[ARM] Assembler and disassembler support Dot Product Extension
[deliverable/binutils-gdb.git] / gold / resolve.cc
1 // resolve.cc -- symbol resolution for gold
2
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
30
31 namespace gold
32 {
33
34 // Symbol methods used in this file.
35
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
38
39 inline void
40 Symbol::override_version(const char* version)
41 {
42 if (version == NULL)
43 {
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_ = version;
53 }
54 else
55 {
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
63 }
64 }
65
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
68
69 inline void
70 Symbol::override_visibility(elfcpp::STV visibility)
71 {
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility != elfcpp::STV_DEFAULT)
78 {
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
83 }
84 }
85
86 // Override the fields in Symbol.
87
88 template<int size, bool big_endian>
89 void
90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 unsigned int st_shndx, bool is_ordinary,
92 Object* object, const char* version)
93 {
94 gold_assert(this->source_ == FROM_OBJECT);
95 this->u_.from_object.object = object;
96 this->override_version(version);
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
99 // Don't override st_type from plugin placeholder symbols.
100 if (object->pluginobj() == NULL)
101 this->type_ = sym.get_st_type();
102 this->binding_ = sym.get_st_bind();
103 this->override_visibility(sym.get_st_visibility());
104 this->nonvis_ = sym.get_st_nonvis();
105 if (object->is_dynamic())
106 this->in_dyn_ = true;
107 else
108 this->in_reg_ = true;
109 }
110
111 // Override the fields in Sized_symbol.
112
113 template<int size>
114 template<bool big_endian>
115 void
116 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
117 unsigned st_shndx, bool is_ordinary,
118 Object* object, const char* version)
119 {
120 this->override_base(sym, st_shndx, is_ordinary, object, version);
121 this->value_ = sym.get_st_value();
122 this->symsize_ = sym.get_st_size();
123 }
124
125 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
126 // VERSION. This handles all aliases of TOSYM.
127
128 template<int size, bool big_endian>
129 void
130 Symbol_table::override(Sized_symbol<size>* tosym,
131 const elfcpp::Sym<size, big_endian>& fromsym,
132 unsigned int st_shndx, bool is_ordinary,
133 Object* object, const char* version)
134 {
135 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
136 if (tosym->has_alias())
137 {
138 Symbol* sym = this->weak_aliases_[tosym];
139 gold_assert(sym != NULL);
140 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
141 do
142 {
143 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
144 sym = this->weak_aliases_[ssym];
145 gold_assert(sym != NULL);
146 ssym = this->get_sized_symbol<size>(sym);
147 }
148 while (ssym != tosym);
149 }
150 }
151
152 // The resolve functions build a little code for each symbol.
153 // Bit 0: 0 for global, 1 for weak.
154 // Bit 1: 0 for regular object, 1 for shared object
155 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
156 // This gives us values from 0 to 11.
157
158 static const int global_or_weak_shift = 0;
159 static const unsigned int global_flag = 0 << global_or_weak_shift;
160 static const unsigned int weak_flag = 1 << global_or_weak_shift;
161
162 static const int regular_or_dynamic_shift = 1;
163 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
164 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
165
166 static const int def_undef_or_common_shift = 2;
167 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
168 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
169 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
170
171 // This convenience function combines all the flags based on facts
172 // about the symbol.
173
174 static unsigned int
175 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
176 unsigned int shndx, bool is_ordinary)
177 {
178 unsigned int bits;
179
180 switch (binding)
181 {
182 case elfcpp::STB_GLOBAL:
183 case elfcpp::STB_GNU_UNIQUE:
184 bits = global_flag;
185 break;
186
187 case elfcpp::STB_WEAK:
188 bits = weak_flag;
189 break;
190
191 case elfcpp::STB_LOCAL:
192 // We should only see externally visible symbols in the symbol
193 // table.
194 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
195 bits = global_flag;
196 break;
197
198 default:
199 // Any target which wants to handle STB_LOOS, etc., needs to
200 // define a resolve method.
201 gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
202 bits = global_flag;
203 }
204
205 if (is_dynamic)
206 bits |= dynamic_flag;
207 else
208 bits |= regular_flag;
209
210 switch (shndx)
211 {
212 case elfcpp::SHN_UNDEF:
213 bits |= undef_flag;
214 break;
215
216 case elfcpp::SHN_COMMON:
217 if (!is_ordinary)
218 bits |= common_flag;
219 break;
220
221 default:
222 if (!is_ordinary && Symbol::is_common_shndx(shndx))
223 bits |= common_flag;
224 else
225 bits |= def_flag;
226 break;
227 }
228
229 return bits;
230 }
231
232 // Resolve a symbol. This is called the second and subsequent times
233 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
234 // section index for SYM, possibly adjusted for many sections.
