* powerpc.cc (Powerpc_relobj::do_scan_relocs): Make STB_LOCAL
[deliverable/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include "elfcpp.h"
27 #include "parameters.h"
28 #include "reloc.h"
29 #include "powerpc.h"
30 #include "object.h"
31 #include "symtab.h"
32 #include "layout.h"
33 #include "output.h"
34 #include "copy-relocs.h"
35 #include "target.h"
36 #include "target-reloc.h"
37 #include "target-select.h"
38 #include "tls.h"
39 #include "errors.h"
40 #include "gc.h"
41
42 namespace
43 {
44
45 using namespace gold;
46
47 template<int size, bool big_endian>
48 class Output_data_plt_powerpc;
49
50 template<int size, bool big_endian>
51 class Output_data_got_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_glink;
55
56 template<int size, bool big_endian>
57 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
58 {
59 public:
60 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
61 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
62 typedef Unordered_map<Address, Section_refs> Access_from;
63
64 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
65 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
66 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
67 special_(0), opd_valid_(false), opd_ent_(), access_from_map_()
68 { }
69
70 ~Powerpc_relobj()
71 { }
72
73 // The .got2 section shndx.
74 unsigned int
75 got2_shndx() const
76 {
77 if (size == 32)
78 return this->special_;
79 else
80 return 0;
81 }
82
83 // The .opd section shndx.
84 unsigned int
85 opd_shndx() const
86 {
87 if (size == 32)
88 return 0;
89 else
90 return this->special_;
91 }
92
93 // Init OPD entry arrays.
94 void
95 init_opd(size_t opd_size)
96 {
97 size_t count = this->opd_ent_ndx(opd_size);
98 this->opd_ent_.resize(count);
99 }
100
101 // Return section and offset of function entry for .opd + R_OFF.
102 unsigned int
103 get_opd_ent(Address r_off, Address* value = NULL) const
104 {
105 size_t ndx = this->opd_ent_ndx(r_off);
106 gold_assert(ndx < this->opd_ent_.size());
107 gold_assert(this->opd_ent_[ndx].shndx != 0);
108 if (value != NULL)
109 *value = this->opd_ent_[ndx].off;
110 return this->opd_ent_[ndx].shndx;
111 }
112
113 // Set section and offset of function entry for .opd + R_OFF.
114 void
115 set_opd_ent(Address r_off, unsigned int shndx, Address value)
116 {
117 size_t ndx = this->opd_ent_ndx(r_off);
118 gold_assert(ndx < this->opd_ent_.size());
119 this->opd_ent_[ndx].shndx = shndx;
120 this->opd_ent_[ndx].off = value;
121 }
122
123 // Return discard flag for .opd + R_OFF.
124 bool
125 get_opd_discard(Address r_off) const
126 {
127 size_t ndx = this->opd_ent_ndx(r_off);
128 gold_assert(ndx < this->opd_ent_.size());
129 return this->opd_ent_[ndx].discard;
130 }
131
132 // Set discard flag for .opd + R_OFF.
133 void
134 set_opd_discard(Address r_off)
135 {
136 size_t ndx = this->opd_ent_ndx(r_off);
137 gold_assert(ndx < this->opd_ent_.size());
138 this->opd_ent_[ndx].discard = true;
139 }
140
141 Access_from*
142 access_from_map()
143 { return &this->access_from_map_; }
144
145 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
146 // section at DST_OFF.
147 void
148 add_reference(Object* src_obj,
149 unsigned int src_indx,
150 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
151 {
152 Section_id src_id(src_obj, src_indx);
153 this->access_from_map_[dst_off].insert(src_id);
154 }
155
156 // Add a reference to the code section specified by the .opd entry
157 // at DST_OFF
158 void
159 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
160 {
161 size_t ndx = this->opd_ent_ndx(dst_off);
162 if (ndx >= this->opd_ent_.size())
163 this->opd_ent_.resize(ndx + 1);
164 this->opd_ent_[ndx].gc_mark = true;
165 }
166
167 void
168 process_gc_mark(Symbol_table* symtab)
169 {
170 for (size_t i = 0; i < this->opd_ent_.size(); i++)
171 if (this->opd_ent_[i].gc_mark)
172 {
173 unsigned int shndx = this->opd_ent_[i].shndx;
174 symtab->gc()->worklist().push(Section_id(this, shndx));
175 }
176 }
177
178 bool
179 opd_valid() const
180 { return this->opd_valid_; }
181
182 void
183 set_opd_valid()
184 { this->opd_valid_ = true; }
185
186 // Examine .rela.opd to build info about function entry points.
187 void
188 scan_opd_relocs(size_t reloc_count,
189 const unsigned char* prelocs,
190 const unsigned char* plocal_syms);
191
192 // Perform the Sized_relobj_file method, then set up opd info from
193 // .opd relocs.
194 void
195 do_read_relocs(Read_relocs_data*);
196
197 // Set up some symbols, then perform Sized_relobj_file method.
198 // Occurs after garbage collection, which is why opd info can't be
199 // set up here.
200 void
201 do_scan_relocs(Symbol_table*, Layout*, Read_relocs_data*);
202
203 bool
204 do_find_special_sections(Read_symbols_data* sd);
205
206 // Adjust this local symbol value. Return false if the symbol
207 // should be discarded from the output file.
208 bool
209 do_adjust_local_symbol(Symbol_value<size>* lv) const
210 {
211 if (size == 64 && this->opd_shndx() != 0)
212 {
213 bool is_ordinary;
214 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
215 return true;
216 if (this->get_opd_discard(lv->input_value()))
217 return false;
218 }
219 return true;
220 }
221
222 // Return offset in output GOT section that this object will use
223 // as a TOC pointer. Won't be just a constant with multi-toc support.
224 Address
225 toc_base_offset() const
226 { return 0x8000; }
227
228 private:
229 struct Opd_ent
230 {
231 unsigned int shndx;
232 bool discard : 1;
233 bool gc_mark : 1;
234 Address off;
235 };
236
237 // Return index into opd_ent_ array for .opd entry at OFF.
238 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
239 // apart when the language doesn't use the last 8-byte word, the
240 // environment pointer. Thus dividing the entry section offset by
241 // 16 will give an index into opd_ent_ that works for either layout
242 // of .opd. (It leaves some elements of the vector unused when .opd
243 // entries are spaced 24 bytes apart, but we don't know the spacing
244 // until relocations are processed, and in any case it is possible
245 // for an object to have some entries spaced 16 bytes apart and
246 // others 24 bytes apart.)
247 size_t
248 opd_ent_ndx(size_t off) const
249 { return off >> 4;}
250
251 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
252 unsigned int special_;
253
254 // Set at the start of gc_process_relocs, when we know opd_ent_
255 // vector is valid. The flag could be made atomic and set in
256 // do_read_relocs with memory_order_release and then tested with
257 // memory_order_acquire, potentially resulting in fewer entries in
258 // access_from_map_.
259 bool opd_valid_;
260
261 // The first 8-byte word of an OPD entry gives the address of the
262 // entry point of the function. Relocatable object files have a
263 // relocation on this word. The following vector records the
264 // section and offset specified by these relocations.
265 std::vector<Opd_ent> opd_ent_;
266
267 // References made to this object's .opd section when running
268 // gc_process_relocs for another object, before the opd_ent_ vector
269 // is valid for this object.
270 Access_from access_from_map_;
271 };
272
273 template<int size, bool big_endian>
274 class Target_powerpc : public Sized_target<size, big_endian>
275 {
276 public:
277 typedef
278 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
279 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
280 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
281 static const Address invalid_address = static_cast<Address>(0) - 1;
282 // Offset of tp and dtp pointers from start of TLS block.
283 static const Address tp_offset = 0x7000;
284 static const Address dtp_offset = 0x8000;
285
286 Target_powerpc()
287 : Sized_target<size, big_endian>(&powerpc_info),
288 got_(NULL), plt_(NULL), iplt_(NULL), glink_(NULL), rela_dyn_(NULL),
289 copy_relocs_(elfcpp::R_POWERPC_COPY),
290 dynbss_(NULL), tlsld_got_offset_(-1U)
291 {
292 }
293
294 // Process the relocations to determine unreferenced sections for
295 // garbage collection.
296 void
297 gc_process_relocs(Symbol_table* symtab,
298 Layout* layout,
299 Sized_relobj_file<size, big_endian>* object,
300 unsigned int data_shndx,
301 unsigned int sh_type,
302 const unsigned char* prelocs,
303 size_t reloc_count,
304 Output_section* output_section,
305 bool needs_special_offset_handling,
306 size_t local_symbol_count,
307 const unsigned char* plocal_symbols);
308
309 // Scan the relocations to look for symbol adjustments.
310 void
311 scan_relocs(Symbol_table* symtab,
312 Layout* layout,
313 Sized_relobj_file<size, big_endian>* object,
314 unsigned int data_shndx,
315 unsigned int sh_type,
316 const unsigned char* prelocs,
317 size_t reloc_count,
318 Output_section* output_section,
319 bool needs_special_offset_handling,
320 size_t local_symbol_count,
321 const unsigned char* plocal_symbols);
322
323 // Map input .toc section to output .got section.
324 const char*
325 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
326 {
327 if (size == 64 && strcmp(name, ".toc") == 0)
328 {
329 *plen = 4;
330 return ".got";
331 }
332 return NULL;
333 }
334
335 // Provide linker defined save/restore functions.
336 void
337 define_save_restore_funcs(Layout*, Symbol_table*);
338
339 // Finalize the sections.
340 void
341 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
342
343 // Return the value to use for a dynamic which requires special
344 // treatment.
345 uint64_t
346 do_dynsym_value(const Symbol*) const;
347
348 // Return the PLT address to use for a local symbol.
349 uint64_t
350 do_plt_address_for_local(const Relobj*, unsigned int) const;
351
352 // Return the PLT address to use for a global symbol.
353 uint64_t
354 do_plt_address_for_global(const Symbol*) const;
355
356 // Return the offset to use for the GOT_INDX'th got entry which is
357 // for a local tls symbol specified by OBJECT, SYMNDX.
358 int64_t
359 do_tls_offset_for_local(const Relobj* object,
360 unsigned int symndx,
361 unsigned int got_indx) const;
362
363 // Return the offset to use for the GOT_INDX'th got entry which is
364 // for global tls symbol GSYM.
365 int64_t
366 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
367
368 // Relocate a section.
369 void
370 relocate_section(const Relocate_info<size, big_endian>*,
371 unsigned int sh_type,
372 const unsigned char* prelocs,
373 size_t reloc_count,
374 Output_section* output_section,
375 bool needs_special_offset_handling,
376 unsigned char* view,
377 Address view_address,
378 section_size_type view_size,
379 const Reloc_symbol_changes*);
380
381 // Scan the relocs during a relocatable link.
382 void
383 scan_relocatable_relocs(Symbol_table* symtab,
384 Layout* layout,
385 Sized_relobj_file<size, big_endian>* object,
386 unsigned int data_shndx,
387 unsigned int sh_type,
388 const unsigned char* prelocs,
389 size_t reloc_count,
390 Output_section* output_section,
391 bool needs_special_offset_handling,
392 size_t local_symbol_count,
393 const unsigned char* plocal_symbols,
394 Relocatable_relocs*);
395
396 // Emit relocations for a section.
397 void
398 relocate_relocs(const Relocate_info<size, big_endian>*,
399 unsigned int sh_type,
400 const unsigned char* prelocs,
401 size_t reloc_count,
402 Output_section* output_section,
403 typename elfcpp::Elf_types<size>::Elf_Off
404 offset_in_output_section,
405 const Relocatable_relocs*,
406 unsigned char*,
407 Address view_address,
408 section_size_type,
409 unsigned char* reloc_view,
410 section_size_type reloc_view_size);
411
412 // Return whether SYM is defined by the ABI.
413 bool
414 do_is_defined_by_abi(const Symbol* sym) const
415 {
416 return strcmp(sym->name(), "__tls_get_addr") == 0;
417 }
418
419 // Return the size of the GOT section.
420 section_size_type
421 got_size() const
422 {
423 gold_assert(this->got_ != NULL);
424 return this->got_->data_size();
425 }
426
427 // Get the PLT section.
428 const Output_data_plt_powerpc<size, big_endian>*
429 plt_section() const
430 {
431 gold_assert(this->plt_ != NULL);
432 return this->plt_;
433 }
434
435 // Get the IPLT section.
436 const Output_data_plt_powerpc<size, big_endian>*
437 iplt_section() const
438 {
439 gold_assert(this->iplt_ != NULL);
440 return this->iplt_;
441 }
442
443 // Get the .glink section.
444 const Output_data_glink<size, big_endian>*
445 glink_section() const
446 {
447 gold_assert(this->glink_ != NULL);
448 return this->glink_;
449 }
450
451 // Get the GOT section.
452 const Output_data_got_powerpc<size, big_endian>*
453 got_section() const
454 {
455 gold_assert(this->got_ != NULL);
456 return this->got_;
457 }
458
459 // Get the GOT section, creating it if necessary.
460 Output_data_got_powerpc<size, big_endian>*
461 got_section(Symbol_table*, Layout*);
462
463 Object*
464 do_make_elf_object(const std::string&, Input_file*, off_t,
465 const elfcpp::Ehdr<size, big_endian>&);
466
467 // Return the number of entries in the GOT.
468 unsigned int
469 got_entry_count() const
470 {
471 if (this->got_ == NULL)
472 return 0;
473 return this->got_size() / (size / 8);
474 }
475
476 // Return the number of entries in the PLT.
477 unsigned int
478 plt_entry_count() const;
479
480 // Return the offset of the first non-reserved PLT entry.
481 unsigned int
482 first_plt_entry_offset() const;
483
484 // Return the size of each PLT entry.
485 unsigned int
486 plt_entry_size() const;
487
488 // Add any special sections for this symbol to the gc work list.
489 // For powerpc64, this adds the code section of a function
490 // descriptor.
491 void
492 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
493
494 // Handle target specific gc actions when adding a gc reference from
495 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
496 // and DST_OFF. For powerpc64, this adds a referenc to the code
497 // section of a function descriptor.
498 void
499 do_gc_add_reference(Symbol_table* symtab,
500 Object* src_obj,
501 unsigned int src_shndx,
502 Object* dst_obj,
503 unsigned int dst_shndx,
504 Address dst_off) const;
505
506 private:
507
508 // The class which scans relocations.
509 class Scan
510 {
511 public:
512 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
513
514 Scan()
515 : issued_non_pic_error_(false)
516 { }
517
518 static inline int
519 get_reference_flags(unsigned int r_type);
520
521 inline void
522 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
523 Sized_relobj_file<size, big_endian>* object,
524 unsigned int data_shndx,
525 Output_section* output_section,
526 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
527 const elfcpp::Sym<size, big_endian>& lsym,
528 bool is_discarded);
529
530 inline void
531 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
532 Sized_relobj_file<size, big_endian>* object,
533 unsigned int data_shndx,
534 Output_section* output_section,
535 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
536 Symbol* gsym);
537
538 inline bool
539 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
540 Target_powerpc* ,
541 Sized_relobj_file<size, big_endian>* ,
542 unsigned int ,
543 Output_section* ,
544 const elfcpp::Rela<size, big_endian>& ,
545 unsigned int ,
546 const elfcpp::Sym<size, big_endian>&)
547 { return false; }
548
549 inline bool
550 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
551 Target_powerpc* ,
552 Sized_relobj_file<size, big_endian>* ,
553 unsigned int ,
554 Output_section* ,
555 const elfcpp::Rela<size,
556 big_endian>& ,
557 unsigned int , Symbol*)
558 { return false; }
559
560 private:
561 static void
562 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
563 unsigned int r_type);
564
565 static void
566 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
567 unsigned int r_type, Symbol*);
568
569 static void
570 generate_tls_call(Symbol_table* symtab, Layout* layout,
571 Target_powerpc* target);
572
573 void
574 check_non_pic(Relobj*, unsigned int r_type);
575
576 bool
577 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>* object,
578 unsigned int r_type);
579
580 // Whether we have issued an error about a non-PIC compilation.
581 bool issued_non_pic_error_;
582 };
583
584 Address
585 symval_for_branch(Address value, const Sized_symbol<size>* gsym,
586 Powerpc_relobj<size, big_endian>* object,
587 unsigned int *dest_shndx);
588
589 // The class which implements relocation.
590 class Relocate
591 {
592 public:
593 // Use 'at' branch hints when true, 'y' when false.
594 // FIXME maybe: set this with an option.
595 static const bool is_isa_v2 = true;
596
597 enum skip_tls
598 {
599 CALL_NOT_EXPECTED = 0,
600 CALL_EXPECTED = 1,
601 CALL_SKIP = 2
602 };
603
604 Relocate()
605 : call_tls_get_addr_(CALL_NOT_EXPECTED)
606 { }
607
608 ~Relocate()
609 {
610 if (this->call_tls_get_addr_ != CALL_NOT_EXPECTED)
611 {
612 // FIXME: This needs to specify the location somehow.
613 gold_error(_("missing expected __tls_get_addr call"));
614 }
615 }
616
617 // Do a relocation. Return false if the caller should not issue
618 // any warnings about this relocation.
619 inline bool
620 relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
621 Output_section*, size_t relnum,
622 const elfcpp::Rela<size, big_endian>&,
623 unsigned int r_type, const Sized_symbol<size>*,
624 const Symbol_value<size>*,
625 unsigned char*,
626 typename elfcpp::Elf_types<size>::Elf_Addr,
627 section_size_type);
628
629 // This is set if we should skip the next reloc, which should be a
630 // call to __tls_get_addr.
631 enum skip_tls call_tls_get_addr_;
632 };
633
634 class Relocate_comdat_behavior
635 {
636 public:
637 // Decide what the linker should do for relocations that refer to
638 // discarded comdat sections.
639 inline Comdat_behavior
640 get(const char* name)
641 {
642 gold::Default_comdat_behavior default_behavior;
643 Comdat_behavior ret = default_behavior.get(name);
644 if (ret == CB_WARNING)
645 {
646 if (size == 32
647 && (strcmp(name, ".fixup") == 0
648 || strcmp(name, ".got2") == 0))
649 ret = CB_IGNORE;
650 if (size == 64
651 && (strcmp(name, ".opd") == 0
652 || strcmp(name, ".toc") == 0
653 || strcmp(name, ".toc1") == 0))
654 ret = CB_IGNORE;
655 }
656 return ret;
657 }
658 };
659
660 // A class which returns the size required for a relocation type,
661 // used while scanning relocs during a relocatable link.
662 class Relocatable_size_for_reloc
663 {
664 public:
665 unsigned int
666 get_size_for_reloc(unsigned int, Relobj*)
667 {
668 gold_unreachable();
669 return 0;
670 }
671 };
672
673 // Optimize the TLS relocation type based on what we know about the
674 // symbol. IS_FINAL is true if the final address of this symbol is
675 // known at link time.
676
677 tls::Tls_optimization
678 optimize_tls_gd(bool is_final)
679 {
680 // If we are generating a shared library, then we can't do anything
681 // in the linker.
682 if (parameters->options().shared())
683 return tls::TLSOPT_NONE;
684
685 if (!is_final)
686 return tls::TLSOPT_TO_IE;
687 return tls::TLSOPT_TO_LE;
688 }
689
690 tls::Tls_optimization
691 optimize_tls_ld()
692 {
693 if (parameters->options().shared())
694 return tls::TLSOPT_NONE;
695
696 return tls::TLSOPT_TO_LE;
697 }
698
699 tls::Tls_optimization
700 optimize_tls_ie(bool is_final)
701 {
702 if (!is_final || parameters->options().shared())
703 return tls::TLSOPT_NONE;
704
705 return tls::TLSOPT_TO_LE;
706 }
707
708 // Create glink.
709 void
710 make_glink_section(Layout*);
711
712 // Create the PLT section.
713 void
714 make_plt_section(Layout*);
715
716 void
717 make_iplt_section(Layout*);
718
719 // Create a PLT entry for a global symbol.
720 void
721 make_plt_entry(Layout*, Symbol*,
722 const elfcpp::Rela<size, big_endian>&,
723 const Sized_relobj_file<size, big_endian>* object);
724
725 // Create a PLT entry for a local IFUNC symbol.
726 void
727 make_local_ifunc_plt_entry(Layout*,
728 const elfcpp::Rela<size, big_endian>&,
729 Sized_relobj_file<size, big_endian>*);
730
731 // Create a GOT entry for local dynamic __tls_get_addr.
732 unsigned int
733 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
734 Sized_relobj_file<size, big_endian>* object);
735
736 unsigned int
737 tlsld_got_offset() const
738 {
739 return this->tlsld_got_offset_;
740 }
741
742 // Get the dynamic reloc section, creating it if necessary.
743 Reloc_section*
744 rela_dyn_section(Layout*);
745
746 // Copy a relocation against a global symbol.
747 void
748 copy_reloc(Symbol_table* symtab, Layout* layout,
749 Sized_relobj_file<size, big_endian>* object,
750 unsigned int shndx, Output_section* output_section,
751 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
752 {
753 this->copy_relocs_.copy_reloc(symtab, layout,
754 symtab->get_sized_symbol<size>(sym),
755 object, shndx, output_section,
756 reloc, this->rela_dyn_section(layout));
757 }
758
759 // Information about this specific target which we pass to the
760 // general Target structure.
761 static Target::Target_info powerpc_info;
762
763 // The types of GOT entries needed for this platform.
764 // These values are exposed to the ABI in an incremental link.
765 // Do not renumber existing values without changing the version
766 // number of the .gnu_incremental_inputs section.
767 enum Got_type
768 {
769 GOT_TYPE_STANDARD,
770 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
771 GOT_TYPE_DTPREL, // entry for @got@dtprel
772 GOT_TYPE_TPREL // entry for @got@tprel
773 };
774
775 // The GOT output section.
776 Output_data_got_powerpc<size, big_endian>* got_;
777 // The PLT output section.
778 Output_data_plt_powerpc<size, big_endian>* plt_;
779 // The IPLT output section.
780 Output_data_plt_powerpc<size, big_endian>* iplt_;
781 // The .glink output section.
782 Output_data_glink<size, big_endian>* glink_;
783 // The dynamic reloc output section.
784 Reloc_section* rela_dyn_;
785 // Relocs saved to avoid a COPY reloc.
786 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
787 // Space for variables copied with a COPY reloc.
