1 // resolve.cc -- symbol resolution for gold
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
34 // Symbol methods used in this file.
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
40 Symbol::override_version(const char* version
)
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_
= version
;
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_
== version
|| this->version_
== NULL
);
62 this->version_
= version
;
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
70 Symbol::override_visibility(elfcpp::STV visibility
)
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility
!= elfcpp::STV_DEFAULT
)
79 if (this->visibility_
== elfcpp::STV_DEFAULT
)
80 this->visibility_
= visibility
;
81 else if (this->visibility_
> visibility
)
82 this->visibility_
= visibility
;
86 // Override the fields in Symbol.
88 template<int size
, bool big_endian
>
90 Symbol::override_base(const elfcpp::Sym
<size
, big_endian
>& sym
,
91 unsigned int st_shndx
, bool is_ordinary
,
92 Object
* object
, const char* version
)
94 gold_assert(this->source_
== FROM_OBJECT
);
95 this->u_
.from_object
.object
= object
;
96 this->override_version(version
);
97 this->u_
.from_object
.shndx
= st_shndx
;
98 this->is_ordinary_shndx_
= is_ordinary
;
99 // Don't override st_type from plugin placeholder symbols.
100 if (object
->pluginobj() == NULL
)
101 this->type_
= sym
.get_st_type();
102 this->binding_
= sym
.get_st_bind();
103 this->override_visibility(sym
.get_st_visibility());
104 this->nonvis_
= sym
.get_st_nonvis();
105 if (object
->is_dynamic())
106 this->in_dyn_
= true;
108 this->in_reg_
= true;
111 // Override the fields in Sized_symbol.
114 template<bool big_endian
>
116 Sized_symbol
<size
>::override(const elfcpp::Sym
<size
, big_endian
>& sym
,
117 unsigned st_shndx
, bool is_ordinary
,
118 Object
* object
, const char* version
)
120 this->override_base(sym
, st_shndx
, is_ordinary
, object
, version
);
121 this->value_
= sym
.get_st_value();
122 this->symsize_
= sym
.get_st_size();
125 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
126 // VERSION. This handles all aliases of TOSYM.
128 template<int size
, bool big_endian
>
130 Symbol_table::override(Sized_symbol
<size
>* tosym
,
131 const elfcpp::Sym
<size
, big_endian
>& fromsym
,
132 unsigned int st_shndx
, bool is_ordinary
,
133 Object
* object
, const char* version
)
135 tosym
->override(fromsym
, st_shndx
, is_ordinary
, object
, version
);
136 if (tosym
->has_alias())
138 Symbol
* sym
= this->weak_aliases_
[tosym
];
139 gold_assert(sym
!= NULL
);
140 Sized_symbol
<size
>* ssym
= this->get_sized_symbol
<size
>(sym
);
143 ssym
->override(fromsym
, st_shndx
, is_ordinary
, object
, version
);
144 sym
= this->weak_aliases_
[ssym
];
145 gold_assert(sym
!= NULL
);
146 ssym
= this->get_sized_symbol
<size
>(sym
);
148 while (ssym
!= tosym
);
152 // The resolve functions build a little code for each symbol.
153 // Bit 0: 0 for global, 1 for weak.
154 // Bit 1: 0 for regular object, 1 for shared object
155 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
156 // This gives us values from 0 to 11.
158 static const int global_or_weak_shift
= 0;
159 static const unsigned int global_flag
= 0 << global_or_weak_shift
;
160 static const unsigned int weak_flag
= 1 << global_or_weak_shift
;
162 static const int regular_or_dynamic_shift
= 1;
163 static const unsigned int regular_flag
= 0 << regular_or_dynamic_shift
;
164 static const unsigned int dynamic_flag
= 1 << regular_or_dynamic_shift
;
166 static const int def_undef_or_common_shift
= 2;
167 static const unsigned int def_flag
= 0 << def_undef_or_common_shift
;
168 static const unsigned int undef_flag
= 1 << def_undef_or_common_shift
;
169 static const unsigned int common_flag
= 2 << def_undef_or_common_shift
;
171 // This convenience function combines all the flags based on facts
175 symbol_to_bits(elfcpp::STB binding
, bool is_dynamic
,
176 unsigned int shndx
, bool is_ordinary
)
182 case elfcpp::STB_GLOBAL
:
183 case elfcpp::STB_GNU_UNIQUE
:
187 case elfcpp::STB_WEAK
:
191 case elfcpp::STB_LOCAL
:
192 // We should only see externally visible symbols in the symbol
194 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
199 // Any target which wants to handle STB_LOOS, etc., needs to
200 // define a resolve method.