235 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
236 // than a special code. ORIG_ST_SHNDX is the original section index,
237 // before any munging because of discarded sections, except that all
238 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
239 // the version of SYM.
240
241 template<int size, bool big_endian>
242 void
243 Symbol_table::resolve(Sized_symbol<size>* to,
244 const elfcpp::Sym<size, big_endian>& sym,
245 unsigned int st_shndx, bool is_ordinary,
246 unsigned int orig_st_shndx,
247 Object* object, const char* version,
248 bool is_default_version)
249 {
250 // It's possible for a symbol to be defined in an object file
251 // using .symver to give it a version, and for there to also be
252 // a linker script giving that symbol the same version. We
253 // don't want to give a multiple-definition error for this
254 // harmless redefinition.
255 bool to_is_ordinary;
256 if (to->source() == Symbol::FROM_OBJECT
257 && to->object() == object
258 && is_ordinary
259 && to->is_defined()
260 && to->shndx(&to_is_ordinary) == st_shndx
261 && to_is_ordinary
262 && to->value() == sym.get_st_value())
263 return;
264
265 if (parameters->target().has_resolve())
266 {
267 Sized_target<size, big_endian>* sized_target;
268 sized_target = parameters->sized_target<size, big_endian>();
269 sized_target->resolve(to, sym, object, version);
270 return;
271 }
272
273 if (!object->is_dynamic())
274 {
275 if (sym.get_st_type() == elfcpp::STT_COMMON
276 && (is_ordinary || !Symbol::is_common_shndx(st_shndx)))
277 {
278 gold_warning(_("STT_COMMON symbol '%s' in %s "
279 "is not in a common section"),
280 to->demangled_name().c_str(),
281 to->object()->name().c_str());
282 return;
283 }
284 // Record that we've seen this symbol in a regular object.
285 to->set_in_reg();
286 }
287 else if (st_shndx == elfcpp::SHN_UNDEF
288 && (to->visibility() == elfcpp::STV_HIDDEN
289 || to->visibility() == elfcpp::STV_INTERNAL))
290 {
291 // The symbol is hidden, so a reference from a shared object
292 // cannot bind to it. We tried issuing a warning in this case,
293 // but that produces false positives when the symbol is
294 // actually resolved in a different shared object (PR 15574).
295 return;
296 }
297 else
298 {
299 // Record that we've seen this symbol in a dynamic object.
300 to->set_in_dyn();
301 }
302
303 // Record if we've seen this symbol in a real ELF object (i.e., the
304 // symbol is referenced from outside the world known to the plugin).
305 if (object->pluginobj() == NULL && !object->is_dynamic())
306 to->set_in_real_elf();
307
308 // If we're processing replacement files, allow new symbols to override
309 // the placeholders from the plugin objects.
310 // Treat common symbols specially since it is possible that an ELF
311 // file increased the size of the alignment.
312 if (to->source() == Symbol::FROM_OBJECT)
313 {
314 Pluginobj* obj = to->object()->pluginobj();
315 if (obj != NULL
316 && parameters->options().plugins()->in_replacement_phase())
317 {
318 bool adjust_common = false;
319 typename Sized_symbol<size>::Size_type tosize = 0;
320 typename Sized_symbol<size>::Value_type tovalue = 0;
321 if (to->is_common()
322 && !is_ordinary && Symbol::is_common_shndx(st_shndx))
323 {
324 adjust_common = true;
325 tosize = to->symsize();
326 tovalue = to->value();
327 }
328 this->override(to, sym, st_shndx, is_ordinary, object, version);
329 if (adjust_common)
330 {
331 if (tosize > to->symsize())
332 to->set_symsize(tosize);
333 if (tovalue > to->value())
334 to->set_value(tovalue);
335 }
336 return;
337 }
338 }
339
340 // A new weak undefined reference, merging with an old weak
341 // reference, could be a One Definition Rule (ODR) violation --
342 // especially if the types or sizes of the references differ. We'll
343 // store such pairs and look them up later to make sure they
344 // actually refer to the same lines of code. We also check
345 // combinations of weak and strong, which might occur if one case is
346 // inline and the other is not. (Note: not all ODR violations can
347 // be found this way, and not everything this finds is an ODR
348 // violation. But it's helpful to warn about.)