788 Output_data_space* dynbss_;
789 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
790 unsigned int tlsld_got_offset_;
791 };
792
793 template<>
794 Target::Target_info Target_powerpc<32, true>::powerpc_info =
795 {
796 32, // size
797 true, // is_big_endian
798 elfcpp::EM_PPC, // machine_code
799 false, // has_make_symbol
800 false, // has_resolve
801 false, // has_code_fill
802 true, // is_default_stack_executable
803 false, // can_icf_inline_merge_sections
804 '\0', // wrap_char
805 "/usr/lib/ld.so.1", // dynamic_linker
806 0x10000000, // default_text_segment_address
807 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
808 4 * 1024, // common_pagesize (overridable by -z common-page-size)
809 false, // isolate_execinstr
810 0, // rosegment_gap
811 elfcpp::SHN_UNDEF, // small_common_shndx
812 elfcpp::SHN_UNDEF, // large_common_shndx
813 0, // small_common_section_flags
814 0, // large_common_section_flags
815 NULL, // attributes_section
816 NULL // attributes_vendor
817 };
818
819 template<>
820 Target::Target_info Target_powerpc<32, false>::powerpc_info =
821 {
822 32, // size
823 false, // is_big_endian
824 elfcpp::EM_PPC, // machine_code
825 false, // has_make_symbol
826 false, // has_resolve
827 false, // has_code_fill
828 true, // is_default_stack_executable
829 false, // can_icf_inline_merge_sections
830 '\0', // wrap_char
831 "/usr/lib/ld.so.1", // dynamic_linker
832 0x10000000, // default_text_segment_address
833 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
834 4 * 1024, // common_pagesize (overridable by -z common-page-size)
835 false, // isolate_execinstr
836 0, // rosegment_gap
837 elfcpp::SHN_UNDEF, // small_common_shndx
838 elfcpp::SHN_UNDEF, // large_common_shndx
839 0, // small_common_section_flags
840 0, // large_common_section_flags
841 NULL, // attributes_section
842 NULL // attributes_vendor
843 };
844
845 template<>
846 Target::Target_info Target_powerpc<64, true>::powerpc_info =
847 {
848 64, // size
849 true, // is_big_endian
850 elfcpp::EM_PPC64, // machine_code
851 false, // has_make_symbol
852 false, // has_resolve
853 false, // has_code_fill
854 true, // is_default_stack_executable
855 false, // can_icf_inline_merge_sections
856 '\0', // wrap_char
857 "/usr/lib/ld.so.1", // dynamic_linker
858 0x10000000, // default_text_segment_address
859 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
860 4 * 1024, // common_pagesize (overridable by -z common-page-size)
861 false, // isolate_execinstr
862 0, // rosegment_gap
863 elfcpp::SHN_UNDEF, // small_common_shndx
864 elfcpp::SHN_UNDEF, // large_common_shndx
865 0, // small_common_section_flags
866 0, // large_common_section_flags
867 NULL, // attributes_section
868 NULL // attributes_vendor
869 };
870
871 template<>
872 Target::Target_info Target_powerpc<64, false>::powerpc_info =
873 {
874 64, // size
875 false, // is_big_endian
876 elfcpp::EM_PPC64, // machine_code
877 false, // has_make_symbol
878 false, // has_resolve
879 false, // has_code_fill
880 true, // is_default_stack_executable
881 false, // can_icf_inline_merge_sections
882 '\0', // wrap_char
883 "/usr/lib/ld.so.1", // dynamic_linker
884 0x10000000, // default_text_segment_address
885 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
886 4 * 1024, // common_pagesize (overridable by -z common-page-size)
887 false, // isolate_execinstr
888 0, // rosegment_gap
889 elfcpp::SHN_UNDEF, // small_common_shndx
890 elfcpp::SHN_UNDEF, // large_common_shndx
891 0, // small_common_section_flags
892 0, // large_common_section_flags
893 NULL, // attributes_section
894 NULL // attributes_vendor
895 };
896
897 inline bool
898 is_branch_reloc(unsigned int r_type)
899 {
900 return (r_type == elfcpp::R_POWERPC_REL24
901 || r_type == elfcpp::R_PPC_PLTREL24
902 || r_type == elfcpp::R_PPC_LOCAL24PC
903 || r_type == elfcpp::R_POWERPC_REL14
904 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
905 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
906 || r_type == elfcpp::R_POWERPC_ADDR24
907 || r_type == elfcpp::R_POWERPC_ADDR14
908 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
909 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
910 }
911
912 // If INSN is an opcode that may be used with an @tls operand, return
913 // the transformed insn for TLS optimisation, otherwise return 0. If
914 // REG is non-zero only match an insn with RB or RA equal to REG.
915 uint32_t
916 at_tls_transform(uint32_t insn, unsigned int reg)
917 {
918 if ((insn & (0x3f << 26)) != 31 << 26)
919 return 0;
920
921 unsigned int rtra;
922 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
923 rtra = insn & ((1 << 26) - (1 << 16));
924 else if (((insn >> 16) & 0x1f) == reg)
925 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
926 else
927 return 0;
928
929 if ((insn & (0x3ff << 1)) == 266 << 1)
930 // add -> addi
931 insn = 14 << 26;
932 else if ((insn & (0x1f << 1)) == 23 << 1
933 && ((insn & (0x1f << 6)) < 14 << 6
934 || ((insn & (0x1f << 6)) >= 16 << 6
935 && (insn & (0x1f << 6)) < 24 << 6)))
936 // load and store indexed -> dform
937 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
938 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
939 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
940 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
941 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
942 // lwax -> lwa
943 insn = (58 << 26) | 2;
944 else
945 return 0;
946 insn |= rtra;
947 return insn;
948 }
949
950 // Modified version of symtab.h class Symbol member
951 // Given a direct absolute or pc-relative static relocation against
952 // the global symbol, this function returns whether a dynamic relocation
953 // is needed.
954
955 template<int size>
956 bool
957 needs_dynamic_reloc(const Symbol* gsym, int flags)
958 {
959 // No dynamic relocations in a static link!
960 if (parameters->doing_static_link())
961 return false;
962
963 // A reference to an undefined symbol from an executable should be
964 // statically resolved to 0, and does not need a dynamic relocation.
965 // This matches gnu ld behavior.
966 if (gsym->is_undefined() && !parameters->options().shared())
967 return false;
968
969 // A reference to an absolute symbol does not need a dynamic relocation.
970 if (gsym->is_absolute())
971 return false;
972
973 // An absolute reference within a position-independent output file
974 // will need a dynamic relocation.
975 if ((flags & Symbol::ABSOLUTE_REF)
976 && parameters->options().output_is_position_independent())
977 return true;
978
979 // A function call that can branch to a local PLT entry does not need
980 // a dynamic relocation.
981 if ((flags & Symbol::FUNCTION_CALL) && gsym->has_plt_offset())
982 return false;
983
984 // A reference to any PLT entry in a non-position-independent executable
985 // does not need a dynamic relocation.
986 // Except due to having function descriptors on powerpc64 we don't define
987 // functions to their plt code in an executable, so this doesn't apply.
988 if (size == 32
989 && !parameters->options().output_is_position_independent()
990 && gsym->has_plt_offset())
991 return false;
992
993 // A reference to a symbol defined in a dynamic object or to a
994 // symbol that is preemptible will need a dynamic relocation.
995 if (gsym->is_from_dynobj()
996 || gsym->is_undefined()
997 || gsym->is_preemptible())
998 return true;
999
1000 // For all other cases, return FALSE.
1001 return false;
1002 }
1003
1004 // Modified version of symtab.h class Symbol member
1005 // Whether we should use the PLT offset associated with a symbol for
1006 // a relocation. FLAGS is a set of Reference_flags.
1007
1008 template<int size>
1009 bool
1010 use_plt_offset(const Symbol* gsym, int flags)
1011 {
1012 // If the symbol doesn't have a PLT offset, then naturally we
1013 // don't want to use it.
1014 if (!gsym->has_plt_offset())
1015 return false;
1016
1017 // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
1018 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
1019 return true;
1020
1021 // If we are going to generate a dynamic relocation, then we will
1022 // wind up using that, so no need to use the PLT entry.
1023 if (needs_dynamic_reloc<size>(gsym, flags))
1024 return false;
1025
1026 // If the symbol is from a dynamic object, we need to use the PLT
1027 // entry.
1028 if (gsym->is_from_dynobj())
1029 return true;
1030
1031 // If we are generating a shared object, and gsym symbol is
1032 // undefined or preemptible, we need to use the PLT entry.
1033 if (parameters->options().shared()
1034 && (gsym->is_undefined() || gsym->is_preemptible()))
1035 return true;
1036
1037 // If gsym is a call to a weak undefined symbol, we need to use
1038 // the PLT entry; the symbol may be defined by a library loaded
1039 // at runtime.
1040 if ((flags & Symbol::FUNCTION_CALL) && gsym->is_weak_undefined())
1041 return true;
1042
1043 // Otherwise we can use the regular definition.
1044 return false;
1045 }
1046
1047 template<int size, bool big_endian>
1048 class Powerpc_relocate_functions
1049 {
1050 public:
1051 enum Overflow_check
1052 {
1053 CHECK_NONE,
1054 CHECK_SIGNED,
1055 CHECK_BITFIELD
1056 };
1057
1058 enum Status
1059 {
1060 STATUS_OK,
1061 STATUS_OVERFLOW
1062 };
1063
1064 private:
1065 typedef Powerpc_relocate_functions<size, big_endian> This;
1066 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1067
1068 template<int valsize>
1069 static inline bool
1070 has_overflow_signed(Address value)
1071 {
1072 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1073 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1074 limit <<= ((valsize - 1) >> 1);
1075 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1076 return value + limit > (limit << 1) - 1;
1077 }
1078
1079 template<int valsize>
1080 static inline bool
1081 has_overflow_bitfield(Address value)
1082 {
1083 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1084 limit <<= ((valsize - 1) >> 1);
1085 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1086 return value > (limit << 1) - 1 && value + limit > (limit << 1) - 1;
1087 }
1088
1089 template<int valsize>
1090 static inline Status
1091 overflowed(Address value, Overflow_check overflow)
1092 {
1093 if (overflow == CHECK_SIGNED)
1094 {
1095 if (has_overflow_signed<valsize>(value))
1096 return STATUS_OVERFLOW;
1097 }
1098 else if (overflow == CHECK_BITFIELD)
1099 {
1100 if (has_overflow_bitfield<valsize>(value))
1101 return STATUS_OVERFLOW;
1102 }
1103 return STATUS_OK;
1104 }
1105
1106 // Do a simple RELA relocation
1107 template<int valsize>
1108 static inline Status
1109 rela(unsigned char* view, Address value, Overflow_check overflow)
1110 {
1111 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1112 Valtype* wv = reinterpret_cast<Valtype*>(view);
1113 elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
1114 return overflowed<valsize>(value, overflow);
1115 }
1116
1117 template<int valsize>
1118 static inline Status
1119 rela(unsigned char* view,
1120 unsigned int right_shift,
1121 typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1122 Address value,
1123 Overflow_check overflow)
1124 {
1125 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1126 Valtype* wv = reinterpret_cast<Valtype*>(view);
1127 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
1128 Valtype reloc = value >> right_shift;
1129 val &= ~dst_mask;
1130 reloc &= dst_mask;
1131 elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
1132 return overflowed<valsize>(value >> right_shift, overflow);
1133 }
1134
1135 // Do a simple RELA relocation, unaligned.
1136 template<int valsize>
1137 static inline Status
1138 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1139 {
1140 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
1141 return overflowed<valsize>(value, overflow);
1142 }
1143
1144 template<int valsize>
1145 static inline Status
1146 rela_ua(unsigned char* view,
1147 unsigned int right_shift,
1148 typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1149 Address value,
1150 Overflow_check overflow)
1151 {
1152 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
1153 Valtype;
1154 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
1155 Valtype reloc = value >> right_shift;
1156 val &= ~dst_mask;
1157 reloc &= dst_mask;
1158 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
1159 return overflowed<valsize>(value >> right_shift, overflow);
1160 }
1161
1162 public:
1163 // R_PPC64_ADDR64: (Symbol + Addend)
1164 static inline void
1165 addr64(unsigned char* view, Address value)
1166 { This::template rela<64>(view, value, CHECK_NONE); }
1167
1168 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1169 static inline void
1170 addr64_u(unsigned char* view, Address value)
1171 { This::template rela_ua<64>(view, value, CHECK_NONE); }
1172
1173 // R_POWERPC_ADDR32: (Symbol + Addend)
1174 static inline Status
1175 addr32(unsigned char* view, Address value, Overflow_check overflow)
1176 { return This::template rela<32>(view, value, overflow); }
1177
1178 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1179 static inline Status
1180 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1181 { return This::template rela_ua<32>(view, value, overflow); }
1182
1183 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1184 static inline Status
1185 addr24(unsigned char* view, Address value, Overflow_check overflow)
1186 {
1187 Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
1188 if (overflow != CHECK_NONE && (value & 3) != 0)
1189 stat = STATUS_OVERFLOW;
1190 return stat;
1191 }
1192
1193 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1194 static inline Status
1195 addr16(unsigned char* view, Address value, Overflow_check overflow)
1196 { return This::template rela<16>(view, value, overflow); }
1197
1198 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1199 static inline Status
1200 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1201 { return This::template rela_ua<16>(view, value, overflow); }
1202
1203 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1204 static inline Status
1205 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1206 {
1207 Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1208 if (overflow != CHECK_NONE && (value & 3) != 0)
1209 stat = STATUS_OVERFLOW;
1210 return stat;
1211 }
1212
1213 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1214 static inline void
1215 addr16_hi(unsigned char* view, Address value)
1216 { This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
1217
1218 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1219 static inline void
1220 addr16_ha(unsigned char* view, Address value)
1221 { This::addr16_hi(view, value + 0x8000); }
1222
1223 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1224 static inline void
1225 addr16_hi2(unsigned char* view, Address value)
1226 { This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
1227
1228 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1229 static inline void
1230 addr16_ha2(unsigned char* view, Address value)
1231 { This::addr16_hi2(view, value + 0x8000); }
1232
1233 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1234 static inline void
1235 addr16_hi3(unsigned char* view, Address value)
1236 { This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
1237
1238 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1239 static inline void
1240 addr16_ha3(unsigned char* view, Address value)
1241 { This::addr16_hi3(view, value + 0x8000); }
1242
1243 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1244 static inline Status
1245 addr14(unsigned char* view, Address value, Overflow_check overflow)
1246 {
1247 Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1248 if (overflow != CHECK_NONE && (value & 3) != 0)
1249 stat = STATUS_OVERFLOW;
1250 return stat;
1251 }
1252 };
1253
1254 // Stash away the index of .got2 or .opd in a relocatable object, if
1255 // such a section exists.
1256
1257 template<int size, bool big_endian>
1258 bool
1259 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1260 Read_symbols_data* sd)
1261 {
1262 const unsigned char* const pshdrs = sd->section_headers->data();
1263 const unsigned char* namesu = sd->section_names->data();
1264 const char* names = reinterpret_cast<const char*>(namesu);
1265 section_size_type names_size = sd->section_names_size;
1266 const unsigned char* s;
1267
1268 s = this->find_shdr(pshdrs, size == 32 ? ".got2" : ".opd",
1269 names, names_size, NULL);
1270 if (s != NULL)
1271 {
1272 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1273 this->special_ = ndx;
1274 }
1275 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1276 }
1277
1278 // Examine .rela.opd to build info about function entry points.
1279
1280 template<int size, bool big_endian>
1281 void
1282 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1283 size_t reloc_count,
1284 const unsigned char* prelocs,
1285 const unsigned char* plocal_syms)
1286 {
1287 if (size == 64)
1288 {
1289 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1290 Reltype;
1291 const int reloc_size
1292 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1293 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1294 Address expected_off = 0;
1295 bool regular = true;
1296 unsigned int opd_ent_size = 0;
1297
1298 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1299 {
1300 Reltype reloc(prelocs);
1301 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1302 = reloc.get_r_info();
1303 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1304 if (r_type == elfcpp::R_PPC64_ADDR64)
1305 {
1306 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1307 typename elfcpp::Elf_types<size>::Elf_Addr value;
1308 bool is_ordinary;
1309 unsigned int shndx;
1310 if (r_sym < this->local_symbol_count())
1311 {
1312 typename elfcpp::Sym<size, big_endian>
1313 lsym(plocal_syms + r_sym * sym_size);
1314 shndx = lsym.get_st_shndx();
1315 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1316 value = lsym.get_st_value();
1317 }
1318 else
1319 shndx = this->symbol_section_and_value(r_sym, &value,
1320 &is_ordinary);
1321 this->set_opd_ent(reloc.get_r_offset(), shndx,
1322 value + reloc.get_r_addend());
1323 if (i == 2)
1324 {
1325 expected_off = reloc.get_r_offset();
1326 opd_ent_size = expected_off;
1327 }
1328 else if (expected_off != reloc.get_r_offset())
1329 regular = false;
1330 expected_off += opd_ent_size;
1331 }
1332 else if (r_type == elfcpp::R_PPC64_TOC)
1333 {
1334 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1335 regular = false;
1336 }
1337 else
1338 {
1339 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1340 this->name().c_str(), r_type);
1341 regular = false;
1342 }
1343 }
1344 if (reloc_count <= 2)
1345 opd_ent_size = this->section_size(this->opd_shndx());
1346 if (opd_ent_size != 24 && opd_ent_size != 16)
1347 regular = false;
1348 if (!regular)
1349 {
1350 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1351 this->name().c_str());
1352 opd_ent_size = 0;
1353 }
1354 }
1355 }
1356
1357 template<int size, bool big_endian>
1358 void
1359 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1360 {
1361 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1362 if (size == 64)
1363 {
1364 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1365 p != rd->relocs.end();
1366 ++p)
1367 {
1368 if (p->data_shndx == this->opd_shndx())
1369 {
1370 uint64_t opd_size = this->section_size(this->opd_shndx());
1371 gold_assert(opd_size == static_cast<size_t>(opd_size));
1372 if (opd_size != 0)
1373 {
1374 this->init_opd(opd_size);
1375 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1376 rd->local_symbols->data());
1377 }
1378 break;
1379 }
1380 }
1381 }
1382 }
1383
1384 // Set up some symbols, then perform Sized_relobj_file method.
1385
1386 template<int size, bool big_endian>
1387 void
1388 Powerpc_relobj<size, big_endian>::do_scan_relocs(Symbol_table* symtab,
1389 Layout* layout,
1390 Read_relocs_data* rd)
1391 {
1392 if (size == 32)
1393 {
1394 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
1395 // undefined when scanning relocs (and thus requires
1396 // non-relative dynamic relocs). The proper value will be
1397 // updated later.
1398 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
1399 if (gotsym != NULL && gotsym->is_undefined())
1400 {
1401 Target_powerpc<size, big_endian>* target =
1402 static_cast<Target_powerpc<size, big_endian>*>(
1403 parameters->sized_target<size, big_endian>());
1404 Output_data_got_powerpc<size, big_endian>* got
1405 = target->got_section(symtab, layout);
1406 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1407 Symbol_table::PREDEFINED,
1408 got, 0, 0,
1409 elfcpp::STT_OBJECT,
1410 elfcpp::STB_LOCAL,
1411 elfcpp::STV_HIDDEN, 0,
1412 false, false);
1413 }
1414
1415 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
1416 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
1417 if (sdasym != NULL && sdasym->is_undefined())
1418 {
1419 Output_data_space* sdata = new Output_data_space(4, "** sdata");
1420 Output_section* os
1421 = layout->add_output_section_data(".sdata", 0,
1422 elfcpp::SHF_ALLOC
1423 | elfcpp::SHF_WRITE,
1424 sdata, ORDER_SMALL_DATA, false);
1425 symtab->define_in_output_data("_SDA_BASE_", NULL,
1426 Symbol_table::PREDEFINED,
1427 os, 32768, 0, elfcpp::STT_OBJECT,
1428 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
1429 0, false, false);
1430 }
1431 }
1432 Sized_relobj_file<size, big_endian>::do_scan_relocs(symtab, layout, rd);
1433 }
1434
1435 // Set up PowerPC target specific relobj.
1436
1437 template<int size, bool big_endian>
1438 Object*
1439 Target_powerpc<size, big_endian>::do_make_elf_object(
1440 const std::string& name,
1441 Input_file* input_file,
1442 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
1443 {
1444 int et = ehdr.get_e_type();
1445 // ET_EXEC files are valid input for --just-symbols/-R,
1446 // and we treat them as relocatable objects.
1447 if (et == elfcpp::ET_REL
1448 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
1449 {
1450 Powerpc_relobj<size, big_endian>* obj =
1451 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
1452 obj->setup();
1453 return obj;
1454 }
1455 else if (et == elfcpp::ET_DYN)
1456 {
1457 Sized_dynobj<size, big_endian>* obj =
1458 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
1459 obj->setup();
1460 return obj;
1461 }
1462 else
1463 {
1464 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
1465 return NULL;
1466 }
1467 }
1468
1469 template<int size, bool big_endian>
1470 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
1471 {
1472 public:
1473 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1474 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1475
1476 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
1477 : Output_data_got<size, big_endian>(),
1478 symtab_(symtab), layout_(layout),
1479 header_ent_cnt_(size == 32 ? 3 : 1),
1480 header_index_(size == 32 ? 0x2000 : 0)
1481 {}
1482
1483 class Got_entry;
1484
1485 // Create a new GOT entry and return its offset.
1486 unsigned int
1487 add_got_entry(Got_entry got_entry)
1488 {
1489 this->reserve_ent();
1490 return Output_data_got<size, big_endian>::add_got_entry(got_entry);
1491 }
1492
1493 // Create a pair of new GOT entries and return the offset of the first.
1494 unsigned int
1495 add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2)
1496 {
1497 this->reserve_ent(2);
1498 return Output_data_got<size, big_endian>::add_got_entry_pair(got_entry_1,
1499 got_entry_2);
1500 }
1501
1502 unsigned int
1503 add_constant_pair(Valtype c1, Valtype c2)
1504 {
1505 this->reserve_ent(2);
1506 unsigned int got_offset = this->add_constant(c1);
1507 this->add_constant(c2);
1508 return got_offset;
1509 }
1510
1511 // Offset of _GLOBAL_OFFSET_TABLE_.
1512 unsigned int
1513 g_o_t() const
1514 {
1515 return this->got_offset(this->header_index_);
1516 }
1517
1518 // Offset of base used to access the GOT/TOC.
1519 // The got/toc pointer reg will be set to this value.
1520 Valtype
1521 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
1522 {
1523 if (size == 32)
1524 return this->g_o_t();
1525 else
1526 return (this->output_section()->address()
1527 + object->toc_base_offset()
1528 - this->address());
1529 }
1530
1531 // Ensure our GOT has a header.
1532 void
1533 set_final_data_size()
1534 {
1535 if (this->header_ent_cnt_ != 0)
1536 this->make_header();
1537 Output_data_got<size, big_endian>::set_final_data_size();
1538 }
1539
1540 // First word of GOT header needs some values that are not
1541 // handled by Output_data_got so poke them in here.
1542 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
1543 void
1544 do_write(Output_file* of)
1545 {
1546 Valtype val = 0;
1547 if (size == 32 && this->layout_->dynamic_data() != NULL)
1548 val = this->layout_->dynamic_section()->address();
1549 if (size == 64)
1550 val = this->output_section()->address() + 0x8000;
1551 this->replace_constant(this->header_index_, val);
1552 Output_data_got<size, big_endian>::do_write(of);
1553 }
1554
1555 private:
1556 void
1557 reserve_ent(unsigned int cnt = 1)
1558 {
1559 if (this->header_ent_cnt_ == 0)
1560 return;
1561 if (this->num_entries() + cnt > this->header_index_)
1562 this->make_header();
1563 }
1564
1565 void
1566 make_header()
1567 {
1568 this->header_ent_cnt_ = 0;
1569 this->header_index_ = this->num_entries();
1570 if (size == 32)
1571 {
1572 Output_data_got<size, big_endian>::add_constant(0);
1573 Output_data_got<size, big_endian>::add_constant(0);
1574 Output_data_got<size, big_endian>::add_constant(0);
1575
1576 // Define _GLOBAL_OFFSET_TABLE_ at the header
1577 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
1578 if (gotsym != NULL)
1579 {
1580 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
1581 sym->set_value(this->g_o_t());
1582 }
1583 else
1584 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1585 Symbol_table::PREDEFINED,
1586 this, this->g_o_t(), 0,
1587 elfcpp::STT_OBJECT,
1588 elfcpp::STB_LOCAL,
1589 elfcpp::STV_HIDDEN, 0,
1590 false, false);
1591 }
1592 else
1593 Output_data_got<size, big_endian>::add_constant(0);
1594 }
1595
1596 // Stashed pointers.
