2009-10-09 Doug Kwan <dougkwan@google.com>
[deliverable/binutils-gdb.git] / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // Manage orphan sections. This is intended to be largely compatible
47 // with the GNU linker. The Linux kernel implicitly relies on
48 // something similar to the GNU linker's orphan placement. We
49 // originally used a simpler scheme here, but it caused the kernel
50 // build to fail, and was also rather inefficient.
51
52 class Orphan_section_placement
53 {
54 private:
55 typedef Script_sections::Elements_iterator Elements_iterator;
56
57 public:
58 Orphan_section_placement();
59
60 // Handle an output section during initialization of this mapping.
61 void
62 output_section_init(const std::string& name, Output_section*,
63 Elements_iterator location);
64
65 // Initialize the last location.
66 void
67 last_init(Elements_iterator location);
68
69 // Set *PWHERE to the address of an iterator pointing to the
70 // location to use for an orphan section. Return true if the
71 // iterator has a value, false otherwise.
72 bool
73 find_place(Output_section*, Elements_iterator** pwhere);
74
75 // Return the iterator being used for sections at the very end of
76 // the linker script.
77 Elements_iterator
78 last_place() const;
79
80 private:
81 // The places that we specifically recognize. This list is copied
82 // from the GNU linker.
83 enum Place_index
84 {
85 PLACE_TEXT,
86 PLACE_RODATA,
87 PLACE_DATA,
88 PLACE_BSS,
89 PLACE_REL,
90 PLACE_INTERP,
91 PLACE_NONALLOC,
92 PLACE_LAST,
93 PLACE_MAX
94 };
95
96 // The information we keep for a specific place.
97 struct Place
98 {
99 // The name of sections for this place.
100 const char* name;
101 // Whether we have a location for this place.
102 bool have_location;
103 // The iterator for this place.
104 Elements_iterator location;
105 };
106
107 // Initialize one place element.
108 void
109 initialize_place(Place_index, const char*);
110
111 // The places.
112 Place places_[PLACE_MAX];
113 // True if this is the first call to output_section_init.
114 bool first_init_;
115 };
116
117 // Initialize Orphan_section_placement.
118
119 Orphan_section_placement::Orphan_section_placement()
120 : first_init_(true)
121 {
122 this->initialize_place(PLACE_TEXT, ".text");
123 this->initialize_place(PLACE_RODATA, ".rodata");
124 this->initialize_place(PLACE_DATA, ".data");
125 this->initialize_place(PLACE_BSS, ".bss");
126 this->initialize_place(PLACE_REL, NULL);
127 this->initialize_place(PLACE_INTERP, ".interp");
128 this->initialize_place(PLACE_NONALLOC, NULL);
129 this->initialize_place(PLACE_LAST, NULL);
130 }
131
132 // Initialize one place element.
133
134 void
135 Orphan_section_placement::initialize_place(Place_index index, const char* name)
136 {
137 this->places_[index].name = name;
138 this->places_[index].have_location = false;
139 }
140
141 // While initializing the Orphan_section_placement information, this
142 // is called once for each output section named in the linker script.
143 // If we found an output section during the link, it will be passed in
144 // OS.
145
146 void
147 Orphan_section_placement::output_section_init(const std::string& name,
148 Output_section* os,
149 Elements_iterator location)
150 {
151 bool first_init = this->first_init_;
152 this->first_init_ = false;
153
154 for (int i = 0; i < PLACE_MAX; ++i)
155 {
156 if (this->places_[i].name != NULL && this->places_[i].name == name)
157 {
158 if (this->places_[i].have_location)
159 {
160 // We have already seen a section with this name.
161 return;
162 }
163
164 this->places_[i].location = location;
165 this->places_[i].have_location = true;
166
167 // If we just found the .bss section, restart the search for
168 // an unallocated section. This follows the GNU linker's
169 // behaviour.
170 if (i == PLACE_BSS)
171 this->places_[PLACE_NONALLOC].have_location = false;
172
173 return;
174 }
175 }
176
177 // Relocation sections.
178 if (!this->places_[PLACE_REL].have_location
179 && os != NULL
180 && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
181 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
182 {
183 this->places_[PLACE_REL].location = location;
184 this->places_[PLACE_REL].have_location = true;
185 }
186
187 // We find the location for unallocated sections by finding the
188 // first debugging or comment section after the BSS section (if
189 // there is one).
190 if (!this->places_[PLACE_NONALLOC].have_location
191 && (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
192 {
193 // We add orphan sections after the location in PLACES_. We
194 // want to store unallocated sections before LOCATION. If this
195 // is the very first section, we can't use it.
196 if (!first_init)
197 {
198 --location;
199 this->places_[PLACE_NONALLOC].location = location;
200 this->places_[PLACE_NONALLOC].have_location = true;
201 }
202 }
203 }
204
205 // Initialize the last location.
206
207 void
208 Orphan_section_placement::last_init(Elements_iterator location)
209 {
210 this->places_[PLACE_LAST].location = location;
211 this->places_[PLACE_LAST].have_location = true;
212 }
213
214 // Set *PWHERE to the address of an iterator pointing to the location
215 // to use for an orphan section. Return true if the iterator has a
216 // value, false otherwise.
217
218 bool
219 Orphan_section_placement::find_place(Output_section* os,
220 Elements_iterator** pwhere)
221 {
222 // Figure out where OS should go. This is based on the GNU linker
223 // code. FIXME: The GNU linker handles small data sections
224 // specially, but we don't.
225 elfcpp::Elf_Word type = os->type();
226 elfcpp::Elf_Xword flags = os->flags();
227 Place_index index;
228 if ((flags & elfcpp::SHF_ALLOC) == 0
229 && !Layout::is_debug_info_section(os->name()))
230 index = PLACE_NONALLOC;
231 else if ((flags & elfcpp::SHF_ALLOC) == 0)
232 index = PLACE_LAST;
233 else if (type == elfcpp::SHT_NOTE)
234 index = PLACE_INTERP;
235 else if (type == elfcpp::SHT_NOBITS)
236 index = PLACE_BSS;
237 else if ((flags & elfcpp::SHF_WRITE) != 0)
238 index = PLACE_DATA;
239 else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
240 index = PLACE_REL;
241 else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
242 index = PLACE_RODATA;
243 else
244 index = PLACE_TEXT;
245
246 // If we don't have a location yet, try to find one based on a
247 // plausible ordering of sections.
248 if (!this->places_[index].have_location)
249 {
250 Place_index follow;
251 switch (index)
252 {
253 default:
254 follow = PLACE_MAX;
255 break;
256 case PLACE_RODATA:
257 follow = PLACE_TEXT;
258 break;
259 case PLACE_BSS:
260 follow = PLACE_DATA;
261 break;
262 case PLACE_REL:
263 follow = PLACE_TEXT;
264 break;
265 case PLACE_INTERP:
266 follow = PLACE_TEXT;
267 break;
268 }
269 if (follow != PLACE_MAX && this->places_[follow].have_location)
270 {
271 // Set the location of INDEX to the location of FOLLOW. The
272 // location of INDEX will then be incremented by the caller,
273 // so anything in INDEX will continue to be after anything
274 // in FOLLOW.
275 this->places_[index].location = this->places_[follow].location;
276 this->places_[index].have_location = true;
277 }
278 }
279
280 *pwhere = &this->places_[index].location;
281 bool ret = this->places_[index].have_location;
282
283 // The caller will set the location.
284 this->places_[index].have_location = true;
285
286 return ret;
287 }
288
289 // Return the iterator being used for sections at the very end of the
290 // linker script.
291
292 Orphan_section_placement::Elements_iterator
293 Orphan_section_placement::last_place() const
294 {
295 gold_assert(this->places_[PLACE_LAST].have_location);
296 return this->places_[PLACE_LAST].location;
297 }
298
299 // An element in a SECTIONS clause.
300
301 class Sections_element
302 {
303 public:
304 Sections_element()
305 { }
306
307 virtual ~Sections_element()
308 { }
309
310 // Return whether an output section is relro.
311 virtual bool
312 is_relro() const
313 { return false; }
314
315 // Record that an output section is relro.
316 virtual void
317 set_is_relro()
318 { }
319
320 // Create any required output sections. The only real
321 // implementation is in Output_section_definition.
322 virtual void
323 create_sections(Layout*)
324 { }
325
326 // Add any symbol being defined to the symbol table.
327 virtual void
328 add_symbols_to_table(Symbol_table*)
329 { }
330
331 // Finalize symbols and check assertions.
332 virtual void
333 finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
334 { }
335
336 // Return the output section name to use for an input file name and
337 // section name. This only real implementation is in
338 // Output_section_definition.
339 virtual const char*
340 output_section_name(const char*, const char*, Output_section***)
341 { return NULL; }
342
343 // Initialize OSP with an output section.
344 virtual void
345 orphan_section_init(Orphan_section_placement*,
346 Script_sections::Elements_iterator)
347 { }
348
349 // Set section addresses. This includes applying assignments if the
350 // the expression is an absolute value.
351 virtual void
352 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*)
353 { }
354
355 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
356 // this section is constrained, and the input sections do not match,
357 // return the constraint, and set *POSD.