201 gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding
));
206 bits
|= dynamic_flag
;
208 bits
|= regular_flag
;
212 case elfcpp::SHN_UNDEF
:
216 case elfcpp::SHN_COMMON
:
222 if (!is_ordinary
&& Symbol::is_common_shndx(shndx
))
232 // Resolve a symbol. This is called the second and subsequent times
233 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
234 // section index for SYM, possibly adjusted for many sections.
235 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
236 // than a special code. ORIG_ST_SHNDX is the original section index,
237 // before any munging because of discarded sections, except that all
238 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
239 // the version of SYM.
241 template<int size
, bool big_endian
>
243 Symbol_table::resolve(Sized_symbol
<size
>* to
,
244 const elfcpp::Sym
<size
, big_endian
>& sym
,
245 unsigned int st_shndx
, bool is_ordinary
,
246 unsigned int orig_st_shndx
,
247 Object
* object
, const char* version
,
248 bool is_default_version
)
250 // It's possible for a symbol to be defined in an object file
251 // using .symver to give it a version, and for there to also be
252 // a linker script giving that symbol the same version. We
253 // don't want to give a multiple-definition error for this
254 // harmless redefinition.
256 if (to
->source() == Symbol::FROM_OBJECT
257 && to
->object() == object
260 && to
->shndx(&to_is_ordinary
) == st_shndx
262 && to
->value() == sym
.get_st_value())
265 if (parameters
->target().has_resolve())
267 Sized_target
<size
, big_endian
>* sized_target
;
268 sized_target
= parameters
->sized_target
<size
, big_endian
>();
269 sized_target
->resolve(to
, sym
, object
, version
);
273 if (!object
->is_dynamic())
275 if (sym
.get_st_type() == elfcpp::STT_COMMON
276 && (is_ordinary
|| !Symbol::is_common_shndx(st_shndx
)))
278 gold_warning(_("STT_COMMON symbol '%s' in %s "
279 "is not in a common section"),
280 to
->demangled_name().c_str(),
281 to
->object()->name().c_str());
284 // Record that we've seen this symbol in a regular object.
287 else if (st_shndx
== elfcpp::SHN_UNDEF
288 && (to
->visibility() == elfcpp::STV_HIDDEN
289 || to
->visibility() == elfcpp::STV_INTERNAL
))
291 // The symbol is hidden, so a reference from a shared object
292 // cannot bind to it. We tried issuing a warning in this case,
293 // but that produces false positives when the symbol is
294 // actually resolved in a different shared object (PR 15574).
299 // Record that we've seen this symbol in a dynamic object.
303 // Record if we've seen this symbol in a real ELF object (i.e., the
304 // symbol is referenced from outside the world known to the plugin).
305 if (object
->pluginobj() == NULL
&& !object
->is_dynamic())
306 to
->set_in_real_elf();
308 // If we're processing replacement files, allow new symbols to override
309 // the placeholders from the plugin objects.
310 // Treat common symbols specially since it is possible that an ELF
311 // file increased the size of the alignment.
312 if (to
->source() == Symbol::FROM_OBJECT
)
314 Pluginobj
* obj
= to
->object()->pluginobj();
316 && parameters
->options().plugins()->in_replacement_phase())
318 bool adjust_common
= false;
319 typename Sized_symbol
<size
>::Size_type tosize
= 0;
320 typename Sized_symbol
<size
>::Value_type tovalue
= 0;
322 && !is_ordinary
&& Symbol::is_common_shndx(st_shndx
))
324 adjust_common
= true;
325 tosize
= to
->symsize();
326 tovalue
= to
->value();
328 this->override(to
, sym
, st_shndx
, is_ordinary
, object
, version
);
331 if (tosize
> to
->symsize())
332 to
->set_symsize(tosize
);
333 if (tovalue
> to
->value())
334 to
->set_value(tovalue
);
340 // A new weak undefined reference, merging with an old weak
341 // reference, could be a One Definition Rule (ODR) violation --
342 // especially if the types or sizes of the references differ. We'll
343 // store such pairs and look them up later to make sure they
344 // actually refer to the same lines of code. We also check
345 // combinations of weak and strong, which might occur if one case is
346 // inline and the other is not. (Note: not all ODR violations can
347 // be found this way, and not everything this finds is an ODR
348 // violation. But it's helpful to warn about.)
349 if (parameters
->options().detect_odr_violations()
350 && (sym
.get_st_bind() == elfcpp::STB_WEAK
351 || to
->binding() == elfcpp::STB_WEAK
)
352 && orig_st_shndx
!= elfcpp::SHN_UNDEF
353 && to
->shndx(&to_is_ordinary
) != elfcpp::SHN_UNDEF
355 && sym
.get_st_size() != 0 // Ignore weird 0-sized symbols.
