* resolve.cc (Symbol_table::resolve): When merging common symbols,
[deliverable/binutils-gdb.git] / gold / resolve.cc
1 // resolve.cc -- symbol resolution for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
30
31 namespace gold
32 {
33
34 // Symbol methods used in this file.
35
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
38
39 inline void
40 Symbol::override_version(const char* version)
41 {
42 if (version == NULL)
43 {
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_ = version;
53 }
54 else
55 {
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
63 }
64 }
65
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
68
69 inline void
70 Symbol::override_visibility(elfcpp::STV visibility)
71 {
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility != elfcpp::STV_DEFAULT)
78 {
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
83 }
84 }
85
86 // Override the fields in Symbol.
87
88 template<int size, bool big_endian>
89 void
90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 unsigned int st_shndx, bool is_ordinary,
92 Object* object, const char* version)
93 {
94 gold_assert(this->source_ == FROM_OBJECT);
95 this->u_.from_object.object = object;
96 this->override_version(version);
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
99 this->type_ = sym.get_st_type();
100 this->binding_ = sym.get_st_bind();
101 this->override_visibility(sym.get_st_visibility());
102 this->nonvis_ = sym.get_st_nonvis();
103 if (object->is_dynamic())
104 this->in_dyn_ = true;
105 else
106 this->in_reg_ = true;
107 }
108
109 // Override the fields in Sized_symbol.
110
111 template<int size>
112 template<bool big_endian>
113 void
114 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
115 unsigned st_shndx, bool is_ordinary,
116 Object* object, const char* version)
117 {
118 this->override_base(sym, st_shndx, is_ordinary, object, version);
119 this->value_ = sym.get_st_value();
120 this->symsize_ = sym.get_st_size();
121 }
122
123 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
124 // VERSION. This handles all aliases of TOSYM.
125
126 template<int size, bool big_endian>
127 void
128 Symbol_table::override(Sized_symbol<size>* tosym,
129 const elfcpp::Sym<size, big_endian>& fromsym,
130 unsigned int st_shndx, bool is_ordinary,
131 Object* object, const char* version)
132 {
133 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
134 if (tosym->has_alias())
135 {
136 Symbol* sym = this->weak_aliases_[tosym];
137 gold_assert(sym != NULL);
138 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
139 do
140 {
141 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
142 sym = this->weak_aliases_[ssym];
143 gold_assert(sym != NULL);
144 ssym = this->get_sized_symbol<size>(sym);
145 }
146 while (ssym != tosym);
147 }
148 }
149
150 // The resolve functions build a little code for each symbol.
151 // Bit 0: 0 for global, 1 for weak.
152 // Bit 1: 0 for regular object, 1 for shared object
153 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
154 // This gives us values from 0 to 11.
155
156 static const int global_or_weak_shift = 0;
157 static const unsigned int global_flag = 0 << global_or_weak_shift;
158 static const unsigned int weak_flag = 1 << global_or_weak_shift;
159
160 static const int regular_or_dynamic_shift = 1;
161 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
162 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
163
164 static const int def_undef_or_common_shift = 2;
165 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
166 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
167 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
168
169 // This convenience function combines all the flags based on facts
170 // about the symbol.
171
172 static unsigned int
173 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
174 unsigned int shndx, bool is_ordinary, elfcpp::STT type)
175 {
176 unsigned int bits;
177
178 switch (binding)
179 {
180 case elfcpp::STB_GLOBAL:
181 case elfcpp::STB_GNU_UNIQUE:
182 bits = global_flag;
183 break;
184
185 case elfcpp::STB_WEAK:
186 bits = weak_flag;
187 break;
188
189 case elfcpp::STB_LOCAL:
190 // We should only see externally visible symbols in the symbol
191 // table.
192 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
193 bits = global_flag;
194
195 default:
196 // Any target which wants to handle STB_LOOS, etc., needs to
197 // define a resolve method.