349 if (parameters->options().detect_odr_violations()
350 && (sym.get_st_bind() == elfcpp::STB_WEAK
351 || to->binding() == elfcpp::STB_WEAK)
352 && orig_st_shndx != elfcpp::SHN_UNDEF
353 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
354 && to_is_ordinary
355 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
356 && to->symsize() != 0
357 && (sym.get_st_type() != to->type()
358 || sym.get_st_size() != to->symsize())
359 // C does not have a concept of ODR, so we only need to do this
360 // on C++ symbols. These have (mangled) names starting with _Z.
361 && to->name()[0] == '_' && to->name()[1] == 'Z')
362 {
363 Symbol_location fromloc
364 = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
365 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
366 static_cast<off_t>(to->value()) };
367 this->candidate_odr_violations_[to->name()].insert(fromloc);
368 this->candidate_odr_violations_[to->name()].insert(toloc);
369 }
370
371 // Plugins don't provide a symbol type, so adopt the existing type
372 // if the FROM symbol is from a plugin.
373 elfcpp::STT fromtype = (object->pluginobj() != NULL
374 ? to->type()
375 : sym.get_st_type());
376 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
377 object->is_dynamic(),
378 st_shndx, is_ordinary);
379
380 bool adjust_common_sizes;
381 bool adjust_dyndef;
382 typename Sized_symbol<size>::Size_type tosize = to->symsize();
383 if (Symbol_table::should_override(to, frombits, fromtype, OBJECT,
384 object, &adjust_common_sizes,
385 &adjust_dyndef, is_default_version))
386 {
387 elfcpp::STB tobinding = to->binding();
388 typename Sized_symbol<size>::Value_type tovalue = to->value();
389 this->override(to, sym, st_shndx, is_ordinary, object, version);
390 if (adjust_common_sizes)
391 {
392 if (tosize > to->symsize())
393 to->set_symsize(tosize);
394 if (tovalue > to->value())
395 to->set_value(tovalue);
396 }
397 if (adjust_dyndef)
398 {
399 // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
400 // Remember which kind of UNDEF it was for future reference.
401 to->set_undef_binding(tobinding);
402 }
403 }
404 else
405 {
406 if (adjust_common_sizes)
407 {
408 if (sym.get_st_size() > tosize)
409 to->set_symsize(sym.get_st_size());
410 if (sym.get_st_value() > to->value())
411 to->set_value(sym.get_st_value());
412 }
413 if (adjust_dyndef)
414 {
415 // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
416 // Remember which kind of UNDEF it was.
417 to->set_undef_binding(sym.get_st_bind());
418 }
419 // The ELF ABI says that even for a reference to a symbol we
420 // merge the visibility.
421 to->override_visibility(sym.get_st_visibility());
422 }
423
424 if (adjust_common_sizes && parameters->options().warn_common())
425 {
426 if (tosize > sym.get_st_size())
427 Symbol_table::report_resolve_problem(false,
428 _("common of '%s' overriding "
429 "smaller common"),
430 to, OBJECT, object);
431 else if (tosize < sym.get_st_size())
432 Symbol_table::report_resolve_problem(false,
433 _("common of '%s' overidden by "
434 "larger common"),
435 to, OBJECT, object);
436 else
437 Symbol_table::report_resolve_problem(false,
438 _("multiple common of '%s'"),
439 to, OBJECT, object);
440 }
441 }
442
443 // Handle the core of symbol resolution. This is called with the
444 // existing symbol, TO, and a bitflag describing the new symbol. This
445 // returns true if we should override the existing symbol with the new
446 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
447 // true if we should set the symbol size to the maximum of the TO and
448 // FROM sizes. It handles error conditions.
449
450 bool
451 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
452 elfcpp::STT fromtype, Defined defined,
453 Object* object, bool* adjust_common_sizes,
454 bool* adjust_dyndef, bool is_default_version)
455 {
456 *adjust_common_sizes = false;
457 *adjust_dyndef = false;
458
459 unsigned int tobits;
460 if (to->source() == Symbol::IS_UNDEFINED)
461 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true);
462 else if (to->source() != Symbol::FROM_OBJECT)
463 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false);
464 else
465 {
466 bool is_ordinary;
467 unsigned int shndx = to->shndx(&is_ordinary);
468 tobits = symbol_to_bits(to->binding(),
469 to->object()->is_dynamic(),
470 shndx,
471 is_ordinary);
472 }
473
474 if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS)
475 && !to->is_placeholder())
476 Symbol_table::report_resolve_problem(true,
477 _("symbol '%s' used as both __thread "
478 "and non-__thread"),
479 to, defined, object);
480
481 // We use a giant switch table for symbol resolution. This code is
482 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
483 // cases; 3) it is easy to change the handling of a particular case.