1597 Symbol_table* symtab_;
1598 Layout* layout_;
1599
1600 // GOT header size.
1601 unsigned int header_ent_cnt_;
1602 // GOT header index.
1603 unsigned int header_index_;
1604 };
1605
1606 // Get the GOT section, creating it if necessary.
1607
1608 template<int size, bool big_endian>
1609 Output_data_got_powerpc<size, big_endian>*
1610 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
1611 Layout* layout)
1612 {
1613 if (this->got_ == NULL)
1614 {
1615 gold_assert(symtab != NULL && layout != NULL);
1616
1617 this->got_
1618 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
1619
1620 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1621 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1622 this->got_, ORDER_DATA, false);
1623 }
1624
1625 return this->got_;
1626 }
1627
1628 // Get the dynamic reloc section, creating it if necessary.
1629
1630 template<int size, bool big_endian>
1631 typename Target_powerpc<size, big_endian>::Reloc_section*
1632 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
1633 {
1634 if (this->rela_dyn_ == NULL)
1635 {
1636 gold_assert(layout != NULL);
1637 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1638 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1639 elfcpp::SHF_ALLOC, this->rela_dyn_,
1640 ORDER_DYNAMIC_RELOCS, false);
1641 }
1642 return this->rela_dyn_;
1643 }
1644
1645 // A class to handle the PLT data.
1646
1647 template<int size, bool big_endian>
1648 class Output_data_plt_powerpc : public Output_section_data_build
1649 {
1650 public:
1651 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
1652 size, big_endian> Reloc_section;
1653
1654 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
1655 Reloc_section* plt_rel,
1656 unsigned int reserved_size,
1657 const char* name)
1658 : Output_section_data_build(size == 32 ? 4 : 8),
1659 rel_(plt_rel),
1660 targ_(targ),
1661 initial_plt_entry_size_(reserved_size),
1662 name_(name)
1663 { }
1664
1665 // Add an entry to the PLT.
1666 void
1667 add_entry(Symbol*);
1668
1669 void
1670 add_ifunc_entry(Symbol*);
1671
1672 void
1673 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
1674
1675 // Return the .rela.plt section data.
1676 Reloc_section*
1677 rel_plt() const
1678 {
1679 return this->rel_;
1680 }
1681
1682 // Return the number of PLT entries.
1683 unsigned int
1684 entry_count() const
1685 {
1686 return ((this->current_data_size() - this->initial_plt_entry_size_)
1687 / plt_entry_size);
1688 }
1689
1690 // Return the offset of the first non-reserved PLT entry.
1691 unsigned int
1692 first_plt_entry_offset()
1693 { return this->initial_plt_entry_size_; }
1694
1695 // Return the size of a PLT entry.
1696 static unsigned int
1697 get_plt_entry_size()
1698 { return plt_entry_size; }
1699
1700 protected:
1701 void
1702 do_adjust_output_section(Output_section* os)
1703 {
1704 os->set_entsize(0);
1705 }
1706
1707 // Write to a map file.
1708 void
1709 do_print_to_mapfile(Mapfile* mapfile) const
1710 { mapfile->print_output_data(this, this->name_); }
1711
1712 private:
1713 // The size of an entry in the PLT.
1714 static const int plt_entry_size = size == 32 ? 4 : 24;
1715
1716 // Write out the PLT data.
1717 void
1718 do_write(Output_file*);
1719
1720 // The reloc section.
1721 Reloc_section* rel_;
1722 // Allows access to .glink for do_write.
1723 Target_powerpc<size, big_endian>* targ_;
1724 // The size of the first reserved entry.
1725 int initial_plt_entry_size_;
1726 // What to report in map file.
1727 const char *name_;
1728 };
1729
1730 // Add an entry to the PLT.
1731
1732 template<int size, bool big_endian>
1733 void
1734 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
1735 {
1736 if (!gsym->has_plt_offset())
1737 {
1738 off_t off = this->current_data_size();
1739 if (off == 0)
1740 off += this->first_plt_entry_offset();
1741 gsym->set_plt_offset(off);
1742 gsym->set_needs_dynsym_entry();
1743 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
1744 this->rel_->add_global(gsym, dynrel, this, off, 0);
1745 off += plt_entry_size;
1746 this->set_current_data_size(off);
1747 }
1748 }
1749
1750 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
1751
1752 template<int size, bool big_endian>
1753 void
1754 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
1755 {
1756 if (!gsym->has_plt_offset())
1757 {
1758 off_t off = this->current_data_size();
1759 gsym->set_plt_offset(off);
1760 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
1761 if (size == 64)
1762 dynrel = elfcpp::R_PPC64_JMP_IREL;
1763 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
1764 off += plt_entry_size;
1765 this->set_current_data_size(off);
1766 }
1767 }
1768
1769 // Add an entry for a local ifunc symbol to the IPLT.
1770
1771 template<int size, bool big_endian>
1772 void
1773 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
1774 Sized_relobj_file<size, big_endian>* relobj,
1775 unsigned int local_sym_index)
1776 {
1777 if (!relobj->local_has_plt_offset(local_sym_index))
1778 {
1779 off_t off = this->current_data_size();
1780 relobj->set_local_plt_offset(local_sym_index, off);
1781 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
1782 if (size == 64)
1783 dynrel = elfcpp::R_PPC64_JMP_IREL;
1784 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
1785 this, off, 0);
1786 off += plt_entry_size;
1787 this->set_current_data_size(off);
1788 }
1789 }
1790
1791 static const uint32_t add_0_11_11 = 0x7c0b5a14;
1792 static const uint32_t add_3_3_2 = 0x7c631214;
1793 static const uint32_t add_3_3_13 = 0x7c636a14;
1794 static const uint32_t add_11_0_11 = 0x7d605a14;
1795 static const uint32_t add_12_2_11 = 0x7d825a14;
1796 static const uint32_t addi_11_11 = 0x396b0000;
1797 static const uint32_t addi_12_12 = 0x398c0000;
1798 static const uint32_t addi_2_2 = 0x38420000;
1799 static const uint32_t addi_3_2 = 0x38620000;
1800 static const uint32_t addi_3_3 = 0x38630000;
1801 static const uint32_t addis_0_2 = 0x3c020000;
1802 static const uint32_t addis_0_13 = 0x3c0d0000;
1803 static const uint32_t addis_11_11 = 0x3d6b0000;
1804 static const uint32_t addis_11_30 = 0x3d7e0000;
1805 static const uint32_t addis_12_12 = 0x3d8c0000;
1806 static const uint32_t addis_12_2 = 0x3d820000;
1807 static const uint32_t addis_3_2 = 0x3c620000;
1808 static const uint32_t addis_3_13 = 0x3c6d0000;
1809 static const uint32_t b = 0x48000000;
1810 static const uint32_t bcl_20_31 = 0x429f0005;
1811 static const uint32_t bctr = 0x4e800420;
1812 static const uint32_t blr = 0x4e800020;
1813 static const uint32_t blrl = 0x4e800021;
1814 static const uint32_t cror_15_15_15 = 0x4def7b82;
1815 static const uint32_t cror_31_31_31 = 0x4ffffb82;
1816 static const uint32_t ld_0_1 = 0xe8010000;
1817 static const uint32_t ld_0_12 = 0xe80c0000;
1818 static const uint32_t ld_11_12 = 0xe96c0000;
1819 static const uint32_t ld_11_2 = 0xe9620000;
1820 static const uint32_t ld_2_1 = 0xe8410000;
1821 static const uint32_t ld_2_11 = 0xe84b0000;
1822 static const uint32_t ld_2_12 = 0xe84c0000;
1823 static const uint32_t ld_2_2 = 0xe8420000;
1824 static const uint32_t lfd_0_1 = 0xc8010000;
1825 static const uint32_t li_0_0 = 0x38000000;
1826 static const uint32_t li_12_0 = 0x39800000;
1827 static const uint32_t lis_0_0 = 0x3c000000;
1828 static const uint32_t lis_11 = 0x3d600000;
1829 static const uint32_t lis_12 = 0x3d800000;
1830 static const uint32_t lwz_0_12 = 0x800c0000;
1831 static const uint32_t lwz_11_11 = 0x816b0000;
1832 static const uint32_t lwz_11_30 = 0x817e0000;
1833 static const uint32_t lwz_12_12 = 0x818c0000;
1834 static const uint32_t lwzu_0_12 = 0x840c0000;
1835 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
1836 static const uint32_t mflr_0 = 0x7c0802a6;
1837 static const uint32_t mflr_11 = 0x7d6802a6;
1838 static const uint32_t mflr_12 = 0x7d8802a6;
1839 static const uint32_t mtctr_0 = 0x7c0903a6;
1840 static const uint32_t mtctr_11 = 0x7d6903a6;
1841 static const uint32_t mtlr_0 = 0x7c0803a6;
1842 static const uint32_t mtlr_12 = 0x7d8803a6;
1843 static const uint32_t nop = 0x60000000;
1844 static const uint32_t ori_0_0_0 = 0x60000000;
1845 static const uint32_t std_0_1 = 0xf8010000;
1846 static const uint32_t std_0_12 = 0xf80c0000;
1847 static const uint32_t std_2_1 = 0xf8410000;
1848 static const uint32_t stfd_0_1 = 0xd8010000;
1849 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
1850 static const uint32_t sub_11_11_12 = 0x7d6c5850;
1851
1852 // Write out the PLT.
1853
1854 template<int size, bool big_endian>
1855 void
1856 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
1857 {
1858 if (size == 32)
1859 {
1860 const off_t offset = this->offset();
1861 const section_size_type oview_size
1862 = convert_to_section_size_type(this->data_size());
1863 unsigned char* const oview = of->get_output_view(offset, oview_size);
1864 unsigned char* pov = oview;
1865 unsigned char* endpov = oview + oview_size;
1866
1867 // The address of the .glink branch table
1868 const Output_data_glink<size, big_endian>* glink
1869 = this->targ_->glink_section();
1870 elfcpp::Elf_types<32>::Elf_Addr branch_tab
1871 = glink->address() + glink->pltresolve();
1872
1873 while (pov < endpov)
1874 {
1875 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
1876 pov += 4;
1877 branch_tab += 4;
1878 }
1879
1880 of->write_output_view(offset, oview_size, oview);
1881 }
1882 }
1883
1884 // Create the PLT section.
1885
1886 template<int size, bool big_endian>
1887 void
1888 Target_powerpc<size, big_endian>::make_plt_section(Layout* layout)
1889 {
1890 if (this->plt_ == NULL)
1891 {
1892 if (this->glink_ == NULL)
1893 make_glink_section(layout);
1894
1895 // Ensure that .rela.dyn always appears before .rela.plt This is
1896 // necessary due to how, on PowerPC and some other targets, .rela.dyn
1897 // needs to include .rela.plt in it's range.
1898 this->rela_dyn_section(layout);
1899
1900 Reloc_section* plt_rel = new Reloc_section(false);
1901 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1902 elfcpp::SHF_ALLOC, plt_rel,
1903 ORDER_DYNAMIC_PLT_RELOCS, false);
1904 this->plt_
1905 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
1906 size == 32 ? 0 : 24,
1907 "** PLT");
1908 layout->add_output_section_data(".plt",
1909 (size == 32
1910 ? elfcpp::SHT_PROGBITS
1911 : elfcpp::SHT_NOBITS),
1912 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1913 this->plt_,
1914 (size == 32
1915 ? ORDER_SMALL_DATA
1916 : ORDER_SMALL_BSS),
1917 false);
1918 }
1919 }
1920
1921 // Create the IPLT section.
1922
1923 template<int size, bool big_endian>
1924 void
1925 Target_powerpc<size, big_endian>::make_iplt_section(Layout* layout)
1926 {
1927 if (this->iplt_ == NULL)
1928 {
1929 this->make_plt_section(layout);
1930
1931 Reloc_section* iplt_rel = new Reloc_section(false);
1932 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
1933 this->iplt_
1934 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
1935 0, "** IPLT");
1936 this->plt_->output_section()->add_output_section_data(this->iplt_);
1937 }
1938 }
1939
1940 // A class to handle .glink.
1941
1942 template<int size, bool big_endian>
1943 class Output_data_glink : public Output_section_data
1944 {
1945 public:
1946 static const int pltresolve_size = 16*4;
1947
1948 Output_data_glink(Target_powerpc<size, big_endian>*);
1949
1950 // Add an entry
1951 void
1952 add_entry(const Sized_relobj_file<size, big_endian>*,
1953 const Symbol*,
1954 const elfcpp::Rela<size, big_endian>&);
1955
1956 void
1957 add_entry(const Sized_relobj_file<size, big_endian>*,
1958 unsigned int,
1959 const elfcpp::Rela<size, big_endian>&);
1960
1961 unsigned int
1962 find_entry(const Symbol*) const;
1963
1964 unsigned int
1965 find_entry(const Sized_relobj_file<size, big_endian>*, unsigned int) const;
1966
1967 unsigned int
1968 find_entry(const Sized_relobj_file<size, big_endian>*,
1969 const Symbol*,
1970 const elfcpp::Rela<size, big_endian>&) const;
1971
1972 unsigned int
1973 find_entry(const Sized_relobj_file<size, big_endian>*,
1974 unsigned int,
1975 const elfcpp::Rela<size, big_endian>&) const;
1976
1977 unsigned int
1978 glink_entry_size() const
1979 {
1980 if (size == 32)
1981 return 4 * 4;
1982 else
1983 // FIXME: We should be using multiple glink sections for
1984 // stubs to support > 33M applications.
1985 return 8 * 4;
1986 }
1987
1988 off_t
1989 pltresolve() const
1990 {
1991 return this->pltresolve_;
1992 }
1993
1994 protected:
1995 // Write to a map file.
1996 void
1997 do_print_to_mapfile(Mapfile* mapfile) const
1998 { mapfile->print_output_data(this, _("** glink")); }
1999
2000 private:
2001 void
2002 set_final_data_size();
2003
2004 // Write out .glink
2005 void
2006 do_write(Output_file*);
2007
2008 class Glink_sym_ent
2009 {
2010 public:
2011 Glink_sym_ent(const Symbol* sym)
2012 : sym_(sym), object_(0), addend_(0), locsym_(0)
2013 { }
2014
2015 Glink_sym_ent(const Sized_relobj_file<size, big_endian>* object,
2016 unsigned int locsym_index)
2017 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
2018 { }
2019
2020 Glink_sym_ent(const Sized_relobj_file<size, big_endian>* object,
2021 const Symbol* sym,
2022 const elfcpp::Rela<size, big_endian>& reloc)
2023 : sym_(sym), object_(0), addend_(0), locsym_(0)
2024 {
2025 if (size != 32)
2026 this->addend_ = reloc.get_r_addend();
2027 else if (parameters->options().output_is_position_independent()
2028 && (elfcpp::elf_r_type<size>(reloc.get_r_info())
2029 == elfcpp::R_PPC_PLTREL24))
2030 {
2031 this->addend_ = reloc.get_r_addend();
2032 if (this->addend_ >= 32768)
2033 this->object_ = object;
2034 }
2035 }
2036
2037 Glink_sym_ent(const Sized_relobj_file<size, big_endian>* object,
2038 unsigned int locsym_index,
2039 const elfcpp::Rela<size, big_endian>& reloc)
2040 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
2041 {
2042 if (size != 32)
2043 this->addend_ = reloc.get_r_addend();
2044 else if (parameters->options().output_is_position_independent()
2045 && (elfcpp::elf_r_type<size>(reloc.get_r_info())
2046 == elfcpp::R_PPC_PLTREL24))
2047 this->addend_ = reloc.get_r_addend();
2048 }
2049
2050 bool operator==(const Glink_sym_ent& that) const
2051 {
2052 return (this->sym_ == that.sym_
2053 && this->object_ == that.object_
2054 && this->addend_ == that.addend_
2055 && this->locsym_ == that.locsym_);
2056 }
2057
2058 const Symbol* sym_;
2059 const Sized_relobj_file<size, big_endian>* object_;
2060 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
2061 unsigned int locsym_;
2062 };
2063
2064 class Glink_sym_ent_hash
2065 {
2066 public:
2067 size_t operator()(const Glink_sym_ent& ent) const
2068 {
2069 return (reinterpret_cast<uintptr_t>(ent.sym_)
2070 ^ reinterpret_cast<uintptr_t>(ent.object_)
2071 ^ ent.addend_
2072 ^ ent.locsym_);
2073 }
2074 };
2075
2076 // Map sym/object/addend to index.
2077 typedef Unordered_map<Glink_sym_ent, unsigned int,
2078 Glink_sym_ent_hash> Glink_entries;
2079 Glink_entries glink_entries_;
2080
2081 // Offset of pltresolve stub (actually, branch table for 32-bit)
2082 off_t pltresolve_;
2083
2084 // Allows access to .got and .plt for do_write.
2085 Target_powerpc<size, big_endian>* targ_;
2086 };
2087
2088 // Create the glink section.
2089
2090 template<int size, bool big_endian>
2091 Output_data_glink<size, big_endian>::Output_data_glink(
2092 Target_powerpc<size, big_endian>* targ)
2093 : Output_section_data(16),
2094 pltresolve_(0), targ_(targ)
2095 {
2096 }
2097
2098 // Add an entry to glink, if we do not already have one for this
2099 // sym/object/addend combo.
2100
2101 template<int size, bool big_endian>
2102 void
2103 Output_data_glink<size, big_endian>::add_entry(
2104 const Sized_relobj_file<size, big_endian>* object,
2105 const Symbol* gsym,
2106 const elfcpp::Rela<size, big_endian>& reloc)
2107 {
2108 Glink_sym_ent ent(object, gsym, reloc);
2109 unsigned int indx = this->glink_entries_.size();
2110 this->glink_entries_.insert(std::make_pair(ent, indx));
2111 }
2112
2113 template<int size, bool big_endian>
2114 void
2115 Output_data_glink<size, big_endian>::add_entry(
2116 const Sized_relobj_file<size, big_endian>* object,
2117 unsigned int locsym_index,
2118 const elfcpp::Rela<size, big_endian>& reloc)
2119 {
2120 Glink_sym_ent ent(object, locsym_index, reloc);
2121 unsigned int indx = this->glink_entries_.size();
2122 this->glink_entries_.insert(std::make_pair(ent, indx));
2123 }
2124
2125 template<int size, bool big_endian>
2126 unsigned int
2127 Output_data_glink<size, big_endian>::find_entry(
2128 const Sized_relobj_file<size, big_endian>* object,
2129 const Symbol* gsym,
2130 const elfcpp::Rela<size, big_endian>& reloc) const
2131 {
2132 Glink_sym_ent ent(object, gsym, reloc);
2133 typename Glink_entries::const_iterator p = this->glink_entries_.find(ent);
2134 gold_assert(p != this->glink_entries_.end());
2135 return p->second;
2136 }
2137
2138 template<int size, bool big_endian>
2139 unsigned int
2140 Output_data_glink<size, big_endian>::find_entry(const Symbol* gsym) const
2141 {
2142 Glink_sym_ent ent(gsym);
2143 typename Glink_entries::const_iterator p = this->glink_entries_.find(ent);
2144 gold_assert(p != this->glink_entries_.end());
2145 return p->second;
2146 }
2147
2148 template<int size, bool big_endian>
2149 unsigned int
2150 Output_data_glink<size, big_endian>::find_entry(
2151 const Sized_relobj_file<size, big_endian>* object,
2152 unsigned int locsym_index,
2153 const elfcpp::Rela<size, big_endian>& reloc) const
2154 {
2155 Glink_sym_ent ent(object, locsym_index, reloc);
2156 typename Glink_entries::const_iterator p = this->glink_entries_.find(ent);
2157 gold_assert(p != this->glink_entries_.end());
2158 return p->second;
2159 }
2160
2161 template<int size, bool big_endian>
2162 unsigned int
2163 Output_data_glink<size, big_endian>::find_entry(
2164 const Sized_relobj_file<size, big_endian>* object,
2165 unsigned int locsym_index) const
2166 {
2167 Glink_sym_ent ent(object, locsym_index);
2168 typename Glink_entries::const_iterator p = this->glink_entries_.find(ent);
2169 gold_assert(p != this->glink_entries_.end());
2170 return p->second;
2171 }
2172
2173 template<int size, bool big_endian>
2174 void
2175 Output_data_glink<size, big_endian>::set_final_data_size()
2176 {
2177 unsigned int count = this->glink_entries_.size();
2178 off_t total = count;
2179
2180 if (count != 0)
2181 {
2182 if (size == 32)
2183 {
2184 total *= 16;
2185 this->pltresolve_ = total;
2186
2187 // space for branch table
2188 total += 4 * (count - 1);
2189
2190 total += -total & 15;
2191 total += this->pltresolve_size;
2192 }
2193 else
2194 {
2195 total *= 32;
2196 this->pltresolve_ = total;
2197 total += this->pltresolve_size;
2198
2199 // space for branch table
2200 total += 8 * count;
2201 if (count > 0x8000)
2202 total += 4 * (count - 0x8000);
2203 }
2204 }
2205
2206 this->set_data_size(total);
2207 }
2208
2209 static inline uint32_t
2210 l(uint32_t a)
2211 {
2212 return a & 0xffff;
2213 }
2214
2215 static inline uint32_t
2216 hi(uint32_t a)
2217 {
2218 return l(a >> 16);
2219 }
2220
2221 static inline uint32_t
2222 ha(uint32_t a)
2223 {
2224 return hi(a + 0x8000);
2225 }
2226
2227 template<bool big_endian>
2228 static inline void
2229 write_insn(unsigned char* p, uint32_t v)
2230 {
2231 elfcpp::Swap<32, big_endian>::writeval(p, v);
2232 }
2233
2234 // Write out .glink.
2235
2236 template<int size, bool big_endian>
2237 void
2238 Output_data_glink<size, big_endian>::do_write(Output_file* of)
2239 {
2240 const off_t off = this->offset();
2241 const section_size_type oview_size =
2242 convert_to_section_size_type(this->data_size());
2243 unsigned char* const oview = of->get_output_view(off, oview_size);
2244 unsigned char* p;
2245
2246 // The base address of the .plt section.
2247 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2248 static const Address invalid_address = static_cast<Address>(0) - 1;
2249 Address plt_base = this->targ_->plt_section()->address();
2250 Address iplt_base = invalid_address;
2251
2252 const Output_data_got_powerpc<size, big_endian>* got
2253 = this->targ_->got_section();
2254
2255 if (size == 64)
2256 {
2257 Address got_os_addr = got->output_section()->address();
2258
2259 // Write out call stubs.
