4917 restvr<big_endian>, restvr_tail<big_endian>);
4918 }
4919
4920 template<int size, bool big_endian>
4921 void
4922 Output_data_save_res<size, big_endian>::savres_define(
4923 Symbol_table* symtab,
4924 const char *name,
4925 unsigned int lo, unsigned int hi,
4926 unsigned char* write_ent(unsigned char*, int),
4927 unsigned char* write_tail(unsigned char*, int))
4928 {
4929 size_t len = strlen(name);
4930 bool writing = false;
4931 char sym[16];
4932
4933 memcpy(sym, name, len);
4934 sym[len + 2] = 0;
4935
4936 for (unsigned int i = lo; i <= hi; i++)
4937 {
4938 sym[len + 0] = i / 10 + '0';
4939 sym[len + 1] = i % 10 + '0';
4940 Symbol* gsym = symtab->lookup(sym);
4941 bool refd = gsym != NULL && gsym->is_undefined();
4942 writing = writing || refd;
4943 if (writing)
4944 {
4945 if (this->contents_ == NULL)
4946 this->contents_ = new unsigned char[this->savres_max];
4947
4948 section_size_type value = this->current_data_size();
4949 unsigned char* p = this->contents_ + value;
4950 if (i != hi)
4951 p = write_ent(p, i);
4952 else
4953 p = write_tail(p, i);
4954 section_size_type cur_size = p - this->contents_;
4955 this->set_current_data_size(cur_size);
4956 if (refd)
4957 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
4958 this, value, cur_size - value,
4959 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
4960 elfcpp::STV_HIDDEN, 0, false, false);
4961 }
4962 }
4963 }
4964
4965 // Write out save/restore.
4966
4967 template<int size, bool big_endian>
4968 void
4969 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
4970 {
4971 const section_size_type off = this->offset();
4972 const section_size_type oview_size =
4973 convert_to_section_size_type(this->data_size());
4974 unsigned char* const oview = of->get_output_view(off, oview_size);
4975 memcpy(oview, this->contents_, oview_size);
4976 of->write_output_view(off, oview_size, oview);
4977 }
4978
4979
4980 // Create the glink section.
4981
4982 template<int size, bool big_endian>
4983 void
4984 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
4985 {
4986 if (this->glink_ == NULL)
4987 {
4988 this->glink_ = new Output_data_glink<size, big_endian>(this);
4989 this->glink_->add_eh_frame(layout);
4990 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
4991 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
4992 this->glink_, ORDER_TEXT, false);
4993 }
4994 }
4995
4996 // Create a PLT entry for a global symbol.
4997
4998 template<int size, bool big_endian>
4999 void
5000 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5001 Layout* layout,
5002 Symbol* gsym)
5003 {
5004 if (gsym->type() == elfcpp::STT_GNU_IFUNC
5005 && gsym->can_use_relative_reloc(false))
5006 {
5007 if (this->iplt_ == NULL)
5008 this->make_iplt_section(symtab, layout);
5009 this->iplt_->add_ifunc_entry(gsym);
5010 }
5011 else
5012 {
5013 if (this->plt_ == NULL)
5014 this->make_plt_section(symtab, layout);
5015 this->plt_->add_entry(gsym);
5016 }
5017 }
5018
5019 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5020
5021 template<int size, bool big_endian>
5022 void
5023 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5024 Symbol_table* symtab,
5025 Layout* layout,
5026 Sized_relobj_file<size, big_endian>* relobj,
5027 unsigned int r_sym)
5028 {
5029 if (this->iplt_ == NULL)
5030 this->make_iplt_section(symtab, layout);
5031 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5032 }
5033
5034 // Return the number of entries in the PLT.
5035
5036 template<int size, bool big_endian>
5037 unsigned int
5038 Target_powerpc<size, big_endian>::plt_entry_count() const
5039 {
5040 if (this->plt_ == NULL)
5041 return 0;
5042 return this->plt_->entry_count();
5043 }
5044
5045 // Create a GOT entry for local dynamic __tls_get_addr calls.
5046
5047 template<int size, bool big_endian>
5048 unsigned int
5049 Target_powerpc<size, big_endian>::tlsld_got_offset(
5050 Symbol_table* symtab,
5051 Layout* layout,
5052 Sized_relobj_file<size, big_endian>* object)
5053 {
5054 if (this->tlsld_got_offset_ == -1U)
5055 {
5056 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5057 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5058 Output_data_got_powerpc<size, big_endian>* got
5059 = this->got_section(symtab, layout);
5060 unsigned int got_offset = got->add_constant_pair(0, 0);
5061 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5062 got_offset, 0);
5063 this->tlsld_got_offset_ = got_offset;
5064 }
5065 return this->tlsld_got_offset_;
5066 }
5067
5068 // Get the Reference_flags for a particular relocation.
5069
5070 template<int size, bool big_endian>
5071 int
5072 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5073 unsigned int r_type,
5074 const Target_powerpc* target)
5075 {
5076 int ref = 0;
5077
5078 switch (r_type)
5079 {
5080 case elfcpp::R_POWERPC_NONE:
5081 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5082 case elfcpp::R_POWERPC_GNU_VTENTRY:
5083 case elfcpp::R_PPC64_TOC:
5084 // No symbol reference.
5085 break;
5086
5087 case elfcpp::R_PPC64_ADDR64:
5088 case elfcpp::R_PPC64_UADDR64:
5089 case elfcpp::R_POWERPC_ADDR32:
5090 case elfcpp::R_POWERPC_UADDR32:
5091 case elfcpp::R_POWERPC_ADDR16:
5092 case elfcpp::R_POWERPC_UADDR16:
5093 case elfcpp::R_POWERPC_ADDR16_LO:
5094 case elfcpp::R_POWERPC_ADDR16_HI:
5095 case elfcpp::R_POWERPC_ADDR16_HA:
5096 ref = Symbol::ABSOLUTE_REF;
5097 break;
5098
5099 case elfcpp::R_POWERPC_ADDR24:
5100 case elfcpp::R_POWERPC_ADDR14:
5101 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5102 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5103 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5104 break;
5105
5106 case elfcpp::R_PPC64_REL64:
5107 case elfcpp::R_POWERPC_REL32:
5108 case elfcpp::R_PPC_LOCAL24PC:
5109 case elfcpp::R_POWERPC_REL16:
5110 case elfcpp::R_POWERPC_REL16_LO:
5111 case elfcpp::R_POWERPC_REL16_HI:
5112 case elfcpp::R_POWERPC_REL16_HA:
5113 ref = Symbol::RELATIVE_REF;
5114 break;
5115
5116 case elfcpp::R_POWERPC_REL24:
5117 case elfcpp::R_PPC_PLTREL24:
5118 case elfcpp::R_POWERPC_REL14:
5119 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5120 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5121 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5122 break;
5123
5124 case elfcpp::R_POWERPC_GOT16:
5125 case elfcpp::R_POWERPC_GOT16_LO:
5126 case elfcpp::R_POWERPC_GOT16_HI:
5127 case elfcpp::R_POWERPC_GOT16_HA:
5128 case elfcpp::R_PPC64_GOT16_DS:
5129 case elfcpp::R_PPC64_GOT16_LO_DS:
5130 case elfcpp::R_PPC64_TOC16:
5131 case elfcpp::R_PPC64_TOC16_LO:
5132 case elfcpp::R_PPC64_TOC16_HI:
5133 case elfcpp::R_PPC64_TOC16_HA:
5134 case elfcpp::R_PPC64_TOC16_DS:
5135 case elfcpp::R_PPC64_TOC16_LO_DS:
5136 // Absolute in GOT.
5137 ref = Symbol::ABSOLUTE_REF;
5138 break;
5139
5140 case elfcpp::R_POWERPC_GOT_TPREL16:
5141 case elfcpp::R_POWERPC_TLS:
5142 ref = Symbol::TLS_REF;
5143 break;
5144
5145 case elfcpp::R_POWERPC_COPY:
5146 case elfcpp::R_POWERPC_GLOB_DAT:
5147 case elfcpp::R_POWERPC_JMP_SLOT:
5148 case elfcpp::R_POWERPC_RELATIVE:
5149 case elfcpp::R_POWERPC_DTPMOD:
5150 default:
5151 // Not expected. We will give an error later.
5152 break;
5153 }
5154
5155 if (size == 64 && target->abiversion() < 2)
5156 ref |= Symbol::FUNC_DESC_ABI;
5157 return ref;
5158 }
5159
5160 // Report an unsupported relocation against a local symbol.
5161
5162 template<int size, bool big_endian>
5163 void
5164 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5165 Sized_relobj_file<size, big_endian>* object,
5166 unsigned int r_type)
5167 {
5168 gold_error(_("%s: unsupported reloc %u against local symbol"),
5169 object->name().c_str(), r_type);
5170 }
5171
5172 // We are about to emit a dynamic relocation of type R_TYPE. If the
5173 // dynamic linker does not support it, issue an error.
5174
5175 template<int size, bool big_endian>
5176 void
5177 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5178 unsigned int r_type)
5179 {
5180 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5181
5182 // These are the relocation types supported by glibc for both 32-bit
5183 // and 64-bit powerpc.
5184 switch (r_type)
5185 {
5186 case elfcpp::R_POWERPC_NONE:
5187 case elfcpp::R_POWERPC_RELATIVE:
5188 case elfcpp::R_POWERPC_GLOB_DAT:
5189 case elfcpp::R_POWERPC_DTPMOD:
5190 case elfcpp::R_POWERPC_DTPREL:
5191 case elfcpp::R_POWERPC_TPREL:
5192 case elfcpp::R_POWERPC_JMP_SLOT:
5193 case elfcpp::R_POWERPC_COPY:
5194 case elfcpp::R_POWERPC_IRELATIVE:
5195 case elfcpp::R_POWERPC_ADDR32:
5196 case elfcpp::R_POWERPC_UADDR32:
5197 case elfcpp::R_POWERPC_ADDR24:
5198 case elfcpp::R_POWERPC_ADDR16:
5199 case elfcpp::R_POWERPC_UADDR16:
5200 case elfcpp::R_POWERPC_ADDR16_LO:
5201 case elfcpp::R_POWERPC_ADDR16_HI:
5202 case elfcpp::R_POWERPC_ADDR16_HA:
5203 case elfcpp::R_POWERPC_ADDR14:
5204 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5205 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5206 case elfcpp::R_POWERPC_REL32:
5207 case elfcpp::R_POWERPC_REL24:
5208 case elfcpp::R_POWERPC_TPREL16:
5209 case elfcpp::R_POWERPC_TPREL16_LO:
5210 case elfcpp::R_POWERPC_TPREL16_HI:
5211 case elfcpp::R_POWERPC_TPREL16_HA:
5212 return;
5213
5214 default:
5215 break;
5216 }
5217
5218 if (size == 64)
5219 {
5220 switch (r_type)
5221 {
5222 // These are the relocation types supported only on 64-bit.
5223 case elfcpp::R_PPC64_ADDR64:
5224 case elfcpp::R_PPC64_UADDR64:
5225 case elfcpp::R_PPC64_JMP_IREL:
5226 case elfcpp::R_PPC64_ADDR16_DS:
5227 case elfcpp::R_PPC64_ADDR16_LO_DS:
5228 case elfcpp::R_PPC64_ADDR16_HIGH:
5229 case elfcpp::R_PPC64_ADDR16_HIGHA:
5230 case elfcpp::R_PPC64_ADDR16_HIGHER:
5231 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5232 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5233 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5234 case elfcpp::R_PPC64_REL64:
5235 case elfcpp::R_POWERPC_ADDR30:
5236 case elfcpp::R_PPC64_TPREL16_DS:
5237 case elfcpp::R_PPC64_TPREL16_LO_DS:
5238 case elfcpp::R_PPC64_TPREL16_HIGH:
5239 case elfcpp::R_PPC64_TPREL16_HIGHA:
5240 case elfcpp::R_PPC64_TPREL16_HIGHER:
5241 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5242 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5243 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5244 return;
5245
5246 default:
5247 break;
5248 }
5249 }
5250 else
5251 {
5252 switch (r_type)
5253 {
5254 // These are the relocation types supported only on 32-bit.
5255 // ??? glibc ld.so doesn't need to support these.
5256 case elfcpp::R_POWERPC_DTPREL16:
5257 case elfcpp::R_POWERPC_DTPREL16_LO:
5258 case elfcpp::R_POWERPC_DTPREL16_HI:
5259 case elfcpp::R_POWERPC_DTPREL16_HA:
5260 return;
5261
5262 default:
5263 break;
5264 }
5265 }
5266
5267 // This prevents us from issuing more than one error per reloc
5268 // section. But we can still wind up issuing more than one
5269 // error per object file.
5270 if (this->issued_non_pic_error_)
5271 return;
5272 gold_assert(parameters->options().output_is_position_independent());
5273 object->error(_("requires unsupported dynamic reloc; "
5274 "recompile with -fPIC"));
5275 this->issued_non_pic_error_ = true;
5276 return;
5277 }
5278
5279 // Return whether we need to make a PLT entry for a relocation of the
5280 // given type against a STT_GNU_IFUNC symbol.
5281
5282 template<int size, bool big_endian>
5283 bool
5284 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5285 Target_powerpc<size, big_endian>* target,
5286 Sized_relobj_file<size, big_endian>* object,
5287 unsigned int r_type,
5288 bool report_err)
5289 {
5290 // In non-pic code any reference will resolve to the plt call stub
5291 // for the ifunc symbol.
5292 if ((size == 32 || target->abiversion() >= 2)
5293 && !parameters->options().output_is_position_independent())
5294 return true;
5295
5296 switch (r_type)
5297 {
5298 // Word size refs from data sections are OK, but don't need a PLT entry.