356 && to
->symsize() != 0
357 && (sym
.get_st_type() != to
->type()
358 || sym
.get_st_size() != to
->symsize())
359 // C does not have a concept of ODR, so we only need to do this
360 // on C++ symbols. These have (mangled) names starting with _Z.
361 && to
->name()[0] == '_' && to
->name()[1] == 'Z')
363 Symbol_location fromloc
364 = { object
, orig_st_shndx
, static_cast<off_t
>(sym
.get_st_value()) };
365 Symbol_location toloc
= { to
->object(), to
->shndx(&to_is_ordinary
),
366 static_cast<off_t
>(to
->value()) };
367 this->candidate_odr_violations_
[to
->name()].insert(fromloc
);
368 this->candidate_odr_violations_
[to
->name()].insert(toloc
);
371 // Plugins don't provide a symbol type, so adopt the existing type
372 // if the FROM symbol is from a plugin.
373 elfcpp::STT fromtype
= (object
->pluginobj() != NULL
375 : sym
.get_st_type());
376 unsigned int frombits
= symbol_to_bits(sym
.get_st_bind(),
377 object
->is_dynamic(),
378 st_shndx
, is_ordinary
);
380 bool adjust_common_sizes
;
382 typename Sized_symbol
<size
>::Size_type tosize
= to
->symsize();
383 if (Symbol_table::should_override(to
, frombits
, fromtype
, OBJECT
,
384 object
, &adjust_common_sizes
,
385 &adjust_dyndef
, is_default_version
))
387 elfcpp::STB tobinding
= to
->binding();
388 typename Sized_symbol
<size
>::Value_type tovalue
= to
->value();
389 this->override(to
, sym
, st_shndx
, is_ordinary
, object
, version
);
390 if (adjust_common_sizes
)
392 if (tosize
> to
->symsize())
393 to
->set_symsize(tosize
);
394 if (tovalue
> to
->value())
395 to
->set_value(tovalue
);
399 // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
400 // Remember which kind of UNDEF it was for future reference.
401 to
->set_undef_binding(tobinding
);
406 if (adjust_common_sizes
)
408 if (sym
.get_st_size() > tosize
)
409 to
->set_symsize(sym
.get_st_size());
410 if (sym
.get_st_value() > to
->value())
411 to
->set_value(sym
.get_st_value());
415 // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
416 // Remember which kind of UNDEF it was.
417 to
->set_undef_binding(sym
.get_st_bind());
419 // The ELF ABI says that even for a reference to a symbol we
420 // merge the visibility.
421 to
->override_visibility(sym
.get_st_visibility());
424 if (adjust_common_sizes
&& parameters
->options().warn_common())
426 if (tosize
> sym
.get_st_size())
427 Symbol_table::report_resolve_problem(false,
428 _("common of '%s' overriding "
431 else if (tosize
< sym
.get_st_size())
432 Symbol_table::report_resolve_problem(false,
433 _("common of '%s' overidden by "
437 Symbol_table::report_resolve_problem(false,
438 _("multiple common of '%s'"),
443 // Handle the core of symbol resolution. This is called with the
444 // existing symbol, TO, and a bitflag describing the new symbol. This
445 // returns true if we should override the existing symbol with the new
446 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
447 // true if we should set the symbol size to the maximum of the TO and
448 // FROM sizes. It handles error conditions.
451 Symbol_table::should_override(const Symbol
* to
, unsigned int frombits
,
452 elfcpp::STT fromtype
, Defined defined
,
453 Object
* object
, bool* adjust_common_sizes
,
454 bool* adjust_dyndef
, bool is_default_version
)
456 *adjust_common_sizes
= false;
457 *adjust_dyndef
= false;
460 if (to
->source() == Symbol::IS_UNDEFINED
)
461 tobits
= symbol_to_bits(to
->binding(), false, elfcpp::SHN_UNDEF
, true);
462 else if (to
->source() != Symbol::FROM_OBJECT
)
463 tobits
= symbol_to_bits(to
->binding(), false, elfcpp::SHN_ABS
, false);
467 unsigned int shndx
= to
->shndx(&is_ordinary
);
468 tobits
= symbol_to_bits(to
->binding(),
469 to
->object()->is_dynamic(),
474 if ((to
->type() == elfcpp::STT_TLS
) ^ (fromtype
== elfcpp::STT_TLS
)
475 && !to
->is_placeholder())
476 Symbol_table::report_resolve_problem(true,
477 _("symbol '%s' used as both __thread "
479 to
, defined
, object
);
481 // We use a giant switch table for symbol resolution. This code is
482 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
483 // cases; 3) it is easy to change the handling of a particular case.
484 // The alternative would be a series of conditionals, but it is easy
485 // to get the ordering wrong. This could also be done as a table,
486 // but that is no easier to understand than this large switch
489 // These are the values generated by the bit codes.