2260 typename Glink_entries::const_iterator g;
2261 for (g = this->glink_entries_.begin();
2262 g != this->glink_entries_.end();
2263 ++g)
2264 {
2265 Address plt_addr;
2266 bool is_ifunc;
2267 const Symbol* gsym = g->first.sym_;
2268 if (gsym != NULL)
2269 {
2270 is_ifunc = (gsym->type() == elfcpp::STT_GNU_IFUNC
2271 && gsym->can_use_relative_reloc(false));
2272 plt_addr = gsym->plt_offset();
2273 }
2274 else
2275 {
2276 is_ifunc = true;
2277 const Sized_relobj_file<size, big_endian>* relobj
2278 = g->first.object_;
2279 unsigned int local_sym_index = g->first.locsym_;
2280 plt_addr = relobj->local_plt_offset(local_sym_index);
2281 }
2282 if (is_ifunc)
2283 {
2284 if (iplt_base == invalid_address)
2285 iplt_base = this->targ_->iplt_section()->address();
2286 plt_addr += iplt_base;
2287 }
2288 else
2289 plt_addr += plt_base;
2290 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2291 <const Powerpc_relobj<size, big_endian>*>(g->first.object_);
2292 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
2293 Address pltoff = plt_addr - got_addr;
2294
2295 if (pltoff + 0x80008000 > 0xffffffff || (pltoff & 7) != 0)
2296 gold_error(_("%s: linkage table error against `%s'"),
2297 g->first.object_->name().c_str(),
2298 g->first.sym_->demangled_name().c_str());
2299
2300 p = oview + g->second * this->glink_entry_size();
2301 if (ha(pltoff) != 0)
2302 {
2303 write_insn<big_endian>(p, addis_12_2 + ha(pltoff)), p += 4;
2304 write_insn<big_endian>(p, std_2_1 + 40), p += 4;
2305 write_insn<big_endian>(p, ld_11_12 + l(pltoff)), p += 4;
2306 if (ha(pltoff + 16) != ha(pltoff))
2307 {
2308 write_insn<big_endian>(p, addi_12_12 + l(pltoff)), p += 4;
2309 pltoff = 0;
2310 }
2311 write_insn<big_endian>(p, mtctr_11), p += 4;
2312 write_insn<big_endian>(p, ld_2_12 + l(pltoff + 8)), p += 4;
2313 write_insn<big_endian>(p, ld_11_12 + l(pltoff + 16)), p += 4;
2314 write_insn<big_endian>(p, bctr), p += 4;
2315 }
2316 else
2317 {
2318 write_insn<big_endian>(p, std_2_1 + 40), p += 4;
2319 write_insn<big_endian>(p, ld_11_2 + l(pltoff)), p += 4;
2320 if (ha(pltoff + 16) != ha(pltoff))
2321 {
2322 write_insn<big_endian>(p, addi_2_2 + l(pltoff)), p += 4;
2323 pltoff = 0;
2324 }
2325 write_insn<big_endian>(p, mtctr_11), p += 4;
2326 write_insn<big_endian>(p, ld_11_2 + l(pltoff + 16)), p += 4;
2327 write_insn<big_endian>(p, ld_2_2 + l(pltoff + 8)), p += 4;
2328 write_insn<big_endian>(p, bctr), p += 4;
2329 }
2330 }
2331
2332 // Write pltresolve stub.
2333 p = oview + this->pltresolve_;
2334 Address after_bcl = this->address() + this->pltresolve_ + 16;
2335 Address pltoff = plt_base - after_bcl;
2336
2337 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
2338
2339 write_insn<big_endian>(p, mflr_12), p += 4;
2340 write_insn<big_endian>(p, bcl_20_31), p += 4;
2341 write_insn<big_endian>(p, mflr_11), p += 4;
2342 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
2343 write_insn<big_endian>(p, mtlr_12), p += 4;
2344 write_insn<big_endian>(p, add_12_2_11), p += 4;
2345 write_insn<big_endian>(p, ld_11_12 + 0), p += 4;
2346 write_insn<big_endian>(p, ld_2_12 + 8), p += 4;
2347 write_insn<big_endian>(p, mtctr_11), p += 4;
2348 write_insn<big_endian>(p, ld_11_12 + 16), p += 4;
2349 write_insn<big_endian>(p, bctr), p += 4;
2350 while (p < oview + this->pltresolve_ + this->pltresolve_size)
2351 write_insn<big_endian>(p, nop), p += 4;
2352
2353 // Write lazy link call stubs.
2354 uint32_t indx = 0;
2355 while (p < oview + oview_size)
2356 {
2357 if (indx < 0x8000)
2358 {
2359 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
2360 }
2361 else
2362 {
2363 write_insn<big_endian>(p, lis_0_0 + hi(indx)), p += 4;
2364 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
2365 }
2366 uint32_t branch_off = this->pltresolve_ + 8 - (p - oview);
2367 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
2368 indx++;
2369 }
2370 }
2371 else
2372 {
2373 // The address of _GLOBAL_OFFSET_TABLE_.
2374 Address g_o_t = got->address() + got->g_o_t();
2375
2376 // Write out call stubs.
2377 typename Glink_entries::const_iterator g;
2378 for (g = this->glink_entries_.begin();
2379 g != this->glink_entries_.end();
2380 ++g)
2381 {
2382 Address plt_addr;
2383 bool is_ifunc;
2384 const Symbol* gsym = g->first.sym_;
2385 if (gsym != NULL)
2386 {
2387 is_ifunc = (gsym->type() == elfcpp::STT_GNU_IFUNC
2388 && gsym->can_use_relative_reloc(false));
2389 plt_addr = gsym->plt_offset();
2390 }
2391 else
2392 {
2393 is_ifunc = true;
2394 const Sized_relobj_file<size, big_endian>* relobj
2395 = g->first.object_;
2396 unsigned int local_sym_index = g->first.locsym_;
2397 plt_addr = relobj->local_plt_offset(local_sym_index);
2398 }
2399 if (is_ifunc)
2400 {
2401 if (iplt_base == invalid_address)
2402 iplt_base = this->targ_->iplt_section()->address();
2403 plt_addr += iplt_base;
2404 }
2405 else
2406 plt_addr += plt_base;
2407
2408 p = oview + g->second * this->glink_entry_size();
2409 if (parameters->options().output_is_position_independent())
2410 {
2411 Address got_addr;
2412 const Powerpc_relobj<size, big_endian>* object = static_cast
2413 <const Powerpc_relobj<size, big_endian>*>(g->first.object_);
2414 if (object != NULL && g->first.addend_ >= 32768)
2415 {
2416 unsigned int got2 = object->got2_shndx();
2417 got_addr = g->first.object_->get_output_section_offset(got2);
2418 gold_assert(got_addr != invalid_address);
2419 got_addr += (g->first.object_->output_section(got2)->address()
2420 + g->first.addend_);
2421 }
2422 else
2423 got_addr = g_o_t;
2424
2425 Address pltoff = plt_addr - got_addr;
2426 if (ha(pltoff) == 0)
2427 {
2428 write_insn<big_endian>(p + 0, lwz_11_30 + l(pltoff));
2429 write_insn<big_endian>(p + 4, mtctr_11);
2430 write_insn<big_endian>(p + 8, bctr);
2431 }
2432 else
2433 {
2434 write_insn<big_endian>(p + 0, addis_11_30 + ha(pltoff));
2435 write_insn<big_endian>(p + 4, lwz_11_11 + l(pltoff));
2436 write_insn<big_endian>(p + 8, mtctr_11);
2437 write_insn<big_endian>(p + 12, bctr);
2438 }
2439 }
2440 else
2441 {
2442 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
2443 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
2444 write_insn<big_endian>(p + 8, mtctr_11);
2445 write_insn<big_endian>(p + 12, bctr);
2446 }
2447 }
2448
2449 // Write out pltresolve branch table.
2450 p = oview + this->pltresolve_;
2451 unsigned int the_end = oview_size - this->pltresolve_size;
2452 unsigned char* end_p = oview + the_end;
2453 while (p < end_p - 8 * 4)
2454 write_insn<big_endian>(p, b + end_p - p), p += 4;
2455 while (p < end_p)
2456 write_insn<big_endian>(p, nop), p += 4;
2457
2458 // Write out pltresolve call stub.
2459 if (parameters->options().output_is_position_independent())
2460 {
2461 Address res0_off = this->pltresolve_;
2462 Address after_bcl_off = the_end + 12;
2463 Address bcl_res0 = after_bcl_off - res0_off;
2464
2465 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
2466 write_insn<big_endian>(p + 4, mflr_0);
2467 write_insn<big_endian>(p + 8, bcl_20_31);
2468 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
2469 write_insn<big_endian>(p + 16, mflr_12);
2470 write_insn<big_endian>(p + 20, mtlr_0);
2471 write_insn<big_endian>(p + 24, sub_11_11_12);
2472
2473 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
2474
2475 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
2476 if (ha(got_bcl) == ha(got_bcl + 4))
2477 {
2478 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
2479 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
2480 }
2481 else
2482 {
2483 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
2484 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
2485 }
2486 write_insn<big_endian>(p + 40, mtctr_0);
2487 write_insn<big_endian>(p + 44, add_0_11_11);
2488 write_insn<big_endian>(p + 48, add_11_0_11);
2489 write_insn<big_endian>(p + 52, bctr);
2490 write_insn<big_endian>(p + 56, nop);
2491 write_insn<big_endian>(p + 60, nop);
2492 }
2493 else
2494 {
2495 Address res0 = this->pltresolve_ + this->address();
2496
2497 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
2498 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
2499 if (ha(g_o_t + 4) == ha(g_o_t + 8))
2500 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
2501 else
2502 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
2503 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
2504 write_insn<big_endian>(p + 16, mtctr_0);
2505 write_insn<big_endian>(p + 20, add_0_11_11);
2506 if (ha(g_o_t + 4) == ha(g_o_t + 8))
2507 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
2508 else
2509 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
2510 write_insn<big_endian>(p + 28, add_11_0_11);
2511 write_insn<big_endian>(p + 32, bctr);
2512 write_insn<big_endian>(p + 36, nop);
2513 write_insn<big_endian>(p + 40, nop);
2514 write_insn<big_endian>(p + 44, nop);
2515 write_insn<big_endian>(p + 48, nop);
2516 write_insn<big_endian>(p + 52, nop);
2517 write_insn<big_endian>(p + 56, nop);
2518 write_insn<big_endian>(p + 60, nop);
2519 }
2520 p += 64;
2521 }
2522
2523 of->write_output_view(off, oview_size, oview);
2524 }
2525
2526
2527 // A class to handle linker generated save/restore functions.
2528
2529 template<int size, bool big_endian>
2530 class Output_data_save_res : public Output_section_data_build
2531 {
2532 public:
2533 Output_data_save_res(Symbol_table* symtab);
2534
2535 protected:
2536 // Write to a map file.
2537 void
2538 do_print_to_mapfile(Mapfile* mapfile) const
2539 { mapfile->print_output_data(this, _("** save/restore")); }
2540
2541 void
2542 do_write(Output_file*);
2543
2544 private:
2545 // The maximum size of save/restore contents.
2546 static const unsigned int savres_max = 218*4;
2547
2548 void
2549 savres_define(Symbol_table* symtab,
2550 const char *name,
2551 unsigned int lo, unsigned int hi,
2552 unsigned char* write_ent(unsigned char*, int),
2553 unsigned char* write_tail(unsigned char*, int));
2554
2555 unsigned char *contents_;
2556 };
2557
2558 template<bool big_endian>
2559 static unsigned char*
2560 savegpr0(unsigned char* p, int r)
2561 {
2562 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
2563 write_insn<big_endian>(p, insn);
2564 return p + 4;
2565 }
2566
2567 template<bool big_endian>
2568 static unsigned char*
2569 savegpr0_tail(unsigned char* p, int r)
2570 {
2571 p = savegpr0<big_endian>(p, r);
2572 uint32_t insn = std_0_1 + 16;
2573 write_insn<big_endian>(p, insn);
2574 p = p + 4;
2575 write_insn<big_endian>(p, blr);
2576 return p + 4;
2577 }
2578
2579 template<bool big_endian>
2580 static unsigned char*
2581 restgpr0(unsigned char* p, int r)
2582 {
2583 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
2584 write_insn<big_endian>(p, insn);
2585 return p + 4;
2586 }
2587
2588 template<bool big_endian>
2589 static unsigned char*
2590 restgpr0_tail(unsigned char* p, int r)
2591 {
2592 uint32_t insn = ld_0_1 + 16;
2593 write_insn<big_endian>(p, insn);
2594 p = p + 4;
2595 p = restgpr0<big_endian>(p, r);
2596 write_insn<big_endian>(p, mtlr_0);
2597 p = p + 4;
2598 if (r == 29)
2599 {
2600 p = restgpr0<big_endian>(p, 30);
2601 p = restgpr0<big_endian>(p, 31);
2602 }
2603 write_insn<big_endian>(p, blr);
2604 return p + 4;
2605 }
2606
2607 template<bool big_endian>
2608 static unsigned char*
2609 savegpr1(unsigned char* p, int r)
2610 {
2611 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
2612 write_insn<big_endian>(p, insn);
2613 return p + 4;
2614 }
2615
2616 template<bool big_endian>
2617 static unsigned char*
2618 savegpr1_tail(unsigned char* p, int r)
2619 {
2620 p = savegpr1<big_endian>(p, r);
2621 write_insn<big_endian>(p, blr);
2622 return p + 4;
2623 }
2624
2625 template<bool big_endian>
2626 static unsigned char*
2627 restgpr1(unsigned char* p, int r)
2628 {
2629 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
2630 write_insn<big_endian>(p, insn);
2631 return p + 4;
2632 }
2633
2634 template<bool big_endian>
2635 static unsigned char*
2636 restgpr1_tail(unsigned char* p, int r)
2637 {
2638 p = restgpr1<big_endian>(p, r);
2639 write_insn<big_endian>(p, blr);
2640 return p + 4;
2641 }
2642
2643 template<bool big_endian>
2644 static unsigned char*
2645 savefpr(unsigned char* p, int r)
2646 {
2647 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
2648 write_insn<big_endian>(p, insn);
2649 return p + 4;
2650 }
2651
2652 template<bool big_endian>
2653 static unsigned char*
2654 savefpr0_tail(unsigned char* p, int r)
2655 {
2656 p = savefpr<big_endian>(p, r);
2657 write_insn<big_endian>(p, std_0_1 + 16);
2658 p = p + 4;
2659 write_insn<big_endian>(p, blr);
2660 return p + 4;
2661 }
2662
2663 template<bool big_endian>
2664 static unsigned char*
2665 restfpr(unsigned char* p, int r)
2666 {
2667 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
2668 write_insn<big_endian>(p, insn);
2669 return p + 4;
2670 }
2671
2672 template<bool big_endian>
2673 static unsigned char*
2674 restfpr0_tail(unsigned char* p, int r)
2675 {
2676 write_insn<big_endian>(p, ld_0_1 + 16);
2677 p = p + 4;
2678 p = restfpr<big_endian>(p, r);
2679 write_insn<big_endian>(p, mtlr_0);
2680 p = p + 4;
2681 if (r == 29)
2682 {
2683 p = restfpr<big_endian>(p, 30);
2684 p = restfpr<big_endian>(p, 31);
2685 }
2686 write_insn<big_endian>(p, blr);
2687 return p + 4;
2688 }
2689
2690 template<bool big_endian>
2691 static unsigned char*
2692 savefpr1_tail(unsigned char* p, int r)
2693 {
2694 p = savefpr<big_endian>(p, r);
2695 write_insn<big_endian>(p, blr);
2696 return p + 4;
2697 }
2698
2699 template<bool big_endian>
2700 static unsigned char*
2701 restfpr1_tail(unsigned char* p, int r)
2702 {
2703 p = restfpr<big_endian>(p, r);
2704 write_insn<big_endian>(p, blr);
2705 return p + 4;
2706 }
2707
2708 template<bool big_endian>
2709 static unsigned char*
2710 savevr(unsigned char* p, int r)
2711 {
2712 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
2713 write_insn<big_endian>(p, insn);
2714 p = p + 4;
2715 insn = stvx_0_12_0 + (r << 21);
2716 write_insn<big_endian>(p, insn);
2717 return p + 4;
2718 }
2719
2720 template<bool big_endian>
2721 static unsigned char*
2722 savevr_tail(unsigned char* p, int r)
2723 {
2724 p = savevr<big_endian>(p, r);
2725 write_insn<big_endian>(p, blr);
2726 return p + 4;
2727 }
2728
2729 template<bool big_endian>
2730 static unsigned char*
2731 restvr(unsigned char* p, int r)
2732 {
2733 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
2734 write_insn<big_endian>(p, insn);
2735 p = p + 4;
2736 insn = lvx_0_12_0 + (r << 21);
2737 write_insn<big_endian>(p, insn);
2738 return p + 4;
2739 }
2740
2741 template<bool big_endian>
2742 static unsigned char*
2743 restvr_tail(unsigned char* p, int r)
2744 {
2745 p = restvr<big_endian>(p, r);
2746 write_insn<big_endian>(p, blr);
2747 return p + 4;
2748 }
2749
2750
2751 template<int size, bool big_endian>
2752 Output_data_save_res<size, big_endian>::Output_data_save_res(
2753 Symbol_table* symtab)
2754 : Output_section_data_build(4),
2755 contents_(NULL)
2756 {
2757 this->savres_define(symtab,
2758 "_savegpr0_", 14, 31,
2759 savegpr0<big_endian>, savegpr0_tail<big_endian>);
2760 this->savres_define(symtab,
2761 "_restgpr0_", 14, 29,
2762 restgpr0<big_endian>, restgpr0_tail<big_endian>);
2763 this->savres_define(symtab,
2764 "_restgpr0_", 30, 31,
2765 restgpr0<big_endian>, restgpr0_tail<big_endian>);
2766 this->savres_define(symtab,
2767 "_savegpr1_", 14, 31,
2768 savegpr1<big_endian>, savegpr1_tail<big_endian>);
2769 this->savres_define(symtab,
2770 "_restgpr1_", 14, 31,
2771 restgpr1<big_endian>, restgpr1_tail<big_endian>);
2772 this->savres_define(symtab,
2773 "_savefpr_", 14, 31,
2774 savefpr<big_endian>, savefpr0_tail<big_endian>);
2775 this->savres_define(symtab,
2776 "_restfpr_", 14, 29,
2777 restfpr<big_endian>, restfpr0_tail<big_endian>);
2778 this->savres_define(symtab,
2779 "_restfpr_", 30, 31,
2780 restfpr<big_endian>, restfpr0_tail<big_endian>);
2781 this->savres_define(symtab,
2782 "._savef", 14, 31,
2783 savefpr<big_endian>, savefpr1_tail<big_endian>);
2784 this->savres_define(symtab,
2785 "._restf", 14, 31,
2786 restfpr<big_endian>, restfpr1_tail<big_endian>);
2787 this->savres_define(symtab,
2788 "_savevr_", 20, 31,
2789 savevr<big_endian>, savevr_tail<big_endian>);
2790 this->savres_define(symtab,
2791 "_restvr_", 20, 31,
2792 restvr<big_endian>, restvr_tail<big_endian>);
2793 }
2794
2795 template<int size, bool big_endian>
2796 void
2797 Output_data_save_res<size, big_endian>::savres_define(
2798 Symbol_table* symtab,
2799 const char *name,
2800 unsigned int lo, unsigned int hi,
2801 unsigned char* write_ent(unsigned char*, int),
2802 unsigned char* write_tail(unsigned char*, int))
2803 {
2804 size_t len = strlen(name);
2805 bool writing = false;
2806 char sym[16];
2807
2808 memcpy(sym, name, len);
2809 sym[len + 2] = 0;
2810
2811 for (unsigned int i = lo; i <= hi; i++)
2812 {
2813 sym[len + 0] = i / 10 + '0';
2814 sym[len + 1] = i % 10 + '0';
2815 Symbol* gsym = symtab->lookup(sym);
2816 bool refd = gsym != NULL && gsym->is_undefined();
2817 writing = writing || refd;
2818 if (writing)
2819 {
2820 if (this->contents_ == NULL)
2821 this->contents_ = new unsigned char[this->savres_max];
2822
2823 off_t value = this->current_data_size();
2824 unsigned char* p = this->contents_ + value;
2825 if (i != hi)
2826 p = write_ent(p, i);
2827 else
2828 p = write_tail(p, i);
2829 off_t cur_size = p - this->contents_;
2830 this->set_current_data_size(cur_size);
2831 if (refd)
2832 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
2833 this, value, cur_size - value,
2834 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
2835 elfcpp::STV_HIDDEN, 0, false, false);
2836 }
2837 }
2838 }
2839
2840 // Write out save/restore.
2841
2842 template<int size, bool big_endian>
2843 void
2844 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
2845 {
2846 const off_t off = this->offset();
2847 const section_size_type oview_size =
2848 convert_to_section_size_type(this->data_size());
2849 unsigned char* const oview = of->get_output_view(off, oview_size);
2850 memcpy(oview, this->contents_, oview_size);
2851 of->write_output_view(off, oview_size, oview);
2852 }
2853
2854
2855 // Create the glink section.
2856
2857 template<int size, bool big_endian>
2858 void
2859 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
2860 {
2861 if (this->glink_ == NULL)
2862 {
2863 this->glink_ = new Output_data_glink<size, big_endian>(this);
2864 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
2865 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
2866 this->glink_, ORDER_TEXT, false);
2867 }
2868 }
2869
2870 // Create a PLT entry for a global symbol.
2871
2872 template<int size, bool big_endian>
2873 void
2874 Target_powerpc<size, big_endian>::make_plt_entry(
2875 Layout* layout,
2876 Symbol* gsym,
2877 const elfcpp::Rela<size, big_endian>& reloc,
2878 const Sized_relobj_file<size, big_endian>* object)
2879 {
2880 if (gsym->type() == elfcpp::STT_GNU_IFUNC
2881 && gsym->can_use_relative_reloc(false))
2882 {
2883 if (this->iplt_ == NULL)
2884 this->make_iplt_section(layout);
2885 this->iplt_->add_ifunc_entry(gsym);
2886 }
2887 else
2888 {
2889 if (this->plt_ == NULL)
2890 this->make_plt_section(layout);
2891 this->plt_->add_entry(gsym);
2892 }
2893 this->glink_->add_entry(object, gsym, reloc);
2894 }
2895
2896 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
2897
2898 template<int size, bool big_endian>
2899 void
2900 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
2901 Layout* layout,
2902 const elfcpp::Rela<size, big_endian>& reloc,
2903 Sized_relobj_file<size, big_endian>* relobj)
2904 {
2905 if (this->iplt_ == NULL)
2906 this->make_iplt_section(layout);
2907 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2908 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
2909 this->glink_->add_entry(relobj, r_sym, reloc);
2910 }
2911
2912 // Return the number of entries in the PLT.
2913
2914 template<int size, bool big_endian>
2915 unsigned int
2916 Target_powerpc<size, big_endian>::plt_entry_count() const
2917 {
2918 if (this->plt_ == NULL)
2919 return 0;
2920 unsigned int count = this->plt_->entry_count();
2921 if (this->iplt_ != NULL)
2922 count += this->iplt_->entry_count();
2923 return count;
2924 }
2925
2926 // Return the offset of the first non-reserved PLT entry.
2927
2928 template<int size, bool big_endian>
2929 unsigned int
2930 Target_powerpc<size, big_endian>::first_plt_entry_offset() const
2931 {
2932 return this->plt_->first_plt_entry_offset();
2933 }
2934
2935 // Return the size of each PLT entry.
2936
2937 template<int size, bool big_endian>
2938 unsigned int
2939 Target_powerpc<size, big_endian>::plt_entry_size() const
2940 {
2941 return Output_data_plt_powerpc<size, big_endian>::get_plt_entry_size();
2942 }
2943
2944 // Create a GOT entry for local dynamic __tls_get_addr calls.
2945
2946 template<int size, bool big_endian>
2947 unsigned int
2948 Target_powerpc<size, big_endian>::tlsld_got_offset(
2949 Symbol_table* symtab,
2950 Layout* layout,
2951 Sized_relobj_file<size, big_endian>* object)
2952 {
2953 if (this->tlsld_got_offset_ == -1U)
2954 {
2955 gold_assert(symtab != NULL && layout != NULL && object != NULL);
2956 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
2957 Output_data_got_powerpc<size, big_endian>* got
2958 = this->got_section(symtab, layout);
2959 unsigned int got_offset = got->add_constant_pair(0, 0);
2960 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
2961 got_offset, 0);
2962 this->tlsld_got_offset_ = got_offset;
2963 }
2964 return this->tlsld_got_offset_;
2965 }
2966
2967 // Get the Reference_flags for a particular relocation.