5299 case elfcpp::R_POWERPC_ADDR32:
5300 case elfcpp::R_POWERPC_UADDR32:
5301 if (size == 32)
5302 return false;
5303 break;
5304
5305 case elfcpp::R_PPC64_ADDR64:
5306 case elfcpp::R_PPC64_UADDR64:
5307 if (size == 64)
5308 return false;
5309 break;
5310
5311 // GOT refs are good, but also don't need a PLT entry.
5312 case elfcpp::R_POWERPC_GOT16:
5313 case elfcpp::R_POWERPC_GOT16_LO:
5314 case elfcpp::R_POWERPC_GOT16_HI:
5315 case elfcpp::R_POWERPC_GOT16_HA:
5316 case elfcpp::R_PPC64_GOT16_DS:
5317 case elfcpp::R_PPC64_GOT16_LO_DS:
5318 return false;
5319
5320 // Function calls are good, and these do need a PLT entry.
5321 case elfcpp::R_POWERPC_ADDR24:
5322 case elfcpp::R_POWERPC_ADDR14:
5323 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5324 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5325 case elfcpp::R_POWERPC_REL24:
5326 case elfcpp::R_PPC_PLTREL24:
5327 case elfcpp::R_POWERPC_REL14:
5328 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5329 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5330 return true;
5331
5332 default:
5333 break;
5334 }
5335
5336 // Anything else is a problem.
5337 // If we are building a static executable, the libc startup function
5338 // responsible for applying indirect function relocations is going
5339 // to complain about the reloc type.
5340 // If we are building a dynamic executable, we will have a text
5341 // relocation. The dynamic loader will set the text segment
5342 // writable and non-executable to apply text relocations. So we'll
5343 // segfault when trying to run the indirection function to resolve
5344 // the reloc.
5345 if (report_err)
5346 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5347 object->name().c_str(), r_type);
5348 return false;
5349 }
5350
5351 // Scan a relocation for a local symbol.
5352
5353 template<int size, bool big_endian>
5354 inline void
5355 Target_powerpc<size, big_endian>::Scan::local(
5356 Symbol_table* symtab,
5357 Layout* layout,
5358 Target_powerpc<size, big_endian>* target,
5359 Sized_relobj_file<size, big_endian>* object,
5360 unsigned int data_shndx,
5361 Output_section* output_section,
5362 const elfcpp::Rela<size, big_endian>& reloc,
5363 unsigned int r_type,
5364 const elfcpp::Sym<size, big_endian>& lsym,
5365 bool is_discarded)
5366 {
5367 this->maybe_skip_tls_get_addr_call(r_type, NULL);
5368
5369 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5370 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5371 {
5372 this->expect_tls_get_addr_call();
5373 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5374 if (tls_type != tls::TLSOPT_NONE)
5375 this->skip_next_tls_get_addr_call();
5376 }
5377 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5378 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5379 {
5380 this->expect_tls_get_addr_call();
5381 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5382 if (tls_type != tls::TLSOPT_NONE)
5383 this->skip_next_tls_get_addr_call();
5384 }
5385
5386 Powerpc_relobj<size, big_endian>* ppc_object
5387 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5388
5389 if (is_discarded)
5390 {
5391 if (size == 64
5392 && data_shndx == ppc_object->opd_shndx()
5393 && r_type == elfcpp::R_PPC64_ADDR64)
5394 ppc_object->set_opd_discard(reloc.get_r_offset());
5395 return;
5396 }
5397
5398 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5399 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5400 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5401 {
5402 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5403 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5404 r_type, r_sym, reloc.get_r_addend());
5405 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5406 }
5407
5408 switch (r_type)
5409 {
5410 case elfcpp::R_POWERPC_NONE:
5411 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5412 case elfcpp::R_POWERPC_GNU_VTENTRY:
5413 case elfcpp::R_PPC64_TOCSAVE:
5414 case elfcpp::R_POWERPC_TLS:
5415 break;
5416
5417 case elfcpp::R_PPC64_TOC:
5418 {
5419 Output_data_got_powerpc<size, big_endian>* got
5420 = target->got_section(symtab, layout);
5421 if (parameters->options().output_is_position_independent())
5422 {
5423 Address off = reloc.get_r_offset();
5424 if (size == 64
5425 && target->abiversion() < 2
5426 && data_shndx == ppc_object->opd_shndx()
5427 && ppc_object->get_opd_discard(off - 8))
5428 break;
5429
5430 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5431 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5432 rela_dyn->add_output_section_relative(got->output_section(),
5433 elfcpp::R_POWERPC_RELATIVE,
5434 output_section,
5435 object, data_shndx, off,
5436 symobj->toc_base_offset());
5437 }
5438 }
5439 break;
5440
5441 case elfcpp::R_PPC64_ADDR64:
5442 case elfcpp::R_PPC64_UADDR64:
5443 case elfcpp::R_POWERPC_ADDR32:
5444 case elfcpp::R_POWERPC_UADDR32:
5445 case elfcpp::R_POWERPC_ADDR24:
5446 case elfcpp::R_POWERPC_ADDR16:
5447 case elfcpp::R_POWERPC_ADDR16_LO:
5448 case elfcpp::R_POWERPC_ADDR16_HI:
5449 case elfcpp::R_POWERPC_ADDR16_HA:
5450 case elfcpp::R_POWERPC_UADDR16:
5451 case elfcpp::R_PPC64_ADDR16_HIGH:
5452 case elfcpp::R_PPC64_ADDR16_HIGHA:
5453 case elfcpp::R_PPC64_ADDR16_HIGHER:
5454 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5455 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5456 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5457 case elfcpp::R_PPC64_ADDR16_DS:
5458 case elfcpp::R_PPC64_ADDR16_LO_DS:
5459 case elfcpp::R_POWERPC_ADDR14:
5460 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5461 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5462 // If building a shared library (or a position-independent
5463 // executable), we need to create a dynamic relocation for
5464 // this location.
5465 if (parameters->options().output_is_position_independent()
5466 || (size == 64 && is_ifunc && target->abiversion() < 2))
5467 {
5468 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5469 is_ifunc);
5470 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5471 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5472 {
5473 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5474 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5475 : elfcpp::R_POWERPC_RELATIVE);
5476 rela_dyn->add_local_relative(object, r_sym, dynrel,
5477 output_section, data_shndx,
5478 reloc.get_r_offset(),
5479 reloc.get_r_addend(), false);
5480 }
5481 else
5482 {
5483 check_non_pic(object, r_type);
5484 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5485 rela_dyn->add_local(object, r_sym, r_type, output_section,
5486 data_shndx, reloc.get_r_offset(),
5487 reloc.get_r_addend());
5488 }
5489 }
5490 break;
5491
5492 case elfcpp::R_POWERPC_REL24:
5493 case elfcpp::R_PPC_PLTREL24:
5494 case elfcpp::R_PPC_LOCAL24PC:
5495 case elfcpp::R_POWERPC_REL14:
5496 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5497 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5498 if (!is_ifunc)
5499 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5500 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5501 reloc.get_r_addend());
5502 break;
5503
5504 case elfcpp::R_PPC64_REL64:
5505 case elfcpp::R_POWERPC_REL32:
5506 case elfcpp::R_POWERPC_REL16:
5507 case elfcpp::R_POWERPC_REL16_LO:
5508 case elfcpp::R_POWERPC_REL16_HI:
5509 case elfcpp::R_POWERPC_REL16_HA:
5510 case elfcpp::R_POWERPC_SECTOFF:
5511 case elfcpp::R_POWERPC_SECTOFF_LO:
5512 case elfcpp::R_POWERPC_SECTOFF_HI:
5513 case elfcpp::R_POWERPC_SECTOFF_HA:
5514 case elfcpp::R_PPC64_SECTOFF_DS:
5515 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5516 case elfcpp::R_POWERPC_TPREL16:
5517 case elfcpp::R_POWERPC_TPREL16_LO:
5518 case elfcpp::R_POWERPC_TPREL16_HI:
5519 case elfcpp::R_POWERPC_TPREL16_HA:
5520 case elfcpp::R_PPC64_TPREL16_DS:
5521 case elfcpp::R_PPC64_TPREL16_LO_DS:
5522 case elfcpp::R_PPC64_TPREL16_HIGH:
5523 case elfcpp::R_PPC64_TPREL16_HIGHA:
5524 case elfcpp::R_PPC64_TPREL16_HIGHER:
5525 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5526 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5527 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5528 case elfcpp::R_POWERPC_DTPREL16:
5529 case elfcpp::R_POWERPC_DTPREL16_LO:
5530 case elfcpp::R_POWERPC_DTPREL16_HI:
5531 case elfcpp::R_POWERPC_DTPREL16_HA:
5532 case elfcpp::R_PPC64_DTPREL16_DS:
5533 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5534 case elfcpp::R_PPC64_DTPREL16_HIGH:
5535 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5536 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5537 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5538 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5539 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5540 case elfcpp::R_PPC64_TLSGD:
5541 case elfcpp::R_PPC64_TLSLD:
5542 case elfcpp::R_PPC64_ADDR64_LOCAL:
5543 break;
5544
5545 case elfcpp::R_POWERPC_GOT16:
5546 case elfcpp::R_POWERPC_GOT16_LO:
5547 case elfcpp::R_POWERPC_GOT16_HI:
5548 case elfcpp::R_POWERPC_GOT16_HA:
5549 case elfcpp::R_PPC64_GOT16_DS:
5550 case elfcpp::R_PPC64_GOT16_LO_DS:
5551 {
5552 // The symbol requires a GOT entry.
5553 Output_data_got_powerpc<size, big_endian>* got
5554 = target->got_section(symtab, layout);
5555 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5556
5557 if (!parameters->options().output_is_position_independent())
5558 {
5559 if ((size == 32 && is_ifunc)
5560 || (size == 64 && target->abiversion() >= 2))
5561 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5562 else
5563 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5564 }
5565 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5566 {
5567 // If we are generating a shared object or a pie, this
5568 // symbol's GOT entry will be set by a dynamic relocation.
5569 unsigned int off;
5570 off = got->add_constant(0);
5571 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5572
5573 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5574 is_ifunc);
5575 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5576 : elfcpp::R_POWERPC_RELATIVE);
5577 rela_dyn->add_local_relative(object, r_sym, dynrel,
5578 got, off, 0, false);
5579 }
5580 }
5581 break;
5582
5583 case elfcpp::R_PPC64_TOC16:
5584 case elfcpp::R_PPC64_TOC16_LO:
5585 case elfcpp::R_PPC64_TOC16_HI:
5586 case elfcpp::R_PPC64_TOC16_HA:
5587 case elfcpp::R_PPC64_TOC16_DS:
5588 case elfcpp::R_PPC64_TOC16_LO_DS:
5589 // We need a GOT section.
5590 target->got_section(symtab, layout);
5591 break;
5592
5593 case elfcpp::R_POWERPC_GOT_TLSGD16:
5594 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5595 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5596 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5597 {
5598 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5599 if (tls_type == tls::TLSOPT_NONE)
5600 {
5601 Output_data_got_powerpc<size, big_endian>* got
5602 = target->got_section(symtab, layout);
5603 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5604 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5605 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5606 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5607 }
5608 else if (tls_type == tls::TLSOPT_TO_LE)
5609 {
5610 // no GOT relocs needed for Local Exec.
5611 }
5612 else
5613 gold_unreachable();
5614 }
5615 break;
5616
5617 case elfcpp::R_POWERPC_GOT_TLSLD16:
5618 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5619 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5620 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5621 {
5622 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5623 if (tls_type == tls::TLSOPT_NONE)
5624 target->tlsld_got_offset(symtab, layout, object);
5625 else if (tls_type == tls::TLSOPT_TO_LE)
5626 {
5627 // no GOT relocs needed for Local Exec.
5628 if (parameters->options().emit_relocs())
5629 {
5630 Output_section* os = layout->tls_segment()->first_section();
5631 gold_assert(os != NULL);
5632 os->set_needs_symtab_index();
5633 }
5634 }
5635 else
5636 gold_unreachable();
5637 }
5638 break;
5639
5640 case elfcpp::R_POWERPC_GOT_DTPREL16:
5641 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5642 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5643 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5644 {
5645 Output_data_got_powerpc<size, big_endian>* got
5646 = target->got_section(symtab, layout);
5647 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5648 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5649 }
5650 break;
5651
5652 case elfcpp::R_POWERPC_GOT_TPREL16:
5653 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5654 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5655 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5656 {
5657 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5658 if (tls_type == tls::TLSOPT_NONE)
5659 {
5660 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5661 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5662 {
5663 Output_data_got_powerpc<size, big_endian>* got
5664 = target->got_section(symtab, layout);
5665 unsigned int off = got->add_constant(0);
5666 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5667
5668 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5669 rela_dyn->add_symbolless_local_addend(object, r_sym,
5670 elfcpp::R_POWERPC_TPREL,
5671 got, off, 0);
5672 }
5673 }
5674 else if (tls_type == tls::TLSOPT_TO_LE)
5675 {
5676 // no GOT relocs needed for Local Exec.
5677 }
5678 else
5679 gold_unreachable();
5680 }
5681 break;
5682
5683 default:
5684 unsupported_reloc_local(object, r_type);
5685 break;
5686 }
5687
5688 switch (r_type)
5689 {
5690 case elfcpp::R_POWERPC_GOT_TLSLD16:
5691 case elfcpp::R_POWERPC_GOT_TLSGD16:
5692 case elfcpp::R_POWERPC_GOT_TPREL16:
5693 case elfcpp::R_POWERPC_GOT_DTPREL16:
5694 case elfcpp::R_POWERPC_GOT16:
5695 case elfcpp::R_PPC64_GOT16_DS:
5696 case elfcpp::R_PPC64_TOC16:
5697 case elfcpp::R_PPC64_TOC16_DS:
5698 ppc_object->set_has_small_toc_reloc();
5699 default:
5700 break;
5701 }
5702 }
5703
5704 // Report an unsupported relocation against a global symbol.