198 gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
199 bits = global_flag;
200 }
201
202 if (is_dynamic)
203 bits |= dynamic_flag;
204 else
205 bits |= regular_flag;
206
207 switch (shndx)
208 {
209 case elfcpp::SHN_UNDEF:
210 bits |= undef_flag;
211 break;
212
213 case elfcpp::SHN_COMMON:
214 if (!is_ordinary)
215 bits |= common_flag;
216 break;
217
218 default:
219 if (type == elfcpp::STT_COMMON)
220 bits |= common_flag;
221 else if (!is_ordinary && Symbol::is_common_shndx(shndx))
222 bits |= common_flag;
223 else
224 bits |= def_flag;
225 break;
226 }
227
228 return bits;
229 }
230
231 // Resolve a symbol. This is called the second and subsequent times
232 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
233 // section index for SYM, possibly adjusted for many sections.
234 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
235 // than a special code. ORIG_ST_SHNDX is the original section index,
236 // before any munging because of discarded sections, except that all
237 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
238 // the version of SYM.
239
240 template<int size, bool big_endian>
241 void
242 Symbol_table::resolve(Sized_symbol<size>* to,
243 const elfcpp::Sym<size, big_endian>& sym,
244 unsigned int st_shndx, bool is_ordinary,
245 unsigned int orig_st_shndx,
246 Object* object, const char* version)
247 {
248 // It's possible for a symbol to be defined in an object file
249 // using .symver to give it a version, and for there to also be
250 // a linker script giving that symbol the same version. We
251 // don't want to give a multiple-definition error for this
252 // harmless redefinition.
253 bool to_is_ordinary;
254 if (to->source() == Symbol::FROM_OBJECT
255 && to->object() == object
256 && is_ordinary
257 && to->is_defined()
258 && to->shndx(&to_is_ordinary) == st_shndx
259 && to_is_ordinary
260 && to->value() == sym.get_st_value())
261 return;
262
263 if (parameters->target().has_resolve())
264 {
265 Sized_target<size, big_endian>* sized_target;
266 sized_target = parameters->sized_target<size, big_endian>();
267 sized_target->resolve(to, sym, object, version);
268 return;
269 }
270
271 if (!object->is_dynamic())
272 {
273 // Record that we've seen this symbol in a regular object.
274 to->set_in_reg();
275 }
276 else if (st_shndx == elfcpp::SHN_UNDEF
277 && (to->visibility() == elfcpp::STV_HIDDEN
278 || to->visibility() == elfcpp::STV_INTERNAL))
279 {
280 // A dynamic object cannot reference a hidden or internal symbol
281 // defined in another object.
282 gold_warning(_("%s symbol '%s' in %s is referenced by DSO %s"),
283 (to->visibility() == elfcpp::STV_HIDDEN
284 ? "hidden"
285 : "internal"),
286 to->demangled_name().c_str(),
287 to->object()->name().c_str(),
288 object->name().c_str());
289 return;
290 }
291 else
292 {
293 // Record that we've seen this symbol in a dynamic object.
294 to->set_in_dyn();
295 }
296
297 // Record if we've seen this symbol in a real ELF object (i.e., the
298 // symbol is referenced from outside the world known to the plugin).
299 if (object->pluginobj() == NULL && !object->is_dynamic())
300 to->set_in_real_elf();
301
302 // If we're processing replacement files, allow new symbols to override
303 // the placeholders from the plugin objects.
304 if (to->source() == Symbol::FROM_OBJECT)
305 {
306 Pluginobj* obj = to->object()->pluginobj();
307 if (obj != NULL
308 && parameters->options().plugins()->in_replacement_phase())
309 {
310 this->override(to, sym, st_shndx, is_ordinary, object, version);
311 return;
312 }
313 }
314
315 // A new weak undefined reference, merging with an old weak
316 // reference, could be a One Definition Rule (ODR) violation --
317 // especially if the types or sizes of the references differ. We'll
318 // store such pairs and look them up later to make sure they
319 // actually refer to the same lines of code. We also check
320 // combinations of weak and strong, which might occur if one case is
321 // inline and the other is not. (Note: not all ODR violations can
322 // be found this way, and not everything this finds is an ODR
323 // violation. But it's helpful to warn about.)
324 if (parameters->options().detect_odr_violations()
325 && (sym.get_st_bind() == elfcpp::STB_WEAK
326 || to->binding() == elfcpp::STB_WEAK)
327 && orig_st_shndx != elfcpp::SHN_UNDEF
328 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
329 && to_is_ordinary
330 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
331 && to->symsize() != 0
332 && (sym.get_st_type() != to->type()
333 || sym.get_st_size() != to->symsize())
334 // C does not have a concept of ODR, so we only need to do this
335 // on C++ symbols. These have (mangled) names starting with _Z.