492 DEF
= global_flag
| regular_flag
| def_flag
,
493 WEAK_DEF
= weak_flag
| regular_flag
| def_flag
,
494 DYN_DEF
= global_flag
| dynamic_flag
| def_flag
,
495 DYN_WEAK_DEF
= weak_flag
| dynamic_flag
| def_flag
,
496 UNDEF
= global_flag
| regular_flag
| undef_flag
,
497 WEAK_UNDEF
= weak_flag
| regular_flag
| undef_flag
,
498 DYN_UNDEF
= global_flag
| dynamic_flag
| undef_flag
,
499 DYN_WEAK_UNDEF
= weak_flag
| dynamic_flag
| undef_flag
,
500 COMMON
= global_flag
| regular_flag
| common_flag
,
501 WEAK_COMMON
= weak_flag
| regular_flag
| common_flag
,
502 DYN_COMMON
= global_flag
| dynamic_flag
| common_flag
,
503 DYN_WEAK_COMMON
= weak_flag
| dynamic_flag
| common_flag
506 switch (tobits
* 16 + frombits
)
509 // Two definitions of the same symbol.
511 // If either symbol is defined by an object included using
512 // --just-symbols, then don't warn. This is for compatibility
513 // with the GNU linker. FIXME: This is a hack.
514 if ((to
->source() == Symbol::FROM_OBJECT
&& to
->object()->just_symbols())
515 || (object
!= NULL
&& object
->just_symbols()))
518 if (!parameters
->options().muldefs())
519 Symbol_table::report_resolve_problem(true,
520 _("multiple definition of '%s'"),
521 to
, defined
, object
);
524 case WEAK_DEF
* 16 + DEF
:
525 // We've seen a weak definition, and now we see a strong
526 // definition. In the original SVR4 linker, this was treated as
527 // a multiple definition error. In the Solaris linker and the
528 // GNU linker, a weak definition followed by a regular
529 // definition causes the weak definition to be overridden. We
530 // are currently compatible with the GNU linker. In the future
531 // we should add a target specific option to change this.
535 case DYN_DEF
* 16 + DEF
:
536 case DYN_WEAK_DEF
* 16 + DEF
:
537 // We've seen a definition in a dynamic object, and now we see a
538 // definition in a regular object. The definition in the
539 // regular object overrides the definition in the dynamic
543 case UNDEF
* 16 + DEF
:
544 case WEAK_UNDEF
* 16 + DEF
:
545 case DYN_UNDEF
* 16 + DEF
:
546 case DYN_WEAK_UNDEF
* 16 + DEF
:
547 // We've seen an undefined reference, and now we see a
548 // definition. We use the definition.
551 case COMMON
* 16 + DEF
:
552 case WEAK_COMMON
* 16 + DEF
:
553 case DYN_COMMON
* 16 + DEF
:
554 case DYN_WEAK_COMMON
* 16 + DEF
:
555 // We've seen a common symbol and now we see a definition. The
556 // definition overrides.
557 if (parameters
->options().warn_common())
558 Symbol_table::report_resolve_problem(false,
559 _("definition of '%s' overriding "
561 to
, defined
, object
);
564 case DEF
* 16 + WEAK_DEF
:
565 case WEAK_DEF
* 16 + WEAK_DEF
:
566 // We've seen a definition and now we see a weak definition. We
567 // ignore the new weak definition.
570 case DYN_DEF
* 16 + WEAK_DEF
:
571 case DYN_WEAK_DEF
* 16 + WEAK_DEF
:
572 // We've seen a dynamic definition and now we see a regular weak
573 // definition. The regular weak definition overrides.
576 case UNDEF
* 16 + WEAK_DEF
:
577 case WEAK_UNDEF
* 16 + WEAK_DEF
:
578 case DYN_UNDEF
* 16 + WEAK_DEF
:
579 case DYN_WEAK_UNDEF
* 16 + WEAK_DEF
:
580 // A weak definition of a currently undefined symbol.
583 case COMMON
* 16 + WEAK_DEF
:
584 case WEAK_COMMON
* 16 + WEAK_DEF
:
585 // A weak definition does not override a common definition.
588 case DYN_COMMON
* 16 + WEAK_DEF
:
589 case DYN_WEAK_COMMON
* 16 + WEAK_DEF
:
590 // A weak definition does override a definition in a dynamic
592 if (parameters
->options().warn_common())
593 Symbol_table::report_resolve_problem(false,
594 _("definition of '%s' overriding "
595 "dynamic common definition"),
596 to
, defined
, object
);
599 case DEF
* 16 + DYN_DEF
:
600 case WEAK_DEF
* 16 + DYN_DEF
:
601 // Ignore a dynamic definition if we already have a definition.