2968
2969 template<int size, bool big_endian>
2970 int
2971 Target_powerpc<size, big_endian>::Scan::get_reference_flags(unsigned int r_type)
2972 {
2973 switch (r_type)
2974 {
2975 case elfcpp::R_POWERPC_NONE:
2976 case elfcpp::R_POWERPC_GNU_VTINHERIT:
2977 case elfcpp::R_POWERPC_GNU_VTENTRY:
2978 case elfcpp::R_PPC64_TOC:
2979 // No symbol reference.
2980 return 0;
2981
2982 case elfcpp::R_PPC64_ADDR64:
2983 case elfcpp::R_PPC64_UADDR64:
2984 case elfcpp::R_POWERPC_ADDR32:
2985 case elfcpp::R_POWERPC_UADDR32:
2986 case elfcpp::R_POWERPC_ADDR16:
2987 case elfcpp::R_POWERPC_UADDR16:
2988 case elfcpp::R_POWERPC_ADDR16_LO:
2989 case elfcpp::R_POWERPC_ADDR16_HI:
2990 case elfcpp::R_POWERPC_ADDR16_HA:
2991 return Symbol::ABSOLUTE_REF;
2992
2993 case elfcpp::R_POWERPC_ADDR24:
2994 case elfcpp::R_POWERPC_ADDR14:
2995 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
2996 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
2997 return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
2998
2999 case elfcpp::R_PPC64_REL64:
3000 case elfcpp::R_POWERPC_REL32:
3001 case elfcpp::R_PPC_LOCAL24PC:
3002 case elfcpp::R_POWERPC_REL16:
3003 case elfcpp::R_POWERPC_REL16_LO:
3004 case elfcpp::R_POWERPC_REL16_HI:
3005 case elfcpp::R_POWERPC_REL16_HA:
3006 return Symbol::RELATIVE_REF;
3007
3008 case elfcpp::R_POWERPC_REL24:
3009 case elfcpp::R_PPC_PLTREL24:
3010 case elfcpp::R_POWERPC_REL14:
3011 case elfcpp::R_POWERPC_REL14_BRTAKEN:
3012 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
3013 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
3014
3015 case elfcpp::R_POWERPC_GOT16:
3016 case elfcpp::R_POWERPC_GOT16_LO:
3017 case elfcpp::R_POWERPC_GOT16_HI:
3018 case elfcpp::R_POWERPC_GOT16_HA:
3019 case elfcpp::R_PPC64_GOT16_DS:
3020 case elfcpp::R_PPC64_GOT16_LO_DS:
3021 case elfcpp::R_PPC64_TOC16:
3022 case elfcpp::R_PPC64_TOC16_LO:
3023 case elfcpp::R_PPC64_TOC16_HI:
3024 case elfcpp::R_PPC64_TOC16_HA:
3025 case elfcpp::R_PPC64_TOC16_DS:
3026 case elfcpp::R_PPC64_TOC16_LO_DS:
3027 // Absolute in GOT.
3028 return Symbol::ABSOLUTE_REF;
3029
3030 case elfcpp::R_POWERPC_GOT_TPREL16:
3031 case elfcpp::R_POWERPC_TLS:
3032 return Symbol::TLS_REF;
3033
3034 case elfcpp::R_POWERPC_COPY:
3035 case elfcpp::R_POWERPC_GLOB_DAT:
3036 case elfcpp::R_POWERPC_JMP_SLOT:
3037 case elfcpp::R_POWERPC_RELATIVE:
3038 case elfcpp::R_POWERPC_DTPMOD:
3039 default:
3040 // Not expected. We will give an error later.
3041 return 0;
3042 }
3043 }
3044
3045 // Report an unsupported relocation against a local symbol.
3046
3047 template<int size, bool big_endian>
3048 void
3049 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
3050 Sized_relobj_file<size, big_endian>* object,
3051 unsigned int r_type)
3052 {
3053 gold_error(_("%s: unsupported reloc %u against local symbol"),
3054 object->name().c_str(), r_type);
3055 }
3056
3057 // We are about to emit a dynamic relocation of type R_TYPE. If the
3058 // dynamic linker does not support it, issue an error.
3059
3060 template<int size, bool big_endian>
3061 void
3062 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
3063 unsigned int r_type)
3064 {
3065 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
3066
3067 // These are the relocation types supported by glibc for both 32-bit
3068 // and 64-bit powerpc.
3069 switch (r_type)
3070 {
3071 case elfcpp::R_POWERPC_NONE:
3072 case elfcpp::R_POWERPC_RELATIVE:
3073 case elfcpp::R_POWERPC_GLOB_DAT:
3074 case elfcpp::R_POWERPC_DTPMOD:
3075 case elfcpp::R_POWERPC_DTPREL:
3076 case elfcpp::R_POWERPC_TPREL:
3077 case elfcpp::R_POWERPC_JMP_SLOT:
3078 case elfcpp::R_POWERPC_COPY:
3079 case elfcpp::R_POWERPC_IRELATIVE:
3080 case elfcpp::R_POWERPC_ADDR32:
3081 case elfcpp::R_POWERPC_UADDR32:
3082 case elfcpp::R_POWERPC_ADDR24:
3083 case elfcpp::R_POWERPC_ADDR16:
3084 case elfcpp::R_POWERPC_UADDR16:
3085 case elfcpp::R_POWERPC_ADDR16_LO:
3086 case elfcpp::R_POWERPC_ADDR16_HI:
3087 case elfcpp::R_POWERPC_ADDR16_HA:
3088 case elfcpp::R_POWERPC_ADDR14:
3089 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
3090 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
3091 case elfcpp::R_POWERPC_REL32:
3092 case elfcpp::R_POWERPC_REL24:
3093 case elfcpp::R_POWERPC_TPREL16:
3094 case elfcpp::R_POWERPC_TPREL16_LO:
3095 case elfcpp::R_POWERPC_TPREL16_HI:
3096 case elfcpp::R_POWERPC_TPREL16_HA:
3097 return;
3098
3099 default:
3100 break;
3101 }
3102
3103 if (size == 64)
3104 {
3105 switch (r_type)
3106 {
3107 // These are the relocation types supported only on 64-bit.
3108 case elfcpp::R_PPC64_ADDR64:
3109 case elfcpp::R_PPC64_UADDR64:
3110 case elfcpp::R_PPC64_JMP_IREL:
3111 case elfcpp::R_PPC64_ADDR16_DS:
3112 case elfcpp::R_PPC64_ADDR16_LO_DS:
3113 case elfcpp::R_PPC64_ADDR16_HIGHER:
3114 case elfcpp::R_PPC64_ADDR16_HIGHEST:
3115 case elfcpp::R_PPC64_ADDR16_HIGHERA:
3116 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
3117 case elfcpp::R_PPC64_REL64:
3118 case elfcpp::R_POWERPC_ADDR30:
3119 case elfcpp::R_PPC64_TPREL16_DS:
3120 case elfcpp::R_PPC64_TPREL16_LO_DS:
3121 case elfcpp::R_PPC64_TPREL16_HIGHER:
3122 case elfcpp::R_PPC64_TPREL16_HIGHEST:
3123 case elfcpp::R_PPC64_TPREL16_HIGHERA:
3124 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
3125 return;
3126
3127 default:
3128 break;
3129 }
3130 }
3131 else
3132 {
3133 switch (r_type)
3134 {
3135 // These are the relocation types supported only on 32-bit.
3136 // ??? glibc ld.so doesn't need to support these.
3137 case elfcpp::R_POWERPC_DTPREL16:
3138 case elfcpp::R_POWERPC_DTPREL16_LO:
3139 case elfcpp::R_POWERPC_DTPREL16_HI:
3140 case elfcpp::R_POWERPC_DTPREL16_HA:
3141 return;
3142
3143 default:
3144 break;
3145 }
3146 }
3147
3148 // This prevents us from issuing more than one error per reloc
3149 // section. But we can still wind up issuing more than one
3150 // error per object file.
3151 if (this->issued_non_pic_error_)
3152 return;
3153 gold_assert(parameters->options().output_is_position_independent());
3154 object->error(_("requires unsupported dynamic reloc; "
3155 "recompile with -fPIC"));
3156 this->issued_non_pic_error_ = true;
3157 return;
3158 }
3159
3160 // Return whether we need to make a PLT entry for a relocation of the
3161 // given type against a STT_GNU_IFUNC symbol.
3162
3163 template<int size, bool big_endian>
3164 bool
3165 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
3166 Sized_relobj_file<size, big_endian>* object,
3167 unsigned int r_type)
3168 {
3169 // In non-pic code any reference will resolve to the plt call stub
3170 // for the ifunc symbol.
3171 if (size == 32 && !parameters->options().output_is_position_independent())
3172 return true;
3173
3174 switch (r_type)
3175 {
3176 // Word size refs from data sections are OK.
3177 case elfcpp::R_POWERPC_ADDR32:
3178 case elfcpp::R_POWERPC_UADDR32:
3179 if (size == 32)
3180 return true;
3181 break;
3182
3183 case elfcpp::R_PPC64_ADDR64:
3184 case elfcpp::R_PPC64_UADDR64:
3185 if (size == 64)
3186 return true;
3187 break;
3188
3189 // GOT refs are good.
3190 case elfcpp::R_POWERPC_GOT16:
3191 case elfcpp::R_POWERPC_GOT16_LO:
3192 case elfcpp::R_POWERPC_GOT16_HI:
3193 case elfcpp::R_POWERPC_GOT16_HA:
3194 case elfcpp::R_PPC64_GOT16_DS:
3195 case elfcpp::R_PPC64_GOT16_LO_DS:
3196 return true;
3197
3198 // So are function calls.
3199 case elfcpp::R_POWERPC_ADDR24:
3200 case elfcpp::R_POWERPC_ADDR14:
3201 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
3202 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
3203 case elfcpp::R_POWERPC_REL24:
3204 case elfcpp::R_PPC_PLTREL24:
3205 case elfcpp::R_POWERPC_REL14:
3206 case elfcpp::R_POWERPC_REL14_BRTAKEN:
3207 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
3208 return true;
3209
3210 default:
3211 break;
3212 }
3213
3214 // Anything else is a problem.
3215 // If we are building a static executable, the libc startup function
3216 // responsible for applying indirect function relocations is going
3217 // to complain about the reloc type.
3218 // If we are building a dynamic executable, we will have a text
3219 // relocation. The dynamic loader will set the text segment
3220 // writable and non-executable to apply text relocations. So we'll
3221 // segfault when trying to run the indirection function to resolve
3222 // the reloc.
3223 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
3224 object->name().c_str(), r_type);
3225 return false;
3226 }
3227
3228 // Scan a relocation for a local symbol.
3229
3230 template<int size, bool big_endian>
3231 inline void
3232 Target_powerpc<size, big_endian>::Scan::local(
3233 Symbol_table* symtab,
3234 Layout* layout,
3235 Target_powerpc<size, big_endian>* target,
3236 Sized_relobj_file<size, big_endian>* object,
3237 unsigned int data_shndx,
3238 Output_section* output_section,
3239 const elfcpp::Rela<size, big_endian>& reloc,
3240 unsigned int r_type,
3241 const elfcpp::Sym<size, big_endian>& lsym,
3242 bool is_discarded)
3243 {
3244 Powerpc_relobj<size, big_endian>* ppc_object
3245 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
3246
3247 if (is_discarded)
3248 {
3249 if (size == 64
3250 && data_shndx == ppc_object->opd_shndx()
3251 && r_type == elfcpp::R_PPC64_ADDR64)
3252 ppc_object->set_opd_discard(reloc.get_r_offset());
3253 return;
3254 }
3255
3256 // A local STT_GNU_IFUNC symbol may require a PLT entry.
3257 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
3258 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
3259 target->make_local_ifunc_plt_entry(layout, reloc, object);
3260
3261 switch (r_type)
3262 {
3263 case elfcpp::R_POWERPC_NONE:
3264 case elfcpp::R_POWERPC_GNU_VTINHERIT:
3265 case elfcpp::R_POWERPC_GNU_VTENTRY:
3266 case elfcpp::R_PPC64_TOCSAVE:
3267 case elfcpp::R_PPC_EMB_MRKREF:
3268 case elfcpp::R_POWERPC_TLS:
3269 break;
3270
3271 case elfcpp::R_PPC64_TOC:
3272 {
3273 Output_data_got_powerpc<size, big_endian>* got
3274 = target->got_section(symtab, layout);
3275 if (parameters->options().output_is_position_independent())
3276 {
3277 Address off = reloc.get_r_offset();
3278 if (size == 64
3279 && data_shndx == ppc_object->opd_shndx()
3280 && ppc_object->get_opd_discard(off - 8))
3281 break;
3282
3283 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3284 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
3285 rela_dyn->add_output_section_relative(got->output_section(),
3286 elfcpp::R_POWERPC_RELATIVE,
3287 output_section,
3288 object, data_shndx, off,
3289 symobj->toc_base_offset());
3290 }
3291 }
3292 break;
3293
3294 case elfcpp::R_PPC64_ADDR64:
3295 case elfcpp::R_PPC64_UADDR64:
3296 case elfcpp::R_POWERPC_ADDR32:
3297 case elfcpp::R_POWERPC_UADDR32:
3298 case elfcpp::R_POWERPC_ADDR24:
3299 case elfcpp::R_POWERPC_ADDR16:
3300 case elfcpp::R_POWERPC_ADDR16_LO:
3301 case elfcpp::R_POWERPC_ADDR16_HI:
3302 case elfcpp::R_POWERPC_ADDR16_HA:
3303 case elfcpp::R_POWERPC_UADDR16:
3304 case elfcpp::R_PPC64_ADDR16_HIGHER:
3305 case elfcpp::R_PPC64_ADDR16_HIGHERA:
3306 case elfcpp::R_PPC64_ADDR16_HIGHEST:
3307 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
3308 case elfcpp::R_PPC64_ADDR16_DS:
3309 case elfcpp::R_PPC64_ADDR16_LO_DS:
3310 case elfcpp::R_POWERPC_ADDR14:
3311 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
3312 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
3313 // If building a shared library (or a position-independent
3314 // executable), we need to create a dynamic relocation for
3315 // this location.
3316 if (parameters->options().output_is_position_independent()
3317 || (size == 64 && is_ifunc))
3318 {
3319 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3320
3321 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
3322 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
3323 {
3324 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3325 unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
3326 if (is_ifunc)
3327 {
3328 rela_dyn = target->iplt_section()->rel_plt();
3329 dynrel = elfcpp::R_POWERPC_IRELATIVE;
3330 }
3331 rela_dyn->add_local_relative(object, r_sym, dynrel,
3332 output_section, data_shndx,
3333 reloc.get_r_offset(),
3334 reloc.get_r_addend(), false);
3335 }
3336 else
3337 {
3338 check_non_pic(object, r_type);
3339 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3340 rela_dyn->add_local(object, r_sym, r_type, output_section,
3341 data_shndx, reloc.get_r_offset(),
3342 reloc.get_r_addend());
3343 }
3344 }
3345 break;
3346
3347 case elfcpp::R_PPC64_REL64:
3348 case elfcpp::R_POWERPC_REL32:
3349 case elfcpp::R_POWERPC_REL24:
3350 case elfcpp::R_PPC_PLTREL24:
3351 case elfcpp::R_PPC_LOCAL24PC:
3352 case elfcpp::R_POWERPC_REL16:
3353 case elfcpp::R_POWERPC_REL16_LO:
3354 case elfcpp::R_POWERPC_REL16_HI:
3355 case elfcpp::R_POWERPC_REL16_HA:
3356 case elfcpp::R_POWERPC_REL14:
3357 case elfcpp::R_POWERPC_REL14_BRTAKEN:
3358 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
3359 case elfcpp::R_POWERPC_SECTOFF:
3360 case elfcpp::R_POWERPC_TPREL16:
3361 case elfcpp::R_POWERPC_DTPREL16:
3362 case elfcpp::R_POWERPC_SECTOFF_LO:
3363 case elfcpp::R_POWERPC_TPREL16_LO:
3364 case elfcpp::R_POWERPC_DTPREL16_LO:
3365 case elfcpp::R_POWERPC_SECTOFF_HI:
3366 case elfcpp::R_POWERPC_TPREL16_HI:
3367 case elfcpp::R_POWERPC_DTPREL16_HI:
3368 case elfcpp::R_POWERPC_SECTOFF_HA:
3369 case elfcpp::R_POWERPC_TPREL16_HA:
3370 case elfcpp::R_POWERPC_DTPREL16_HA:
3371 case elfcpp::R_PPC64_DTPREL16_HIGHER:
3372 case elfcpp::R_PPC64_TPREL16_HIGHER:
3373 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
3374 case elfcpp::R_PPC64_TPREL16_HIGHERA:
3375 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
3376 case elfcpp::R_PPC64_TPREL16_HIGHEST:
3377 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
3378 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
3379 case elfcpp::R_PPC64_TPREL16_DS:
3380 case elfcpp::R_PPC64_TPREL16_LO_DS:
3381 case elfcpp::R_PPC64_DTPREL16_DS:
3382 case elfcpp::R_PPC64_DTPREL16_LO_DS:
3383 case elfcpp::R_PPC64_SECTOFF_DS:
3384 case elfcpp::R_PPC64_SECTOFF_LO_DS:
3385 case elfcpp::R_PPC64_TLSGD:
3386 case elfcpp::R_PPC64_TLSLD:
3387 break;
3388
3389 case elfcpp::R_POWERPC_GOT16:
3390 case elfcpp::R_POWERPC_GOT16_LO:
3391 case elfcpp::R_POWERPC_GOT16_HI:
3392 case elfcpp::R_POWERPC_GOT16_HA:
3393 case elfcpp::R_PPC64_GOT16_DS:
3394 case elfcpp::R_PPC64_GOT16_LO_DS:
3395 {
3396 // The symbol requires a GOT entry.
3397 Output_data_got_powerpc<size, big_endian>* got
3398 = target->got_section(symtab, layout);
3399 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3400
3401 if (!parameters->options().output_is_position_independent())
3402 {
3403 if (size == 32 && is_ifunc)
3404 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
3405 else
3406 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
3407 }
3408 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
3409 {
3410 // If we are generating a shared object or a pie, this
3411 // symbol's GOT entry will be set by a dynamic relocation.
3412 unsigned int off;
3413 off = got->add_constant(0);
3414 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
3415
3416 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3417 unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
3418 if (is_ifunc)
3419 {
3420 rela_dyn = target->iplt_section()->rel_plt();
3421 dynrel = elfcpp::R_POWERPC_IRELATIVE;
3422 }
3423 rela_dyn->add_local_relative(object, r_sym, dynrel,
3424 got, off, 0, false);
3425 }
3426 }
3427 break;
3428
3429 case elfcpp::R_PPC64_TOC16:
3430 case elfcpp::R_PPC64_TOC16_LO:
3431 case elfcpp::R_PPC64_TOC16_HI:
3432 case elfcpp::R_PPC64_TOC16_HA:
3433 case elfcpp::R_PPC64_TOC16_DS:
3434 case elfcpp::R_PPC64_TOC16_LO_DS:
3435 // We need a GOT section.
3436 target->got_section(symtab, layout);
3437 break;
3438
3439 case elfcpp::R_POWERPC_GOT_TLSGD16:
3440 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
3441 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
3442 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
3443 {
3444 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
3445 if (tls_type == tls::TLSOPT_NONE)
3446 {
3447 Output_data_got_powerpc<size, big_endian>* got
3448 = target->got_section(symtab, layout);
3449 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3450 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3451 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
3452 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
3453 }
3454 else if (tls_type == tls::TLSOPT_TO_LE)
3455 {
3456 // no GOT relocs needed for Local Exec.
3457 }
3458 else
3459 gold_unreachable();
3460 }
3461 break;
3462
3463 case elfcpp::R_POWERPC_GOT_TLSLD16:
3464 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
3465 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
3466 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
3467 {
3468 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
3469 if (tls_type == tls::TLSOPT_NONE)
3470 target->tlsld_got_offset(symtab, layout, object);
3471 else if (tls_type == tls::TLSOPT_TO_LE)
3472 {
3473 // no GOT relocs needed for Local Exec.
3474 if (parameters->options().emit_relocs())
3475 {
3476 Output_section* os = layout->tls_segment()->first_section();
3477 gold_assert(os != NULL);
3478 os->set_needs_symtab_index();
3479 }
3480 }
3481 else
3482 gold_unreachable();
3483 }
3484 break;
3485
3486 case elfcpp::R_POWERPC_GOT_DTPREL16:
3487 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
3488 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
3489 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
3490 {
3491 Output_data_got_powerpc<size, big_endian>* got
3492 = target->got_section(symtab, layout);
3493 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3494 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
3495 }
3496 break;
3497
3498 case elfcpp::R_POWERPC_GOT_TPREL16:
3499 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
3500 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
3501 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
3502 {
3503 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
3504 if (tls_type == tls::TLSOPT_NONE)
3505 {
3506 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3507 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
3508 {
3509 Output_data_got_powerpc<size, big_endian>* got
3510 = target->got_section(symtab, layout);
3511 unsigned int off = got->add_constant(0);
3512 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
3513
3514 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3515 rela_dyn->add_symbolless_local_addend(object, r_sym,
3516 elfcpp::R_POWERPC_TPREL,
3517 got, off, 0);
3518 }
3519 }
3520 else if (tls_type == tls::TLSOPT_TO_LE)
3521 {
3522 // no GOT relocs needed for Local Exec.
3523 }
3524 else
3525 gold_unreachable();
3526 }
3527 break;
3528
3529 default:
3530 unsupported_reloc_local(object, r_type);
3531 break;
3532 }
3533 }
3534
3535 // Report an unsupported relocation against a global symbol.
3536
3537 template<int size, bool big_endian>
3538 void
3539 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
3540 Sized_relobj_file<size, big_endian>* object,
3541 unsigned int r_type,
3542 Symbol* gsym)
3543 {
3544 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3545 object->name().c_str(), r_type, gsym->demangled_name().c_str());
3546 }
3547
3548 // Scan a relocation for a global symbol.
3549
3550 template<int size, bool big_endian>
3551 inline void
3552 Target_powerpc<size, big_endian>::Scan::global(
3553 Symbol_table* symtab,
3554 Layout* layout,
3555 Target_powerpc<size, big_endian>* target,
3556 Sized_relobj_file<size, big_endian>* object,
3557 unsigned int data_shndx,
3558 Output_section* output_section,
3559 const elfcpp::Rela<size, big_endian>& reloc,
3560 unsigned int r_type,
3561 Symbol* gsym)
3562 {
3563 Powerpc_relobj<size, big_endian>* ppc_object
3564 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
3565
3566 // A STT_GNU_IFUNC symbol may require a PLT entry.