484 // The alternative would be a series of conditionals, but it is easy
485 // to get the ordering wrong. This could also be done as a table,
486 // but that is no easier to understand than this large switch
487 // statement.
488
489 // These are the values generated by the bit codes.
490 enum
491 {
492 DEF = global_flag | regular_flag | def_flag,
493 WEAK_DEF = weak_flag | regular_flag | def_flag,
494 DYN_DEF = global_flag | dynamic_flag | def_flag,
495 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
496 UNDEF = global_flag | regular_flag | undef_flag,
497 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
498 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
499 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
500 COMMON = global_flag | regular_flag | common_flag,
501 WEAK_COMMON = weak_flag | regular_flag | common_flag,
502 DYN_COMMON = global_flag | dynamic_flag | common_flag,
503 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
504 };
505
506 switch (tobits * 16 + frombits)
507 {
508 case DEF * 16 + DEF:
509 // Two definitions of the same symbol.
510
511 // If either symbol is defined by an object included using
512 // --just-symbols, then don't warn. This is for compatibility
513 // with the GNU linker. FIXME: This is a hack.
514 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
515 || (object != NULL && object->just_symbols()))
516 return false;
517
518 if (!parameters->options().muldefs())
519 Symbol_table::report_resolve_problem(true,
520 _("multiple definition of '%s'"),
521 to, defined, object);
522 return false;
523
524 case WEAK_DEF * 16 + DEF:
525 // We've seen a weak definition, and now we see a strong
526 // definition. In the original SVR4 linker, this was treated as
527 // a multiple definition error. In the Solaris linker and the
528 // GNU linker, a weak definition followed by a regular
529 // definition causes the weak definition to be overridden. We
530 // are currently compatible with the GNU linker. In the future
531 // we should add a target specific option to change this.
532 // FIXME.
533 return true;
534
535 case DYN_DEF * 16 + DEF:
536 case DYN_WEAK_DEF * 16 + DEF:
537 // We've seen a definition in a dynamic object, and now we see a
538 // definition in a regular object. The definition in the
539 // regular object overrides the definition in the dynamic
540 // object.
541 return true;
542
543 case UNDEF * 16 + DEF:
544 case WEAK_UNDEF * 16 + DEF:
545 case DYN_UNDEF * 16 + DEF:
546 case DYN_WEAK_UNDEF * 16 + DEF:
547 // We've seen an undefined reference, and now we see a
548 // definition. We use the definition.
549 return true;
550
551 case COMMON * 16 + DEF:
552 case WEAK_COMMON * 16 + DEF:
553 case DYN_COMMON * 16 + DEF:
554 case DYN_WEAK_COMMON * 16 + DEF:
555 // We've seen a common symbol and now we see a definition. The
556 // definition overrides.
557 if (parameters->options().warn_common())
558 Symbol_table::report_resolve_problem(false,
559 _("definition of '%s' overriding "
560 "common"),
561 to, defined, object);
562 return true;
563
564 case DEF * 16 + WEAK_DEF:
565 case WEAK_DEF * 16 + WEAK_DEF:
566 // We've seen a definition and now we see a weak definition. We
567 // ignore the new weak definition.
568 return false;
569
570 case DYN_DEF * 16 + WEAK_DEF:
571 case DYN_WEAK_DEF * 16 + WEAK_DEF:
572 // We've seen a dynamic definition and now we see a regular weak
573 // definition. The regular weak definition overrides.
574 return true;
575
576 case UNDEF * 16 + WEAK_DEF:
577 case WEAK_UNDEF * 16 + WEAK_DEF:
578 case DYN_UNDEF * 16 + WEAK_DEF:
579 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
580 // A weak definition of a currently undefined symbol.
581 return true;
582
583 case COMMON * 16 + WEAK_DEF:
584 case WEAK_COMMON * 16 + WEAK_DEF:
585 // A weak definition does not override a common definition.
586 return false;
587
588 case DYN_COMMON * 16 + WEAK_DEF:
589 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
590 // A weak definition does override a definition in a dynamic
591 // object.