604 case DYN_DEF
* 16 + DYN_DEF
:
605 case DYN_WEAK_DEF
* 16 + DYN_DEF
:
606 // Ignore a dynamic definition if we already have a definition,
607 // unless the existing definition is an unversioned definition
608 // in the same dynamic object, and the new definition is a
610 if (to
->object() == object
611 && to
->version() == NULL
612 && is_default_version
)
616 case UNDEF
* 16 + DYN_DEF
:
617 case DYN_UNDEF
* 16 + DYN_DEF
:
618 case DYN_WEAK_UNDEF
* 16 + DYN_DEF
:
619 // Use a dynamic definition if we have a reference.
622 case WEAK_UNDEF
* 16 + DYN_DEF
:
623 // When overriding a weak undef by a dynamic definition,
624 // we need to remember that the original undef was weak.
625 *adjust_dyndef
= true;
628 case COMMON
* 16 + DYN_DEF
:
629 case WEAK_COMMON
* 16 + DYN_DEF
:
630 case DYN_COMMON
* 16 + DYN_DEF
:
631 case DYN_WEAK_COMMON
* 16 + DYN_DEF
:
632 // Ignore a dynamic definition if we already have a common
636 case DEF
* 16 + DYN_WEAK_DEF
:
637 case WEAK_DEF
* 16 + DYN_WEAK_DEF
:
638 case DYN_DEF
* 16 + DYN_WEAK_DEF
:
639 case DYN_WEAK_DEF
* 16 + DYN_WEAK_DEF
:
640 // Ignore a weak dynamic definition if we already have a
644 case UNDEF
* 16 + DYN_WEAK_DEF
:
645 // When overriding an undef by a dynamic weak definition,
646 // we need to remember that the original undef was not weak.
647 *adjust_dyndef
= true;
650 case DYN_UNDEF
* 16 + DYN_WEAK_DEF
:
651 case DYN_WEAK_UNDEF
* 16 + DYN_WEAK_DEF
:
652 // Use a weak dynamic definition if we have a reference.
655 case WEAK_UNDEF
* 16 + DYN_WEAK_DEF
:
656 // When overriding a weak undef by a dynamic definition,
657 // we need to remember that the original undef was weak.
658 *adjust_dyndef
= true;
661 case COMMON
* 16 + DYN_WEAK_DEF
:
662 case WEAK_COMMON
* 16 + DYN_WEAK_DEF
:
663 case DYN_COMMON
* 16 + DYN_WEAK_DEF
:
664 case DYN_WEAK_COMMON
* 16 + DYN_WEAK_DEF
:
665 // Ignore a weak dynamic definition if we already have a common
669 case DEF
* 16 + UNDEF
:
670 case WEAK_DEF
* 16 + UNDEF
:
671 case UNDEF
* 16 + UNDEF
:
672 // A new undefined reference tells us nothing.
675 case DYN_DEF
* 16 + UNDEF
:
676 case DYN_WEAK_DEF
* 16 + UNDEF
:
677 // For a dynamic def, we need to remember which kind of undef we see.
678 *adjust_dyndef
= true;
681 case WEAK_UNDEF
* 16 + UNDEF
:
682 case DYN_UNDEF
* 16 + UNDEF
:
683 case DYN_WEAK_UNDEF
* 16 + UNDEF
:
684 // A strong undef overrides a dynamic or weak undef.
687 case COMMON
* 16 + UNDEF
:
688 case WEAK_COMMON
* 16 + UNDEF
:
689 case DYN_COMMON
* 16 + UNDEF
:
690 case DYN_WEAK_COMMON
* 16 + UNDEF
:
691 // A new undefined reference tells us nothing.
694 case DEF
* 16 + WEAK_UNDEF
:
695 case WEAK_DEF
* 16 + WEAK_UNDEF
:
696 case UNDEF
* 16 + WEAK_UNDEF
:
697 case WEAK_UNDEF
* 16 + WEAK_UNDEF
:
698 case DYN_UNDEF
* 16 + WEAK_UNDEF
:
699 case COMMON
* 16 + WEAK_UNDEF
:
700 case WEAK_COMMON
* 16 + WEAK_UNDEF
:
701 case DYN_COMMON
* 16 + WEAK_UNDEF
:
702 case DYN_WEAK_COMMON
* 16 + WEAK_UNDEF
:
703 // A new weak undefined reference tells us nothing unless the
704 // exisiting symbol is a dynamic weak reference.
707 case DYN_WEAK_UNDEF
* 16 + WEAK_UNDEF
:
708 // A new weak reference overrides an existing dynamic weak reference.
709 // This is necessary because a dynamic weak reference remembers
710 // the old binding, which may not be weak. If we keeps the existing
711 // dynamic weak reference, the weakness may be dropped in the output.