336 && to->name()[0] == '_' && to->name()[1] == 'Z')
337 {
338 Symbol_location fromloc
339 = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
340 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
341 static_cast<off_t>(to->value()) };
342 this->candidate_odr_violations_[to->name()].insert(fromloc);
343 this->candidate_odr_violations_[to->name()].insert(toloc);
344 }
345
346 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
347 object->is_dynamic(),
348 st_shndx, is_ordinary,
349 sym.get_st_type());
350
351 bool adjust_common_sizes;
352 bool adjust_dyndef;
353 typename Sized_symbol<size>::Size_type tosize = to->symsize();
354 if (Symbol_table::should_override(to, frombits, sym.get_st_type(), OBJECT,
355 object, &adjust_common_sizes,
356 &adjust_dyndef))
357 {
358 elfcpp::STB tobinding = to->binding();
359 typename Sized_symbol<size>::Value_type tovalue = to->value();
360 this->override(to, sym, st_shndx, is_ordinary, object, version);
361 if (adjust_common_sizes)
362 {
363 if (tosize > to->symsize())
364 to->set_symsize(tosize);
365 if (tovalue > to->value())
366 to->set_value(tovalue);
367 }
368 if (adjust_dyndef)
369 {
370 // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
371 // Remember which kind of UNDEF it was for future reference.
372 to->set_undef_binding(tobinding);
373 }
374 }
375 else
376 {
377 if (adjust_common_sizes)
378 {
379 if (sym.get_st_size() > tosize)
380 to->set_symsize(sym.get_st_size());
381 if (sym.get_st_value() > to->value())
382 to->set_value(sym.get_st_value());
383 }
384 if (adjust_dyndef)
385 {
386 // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
387 // Remember which kind of UNDEF it was.
388 to->set_undef_binding(sym.get_st_bind());
389 }
390 // The ELF ABI says that even for a reference to a symbol we
391 // merge the visibility.
392 to->override_visibility(sym.get_st_visibility());
393 }
394
395 if (adjust_common_sizes && parameters->options().warn_common())
396 {
397 if (tosize > sym.get_st_size())
398 Symbol_table::report_resolve_problem(false,
399 _("common of '%s' overriding "
400 "smaller common"),
401 to, OBJECT, object);
402 else if (tosize < sym.get_st_size())
403 Symbol_table::report_resolve_problem(false,
404 _("common of '%s' overidden by "
405 "larger common"),
406 to, OBJECT, object);
407 else
408 Symbol_table::report_resolve_problem(false,
409 _("multiple common of '%s'"),
410 to, OBJECT, object);
411 }
412 }
413
414 // Handle the core of symbol resolution. This is called with the
415 // existing symbol, TO, and a bitflag describing the new symbol. This
416 // returns true if we should override the existing symbol with the new
417 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
418 // true if we should set the symbol size to the maximum of the TO and
419 // FROM sizes. It handles error conditions.
420
421 bool
422 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
423 elfcpp::STT fromtype, Defined defined,
424 Object* object, bool* adjust_common_sizes,
425 bool* adjust_dyndef)
426 {
427 *adjust_common_sizes = false;
428 *adjust_dyndef = false;
429
430 unsigned int tobits;
431 if (to->source() == Symbol::IS_UNDEFINED)
432 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
433 to->type());
434 else if (to->source() != Symbol::FROM_OBJECT)
435 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
436 to->type());
437 else
438 {
439 bool is_ordinary;
440 unsigned int shndx = to->shndx(&is_ordinary);
441 tobits = symbol_to_bits(to->binding(),
442 to->object()->is_dynamic(),
443 shndx,
444 is_ordinary,
445 to->type());
446 }
447
448 if (to->type() == elfcpp::STT_TLS
449 ? fromtype != elfcpp::STT_TLS
450 : fromtype == elfcpp::STT_TLS)
451 Symbol_table::report_resolve_problem(true,
452 _("symbol '%s' used as both __thread "
453 "and non-__thread"),
454 to, defined, object);
455
456 // We use a giant switch table for symbol resolution. This code is
457 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
458 // cases; 3) it is easy to change the handling of a particular case.