592 if (parameters->options().warn_common())
593 Symbol_table::report_resolve_problem(false,
594 _("definition of '%s' overriding "
595 "dynamic common definition"),
596 to, defined, object);
597 return true;
598
599 case DEF * 16 + DYN_DEF:
600 case WEAK_DEF * 16 + DYN_DEF:
601 // Ignore a dynamic definition if we already have a definition.
602 return false;
603
604 case DYN_DEF * 16 + DYN_DEF:
605 case DYN_WEAK_DEF * 16 + DYN_DEF:
606 // Ignore a dynamic definition if we already have a definition,
607 // unless the existing definition is an unversioned definition
608 // in the same dynamic object, and the new definition is a
609 // default version.
610 if (to->object() == object
611 && to->version() == NULL
612 && is_default_version)
613 return true;
614 return false;
615
616 case UNDEF * 16 + DYN_DEF:
617 case DYN_UNDEF * 16 + DYN_DEF:
618 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
619 // Use a dynamic definition if we have a reference.
620 return true;
621
622 case WEAK_UNDEF * 16 + DYN_DEF:
623 // When overriding a weak undef by a dynamic definition,
624 // we need to remember that the original undef was weak.
625 *adjust_dyndef = true;
626 return true;
627
628 case COMMON * 16 + DYN_DEF:
629 case WEAK_COMMON * 16 + DYN_DEF:
630 case DYN_COMMON * 16 + DYN_DEF:
631 case DYN_WEAK_COMMON * 16 + DYN_DEF:
632 // Ignore a dynamic definition if we already have a common
633 // definition.
634 return false;
635
636 case DEF * 16 + DYN_WEAK_DEF:
637 case WEAK_DEF * 16 + DYN_WEAK_DEF:
638 case DYN_DEF * 16 + DYN_WEAK_DEF:
639 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
640 // Ignore a weak dynamic definition if we already have a
641 // definition.
642 return false;
643
644 case UNDEF * 16 + DYN_WEAK_DEF:
645 // When overriding an undef by a dynamic weak definition,
646 // we need to remember that the original undef was not weak.
647 *adjust_dyndef = true;
648 return true;
649
650 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
651 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
652 // Use a weak dynamic definition if we have a reference.
653 return true;
654
655 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
656 // When overriding a weak undef by a dynamic definition,
657 // we need to remember that the original undef was weak.
658 *adjust_dyndef = true;
659 return true;
660
661 case COMMON * 16 + DYN_WEAK_DEF:
662 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
663 case DYN_COMMON * 16 + DYN_WEAK_DEF:
664 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
665 // Ignore a weak dynamic definition if we already have a common
666 // definition.
667 return false;
668
669 case DEF * 16 + UNDEF:
670 case WEAK_DEF * 16 + UNDEF:
671 case UNDEF * 16 + UNDEF:
672 // A new undefined reference tells us nothing.
673 return false;
674
675 case DYN_DEF * 16 + UNDEF:
676 case DYN_WEAK_DEF * 16 + UNDEF:
677 // For a dynamic def, we need to remember which kind of undef we see.
678 *adjust_dyndef = true;
679 return false;
680
681 case WEAK_UNDEF * 16 + UNDEF:
682 case DYN_UNDEF * 16 + UNDEF:
683 case DYN_WEAK_UNDEF * 16 + UNDEF:
684 // A strong undef overrides a dynamic or weak undef.
685 return true;
686
687 case COMMON * 16 + UNDEF:
688 case WEAK_COMMON * 16 + UNDEF:
689 case DYN_COMMON * 16 + UNDEF:
690 case DYN_WEAK_COMMON * 16 + UNDEF:
691 // A new undefined reference tells us nothing.
692 return false;
693
694 case DEF * 16 + WEAK_UNDEF:
695 case WEAK_DEF * 16 + WEAK_UNDEF:
696 case UNDEF * 16 + WEAK_UNDEF:
697 case WEAK_UNDEF * 16 + WEAK_UNDEF:
698 case DYN_UNDEF * 16 + WEAK_UNDEF:
699 case COMMON * 16 + WEAK_UNDEF:
700 case WEAK_COMMON * 16 + WEAK_UNDEF:
701 case DYN_COMMON * 16 + WEAK_UNDEF:
702 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
703 // A new weak undefined reference tells us nothing unless the
704 // exisiting symbol is a dynamic weak reference.
705 return false;
706
707 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
708 // A new weak reference overrides an existing dynamic weak reference.
709 // This is necessary because a dynamic weak reference remembers
710 // the old binding, which may not be weak. If we keeps the existing
711 // dynamic weak reference, the weakness may be dropped in the output.