714 case DYN_DEF
* 16 + WEAK_UNDEF
:
715 case DYN_WEAK_DEF
* 16 + WEAK_UNDEF
:
716 // For a dynamic def, we need to remember which kind of undef we see.
717 *adjust_dyndef
= true;
720 case DEF
* 16 + DYN_UNDEF
:
721 case WEAK_DEF
* 16 + DYN_UNDEF
:
722 case DYN_DEF
* 16 + DYN_UNDEF
:
723 case DYN_WEAK_DEF
* 16 + DYN_UNDEF
:
724 case UNDEF
* 16 + DYN_UNDEF
:
725 case WEAK_UNDEF
* 16 + DYN_UNDEF
:
726 case DYN_UNDEF
* 16 + DYN_UNDEF
:
727 case DYN_WEAK_UNDEF
* 16 + DYN_UNDEF
:
728 case COMMON
* 16 + DYN_UNDEF
:
729 case WEAK_COMMON
* 16 + DYN_UNDEF
:
730 case DYN_COMMON
* 16 + DYN_UNDEF
:
731 case DYN_WEAK_COMMON
* 16 + DYN_UNDEF
:
732 // A new dynamic undefined reference tells us nothing.
735 case DEF
* 16 + DYN_WEAK_UNDEF
:
736 case WEAK_DEF
* 16 + DYN_WEAK_UNDEF
:
737 case DYN_DEF
* 16 + DYN_WEAK_UNDEF
:
738 case DYN_WEAK_DEF
* 16 + DYN_WEAK_UNDEF
:
739 case UNDEF
* 16 + DYN_WEAK_UNDEF
:
740 case WEAK_UNDEF
* 16 + DYN_WEAK_UNDEF
:
741 case DYN_UNDEF
* 16 + DYN_WEAK_UNDEF
:
742 case DYN_WEAK_UNDEF
* 16 + DYN_WEAK_UNDEF
:
743 case COMMON
* 16 + DYN_WEAK_UNDEF
:
744 case WEAK_COMMON
* 16 + DYN_WEAK_UNDEF
:
745 case DYN_COMMON
* 16 + DYN_WEAK_UNDEF
:
746 case DYN_WEAK_COMMON
* 16 + DYN_WEAK_UNDEF
:
747 // A new weak dynamic undefined reference tells us nothing.
750 case DEF
* 16 + COMMON
:
751 // A common symbol does not override a definition.
752 if (parameters
->options().warn_common())
753 Symbol_table::report_resolve_problem(false,
754 _("common '%s' overridden by "
755 "previous definition"),
756 to
, defined
, object
);
759 case WEAK_DEF
* 16 + COMMON
:
760 case DYN_DEF
* 16 + COMMON
:
761 case DYN_WEAK_DEF
* 16 + COMMON
:
762 // A common symbol does override a weak definition or a dynamic
766 case UNDEF
* 16 + COMMON
:
767 case WEAK_UNDEF
* 16 + COMMON
:
768 case DYN_UNDEF
* 16 + COMMON
:
769 case DYN_WEAK_UNDEF
* 16 + COMMON
:
770 // A common symbol is a definition for a reference.
773 case COMMON
* 16 + COMMON
:
774 // Set the size to the maximum.
775 *adjust_common_sizes
= true;
778 case WEAK_COMMON
* 16 + COMMON
:
779 // I'm not sure just what a weak common symbol means, but
780 // presumably it can be overridden by a regular common symbol.
783 case DYN_COMMON
* 16 + COMMON
:
784 case DYN_WEAK_COMMON
* 16 + COMMON
:
785 // Use the real common symbol, but adjust the size if necessary.
786 *adjust_common_sizes
= true;
789 case DEF
* 16 + WEAK_COMMON
:
790 case WEAK_DEF
* 16 + WEAK_COMMON
:
791 case DYN_DEF
* 16 + WEAK_COMMON
:
792 case DYN_WEAK_DEF
* 16 + WEAK_COMMON
:
793 // Whatever a weak common symbol is, it won't override a
797 case UNDEF
* 16 + WEAK_COMMON
:
798 case WEAK_UNDEF
* 16 + WEAK_COMMON
:
799 case DYN_UNDEF
* 16 + WEAK_COMMON
:
800 case DYN_WEAK_UNDEF
* 16 + WEAK_COMMON
:
801 // A weak common symbol is better than an undefined symbol.