5705
5706 template<int size, bool big_endian>
5707 void
5708 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5709 Sized_relobj_file<size, big_endian>* object,
5710 unsigned int r_type,
5711 Symbol* gsym)
5712 {
5713 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5714 object->name().c_str(), r_type, gsym->demangled_name().c_str());
5715 }
5716
5717 // Scan a relocation for a global symbol.
5718
5719 template<int size, bool big_endian>
5720 inline void
5721 Target_powerpc<size, big_endian>::Scan::global(
5722 Symbol_table* symtab,
5723 Layout* layout,
5724 Target_powerpc<size, big_endian>* target,
5725 Sized_relobj_file<size, big_endian>* object,
5726 unsigned int data_shndx,
5727 Output_section* output_section,
5728 const elfcpp::Rela<size, big_endian>& reloc,
5729 unsigned int r_type,
5730 Symbol* gsym)
5731 {
5732 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5733 return;
5734
5735 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5736 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5737 {
5738 this->expect_tls_get_addr_call();
5739 const bool final = gsym->final_value_is_known();
5740 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5741 if (tls_type != tls::TLSOPT_NONE)
5742 this->skip_next_tls_get_addr_call();
5743 }
5744 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5745 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5746 {
5747 this->expect_tls_get_addr_call();
5748 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5749 if (tls_type != tls::TLSOPT_NONE)
5750 this->skip_next_tls_get_addr_call();
5751 }
5752
5753 Powerpc_relobj<size, big_endian>* ppc_object
5754 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5755
5756 // A STT_GNU_IFUNC symbol may require a PLT entry.
5757 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5758 bool pushed_ifunc = false;
5759 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5760 {
5761 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5762 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5763 reloc.get_r_addend());
5764 target->make_plt_entry(symtab, layout, gsym);
5765 pushed_ifunc = true;
5766 }
5767
5768 switch (r_type)
5769 {
5770 case elfcpp::R_POWERPC_NONE:
5771 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5772 case elfcpp::R_POWERPC_GNU_VTENTRY:
5773 case elfcpp::R_PPC_LOCAL24PC:
5774 case elfcpp::R_POWERPC_TLS:
5775 break;
5776
5777 case elfcpp::R_PPC64_TOC:
5778 {
5779 Output_data_got_powerpc<size, big_endian>* got
5780 = target->got_section(symtab, layout);
5781 if (parameters->options().output_is_position_independent())
5782 {
5783 Address off = reloc.get_r_offset();
5784 if (size == 64
5785 && data_shndx == ppc_object->opd_shndx()
5786 && ppc_object->get_opd_discard(off - 8))
5787 break;
5788
5789 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5790 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5791 if (data_shndx != ppc_object->opd_shndx())
5792 symobj = static_cast
5793 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5794 rela_dyn->add_output_section_relative(got->output_section(),
5795 elfcpp::R_POWERPC_RELATIVE,
5796 output_section,
5797 object, data_shndx, off,
5798 symobj->toc_base_offset());
5799 }
5800 }
5801 break;
5802
5803 case elfcpp::R_PPC64_ADDR64:
5804 if (size == 64
5805 && target->abiversion() < 2
5806 && data_shndx == ppc_object->opd_shndx()
5807 && (gsym->is_defined_in_discarded_section()
5808 || gsym->object() != object))
5809 {
5810 ppc_object->set_opd_discard(reloc.get_r_offset());
5811 break;
5812 }
5813 // Fall thru
5814 case elfcpp::R_PPC64_UADDR64:
5815 case elfcpp::R_POWERPC_ADDR32:
5816 case elfcpp::R_POWERPC_UADDR32:
5817 case elfcpp::R_POWERPC_ADDR24:
5818 case elfcpp::R_POWERPC_ADDR16:
5819 case elfcpp::R_POWERPC_ADDR16_LO:
5820 case elfcpp::R_POWERPC_ADDR16_HI:
5821 case elfcpp::R_POWERPC_ADDR16_HA:
5822 case elfcpp::R_POWERPC_UADDR16:
5823 case elfcpp::R_PPC64_ADDR16_HIGH:
5824 case elfcpp::R_PPC64_ADDR16_HIGHA:
5825 case elfcpp::R_PPC64_ADDR16_HIGHER:
5826 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5827 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5828 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5829 case elfcpp::R_PPC64_ADDR16_DS:
5830 case elfcpp::R_PPC64_ADDR16_LO_DS:
5831 case elfcpp::R_POWERPC_ADDR14:
5832 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5833 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5834 {
5835 // Make a PLT entry if necessary.
5836 if (gsym->needs_plt_entry())
5837 {
5838 // Since this is not a PC-relative relocation, we may be
5839 // taking the address of a function. In that case we need to
5840 // set the entry in the dynamic symbol table to the address of
5841 // the PLT call stub.
5842 bool need_ifunc_plt = false;
5843 if ((size == 32 || target->abiversion() >= 2)
5844 && gsym->is_from_dynobj()
5845 && !parameters->options().output_is_position_independent())
5846 {
5847 gsym->set_needs_dynsym_value();
5848 need_ifunc_plt = true;
5849 }
5850 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
5851 {
5852 target->push_branch(ppc_object, data_shndx,
5853 reloc.get_r_offset(), r_type,
5854 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5855 reloc.get_r_addend());
5856 target->make_plt_entry(symtab, layout, gsym);
5857 }
5858 }
5859 // Make a dynamic relocation if necessary.
5860 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
5861 || (size == 64 && is_ifunc && target->abiversion() < 2))
5862 {
5863 if (!parameters->options().output_is_position_independent()
5864 && gsym->may_need_copy_reloc())
5865 {
5866 target->copy_reloc(symtab, layout, object,
5867 data_shndx, output_section, gsym, reloc);
5868 }
5869 else if ((((size == 32
5870 && r_type == elfcpp::R_POWERPC_ADDR32)
5871 || (size == 64
5872 && r_type == elfcpp::R_PPC64_ADDR64
5873 && target->abiversion() >= 2))
5874 && gsym->can_use_relative_reloc(false)
5875 && !(gsym->visibility() == elfcpp::STV_PROTECTED
5876 && parameters->options().shared()))
5877 || (size == 64
5878 && r_type == elfcpp::R_PPC64_ADDR64
5879 && target->abiversion() < 2
5880 && (gsym->can_use_relative_reloc(false)
5881 || data_shndx == ppc_object->opd_shndx())))
5882 {
5883 Reloc_section* rela_dyn
5884 = target->rela_dyn_section(symtab, layout, is_ifunc);
5885 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5886 : elfcpp::R_POWERPC_RELATIVE);
5887 rela_dyn->add_symbolless_global_addend(
5888 gsym, dynrel, output_section, object, data_shndx,
5889 reloc.get_r_offset(), reloc.get_r_addend());
5890 }
5891 else
5892 {
5893 Reloc_section* rela_dyn
5894 = target->rela_dyn_section(symtab, layout, is_ifunc);
5895 check_non_pic(object, r_type);
5896 rela_dyn->add_global(gsym, r_type, output_section,
5897 object, data_shndx,
5898 reloc.get_r_offset(),
5899 reloc.get_r_addend());
5900 }
5901 }
5902 }
5903 break;
5904
5905 case elfcpp::R_PPC_PLTREL24:
5906 case elfcpp::R_POWERPC_REL24:
5907 if (!is_ifunc)
5908 {
5909 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5910 r_type,
5911 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5912 reloc.get_r_addend());
5913 if (gsym->needs_plt_entry()
5914 || (!gsym->final_value_is_known()
5915 && (gsym->is_undefined()
5916 || gsym->is_from_dynobj()
5917 || gsym->is_preemptible())))
5918 target->make_plt_entry(symtab, layout, gsym);
5919 }
5920 // Fall thru
5921
5922 case elfcpp::R_PPC64_REL64:
5923 case elfcpp::R_POWERPC_REL32:
5924 // Make a dynamic relocation if necessary.
5925 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
5926 {
5927 if (!parameters->options().output_is_position_independent()
5928 && gsym->may_need_copy_reloc())
5929 {
5930 target->copy_reloc(symtab, layout, object,
5931 data_shndx, output_section, gsym,
5932 reloc);
5933 }
5934 else
5935 {
5936 Reloc_section* rela_dyn
5937 = target->rela_dyn_section(symtab, layout, is_ifunc);
5938 check_non_pic(object, r_type);
5939 rela_dyn->add_global(gsym, r_type, output_section, object,
5940 data_shndx, reloc.get_r_offset(),
5941 reloc.get_r_addend());
5942 }
5943 }
5944 break;
5945
5946 case elfcpp::R_POWERPC_REL14:
5947 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5948 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5949 if (!is_ifunc)
5950 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5951 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5952 reloc.get_r_addend());
5953 break;
5954
5955 case elfcpp::R_POWERPC_REL16:
5956 case elfcpp::R_POWERPC_REL16_LO:
5957 case elfcpp::R_POWERPC_REL16_HI:
5958 case elfcpp::R_POWERPC_REL16_HA:
5959 case elfcpp::R_POWERPC_SECTOFF:
5960 case elfcpp::R_POWERPC_SECTOFF_LO:
5961 case elfcpp::R_POWERPC_SECTOFF_HI:
5962 case elfcpp::R_POWERPC_SECTOFF_HA:
5963 case elfcpp::R_PPC64_SECTOFF_DS:
5964 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5965 case elfcpp::R_POWERPC_TPREL16:
5966 case elfcpp::R_POWERPC_TPREL16_LO:
5967 case elfcpp::R_POWERPC_TPREL16_HI:
5968 case elfcpp::R_POWERPC_TPREL16_HA:
5969 case elfcpp::R_PPC64_TPREL16_DS:
5970 case elfcpp::R_PPC64_TPREL16_LO_DS:
5971 case elfcpp::R_PPC64_TPREL16_HIGH:
5972 case elfcpp::R_PPC64_TPREL16_HIGHA:
5973 case elfcpp::R_PPC64_TPREL16_HIGHER:
5974 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5975 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5976 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5977 case elfcpp::R_POWERPC_DTPREL16:
5978 case elfcpp::R_POWERPC_DTPREL16_LO:
5979 case elfcpp::R_POWERPC_DTPREL16_HI:
5980 case elfcpp::R_POWERPC_DTPREL16_HA:
5981 case elfcpp::R_PPC64_DTPREL16_DS:
5982 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5983 case elfcpp::R_PPC64_DTPREL16_HIGH:
5984 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5985 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5986 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5987 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5988 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5989 case elfcpp::R_PPC64_TLSGD:
5990 case elfcpp::R_PPC64_TLSLD:
5991 case elfcpp::R_PPC64_ADDR64_LOCAL:
5992 break;
5993
5994 case elfcpp::R_POWERPC_GOT16:
5995 case elfcpp::R_POWERPC_GOT16_LO:
5996 case elfcpp::R_POWERPC_GOT16_HI:
5997 case elfcpp::R_POWERPC_GOT16_HA:
5998 case elfcpp::R_PPC64_GOT16_DS:
5999 case elfcpp::R_PPC64_GOT16_LO_DS:
6000 {
6001 // The symbol requires a GOT entry.
6002 Output_data_got_powerpc<size, big_endian>* got;
6003
6004 got = target->got_section(symtab, layout);
6005 if (gsym->final_value_is_known())
6006 {
6007 if ((size == 32 && is_ifunc)
6008 || (size == 64 && target->abiversion() >= 2))
6009 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6010 else
6011 got->add_global(gsym, GOT_TYPE_STANDARD);
6012 }
6013 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6014 {
6015 // If we are generating a shared object or a pie, this
6016 // symbol's GOT entry will be set by a dynamic relocation.
6017 unsigned int off = got->add_constant(0);
6018 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6019
6020 Reloc_section* rela_dyn
6021 = target->rela_dyn_section(symtab, layout, is_ifunc);
6022
6023 if (gsym->can_use_relative_reloc(false)
6024 && !((size == 32
6025 || target->abiversion() >= 2)
6026 && gsym->visibility() == elfcpp::STV_PROTECTED
6027 && parameters->options().shared()))
6028 {
6029 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6030 : elfcpp::R_POWERPC_RELATIVE);
6031 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6032 }
6033 else
6034 {
6035 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6036 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6037 }
6038 }
6039 }
6040 break;
6041
6042 case elfcpp::R_PPC64_TOC16:
6043 case elfcpp::R_PPC64_TOC16_LO:
6044 case elfcpp::R_PPC64_TOC16_HI:
6045 case elfcpp::R_PPC64_TOC16_HA:
6046 case elfcpp::R_PPC64_TOC16_DS:
6047 case elfcpp::R_PPC64_TOC16_LO_DS:
6048 // We need a GOT section.
6049 target->got_section(symtab, layout);
6050 break;
6051
6052 case elfcpp::R_POWERPC_GOT_TLSGD16:
6053 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6054 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6055 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6056 {
6057 const bool final = gsym->final_value_is_known();
6058 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6059 if (tls_type == tls::TLSOPT_NONE)
6060 {
6061 Output_data_got_powerpc<size, big_endian>* got
6062 = target->got_section(symtab, layout);
6063 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6064 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6065 elfcpp::R_POWERPC_DTPMOD,
6066 elfcpp::R_POWERPC_DTPREL);
6067 }
6068 else if (tls_type == tls::TLSOPT_TO_IE)
6069 {
6070 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6071 {
6072 Output_data_got_powerpc<size, big_endian>* got
6073 = target->got_section(symtab, layout);
6074 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6075 if (gsym->is_undefined()
6076 || gsym->is_from_dynobj())
6077 {
6078 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6079 elfcpp::R_POWERPC_TPREL);
6080 }
6081 else
6082 {
6083 unsigned int off = got->add_constant(0);
6084 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6085 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6086 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6087 got, off, 0);
6088 }
6089 }
6090 }
6091 else if (tls_type == tls::TLSOPT_TO_LE)
6092 {
6093 // no GOT relocs needed for Local Exec.