459 // The alternative would be a series of conditionals, but it is easy
460 // to get the ordering wrong. This could also be done as a table,
461 // but that is no easier to understand than this large switch
462 // statement.
463
464 // These are the values generated by the bit codes.
465 enum
466 {
467 DEF = global_flag | regular_flag | def_flag,
468 WEAK_DEF = weak_flag | regular_flag | def_flag,
469 DYN_DEF = global_flag | dynamic_flag | def_flag,
470 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
471 UNDEF = global_flag | regular_flag | undef_flag,
472 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
473 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
474 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
475 COMMON = global_flag | regular_flag | common_flag,
476 WEAK_COMMON = weak_flag | regular_flag | common_flag,
477 DYN_COMMON = global_flag | dynamic_flag | common_flag,
478 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
479 };
480
481 switch (tobits * 16 + frombits)
482 {
483 case DEF * 16 + DEF:
484 // Two definitions of the same symbol.
485
486 // If either symbol is defined by an object included using
487 // --just-symbols, then don't warn. This is for compatibility
488 // with the GNU linker. FIXME: This is a hack.
489 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
490 || (object != NULL && object->just_symbols()))
491 return false;
492
493 if (!parameters->options().muldefs())
494 Symbol_table::report_resolve_problem(true,
495 _("multiple definition of '%s'"),
496 to, defined, object);
497 return false;
498
499 case WEAK_DEF * 16 + DEF:
500 // We've seen a weak definition, and now we see a strong
501 // definition. In the original SVR4 linker, this was treated as
502 // a multiple definition error. In the Solaris linker and the
503 // GNU linker, a weak definition followed by a regular
504 // definition causes the weak definition to be overridden. We
505 // are currently compatible with the GNU linker. In the future
506 // we should add a target specific option to change this.
507 // FIXME.
508 return true;
509
510 case DYN_DEF * 16 + DEF:
511 case DYN_WEAK_DEF * 16 + DEF:
512 // We've seen a definition in a dynamic object, and now we see a
513 // definition in a regular object. The definition in the
514 // regular object overrides the definition in the dynamic
515 // object.
516 return true;
517
518 case UNDEF * 16 + DEF:
519 case WEAK_UNDEF * 16 + DEF:
520 case DYN_UNDEF * 16 + DEF:
521 case DYN_WEAK_UNDEF * 16 + DEF:
522 // We've seen an undefined reference, and now we see a
523 // definition. We use the definition.
524 return true;
525
526 case COMMON * 16 + DEF:
527 case WEAK_COMMON * 16 + DEF:
528 case DYN_COMMON * 16 + DEF:
529 case DYN_WEAK_COMMON * 16 + DEF:
530 // We've seen a common symbol and now we see a definition. The
531 // definition overrides.
532 if (parameters->options().warn_common())
533 Symbol_table::report_resolve_problem(false,
534 _("definition of '%s' overriding "
535 "common"),
536 to, defined, object);
537 return true;
538
539 case DEF * 16 + WEAK_DEF:
540 case WEAK_DEF * 16 + WEAK_DEF:
541 // We've seen a definition and now we see a weak definition. We
542 // ignore the new weak definition.
543 return false;
544
545 case DYN_DEF * 16 + WEAK_DEF:
546 case DYN_WEAK_DEF * 16 + WEAK_DEF:
547 // We've seen a dynamic definition and now we see a regular weak
548 // definition. The regular weak definition overrides.
549 return true;
550
551 case UNDEF * 16 + WEAK_DEF:
552 case WEAK_UNDEF * 16 + WEAK_DEF:
553 case DYN_UNDEF * 16 + WEAK_DEF:
554 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
555 // A weak definition of a currently undefined symbol.
556 return true;
557
558 case COMMON * 16 + WEAK_DEF:
559 case WEAK_COMMON * 16 + WEAK_DEF:
560 // A weak definition does not override a common definition.
561 return false;
562
563 case DYN_COMMON * 16 + WEAK_DEF:
564 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
565 // A weak definition does override a definition in a dynamic
566 // object.
567 if (parameters->options().warn_common())
568 Symbol_table::report_resolve_problem(false,
569 _("definition of '%s' overriding "
570 "dynamic common definition"),
571 to, defined, object);
572 return true;
573
574 case DEF * 16 + DYN_DEF:
575 case WEAK_DEF * 16 + DYN_DEF:
576 case DYN_DEF * 16 + DYN_DEF:
577 case DYN_WEAK_DEF * 16 + DYN_DEF:
578 // Ignore a dynamic definition if we already have a definition.