358 virtual Section_constraint
359 check_constraint(Output_section_definition**)
360 { return CONSTRAINT_NONE; }
361
362 // See if this is the alternate output section for a constrained
363 // output section. If it is, transfer the Output_section and return
364 // true. Otherwise return false.
365 virtual bool
366 alternate_constraint(Output_section_definition*, Section_constraint)
367 { return false; }
368
369 // Get the list of segments to use for an allocated section when
370 // using a PHDRS clause. If this is an allocated section, return
371 // the Output_section, and set *PHDRS_LIST (the first parameter) to
372 // the list of PHDRS to which it should be attached. If the PHDRS
373 // were not specified, don't change *PHDRS_LIST. When not returning
374 // NULL, set *ORPHAN (the second parameter) according to whether
375 // this is an orphan section--one that is not mentioned in the
376 // linker script.
377 virtual Output_section*
378 allocate_to_segment(String_list**, bool*)
379 { return NULL; }
380
381 // Look for an output section by name and return the address, the
382 // load address, the alignment, and the size. This is used when an
383 // expression refers to an output section which was not actually
384 // created. This returns true if the section was found, false
385 // otherwise. The only real definition is for
386 // Output_section_definition.
387 virtual bool
388 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
389 uint64_t*) const
390 { return false; }
391
392 // Return the associated Output_section if there is one.
393 virtual Output_section*
394 get_output_section() const
395 { return NULL; }
396
397 // Print the element for debugging purposes.
398 virtual void
399 print(FILE* f) const = 0;
400 };
401
402 // An assignment in a SECTIONS clause outside of an output section.
403
404 class Sections_element_assignment : public Sections_element
405 {
406 public:
407 Sections_element_assignment(const char* name, size_t namelen,
408 Expression* val, bool provide, bool hidden)
409 : assignment_(name, namelen, val, provide, hidden)
410 { }
411
412 // Add the symbol to the symbol table.
413 void
414 add_symbols_to_table(Symbol_table* symtab)
415 { this->assignment_.add_to_table(symtab); }
416
417 // Finalize the symbol.
418 void
419 finalize_symbols(Symbol_table* symtab, const Layout* layout,
420 uint64_t* dot_value)
421 {
422 this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
423 }
424
425 // Set the section address. There is no section here, but if the
426 // value is absolute, we set the symbol. This permits us to use
427 // absolute symbols when setting dot.
428 void
429 set_section_addresses(Symbol_table* symtab, Layout* layout,
430 uint64_t* dot_value, uint64_t*)
431 {
432 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
433 }
434
435 // Print for debugging.
436 void
437 print(FILE* f) const
438 {
439 fprintf(f, " ");
440 this->assignment_.print(f);
441 }
442
443 private:
444 Symbol_assignment assignment_;
445 };
446
447 // An assignment to the dot symbol in a SECTIONS clause outside of an
448 // output section.
449
450 class Sections_element_dot_assignment : public Sections_element
451 {
452 public:
453 Sections_element_dot_assignment(Expression* val)
454 : val_(val)
455 { }
456
457 // Finalize the symbol.
458 void
459 finalize_symbols(Symbol_table* symtab, const Layout* layout,
460 uint64_t* dot_value)
461 {
462 // We ignore the section of the result because outside of an
463 // output section definition the dot symbol is always considered
464 // to be absolute.
465 Output_section* dummy;
466 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
467 NULL, &dummy);
468 }
469
470 // Update the dot symbol while setting section addresses.
471 void
472 set_section_addresses(Symbol_table* symtab, Layout* layout,
473 uint64_t* dot_value, uint64_t* load_address)
474 {
475 Output_section* dummy;
476 *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
477 NULL, &dummy);
478 *load_address = *dot_value;
479 }
480
481 // Print for debugging.
482 void
483 print(FILE* f) const
484 {
485 fprintf(f, " . = ");
486 this->val_->print(f);
487 fprintf(f, "\n");
488 }
489
490 private:
491 Expression* val_;
492 };
493
494 // An assertion in a SECTIONS clause outside of an output section.
495
496 class Sections_element_assertion : public Sections_element
497 {
498 public:
499 Sections_element_assertion(Expression* check, const char* message,
500 size_t messagelen)
501 : assertion_(check, message, messagelen)
502 { }
503
504 // Check the assertion.
505 void
506 finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
507 { this->assertion_.check(symtab, layout); }
508
509 // Print for debugging.
510 void
511 print(FILE* f) const
512 {
513 fprintf(f, " ");
514 this->assertion_.print(f);
515 }
516
517 private:
518 Script_assertion assertion_;
519 };
520
521 // An element in an output section in a SECTIONS clause.
522
523 class Output_section_element
524 {
525 public:
526 // A list of input sections.
527 typedef std::list<Output_section::Simple_input_section> Input_section_list;
528
529 Output_section_element()
530 { }
531
532 virtual ~Output_section_element()
533 { }
534
535 // Return whether this element requires an output section to exist.
536 virtual bool
537 needs_output_section() const
538 { return false; }
539
540 // Add any symbol being defined to the symbol table.
541 virtual void
542 add_symbols_to_table(Symbol_table*)
543 { }
544
545 // Finalize symbols and check assertions.
546 virtual void
547 finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
548 { }
549
550 // Return whether this element matches FILE_NAME and SECTION_NAME.
551 // The only real implementation is in Output_section_element_input.
552 virtual bool
553 match_name(const char*, const char*) const
554 { return false; }
555
556 // Set section addresses. This includes applying assignments if the
557 // the expression is an absolute value.
558 virtual void
559 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
560 uint64_t*, Output_section**, std::string*,
561 Input_section_list*)
562 { }
563
564 // Print the element for debugging purposes.
565 virtual void
566 print(FILE* f) const = 0;
567
568 protected:
569 // Return a fill string that is LENGTH bytes long, filling it with
570 // FILL.
571 std::string
572 get_fill_string(const std::string* fill, section_size_type length) const;
573 };
574
575 std::string
576 Output_section_element::get_fill_string(const std::string* fill,
577 section_size_type length) const
578 {
579 std::string this_fill;
580 this_fill.reserve(length);
581 while (this_fill.length() + fill->length() <= length)
582 this_fill += *fill;
583 if (this_fill.length() < length)
584 this_fill.append(*fill, 0, length - this_fill.length());
585 return this_fill;
586 }
587
588 // A symbol assignment in an output section.
589
590 class Output_section_element_assignment : public Output_section_element
591 {
592 public:
593 Output_section_element_assignment(const char* name, size_t namelen,
594 Expression* val, bool provide,
595 bool hidden)
596 : assignment_(name, namelen, val, provide, hidden)
597 { }
598
599 // Add the symbol to the symbol table.
600 void
601 add_symbols_to_table(Symbol_table* symtab)
602 { this->assignment_.add_to_table(symtab); }
603
604 // Finalize the symbol.
605 void
606 finalize_symbols(Symbol_table* symtab, const Layout* layout,
607 uint64_t* dot_value, Output_section** dot_section)
608 {
609 this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
610 *dot_section);
611 }
612
613 // Set the section address. There is no section here, but if the
614 // value is absolute, we set the symbol. This permits us to use
615 // absolute symbols when setting dot.
616 void
617 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
618 uint64_t, uint64_t* dot_value, Output_section**,
619 std::string*, Input_section_list*)
620 {
621 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
622 }
623
624 // Print for debugging.
625 void
626 print(FILE* f) const
627 {
628 fprintf(f, " ");
629 this->assignment_.print(f);
630 }
631
632 private:
633 Symbol_assignment assignment_;
634 };
635
636 // An assignment to the dot symbol in an output section.
637
638 class Output_section_element_dot_assignment : public Output_section_element
639 {
640 public:
641 Output_section_element_dot_assignment(Expression* val)
642 : val_(val)
643 { }
644
645 // Finalize the symbol.
646 void
647 finalize_symbols(Symbol_table* symtab, const Layout* layout,
648 uint64_t* dot_value, Output_section** dot_section)
649 {
650 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
651 *dot_section, dot_section);
652 }
653
654 // Update the dot symbol while setting section addresses.
655 void
656 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
657 uint64_t, uint64_t* dot_value, Output_section**,
658 std::string*, Input_section_list*);
659
660 // Print for debugging.
661 void
662 print(FILE* f) const
663 {
664 fprintf(f, " . = ");
665 this->val_->print(f);
666 fprintf(f, "\n");
667 }
668
669 private:
670 Expression* val_;
671 };
672
673 // Update the dot symbol while setting section addresses.
674
675 void
676 Output_section_element_dot_assignment::set_section_addresses(
677 Symbol_table* symtab,
678 Layout* layout,
679 Output_section* output_section,
680 uint64_t,
681 uint64_t* dot_value,
682 Output_section** dot_section,
683 std::string* fill,
684 Input_section_list*)
685 {
686 uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
687 *dot_value, *dot_section,
688 dot_section);
689 if (next_dot < *dot_value)
690 gold_error(_("dot may not move backward"));
691 if (next_dot > *dot_value && output_section != NULL)
692 {
693 section_size_type length = convert_to_section_size_type(next_dot
694 - *dot_value);
695 Output_section_data* posd;
696 if (fill->empty())
697 posd = new Output_data_zero_fill(length, 0);
698 else
699 {
700 std::string this_fill = this->get_fill_string(fill, length);
701 posd = new Output_data_const(this_fill, 0);
702 }
703 output_section->add_output_section_data(posd);
704 layout->new_output_section_data_from_script(posd);
705 }
706 *dot_value = next_dot;
707 }
708
709 // An assertion in an output section.