6094 }
6095 else
6096 gold_unreachable();
6097 }
6098 break;
6099
6100 case elfcpp::R_POWERPC_GOT_TLSLD16:
6101 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6102 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6103 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6104 {
6105 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6106 if (tls_type == tls::TLSOPT_NONE)
6107 target->tlsld_got_offset(symtab, layout, object);
6108 else if (tls_type == tls::TLSOPT_TO_LE)
6109 {
6110 // no GOT relocs needed for Local Exec.
6111 if (parameters->options().emit_relocs())
6112 {
6113 Output_section* os = layout->tls_segment()->first_section();
6114 gold_assert(os != NULL);
6115 os->set_needs_symtab_index();
6116 }
6117 }
6118 else
6119 gold_unreachable();
6120 }
6121 break;
6122
6123 case elfcpp::R_POWERPC_GOT_DTPREL16:
6124 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6125 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6126 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6127 {
6128 Output_data_got_powerpc<size, big_endian>* got
6129 = target->got_section(symtab, layout);
6130 if (!gsym->final_value_is_known()
6131 && (gsym->is_from_dynobj()
6132 || gsym->is_undefined()
6133 || gsym->is_preemptible()))
6134 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6135 target->rela_dyn_section(layout),
6136 elfcpp::R_POWERPC_DTPREL);
6137 else
6138 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6139 }
6140 break;
6141
6142 case elfcpp::R_POWERPC_GOT_TPREL16:
6143 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6144 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6145 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6146 {
6147 const bool final = gsym->final_value_is_known();
6148 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6149 if (tls_type == tls::TLSOPT_NONE)
6150 {
6151 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6152 {
6153 Output_data_got_powerpc<size, big_endian>* got
6154 = target->got_section(symtab, layout);
6155 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6156 if (gsym->is_undefined()
6157 || gsym->is_from_dynobj())
6158 {
6159 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6160 elfcpp::R_POWERPC_TPREL);
6161 }
6162 else
6163 {
6164 unsigned int off = got->add_constant(0);
6165 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6166 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6167 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6168 got, off, 0);
6169 }
6170 }
6171 }
6172 else if (tls_type == tls::TLSOPT_TO_LE)
6173 {
6174 // no GOT relocs needed for Local Exec.
6175 }
6176 else
6177 gold_unreachable();
6178 }
6179 break;
6180
6181 default:
6182 unsupported_reloc_global(object, r_type, gsym);
6183 break;
6184 }
6185
6186 switch (r_type)
6187 {
6188 case elfcpp::R_POWERPC_GOT_TLSLD16:
6189 case elfcpp::R_POWERPC_GOT_TLSGD16:
6190 case elfcpp::R_POWERPC_GOT_TPREL16:
6191 case elfcpp::R_POWERPC_GOT_DTPREL16:
6192 case elfcpp::R_POWERPC_GOT16:
6193 case elfcpp::R_PPC64_GOT16_DS:
6194 case elfcpp::R_PPC64_TOC16:
6195 case elfcpp::R_PPC64_TOC16_DS:
6196 ppc_object->set_has_small_toc_reloc();
6197 default:
6198 break;
6199 }
6200 }
6201
6202 // Process relocations for gc.
6203
6204 template<int size, bool big_endian>
6205 void
6206 Target_powerpc<size, big_endian>::gc_process_relocs(
6207 Symbol_table* symtab,
6208 Layout* layout,
6209 Sized_relobj_file<size, big_endian>* object,
6210 unsigned int data_shndx,
6211 unsigned int,
6212 const unsigned char* prelocs,
6213 size_t reloc_count,
6214 Output_section* output_section,
6215 bool needs_special_offset_handling,
6216 size_t local_symbol_count,
6217 const unsigned char* plocal_symbols)
6218 {
6219 typedef Target_powerpc<size, big_endian> Powerpc;
6220 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6221 Powerpc_relobj<size, big_endian>* ppc_object
6222 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6223 if (size == 64)
6224 ppc_object->set_opd_valid();
6225 if (size == 64 && data_shndx == ppc_object->opd_shndx())
6226 {
6227 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6228 for (p = ppc_object->access_from_map()->begin();
6229 p != ppc_object->access_from_map()->end();
6230 ++p)
6231 {
6232 Address dst_off = p->first;
6233 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6234 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6235 for (s = p->second.begin(); s != p->second.end(); ++s)
6236 {
6237 Object* src_obj = s->first;
6238 unsigned int src_indx = s->second;
6239 symtab->gc()->add_reference(src_obj, src_indx,
6240 ppc_object, dst_indx);
6241 }
6242 p->second.clear();
6243 }
6244 ppc_object->access_from_map()->clear();
6245 ppc_object->process_gc_mark(symtab);
6246 // Don't look at .opd relocs as .opd will reference everything.
6247 return;
6248 }
6249
6250 gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6251 typename Target_powerpc::Relocatable_size_for_reloc>(
6252 symtab,
6253 layout,
6254 this,
6255 object,
6256 data_shndx,
6257 prelocs,
6258 reloc_count,
6259 output_section,
6260 needs_special_offset_handling,
6261 local_symbol_count,
6262 plocal_symbols);
6263 }
6264
6265 // Handle target specific gc actions when adding a gc reference from
6266 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6267 // and DST_OFF. For powerpc64, this adds a referenc to the code
6268 // section of a function descriptor.
6269
6270 template<int size, bool big_endian>
6271 void
6272 Target_powerpc<size, big_endian>::do_gc_add_reference(
6273 Symbol_table* symtab,
6274 Object* src_obj,
6275 unsigned int src_shndx,
6276 Object* dst_obj,
6277 unsigned int dst_shndx,
6278 Address dst_off) const
6279 {
6280 if (size != 64 || dst_obj->is_dynamic())
6281 return;
6282
6283 Powerpc_relobj<size, big_endian>* ppc_object
6284 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6285 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6286 {
6287 if (ppc_object->opd_valid())
6288 {
6289 dst_shndx = ppc_object->get_opd_ent(dst_off);
6290 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6291 }
6292 else
6293 {
6294 // If we haven't run scan_opd_relocs, we must delay
6295 // processing this function descriptor reference.
6296 ppc_object->add_reference(src_obj, src_shndx, dst_off);
6297 }
6298 }
6299 }
6300
6301 // Add any special sections for this symbol to the gc work list.
6302 // For powerpc64, this adds the code section of a function
6303 // descriptor.
6304
6305 template<int size, bool big_endian>
6306 void
6307 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6308 Symbol_table* symtab,
6309 Symbol* sym) const
6310 {
6311 if (size == 64)
6312 {
6313 Powerpc_relobj<size, big_endian>* ppc_object
6314 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6315 bool is_ordinary;
6316 unsigned int shndx = sym->shndx(&is_ordinary);
6317 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6318 {
6319 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6320 Address dst_off = gsym->value();
6321 if (ppc_object->opd_valid())
6322 {
6323 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6324 symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
6325 }
6326 else
6327 ppc_object->add_gc_mark(dst_off);
6328 }
6329 }
6330 }
6331
6332 // For a symbol location in .opd, set LOC to the location of the
6333 // function entry.
6334
6335 template<int size, bool big_endian>
6336 void
6337 Target_powerpc<size, big_endian>::do_function_location(
6338 Symbol_location* loc) const
6339 {
6340 if (size == 64 && loc->shndx != 0)
6341 {
6342 if (loc->object->is_dynamic())
6343 {
6344 Powerpc_dynobj<size, big_endian>* ppc_object
6345 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6346 if (loc->shndx == ppc_object->opd_shndx())
6347 {
6348 Address dest_off;
6349 Address off = loc->offset - ppc_object->opd_address();
6350 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6351 loc->offset = dest_off;
6352 }
6353 }
6354 else
6355 {
6356 const Powerpc_relobj<size, big_endian>* ppc_object
6357 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6358 if (loc->shndx == ppc_object->opd_shndx())
6359 {
6360 Address dest_off;
6361 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6362 loc->offset = dest_off;
6363 }
6364 }
6365 }
6366 }
6367
6368 // Scan relocations for a section.
6369
6370 template<int size, bool big_endian>
6371 void
6372 Target_powerpc<size, big_endian>::scan_relocs(
6373 Symbol_table* symtab,
6374 Layout* layout,
6375 Sized_relobj_file<size, big_endian>* object,
6376 unsigned int data_shndx,
6377 unsigned int sh_type,
6378 const unsigned char* prelocs,
6379 size_t reloc_count,
6380 Output_section* output_section,
6381 bool needs_special_offset_handling,
6382 size_t local_symbol_count,
6383 const unsigned char* plocal_symbols)
6384 {
6385 typedef Target_powerpc<size, big_endian> Powerpc;
6386 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6387
6388 if (sh_type == elfcpp::SHT_REL)
6389 {
6390 gold_error(_("%s: unsupported REL reloc section"),
6391 object->name().c_str());
6392 return;
6393 }
6394
6395 gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6396 symtab,
6397 layout,
6398 this,
6399 object,
6400 data_shndx,
6401 prelocs,
6402 reloc_count,
6403 output_section,
6404 needs_special_offset_handling,
6405 local_symbol_count,
6406 plocal_symbols);
6407 }
6408
6409 // Functor class for processing the global symbol table.
6410 // Removes symbols defined on discarded opd entries.
6411
6412 template<bool big_endian>
6413 class Global_symbol_visitor_opd
6414 {
6415 public:
6416 Global_symbol_visitor_opd()
6417 { }
6418
6419 void
6420 operator()(Sized_symbol<64>* sym)
6421 {
6422 if (sym->has_symtab_index()
6423 || sym->source() != Symbol::FROM_OBJECT
6424 || !sym->in_real_elf())
6425 return;
6426
6427 if (sym->object()->is_dynamic())
6428 return;
6429
6430 Powerpc_relobj<64, big_endian>* symobj
6431 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6432 if (symobj->opd_shndx() == 0)
6433 return;
6434
6435 bool is_ordinary;
6436 unsigned int shndx = sym->shndx(&is_ordinary);
6437 if (shndx == symobj->opd_shndx()
6438 && symobj->get_opd_discard(sym->value()))
6439 sym->set_symtab_index(-1U);
6440 }
6441 };
6442
6443 template<int size, bool big_endian>
6444 void
6445 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6446 Layout* layout,
6447 Symbol_table* symtab)
6448 {
6449 if (size == 64)
6450 {
6451 Output_data_save_res<64, big_endian>* savres
6452 = new Output_data_save_res<64, big_endian>(symtab);
6453 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6454 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6455 savres, ORDER_TEXT, false);
6456 }
6457 }
6458
6459 // Sort linker created .got section first (for the header), then input
6460 // sections belonging to files using small model code.
6461
6462 template<bool big_endian>
6463 class Sort_toc_sections
6464 {
6465 public:
6466 bool
6467 operator()(const Output_section::Input_section& is1,
6468 const Output_section::Input_section& is2) const
6469 {
6470 if (!is1.is_input_section() && is2.is_input_section())
6471 return true;
6472 bool small1
6473 = (is1.is_input_section()
6474 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6475 ->has_small_toc_reloc()));
6476 bool small2
6477 = (is2.is_input_section()
6478 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6479 ->has_small_toc_reloc()));
6480 return small1 && !small2;
6481 }
6482 };
6483
6484 // Finalize the sections.
6485
6486 template<int size, bool big_endian>
6487 void
6488 Target_powerpc<size, big_endian>::do_finalize_sections(
6489 Layout* layout,
6490 const Input_objects*,
6491 Symbol_table* symtab)
6492 {
6493 if (parameters->doing_static_link())
6494 {
6495 // At least some versions of glibc elf-init.o have a strong
6496 // reference to __rela_iplt marker syms. A weak ref would be
6497 // better..
6498 if (this->iplt_ != NULL)
6499 {
6500 Reloc_section* rel = this->iplt_->rel_plt();
6501 symtab->define_in_output_data("__rela_iplt_start", NULL,
6502 Symbol_table::PREDEFINED, rel, 0, 0,
6503 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6504 elfcpp::STV_HIDDEN, 0, false, true);
6505 symtab->define_in_output_data("__rela_iplt_end", NULL,
6506 Symbol_table::PREDEFINED, rel, 0, 0,
6507 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6508 elfcpp::STV_HIDDEN, 0, true, true);
6509 }
6510 else
6511 {
6512 symtab->define_as_constant("__rela_iplt_start", NULL,
6513 Symbol_table::PREDEFINED, 0, 0,
6514 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6515 elfcpp::STV_HIDDEN, 0, true, false);
6516 symtab->define_as_constant("__rela_iplt_end", NULL,
6517 Symbol_table::PREDEFINED, 0, 0,
6518 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6519 elfcpp::STV_HIDDEN, 0, true, false);
6520 }
6521 }
6522
6523 if (size == 64)
6524 {
6525 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6526 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6527
6528 if (!parameters->options().relocatable())
6529 {
6530 this->define_save_restore_funcs(layout, symtab);
6531
6532 // Annoyingly, we need to make these sections now whether or
6533 // not we need them. If we delay until do_relax then we
6534 // need to mess with the relaxation machinery checkpointing.
6535 this->got_section(symtab, layout);
6536 this->make_brlt_section(layout);
6537
6538 if (parameters->options().toc_sort())
6539 {
6540 Output_section* os = this->got_->output_section();
6541 if (os != NULL && os->input_sections().size() > 1)
6542 std::stable_sort(os->input_sections().begin(),
6543 os->input_sections().end(),
6544 Sort_toc_sections<big_endian>());
6545 }
6546 }
6547 }
6548
6549 // Fill in some more dynamic tags.