579 return false;
580
581 case UNDEF * 16 + DYN_DEF:
582 case DYN_UNDEF * 16 + DYN_DEF:
583 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
584 // Use a dynamic definition if we have a reference.
585 return true;
586
587 case WEAK_UNDEF * 16 + DYN_DEF:
588 // When overriding a weak undef by a dynamic definition,
589 // we need to remember that the original undef was weak.
590 *adjust_dyndef = true;
591 return true;
592
593 case COMMON * 16 + DYN_DEF:
594 case WEAK_COMMON * 16 + DYN_DEF:
595 case DYN_COMMON * 16 + DYN_DEF:
596 case DYN_WEAK_COMMON * 16 + DYN_DEF:
597 // Ignore a dynamic definition if we already have a common
598 // definition.
599 return false;
600
601 case DEF * 16 + DYN_WEAK_DEF:
602 case WEAK_DEF * 16 + DYN_WEAK_DEF:
603 case DYN_DEF * 16 + DYN_WEAK_DEF:
604 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
605 // Ignore a weak dynamic definition if we already have a
606 // definition.
607 return false;
608
609 case UNDEF * 16 + DYN_WEAK_DEF:
610 // When overriding an undef by a dynamic weak definition,
611 // we need to remember that the original undef was not weak.
612 *adjust_dyndef = true;
613 return true;
614
615 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
616 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
617 // Use a weak dynamic definition if we have a reference.
618 return true;
619
620 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
621 // When overriding a weak undef by a dynamic definition,
622 // we need to remember that the original undef was weak.
623 *adjust_dyndef = true;
624 return true;
625
626 case COMMON * 16 + DYN_WEAK_DEF:
627 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
628 case DYN_COMMON * 16 + DYN_WEAK_DEF:
629 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
630 // Ignore a weak dynamic definition if we already have a common
631 // definition.
632 return false;
633
634 case DEF * 16 + UNDEF:
635 case WEAK_DEF * 16 + UNDEF:
636 case UNDEF * 16 + UNDEF:
637 // A new undefined reference tells us nothing.
638 return false;
639
640 case DYN_DEF * 16 + UNDEF:
641 case DYN_WEAK_DEF * 16 + UNDEF:
642 // For a dynamic def, we need to remember which kind of undef we see.
643 *adjust_dyndef = true;
644 return false;
645
646 case WEAK_UNDEF * 16 + UNDEF:
647 case DYN_UNDEF * 16 + UNDEF:
648 case DYN_WEAK_UNDEF * 16 + UNDEF:
649 // A strong undef overrides a dynamic or weak undef.
650 return true;
651
652 case COMMON * 16 + UNDEF:
653 case WEAK_COMMON * 16 + UNDEF:
654 case DYN_COMMON * 16 + UNDEF:
655 case DYN_WEAK_COMMON * 16 + UNDEF:
656 // A new undefined reference tells us nothing.
657 return false;
658
659 case DEF * 16 + WEAK_UNDEF:
660 case WEAK_DEF * 16 + WEAK_UNDEF:
661 case UNDEF * 16 + WEAK_UNDEF:
662 case WEAK_UNDEF * 16 + WEAK_UNDEF:
663 case DYN_UNDEF * 16 + WEAK_UNDEF:
664 case COMMON * 16 + WEAK_UNDEF:
665 case WEAK_COMMON * 16 + WEAK_UNDEF:
666 case DYN_COMMON * 16 + WEAK_UNDEF:
667 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
668 // A new weak undefined reference tells us nothing unless the
669 // exisiting symbol is a dynamic weak reference.
670 return false;
671
672 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
673 // A new weak reference overrides an existing dynamic weak reference.
674 // This is necessary because a dynamic weak reference remembers
675 // the old binding, which may not be weak. If we keeps the existing
676 // dynamic weak reference, the weakness may be dropped in the output.
677 return true;
678
679 case DYN_DEF * 16 + WEAK_UNDEF:
680 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
681 // For a dynamic def, we need to remember which kind of undef we see.