710
711 class Output_section_element_assertion : public Output_section_element
712 {
713 public:
714 Output_section_element_assertion(Expression* check, const char* message,
715 size_t messagelen)
716 : assertion_(check, message, messagelen)
717 { }
718
719 void
720 print(FILE* f) const
721 {
722 fprintf(f, " ");
723 this->assertion_.print(f);
724 }
725
726 private:
727 Script_assertion assertion_;
728 };
729
730 // We use a special instance of Output_section_data to handle BYTE,
731 // SHORT, etc. This permits forward references to symbols in the
732 // expressions.
733
734 class Output_data_expression : public Output_section_data
735 {
736 public:
737 Output_data_expression(int size, bool is_signed, Expression* val,
738 const Symbol_table* symtab, const Layout* layout,
739 uint64_t dot_value, Output_section* dot_section)
740 : Output_section_data(size, 0, true),
741 is_signed_(is_signed), val_(val), symtab_(symtab),
742 layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
743 { }
744
745 protected:
746 // Write the data to the output file.
747 void
748 do_write(Output_file*);
749
750 // Write the data to a buffer.
751 void
752 do_write_to_buffer(unsigned char*);
753
754 // Write to a map file.
755 void
756 do_print_to_mapfile(Mapfile* mapfile) const
757 { mapfile->print_output_data(this, _("** expression")); }
758
759 private:
760 template<bool big_endian>
761 void
762 endian_write_to_buffer(uint64_t, unsigned char*);
763
764 bool is_signed_;
765 Expression* val_;
766 const Symbol_table* symtab_;
767 const Layout* layout_;
768 uint64_t dot_value_;
769 Output_section* dot_section_;
770 };
771
772 // Write the data element to the output file.
773
774 void
775 Output_data_expression::do_write(Output_file* of)
776 {
777 unsigned char* view = of->get_output_view(this->offset(), this->data_size());
778 this->write_to_buffer(view);
779 of->write_output_view(this->offset(), this->data_size(), view);
780 }
781
782 // Write the data element to a buffer.
783
784 void
785 Output_data_expression::do_write_to_buffer(unsigned char* buf)
786 {
787 Output_section* dummy;
788 uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
789 true, this->dot_value_,
790 this->dot_section_, &dummy);
791
792 if (parameters->target().is_big_endian())
793 this->endian_write_to_buffer<true>(val, buf);
794 else
795 this->endian_write_to_buffer<false>(val, buf);
796 }
797
798 template<bool big_endian>
799 void
800 Output_data_expression::endian_write_to_buffer(uint64_t val,
801 unsigned char* buf)
802 {
803 switch (this->data_size())
804 {
805 case 1:
806 elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
807 break;
808 case 2:
809 elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
810 break;
811 case 4:
812 elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
813 break;
814 case 8:
815 if (parameters->target().get_size() == 32)
816 {
817 val &= 0xffffffff;
818 if (this->is_signed_ && (val & 0x80000000) != 0)
819 val |= 0xffffffff00000000LL;
820 }
821 elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
822 break;
823 default:
824 gold_unreachable();
825 }
826 }
827
828 // A data item in an output section.
829
830 class Output_section_element_data : public Output_section_element
831 {
832 public:
833 Output_section_element_data(int size, bool is_signed, Expression* val)
834 : size_(size), is_signed_(is_signed), val_(val)
835 { }
836
837 // If there is a data item, then we must create an output section.
838 bool
839 needs_output_section() const
840 { return true; }
841
842 // Finalize symbols--we just need to update dot.
843 void
844 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
845 Output_section**)
846 { *dot_value += this->size_; }
847
848 // Store the value in the section.
849 void
850 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
851 uint64_t* dot_value, Output_section**, std::string*,
852 Input_section_list*);
853
854 // Print for debugging.
855 void
856 print(FILE*) const;
857
858 private:
859 // The size in bytes.
860 int size_;
861 // Whether the value is signed.
862 bool is_signed_;
863 // The value.
864 Expression* val_;
865 };
866
867 // Store the value in the section.
868
869 void
870 Output_section_element_data::set_section_addresses(
871 Symbol_table* symtab,
872 Layout* layout,
873 Output_section* os,
874 uint64_t,
875 uint64_t* dot_value,
876 Output_section** dot_section,
877 std::string*,
878 Input_section_list*)
879 {
880 gold_assert(os != NULL);
881 Output_data_expression* expression =
882 new Output_data_expression(this->size_, this->is_signed_, this->val_,
883 symtab, layout, *dot_value, *dot_section);
884 os->add_output_section_data(expression);
885 layout->new_output_section_data_from_script(expression);
886 *dot_value += this->size_;
887 }
888
889 // Print for debugging.
890
891 void
892 Output_section_element_data::print(FILE* f) const
893 {
894 const char* s;
895 switch (this->size_)
896 {
897 case 1:
898 s = "BYTE";
899 break;
900 case 2:
901 s = "SHORT";
902 break;
903 case 4:
904 s = "LONG";
905 break;
906 case 8:
907 if (this->is_signed_)
908 s = "SQUAD";
909 else
910 s = "QUAD";
911 break;
912 default:
913 gold_unreachable();
914 }
915 fprintf(f, " %s(", s);
916 this->val_->print(f);
917 fprintf(f, ")\n");
918 }
919
920 // A fill value setting in an output section.
921
922 class Output_section_element_fill : public Output_section_element
923 {
924 public:
925 Output_section_element_fill(Expression* val)
926 : val_(val)
927 { }
928
929 // Update the fill value while setting section addresses.
930 void
931 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
932 uint64_t, uint64_t* dot_value,
933 Output_section** dot_section,
934 std::string* fill, Input_section_list*)
935 {
936 Output_section* fill_section;
937 uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
938 *dot_value, *dot_section,
939 &fill_section);
940 if (fill_section != NULL)
941 gold_warning(_("fill value is not absolute"));
942 // FIXME: The GNU linker supports fill values of arbitrary length.
943 unsigned char fill_buff[4];
944 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
945 fill->assign(reinterpret_cast<char*>(fill_buff), 4);
946 }
947
948 // Print for debugging.
949 void
950 print(FILE* f) const
951 {
952 fprintf(f, " FILL(");
953 this->val_->print(f);
954 fprintf(f, ")\n");
955 }
956
957 private:
958 // The new fill value.
959 Expression* val_;
960 };
961
962 // Return whether STRING contains a wildcard character. This is used
963 // to speed up matching.
964
965 static inline bool
966 is_wildcard_string(const std::string& s)
967 {
968 return strpbrk(s.c_str(), "?*[") != NULL;
969 }
970
971 // An input section specification in an output section
972
973 class Output_section_element_input : public Output_section_element
974 {
975 public:
976 Output_section_element_input(const Input_section_spec* spec, bool keep);
977
978 // Finalize symbols--just update the value of the dot symbol.
979 void
980 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
981 Output_section** dot_section)
982 {
983 *dot_value = this->final_dot_value_;
984 *dot_section = this->final_dot_section_;
985 }
986
987 // See whether we match FILE_NAME and SECTION_NAME as an input
988 // section.
989 bool
990 match_name(const char* file_name, const char* section_name) const;
991
992 // Set the section address.
993 void
994 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
995 uint64_t subalign, uint64_t* dot_value,
996 Output_section**, std::string* fill,
997 Input_section_list*);
998
999 // Print for debugging.
1000 void
1001 print(FILE* f) const;
1002
1003 private:
1004 // An input section pattern.
1005 struct Input_section_pattern
1006 {
1007 std::string pattern;
1008 bool pattern_is_wildcard;
1009 Sort_wildcard sort;
1010
1011 Input_section_pattern(const char* patterna, size_t patternlena,
1012 Sort_wildcard sorta)
1013 : pattern(patterna, patternlena),
1014 pattern_is_wildcard(is_wildcard_string(this->pattern)),
1015 sort(sorta)
1016 { }
1017 };
1018
1019 typedef std::vector<Input_section_pattern> Input_section_patterns;
1020
1021 // Filename_exclusions is a pair of filename pattern and a bool
1022 // indicating whether the filename is a wildcard.
1023 typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
1024
1025 // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1026 // indicates whether this is a wildcard pattern.
1027 static inline bool
1028 match(const char* string, const char* pattern, bool is_wildcard_pattern)
1029 {
1030 return (is_wildcard_pattern
1031 ? fnmatch(pattern, string, 0) == 0
1032 : strcmp(string, pattern) == 0);
1033 }
1034
1035 // See if we match a file name.
1036 bool
1037 match_file_name(const char* file_name) const;
1038
1039 // The file name pattern. If this is the empty string, we match all
1040 // files.