712 return true;
713
714 case DYN_DEF * 16 + WEAK_UNDEF:
715 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
716 // For a dynamic def, we need to remember which kind of undef we see.
717 *adjust_dyndef = true;
718 return false;
719
720 case DEF * 16 + DYN_UNDEF:
721 case WEAK_DEF * 16 + DYN_UNDEF:
722 case DYN_DEF * 16 + DYN_UNDEF:
723 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
724 case UNDEF * 16 + DYN_UNDEF:
725 case WEAK_UNDEF * 16 + DYN_UNDEF:
726 case DYN_UNDEF * 16 + DYN_UNDEF:
727 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
728 case COMMON * 16 + DYN_UNDEF:
729 case WEAK_COMMON * 16 + DYN_UNDEF:
730 case DYN_COMMON * 16 + DYN_UNDEF:
731 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
732 // A new dynamic undefined reference tells us nothing.
733 return false;
734
735 case DEF * 16 + DYN_WEAK_UNDEF:
736 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
737 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
738 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
739 case UNDEF * 16 + DYN_WEAK_UNDEF:
740 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
741 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
742 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
743 case COMMON * 16 + DYN_WEAK_UNDEF:
744 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
745 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
746 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
747 // A new weak dynamic undefined reference tells us nothing.
748 return false;
749
750 case DEF * 16 + COMMON:
751 // A common symbol does not override a definition.
752 if (parameters->options().warn_common())
753 Symbol_table::report_resolve_problem(false,
754 _("common '%s' overridden by "
755 "previous definition"),
756 to, defined, object);
757 return false;
758
759 case WEAK_DEF * 16 + COMMON:
760 case DYN_DEF * 16 + COMMON:
761 case DYN_WEAK_DEF * 16 + COMMON:
762 // A common symbol does override a weak definition or a dynamic
763 // definition.
764 return true;
765
766 case UNDEF * 16 + COMMON:
767 case WEAK_UNDEF * 16 + COMMON:
768 case DYN_UNDEF * 16 + COMMON:
769 case DYN_WEAK_UNDEF * 16 + COMMON:
770 // A common symbol is a definition for a reference.
771 return true;
772
773 case COMMON * 16 + COMMON:
774 // Set the size to the maximum.
775 *adjust_common_sizes = true;
776 return false;
777
778 case WEAK_COMMON * 16 + COMMON:
779 // I'm not sure just what a weak common symbol means, but
780 // presumably it can be overridden by a regular common symbol.
781 return true;
782
783 case DYN_COMMON * 16 + COMMON:
784 case DYN_WEAK_COMMON * 16 + COMMON:
785 // Use the real common symbol, but adjust the size if necessary.
786 *adjust_common_sizes = true;
787 return true;
788
789 case DEF * 16 + WEAK_COMMON:
790 case WEAK_DEF * 16 + WEAK_COMMON:
791 case DYN_DEF * 16 + WEAK_COMMON:
792 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
793 // Whatever a weak common symbol is, it won't override a
794 // definition.
795 return false;
796
797 case UNDEF * 16 + WEAK_COMMON:
798 case WEAK_UNDEF * 16 + WEAK_COMMON:
799 case DYN_UNDEF * 16 + WEAK_COMMON:
800 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
801 // A weak common symbol is better than an undefined symbol.
802 return true;
803
804 case COMMON * 16 + WEAK_COMMON:
805 case WEAK_COMMON * 16 + WEAK_COMMON:
806 case DYN_COMMON * 16 + WEAK_COMMON:
807 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
808 // Ignore a weak common symbol in the presence of a real common
809 // symbol.
810 return false;
811
812 case DEF * 16 + DYN_COMMON:
813 case WEAK_DEF * 16 + DYN_COMMON:
814 case DYN_DEF * 16 + DYN_COMMON:
815 case DYN_WEAK_DEF * 16 + DYN_COMMON:
816 // Ignore a dynamic common symbol in the presence of a
817 // definition.
818 return false;
819
820 case UNDEF * 16 + DYN_COMMON:
821 case WEAK_UNDEF * 16 + DYN_COMMON:
822 case DYN_UNDEF * 16 + DYN_COMMON:
823 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
824 // A dynamic common symbol is a definition of sorts.
825 return true;
826
827 case COMMON * 16 + DYN_COMMON:
828 case WEAK_COMMON * 16 + DYN_COMMON:
829 case DYN_COMMON * 16 + DYN_COMMON:
830 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
831 // Set the size to the maximum.