6550 Output_data_dynamic* odyn = layout->dynamic_data();
6551 if (odyn != NULL)
6552 {
6553 const Reloc_section* rel_plt = (this->plt_ == NULL
6554 ? NULL
6555 : this->plt_->rel_plt());
6556 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6557 this->rela_dyn_, true, size == 32);
6558
6559 if (size == 32)
6560 {
6561 if (this->got_ != NULL)
6562 {
6563 this->got_->finalize_data_size();
6564 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6565 this->got_, this->got_->g_o_t());
6566 }
6567 }
6568 else
6569 {
6570 if (this->glink_ != NULL)
6571 {
6572 this->glink_->finalize_data_size();
6573 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6574 this->glink_,
6575 (this->glink_->pltresolve_size
6576 - 32));
6577 }
6578 }
6579 }
6580
6581 // Emit any relocs we saved in an attempt to avoid generating COPY
6582 // relocs.
6583 if (this->copy_relocs_.any_saved_relocs())
6584 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6585 }
6586
6587 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6588 // reloc.
6589
6590 static bool
6591 ok_lo_toc_insn(uint32_t insn)
6592 {
6593 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6594 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6595 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6596 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6597 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6598 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6599 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6600 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6601 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6602 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6603 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6604 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6605 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6606 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6607 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6608 && (insn & 3) != 1)
6609 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6610 && ((insn & 3) == 0 || (insn & 3) == 3))
6611 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6612 }
6613
6614 // Return the value to use for a branch relocation.
6615
6616 template<int size, bool big_endian>
6617 typename Target_powerpc<size, big_endian>::Address
6618 Target_powerpc<size, big_endian>::symval_for_branch(
6619 const Symbol_table* symtab,
6620 Address value,
6621 const Sized_symbol<size>* gsym,
6622 Powerpc_relobj<size, big_endian>* object,
6623 unsigned int *dest_shndx)
6624 {
6625 if (size == 32 || this->abiversion() >= 2)
6626 gold_unreachable();
6627 *dest_shndx = 0;
6628
6629 // If the symbol is defined in an opd section, ie. is a function
6630 // descriptor, use the function descriptor code entry address
6631 Powerpc_relobj<size, big_endian>* symobj = object;
6632 if (gsym != NULL
6633 && gsym->source() != Symbol::FROM_OBJECT)
6634 return value;
6635 if (gsym != NULL)
6636 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6637 unsigned int shndx = symobj->opd_shndx();
6638 if (shndx == 0)
6639 return value;
6640 Address opd_addr = symobj->get_output_section_offset(shndx);
6641 if (opd_addr == invalid_address)
6642 return value;
6643 opd_addr += symobj->output_section_address(shndx);
6644 if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
6645 {
6646 Address sec_off;
6647 *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
6648 if (symtab->is_section_folded(symobj, *dest_shndx))
6649 {
6650 Section_id folded
6651 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6652 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6653 *dest_shndx = folded.second;
6654 }
6655 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6656 gold_assert(sec_addr != invalid_address);
6657 sec_addr += symobj->output_section(*dest_shndx)->address();
6658 value = sec_addr + sec_off;
6659 }
6660 return value;
6661 }
6662
6663 // Perform a relocation.
6664
6665 template<int size, bool big_endian>
6666 inline bool
6667 Target_powerpc<size, big_endian>::Relocate::relocate(
6668 const Relocate_info<size, big_endian>* relinfo,
6669 Target_powerpc* target,
6670 Output_section* os,
6671 size_t relnum,
6672 const elfcpp::Rela<size, big_endian>& rela,
6673 unsigned int r_type,
6674 const Sized_symbol<size>* gsym,
6675 const Symbol_value<size>* psymval,
6676 unsigned char* view,
6677 Address address,
6678 section_size_type view_size)
6679 {
6680 if (view == NULL)
6681 return true;
6682
6683 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6684 {
6685 case Track_tls::NOT_EXPECTED:
6686 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6687 _("__tls_get_addr call lacks marker reloc"));
6688 break;
6689 case Track_tls::EXPECTED:
6690 // We have already complained.
6691 break;
6692 case Track_tls::SKIP:
6693 return true;
6694 case Track_tls::NORMAL:
6695 break;
6696 }
6697
6698 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6699 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6700 Powerpc_relobj<size, big_endian>* const object
6701 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6702 Address value = 0;
6703 bool has_plt_value = false;
6704 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6705 if ((gsym != NULL
6706 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
6707 : object->local_has_plt_offset(r_sym))
6708 && (!psymval->is_ifunc_symbol()
6709 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
6710 {
6711 if (size == 64
6712 && gsym != NULL
6713 && target->abiversion() >= 2
6714 && !parameters->options().output_is_position_independent()
6715 && !is_branch_reloc(r_type))
6716 {
6717 unsigned int off = target->glink_section()->find_global_entry(gsym);
6718 gold_assert(off != (unsigned int)-1);
6719 value = target->glink_section()->global_entry_address() + off;
6720 }
6721 else
6722 {
6723 Stub_table<size, big_endian>* stub_table
6724 = object->stub_table(relinfo->data_shndx);
6725 if (stub_table == NULL)
6726 {
6727 // This is a ref from a data section to an ifunc symbol.
6728 if (target->stub_tables().size() != 0)
6729 stub_table = target->stub_tables()[0];
6730 }
6731 gold_assert(stub_table != NULL);
6732 Address off;
6733 if (gsym != NULL)
6734 off = stub_table->find_plt_call_entry(object, gsym, r_type,
6735 rela.get_r_addend());
6736 else
6737 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6738 rela.get_r_addend());
6739 gold_assert(off != invalid_address);
6740 value = stub_table->stub_address() + off;
6741 }
6742 has_plt_value = true;
6743 }
6744
6745 if (r_type == elfcpp::R_POWERPC_GOT16
6746 || r_type == elfcpp::R_POWERPC_GOT16_LO
6747 || r_type == elfcpp::R_POWERPC_GOT16_HI
6748 || r_type == elfcpp::R_POWERPC_GOT16_HA
6749 || r_type == elfcpp::R_PPC64_GOT16_DS
6750 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6751 {
6752 if (gsym != NULL)
6753 {
6754 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6755 value = gsym->got_offset(GOT_TYPE_STANDARD);
6756 }
6757 else
6758 {
6759 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6760 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6761 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6762 }
6763 value -= target->got_section()->got_base_offset(object);
6764 }
6765 else if (r_type == elfcpp::R_PPC64_TOC)
6766 {
6767 value = (target->got_section()->output_section()->address()
6768 + object->toc_base_offset());
6769 }
6770 else if (gsym != NULL
6771 && (r_type == elfcpp::R_POWERPC_REL24
6772 || r_type == elfcpp::R_PPC_PLTREL24)
6773 && has_plt_value)
6774 {
6775 if (size == 64)
6776 {
6777 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6778 Valtype* wv = reinterpret_cast<Valtype*>(view);
6779 bool can_plt_call = false;
6780 if (rela.get_r_offset() + 8 <= view_size)
6781 {
6782 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6783 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6784 if ((insn & 1) != 0
6785 && (insn2 == nop
6786 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6787 {
6788 elfcpp::Swap<32, big_endian>::
6789 writeval(wv + 1, ld_2_1 + target->stk_toc());
6790 can_plt_call = true;
6791 }
6792 }
6793 if (!can_plt_call)
6794 {
6795 // If we don't have a branch and link followed by a nop,
6796 // we can't go via the plt because there is no place to
6797 // put a toc restoring instruction.
6798 // Unless we know we won't be returning.
6799 if (strcmp(gsym->name(), "__libc_start_main") == 0)
6800 can_plt_call = true;
6801 }
6802 if (!can_plt_call)
6803 {
6804 // g++ as of 20130507 emits self-calls without a
6805 // following nop. This is arguably wrong since we have
6806 // conflicting information. On the one hand a global
6807 // symbol and on the other a local call sequence, but
6808 // don't error for this special case.
6809 // It isn't possible to cheaply verify we have exactly
6810 // such a call. Allow all calls to the same section.
6811 bool ok = false;
6812 Address code = value;
6813 if (gsym->source() == Symbol::FROM_OBJECT
6814 && gsym->object() == object)
6815 {
6816 unsigned int dest_shndx = 0;
6817 if (target->abiversion() < 2)
6818 {
6819 Address addend = rela.get_r_addend();
6820 Address opdent = psymval->value(object, addend);
6821 code = target->symval_for_branch(relinfo->symtab,
6822 opdent, gsym, object,
6823 &dest_shndx);
6824 }
6825 bool is_ordinary;
6826 if (dest_shndx == 0)
6827 dest_shndx = gsym->shndx(&is_ordinary);
6828 ok = dest_shndx == relinfo->data_shndx;
6829 }
6830 if (!ok)
6831 {
6832 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6833 _("call lacks nop, can't restore toc; "
6834 "recompile with -fPIC"));
6835 value = code;
6836 }
6837 }
6838 }
6839 }
6840 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6841 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6842 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6843 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6844 {
6845 // First instruction of a global dynamic sequence, arg setup insn.
6846 const bool final = gsym == NULL || gsym->final_value_is_known();
6847 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6848 enum Got_type got_type = GOT_TYPE_STANDARD;
6849 if (tls_type == tls::TLSOPT_NONE)
6850 got_type = GOT_TYPE_TLSGD;
6851 else if (tls_type == tls::TLSOPT_TO_IE)
6852 got_type = GOT_TYPE_TPREL;
6853 if (got_type != GOT_TYPE_STANDARD)
6854 {
6855 if (gsym != NULL)
6856 {
6857 gold_assert(gsym->has_got_offset(got_type));
6858 value = gsym->got_offset(got_type);
6859 }
6860 else
6861 {
6862 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6863 gold_assert(object->local_has_got_offset(r_sym, got_type));
6864 value = object->local_got_offset(r_sym, got_type);
6865 }
6866 value -= target->got_section()->got_base_offset(object);
6867 }
6868 if (tls_type == tls::TLSOPT_TO_IE)
6869 {
6870 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6871 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6872 {
6873 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6874 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6875 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6876 if (size == 32)
6877 insn |= 32 << 26; // lwz
6878 else
6879 insn |= 58 << 26; // ld
6880 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6881 }
6882 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
6883 - elfcpp::R_POWERPC_GOT_TLSGD16);
6884 }
6885 else if (tls_type == tls::TLSOPT_TO_LE)
6886 {
6887 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6888 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6889 {
6890 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6891 Insn insn = addis_3_13;
6892 if (size == 32)
6893 insn = addis_3_2;
6894 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6895 r_type = elfcpp::R_POWERPC_TPREL16_HA;
6896 value = psymval->value(object, rela.get_r_addend());
6897 }
6898 else
6899 {
6900 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6901 Insn insn = nop;
6902 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6903 r_type = elfcpp::R_POWERPC_NONE;
6904 }
6905 }
6906 }
6907 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6908 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
6909 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
6910 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
6911 {
6912 // First instruction of a local dynamic sequence, arg setup insn.
6913 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6914 if (tls_type == tls::TLSOPT_NONE)
6915 {
6916 value = target->tlsld_got_offset();
6917 value -= target->got_section()->got_base_offset(object);
6918 }
6919 else
6920 {
6921 gold_assert(tls_type == tls::TLSOPT_TO_LE);
6922 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6923 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
6924 {
6925 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6926 Insn insn = addis_3_13;
6927 if (size == 32)
6928 insn = addis_3_2;
6929 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6930 r_type = elfcpp::R_POWERPC_TPREL16_HA;
6931 value = dtp_offset;
6932 }
6933 else
6934 {
6935 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6936 Insn insn = nop;
6937 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6938 r_type = elfcpp::R_POWERPC_NONE;
6939 }
6940 }
6941 }
6942 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
6943 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
6944 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
6945 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
6946 {
6947 // Accesses relative to a local dynamic sequence address,
6948 // no optimisation here.
6949 if (gsym != NULL)
6950 {
6951 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
6952 value = gsym->got_offset(GOT_TYPE_DTPREL);
6953 }
6954 else
6955 {
6956 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6957 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
6958 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
6959 }
6960 value -= target->got_section()->got_base_offset(object);
6961 }
6962 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6963 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
6964 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
6965 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
6966 {
6967 // First instruction of initial exec sequence.