682 *adjust_dyndef = true;
683 return false;
684
685 case DEF * 16 + DYN_UNDEF:
686 case WEAK_DEF * 16 + DYN_UNDEF:
687 case DYN_DEF * 16 + DYN_UNDEF:
688 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
689 case UNDEF * 16 + DYN_UNDEF:
690 case WEAK_UNDEF * 16 + DYN_UNDEF:
691 case DYN_UNDEF * 16 + DYN_UNDEF:
692 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
693 case COMMON * 16 + DYN_UNDEF:
694 case WEAK_COMMON * 16 + DYN_UNDEF:
695 case DYN_COMMON * 16 + DYN_UNDEF:
696 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
697 // A new dynamic undefined reference tells us nothing.
698 return false;
699
700 case DEF * 16 + DYN_WEAK_UNDEF:
701 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
702 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
703 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
704 case UNDEF * 16 + DYN_WEAK_UNDEF:
705 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
706 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
707 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
708 case COMMON * 16 + DYN_WEAK_UNDEF:
709 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
710 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
711 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
712 // A new weak dynamic undefined reference tells us nothing.
713 return false;
714
715 case DEF * 16 + COMMON:
716 // A common symbol does not override a definition.
717 if (parameters->options().warn_common())
718 Symbol_table::report_resolve_problem(false,
719 _("common '%s' overridden by "
720 "previous definition"),
721 to, defined, object);
722 return false;
723
724 case WEAK_DEF * 16 + COMMON:
725 case DYN_DEF * 16 + COMMON:
726 case DYN_WEAK_DEF * 16 + COMMON:
727 // A common symbol does override a weak definition or a dynamic
728 // definition.
729 return true;
730
731 case UNDEF * 16 + COMMON:
732 case WEAK_UNDEF * 16 + COMMON:
733 case DYN_UNDEF * 16 + COMMON:
734 case DYN_WEAK_UNDEF * 16 + COMMON:
735 // A common symbol is a definition for a reference.
736 return true;
737
738 case COMMON * 16 + COMMON:
739 // Set the size to the maximum.
740 *adjust_common_sizes = true;
741 return false;
742
743 case WEAK_COMMON * 16 + COMMON:
744 // I'm not sure just what a weak common symbol means, but
745 // presumably it can be overridden by a regular common symbol.
746 return true;
747
748 case DYN_COMMON * 16 + COMMON:
749 case DYN_WEAK_COMMON * 16 + COMMON:
750 // Use the real common symbol, but adjust the size if necessary.
751 *adjust_common_sizes = true;
752 return true;
753
754 case DEF * 16 + WEAK_COMMON:
755 case WEAK_DEF * 16 + WEAK_COMMON:
756 case DYN_DEF * 16 + WEAK_COMMON:
757 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
758 // Whatever a weak common symbol is, it won't override a
759 // definition.
760 return false;
761
762 case UNDEF * 16 + WEAK_COMMON:
763 case WEAK_UNDEF * 16 + WEAK_COMMON:
764 case DYN_UNDEF * 16 + WEAK_COMMON:
765 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
766 // A weak common symbol is better than an undefined symbol.
767 return true;
768
769 case COMMON * 16 + WEAK_COMMON:
770 case WEAK_COMMON * 16 + WEAK_COMMON:
771 case DYN_COMMON * 16 + WEAK_COMMON:
772 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
773 // Ignore a weak common symbol in the presence of a real common
774 // symbol.
775 return false;
776
777 case DEF * 16 + DYN_COMMON:
778 case WEAK_DEF * 16 + DYN_COMMON:
779 case DYN_DEF * 16 + DYN_COMMON:
780 case DYN_WEAK_DEF * 16 + DYN_COMMON:
781 // Ignore a dynamic common symbol in the presence of a
782 // definition.
783 return false;
784
785 case UNDEF * 16 + DYN_COMMON:
786 case WEAK_UNDEF * 16 + DYN_COMMON:
787 case DYN_UNDEF * 16 + DYN_COMMON:
788 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
789 // A dynamic common symbol is a definition of sorts.
790 return true;
791
792 case COMMON * 16 + DYN_COMMON:
793 case WEAK_COMMON * 16 + DYN_COMMON:
794 case DYN_COMMON * 16 + DYN_COMMON:
795 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
796 // Set the size to the maximum.