3567 if (gsym->type() == elfcpp::STT_GNU_IFUNC
3568 && this->reloc_needs_plt_for_ifunc(object, r_type))
3569 target->make_plt_entry(layout, gsym, reloc, object);
3570
3571 switch (r_type)
3572 {
3573 case elfcpp::R_POWERPC_NONE:
3574 case elfcpp::R_POWERPC_GNU_VTINHERIT:
3575 case elfcpp::R_POWERPC_GNU_VTENTRY:
3576 case elfcpp::R_PPC_LOCAL24PC:
3577 case elfcpp::R_PPC_EMB_MRKREF:
3578 case elfcpp::R_POWERPC_TLS:
3579 break;
3580
3581 case elfcpp::R_PPC64_TOC:
3582 {
3583 Output_data_got_powerpc<size, big_endian>* got
3584 = target->got_section(symtab, layout);
3585 if (parameters->options().output_is_position_independent())
3586 {
3587 Address off = reloc.get_r_offset();
3588 if (size == 64
3589 && data_shndx == ppc_object->opd_shndx()
3590 && ppc_object->get_opd_discard(off - 8))
3591 break;
3592
3593 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3594 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
3595 if (data_shndx != ppc_object->opd_shndx())
3596 symobj = static_cast
3597 <Powerpc_relobj<size, big_endian>*>(gsym->object());
3598 rela_dyn->add_output_section_relative(got->output_section(),
3599 elfcpp::R_POWERPC_RELATIVE,
3600 output_section,
3601 object, data_shndx, off,
3602 symobj->toc_base_offset());
3603 }
3604 }
3605 break;
3606
3607 case elfcpp::R_PPC64_ADDR64:
3608 if (size == 64
3609 && data_shndx == ppc_object->opd_shndx()
3610 && (gsym->is_defined_in_discarded_section()
3611 || gsym->object() != object))
3612 {
3613 ppc_object->set_opd_discard(reloc.get_r_offset());
3614 break;
3615 }
3616 // Fall thru
3617 case elfcpp::R_PPC64_UADDR64:
3618 case elfcpp::R_POWERPC_ADDR32:
3619 case elfcpp::R_POWERPC_UADDR32:
3620 case elfcpp::R_POWERPC_ADDR24:
3621 case elfcpp::R_POWERPC_ADDR16:
3622 case elfcpp::R_POWERPC_ADDR16_LO:
3623 case elfcpp::R_POWERPC_ADDR16_HI:
3624 case elfcpp::R_POWERPC_ADDR16_HA:
3625 case elfcpp::R_POWERPC_UADDR16:
3626 case elfcpp::R_PPC64_ADDR16_HIGHER:
3627 case elfcpp::R_PPC64_ADDR16_HIGHERA:
3628 case elfcpp::R_PPC64_ADDR16_HIGHEST:
3629 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
3630 case elfcpp::R_PPC64_ADDR16_DS:
3631 case elfcpp::R_PPC64_ADDR16_LO_DS:
3632 case elfcpp::R_POWERPC_ADDR14:
3633 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
3634 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
3635 {
3636 // Make a PLT entry if necessary.
3637 if (gsym->needs_plt_entry())
3638 {
3639 target->make_plt_entry(layout, gsym, reloc, 0);
3640 // Since this is not a PC-relative relocation, we may be
3641 // taking the address of a function. In that case we need to
3642 // set the entry in the dynamic symbol table to the address of
3643 // the PLT call stub.
3644 if (size == 32
3645 && gsym->is_from_dynobj()
3646 && !parameters->options().output_is_position_independent())
3647 gsym->set_needs_dynsym_value();
3648 }
3649 // Make a dynamic relocation if necessary.
3650 if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type))
3651 || (size == 64 && gsym->type() == elfcpp::STT_GNU_IFUNC))
3652 {
3653 if (gsym->may_need_copy_reloc())
3654 {
3655 target->copy_reloc(symtab, layout, object,
3656 data_shndx, output_section, gsym, reloc);
3657 }
3658 else if (((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
3659 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
3660 && (gsym->can_use_relative_reloc(false)
3661 || (size == 64
3662 && data_shndx == ppc_object->opd_shndx())))
3663 {
3664 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3665 unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
3666 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3667 {
3668 rela_dyn = target->iplt_section()->rel_plt();
3669 dynrel = elfcpp::R_POWERPC_IRELATIVE;
3670 }
3671 rela_dyn->add_symbolless_global_addend(
3672 gsym, dynrel, output_section, object, data_shndx,
3673 reloc.get_r_offset(), reloc.get_r_addend());
3674 }
3675 else
3676 {
3677 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3678 check_non_pic(object, r_type);
3679 rela_dyn->add_global(gsym, r_type, output_section,
3680 object, data_shndx,
3681 reloc.get_r_offset(),
3682 reloc.get_r_addend());
3683 }
3684 }
3685 }
3686 break;
3687
3688 case elfcpp::R_PPC_PLTREL24:
3689 case elfcpp::R_POWERPC_REL24:
3690 if (gsym->needs_plt_entry()
3691 || (!gsym->final_value_is_known()
3692 && (gsym->is_undefined()
3693 || gsym->is_from_dynobj()
3694 || gsym->is_preemptible())))
3695 target->make_plt_entry(layout, gsym, reloc, object);
3696 // Fall thru
3697
3698 case elfcpp::R_PPC64_REL64:
3699 case elfcpp::R_POWERPC_REL32:
3700 // Make a dynamic relocation if necessary.
3701 if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type)))
3702 {
3703 if (gsym->may_need_copy_reloc())
3704 {
3705 target->copy_reloc(symtab, layout, object,
3706 data_shndx, output_section, gsym,
3707 reloc);
3708 }
3709 else
3710 {
3711 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3712 check_non_pic(object, r_type);
3713 rela_dyn->add_global(gsym, r_type, output_section, object,
3714 data_shndx, reloc.get_r_offset(),
3715 reloc.get_r_addend());
3716 }
3717 }
3718 break;
3719
3720 case elfcpp::R_POWERPC_REL16:
3721 case elfcpp::R_POWERPC_REL16_LO:
3722 case elfcpp::R_POWERPC_REL16_HI:
3723 case elfcpp::R_POWERPC_REL16_HA:
3724 case elfcpp::R_POWERPC_REL14:
3725 case elfcpp::R_POWERPC_REL14_BRTAKEN:
3726 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
3727 case elfcpp::R_POWERPC_SECTOFF:
3728 case elfcpp::R_POWERPC_TPREL16:
3729 case elfcpp::R_POWERPC_DTPREL16:
3730 case elfcpp::R_POWERPC_SECTOFF_LO:
3731 case elfcpp::R_POWERPC_TPREL16_LO:
3732 case elfcpp::R_POWERPC_DTPREL16_LO:
3733 case elfcpp::R_POWERPC_SECTOFF_HI:
3734 case elfcpp::R_POWERPC_TPREL16_HI:
3735 case elfcpp::R_POWERPC_DTPREL16_HI:
3736 case elfcpp::R_POWERPC_SECTOFF_HA:
3737 case elfcpp::R_POWERPC_TPREL16_HA:
3738 case elfcpp::R_POWERPC_DTPREL16_HA:
3739 case elfcpp::R_PPC64_DTPREL16_HIGHER:
3740 case elfcpp::R_PPC64_TPREL16_HIGHER:
3741 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
3742 case elfcpp::R_PPC64_TPREL16_HIGHERA:
3743 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
3744 case elfcpp::R_PPC64_TPREL16_HIGHEST:
3745 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
3746 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
3747 case elfcpp::R_PPC64_TPREL16_DS:
3748 case elfcpp::R_PPC64_TPREL16_LO_DS:
3749 case elfcpp::R_PPC64_DTPREL16_DS:
3750 case elfcpp::R_PPC64_DTPREL16_LO_DS:
3751 case elfcpp::R_PPC64_SECTOFF_DS:
3752 case elfcpp::R_PPC64_SECTOFF_LO_DS:
3753 case elfcpp::R_PPC64_TLSGD:
3754 case elfcpp::R_PPC64_TLSLD:
3755 break;
3756
3757 case elfcpp::R_POWERPC_GOT16:
3758 case elfcpp::R_POWERPC_GOT16_LO:
3759 case elfcpp::R_POWERPC_GOT16_HI:
3760 case elfcpp::R_POWERPC_GOT16_HA:
3761 case elfcpp::R_PPC64_GOT16_DS:
3762 case elfcpp::R_PPC64_GOT16_LO_DS:
3763 {
3764 // The symbol requires a GOT entry.
3765 Output_data_got_powerpc<size, big_endian>* got;
3766
3767 got = target->got_section(symtab, layout);
3768 if (gsym->final_value_is_known())
3769 {
3770 if (size == 32 && gsym->type() == elfcpp::STT_GNU_IFUNC)
3771 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
3772 else
3773 got->add_global(gsym, GOT_TYPE_STANDARD);
3774 }
3775 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
3776 {
3777 // If we are generating a shared object or a pie, this
3778 // symbol's GOT entry will be set by a dynamic relocation.
3779 unsigned int off = got->add_constant(0);
3780 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
3781
3782 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3783 if (gsym->can_use_relative_reloc(false)
3784 && !(size == 32
3785 && gsym->visibility() == elfcpp::STV_PROTECTED
3786 && parameters->options().shared()))
3787 {
3788 unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
3789 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3790 {
3791 rela_dyn = target->iplt_section()->rel_plt();
3792 dynrel = elfcpp::R_POWERPC_IRELATIVE;
3793 }
3794 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
3795 }
3796 else
3797 {
3798 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
3799 rela_dyn->add_global(gsym, dynrel, got, off, 0);
3800 }
3801 }
3802 }
3803 break;
3804
3805 case elfcpp::R_PPC64_TOC16:
3806 case elfcpp::R_PPC64_TOC16_LO:
3807 case elfcpp::R_PPC64_TOC16_HI:
3808 case elfcpp::R_PPC64_TOC16_HA:
3809 case elfcpp::R_PPC64_TOC16_DS:
3810 case elfcpp::R_PPC64_TOC16_LO_DS:
3811 // We need a GOT section.
3812 target->got_section(symtab, layout);
3813 break;
3814
3815 case elfcpp::R_POWERPC_GOT_TLSGD16:
3816 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
3817 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
3818 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
3819 {
3820 const bool final = gsym->final_value_is_known();
3821 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
3822 if (tls_type == tls::TLSOPT_NONE)
3823 {
3824 Output_data_got_powerpc<size, big_endian>* got
3825 = target->got_section(symtab, layout);
3826 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD,
3827 target->rela_dyn_section(layout),
3828 elfcpp::R_POWERPC_DTPMOD,
3829 elfcpp::R_POWERPC_DTPREL);
3830 }
3831 else if (tls_type == tls::TLSOPT_TO_IE)
3832 {
3833 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
3834 {
3835 Output_data_got_powerpc<size, big_endian>* got
3836 = target->got_section(symtab, layout);
3837 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3838 if (gsym->is_undefined()
3839 || gsym->is_from_dynobj())
3840 {
3841 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
3842 elfcpp::R_POWERPC_TPREL);
3843 }
3844 else
3845 {
3846 unsigned int off = got->add_constant(0);
3847 gsym->set_got_offset(GOT_TYPE_TPREL, off);
3848 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
3849 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
3850 got, off, 0);
3851 }
3852 }
3853 }
3854 else if (tls_type == tls::TLSOPT_TO_LE)
3855 {
3856 // no GOT relocs needed for Local Exec.
3857 }
3858 else
3859 gold_unreachable();
3860 }
3861 break;
3862
3863 case elfcpp::R_POWERPC_GOT_TLSLD16:
3864 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
3865 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
3866 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
3867 {
3868 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
3869 if (tls_type == tls::TLSOPT_NONE)
3870 target->tlsld_got_offset(symtab, layout, object);
3871 else if (tls_type == tls::TLSOPT_TO_LE)
3872 {
3873 // no GOT relocs needed for Local Exec.
3874 if (parameters->options().emit_relocs())
3875 {
3876 Output_section* os = layout->tls_segment()->first_section();
3877 gold_assert(os != NULL);
3878 os->set_needs_symtab_index();
3879 }
3880 }
3881 else
3882 gold_unreachable();
3883 }
3884 break;
3885
3886 case elfcpp::R_POWERPC_GOT_DTPREL16:
3887 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
3888 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
3889 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
3890 {
3891 Output_data_got_powerpc<size, big_endian>* got
3892 = target->got_section(symtab, layout);
3893 if (!gsym->final_value_is_known()
3894 && (gsym->is_from_dynobj()
3895 || gsym->is_undefined()
3896 || gsym->is_preemptible()))
3897 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
3898 target->rela_dyn_section(layout),
3899 elfcpp::R_POWERPC_DTPREL);
3900 else
3901 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
3902 }
3903 break;
3904
3905 case elfcpp::R_POWERPC_GOT_TPREL16:
3906 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
3907 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
3908 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
3909 {
3910 const bool final = gsym->final_value_is_known();
3911 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
3912 if (tls_type == tls::TLSOPT_NONE)
3913 {
3914 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
3915 {
3916 Output_data_got_powerpc<size, big_endian>* got
3917 = target->got_section(symtab, layout);
3918 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3919 if (gsym->is_undefined()
3920 || gsym->is_from_dynobj())
3921 {
3922 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
3923 elfcpp::R_POWERPC_TPREL);
3924 }
3925 else
3926 {
3927 unsigned int off = got->add_constant(0);
3928 gsym->set_got_offset(GOT_TYPE_TPREL, off);
3929 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
3930 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
3931 got, off, 0);
3932 }
3933 }
3934 }
3935 else if (tls_type == tls::TLSOPT_TO_LE)
3936 {
3937 // no GOT relocs needed for Local Exec.
3938 }
3939 else
3940 gold_unreachable();
3941 }
3942 break;
3943
3944 default:
3945 unsupported_reloc_global(object, r_type, gsym);
3946 break;
3947 }
3948 }
3949
3950 // Process relocations for gc.
3951
3952 template<int size, bool big_endian>
3953 void
3954 Target_powerpc<size, big_endian>::gc_process_relocs(
3955 Symbol_table* symtab,
3956 Layout* layout,
3957 Sized_relobj_file<size, big_endian>* object,
3958 unsigned int data_shndx,
3959 unsigned int,
3960 const unsigned char* prelocs,
3961 size_t reloc_count,
3962 Output_section* output_section,
3963 bool needs_special_offset_handling,
3964 size_t local_symbol_count,
3965 const unsigned char* plocal_symbols)
3966 {
3967 typedef Target_powerpc<size, big_endian> Powerpc;
3968 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
3969 Powerpc_relobj<size, big_endian>* ppc_object
3970 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
3971 if (size == 64)
3972 ppc_object->set_opd_valid();
3973 if (size == 64 && data_shndx == ppc_object->opd_shndx())
3974 {
3975 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
3976 for (p = ppc_object->access_from_map()->begin();
3977 p != ppc_object->access_from_map()->end();
3978 ++p)
3979 {
3980 Address dst_off = p->first;
3981 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
3982 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
3983 for (s = p->second.begin(); s != p->second.end(); ++s)
3984 {
3985 Object* src_obj = s->first;
3986 unsigned int src_indx = s->second;
3987 symtab->gc()->add_reference(src_obj, src_indx,
3988 ppc_object, dst_indx);
3989 }
3990 p->second.clear();
3991 }
3992 ppc_object->access_from_map()->clear();
3993 ppc_object->process_gc_mark(symtab);
3994 // Don't look at .opd relocs as .opd will reference everything.
3995 return;
3996 }
3997
3998 gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
3999 typename Target_powerpc::Relocatable_size_for_reloc>(
4000 symtab,
4001 layout,
4002 this,
4003 object,
4004 data_shndx,
4005 prelocs,
4006 reloc_count,
4007 output_section,
4008 needs_special_offset_handling,
4009 local_symbol_count,
4010 plocal_symbols);
4011 }
4012
4013 // Handle target specific gc actions when adding a gc reference from
4014 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
4015 // and DST_OFF. For powerpc64, this adds a referenc to the code
4016 // section of a function descriptor.
4017
4018 template<int size, bool big_endian>
4019 void
4020 Target_powerpc<size, big_endian>::do_gc_add_reference(
4021 Symbol_table* symtab,
4022 Object* src_obj,
4023 unsigned int src_shndx,
4024 Object* dst_obj,
4025 unsigned int dst_shndx,
4026 Address dst_off) const
4027 {
4028 Powerpc_relobj<size, big_endian>* ppc_object
4029 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
4030 if (size == 64
4031 && !ppc_object->is_dynamic()
4032 && dst_shndx == ppc_object->opd_shndx())
4033 {
4034 if (ppc_object->opd_valid())
4035 {
4036 dst_shndx = ppc_object->get_opd_ent(dst_off);
4037 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
4038 }
4039 else
4040 {
4041 // If we haven't run scan_opd_relocs, we must delay
4042 // processing this function descriptor reference.
4043 ppc_object->add_reference(src_obj, src_shndx, dst_off);
4044 }
4045 }
4046 }
4047
4048 // Add any special sections for this symbol to the gc work list.
4049 // For powerpc64, this adds the code section of a function
4050 // descriptor.
4051
4052 template<int size, bool big_endian>
4053 void
4054 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
4055 Symbol_table* symtab,
4056 Symbol* sym) const
4057 {
4058 if (size == 64)
4059 {
4060 Powerpc_relobj<size, big_endian>* ppc_object
4061 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
4062 bool is_ordinary;
4063 unsigned int shndx = sym->shndx(&is_ordinary);
4064 if (is_ordinary && shndx == ppc_object->opd_shndx())
4065 {
4066 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
4067 Address dst_off = gsym->value();
4068 if (ppc_object->opd_valid())
4069 {
4070 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
4071 symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
4072 }
4073 else
4074 ppc_object->add_gc_mark(dst_off);
4075 }
4076 }
4077 }
4078
4079 // Scan relocations for a section.
4080
4081 template<int size, bool big_endian>
4082 void
4083 Target_powerpc<size, big_endian>::scan_relocs(
4084 Symbol_table* symtab,
4085 Layout* layout,
4086 Sized_relobj_file<size, big_endian>* object,
4087 unsigned int data_shndx,
4088 unsigned int sh_type,
4089 const unsigned char* prelocs,
4090 size_t reloc_count,
4091 Output_section* output_section,
4092 bool needs_special_offset_handling,
4093 size_t local_symbol_count,
4094 const unsigned char* plocal_symbols)
4095 {
4096 typedef Target_powerpc<size, big_endian> Powerpc;
4097 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
4098
4099 if (sh_type == elfcpp::SHT_REL)
4100 {
4101 gold_error(_("%s: unsupported REL reloc section"),
4102 object->name().c_str());
4103 return;
4104 }
4105
4106 gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
4107 symtab,
4108 layout,
4109 this,
4110 object,
4111 data_shndx,
4112 prelocs,
4113 reloc_count,
4114 output_section,
4115 needs_special_offset_handling,
4116 local_symbol_count,
4117 plocal_symbols);
4118 }
4119
4120 // Functor class for processing the global symbol table.
4121 // Removes symbols defined on discarded opd entries.
4122
4123 template<bool big_endian>
4124 class Global_symbol_visitor_opd
4125 {
4126 public:
4127 Global_symbol_visitor_opd()
4128 { }
4129
4130 void
4131 operator()(Sized_symbol<64>* sym)
4132 {
4133 if (sym->has_symtab_index()
4134 || sym->source() != Symbol::FROM_OBJECT
4135 || !sym->in_real_elf())
4136 return;
4137
4138 Powerpc_relobj<64, big_endian>* symobj
4139 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
4140 if (symobj->is_dynamic()
4141 || symobj->opd_shndx() == 0)
4142 return;
4143
4144 bool is_ordinary;
4145 unsigned int shndx = sym->shndx(&is_ordinary);
4146 if (shndx == symobj->opd_shndx()
4147 && symobj->get_opd_discard(sym->value()))
4148 sym->set_symtab_index(-1U);
4149 }
4150 };
4151
4152 template<int size, bool big_endian>
4153 void
4154 Target_powerpc<size, big_endian>::define_save_restore_funcs(
4155 Layout* layout,
4156 Symbol_table* symtab)
4157 {
4158 if (size == 64)
4159 {
4160 Output_data_save_res<64, big_endian>* savres
4161 = new Output_data_save_res<64, big_endian>(symtab);
4162 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
4163 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
4164 savres, ORDER_TEXT, false);
4165 }
4166 }
4167
4168 // Finalize the sections.
4169
4170 template<int size, bool big_endian>
4171 void
4172 Target_powerpc<size, big_endian>::do_finalize_sections(
4173 Layout* layout,
4174 const Input_objects*,
4175 Symbol_table* symtab)
4176 {
4177 if (parameters->doing_static_link())
4178 {
4179 // At least some versions of glibc elf-init.o have a strong
4180 // reference to __rela_iplt marker syms. A weak ref would be
4181 // better..
4182 if (this->iplt_ != NULL)
4183 {
4184 Reloc_section* rel = this->iplt_->rel_plt();
4185 symtab->define_in_output_data("__rela_iplt_start", NULL,
4186 Symbol_table::PREDEFINED, rel, 0, 0,
4187 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4188 elfcpp::STV_HIDDEN, 0, false, true);
4189 symtab->define_in_output_data("__rela_iplt_end", NULL,
4190 Symbol_table::PREDEFINED, rel, 0, 0,
4191 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4192 elfcpp::STV_HIDDEN, 0, true, true);
4193 }
4194 else
4195 {
4196 symtab->define_as_constant("__rela_iplt_start", NULL,
4197 Symbol_table::PREDEFINED, 0, 0,
4198 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4199 elfcpp::STV_HIDDEN, 0, true, false);
4200 symtab->define_as_constant("__rela_iplt_end", NULL,
4201 Symbol_table::PREDEFINED, 0, 0,
4202 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4203 elfcpp::STV_HIDDEN, 0, true, false);
4204 }
4205 }
4206
4207 if (size == 64)
4208 {
4209 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
4210 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
4211 this->define_save_restore_funcs(layout, symtab);
4212 }
4213
4214 // Fill in some more dynamic tags.
4215 Output_data_dynamic* odyn = layout->dynamic_data();
4216 if (odyn != NULL)
4217 {
4218 const Reloc_section* rel_plt = (this->plt_ == NULL
4219 ? NULL
4220 : this->plt_->rel_plt());
4221 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
4222 this->rela_dyn_, true, size == 32);
4223
4224 if (size == 32)
4225 {
4226 if (this->got_ != NULL)
4227 {
4228 this->got_->finalize_data_size();
4229 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
4230 this->got_, this->got_->g_o_t());
4231 }
4232 }
4233 else
4234 {
4235 if (this->glink_ != NULL)
4236 {
4237 this->glink_->finalize_data_size();
4238 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
4239 this->glink_,
4240 (this->glink_->pltresolve()
4241 + this->glink_->pltresolve_size
4242 - 32));
4243 }
4244 }
4245 }
4246
4247 // Emit any relocs we saved in an attempt to avoid generating COPY
4248 // relocs.
4249 if (this->copy_relocs_.any_saved_relocs())
4250 this->copy_relocs_.emit(this->rela_dyn_section(layout));
4251 }
4252
4253 // Return the value to use for a branch relocation.
4254
4255 template<int size, bool big_endian>
4256 typename elfcpp::Elf_types<size>::Elf_Addr
4257 Target_powerpc<size, big_endian>::symval_for_branch(
4258 Address value,
4259 const Sized_symbol<size>* gsym,
4260 Powerpc_relobj<size, big_endian>* object,
4261 unsigned int *dest_shndx)
4262 {
4263 *dest_shndx = 0;
4264 if (size == 32)
4265 return value;
4266
4267 // If the symbol is defined in an opd section, ie. is a function
4268 // descriptor, use the function descriptor code entry address
4269 Powerpc_relobj<size, big_endian>* symobj = object;
4270 if (gsym != NULL
4271 && gsym->source() != Symbol::FROM_OBJECT)
4272 return value;
4273 if (gsym != NULL)
4274 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
4275 unsigned int shndx = symobj->opd_shndx();
4276 if (shndx == 0)
4277 return value;
4278 Address opd_addr = symobj->get_output_section_offset(shndx);
4279 gold_assert(opd_addr != invalid_address);
4280 opd_addr += symobj->output_section(shndx)->address();
4281 if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
4282 {
4283 Address sec_off;
4284 *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
4285 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
4286 gold_assert(sec_addr != invalid_address);
4287 sec_addr += symobj->output_section(*dest_shndx)->address();
4288 value = sec_addr + sec_off;
4289 }
4290 return value;
4291 }
4292
4293 // Perform a relocation.