6968 const bool final = gsym == NULL || gsym->final_value_is_known();
6969 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6970 if (tls_type == tls::TLSOPT_NONE)
6971 {
6972 if (gsym != NULL)
6973 {
6974 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
6975 value = gsym->got_offset(GOT_TYPE_TPREL);
6976 }
6977 else
6978 {
6979 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6980 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
6981 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
6982 }
6983 value -= target->got_section()->got_base_offset(object);
6984 }
6985 else
6986 {
6987 gold_assert(tls_type == tls::TLSOPT_TO_LE);
6988 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6989 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
6990 {
6991 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6992 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6993 insn &= (1 << 26) - (1 << 21); // extract rt from ld
6994 if (size == 32)
6995 insn |= addis_0_2;
6996 else
6997 insn |= addis_0_13;
6998 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6999 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7000 value = psymval->value(object, rela.get_r_addend());
7001 }
7002 else
7003 {
7004 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7005 Insn insn = nop;
7006 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7007 r_type = elfcpp::R_POWERPC_NONE;
7008 }
7009 }
7010 }
7011 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7012 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7013 {
7014 // Second instruction of a global dynamic sequence,
7015 // the __tls_get_addr call
7016 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7017 const bool final = gsym == NULL || gsym->final_value_is_known();
7018 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7019 if (tls_type != tls::TLSOPT_NONE)
7020 {
7021 if (tls_type == tls::TLSOPT_TO_IE)
7022 {
7023 Insn* iview = reinterpret_cast<Insn*>(view);
7024 Insn insn = add_3_3_13;
7025 if (size == 32)
7026 insn = add_3_3_2;
7027 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7028 r_type = elfcpp::R_POWERPC_NONE;
7029 }
7030 else
7031 {
7032 Insn* iview = reinterpret_cast<Insn*>(view);
7033 Insn insn = addi_3_3;
7034 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7035 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7036 view += 2 * big_endian;
7037 value = psymval->value(object, rela.get_r_addend());
7038 }
7039 this->skip_next_tls_get_addr_call();
7040 }
7041 }
7042 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7043 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7044 {
7045 // Second instruction of a local dynamic sequence,
7046 // the __tls_get_addr call
7047 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7048 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7049 if (tls_type == tls::TLSOPT_TO_LE)
7050 {
7051 Insn* iview = reinterpret_cast<Insn*>(view);
7052 Insn insn = addi_3_3;
7053 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7054 this->skip_next_tls_get_addr_call();
7055 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7056 view += 2 * big_endian;
7057 value = dtp_offset;
7058 }
7059 }
7060 else if (r_type == elfcpp::R_POWERPC_TLS)
7061 {
7062 // Second instruction of an initial exec sequence
7063 const bool final = gsym == NULL || gsym->final_value_is_known();
7064 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7065 if (tls_type == tls::TLSOPT_TO_LE)
7066 {
7067 Insn* iview = reinterpret_cast<Insn*>(view);
7068 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7069 unsigned int reg = size == 32 ? 2 : 13;
7070 insn = at_tls_transform(insn, reg);
7071 gold_assert(insn != 0);
7072 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7073 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7074 view += 2 * big_endian;
7075 value = psymval->value(object, rela.get_r_addend());
7076 }
7077 }
7078 else if (!has_plt_value)
7079 {
7080 Address addend = 0;
7081 unsigned int dest_shndx;
7082 if (r_type != elfcpp::R_PPC_PLTREL24)
7083 addend = rela.get_r_addend();
7084 value = psymval->value(object, addend);
7085 if (size == 64 && is_branch_reloc(r_type))
7086 {
7087 if (target->abiversion() >= 2)
7088 {
7089 if (gsym != NULL)
7090 value += object->ppc64_local_entry_offset(gsym);
7091 else
7092 value += object->ppc64_local_entry_offset(r_sym);
7093 }
7094 else
7095 value = target->symval_for_branch(relinfo->symtab, value,
7096 gsym, object, &dest_shndx);
7097 }
7098 unsigned int max_branch_offset = 0;
7099 if (r_type == elfcpp::R_POWERPC_REL24
7100 || r_type == elfcpp::R_PPC_PLTREL24
7101 || r_type == elfcpp::R_PPC_LOCAL24PC)
7102 max_branch_offset = 1 << 25;
7103 else if (r_type == elfcpp::R_POWERPC_REL14
7104 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
7105 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
7106 max_branch_offset = 1 << 15;
7107 if (max_branch_offset != 0
7108 && value - address + max_branch_offset >= 2 * max_branch_offset)
7109 {
7110 Stub_table<size, big_endian>* stub_table
7111 = object->stub_table(relinfo->data_shndx);
7112 if (stub_table != NULL)
7113 {
7114 Address off = stub_table->find_long_branch_entry(object, value);
7115 if (off != invalid_address)
7116 value = (stub_table->stub_address() + stub_table->plt_size()
7117 + off);
7118 }
7119 }
7120 }
7121
7122 switch (r_type)
7123 {
7124 case elfcpp::R_PPC64_REL64:
7125 case elfcpp::R_POWERPC_REL32:
7126 case elfcpp::R_POWERPC_REL24:
7127 case elfcpp::R_PPC_PLTREL24:
7128 case elfcpp::R_PPC_LOCAL24PC:
7129 case elfcpp::R_POWERPC_REL16:
7130 case elfcpp::R_POWERPC_REL16_LO:
7131 case elfcpp::R_POWERPC_REL16_HI:
7132 case elfcpp::R_POWERPC_REL16_HA:
7133 case elfcpp::R_POWERPC_REL14:
7134 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7135 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7136 value -= address;
7137 break;
7138
7139 case elfcpp::R_PPC64_TOC16:
7140 case elfcpp::R_PPC64_TOC16_LO:
7141 case elfcpp::R_PPC64_TOC16_HI:
7142 case elfcpp::R_PPC64_TOC16_HA:
7143 case elfcpp::R_PPC64_TOC16_DS:
7144 case elfcpp::R_PPC64_TOC16_LO_DS:
7145 // Subtract the TOC base address.
7146 value -= (target->got_section()->output_section()->address()
7147 + object->toc_base_offset());
7148 break;
7149
7150 case elfcpp::R_POWERPC_SECTOFF:
7151 case elfcpp::R_POWERPC_SECTOFF_LO:
7152 case elfcpp::R_POWERPC_SECTOFF_HI:
7153 case elfcpp::R_POWERPC_SECTOFF_HA:
7154 case elfcpp::R_PPC64_SECTOFF_DS:
7155 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7156 if (os != NULL)
7157 value -= os->address();
7158 break;
7159
7160 case elfcpp::R_PPC64_TPREL16_DS:
7161 case elfcpp::R_PPC64_TPREL16_LO_DS:
7162 case elfcpp::R_PPC64_TPREL16_HIGH:
7163 case elfcpp::R_PPC64_TPREL16_HIGHA:
7164 if (size != 64)
7165 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7166 break;
7167 case elfcpp::R_POWERPC_TPREL16:
7168 case elfcpp::R_POWERPC_TPREL16_LO:
7169 case elfcpp::R_POWERPC_TPREL16_HI:
7170 case elfcpp::R_POWERPC_TPREL16_HA:
7171 case elfcpp::R_POWERPC_TPREL:
7172 case elfcpp::R_PPC64_TPREL16_HIGHER:
7173 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7174 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7175 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7176 // tls symbol values are relative to tls_segment()->vaddr()
7177 value -= tp_offset;
7178 break;
7179
7180 case elfcpp::R_PPC64_DTPREL16_DS:
7181 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7182 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7183 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7184 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7185 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7186 if (size != 64)
7187 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7188 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7189 break;
7190 case elfcpp::R_POWERPC_DTPREL16:
7191 case elfcpp::R_POWERPC_DTPREL16_LO:
7192 case elfcpp::R_POWERPC_DTPREL16_HI:
7193 case elfcpp::R_POWERPC_DTPREL16_HA:
7194 case elfcpp::R_POWERPC_DTPREL:
7195 case elfcpp::R_PPC64_DTPREL16_HIGH:
7196 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7197 // tls symbol values are relative to tls_segment()->vaddr()
7198 value -= dtp_offset;
7199 break;
7200
7201 case elfcpp::R_PPC64_ADDR64_LOCAL:
7202 if (gsym != NULL)
7203 value += object->ppc64_local_entry_offset(gsym);
7204 else
7205 value += object->ppc64_local_entry_offset(r_sym);
7206 break;
7207
7208 default:
7209 break;
7210 }
7211
7212 Insn branch_bit = 0;
7213 switch (r_type)
7214 {
7215 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7216 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7217 branch_bit = 1 << 21;
7218 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7219 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7220 {
7221 Insn* iview = reinterpret_cast<Insn*>(view);
7222 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7223 insn &= ~(1 << 21);
7224 insn |= branch_bit;
7225 if (this->is_isa_v2)
7226 {
7227 // Set 'a' bit. This is 0b00010 in BO field for branch
7228 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7229 // for branch on CTR insns (BO == 1a00t or 1a01t).
7230 if ((insn & (0x14 << 21)) == (0x04 << 21))
7231 insn |= 0x02 << 21;
7232 else if ((insn & (0x14 << 21)) == (0x10 << 21))
7233 insn |= 0x08 << 21;
7234 else
7235 break;
7236 }
7237 else
7238 {
7239 // Invert 'y' bit if not the default.
7240 if (static_cast<Signed_address>(value) < 0)
7241 insn ^= 1 << 21;
7242 }
7243 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7244 }
7245 break;
7246
7247 default:
7248 break;
7249 }
7250
7251 if (size == 64)
7252 {
7253 // Multi-instruction sequences that access the TOC can be
7254 // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7255 // to nop; addi rb,r2,x;
7256 switch (r_type)
7257 {
7258 default:
7259 break;
7260
7261 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7262 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7263 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7264 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7265 case elfcpp::R_POWERPC_GOT16_HA:
7266 case elfcpp::R_PPC64_TOC16_HA:
7267 if (parameters->options().toc_optimize())
7268 {
7269 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7270 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7271 if ((insn & ((0x3f << 26) | 0x1f << 16))
7272 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7273 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7274 _("toc optimization is not supported "
7275 "for %#08x instruction"), insn);
7276 else if (value + 0x8000 < 0x10000)
7277 {
7278 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7279 return true;
7280 }
7281 }
7282 break;
7283
7284 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7285 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7286 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7287 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7288 case elfcpp::R_POWERPC_GOT16_LO:
7289 case elfcpp::R_PPC64_GOT16_LO_DS:
7290 case elfcpp::R_PPC64_TOC16_LO:
7291 case elfcpp::R_PPC64_TOC16_LO_DS:
7292 if (parameters->options().toc_optimize())
7293 {
7294 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7295 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7296 if (!ok_lo_toc_insn(insn))
7297 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7298 _("toc optimization is not supported "
7299 "for %#08x instruction"), insn);
7300 else if (value + 0x8000 < 0x10000)
7301 {
7302 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7303 {
7304 // Transform addic to addi when we change reg.
7305 insn &= ~((0x3f << 26) | (0x1f << 16));
7306 insn |= (14u << 26) | (2 << 16);
7307 }
7308 else
7309 {
7310 insn &= ~(0x1f << 16);
7311 insn |= 2 << 16;
7312 }
7313 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7314 }
7315 }
7316 break;
7317 }
7318 }
7319
7320 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7321 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7322 switch (r_type)
7323 {
7324 case elfcpp::R_POWERPC_ADDR32:
7325 case elfcpp::R_POWERPC_UADDR32:
7326 if (size == 64)
7327 overflow = Reloc::CHECK_BITFIELD;
7328 break;
7329
7330 case elfcpp::R_POWERPC_REL32:
7331 if (size == 64)
7332 overflow = Reloc::CHECK_SIGNED;
7333 break;
7334
7335 case elfcpp::R_POWERPC_UADDR16:
7336 overflow = Reloc::CHECK_BITFIELD;
7337 break;
7338
7339 case elfcpp::R_POWERPC_ADDR16:
7340 // We really should have three separate relocations,
7341 // one for 16-bit data, one for insns with 16-bit signed fields,
7342 // and one for insns with 16-bit unsigned fields.