797 *adjust_common_sizes = true;
798 return false;
799
800 case DEF * 16 + DYN_WEAK_COMMON:
801 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
802 case DYN_DEF * 16 + DYN_WEAK_COMMON:
803 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
804 // A common symbol is ignored in the face of a definition.
805 return false;
806
807 case UNDEF * 16 + DYN_WEAK_COMMON:
808 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
809 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
810 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
811 // I guess a weak common symbol is better than a definition.
812 return true;
813
814 case COMMON * 16 + DYN_WEAK_COMMON:
815 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
816 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
817 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
818 // Set the size to the maximum.
819 *adjust_common_sizes = true;
820 return false;
821
822 default:
823 gold_unreachable();
824 }
825 }
826
827 // Issue an error or warning due to symbol resolution. IS_ERROR
828 // indicates an error rather than a warning. MSG is the error
829 // message; it is expected to have a %s for the symbol name. TO is
830 // the existing symbol. DEFINED/OBJECT is where the new symbol was
831 // found.
832
833 // FIXME: We should have better location information here. When the
834 // symbol is defined, we should be able to pull the location from the
835 // debug info if there is any.
836
837 void
838 Symbol_table::report_resolve_problem(bool is_error, const char* msg,
839 const Symbol* to, Defined defined,
840 Object* object)
841 {
842 std::string demangled(to->demangled_name());
843 size_t len = strlen(msg) + demangled.length() + 10;
844 char* buf = new char[len];
845 snprintf(buf, len, msg, demangled.c_str());
846
847 const char* objname;
848 switch (defined)
849 {
850 case OBJECT:
851 objname = object->name().c_str();
852 break;
853 case COPY:
854 objname = _("COPY reloc");
855 break;
856 case DEFSYM:
857 case UNDEFINED:
858 objname = _("command line");
859 break;
860 case SCRIPT:
861 objname = _("linker script");
862 break;
863 case PREDEFINED:
864 case INCREMENTAL_BASE:
865 objname = _("linker defined");
866 break;
867 default:
868 gold_unreachable();
869 }
870
871 if (is_error)
872 gold_error("%s: %s", objname, buf);
873 else
874 gold_warning("%s: %s", objname, buf);
875
876 delete[] buf;
877
878 if (to->source() == Symbol::FROM_OBJECT)
879 objname = to->object()->name().c_str();
880 else
881 objname = _("command line");
882 gold_info("%s: %s: previous definition here", program_name, objname);
883 }
884
885 // A special case of should_override which is only called for a strong
886 // defined symbol from a regular object file. This is used when
887 // defining special symbols.
888
889 bool
890 Symbol_table::should_override_with_special(const Symbol* to,
891 elfcpp::STT fromtype,
892 Defined defined)
893 {
894 bool adjust_common_sizes;
895 bool adjust_dyn_def;
896 unsigned int frombits = global_flag | regular_flag | def_flag;
897 bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
898 NULL, &adjust_common_sizes,
899 &adjust_dyn_def);
900 gold_assert(!adjust_common_sizes && !adjust_dyn_def);
901 return ret;
902 }
903
904 // Override symbol base with a special symbol.
905
906 void
907 Symbol::override_base_with_special(const Symbol* from)
908 {
909 bool same_name = this->name_ == from->name_;
910 gold_assert(same_name || this->has_alias());
911
912 this->source_ = from->source_;
913 switch (from->source_)
914 {
915 case FROM_OBJECT:
916 this->u_.from_object = from->u_.from_object;
917 break;
918 case IN_OUTPUT_DATA:
919 this->u_.in_output_data = from->u_.in_output_data;
920 break;
921 case IN_OUTPUT_SEGMENT:
922 this->u_.in_output_segment = from->u_.in_output_segment;
923 break;
924 case IS_CONSTANT:
925 case IS_UNDEFINED:
926 break;
927 default:
928 gold_unreachable();
929 break;
930 }
931
932 if (same_name)
933 {
934 // When overriding a versioned symbol with a special symbol, we
935 // may be changing the version. This will happen if we see a
936 // special symbol such as "_end" defined in a shared object with
937 // one version (from a version script), but we want to define it
938 // here with a different version (from a different version
939 // script).