1041 std::string filename_pattern_;
1042 // Whether the file name pattern is a wildcard.
1043 bool filename_is_wildcard_;
1044 // How the file names should be sorted. This may only be
1045 // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1046 Sort_wildcard filename_sort_;
1047 // The list of file names to exclude.
1048 Filename_exclusions filename_exclusions_;
1049 // The list of input section patterns.
1050 Input_section_patterns input_section_patterns_;
1051 // Whether to keep this section when garbage collecting.
1052 bool keep_;
1053 // The value of dot after including all matching sections.
1054 uint64_t final_dot_value_;
1055 // The section where dot is defined after including all matching
1056 // sections.
1057 Output_section* final_dot_section_;
1058 };
1059
1060 // Construct Output_section_element_input. The parser records strings
1061 // as pointers into a copy of the script file, which will go away when
1062 // parsing is complete. We make sure they are in std::string objects.
1063
1064 Output_section_element_input::Output_section_element_input(
1065 const Input_section_spec* spec,
1066 bool keep)
1067 : filename_pattern_(),
1068 filename_is_wildcard_(false),
1069 filename_sort_(spec->file.sort),
1070 filename_exclusions_(),
1071 input_section_patterns_(),
1072 keep_(keep),
1073 final_dot_value_(0),
1074 final_dot_section_(NULL)
1075 {
1076 // The filename pattern "*" is common, and matches all files. Turn
1077 // it into the empty string.
1078 if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
1079 this->filename_pattern_.assign(spec->file.name.value,
1080 spec->file.name.length);
1081 this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_);
1082
1083 if (spec->input_sections.exclude != NULL)
1084 {
1085 for (String_list::const_iterator p =
1086 spec->input_sections.exclude->begin();
1087 p != spec->input_sections.exclude->end();
1088 ++p)
1089 {
1090 bool is_wildcard = is_wildcard_string(*p);
1091 this->filename_exclusions_.push_back(std::make_pair(*p,
1092 is_wildcard));
1093 }
1094 }
1095
1096 if (spec->input_sections.sections != NULL)
1097 {
1098 Input_section_patterns& isp(this->input_section_patterns_);
1099 for (String_sort_list::const_iterator p =
1100 spec->input_sections.sections->begin();
1101 p != spec->input_sections.sections->end();
1102 ++p)
1103 isp.push_back(Input_section_pattern(p->name.value, p->name.length,
1104 p->sort));
1105 }
1106 }
1107
1108 // See whether we match FILE_NAME.
1109
1110 bool
1111 Output_section_element_input::match_file_name(const char* file_name) const
1112 {
1113 if (!this->filename_pattern_.empty())
1114 {
1115 // If we were called with no filename, we refuse to match a
1116 // pattern which requires a file name.
1117 if (file_name == NULL)
1118 return false;
1119
1120 if (!match(file_name, this->filename_pattern_.c_str(),
1121 this->filename_is_wildcard_))
1122 return false;
1123 }
1124
1125 if (file_name != NULL)
1126 {
1127 // Now we have to see whether FILE_NAME matches one of the
1128 // exclusion patterns, if any.
1129 for (Filename_exclusions::const_iterator p =
1130 this->filename_exclusions_.begin();
1131 p != this->filename_exclusions_.end();
1132 ++p)
1133 {
1134 if (match(file_name, p->first.c_str(), p->second))
1135 return false;
1136 }
1137 }
1138
1139 return true;
1140 }
1141
1142 // See whether we match FILE_NAME and SECTION_NAME.
1143
1144 bool
1145 Output_section_element_input::match_name(const char* file_name,
1146 const char* section_name) const
1147 {
1148 if (!this->match_file_name(file_name))
1149 return false;
1150
1151 // If there are no section name patterns, then we match.
1152 if (this->input_section_patterns_.empty())
1153 return true;
1154
1155 // See whether we match the section name patterns.
1156 for (Input_section_patterns::const_iterator p =
1157 this->input_section_patterns_.begin();
1158 p != this->input_section_patterns_.end();
1159 ++p)
1160 {
1161 if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
1162 return true;
1163 }
1164
1165 // We didn't match any section names, so we didn't match.
1166 return false;
1167 }
1168
1169 // Information we use to sort the input sections.
1170
1171 class Input_section_info
1172 {
1173 public:
1174 Input_section_info(const Output_section::Simple_input_section& input_section)
1175 : input_section_(input_section), section_name_(),
1176 size_(0), addralign_(1)
1177 { }
1178
1179 // Return the simple input section.
1180 const Output_section::Simple_input_section&
1181 input_section() const
1182 { return this->input_section_; }
1183
1184 // Return the object.
1185 Relobj*
1186 relobj() const
1187 { return this->input_section_.relobj(); }
1188
1189 // Return the section index.
1190 unsigned int
1191 shndx()
1192 { return this->input_section_.shndx(); }
1193
1194 // Return the section name.
1195 const std::string&
1196 section_name() const
1197 { return this->section_name_; }
1198
1199 // Set the section name.
1200 void
1201 set_section_name(const std::string name)
1202 { this->section_name_ = name; }
1203
1204 // Return the section size.
1205 uint64_t
1206 size() const
1207 { return this->size_; }
1208
1209 // Set the section size.
1210 void
1211 set_size(uint64_t size)
1212 { this->size_ = size; }
1213
1214 // Return the address alignment.
1215 uint64_t
1216 addralign() const
1217 { return this->addralign_; }
1218
1219 // Set the address alignment.
1220 void
1221 set_addralign(uint64_t addralign)
1222 { this->addralign_ = addralign; }
1223
1224 private:
1225 // Input section, can be a relaxed section.
1226 Output_section::Simple_input_section input_section_;
1227 // Name of the section.
1228 std::string section_name_;
1229 // Section size.
1230 uint64_t size_;
1231 // Address alignment.
1232 uint64_t addralign_;
1233 };
1234
1235 // A class to sort the input sections.
1236
1237 class Input_section_sorter
1238 {
1239 public:
1240 Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
1241 : filename_sort_(filename_sort), section_sort_(section_sort)
1242 { }
1243
1244 bool
1245 operator()(const Input_section_info&, const Input_section_info&) const;
1246
1247 private:
1248 Sort_wildcard filename_sort_;
1249 Sort_wildcard section_sort_;
1250 };
1251
1252 bool
1253 Input_section_sorter::operator()(const Input_section_info& isi1,
1254 const Input_section_info& isi2) const
1255 {
1256 if (this->section_sort_ == SORT_WILDCARD_BY_NAME
1257 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1258 || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1259 && isi1.addralign() == isi2.addralign()))
1260 {
1261 if (isi1.section_name() != isi2.section_name())
1262 return isi1.section_name() < isi2.section_name();
1263 }
1264 if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
1265 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1266 || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
1267 {
1268 if (isi1.addralign() != isi2.addralign())
1269 return isi1.addralign() < isi2.addralign();
1270 }
1271 if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
1272 {
1273 if (isi1.relobj()->name() != isi2.relobj()->name())
1274 return (isi1.relobj()->name() < isi2.relobj()->name());
1275 }
1276
1277 // Otherwise we leave them in the same order.
1278 return false;
1279 }
1280
1281 // Set the section address. Look in INPUT_SECTIONS for sections which
1282 // match this spec, sort them as specified, and add them to the output
1283 // section.
1284
1285 void
1286 Output_section_element_input::set_section_addresses(
1287 Symbol_table*,
1288 Layout* layout,
1289 Output_section* output_section,
1290 uint64_t subalign,
1291 uint64_t* dot_value,
1292 Output_section** dot_section,
1293 std::string* fill,
1294 Input_section_list* input_sections)
1295 {
1296 // We build a list of sections which match each
1297 // Input_section_pattern.
1298
1299 typedef std::vector<std::vector<Input_section_info> > Matching_sections;
1300 size_t input_pattern_count = this->input_section_patterns_.size();
1301 if (input_pattern_count == 0)
1302 input_pattern_count = 1;
1303 Matching_sections matching_sections(input_pattern_count);
1304
1305 // Look through the list of sections for this output section. Add
1306 // each one which matches to one of the elements of
1307 // MATCHING_SECTIONS.
1308
1309 Input_section_list::iterator p = input_sections->begin();
1310 while (p != input_sections->end())
1311 {
1312 Relobj* relobj = p->relobj();
1313 unsigned int shndx = p->shndx();
1314 Input_section_info isi(*p);
1315
1316 // Calling section_name and section_addralign is not very
1317 // efficient.
1318
1319 // Lock the object so that we can get information about the
1320 // section. This is OK since we know we are single-threaded
1321 // here.
1322 {
1323 const Task* task = reinterpret_cast<const Task*>(-1);
1324 Task_lock_obj<Object> tl(task, relobj);
1325
1326 isi.set_section_name(relobj->section_name(shndx));
1327 if (p->is_relaxed_input_section())
1328 {
1329 // We use current data size because relxed section sizes may not
1330 // have finalized yet.