832 *adjust_common_sizes = true;
833 return false;
834
835 case DEF * 16 + DYN_WEAK_COMMON:
836 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
837 case DYN_DEF * 16 + DYN_WEAK_COMMON:
838 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
839 // A common symbol is ignored in the face of a definition.
840 return false;
841
842 case UNDEF * 16 + DYN_WEAK_COMMON:
843 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
844 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
845 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
846 // I guess a weak common symbol is better than a definition.
847 return true;
848
849 case COMMON * 16 + DYN_WEAK_COMMON:
850 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
851 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
852 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
853 // Set the size to the maximum.
854 *adjust_common_sizes = true;
855 return false;
856
857 default:
858 gold_unreachable();
859 }
860 }
861
862 // Issue an error or warning due to symbol resolution. IS_ERROR
863 // indicates an error rather than a warning. MSG is the error
864 // message; it is expected to have a %s for the symbol name. TO is
865 // the existing symbol. DEFINED/OBJECT is where the new symbol was
866 // found.
867
868 // FIXME: We should have better location information here. When the
869 // symbol is defined, we should be able to pull the location from the
870 // debug info if there is any.
871
872 void
873 Symbol_table::report_resolve_problem(bool is_error, const char* msg,
874 const Symbol* to, Defined defined,
875 Object* object)
876 {
877 std::string demangled(to->demangled_name());
878 size_t len = strlen(msg) + demangled.length() + 10;
879 char* buf = new char[len];
880 snprintf(buf, len, msg, demangled.c_str());
881
882 const char* objname;
883 switch (defined)
884 {
885 case OBJECT:
886 objname = object->name().c_str();
887 break;
888 case COPY:
889 objname = _("COPY reloc");
890 break;
891 case DEFSYM:
892 case UNDEFINED:
893 objname = _("command line");
894 break;
895 case SCRIPT:
896 objname = _("linker script");
897 break;
898 case PREDEFINED:
899 case INCREMENTAL_BASE:
900 objname = _("linker defined");
901 break;
902 default:
903 gold_unreachable();
904 }
905
906 if (is_error)
907 gold_error("%s: %s", objname, buf);
908 else
909 gold_warning("%s: %s", objname, buf);
910
911 delete[] buf;
912
913 if (to->source() == Symbol::FROM_OBJECT)
914 objname = to->object()->name().c_str();
915 else
916 objname = _("command line");
917 gold_info("%s: %s: previous definition here", program_name, objname);
918 }
919
920 // A special case of should_override which is only called for a strong
921 // defined symbol from a regular object file. This is used when
922 // defining special symbols.
923
924 bool
925 Symbol_table::should_override_with_special(const Symbol* to,
926 elfcpp::STT fromtype,
927 Defined defined)
928 {
929 bool adjust_common_sizes;
930 bool adjust_dyn_def;
931 unsigned int frombits = global_flag | regular_flag | def_flag;
932 bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
933 NULL, &adjust_common_sizes,
934 &adjust_dyn_def, false);
935 gold_assert(!adjust_common_sizes && !adjust_dyn_def);
936 return ret;
937 }
938
939 // Override symbol base with a special symbol.
940
941 void
942 Symbol::override_base_with_special(const Symbol* from)
943 {
944 bool same_name = this->name_ == from->name_;
945 gold_assert(same_name || this->has_alias());
946
947 // If we are overriding an undef, remember the original binding.
948 if (this->is_undefined())
949 this->set_undef_binding(this->binding_);
950
951 this->source_ = from->source_;
952 switch (from->source_)
953 {
954 case FROM_OBJECT:
955 this->u_.from_object = from->u_.from_object;
956 break;
957 case IN_OUTPUT_DATA:
958 this->u_.in_output_data = from->u_.in_output_data;
959 break;
960 case IN_OUTPUT_SEGMENT:
961 this->u_.in_output_segment = from->u_.in_output_segment;
962 break;
963 case IS_CONSTANT:
964 case IS_UNDEFINED:
965 break;
966 default:
967 gold_unreachable();
968 break;
969 }
970
971 if (same_name)
972 {
973 // When overriding a versioned symbol with a special symbol, we
974 // may be changing the version. This will happen if we see a
975 // special symbol such as "_end" defined in a shared object with
976 // one version (from a version script), but we want to define it
977 // here with a different version (from a different version
978 // script).