940 this->version_ = from->version_;
941 }
942 this->type_ = from->type_;
943 this->binding_ = from->binding_;
944 this->override_visibility(from->visibility_);
945 this->nonvis_ = from->nonvis_;
946
947 // Special symbols are always considered to be regular symbols.
948 this->in_reg_ = true;
949
950 if (from->needs_dynsym_entry_)
951 this->needs_dynsym_entry_ = true;
952 if (from->needs_dynsym_value_)
953 this->needs_dynsym_value_ = true;
954
955 this->is_predefined_ = from->is_predefined_;
956
957 // We shouldn't see these flags. If we do, we need to handle them
958 // somehow.
959 gold_assert(!from->is_forwarder_);
960 gold_assert(!from->has_plt_offset());
961 gold_assert(!from->has_warning_);
962 gold_assert(!from->is_copied_from_dynobj_);
963 gold_assert(!from->is_forced_local_);
964 }
965
966 // Override a symbol with a special symbol.
967
968 template<int size>
969 void
970 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
971 {
972 this->override_base_with_special(from);
973 this->value_ = from->value_;
974 this->symsize_ = from->symsize_;
975 }
976
977 // Override TOSYM with the special symbol FROMSYM. This handles all
978 // aliases of TOSYM.
979
980 template<int size>
981 void
982 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
983 const Sized_symbol<size>* fromsym)
984 {
985 tosym->override_with_special(fromsym);
986 if (tosym->has_alias())
987 {
988 Symbol* sym = this->weak_aliases_[tosym];
989 gold_assert(sym != NULL);
990 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
991 do
992 {
993 ssym->override_with_special(fromsym);
994 sym = this->weak_aliases_[ssym];
995 gold_assert(sym != NULL);
996 ssym = this->get_sized_symbol<size>(sym);
997 }
998 while (ssym != tosym);
999 }
1000 if (tosym->binding() == elfcpp::STB_LOCAL
1001 || ((tosym->visibility() == elfcpp::STV_HIDDEN
1002 || tosym->visibility() == elfcpp::STV_INTERNAL)
1003 && (tosym->binding() == elfcpp::STB_GLOBAL
1004 || tosym->binding() == elfcpp::STB_GNU_UNIQUE
1005 || tosym->binding() == elfcpp::STB_WEAK)
1006 && !parameters->options().relocatable()))
1007 this->force_local(tosym);
1008 }
1009
1010 // Instantiate the templates we need. We could use the configure
1011 // script to restrict this to only the ones needed for implemented
1012 // targets.
1013
1014 // We have to instantiate both big and little endian versions because
1015 // these are used by other templates that depends on size only.
1016
1017 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1018 template
1019 void
1020 Symbol_table::resolve<32, false>(
1021 Sized_symbol<32>* to,
1022 const elfcpp::Sym<32, false>& sym,
1023 unsigned int st_shndx,
1024 bool is_ordinary,
1025 unsigned int orig_st_shndx,
1026 Object* object,
1027 const char* version);
1028
1029 template
1030 void
1031 Symbol_table::resolve<32, true>(
1032 Sized_symbol<32>* to,
1033 const elfcpp::Sym<32, true>& sym,
1034 unsigned int st_shndx,
1035 bool is_ordinary,
1036 unsigned int orig_st_shndx,
1037 Object* object,
1038 const char* version);
1039 #endif
1040
1041 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1042 template
1043 void
1044 Symbol_table::resolve<64, false>(
1045 Sized_symbol<64>* to,
1046 const elfcpp::Sym<64, false>& sym,
1047 unsigned int st_shndx,
1048 bool is_ordinary,
1049 unsigned int orig_st_shndx,
1050 Object* object,
1051 const char* version);
1052
1053 template
1054 void
1055 Symbol_table::resolve<64, true>(
1056 Sized_symbol<64>* to,
1057 const elfcpp::Sym<64, true>& sym,
1058 unsigned int st_shndx,
1059 bool is_ordinary,
1060 unsigned int orig_st_shndx,
1061 Object* object,
1062 const char* version);
1063 #endif
1064
1065 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1066 template
1067 void
1068 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1069 const Sized_symbol<32>*);
1070 #endif
1071
1072 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1073 template
1074 void
1075 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1076 const Sized_symbol<64>*);
1077 #endif
1078
1079 } // End namespace gold.
This page took 0.050306 seconds and 5 git commands to generate.