4294
4295 template<int size, bool big_endian>
4296 inline bool
4297 Target_powerpc<size, big_endian>::Relocate::relocate(
4298 const Relocate_info<size, big_endian>* relinfo,
4299 Target_powerpc* target,
4300 Output_section* os,
4301 size_t relnum,
4302 const elfcpp::Rela<size, big_endian>& rela,
4303 unsigned int r_type,
4304 const Sized_symbol<size>* gsym,
4305 const Symbol_value<size>* psymval,
4306 unsigned char* view,
4307 Address address,
4308 section_size_type view_size)
4309 {
4310
4311 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
4312 || r_type == elfcpp::R_PPC_PLTREL24)
4313 && gsym != NULL
4314 && strcmp(gsym->name(), "__tls_get_addr") == 0);
4315 enum skip_tls last_tls = this->call_tls_get_addr_;
4316 this->call_tls_get_addr_ = CALL_NOT_EXPECTED;
4317 if (is_tls_call)
4318 {
4319 if (last_tls == CALL_NOT_EXPECTED)
4320 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4321 _("__tls_get_addr call lacks marker reloc"));
4322 else if (last_tls == CALL_SKIP)
4323 return false;
4324 }
4325 else if (last_tls != CALL_NOT_EXPECTED)
4326 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4327 _("missing expected __tls_get_addr call"));
4328
4329 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
4330 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
4331 Powerpc_relobj<size, big_endian>* const object
4332 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
4333 Address value = 0;
4334 bool has_plt_value = false;
4335 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4336 if (gsym != NULL
4337 ? use_plt_offset<size>(gsym, Scan::get_reference_flags(r_type))
4338 : object->local_has_plt_offset(r_sym))
4339 {
4340 const Output_data_glink<size, big_endian>* glink
4341 = target->glink_section();
4342 unsigned int glink_index;
4343 if (gsym != NULL)
4344 glink_index = glink->find_entry(object, gsym, rela);
4345 else
4346 glink_index = glink->find_entry(object, r_sym, rela);
4347 value = glink->address() + glink_index * glink->glink_entry_size();
4348 has_plt_value = true;
4349 }
4350
4351 if (r_type == elfcpp::R_POWERPC_GOT16
4352 || r_type == elfcpp::R_POWERPC_GOT16_LO
4353 || r_type == elfcpp::R_POWERPC_GOT16_HI
4354 || r_type == elfcpp::R_POWERPC_GOT16_HA
4355 || r_type == elfcpp::R_PPC64_GOT16_DS
4356 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
4357 {
4358 if (gsym != NULL)
4359 {
4360 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
4361 value = gsym->got_offset(GOT_TYPE_STANDARD);
4362 }
4363 else
4364 {
4365 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4366 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
4367 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
4368 }
4369 value -= target->got_section()->got_base_offset(object);
4370 }
4371 else if (r_type == elfcpp::R_PPC64_TOC)
4372 {
4373 value = (target->got_section()->output_section()->address()
4374 + object->toc_base_offset());
4375 }
4376 else if (gsym != NULL
4377 && (r_type == elfcpp::R_POWERPC_REL24
4378 || r_type == elfcpp::R_PPC_PLTREL24)
4379 && has_plt_value)
4380 {
4381 if (size == 64)
4382 {
4383 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
4384 Valtype* wv = reinterpret_cast<Valtype*>(view);
4385 bool can_plt_call = false;
4386 if (rela.get_r_offset() + 8 <= view_size)
4387 {
4388 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
4389 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
4390 if ((insn & 1) != 0
4391 && (insn2 == nop
4392 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
4393 {
4394 elfcpp::Swap<32, big_endian>::writeval(wv + 1, ld_2_1 + 40);
4395 can_plt_call = true;
4396 }
4397 }
4398 if (!can_plt_call)
4399 {
4400 // If we don't have a branch and link followed by a nop,
4401 // we can't go via the plt because there is no place to
4402 // put a toc restoring instruction.
4403 // Unless we know we won't be returning.
4404 if (strcmp(gsym->name(), "__libc_start_main") == 0)
4405 can_plt_call = true;
4406 }
4407 if (!can_plt_call)
4408 {
4409 // This is not an error in one special case: A self
4410 // call. It isn't possible to cheaply verify we have
4411 // such a call so just check for a call to the same
4412 // section.
4413 bool ok = false;
4414 Address code = value;
4415 if (gsym->source() == Symbol::FROM_OBJECT
4416 && gsym->object() == object)
4417 {
4418 Address addend = rela.get_r_addend();
4419 unsigned int dest_shndx;
4420 Address opdent = psymval->value(object, addend);
4421 code = target->symval_for_branch(opdent, gsym, object,
4422 &dest_shndx);
4423 bool is_ordinary;
4424 if (dest_shndx == 0)
4425 dest_shndx = gsym->shndx(&is_ordinary);
4426 ok = dest_shndx == relinfo->data_shndx;
4427 }
4428 if (!ok)
4429 {
4430 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4431 _("call lacks nop, can't restore toc; "
4432 "recompile with -fPIC"));
4433 value = code;
4434 }
4435 }
4436 }
4437 }
4438 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
4439 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
4440 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
4441 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
4442 {
4443 // First instruction of a global dynamic sequence, arg setup insn.
4444 const bool final = gsym == NULL || gsym->final_value_is_known();
4445 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
4446 enum Got_type got_type = GOT_TYPE_STANDARD;
4447 if (tls_type == tls::TLSOPT_NONE)
4448 got_type = GOT_TYPE_TLSGD;
4449 else if (tls_type == tls::TLSOPT_TO_IE)
4450 got_type = GOT_TYPE_TPREL;
4451 if (got_type != GOT_TYPE_STANDARD)
4452 {
4453 if (gsym != NULL)
4454 {
4455 gold_assert(gsym->has_got_offset(got_type));
4456 value = gsym->got_offset(got_type);
4457 }
4458 else
4459 {
4460 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4461 gold_assert(object->local_has_got_offset(r_sym, got_type));
4462 value = object->local_got_offset(r_sym, got_type);
4463 }
4464 value -= target->got_section()->got_base_offset(object);
4465 }
4466 if (tls_type == tls::TLSOPT_TO_IE)
4467 {
4468 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
4469 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
4470 {
4471 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
4472 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
4473 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
4474 if (size == 32)
4475 insn |= 32 << 26; // lwz
4476 else
4477 insn |= 58 << 26; // ld
4478 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4479 }
4480 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
4481 - elfcpp::R_POWERPC_GOT_TLSGD16);
4482 }
4483 else if (tls_type == tls::TLSOPT_TO_LE)
4484 {
4485 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
4486 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
4487 {
4488 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
4489 Insn insn = addis_3_13;
4490 if (size == 32)
4491 insn = addis_3_2;
4492 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4493 r_type = elfcpp::R_POWERPC_TPREL16_HA;
4494 value = psymval->value(object, rela.get_r_addend());
4495 }
4496 else
4497 {
4498 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
4499 Insn insn = nop;
4500 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4501 r_type = elfcpp::R_POWERPC_NONE;
4502 }
4503 }
4504 }
4505 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
4506 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
4507 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
4508 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
4509 {
4510 // First instruction of a local dynamic sequence, arg setup insn.
4511 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
4512 if (tls_type == tls::TLSOPT_NONE)
4513 {
4514 value = target->tlsld_got_offset();
4515 value -= target->got_section()->got_base_offset(object);
4516 }
4517 else
4518 {
4519 gold_assert(tls_type == tls::TLSOPT_TO_LE);
4520 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
4521 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
4522 {
4523 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
4524 Insn insn = addis_3_13;
4525 if (size == 32)
4526 insn = addis_3_2;
4527 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4528 r_type = elfcpp::R_POWERPC_TPREL16_HA;
4529 value = dtp_offset;
4530 }
4531 else
4532 {
4533 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
4534 Insn insn = nop;
4535 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4536 r_type = elfcpp::R_POWERPC_NONE;
4537 }
4538 }
4539 }
4540 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
4541 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
4542 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
4543 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
4544 {
4545 // Accesses relative to a local dynamic sequence address,
4546 // no optimisation here.
4547 if (gsym != NULL)
4548 {
4549 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
4550 value = gsym->got_offset(GOT_TYPE_DTPREL);
4551 }
4552 else
4553 {
4554 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4555 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
4556 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
4557 }
4558 value -= target->got_section()->got_base_offset(object);
4559 }
4560 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
4561 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
4562 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
4563 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
4564 {
4565 // First instruction of initial exec sequence.
4566 const bool final = gsym == NULL || gsym->final_value_is_known();
4567 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
4568 if (tls_type == tls::TLSOPT_NONE)
4569 {
4570 if (gsym != NULL)
4571 {
4572 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
4573 value = gsym->got_offset(GOT_TYPE_TPREL);
4574 }
4575 else
4576 {
4577 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4578 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
4579 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
4580 }
4581 value -= target->got_section()->got_base_offset(object);
4582 }
4583 else
4584 {
4585 gold_assert(tls_type == tls::TLSOPT_TO_LE);
4586 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
4587 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
4588 {
4589 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
4590 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
4591 insn &= (1 << 26) - (1 << 21); // extract rt from ld
4592 if (size == 32)
4593 insn |= addis_0_2;
4594 else
4595 insn |= addis_0_13;
4596 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4597 r_type = elfcpp::R_POWERPC_TPREL16_HA;
4598 value = psymval->value(object, rela.get_r_addend());
4599 }
4600 else
4601 {
4602 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
4603 Insn insn = nop;
4604 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4605 r_type = elfcpp::R_POWERPC_NONE;
4606 }
4607 }
4608 }
4609 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
4610 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
4611 {
4612 // Second instruction of a global dynamic sequence,
4613 // the __tls_get_addr call
4614 this->call_tls_get_addr_ = CALL_EXPECTED;
4615 const bool final = gsym == NULL || gsym->final_value_is_known();
4616 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
4617 if (tls_type != tls::TLSOPT_NONE)
4618 {
4619 if (tls_type == tls::TLSOPT_TO_IE)
4620 {
4621 Insn* iview = reinterpret_cast<Insn*>(view);
4622 Insn insn = add_3_3_13;
4623 if (size == 32)
4624 insn = add_3_3_2;
4625 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4626 r_type = elfcpp::R_POWERPC_NONE;
4627 }
4628 else
4629 {
4630 Insn* iview = reinterpret_cast<Insn*>(view);
4631 Insn insn = addi_3_3;
4632 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4633 r_type = elfcpp::R_POWERPC_TPREL16_LO;
4634 view += 2 * big_endian;
4635 value = psymval->value(object, rela.get_r_addend());
4636 }
4637 this->call_tls_get_addr_ = CALL_SKIP;
4638 }
4639 }
4640 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
4641 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
4642 {
4643 // Second instruction of a local dynamic sequence,
4644 // the __tls_get_addr call
4645 this->call_tls_get_addr_ = CALL_EXPECTED;
4646 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
4647 if (tls_type == tls::TLSOPT_TO_LE)
4648 {
4649 Insn* iview = reinterpret_cast<Insn*>(view);
4650 Insn insn = addi_3_3;
4651 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4652 this->call_tls_get_addr_ = CALL_SKIP;
4653 r_type = elfcpp::R_POWERPC_TPREL16_LO;
4654 view += 2 * big_endian;
4655 value = dtp_offset;
4656 }
4657 }
4658 else if (r_type == elfcpp::R_POWERPC_TLS)
4659 {
4660 // Second instruction of an initial exec sequence
4661 const bool final = gsym == NULL || gsym->final_value_is_known();
4662 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
4663 if (tls_type == tls::TLSOPT_TO_LE)
4664 {
4665 Insn* iview = reinterpret_cast<Insn*>(view);
4666 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
4667 unsigned int reg = size == 32 ? 2 : 13;
4668 insn = at_tls_transform(insn, reg);
4669 gold_assert(insn != 0);
4670 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4671 r_type = elfcpp::R_POWERPC_TPREL16_LO;
4672 view += 2 * big_endian;
4673 value = psymval->value(object, rela.get_r_addend());
4674 }
4675 }
4676 else if (!has_plt_value)
4677 {
4678 Address addend = 0;
4679 unsigned int dest_shndx;
4680 if (r_type != elfcpp::R_PPC_PLTREL24)
4681 addend = rela.get_r_addend();
4682 value = psymval->value(object, addend);
4683 if (size == 64 && is_branch_reloc(r_type))
4684 value = target->symval_for_branch(value, gsym, object, &dest_shndx);
4685 }
4686
4687 switch (r_type)
4688 {
4689 case elfcpp::R_PPC64_REL64:
4690 case elfcpp::R_POWERPC_REL32:
4691 case elfcpp::R_POWERPC_REL24:
4692 case elfcpp::R_PPC_PLTREL24:
4693 case elfcpp::R_PPC_LOCAL24PC:
4694 case elfcpp::R_POWERPC_REL16:
4695 case elfcpp::R_POWERPC_REL16_LO:
4696 case elfcpp::R_POWERPC_REL16_HI:
4697 case elfcpp::R_POWERPC_REL16_HA:
4698 case elfcpp::R_POWERPC_REL14:
4699 case elfcpp::R_POWERPC_REL14_BRTAKEN:
4700 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4701 value -= address;
4702 break;
4703
4704 case elfcpp::R_PPC64_TOC16:
4705 case elfcpp::R_PPC64_TOC16_LO:
4706 case elfcpp::R_PPC64_TOC16_HI:
4707 case elfcpp::R_PPC64_TOC16_HA:
4708 case elfcpp::R_PPC64_TOC16_DS:
4709 case elfcpp::R_PPC64_TOC16_LO_DS:
4710 // Subtract the TOC base address.
4711 value -= (target->got_section()->output_section()->address()
4712 + object->toc_base_offset());
4713 break;
4714
4715 case elfcpp::R_POWERPC_SECTOFF:
4716 case elfcpp::R_POWERPC_SECTOFF_LO:
4717 case elfcpp::R_POWERPC_SECTOFF_HI:
4718 case elfcpp::R_POWERPC_SECTOFF_HA:
4719 case elfcpp::R_PPC64_SECTOFF_DS:
4720 case elfcpp::R_PPC64_SECTOFF_LO_DS:
4721 if (os != NULL)
4722 value -= os->address();
4723 break;
4724
4725 case elfcpp::R_PPC64_TPREL16_DS:
4726 case elfcpp::R_PPC64_TPREL16_LO_DS:
4727 if (size != 64)
4728 // R_PPC_TLSGD and R_PPC_TLSLD
4729 break;
4730 case elfcpp::R_POWERPC_TPREL16:
4731 case elfcpp::R_POWERPC_TPREL16_LO:
4732 case elfcpp::R_POWERPC_TPREL16_HI:
4733 case elfcpp::R_POWERPC_TPREL16_HA:
4734 case elfcpp::R_POWERPC_TPREL:
4735 case elfcpp::R_PPC64_TPREL16_HIGHER:
4736 case elfcpp::R_PPC64_TPREL16_HIGHERA:
4737 case elfcpp::R_PPC64_TPREL16_HIGHEST:
4738 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
4739 // tls symbol values are relative to tls_segment()->vaddr()
4740 value -= tp_offset;
4741 break;
4742
4743 case elfcpp::R_PPC64_DTPREL16_DS:
4744 case elfcpp::R_PPC64_DTPREL16_LO_DS:
4745 case elfcpp::R_PPC64_DTPREL16_HIGHER:
4746 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
4747 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
4748 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
4749 if (size != 64)
4750 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
4751 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
4752 break;
4753 case elfcpp::R_POWERPC_DTPREL16:
4754 case elfcpp::R_POWERPC_DTPREL16_LO:
4755 case elfcpp::R_POWERPC_DTPREL16_HI:
4756 case elfcpp::R_POWERPC_DTPREL16_HA:
4757 case elfcpp::R_POWERPC_DTPREL:
4758 // tls symbol values are relative to tls_segment()->vaddr()
4759 value -= dtp_offset;
4760 break;
4761
4762 default:
4763 break;
4764 }
4765
4766 Insn branch_bit = 0;
4767 switch (r_type)
4768 {
4769 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4770 case elfcpp::R_POWERPC_REL14_BRTAKEN:
4771 branch_bit = 1 << 21;
4772 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4773 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4774 {
4775 Insn* iview = reinterpret_cast<Insn*>(view);
4776 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
4777 insn &= ~(1 << 21);
4778 insn |= branch_bit;
4779 if (this->is_isa_v2)
4780 {
4781 // Set 'a' bit. This is 0b00010 in BO field for branch
4782 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
4783 // for branch on CTR insns (BO == 1a00t or 1a01t).
4784 if ((insn & (0x14 << 21)) == (0x04 << 21))
4785 insn |= 0x02 << 21;
4786 else if ((insn & (0x14 << 21)) == (0x10 << 21))
4787 insn |= 0x08 << 21;
4788 else
4789 break;
4790 }
4791 else
4792 {
4793 // Invert 'y' bit if not the default.
4794 if (static_cast<Signed_address>(value) < 0)
4795 insn ^= 1 << 21;
4796 }
4797 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4798 }
4799 break;
4800
4801 default:
4802 break;
4803 }
4804
4805 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
4806 switch (r_type)
4807 {
4808 case elfcpp::R_POWERPC_ADDR32:
4809 case elfcpp::R_POWERPC_UADDR32:
4810 if (size == 64)
4811 overflow = Reloc::CHECK_BITFIELD;
4812 break;
4813
4814 case elfcpp::R_POWERPC_REL32:
4815 if (size == 64)
4816 overflow = Reloc::CHECK_SIGNED;
4817 break;
4818
4819 case elfcpp::R_POWERPC_ADDR24:
4820 case elfcpp::R_POWERPC_ADDR16:
4821 case elfcpp::R_POWERPC_UADDR16:
4822 case elfcpp::R_PPC64_ADDR16_DS:
4823 case elfcpp::R_POWERPC_ADDR14:
4824 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4825 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4826 overflow = Reloc::CHECK_BITFIELD;
4827 break;
4828
4829 case elfcpp::R_POWERPC_REL24:
4830 case elfcpp::R_PPC_PLTREL24:
4831 case elfcpp::R_PPC_LOCAL24PC:
4832 case elfcpp::R_POWERPC_REL16:
4833 case elfcpp::R_PPC64_TOC16:
4834 case elfcpp::R_POWERPC_GOT16:
4835 case elfcpp::R_POWERPC_SECTOFF:
4836 case elfcpp::R_POWERPC_TPREL16:
4837 case elfcpp::R_POWERPC_DTPREL16:
4838 case elfcpp::R_PPC64_TPREL16_DS:
4839 case elfcpp::R_PPC64_DTPREL16_DS:
4840 case elfcpp::R_PPC64_TOC16_DS:
4841 case elfcpp::R_PPC64_GOT16_DS:
4842 case elfcpp::R_PPC64_SECTOFF_DS:
4843 case elfcpp::R_POWERPC_REL14:
4844 case elfcpp::R_POWERPC_REL14_BRTAKEN:
4845 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4846 case elfcpp::R_POWERPC_GOT_TLSGD16:
4847 case elfcpp::R_POWERPC_GOT_TLSLD16:
4848 case elfcpp::R_POWERPC_GOT_TPREL16:
4849 case elfcpp::R_POWERPC_GOT_DTPREL16:
4850 overflow = Reloc::CHECK_SIGNED;
4851 break;
4852 }
4853
4854 typename Powerpc_relocate_functions<size, big_endian>::Status status
4855 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
4856 switch (r_type)
4857 {
4858 case elfcpp::R_POWERPC_NONE:
4859 case elfcpp::R_POWERPC_TLS:
4860 case elfcpp::R_POWERPC_GNU_VTINHERIT:
4861 case elfcpp::R_POWERPC_GNU_VTENTRY:
4862 case elfcpp::R_PPC_EMB_MRKREF:
4863 break;
4864
4865 case elfcpp::R_PPC64_ADDR64:
4866 case elfcpp::R_PPC64_REL64:
4867 case elfcpp::R_PPC64_TOC:
4868 Reloc::addr64(view, value);
4869 break;
4870
4871 case elfcpp::R_POWERPC_TPREL:
4872 case elfcpp::R_POWERPC_DTPREL:
4873 if (size == 64)
4874 Reloc::addr64(view, value);
4875 else
4876 status = Reloc::addr32(view, value, overflow);
4877 break;
4878
4879 case elfcpp::R_PPC64_UADDR64:
4880 Reloc::addr64_u(view, value);
4881 break;
4882
4883 case elfcpp::R_POWERPC_ADDR32:
4884 status = Reloc::addr32(view, value, overflow);
4885 break;
4886
4887 case elfcpp::R_POWERPC_REL32:
4888 case elfcpp::R_POWERPC_UADDR32:
4889 status = Reloc::addr32_u(view, value, overflow);
4890 break;
4891
4892 case elfcpp::R_POWERPC_ADDR24:
4893 case elfcpp::R_POWERPC_REL24:
4894 case elfcpp::R_PPC_PLTREL24:
4895 case elfcpp::R_PPC_LOCAL24PC:
4896 status = Reloc::addr24(view, value, overflow);
4897 break;
4898
4899 case elfcpp::R_POWERPC_GOT_DTPREL16:
4900 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
4901 if (size == 64)
4902 {
4903 status = Reloc::addr16_ds(view, value, overflow);
4904 break;
4905 }
4906 case elfcpp::R_POWERPC_ADDR16:
4907 case elfcpp::R_POWERPC_REL16:
4908 case elfcpp::R_PPC64_TOC16:
4909 case elfcpp::R_POWERPC_GOT16:
4910 case elfcpp::R_POWERPC_SECTOFF:
4911 case elfcpp::R_POWERPC_TPREL16:
4912 case elfcpp::R_POWERPC_DTPREL16:
4913 case elfcpp::R_POWERPC_GOT_TLSGD16:
4914 case elfcpp::R_POWERPC_GOT_TLSLD16:
4915 case elfcpp::R_POWERPC_GOT_TPREL16:
4916 case elfcpp::R_POWERPC_ADDR16_LO:
4917 case elfcpp::R_POWERPC_REL16_LO:
4918 case elfcpp::R_PPC64_TOC16_LO:
4919 case elfcpp::R_POWERPC_GOT16_LO:
4920 case elfcpp::R_POWERPC_SECTOFF_LO:
4921 case elfcpp::R_POWERPC_TPREL16_LO:
4922 case elfcpp::R_POWERPC_DTPREL16_LO:
4923 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
4924 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
4925 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
4926 status = Reloc::addr16(view, value, overflow);
4927 break;
4928
4929 case elfcpp::R_POWERPC_UADDR16:
4930 status = Reloc::addr16_u(view, value, overflow);
4931 break;
4932
4933 case elfcpp::R_POWERPC_ADDR16_HI:
4934 case elfcpp::R_POWERPC_REL16_HI:
4935 case elfcpp::R_PPC64_TOC16_HI:
4936 case elfcpp::R_POWERPC_GOT16_HI:
4937 case elfcpp::R_POWERPC_SECTOFF_HI:
4938 case elfcpp::R_POWERPC_TPREL16_HI:
4939 case elfcpp::R_POWERPC_DTPREL16_HI:
4940 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
4941 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
4942 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
4943 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
4944 Reloc::addr16_hi(view, value);
4945 break;
4946
4947 case elfcpp::R_POWERPC_ADDR16_HA:
4948 case elfcpp::R_POWERPC_REL16_HA:
4949 case elfcpp::R_PPC64_TOC16_HA:
4950 case elfcpp::R_POWERPC_GOT16_HA:
4951 case elfcpp::R_POWERPC_SECTOFF_HA:
4952 case elfcpp::R_POWERPC_TPREL16_HA:
4953 case elfcpp::R_POWERPC_DTPREL16_HA:
4954 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
4955 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
4956 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
4957 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
4958 Reloc::addr16_ha(view, value);
4959 break;
4960
4961 case elfcpp::R_PPC64_DTPREL16_HIGHER:
4962 if (size == 32)
4963 // R_PPC_EMB_NADDR16_LO
4964 goto unsupp;
4965 case elfcpp::R_PPC64_ADDR16_HIGHER:
4966 case elfcpp::R_PPC64_TPREL16_HIGHER:
4967 Reloc::addr16_hi2(view, value);
4968 break;
4969
4970 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
4971 if (size == 32)
4972 // R_PPC_EMB_NADDR16_HI
4973 goto unsupp;
4974 case elfcpp::R_PPC64_ADDR16_HIGHERA:
4975 case elfcpp::R_PPC64_TPREL16_HIGHERA:
4976 Reloc::addr16_ha2(view, value);
4977 break;
4978
4979 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
4980 if (size == 32)
4981 // R_PPC_EMB_NADDR16_HA
4982 goto unsupp;
4983 case elfcpp::R_PPC64_ADDR16_HIGHEST:
4984 case elfcpp::R_PPC64_TPREL16_HIGHEST:
4985 Reloc::addr16_hi3(view, value);
4986 break;
4987
4988 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
4989 if (size == 32)
4990 // R_PPC_EMB_SDAI16
4991 goto unsupp;
4992 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
4993 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
4994 Reloc::addr16_ha3(view, value);
4995 break;
4996
4997 case elfcpp::R_PPC64_DTPREL16_DS:
4998 case elfcpp::R_PPC64_DTPREL16_LO_DS:
4999 if (size == 32)
5000 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
5001 goto unsupp;
5002 case elfcpp::R_PPC64_TPREL16_DS:
5003 case elfcpp::R_PPC64_TPREL16_LO_DS:
5004 if (size == 32)
5005 // R_PPC_TLSGD, R_PPC_TLSLD
5006 break;
5007 case elfcpp::R_PPC64_ADDR16_DS:
5008 case elfcpp::R_PPC64_ADDR16_LO_DS:
5009 case elfcpp::R_PPC64_TOC16_DS:
5010 case elfcpp::R_PPC64_TOC16_LO_DS:
5011 case elfcpp::R_PPC64_GOT16_DS:
5012 case elfcpp::R_PPC64_GOT16_LO_DS:
5013 case elfcpp::R_PPC64_SECTOFF_DS:
5014 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5015 status = Reloc::addr16_ds(view, value, overflow);
5016 break;
5017
5018 case elfcpp::R_POWERPC_ADDR14:
5019 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5020 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5021 case elfcpp::R_POWERPC_REL14:
5022 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5023 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5024 status = Reloc::addr14(view, value, overflow);
5025 break;
5026
5027 case elfcpp::R_POWERPC_COPY:
5028 case elfcpp::R_POWERPC_GLOB_DAT:
5029 case elfcpp::R_POWERPC_JMP_SLOT:
5030 case elfcpp::R_POWERPC_RELATIVE:
5031 case elfcpp::R_POWERPC_DTPMOD:
5032 case elfcpp::R_PPC64_JMP_IREL:
5033 case elfcpp::R_POWERPC_IRELATIVE:
5034 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5035 _("unexpected reloc %u in object file"),
5036 r_type);
5037 break;
5038
5039 case elfcpp::R_PPC_EMB_SDA21:
5040 if (size == 32)
5041 goto unsupp;
5042 else
5043 {
5044 // R_PPC64_TOCSAVE. For the time being this can be ignored.