7343 overflow = Reloc::CHECK_BITFIELD;
7344 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7345 overflow = Reloc::CHECK_LOW_INSN;
7346 break;
7347
7348 case elfcpp::R_POWERPC_ADDR16_HI:
7349 case elfcpp::R_POWERPC_ADDR16_HA:
7350 case elfcpp::R_POWERPC_GOT16_HI:
7351 case elfcpp::R_POWERPC_GOT16_HA:
7352 case elfcpp::R_POWERPC_PLT16_HI:
7353 case elfcpp::R_POWERPC_PLT16_HA:
7354 case elfcpp::R_POWERPC_SECTOFF_HI:
7355 case elfcpp::R_POWERPC_SECTOFF_HA:
7356 case elfcpp::R_PPC64_TOC16_HI:
7357 case elfcpp::R_PPC64_TOC16_HA:
7358 case elfcpp::R_PPC64_PLTGOT16_HI:
7359 case elfcpp::R_PPC64_PLTGOT16_HA:
7360 case elfcpp::R_POWERPC_TPREL16_HI:
7361 case elfcpp::R_POWERPC_TPREL16_HA:
7362 case elfcpp::R_POWERPC_DTPREL16_HI:
7363 case elfcpp::R_POWERPC_DTPREL16_HA:
7364 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7365 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7366 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7367 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7368 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7369 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7370 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7371 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7372 case elfcpp::R_POWERPC_REL16_HI:
7373 case elfcpp::R_POWERPC_REL16_HA:
7374 if (size != 32)
7375 overflow = Reloc::CHECK_HIGH_INSN;
7376 break;
7377
7378 case elfcpp::R_POWERPC_REL16:
7379 case elfcpp::R_PPC64_TOC16:
7380 case elfcpp::R_POWERPC_GOT16:
7381 case elfcpp::R_POWERPC_SECTOFF:
7382 case elfcpp::R_POWERPC_TPREL16:
7383 case elfcpp::R_POWERPC_DTPREL16:
7384 case elfcpp::R_POWERPC_GOT_TLSGD16:
7385 case elfcpp::R_POWERPC_GOT_TLSLD16:
7386 case elfcpp::R_POWERPC_GOT_TPREL16:
7387 case elfcpp::R_POWERPC_GOT_DTPREL16:
7388 overflow = Reloc::CHECK_LOW_INSN;
7389 break;
7390
7391 case elfcpp::R_POWERPC_ADDR24:
7392 case elfcpp::R_POWERPC_ADDR14:
7393 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7394 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7395 case elfcpp::R_PPC64_ADDR16_DS:
7396 case elfcpp::R_POWERPC_REL24:
7397 case elfcpp::R_PPC_PLTREL24:
7398 case elfcpp::R_PPC_LOCAL24PC:
7399 case elfcpp::R_PPC64_TPREL16_DS:
7400 case elfcpp::R_PPC64_DTPREL16_DS:
7401 case elfcpp::R_PPC64_TOC16_DS:
7402 case elfcpp::R_PPC64_GOT16_DS:
7403 case elfcpp::R_PPC64_SECTOFF_DS:
7404 case elfcpp::R_POWERPC_REL14:
7405 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7406 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7407 overflow = Reloc::CHECK_SIGNED;
7408 break;
7409 }
7410
7411 if (overflow == Reloc::CHECK_LOW_INSN
7412 || overflow == Reloc::CHECK_HIGH_INSN)
7413 {
7414 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7415 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7416
7417 overflow = Reloc::CHECK_SIGNED;
7418 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7419 overflow = Reloc::CHECK_BITFIELD;
7420 else if (overflow == Reloc::CHECK_LOW_INSN
7421 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7422 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7423 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7424 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7425 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7426 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7427 overflow = Reloc::CHECK_UNSIGNED;
7428 }
7429
7430 typename Powerpc_relocate_functions<size, big_endian>::Status status
7431 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7432 switch (r_type)
7433 {
7434 case elfcpp::R_POWERPC_NONE:
7435 case elfcpp::R_POWERPC_TLS:
7436 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7437 case elfcpp::R_POWERPC_GNU_VTENTRY:
7438 break;
7439
7440 case elfcpp::R_PPC64_ADDR64:
7441 case elfcpp::R_PPC64_REL64:
7442 case elfcpp::R_PPC64_TOC:
7443 case elfcpp::R_PPC64_ADDR64_LOCAL:
7444 Reloc::addr64(view, value);
7445 break;
7446
7447 case elfcpp::R_POWERPC_TPREL:
7448 case elfcpp::R_POWERPC_DTPREL:
7449 if (size == 64)
7450 Reloc::addr64(view, value);
7451 else
7452 status = Reloc::addr32(view, value, overflow);
7453 break;
7454
7455 case elfcpp::R_PPC64_UADDR64:
7456 Reloc::addr64_u(view, value);
7457 break;
7458
7459 case elfcpp::R_POWERPC_ADDR32:
7460 status = Reloc::addr32(view, value, overflow);
7461 break;
7462
7463 case elfcpp::R_POWERPC_REL32:
7464 case elfcpp::R_POWERPC_UADDR32:
7465 status = Reloc::addr32_u(view, value, overflow);
7466 break;
7467
7468 case elfcpp::R_POWERPC_ADDR24:
7469 case elfcpp::R_POWERPC_REL24:
7470 case elfcpp::R_PPC_PLTREL24:
7471 case elfcpp::R_PPC_LOCAL24PC:
7472 status = Reloc::addr24(view, value, overflow);
7473 break;
7474
7475 case elfcpp::R_POWERPC_GOT_DTPREL16:
7476 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7477 if (size == 64)
7478 {
7479 status = Reloc::addr16_ds(view, value, overflow);
7480 break;
7481 }
7482 case elfcpp::R_POWERPC_ADDR16:
7483 case elfcpp::R_POWERPC_REL16:
7484 case elfcpp::R_PPC64_TOC16:
7485 case elfcpp::R_POWERPC_GOT16:
7486 case elfcpp::R_POWERPC_SECTOFF:
7487 case elfcpp::R_POWERPC_TPREL16:
7488 case elfcpp::R_POWERPC_DTPREL16:
7489 case elfcpp::R_POWERPC_GOT_TLSGD16:
7490 case elfcpp::R_POWERPC_GOT_TLSLD16:
7491 case elfcpp::R_POWERPC_GOT_TPREL16:
7492 case elfcpp::R_POWERPC_ADDR16_LO:
7493 case elfcpp::R_POWERPC_REL16_LO:
7494 case elfcpp::R_PPC64_TOC16_LO:
7495 case elfcpp::R_POWERPC_GOT16_LO:
7496 case elfcpp::R_POWERPC_SECTOFF_LO:
7497 case elfcpp::R_POWERPC_TPREL16_LO:
7498 case elfcpp::R_POWERPC_DTPREL16_LO:
7499 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7500 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7501 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7502 status = Reloc::addr16(view, value, overflow);
7503 break;
7504
7505 case elfcpp::R_POWERPC_UADDR16:
7506 status = Reloc::addr16_u(view, value, overflow);
7507 break;
7508
7509 case elfcpp::R_PPC64_ADDR16_HIGH:
7510 case elfcpp::R_PPC64_TPREL16_HIGH:
7511 case elfcpp::R_PPC64_DTPREL16_HIGH:
7512 if (size == 32)
7513 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7514 goto unsupp;
7515 case elfcpp::R_POWERPC_ADDR16_HI:
7516 case elfcpp::R_POWERPC_REL16_HI:
7517 case elfcpp::R_PPC64_TOC16_HI:
7518 case elfcpp::R_POWERPC_GOT16_HI:
7519 case elfcpp::R_POWERPC_SECTOFF_HI:
7520 case elfcpp::R_POWERPC_TPREL16_HI:
7521 case elfcpp::R_POWERPC_DTPREL16_HI:
7522 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7523 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7524 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7525 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7526 Reloc::addr16_hi(view, value);
7527 break;
7528
7529 case elfcpp::R_PPC64_ADDR16_HIGHA:
7530 case elfcpp::R_PPC64_TPREL16_HIGHA:
7531 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7532 if (size == 32)
7533 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7534 goto unsupp;
7535 case elfcpp::R_POWERPC_ADDR16_HA:
7536 case elfcpp::R_POWERPC_REL16_HA:
7537 case elfcpp::R_PPC64_TOC16_HA:
7538 case elfcpp::R_POWERPC_GOT16_HA:
7539 case elfcpp::R_POWERPC_SECTOFF_HA:
7540 case elfcpp::R_POWERPC_TPREL16_HA:
7541 case elfcpp::R_POWERPC_DTPREL16_HA:
7542 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7543 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7544 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7545 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7546 Reloc::addr16_ha(view, value);
7547 break;
7548
7549 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7550 if (size == 32)
7551 // R_PPC_EMB_NADDR16_LO
7552 goto unsupp;
7553 case elfcpp::R_PPC64_ADDR16_HIGHER:
7554 case elfcpp::R_PPC64_TPREL16_HIGHER:
7555 Reloc::addr16_hi2(view, value);
7556 break;
7557
7558 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7559 if (size == 32)
7560 // R_PPC_EMB_NADDR16_HI
7561 goto unsupp;
7562 case elfcpp::R_PPC64_ADDR16_HIGHERA:
7563 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7564 Reloc::addr16_ha2(view, value);
7565 break;
7566
7567 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7568 if (size == 32)
7569 // R_PPC_EMB_NADDR16_HA
7570 goto unsupp;
7571 case elfcpp::R_PPC64_ADDR16_HIGHEST:
7572 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7573 Reloc::addr16_hi3(view, value);
7574 break;
7575
7576 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7577 if (size == 32)
7578 // R_PPC_EMB_SDAI16
7579 goto unsupp;
7580 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7581 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7582 Reloc::addr16_ha3(view, value);
7583 break;
7584
7585 case elfcpp::R_PPC64_DTPREL16_DS:
7586 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7587 if (size == 32)
7588 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7589 goto unsupp;
7590 case elfcpp::R_PPC64_TPREL16_DS:
7591 case elfcpp::R_PPC64_TPREL16_LO_DS:
7592 if (size == 32)
7593 // R_PPC_TLSGD, R_PPC_TLSLD
7594 break;
7595 case elfcpp::R_PPC64_ADDR16_DS:
7596 case elfcpp::R_PPC64_ADDR16_LO_DS:
7597 case elfcpp::R_PPC64_TOC16_DS:
7598 case elfcpp::R_PPC64_TOC16_LO_DS:
7599 case elfcpp::R_PPC64_GOT16_DS:
7600 case elfcpp::R_PPC64_GOT16_LO_DS:
7601 case elfcpp::R_PPC64_SECTOFF_DS:
7602 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7603 status = Reloc::addr16_ds(view, value, overflow);
7604 break;
7605
7606 case elfcpp::R_POWERPC_ADDR14:
7607 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7608 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7609 case elfcpp::R_POWERPC_REL14:
7610 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7611 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7612 status = Reloc::addr14(view, value, overflow);
7613 break;
7614
7615 case elfcpp::R_POWERPC_COPY:
7616 case elfcpp::R_POWERPC_GLOB_DAT:
7617 case elfcpp::R_POWERPC_JMP_SLOT:
7618 case elfcpp::R_POWERPC_RELATIVE:
7619 case elfcpp::R_POWERPC_DTPMOD:
7620 case elfcpp::R_PPC64_JMP_IREL:
7621 case elfcpp::R_POWERPC_IRELATIVE:
7622 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7623 _("unexpected reloc %u in object file"),
7624 r_type);
7625 break;
7626
7627 case elfcpp::R_PPC_EMB_SDA21:
7628 if (size == 32)
7629 goto unsupp;
7630 else
7631 {
7632 // R_PPC64_TOCSAVE. For the time being this can be ignored.
7633 }
7634 break;
7635
7636 case elfcpp::R_PPC_EMB_SDA2I16:
7637 case elfcpp::R_PPC_EMB_SDA2REL:
7638 if (size == 32)
7639 goto unsupp;
7640 // R_PPC64_TLSGD, R_PPC64_TLSLD
7641 break;
7642
7643 case elfcpp::R_POWERPC_PLT32:
7644 case elfcpp::R_POWERPC_PLTREL32:
7645 case elfcpp::R_POWERPC_PLT16_LO:
7646 case elfcpp::R_POWERPC_PLT16_HI:
7647 case elfcpp::R_POWERPC_PLT16_HA:
7648 case elfcpp::R_PPC_SDAREL16:
7649 case elfcpp::R_POWERPC_ADDR30:
7650 case elfcpp::R_PPC64_PLT64:
7651 case elfcpp::R_PPC64_PLTREL64:
7652 case elfcpp::R_PPC64_PLTGOT16:
7653 case elfcpp::R_PPC64_PLTGOT16_LO:
7654 case elfcpp::R_PPC64_PLTGOT16_HI:
7655 case elfcpp::R_PPC64_PLTGOT16_HA:
7656 case elfcpp::R_PPC64_PLT16_LO_DS:
7657 case elfcpp::R_PPC64_PLTGOT16_DS:
7658 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7659 case elfcpp::R_PPC_EMB_RELSDA:
7660 case elfcpp::R_PPC_TOC16:
7661 default:
7662 unsupp:
7663 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7664 _("unsupported reloc %u"),
7665 r_type);
7666 break;
7667 }
7668 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
7669 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7670 _("relocation overflow"));
7671
7672 return true;
7673 }
7674
7675 // Relocate section data.
7676
7677 template<int size, bool big_endian>
7678 void
7679 Target_powerpc<size, big_endian>::relocate_section(
7680 const Relocate_info<size, big_endian>* relinfo,
7681 unsigned int sh_type,
7682 const unsigned char* prelocs,
7683 size_t reloc_count,
7684 Output_section* output_section,
7685 bool needs_special_offset_handling,
7686 unsigned char* view,
7687 Address address,
7688 section_size_type view_size,
7689 const Reloc_symbol_changes* reloc_symbol_changes)
7690 {
7691 typedef Target_powerpc<size, big_endian> Powerpc;
7692 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7693 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7694 Powerpc_comdat_behavior;
7695
7696 gold_assert(sh_type == elfcpp::SHT_RELA);
7697
7698 gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7699 Powerpc_relocate, Powerpc_comdat_behavior>(
7700 relinfo,
7701 this,
7702 prelocs,
7703 reloc_count,
7704 output_section,
7705 needs_special_offset_handling,
7706 view,
7707 address,
7708 view_size,
7709 reloc_symbol_changes);
7710 }
7711
7712 class Powerpc_scan_relocatable_reloc
7713 {
7714 public:
7715 // Return the strategy to use for a local symbol which is not a
7716 // section symbol, given the relocation type.
7717 inline Relocatable_relocs::Reloc_strategy
7718 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7719 {
7720 if (r_type == 0 && r_sym == 0)
7721 return Relocatable_relocs::RELOC_DISCARD;
7722 return Relocatable_relocs::RELOC_COPY;
7723 }
7724
7725 // Return the strategy to use for a local symbol which is a section
7726 // symbol, given the relocation type.
7727 inline Relocatable_relocs::Reloc_strategy
7728 local_section_strategy(unsigned int, Relobj*)
7729 {
7730 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7731 }
7732
7733 // Return the strategy to use for a global symbol, given the
7734 // relocation type, the object, and the symbol index.
7735 inline Relocatable_relocs::Reloc_strategy
7736 global_strategy(unsigned int r_type, Relobj*, unsigned int)
7737 {
7738 if (r_type == elfcpp::R_PPC_PLTREL24)
7739 return Relocatable_relocs::RELOC_SPECIAL;
7740 return Relocatable_relocs::RELOC_COPY;
7741 }
7742 };
7743
7744 // Scan the relocs during a relocatable link.
7745
7746 template<int size, bool big_endian>
7747 void
7748 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7749 Symbol_table* symtab,
7750 Layout* layout,
7751 Sized_relobj_file<size, big_endian>* object,
7752 unsigned int data_shndx,
7753 unsigned int sh_type,
7754 const unsigned char* prelocs,
7755 size_t reloc_count,
7756 Output_section* output_section,
7757 bool needs_special_offset_handling,
7758 size_t local_symbol_count,
7759 const unsigned char* plocal_symbols,
7760 Relocatable_relocs* rr)
7761 {
7762 gold_assert(sh_type == elfcpp::SHT_RELA);
7763
7764 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7765 Powerpc_scan_relocatable_reloc>(
7766 symtab,
7767 layout,
7768 object,
7769 data_shndx,
7770 prelocs,
7771 reloc_count,
7772 output_section,
7773 needs_special_offset_handling,
7774 local_symbol_count,
7775 plocal_symbols,
7776 rr);
7777 }
7778
7779 // Emit relocations for a section.
7780 // This is a modified version of the function by the same name in
7781 // target-reloc.h. Using relocate_special_relocatable for
7782 // R_PPC_PLTREL24 would require duplication of the entire body of the
7783 // loop, so we may as well duplicate the whole thing.