1331 isi.set_size(p->relaxed_input_section()->current_data_size());
1332 isi.set_addralign(p->relaxed_input_section()->addralign());
1333 }
1334 else
1335 {
1336 isi.set_size(relobj->section_size(shndx));
1337 isi.set_addralign(relobj->section_addralign(shndx));
1338 }
1339 }
1340
1341 if (!this->match_file_name(relobj->name().c_str()))
1342 ++p;
1343 else if (this->input_section_patterns_.empty())
1344 {
1345 matching_sections[0].push_back(isi);
1346 p = input_sections->erase(p);
1347 }
1348 else
1349 {
1350 size_t i;
1351 for (i = 0; i < input_pattern_count; ++i)
1352 {
1353 const Input_section_pattern&
1354 isp(this->input_section_patterns_[i]);
1355 if (match(isi.section_name().c_str(), isp.pattern.c_str(),
1356 isp.pattern_is_wildcard))
1357 break;
1358 }
1359
1360 if (i >= this->input_section_patterns_.size())
1361 ++p;
1362 else
1363 {
1364 matching_sections[i].push_back(isi);
1365 p = input_sections->erase(p);
1366 }
1367 }
1368 }
1369
1370 // Look through MATCHING_SECTIONS. Sort each one as specified,
1371 // using a stable sort so that we get the default order when
1372 // sections are otherwise equal. Add each input section to the
1373 // output section.
1374
1375 for (size_t i = 0; i < input_pattern_count; ++i)
1376 {
1377 if (matching_sections[i].empty())
1378 continue;
1379
1380 gold_assert(output_section != NULL);
1381
1382 const Input_section_pattern& isp(this->input_section_patterns_[i]);
1383 if (isp.sort != SORT_WILDCARD_NONE
1384 || this->filename_sort_ != SORT_WILDCARD_NONE)
1385 std::stable_sort(matching_sections[i].begin(),
1386 matching_sections[i].end(),
1387 Input_section_sorter(this->filename_sort_,
1388 isp.sort));
1389
1390 for (std::vector<Input_section_info>::const_iterator p =
1391 matching_sections[i].begin();
1392 p != matching_sections[i].end();
1393 ++p)
1394 {
1395 uint64_t this_subalign = p->addralign();
1396 if (this_subalign < subalign)
1397 this_subalign = subalign;
1398
1399 uint64_t address = align_address(*dot_value, this_subalign);
1400
1401 if (address > *dot_value && !fill->empty())
1402 {
1403 section_size_type length =
1404 convert_to_section_size_type(address - *dot_value);
1405 std::string this_fill = this->get_fill_string(fill, length);
1406 Output_section_data* posd = new Output_data_const(this_fill, 0);
1407 output_section->add_output_section_data(posd);
1408 layout->new_output_section_data_from_script(posd);
1409 }
1410
1411 output_section->add_input_section_for_script(p->input_section(),
1412 p->size(),
1413 this_subalign);
1414
1415 *dot_value = address + p->size();
1416 }
1417 }
1418
1419 this->final_dot_value_ = *dot_value;
1420 this->final_dot_section_ = *dot_section;
1421 }
1422
1423 // Print for debugging.
1424
1425 void
1426 Output_section_element_input::print(FILE* f) const
1427 {
1428 fprintf(f, " ");
1429
1430 if (this->keep_)
1431 fprintf(f, "KEEP(");
1432
1433 if (!this->filename_pattern_.empty())
1434 {
1435 bool need_close_paren = false;
1436 switch (this->filename_sort_)
1437 {
1438 case SORT_WILDCARD_NONE:
1439 break;
1440 case SORT_WILDCARD_BY_NAME:
1441 fprintf(f, "SORT_BY_NAME(");
1442 need_close_paren = true;
1443 break;
1444 default:
1445 gold_unreachable();
1446 }
1447
1448 fprintf(f, "%s", this->filename_pattern_.c_str());
1449
1450 if (need_close_paren)
1451 fprintf(f, ")");
1452 }
1453
1454 if (!this->input_section_patterns_.empty()
1455 || !this->filename_exclusions_.empty())
1456 {
1457 fprintf(f, "(");
1458
1459 bool need_space = false;
1460 if (!this->filename_exclusions_.empty())
1461 {
1462 fprintf(f, "EXCLUDE_FILE(");
1463 bool need_comma = false;
1464 for (Filename_exclusions::const_iterator p =
1465 this->filename_exclusions_.begin();
1466 p != this->filename_exclusions_.end();
1467 ++p)
1468 {
1469 if (need_comma)
1470 fprintf(f, ", ");
1471 fprintf(f, "%s", p->first.c_str());
1472 need_comma = true;
1473 }
1474 fprintf(f, ")");
1475 need_space = true;
1476 }
1477
1478 for (Input_section_patterns::const_iterator p =
1479 this->input_section_patterns_.begin();
1480 p != this->input_section_patterns_.end();
1481 ++p)
1482 {
1483 if (need_space)
1484 fprintf(f, " ");
1485
1486 int close_parens = 0;
1487 switch (p->sort)
1488 {
1489 case SORT_WILDCARD_NONE:
1490 break;
1491 case SORT_WILDCARD_BY_NAME:
1492 fprintf(f, "SORT_BY_NAME(");
1493 close_parens = 1;
1494 break;
1495 case SORT_WILDCARD_BY_ALIGNMENT:
1496 fprintf(f, "SORT_BY_ALIGNMENT(");
1497 close_parens = 1;
1498 break;
1499 case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1500 fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1501 close_parens = 2;
1502 break;
1503 case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1504 fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1505 close_parens = 2;
1506 break;
1507 default:
1508 gold_unreachable();
1509 }
1510
1511 fprintf(f, "%s", p->pattern.c_str());
1512
1513 for (int i = 0; i < close_parens; ++i)
1514 fprintf(f, ")");
1515
1516 need_space = true;
1517 }
1518
1519 fprintf(f, ")");
1520 }
1521
1522 if (this->keep_)
1523 fprintf(f, ")");
1524
1525 fprintf(f, "\n");
1526 }
1527
1528 // An output section.
1529
1530 class Output_section_definition : public Sections_element
1531 {
1532 public:
1533 typedef Output_section_element::Input_section_list Input_section_list;
1534
1535 Output_section_definition(const char* name, size_t namelen,
1536 const Parser_output_section_header* header);
1537
1538 // Finish the output section with the information in the trailer.
1539 void
1540 finish(const Parser_output_section_trailer* trailer);
1541
1542 // Add a symbol to be defined.
1543 void
1544 add_symbol_assignment(const char* name, size_t length, Expression* value,
1545 bool provide, bool hidden);
1546
1547 // Add an assignment to the special dot symbol.
1548 void
1549 add_dot_assignment(Expression* value);
1550
1551 // Add an assertion.
1552 void
1553 add_assertion(Expression* check, const char* message, size_t messagelen);
1554
1555 // Add a data item to the current output section.
1556 void
1557 add_data(int size, bool is_signed, Expression* val);
1558
1559 // Add a setting for the fill value.
1560 void
1561 add_fill(Expression* val);
1562
1563 // Add an input section specification.
1564 void
1565 add_input_section(const Input_section_spec* spec, bool keep);
1566
1567 // Return whether the output section is relro.
1568 bool
1569 is_relro() const
1570 { return this->is_relro_; }
1571
1572 // Record that the output section is relro.
1573 void
1574 set_is_relro()
1575 { this->is_relro_ = true; }
1576
1577 // Create any required output sections.
1578 void
1579 create_sections(Layout*);
1580
1581 // Add any symbols being defined to the symbol table.
1582 void
1583 add_symbols_to_table(Symbol_table* symtab);
1584
1585 // Finalize symbols and check assertions.
1586 void
1587 finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1588
1589 // Return the output section name to use for an input file name and
1590 // section name.
1591 const char*
1592 output_section_name(const char* file_name, const char* section_name,
1593 Output_section***);
1594
1595 // Initialize OSP with an output section.
1596 void
1597 orphan_section_init(Orphan_section_placement* osp,
1598 Script_sections::Elements_iterator p)
1599 { osp->output_section_init(this->name_, this->output_section_, p); }
1600
1601 // Set the section address.
1602 void
1603 set_section_addresses(Symbol_table* symtab, Layout* layout,
1604 uint64_t* dot_value, uint64_t* load_address);
1605
1606 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
1607 // this section is constrained, and the input sections do not match,
1608 // return the constraint, and set *POSD.
1609 Section_constraint
1610 check_constraint(Output_section_definition** posd);
1611
1612 // See if this is the alternate output section for a constrained
1613 // output section. If it is, transfer the Output_section and return
1614 // true. Otherwise return false.
1615 bool
1616 alternate_constraint(Output_section_definition*, Section_constraint);
1617
1618 // Get the list of segments to use for an allocated section when
1619 // using a PHDRS clause.
1620 Output_section*
1621 allocate_to_segment(String_list** phdrs_list, bool* orphan);
1622
1623 // Look for an output section by name and return the address, the
1624 // load address, the alignment, and the size. This is used when an
1625 // expression refers to an output section which was not actually
1626 // created. This returns true if the section was found, false
1627 // otherwise.
1628 bool
1629 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
1630 uint64_t*) const;
1631
1632 // Return the associated Output_section if there is one.