804 case COMMON
* 16 + WEAK_COMMON
:
805 case WEAK_COMMON
* 16 + WEAK_COMMON
:
806 case DYN_COMMON
* 16 + WEAK_COMMON
:
807 case DYN_WEAK_COMMON
* 16 + WEAK_COMMON
:
808 // Ignore a weak common symbol in the presence of a real common
812 case DEF
* 16 + DYN_COMMON
:
813 case WEAK_DEF
* 16 + DYN_COMMON
:
814 case DYN_DEF
* 16 + DYN_COMMON
:
815 case DYN_WEAK_DEF
* 16 + DYN_COMMON
:
816 // Ignore a dynamic common symbol in the presence of a
820 case UNDEF
* 16 + DYN_COMMON
:
821 case WEAK_UNDEF
* 16 + DYN_COMMON
:
822 case DYN_UNDEF
* 16 + DYN_COMMON
:
823 case DYN_WEAK_UNDEF
* 16 + DYN_COMMON
:
824 // A dynamic common symbol is a definition of sorts.
827 case COMMON
* 16 + DYN_COMMON
:
828 case WEAK_COMMON
* 16 + DYN_COMMON
:
829 case DYN_COMMON
* 16 + DYN_COMMON
:
830 case DYN_WEAK_COMMON
* 16 + DYN_COMMON
:
831 // Set the size to the maximum.
832 *adjust_common_sizes
= true;
835 case DEF
* 16 + DYN_WEAK_COMMON
:
836 case WEAK_DEF
* 16 + DYN_WEAK_COMMON
:
837 case DYN_DEF
* 16 + DYN_WEAK_COMMON
:
838 case DYN_WEAK_DEF
* 16 + DYN_WEAK_COMMON
:
839 // A common symbol is ignored in the face of a definition.
842 case UNDEF
* 16 + DYN_WEAK_COMMON
:
843 case WEAK_UNDEF
* 16 + DYN_WEAK_COMMON
:
844 case DYN_UNDEF
* 16 + DYN_WEAK_COMMON
:
845 case DYN_WEAK_UNDEF
* 16 + DYN_WEAK_COMMON
:
846 // I guess a weak common symbol is better than a definition.
849 case COMMON
* 16 + DYN_WEAK_COMMON
:
850 case WEAK_COMMON
* 16 + DYN_WEAK_COMMON
:
851 case DYN_COMMON
* 16 + DYN_WEAK_COMMON
:
852 case DYN_WEAK_COMMON
* 16 + DYN_WEAK_COMMON
:
853 // Set the size to the maximum.
854 *adjust_common_sizes
= true;
862 // Issue an error or warning due to symbol resolution. IS_ERROR
863 // indicates an error rather than a warning. MSG is the error
864 // message; it is expected to have a %s for the symbol name. TO is
865 // the existing symbol. DEFINED/OBJECT is where the new symbol was
868 // FIXME: We should have better location information here. When the
869 // symbol is defined, we should be able to pull the location from the
870 // debug info if there is any.
873 Symbol_table::report_resolve_problem(bool is_error
, const char* msg
,
874 const Symbol
* to
, Defined defined
,
877 std::string
demangled(to
->demangled_name());
878 size_t len
= strlen(msg
) + demangled
.length() + 10;
879 char* buf
= new char[len
];
880 snprintf(buf
, len
, msg
, demangled
.c_str());
886 objname
= object
->name().c_str();
889 objname
= _("COPY reloc");
893 objname
= _("command line");
896 objname
= _("linker script");
899 case INCREMENTAL_BASE
:
900 objname
= _("linker defined");
907 gold_error("%s: %s", objname
, buf
);
909 gold_warning("%s: %s", objname
, buf
);
913 if (to
->source() == Symbol::FROM_OBJECT
)
914 objname
= to
->object()->name().c_str();
916 objname
= _("command line");
917 gold_info("%s: %s: previous definition here", program_name
, objname
);
920 // A special case of should_override which is only called for a strong
921 // defined symbol from a regular object file. This is used when
922 // defining special symbols.
925 Symbol_table::should_override_with_special(const Symbol
* to
,
926 elfcpp::STT fromtype
,
929 bool adjust_common_sizes
;
931 unsigned int frombits
= global_flag
| regular_flag
| def_flag
;
932 bool ret
= Symbol_table::should_override(to
, frombits
, fromtype
, defined
,
933 NULL
, &adjust_common_sizes
,
934 &adjust_dyn_def
, false);
935 gold_assert(!adjust_common_sizes
&& !adjust_dyn_def
);
939 // Override symbol base with a special symbol.
942 Symbol::override_base_with_special(const Symbol
* from
)
944 bool same_name
= this->name_
== from
->name_
;
945 gold_assert(same_name
|| this->has_alias());
947 // If we are overriding an undef, remember the original binding.