979 this->version_ = from->version_;
980 }
981 this->type_ = from->type_;
982 this->binding_ = from->binding_;
983 this->override_visibility(from->visibility_);
984 this->nonvis_ = from->nonvis_;
985
986 // Special symbols are always considered to be regular symbols.
987 this->in_reg_ = true;
988
989 if (from->needs_dynsym_entry_)
990 this->needs_dynsym_entry_ = true;
991 if (from->needs_dynsym_value_)
992 this->needs_dynsym_value_ = true;
993
994 this->is_predefined_ = from->is_predefined_;
995
996 // We shouldn't see these flags. If we do, we need to handle them
997 // somehow.
998 gold_assert(!from->is_forwarder_);
999 gold_assert(!from->has_plt_offset());
1000 gold_assert(!from->has_warning_);
1001 gold_assert(!from->is_copied_from_dynobj_);
1002 gold_assert(!from->is_forced_local_);
1003 }
1004
1005 // Override a symbol with a special symbol.
1006
1007 template<int size>
1008 void
1009 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
1010 {
1011 this->override_base_with_special(from);
1012 this->value_ = from->value_;
1013 this->symsize_ = from->symsize_;
1014 }
1015
1016 // Override TOSYM with the special symbol FROMSYM. This handles all
1017 // aliases of TOSYM.
1018
1019 template<int size>
1020 void
1021 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
1022 const Sized_symbol<size>* fromsym)
1023 {
1024 tosym->override_with_special(fromsym);
1025 if (tosym->has_alias())
1026 {
1027 Symbol* sym = this->weak_aliases_[tosym];
1028 gold_assert(sym != NULL);
1029 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
1030 do
1031 {
1032 ssym->override_with_special(fromsym);
1033 sym = this->weak_aliases_[ssym];
1034 gold_assert(sym != NULL);
1035 ssym = this->get_sized_symbol<size>(sym);
1036 }
1037 while (ssym != tosym);
1038 }
1039 if (tosym->binding() == elfcpp::STB_LOCAL
1040 || ((tosym->visibility() == elfcpp::STV_HIDDEN
1041 || tosym->visibility() == elfcpp::STV_INTERNAL)
1042 && (tosym->binding() == elfcpp::STB_GLOBAL
1043 || tosym->binding() == elfcpp::STB_GNU_UNIQUE
1044 || tosym->binding() == elfcpp::STB_WEAK)
1045 && !parameters->options().relocatable()))
1046 this->force_local(tosym);
1047 }
1048
1049 // Instantiate the templates we need. We could use the configure
1050 // script to restrict this to only the ones needed for implemented
1051 // targets.
1052
1053 // We have to instantiate both big and little endian versions because
1054 // these are used by other templates that depends on size only.
1055
1056 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1057 template
1058 void
1059 Symbol_table::resolve<32, false>(
1060 Sized_symbol<32>* to,
1061 const elfcpp::Sym<32, false>& sym,
1062 unsigned int st_shndx,
1063 bool is_ordinary,
1064 unsigned int orig_st_shndx,
1065 Object* object,
1066 const char* version,
1067 bool is_default_version);
1068
1069 template
1070 void
1071 Symbol_table::resolve<32, true>(
1072 Sized_symbol<32>* to,
1073 const elfcpp::Sym<32, true>& sym,
1074 unsigned int st_shndx,
1075 bool is_ordinary,
1076 unsigned int orig_st_shndx,
1077 Object* object,
1078 const char* version,
1079 bool is_default_version);
1080 #endif
1081
1082 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1083 template
1084 void
1085 Symbol_table::resolve<64, false>(
1086 Sized_symbol<64>* to,
1087 const elfcpp::Sym<64, false>& sym,
1088 unsigned int st_shndx,
1089 bool is_ordinary,
1090 unsigned int orig_st_shndx,
1091 Object* object,
1092 const char* version,
1093 bool is_default_version);
1094
1095 template
1096 void
1097 Symbol_table::resolve<64, true>(
1098 Sized_symbol<64>* to,
1099 const elfcpp::Sym<64, true>& sym,
1100 unsigned int st_shndx,
1101 bool is_ordinary,
1102 unsigned int orig_st_shndx,
1103 Object* object,
1104 const char* version,
1105 bool is_default_version);
1106 #endif
1107
1108 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1109 template
1110 void
1111 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1112 const Sized_symbol<32>*);
1113 #endif
1114
1115 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1116 template
1117 void
1118 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1119 const Sized_symbol<64>*);
1120 #endif
1121
1122 } // End namespace gold.
This page took 0.052518 seconds and 4 git commands to generate.