1633 Output_section*
1634 get_output_section() const
1635 { return this->output_section_; }
1636
1637 // Print the contents to the FILE. This is for debugging.
1638 void
1639 print(FILE*) const;
1640
1641 private:
1642 typedef std::vector<Output_section_element*> Output_section_elements;
1643
1644 // The output section name.
1645 std::string name_;
1646 // The address. This may be NULL.
1647 Expression* address_;
1648 // The load address. This may be NULL.
1649 Expression* load_address_;
1650 // The alignment. This may be NULL.
1651 Expression* align_;
1652 // The input section alignment. This may be NULL.
1653 Expression* subalign_;
1654 // The constraint, if any.
1655 Section_constraint constraint_;
1656 // The fill value. This may be NULL.
1657 Expression* fill_;
1658 // The list of segments this section should go into. This may be
1659 // NULL.
1660 String_list* phdrs_;
1661 // The list of elements defining the section.
1662 Output_section_elements elements_;
1663 // The Output_section created for this definition. This will be
1664 // NULL if none was created.
1665 Output_section* output_section_;
1666 // The address after it has been evaluated.
1667 uint64_t evaluated_address_;
1668 // The load address after it has been evaluated.
1669 uint64_t evaluated_load_address_;
1670 // The alignment after it has been evaluated.
1671 uint64_t evaluated_addralign_;
1672 // The output section is relro.
1673 bool is_relro_;
1674 };
1675
1676 // Constructor.
1677
1678 Output_section_definition::Output_section_definition(
1679 const char* name,
1680 size_t namelen,
1681 const Parser_output_section_header* header)
1682 : name_(name, namelen),
1683 address_(header->address),
1684 load_address_(header->load_address),
1685 align_(header->align),
1686 subalign_(header->subalign),
1687 constraint_(header->constraint),
1688 fill_(NULL),
1689 phdrs_(NULL),
1690 elements_(),
1691 output_section_(NULL),
1692 evaluated_address_(0),
1693 evaluated_load_address_(0),
1694 evaluated_addralign_(0),
1695 is_relro_(false)
1696 {
1697 }
1698
1699 // Finish an output section.
1700
1701 void
1702 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
1703 {
1704 this->fill_ = trailer->fill;
1705 this->phdrs_ = trailer->phdrs;
1706 }
1707
1708 // Add a symbol to be defined.
1709
1710 void
1711 Output_section_definition::add_symbol_assignment(const char* name,
1712 size_t length,
1713 Expression* value,
1714 bool provide,
1715 bool hidden)
1716 {
1717 Output_section_element* p = new Output_section_element_assignment(name,
1718 length,
1719 value,
1720 provide,
1721 hidden);
1722 this->elements_.push_back(p);
1723 }
1724
1725 // Add an assignment to the special dot symbol.
1726
1727 void
1728 Output_section_definition::add_dot_assignment(Expression* value)
1729 {
1730 Output_section_element* p = new Output_section_element_dot_assignment(value);
1731 this->elements_.push_back(p);
1732 }
1733
1734 // Add an assertion.
1735
1736 void
1737 Output_section_definition::add_assertion(Expression* check,
1738 const char* message,
1739 size_t messagelen)
1740 {
1741 Output_section_element* p = new Output_section_element_assertion(check,
1742 message,
1743 messagelen);
1744 this->elements_.push_back(p);
1745 }
1746
1747 // Add a data item to the current output section.
1748
1749 void
1750 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
1751 {
1752 Output_section_element* p = new Output_section_element_data(size, is_signed,
1753 val);
1754 this->elements_.push_back(p);
1755 }
1756
1757 // Add a setting for the fill value.
1758
1759 void
1760 Output_section_definition::add_fill(Expression* val)
1761 {
1762 Output_section_element* p = new Output_section_element_fill(val);
1763 this->elements_.push_back(p);
1764 }
1765
1766 // Add an input section specification.
1767
1768 void
1769 Output_section_definition::add_input_section(const Input_section_spec* spec,
1770 bool keep)
1771 {
1772 Output_section_element* p = new Output_section_element_input(spec, keep);
1773 this->elements_.push_back(p);
1774 }
1775
1776 // Create any required output sections. We need an output section if
1777 // there is a data statement here.
1778
1779 void
1780 Output_section_definition::create_sections(Layout* layout)
1781 {
1782 if (this->output_section_ != NULL)
1783 return;
1784 for (Output_section_elements::const_iterator p = this->elements_.begin();
1785 p != this->elements_.end();
1786 ++p)
1787 {
1788 if ((*p)->needs_output_section())
1789 {
1790 const char* name = this->name_.c_str();
1791 this->output_section_ = layout->make_output_section_for_script(name);
1792 return;
1793 }
1794 }
1795 }
1796
1797 // Add any symbols being defined to the symbol table.
1798
1799 void
1800 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
1801 {
1802 for (Output_section_elements::iterator p = this->elements_.begin();
1803 p != this->elements_.end();
1804 ++p)
1805 (*p)->add_symbols_to_table(symtab);
1806 }
1807
1808 // Finalize symbols and check assertions.
1809
1810 void
1811 Output_section_definition::finalize_symbols(Symbol_table* symtab,
1812 const Layout* layout,
1813 uint64_t* dot_value)
1814 {
1815 if (this->output_section_ != NULL)
1816 *dot_value = this->output_section_->address();
1817 else
1818 {
1819 uint64_t address = *dot_value;
1820 if (this->address_ != NULL)
1821 {
1822 Output_section* dummy;
1823 address = this->address_->eval_with_dot(symtab, layout, true,
1824 *dot_value, NULL,
1825 &dummy);
1826 }
1827 if (this->align_ != NULL)
1828 {
1829 Output_section* dummy;
1830 uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
1831 *dot_value,
1832 NULL,
1833 &dummy);
1834 address = align_address(address, align);
1835 }
1836 *dot_value = address;
1837 }
1838
1839 Output_section* dot_section = this->output_section_;
1840 for (Output_section_elements::iterator p = this->elements_.begin();
1841 p != this->elements_.end();
1842 ++p)
1843 (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
1844 }
1845
1846 // Return the output section name to use for an input section name.
1847
1848 const char*
1849 Output_section_definition::output_section_name(const char* file_name,
1850 const char* section_name,
1851 Output_section*** slot)
1852 {
1853 // Ask each element whether it matches NAME.
1854 for (Output_section_elements::const_iterator p = this->elements_.begin();
1855 p != this->elements_.end();
1856 ++p)
1857 {
1858 if ((*p)->match_name(file_name, section_name))
1859 {
1860 // We found a match for NAME, which means that it should go
1861 // into this output section.
1862 *slot = &this->output_section_;
1863 return this->name_.c_str();
1864 }
1865 }
1866
1867 // We don't know about this section name.
1868 return NULL;
1869 }
1870
1871 // Set the section address. Note that the OUTPUT_SECTION_ field will
1872 // be NULL if no input sections were mapped to this output section.
1873 // We still have to adjust dot and process symbol assignments.
1874
1875 void
1876 Output_section_definition::set_section_addresses(Symbol_table* symtab,
1877 Layout* layout,
1878 uint64_t* dot_value,
1879 uint64_t* load_address)
1880 {
1881 uint64_t address;
1882 if (this->address_ == NULL)
1883 address = *dot_value;
1884 else
1885 {
1886 Output_section* dummy;
1887 address = this->address_->eval_with_dot(symtab, layout, true,
1888 *dot_value, NULL, &dummy);
1889 }
1890
1891 uint64_t align;
1892 if (this->align_ == NULL)
1893 {
1894 if (this->output_section_ == NULL)
1895 align = 0;
1896 else
1897 align = this->output_section_->addralign();
1898 }
1899 else
1900 {
1901 Output_section* align_section;
1902 align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
1903 NULL, &align_section);
1904 if (align_section != NULL)
1905 gold_warning(_("alignment of section %s is not absolute"),
1906 this->name_.c_str());
1907 if (this->output_section_ != NULL)
1908 this->output_section_->set_addralign(align);
1909 }
1910
1911 address = align_address(address, align);
1912
1913 uint64_t start_address = address;
1914
1915 *dot_value = address;
1916
1917 // The address of non-SHF_ALLOC sections is forced to zero,
1918 // regardless of what the linker script wants.
1919 if (this->output_section_ != NULL
1920 && (this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0)
1921 this->output_section_->set_address(address);
1922
1923 this->evaluated_address_ = address;
1924 this->evaluated_addralign_ = align;
1925
1926 if (this->load_address_ == NULL)
1927 this->evaluated_load_address_ = address;
1928 else
1929 {
1930 Output_section* dummy;
1931 uint64_t laddr =
1932 this->load_address_->eval_with_dot(symtab, layout, true, *dot_value,
1933 this->output_section_, &dummy);
1934 if (this->output_section_ != NULL)
1935 this->output_section_->set_load_address(laddr);
1936 this->evaluated_load_address_ = laddr;
1937 }
1938
1939 uint64_t subalign;
1940 if (this->subalign_ == NULL)
1941 subalign = 0;
1942 else
1943 {
1944 Output_section* subalign_section;
1945 subalign = this->subalign_->eval_with_dot(symtab, layout, true,
1946 *dot_value, NULL,
1947 &subalign_section);
1948 if (subalign_section != NULL)
1949 gold_warning(_("subalign of section %s is not absolute"),
1950 this->name_.c_str());
1951 }
1952
1953 std::string fill;
1954 if (this->fill_ != NULL)
1955 {
1956 // FIXME: The GNU linker supports fill values of arbitrary
1957 // length.