948 if (this->is_undefined())
949 this->set_undef_binding(this->binding_
);
951 this->source_
= from
->source_
;
952 switch (from
->source_
)
955 this->u_
.from_object
= from
->u_
.from_object
;
958 this->u_
.in_output_data
= from
->u_
.in_output_data
;
960 case IN_OUTPUT_SEGMENT
:
961 this->u_
.in_output_segment
= from
->u_
.in_output_segment
;
973 // When overriding a versioned symbol with a special symbol, we
974 // may be changing the version. This will happen if we see a
975 // special symbol such as "_end" defined in a shared object with
976 // one version (from a version script), but we want to define it
977 // here with a different version (from a different version
979 this->version_
= from
->version_
;
981 this->type_
= from
->type_
;
982 this->binding_
= from
->binding_
;
983 this->override_visibility(from
->visibility_
);
984 this->nonvis_
= from
->nonvis_
;
986 // Special symbols are always considered to be regular symbols.
987 this->in_reg_
= true;
989 if (from
->needs_dynsym_entry_
)
990 this->needs_dynsym_entry_
= true;
991 if (from
->needs_dynsym_value_
)
992 this->needs_dynsym_value_
= true;
994 this->is_predefined_
= from
->is_predefined_
;
996 // We shouldn't see these flags. If we do, we need to handle them
998 gold_assert(!from
->is_forwarder_
);
999 gold_assert(!from
->has_plt_offset());
1000 gold_assert(!from
->has_warning_
);
1001 gold_assert(!from
->is_copied_from_dynobj_
);
1002 gold_assert(!from
->is_forced_local_
);
1005 // Override a symbol with a special symbol.
1009 Sized_symbol
<size
>::override_with_special(const Sized_symbol
<size
>* from
)
1011 this->override_base_with_special(from
);
1012 this->value_
= from
->value_
;
1013 this->symsize_
= from
->symsize_
;
1016 // Override TOSYM with the special symbol FROMSYM. This handles all
1017 // aliases of TOSYM.
1021 Symbol_table::override_with_special(Sized_symbol
<size
>* tosym
,
1022 const Sized_symbol
<size
>* fromsym
)
1024 tosym
->override_with_special(fromsym
);
1025 if (tosym
->has_alias())
1027 Symbol
* sym
= this->weak_aliases_
[tosym
];
1028 gold_assert(sym
!= NULL
);
1029 Sized_symbol
<size
>* ssym
= this->get_sized_symbol
<size
>(sym
);
1032 ssym
->override_with_special(fromsym
);
1033 sym
= this->weak_aliases_
[ssym
];
1034 gold_assert(sym
!= NULL
);
1035 ssym
= this->get_sized_symbol
<size
>(sym
);
1037 while (ssym
!= tosym
);
1039 if (tosym
->binding() == elfcpp::STB_LOCAL
1040 || ((tosym
->visibility() == elfcpp::STV_HIDDEN
1041 || tosym
->visibility() == elfcpp::STV_INTERNAL
)
1042 && (tosym
->binding() == elfcpp::STB_GLOBAL
1043 || tosym
->binding() == elfcpp::STB_GNU_UNIQUE
1044 || tosym
->binding() == elfcpp::STB_WEAK
)
1045 && !parameters
->options().relocatable()))
1046 this->force_local(tosym
);
1049 // Instantiate the templates we need. We could use the configure
1050 // script to restrict this to only the ones needed for implemented
1053 // We have to instantiate both big and little endian versions because
1054 // these are used by other templates that depends on size only.
1056 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1059 Symbol_table::resolve
<32, false>(
1060 Sized_symbol
<32>* to
,
1061 const elfcpp::Sym
<32, false>& sym
,
1062 unsigned int st_shndx
,
1064 unsigned int orig_st_shndx
,
1066 const char* version
,
1067 bool is_default_version
);
1071 Symbol_table::resolve
<32, true>(
1072 Sized_symbol
<32>* to
,
1073 const elfcpp::Sym
<32, true>& sym
,
1074 unsigned int st_shndx
,
1076 unsigned int orig_st_shndx
,
1078 const char* version
,
1079 bool is_default_version
);
1082 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1085 Symbol_table::resolve
<64, false>(
1086 Sized_symbol
<64>* to
,
1087 const elfcpp::Sym
<64, false>& sym
,
1088 unsigned int st_shndx
,
1090 unsigned int orig_st_shndx
,
1092 const char* version
,
1093 bool is_default_version
);
1097 Symbol_table::resolve
<64, true>(
1098 Sized_symbol
<64>* to
,
1099 const elfcpp::Sym
<64, true>& sym
,
1100 unsigned int st_shndx
,
1102 unsigned int orig_st_shndx
,
1104 const char* version
,
1105 bool is_default_version
);
1108 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1111 Symbol_table::override_with_special
<32>(Sized_symbol
<32>*,
1112 const Sized_symbol
<32>*);
1115 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1118 Symbol_table::override_with_special
<64>(Sized_symbol
<64>*,
1119 const Sized_symbol
<64>*);
1122 } // End namespace gold.