5045 }
5046 break;
5047
5048 case elfcpp::R_PPC_EMB_SDA2I16:
5049 case elfcpp::R_PPC_EMB_SDA2REL:
5050 if (size == 32)
5051 goto unsupp;
5052 // R_PPC64_TLSGD, R_PPC64_TLSLD
5053 break;
5054
5055 case elfcpp::R_POWERPC_PLT32:
5056 case elfcpp::R_POWERPC_PLTREL32:
5057 case elfcpp::R_POWERPC_PLT16_LO:
5058 case elfcpp::R_POWERPC_PLT16_HI:
5059 case elfcpp::R_POWERPC_PLT16_HA:
5060 case elfcpp::R_PPC_SDAREL16:
5061 case elfcpp::R_POWERPC_ADDR30:
5062 case elfcpp::R_PPC64_PLT64:
5063 case elfcpp::R_PPC64_PLTREL64:
5064 case elfcpp::R_PPC64_PLTGOT16:
5065 case elfcpp::R_PPC64_PLTGOT16_LO:
5066 case elfcpp::R_PPC64_PLTGOT16_HI:
5067 case elfcpp::R_PPC64_PLTGOT16_HA:
5068 case elfcpp::R_PPC64_PLT16_LO_DS:
5069 case elfcpp::R_PPC64_PLTGOT16_DS:
5070 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
5071 case elfcpp::R_PPC_EMB_RELSEC16:
5072 case elfcpp::R_PPC_EMB_RELST_LO:
5073 case elfcpp::R_PPC_EMB_RELST_HI:
5074 case elfcpp::R_PPC_EMB_RELST_HA:
5075 case elfcpp::R_PPC_EMB_BIT_FLD:
5076 case elfcpp::R_PPC_EMB_RELSDA:
5077 case elfcpp::R_PPC_TOC16:
5078 default:
5079 unsupp:
5080 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5081 _("unsupported reloc %u"),
5082 r_type);
5083 break;
5084 }
5085 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
5086 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5087 _("relocation overflow"));
5088
5089 return true;
5090 }
5091
5092 // Relocate section data.
5093
5094 template<int size, bool big_endian>
5095 void
5096 Target_powerpc<size, big_endian>::relocate_section(
5097 const Relocate_info<size, big_endian>* relinfo,
5098 unsigned int sh_type,
5099 const unsigned char* prelocs,
5100 size_t reloc_count,
5101 Output_section* output_section,
5102 bool needs_special_offset_handling,
5103 unsigned char* view,
5104 Address address,
5105 section_size_type view_size,
5106 const Reloc_symbol_changes* reloc_symbol_changes)
5107 {
5108 typedef Target_powerpc<size, big_endian> Powerpc;
5109 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
5110 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
5111 Powerpc_comdat_behavior;
5112
5113 gold_assert(sh_type == elfcpp::SHT_RELA);
5114
5115 gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
5116 Powerpc_relocate, Powerpc_comdat_behavior>(
5117 relinfo,
5118 this,
5119 prelocs,
5120 reloc_count,
5121 output_section,
5122 needs_special_offset_handling,
5123 view,
5124 address,
5125 view_size,
5126 reloc_symbol_changes);
5127 }
5128
5129 class Powerpc_scan_relocatable_reloc
5130 {
5131 public:
5132 // Return the strategy to use for a local symbol which is not a
5133 // section symbol, given the relocation type.
5134 inline Relocatable_relocs::Reloc_strategy
5135 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
5136 {
5137 if (r_type == 0 && r_sym == 0)
5138 return Relocatable_relocs::RELOC_DISCARD;
5139 return Relocatable_relocs::RELOC_COPY;
5140 }
5141
5142 // Return the strategy to use for a local symbol which is a section
5143 // symbol, given the relocation type.
5144 inline Relocatable_relocs::Reloc_strategy
5145 local_section_strategy(unsigned int, Relobj*)
5146 {
5147 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
5148 }
5149
5150 // Return the strategy to use for a global symbol, given the
5151 // relocation type, the object, and the symbol index.
5152 inline Relocatable_relocs::Reloc_strategy
5153 global_strategy(unsigned int r_type, Relobj*, unsigned int)
5154 {
5155 if (r_type == elfcpp::R_PPC_PLTREL24)
5156 return Relocatable_relocs::RELOC_SPECIAL;
5157 return Relocatable_relocs::RELOC_COPY;
5158 }
5159 };
5160
5161 // Scan the relocs during a relocatable link.
5162
5163 template<int size, bool big_endian>
5164 void
5165 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
5166 Symbol_table* symtab,
5167 Layout* layout,
5168 Sized_relobj_file<size, big_endian>* object,
5169 unsigned int data_shndx,
5170 unsigned int sh_type,
5171 const unsigned char* prelocs,
5172 size_t reloc_count,
5173 Output_section* output_section,
5174 bool needs_special_offset_handling,
5175 size_t local_symbol_count,
5176 const unsigned char* plocal_symbols,
5177 Relocatable_relocs* rr)
5178 {
5179 gold_assert(sh_type == elfcpp::SHT_RELA);
5180
5181 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
5182 Powerpc_scan_relocatable_reloc>(
5183 symtab,
5184 layout,
5185 object,
5186 data_shndx,
5187 prelocs,
5188 reloc_count,
5189 output_section,
5190 needs_special_offset_handling,
5191 local_symbol_count,
5192 plocal_symbols,
5193 rr);
5194 }
5195
5196 // Emit relocations for a section.
5197 // This is a modified version of the function by the same name in
5198 // target-reloc.h. Using relocate_special_relocatable for
5199 // R_PPC_PLTREL24 would require duplication of the entire body of the
5200 // loop, so we may as well duplicate the whole thing.
5201
5202 template<int size, bool big_endian>
5203 void
5204 Target_powerpc<size, big_endian>::relocate_relocs(
5205 const Relocate_info<size, big_endian>* relinfo,
5206 unsigned int sh_type,
5207 const unsigned char* prelocs,
5208 size_t reloc_count,
5209 Output_section* output_section,
5210 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
5211 const Relocatable_relocs* rr,
5212 unsigned char*,
5213 Address view_address,
5214 section_size_type,
5215 unsigned char* reloc_view,
5216 section_size_type reloc_view_size)
5217 {
5218 gold_assert(sh_type == elfcpp::SHT_RELA);
5219
5220 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
5221 Reltype;
5222 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
5223 Reltype_write;
5224 const int reloc_size
5225 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
5226
5227 Powerpc_relobj<size, big_endian>* const object
5228 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
5229 const unsigned int local_count = object->local_symbol_count();
5230 unsigned int got2_shndx = object->got2_shndx();
5231 Address got2_addend = 0;
5232 if (got2_shndx != 0)
5233 {
5234 got2_addend = object->get_output_section_offset(got2_shndx);
5235 gold_assert(got2_addend != invalid_address);
5236 }
5237
5238 unsigned char* pwrite = reloc_view;
5239 bool zap_next = false;
5240 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
5241 {
5242 Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
5243 if (strategy == Relocatable_relocs::RELOC_DISCARD)
5244 continue;
5245
5246 Reltype reloc(prelocs);
5247 Reltype_write reloc_write(pwrite);
5248
5249 Address offset = reloc.get_r_offset();
5250 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
5251 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
5252 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
5253 const unsigned int orig_r_sym = r_sym;
5254 typename elfcpp::Elf_types<size>::Elf_Swxword addend
5255 = reloc.get_r_addend();
5256 const Symbol* gsym = NULL;
5257
5258 if (zap_next)
5259 {
5260 // We could arrange to discard these and other relocs for
5261 // tls optimised sequences in the strategy methods, but for
5262 // now do as BFD ld does.
5263 r_type = elfcpp::R_POWERPC_NONE;
5264 zap_next = false;
5265 }
5266
5267 // Get the new symbol index.
5268 if (r_sym < local_count)
5269 {
5270 switch (strategy)
5271 {
5272 case Relocatable_relocs::RELOC_COPY:
5273 case Relocatable_relocs::RELOC_SPECIAL:
5274 if (r_sym != 0)
5275 {
5276 r_sym = object->symtab_index(r_sym);
5277 gold_assert(r_sym != -1U);
5278 }
5279 break;
5280
5281 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
5282 {
5283 // We are adjusting a section symbol. We need to find
5284 // the symbol table index of the section symbol for
5285 // the output section corresponding to input section
5286 // in which this symbol is defined.
5287 gold_assert(r_sym < local_count);
5288 bool is_ordinary;
5289 unsigned int shndx =
5290 object->local_symbol_input_shndx(r_sym, &is_ordinary);
5291 gold_assert(is_ordinary);
5292 Output_section* os = object->output_section(shndx);
5293 gold_assert(os != NULL);
5294 gold_assert(os->needs_symtab_index());
5295 r_sym = os->symtab_index();
5296 }
5297 break;
5298
5299 default:
5300 gold_unreachable();
5301 }
5302 }
5303 else
5304 {
5305 gsym = object->global_symbol(r_sym);
5306 gold_assert(gsym != NULL);
5307 if (gsym->is_forwarder())
5308 gsym = relinfo->symtab->resolve_forwards(gsym);
5309
5310 gold_assert(gsym->has_symtab_index());
5311 r_sym = gsym->symtab_index();
5312 }
5313
5314 // Get the new offset--the location in the output section where
5315 // this relocation should be applied.
5316 if (static_cast<Address>(offset_in_output_section) != invalid_address)
5317 offset += offset_in_output_section;
5318 else
5319 {
5320 section_offset_type sot_offset =
5321 convert_types<section_offset_type, Address>(offset);
5322 section_offset_type new_sot_offset =
5323 output_section->output_offset(object, relinfo->data_shndx,
5324 sot_offset);
5325 gold_assert(new_sot_offset != -1);
5326 offset = new_sot_offset;
5327 }
5328
5329 // In an object file, r_offset is an offset within the section.
5330 // In an executable or dynamic object, generated by
5331 // --emit-relocs, r_offset is an absolute address.
5332 if (!parameters->options().relocatable())
5333 {
5334 offset += view_address;
5335 if (static_cast<Address>(offset_in_output_section) != invalid_address)
5336 offset -= offset_in_output_section;
5337 }
5338
5339 // Handle the reloc addend based on the strategy.
5340 if (strategy == Relocatable_relocs::RELOC_COPY)
5341 ;
5342 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
5343 {
5344 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
5345 addend = psymval->value(object, addend);
5346 }
5347 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
5348 {
5349 if (addend >= 32768)
5350 addend += got2_addend;
5351 }
5352 else
5353 gold_unreachable();
5354
5355 if (!parameters->options().relocatable())
5356 {
5357 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
5358 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
5359 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
5360 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
5361 {
5362 // First instruction of a global dynamic sequence,
5363 // arg setup insn.
5364 const bool final = gsym == NULL || gsym->final_value_is_known();
5365 switch (this->optimize_tls_gd(final))
5366 {
5367 case tls::TLSOPT_TO_IE:
5368 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
5369 - elfcpp::R_POWERPC_GOT_TLSGD16);
5370 break;
5371 case tls::TLSOPT_TO_LE:
5372 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
5373 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
5374 r_type = elfcpp::R_POWERPC_TPREL16_HA;
5375 else
5376 {
5377 r_type = elfcpp::R_POWERPC_NONE;
5378 offset -= 2 * big_endian;
5379 }
5380 break;
5381 default:
5382 break;
5383 }
5384 }
5385 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
5386 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
5387 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
5388 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
5389 {
5390 // First instruction of a local dynamic sequence,
5391 // arg setup insn.
5392 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
5393 {
5394 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
5395 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
5396 {
5397 r_type = elfcpp::R_POWERPC_TPREL16_HA;
5398 const Output_section* os = relinfo->layout->tls_segment()
5399 ->first_section();
5400 gold_assert(os != NULL);
5401 gold_assert(os->needs_symtab_index());
5402 r_sym = os->symtab_index();
5403 addend = dtp_offset;
5404 }
5405 else
5406 {
5407 r_type = elfcpp::R_POWERPC_NONE;
5408 offset -= 2 * big_endian;
5409 }
5410 }
5411 }
5412 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
5413 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
5414 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
5415 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
5416 {
5417 // First instruction of initial exec sequence.
5418 const bool final = gsym == NULL || gsym->final_value_is_known();
5419 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
5420 {
5421 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
5422 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
5423 r_type = elfcpp::R_POWERPC_TPREL16_HA;
5424 else
5425 {
5426 r_type = elfcpp::R_POWERPC_NONE;
5427 offset -= 2 * big_endian;
5428 }
5429 }
5430 }
5431 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5432 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5433 {
5434 // Second instruction of a global dynamic sequence,
5435 // the __tls_get_addr call
5436 const bool final = gsym == NULL || gsym->final_value_is_known();
5437 switch (this->optimize_tls_gd(final))
5438 {
5439 case tls::TLSOPT_TO_IE:
5440 r_type = elfcpp::R_POWERPC_NONE;
5441 zap_next = true;
5442 break;
5443 case tls::TLSOPT_TO_LE:
5444 r_type = elfcpp::R_POWERPC_TPREL16_LO;
5445 offset += 2 * big_endian;
5446 zap_next = true;
5447 break;
5448 default:
5449 break;
5450 }
5451 }
5452 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5453 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5454 {
5455 // Second instruction of a local dynamic sequence,
5456 // the __tls_get_addr call
5457 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
5458 {
5459 const Output_section* os = relinfo->layout->tls_segment()
5460 ->first_section();
5461 gold_assert(os != NULL);
5462 gold_assert(os->needs_symtab_index());
5463 r_sym = os->symtab_index();
5464 addend = dtp_offset;
5465 r_type = elfcpp::R_POWERPC_TPREL16_LO;
5466 offset += 2 * big_endian;
5467 zap_next = true;
5468 }
5469 }
5470 else if (r_type == elfcpp::R_POWERPC_TLS)
5471 {
5472 // Second instruction of an initial exec sequence
5473 const bool final = gsym == NULL || gsym->final_value_is_known();
5474 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
5475 {
5476 r_type = elfcpp::R_POWERPC_TPREL16_LO;
5477 offset += 2 * big_endian;
5478 }
5479 }
5480 }
5481
5482 reloc_write.put_r_offset(offset);
5483 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
5484 reloc_write.put_r_addend(addend);
5485
5486 pwrite += reloc_size;
5487 }
5488
5489 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
5490 == reloc_view_size);
5491 }
5492
5493 // Return the value to use for a dynamic which requires special
5494 // treatment. This is how we support equality comparisons of function
5495 // pointers across shared library boundaries, as described in the
5496 // processor specific ABI supplement.
5497
5498 template<int size, bool big_endian>
5499 uint64_t
5500 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
5501 {
5502 if (size == 32)
5503 {
5504 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
5505 const Output_data_glink<size, big_endian>* glink = this->glink_section();
5506 unsigned int glink_index = glink->find_entry(gsym);
5507 return glink->address() + glink_index * glink->glink_entry_size();
5508 }
5509 else
5510 gold_unreachable();
5511 }
5512
5513 // Return the PLT address to use for a local symbol.
5514 template<int size, bool big_endian>
5515 uint64_t
5516 Target_powerpc<size, big_endian>::do_plt_address_for_local(
5517 const Relobj* object,
5518 unsigned int symndx) const
5519 {
5520 if (size == 32)
5521 {
5522 const Sized_relobj<size, big_endian>* relobj
5523 = static_cast<const Sized_relobj<size, big_endian>*>(object);
5524 const Output_data_glink<size, big_endian>* glink = this->glink_section();
5525 unsigned int glink_index = glink->find_entry(relobj->sized_relobj(),
5526 symndx);
5527 return glink->address() + glink_index * glink->glink_entry_size();
5528 }
5529 else
5530 gold_unreachable();
5531 }
5532
5533 // Return the PLT address to use for a global symbol.
5534 template<int size, bool big_endian>
5535 uint64_t
5536 Target_powerpc<size, big_endian>::do_plt_address_for_global(
5537 const Symbol* gsym) const
5538 {
5539 if (size == 32)
5540 {
5541 const Output_data_glink<size, big_endian>* glink = this->glink_section();
5542 unsigned int glink_index = glink->find_entry(gsym);
5543 return glink->address() + glink_index * glink->glink_entry_size();
5544 }
5545 else
5546 gold_unreachable();
5547 }
5548
5549 // Return the offset to use for the GOT_INDX'th got entry which is
5550 // for a local tls symbol specified by OBJECT, SYMNDX.
5551 template<int size, bool big_endian>
5552 int64_t
5553 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
5554 const Relobj* object,
5555 unsigned int symndx,
5556 unsigned int got_indx) const
5557 {
5558 const Powerpc_relobj<size, big_endian>* ppc_object
5559 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
5560 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
5561 {
5562 for (Got_type got_type = GOT_TYPE_TLSGD;
5563 got_type <= GOT_TYPE_TPREL;
5564 got_type = Got_type(got_type + 1))
5565 if (ppc_object->local_has_got_offset(symndx, got_type))
5566 {
5567 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
5568 if (got_type == GOT_TYPE_TLSGD)
5569 off += size / 8;
5570 if (off == got_indx * (size / 8))
5571 {
5572 if (got_type == GOT_TYPE_TPREL)
5573 return -tp_offset;
5574 else
5575 return -dtp_offset;
5576 }
5577 }
5578 }
5579 gold_unreachable();
5580 }
5581
5582 // Return the offset to use for the GOT_INDX'th got entry which is
5583 // for global tls symbol GSYM.
5584 template<int size, bool big_endian>
5585 int64_t
5586 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
5587 Symbol* gsym,
5588 unsigned int got_indx) const
5589 {
5590 if (gsym->type() == elfcpp::STT_TLS)
5591 {
5592 for (Got_type got_type = GOT_TYPE_TLSGD;
5593 got_type <= GOT_TYPE_TPREL;
5594 got_type = Got_type(got_type + 1))
5595 if (gsym->has_got_offset(got_type))
5596 {
5597 unsigned int off = gsym->got_offset(got_type);
5598 if (got_type == GOT_TYPE_TLSGD)
5599 off += size / 8;
5600 if (off == got_indx * (size / 8))
5601 {
5602 if (got_type == GOT_TYPE_TPREL)
5603 return -tp_offset;
5604 else
5605 return -dtp_offset;
5606 }
5607 }
5608 }
5609 gold_unreachable();
5610 }
5611
5612 // The selector for powerpc object files.
5613
5614 template<int size, bool big_endian>
5615 class Target_selector_powerpc : public Target_selector
5616 {
5617 public:
5618 Target_selector_powerpc()
5619 : Target_selector(elfcpp::EM_NONE, size, big_endian,
5620 (size == 64
5621 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
5622 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
5623 (size == 64
5624 ? (big_endian ? "elf64ppc" : "elf64lppc")
5625 : (big_endian ? "elf32ppc" : "elf32lppc")))
5626 { }
5627
5628 virtual Target*
5629 do_recognize(Input_file*, off_t, int machine, int, int)
5630 {
5631 switch (size)
5632 {
5633 case 64:
5634 if (machine != elfcpp::EM_PPC64)
5635 return NULL;
5636 break;
5637
5638 case 32:
5639 if (machine != elfcpp::EM_PPC)
5640 return NULL;
5641 break;
5642
5643 default:
5644 return NULL;
5645 }
5646
5647 return this->instantiate_target();
5648 }
5649
5650 virtual Target*
5651 do_instantiate_target()
5652 { return new Target_powerpc<size, big_endian>(); }
5653 };
5654
5655 Target_selector_powerpc<32, true> target_selector_ppc32;
5656 Target_selector_powerpc<32, false> target_selector_ppc32le;
5657 Target_selector_powerpc<64, true> target_selector_ppc64;
5658 Target_selector_powerpc<64, false> target_selector_ppc64le;
5659
5660 } // End anonymous namespace.
This page took 0.200478 seconds and 5 git commands to generate.