1958 Output_section* fill_section;
1959 uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
1960 *dot_value,
1961 NULL,
1962 &fill_section);
1963 if (fill_section != NULL)
1964 gold_warning(_("fill of section %s is not absolute"),
1965 this->name_.c_str());
1966 unsigned char fill_buff[4];
1967 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1968 fill.assign(reinterpret_cast<char*>(fill_buff), 4);
1969 }
1970
1971 Input_section_list input_sections;
1972 if (this->output_section_ != NULL)
1973 {
1974 // Get the list of input sections attached to this output
1975 // section. This will leave the output section with only
1976 // Output_section_data entries.
1977 address += this->output_section_->get_input_sections(address,
1978 fill,
1979 &input_sections);
1980 *dot_value = address;
1981 }
1982
1983 Output_section* dot_section = this->output_section_;
1984 for (Output_section_elements::iterator p = this->elements_.begin();
1985 p != this->elements_.end();
1986 ++p)
1987 (*p)->set_section_addresses(symtab, layout, this->output_section_,
1988 subalign, dot_value, &dot_section, &fill,
1989 &input_sections);
1990
1991 gold_assert(input_sections.empty());
1992
1993 if (this->load_address_ == NULL || this->output_section_ == NULL)
1994 *load_address = *dot_value;
1995 else
1996 *load_address = (this->output_section_->load_address()
1997 + (*dot_value - start_address));
1998
1999 if (this->output_section_ != NULL)
2000 {
2001 if (this->is_relro_)
2002 this->output_section_->set_is_relro();
2003 else
2004 this->output_section_->clear_is_relro();
2005 }
2006 }
2007
2008 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
2009 // this section is constrained, and the input sections do not match,
2010 // return the constraint, and set *POSD.
2011
2012 Section_constraint
2013 Output_section_definition::check_constraint(Output_section_definition** posd)
2014 {
2015 switch (this->constraint_)
2016 {
2017 case CONSTRAINT_NONE:
2018 return CONSTRAINT_NONE;
2019
2020 case CONSTRAINT_ONLY_IF_RO:
2021 if (this->output_section_ != NULL
2022 && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
2023 {
2024 *posd = this;
2025 return CONSTRAINT_ONLY_IF_RO;
2026 }
2027 return CONSTRAINT_NONE;
2028
2029 case CONSTRAINT_ONLY_IF_RW:
2030 if (this->output_section_ != NULL
2031 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
2032 {
2033 *posd = this;
2034 return CONSTRAINT_ONLY_IF_RW;
2035 }
2036 return CONSTRAINT_NONE;
2037
2038 case CONSTRAINT_SPECIAL:
2039 if (this->output_section_ != NULL)
2040 gold_error(_("SPECIAL constraints are not implemented"));
2041 return CONSTRAINT_NONE;
2042
2043 default:
2044 gold_unreachable();
2045 }
2046 }
2047
2048 // See if this is the alternate output section for a constrained
2049 // output section. If it is, transfer the Output_section and return
2050 // true. Otherwise return false.
2051
2052 bool
2053 Output_section_definition::alternate_constraint(
2054 Output_section_definition* posd,
2055 Section_constraint constraint)
2056 {
2057 if (this->name_ != posd->name_)
2058 return false;
2059
2060 switch (constraint)
2061 {
2062 case CONSTRAINT_ONLY_IF_RO:
2063 if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
2064 return false;
2065 break;
2066
2067 case CONSTRAINT_ONLY_IF_RW:
2068 if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
2069 return false;
2070 break;
2071
2072 default:
2073 gold_unreachable();
2074 }
2075
2076 // We have found the alternate constraint. We just need to move
2077 // over the Output_section. When constraints are used properly,
2078 // THIS should not have an output_section pointer, as all the input
2079 // sections should have matched the other definition.
2080
2081 if (this->output_section_ != NULL)
2082 gold_error(_("mismatched definition for constrained sections"));
2083
2084 this->output_section_ = posd->output_section_;
2085 posd->output_section_ = NULL;
2086
2087 if (this->is_relro_)
2088 this->output_section_->set_is_relro();
2089 else
2090 this->output_section_->clear_is_relro();
2091
2092 return true;
2093 }
2094
2095 // Get the list of segments to use for an allocated section when using
2096 // a PHDRS clause.
2097
2098 Output_section*
2099 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
2100 bool* orphan)
2101 {
2102 if (this->output_section_ == NULL)
2103 return NULL;
2104 if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
2105 return NULL;
2106 *orphan = false;
2107 if (this->phdrs_ != NULL)
2108 *phdrs_list = this->phdrs_;
2109 return this->output_section_;
2110 }
2111
2112 // Look for an output section by name and return the address, the load
2113 // address, the alignment, and the size. This is used when an
2114 // expression refers to an output section which was not actually
2115 // created. This returns true if the section was found, false
2116 // otherwise.
2117
2118 bool
2119 Output_section_definition::get_output_section_info(const char* name,
2120 uint64_t* address,
2121 uint64_t* load_address,
2122 uint64_t* addralign,
2123 uint64_t* size) const
2124 {
2125 if (this->name_ != name)
2126 return false;
2127
2128 if (this->output_section_ != NULL)
2129 {
2130 *address = this->output_section_->address();
2131 if (this->output_section_->has_load_address())
2132 *load_address = this->output_section_->load_address();
2133 else
2134 *load_address = *address;
2135 *addralign = this->output_section_->addralign();
2136 *size = this->output_section_->current_data_size();
2137 }
2138 else
2139 {
2140 *address = this->evaluated_address_;
2141 *load_address = this->evaluated_load_address_;
2142 *addralign = this->evaluated_addralign_;
2143 *size = 0;
2144 }
2145
2146 return true;
2147 }
2148
2149 // Print for debugging.
2150
2151 void
2152 Output_section_definition::print(FILE* f) const
2153 {
2154 fprintf(f, " %s ", this->name_.c_str());
2155
2156 if (this->address_ != NULL)
2157 {
2158 this->address_->print(f);
2159 fprintf(f, " ");
2160 }
2161
2162 fprintf(f, ": ");
2163
2164 if (this->load_address_ != NULL)
2165 {
2166 fprintf(f, "AT(");
2167 this->load_address_->print(f);
2168 fprintf(f, ") ");
2169 }
2170
2171 if (this->align_ != NULL)
2172 {
2173 fprintf(f, "ALIGN(");
2174 this->align_->print(f);
2175 fprintf(f, ") ");
2176 }
2177
2178 if (this->subalign_ != NULL)
2179 {
2180 fprintf(f, "SUBALIGN(");
2181 this->subalign_->print(f);
2182 fprintf(f, ") ");
2183 }
2184
2185 fprintf(f, "{\n");
2186
2187 for (Output_section_elements::const_iterator p = this->elements_.begin();
2188 p != this->elements_.end();
2189 ++p)
2190 (*p)->print(f);
2191
2192 fprintf(f, " }");
2193
2194 if (this->fill_ != NULL)
2195 {
2196 fprintf(f, " = ");
2197 this->fill_->print(f);
2198 }
2199
2200 if (this->phdrs_ != NULL)
2201 {
2202 for (String_list::const_iterator p = this->phdrs_->begin();
2203 p != this->phdrs_->end();
2204 ++p)
2205 fprintf(f, " :%s", p->c_str());
2206 }
2207
2208 fprintf(f, "\n");
2209 }
2210
2211 // An output section created to hold orphaned input sections. These
2212 // do not actually appear in linker scripts. However, for convenience
2213 // when setting the output section addresses, we put a marker to these
2214 // sections in the appropriate place in the list of SECTIONS elements.
2215
2216 class Orphan_output_section : public Sections_element
2217 {
2218 public:
2219 Orphan_output_section(Output_section* os)
2220 : os_(os)
2221 { }
2222
2223 // Return whether the orphan output section is relro. We can just
2224 // check the output section because we always set the flag, if
2225 // needed, just after we create the Orphan_output_section.
2226 bool
2227 is_relro() const
2228 { return this->os_->is_relro(); }
2229
2230 // Initialize OSP with an output section. This should have been
2231 // done already.
2232 void
2233 orphan_section_init(Orphan_section_placement*,
2234 Script_sections::Elements_iterator)
2235 { gold_unreachable(); }
2236
2237 // Set section addresses.
2238 void
2239 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*);
2240
2241 // Get the list of segments to use for an allocated section when
2242 // using a PHDRS clause.
2243 Output_section*
2244 allocate_to_segment(String_list**, bool*);
2245
2246 // Return the associated Output_section.
2247 Output_section*
2248 get_output_section() const
2249 { return this->os_; }
2250
2251 // Print for debugging.