7784
7785 template<int size, bool big_endian>
7786 void
7787 Target_powerpc<size, big_endian>::relocate_relocs(
7788 const Relocate_info<size, big_endian>* relinfo,
7789 unsigned int sh_type,
7790 const unsigned char* prelocs,
7791 size_t reloc_count,
7792 Output_section* output_section,
7793 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7794 const Relocatable_relocs* rr,
7795 unsigned char*,
7796 Address view_address,
7797 section_size_type,
7798 unsigned char* reloc_view,
7799 section_size_type reloc_view_size)
7800 {
7801 gold_assert(sh_type == elfcpp::SHT_RELA);
7802
7803 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7804 Reltype;
7805 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7806 Reltype_write;
7807 const int reloc_size
7808 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7809
7810 Powerpc_relobj<size, big_endian>* const object
7811 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7812 const unsigned int local_count = object->local_symbol_count();
7813 unsigned int got2_shndx = object->got2_shndx();
7814 Address got2_addend = 0;
7815 if (got2_shndx != 0)
7816 {
7817 got2_addend = object->get_output_section_offset(got2_shndx);
7818 gold_assert(got2_addend != invalid_address);
7819 }
7820
7821 unsigned char* pwrite = reloc_view;
7822 bool zap_next = false;
7823 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7824 {
7825 Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7826 if (strategy == Relocatable_relocs::RELOC_DISCARD)
7827 continue;
7828
7829 Reltype reloc(prelocs);
7830 Reltype_write reloc_write(pwrite);
7831
7832 Address offset = reloc.get_r_offset();
7833 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7834 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7835 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7836 const unsigned int orig_r_sym = r_sym;
7837 typename elfcpp::Elf_types<size>::Elf_Swxword addend
7838 = reloc.get_r_addend();
7839 const Symbol* gsym = NULL;
7840
7841 if (zap_next)
7842 {
7843 // We could arrange to discard these and other relocs for
7844 // tls optimised sequences in the strategy methods, but for
7845 // now do as BFD ld does.
7846 r_type = elfcpp::R_POWERPC_NONE;
7847 zap_next = false;
7848 }
7849
7850 // Get the new symbol index.
7851 if (r_sym < local_count)
7852 {
7853 switch (strategy)
7854 {
7855 case Relocatable_relocs::RELOC_COPY:
7856 case Relocatable_relocs::RELOC_SPECIAL:
7857 if (r_sym != 0)
7858 {
7859 r_sym = object->symtab_index(r_sym);
7860 gold_assert(r_sym != -1U);
7861 }
7862 break;
7863
7864 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7865 {
7866 // We are adjusting a section symbol. We need to find
7867 // the symbol table index of the section symbol for
7868 // the output section corresponding to input section
7869 // in which this symbol is defined.
7870 gold_assert(r_sym < local_count);
7871 bool is_ordinary;
7872 unsigned int shndx =
7873 object->local_symbol_input_shndx(r_sym, &is_ordinary);
7874 gold_assert(is_ordinary);
7875 Output_section* os = object->output_section(shndx);
7876 gold_assert(os != NULL);
7877 gold_assert(os->needs_symtab_index());
7878 r_sym = os->symtab_index();
7879 }
7880 break;
7881
7882 default:
7883 gold_unreachable();
7884 }
7885 }
7886 else
7887 {
7888 gsym = object->global_symbol(r_sym);
7889 gold_assert(gsym != NULL);
7890 if (gsym->is_forwarder())
7891 gsym = relinfo->symtab->resolve_forwards(gsym);
7892
7893 gold_assert(gsym->has_symtab_index());
7894 r_sym = gsym->symtab_index();
7895 }
7896
7897 // Get the new offset--the location in the output section where
7898 // this relocation should be applied.
7899 if (static_cast<Address>(offset_in_output_section) != invalid_address)
7900 offset += offset_in_output_section;
7901 else
7902 {
7903 section_offset_type sot_offset =
7904 convert_types<section_offset_type, Address>(offset);
7905 section_offset_type new_sot_offset =
7906 output_section->output_offset(object, relinfo->data_shndx,
7907 sot_offset);
7908 gold_assert(new_sot_offset != -1);
7909 offset = new_sot_offset;
7910 }
7911
7912 // In an object file, r_offset is an offset within the section.
7913 // In an executable or dynamic object, generated by
7914 // --emit-relocs, r_offset is an absolute address.
7915 if (!parameters->options().relocatable())
7916 {
7917 offset += view_address;
7918 if (static_cast<Address>(offset_in_output_section) != invalid_address)
7919 offset -= offset_in_output_section;
7920 }
7921
7922 // Handle the reloc addend based on the strategy.
7923 if (strategy == Relocatable_relocs::RELOC_COPY)
7924 ;
7925 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
7926 {
7927 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
7928 addend = psymval->value(object, addend);
7929 }
7930 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
7931 {
7932 if (addend >= 32768)
7933 addend += got2_addend;
7934 }
7935 else
7936 gold_unreachable();
7937
7938 if (!parameters->options().relocatable())
7939 {
7940 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7941 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7942 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7943 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7944 {
7945 // First instruction of a global dynamic sequence,
7946 // arg setup insn.
7947 const bool final = gsym == NULL || gsym->final_value_is_known();
7948 switch (this->optimize_tls_gd(final))
7949 {
7950 case tls::TLSOPT_TO_IE:
7951 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7952 - elfcpp::R_POWERPC_GOT_TLSGD16);
7953 break;
7954 case tls::TLSOPT_TO_LE:
7955 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7956 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7957 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7958 else
7959 {
7960 r_type = elfcpp::R_POWERPC_NONE;
7961 offset -= 2 * big_endian;
7962 }
7963 break;
7964 default:
7965 break;
7966 }
7967 }
7968 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7969 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7970 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7971 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7972 {
7973 // First instruction of a local dynamic sequence,
7974 // arg setup insn.
7975 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7976 {
7977 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7978 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7979 {
7980 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7981 const Output_section* os = relinfo->layout->tls_segment()
7982 ->first_section();
7983 gold_assert(os != NULL);
7984 gold_assert(os->needs_symtab_index());
7985 r_sym = os->symtab_index();
7986 addend = dtp_offset;
7987 }
7988 else
7989 {
7990 r_type = elfcpp::R_POWERPC_NONE;
7991 offset -= 2 * big_endian;
7992 }
7993 }
7994 }
7995 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7996 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7997 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7998 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7999 {
8000 // First instruction of initial exec sequence.
8001 const bool final = gsym == NULL || gsym->final_value_is_known();
8002 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8003 {
8004 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8005 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8006 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8007 else
8008 {
8009 r_type = elfcpp::R_POWERPC_NONE;
8010 offset -= 2 * big_endian;
8011 }
8012 }
8013 }
8014 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8015 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8016 {
8017 // Second instruction of a global dynamic sequence,
8018 // the __tls_get_addr call
8019 const bool final = gsym == NULL || gsym->final_value_is_known();
8020 switch (this->optimize_tls_gd(final))
8021 {
8022 case tls::TLSOPT_TO_IE:
8023 r_type = elfcpp::R_POWERPC_NONE;
8024 zap_next = true;
8025 break;
8026 case tls::TLSOPT_TO_LE:
8027 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8028 offset += 2 * big_endian;
8029 zap_next = true;
8030 break;
8031 default:
8032 break;
8033 }
8034 }
8035 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8036 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8037 {
8038 // Second instruction of a local dynamic sequence,
8039 // the __tls_get_addr call
8040 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8041 {
8042 const Output_section* os = relinfo->layout->tls_segment()
8043 ->first_section();
8044 gold_assert(os != NULL);
8045 gold_assert(os->needs_symtab_index());
8046 r_sym = os->symtab_index();
8047 addend = dtp_offset;
8048 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8049 offset += 2 * big_endian;
8050 zap_next = true;
8051 }
8052 }
8053 else if (r_type == elfcpp::R_POWERPC_TLS)
8054 {
8055 // Second instruction of an initial exec sequence
8056 const bool final = gsym == NULL || gsym->final_value_is_known();
8057 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8058 {
8059 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8060 offset += 2 * big_endian;
8061 }
8062 }
8063 }
8064
8065 reloc_write.put_r_offset(offset);
8066 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8067 reloc_write.put_r_addend(addend);
8068
8069 pwrite += reloc_size;
8070 }
8071
8072 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8073 == reloc_view_size);
8074 }
8075
8076 // Return the value to use for a dynamic symbol which requires special
8077 // treatment. This is how we support equality comparisons of function
8078 // pointers across shared library boundaries, as described in the
8079 // processor specific ABI supplement.
8080
8081 template<int size, bool big_endian>
8082 uint64_t
8083 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8084 {
8085 if (size == 32)
8086 {
8087 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8088 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8089 p != this->stub_tables_.end();
8090 ++p)
8091 {
8092 Address off = (*p)->find_plt_call_entry(gsym);
8093 if (off != invalid_address)
8094 return (*p)->stub_address() + off;
8095 }
8096 }
8097 else if (this->abiversion() >= 2)
8098 {
8099 unsigned int off = this->glink_section()->find_global_entry(gsym);
8100 if (off != (unsigned int)-1)
8101 return this->glink_section()->global_entry_address() + off;
8102 }
8103 gold_unreachable();
8104 }
8105
8106 // Return the PLT address to use for a local symbol.
8107 template<int size, bool big_endian>
8108 uint64_t
8109 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8110 const Relobj* object,
8111 unsigned int symndx) const
8112 {
8113 if (size == 32)
8114 {
8115 const Sized_relobj<size, big_endian>* relobj
8116 = static_cast<const Sized_relobj<size, big_endian>*>(object);
8117 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8118 p != this->stub_tables_.end();
8119 ++p)
8120 {
8121 Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8122 symndx);
8123 if (off != invalid_address)
8124 return (*p)->stub_address() + off;
8125 }
8126 }
8127 gold_unreachable();
8128 }
8129
8130 // Return the PLT address to use for a global symbol.
8131 template<int size, bool big_endian>
8132 uint64_t
8133 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8134 const Symbol* gsym) const
8135 {
8136 if (size == 32)
8137 {
8138 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8139 p != this->stub_tables_.end();
8140 ++p)
8141 {
8142 Address off = (*p)->find_plt_call_entry(gsym);
8143 if (off != invalid_address)
8144 return (*p)->stub_address() + off;
8145 }
8146 }
8147 else if (this->abiversion() >= 2)
8148 {
8149 unsigned int off = this->glink_section()->find_global_entry(gsym);
8150 if (off != (unsigned int)-1)
8151 return this->glink_section()->global_entry_address() + off;
8152 }
8153 gold_unreachable();
8154 }
8155
8156 // Return the offset to use for the GOT_INDX'th got entry which is
8157 // for a local tls symbol specified by OBJECT, SYMNDX.
8158 template<int size, bool big_endian>
8159 int64_t
8160 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8161 const Relobj* object,
8162 unsigned int symndx,
8163 unsigned int got_indx) const
8164 {
8165 const Powerpc_relobj<size, big_endian>* ppc_object
8166 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8167 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8168 {
8169 for (Got_type got_type = GOT_TYPE_TLSGD;
8170 got_type <= GOT_TYPE_TPREL;
8171 got_type = Got_type(got_type + 1))
8172 if (ppc_object->local_has_got_offset(symndx, got_type))
8173 {
8174 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8175 if (got_type == GOT_TYPE_TLSGD)
8176 off += size / 8;
8177 if (off == got_indx * (size / 8))
8178 {
8179 if (got_type == GOT_TYPE_TPREL)
8180 return -tp_offset;
8181 else
8182 return -dtp_offset;
8183 }
8184 }
8185 }
8186 gold_unreachable();
8187 }
8188
8189 // Return the offset to use for the GOT_INDX'th got entry which is
8190 // for global tls symbol GSYM.
8191 template<int size, bool big_endian>
8192 int64_t
8193 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8194 Symbol* gsym,
8195 unsigned int got_indx) const
8196 {
8197 if (gsym->type() == elfcpp::STT_TLS)
8198 {
8199 for (Got_type got_type = GOT_TYPE_TLSGD;
8200 got_type <= GOT_TYPE_TPREL;
8201 got_type = Got_type(got_type + 1))
8202 if (gsym->has_got_offset(got_type))
8203 {
8204 unsigned int off = gsym->got_offset(got_type);
8205 if (got_type == GOT_TYPE_TLSGD)
8206 off += size / 8;
8207 if (off == got_indx * (size / 8))
8208 {
8209 if (got_type == GOT_TYPE_TPREL)
8210 return -tp_offset;
8211 else
8212 return -dtp_offset;
8213 }
8214 }
8215 }
8216 gold_unreachable();
8217 }
8218
8219 // The selector for powerpc object files.
8220
8221 template<int size, bool big_endian>
8222 class Target_selector_powerpc : public Target_selector
8223 {
8224 public:
8225 Target_selector_powerpc()
8226 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8227 size, big_endian,
8228 (size == 64
8229 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8230 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8231 (size == 64
8232 ? (big_endian ? "elf64ppc" : "elf64lppc")
8233 : (big_endian ? "elf32ppc" : "elf32lppc")))
8234 { }
8235
8236 virtual Target*
8237 do_instantiate_target()
8238 { return new Target_powerpc<size, big_endian>(); }
8239 };
8240
8241 Target_selector_powerpc<32, true> target_selector_ppc32;
8242 Target_selector_powerpc<32, false> target_selector_ppc32le;
8243 Target_selector_powerpc<64, true> target_selector_ppc64;
8244 Target_selector_powerpc<64, false> target_selector_ppc64le;
8245
8246 // Instantiate these constants for -O0
8247 template<int size, bool big_endian>
8248 const int Output_data_glink<size, big_endian>::pltresolve_size;
8249 template<int size, bool big_endian>
8250 const typename Output_data_glink<size, big_endian>::Address
8251 Output_data_glink<size, big_endian>::invalid_address;
8252 template<int size, bool big_endian>
8253 const typename Stub_table<size, big_endian>::Address
8254 Stub_table<size, big_endian>::invalid_address;
8255 template<int size, bool big_endian>
8256 const typename Target_powerpc<size, big_endian>::Address
8257 Target_powerpc<size, big_endian>::invalid_address;
8258
8259 } // End anonymous namespace.
This page took 0.213607 seconds and 5 git commands to generate.