2252 void
2253 print(FILE* f) const
2254 {
2255 fprintf(f, " marker for orphaned output section %s\n",
2256 this->os_->name());
2257 }
2258
2259 private:
2260 Output_section* os_;
2261 };
2262
2263 // Set section addresses.
2264
2265 void
2266 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
2267 uint64_t* dot_value,
2268 uint64_t* load_address)
2269 {
2270 typedef std::list<Output_section::Simple_input_section> Input_section_list;
2271
2272 bool have_load_address = *load_address != *dot_value;
2273
2274 uint64_t address = *dot_value;
2275 address = align_address(address, this->os_->addralign());
2276
2277 if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
2278 {
2279 this->os_->set_address(address);
2280 if (have_load_address)
2281 this->os_->set_load_address(align_address(*load_address,
2282 this->os_->addralign()));
2283 }
2284
2285 Input_section_list input_sections;
2286 address += this->os_->get_input_sections(address, "", &input_sections);
2287
2288 for (Input_section_list::iterator p = input_sections.begin();
2289 p != input_sections.end();
2290 ++p)
2291 {
2292 uint64_t addralign;
2293 uint64_t size;
2294
2295 // We know what are single-threaded, so it is OK to lock the
2296 // object.
2297 {
2298 const Task* task = reinterpret_cast<const Task*>(-1);
2299 Task_lock_obj<Object> tl(task, p->relobj());
2300 addralign = p->relobj()->section_addralign(p->shndx());
2301 if (p->is_relaxed_input_section())
2302 // We use current data size because relxed section sizes may not
2303 // have finalized yet.
2304 size = p->relaxed_input_section()->current_data_size();
2305 else
2306 size = p->relobj()->section_size(p->shndx());
2307 }
2308
2309 address = align_address(address, addralign);
2310 this->os_->add_input_section_for_script(*p, size, addralign);
2311 address += size;
2312 }
2313
2314 if (!have_load_address)
2315 *load_address = address;
2316 else
2317 *load_address += address - *dot_value;
2318
2319 *dot_value = address;
2320 }
2321
2322 // Get the list of segments to use for an allocated section when using
2323 // a PHDRS clause. If this is an allocated section, return the
2324 // Output_section. We don't change the list of segments.
2325
2326 Output_section*
2327 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
2328 {
2329 if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
2330 return NULL;
2331 *orphan = true;
2332 return this->os_;
2333 }
2334
2335 // Class Phdrs_element. A program header from a PHDRS clause.
2336
2337 class Phdrs_element
2338 {
2339 public:
2340 Phdrs_element(const char* name, size_t namelen, unsigned int type,
2341 bool includes_filehdr, bool includes_phdrs,
2342 bool is_flags_valid, unsigned int flags,
2343 Expression* load_address)
2344 : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
2345 includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
2346 flags_(flags), load_address_(load_address), load_address_value_(0),
2347 segment_(NULL)
2348 { }
2349
2350 // Return the name of this segment.
2351 const std::string&
2352 name() const
2353 { return this->name_; }
2354
2355 // Return the type of the segment.
2356 unsigned int
2357 type() const
2358 { return this->type_; }
2359
2360 // Whether to include the file header.
2361 bool
2362 includes_filehdr() const
2363 { return this->includes_filehdr_; }
2364
2365 // Whether to include the program headers.
2366 bool
2367 includes_phdrs() const
2368 { return this->includes_phdrs_; }
2369
2370 // Return whether there is a load address.
2371 bool
2372 has_load_address() const
2373 { return this->load_address_ != NULL; }
2374
2375 // Evaluate the load address expression if there is one.
2376 void
2377 eval_load_address(Symbol_table* symtab, Layout* layout)
2378 {
2379 if (this->load_address_ != NULL)
2380 this->load_address_value_ = this->load_address_->eval(symtab, layout,
2381 true);
2382 }
2383
2384 // Return the load address.
2385 uint64_t
2386 load_address() const
2387 {
2388 gold_assert(this->load_address_ != NULL);
2389 return this->load_address_value_;
2390 }
2391
2392 // Create the segment.
2393 Output_segment*
2394 create_segment(Layout* layout)
2395 {
2396 this->segment_ = layout->make_output_segment(this->type_, this->flags_);
2397 return this->segment_;
2398 }
2399
2400 // Return the segment.
2401 Output_segment*
2402 segment()
2403 { return this->segment_; }
2404
2405 // Release the segment.
2406 void
2407 release_segment()
2408 { this->segment_ = NULL; }
2409
2410 // Set the segment flags if appropriate.
2411 void
2412 set_flags_if_valid()
2413 {
2414 if (this->is_flags_valid_)
2415 this->segment_->set_flags(this->flags_);
2416 }
2417
2418 // Print for debugging.
2419 void
2420 print(FILE*) const;
2421
2422 private:
2423 // The name used in the script.
2424 std::string name_;
2425 // The type of the segment (PT_LOAD, etc.).
2426 unsigned int type_;
2427 // Whether this segment includes the file header.
2428 bool includes_filehdr_;
2429 // Whether this segment includes the section headers.
2430 bool includes_phdrs_;
2431 // Whether the flags were explicitly specified.
2432 bool is_flags_valid_;
2433 // The flags for this segment (PF_R, etc.) if specified.
2434 unsigned int flags_;
2435 // The expression for the load address for this segment. This may
2436 // be NULL.
2437 Expression* load_address_;
2438 // The actual load address from evaluating the expression.
2439 uint64_t load_address_value_;
2440 // The segment itself.
2441 Output_segment* segment_;
2442 };
2443
2444 // Print for debugging.
2445
2446 void
2447 Phdrs_element::print(FILE* f) const
2448 {
2449 fprintf(f, " %s 0x%x", this->name_.c_str(), this->type_);
2450 if (this->includes_filehdr_)
2451 fprintf(f, " FILEHDR");
2452 if (this->includes_phdrs_)
2453 fprintf(f, " PHDRS");
2454 if (this->is_flags_valid_)
2455 fprintf(f, " FLAGS(%u)", this->flags_);
2456 if (this->load_address_ != NULL)
2457 {
2458 fprintf(f, " AT(");
2459 this->load_address_->print(f);
2460 fprintf(f, ")");
2461 }
2462 fprintf(f, ";\n");
2463 }
2464
2465 // Class Script_sections.
2466
2467 Script_sections::Script_sections()
2468 : saw_sections_clause_(false),
2469 in_sections_clause_(false),
2470 sections_elements_(NULL),
2471 output_section_(NULL),
2472 phdrs_elements_(NULL),
2473 orphan_section_placement_(NULL),
2474 data_segment_align_start_(),
2475 saw_data_segment_align_(false),
2476 saw_relro_end_(false)
2477 {
2478 }
2479
2480 // Start a SECTIONS clause.
2481
2482 void
2483 Script_sections::start_sections()
2484 {
2485 gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
2486 this->saw_sections_clause_ = true;
2487 this->in_sections_clause_ = true;
2488 if (this->sections_elements_ == NULL)
2489 this->sections_elements_ = new Sections_elements;
2490 }
2491
2492 // Finish a SECTIONS clause.
2493
2494 void
2495 Script_sections::finish_sections()
2496 {
2497 gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
2498 this->in_sections_clause_ = false;
2499 }
2500
2501 // Add a symbol to be defined.
2502
2503 void
2504 Script_sections::add_symbol_assignment(const char* name, size_t length,
2505 Expression* val, bool provide,
2506 bool hidden)
2507 {
2508 if (this->output_section_ != NULL)
2509 this->output_section_->add_symbol_assignment(name, length, val,
2510 provide, hidden);
2511 else
2512 {
2513 Sections_element* p = new Sections_element_assignment(name, length,
2514 val, provide,
2515 hidden);
2516 this->sections_elements_->push_back(p);
2517 }
2518 }
2519
2520 // Add an assignment to the special dot symbol.
2521
2522 void
2523 Script_sections::add_dot_assignment(Expression* val)
2524 {
2525 if (this->output_section_ != NULL)
2526 this->output_section_->add_dot_assignment(val);
2527 else
2528 {
2529 Sections_element* p = new Sections_element_dot_assignment(val);
2530 this->sections_elements_->push_back(p);
2531 }
2532 }
2533
2534 // Add an assertion.
2535
2536 void
2537 Script_sections::add_assertion(Expression* check, const char* message,
2538 size_t messagelen)
2539 {
2540 if (this->output_section_ != NULL)
2541 this->output_section_->add_assertion(check, message, messagelen);
2542 else
2543 {
2544 Sections_element* p = new Sections_element_assertion(check, message,
2545 messagelen);
2546 this->sections_elements_->push_back(p);
2547 }
2548 }
2549
2550 // Start processing entries for an output section.
2551
2552 void
2553 Script_sections::start_output_section(
2554 const char* name,
2555 size_t namelen,
2556 const Parser_output_section_header *header)
2557 {
2558 Output_section_definition* posd = new Output_section_definition(name,
2559 namelen,
2560 header);
2561 this->sections_elements_->push_back(posd);
2562 gold_assert(this->output_section_ == NULL);
2563 this->output_section_ = posd;
2564 }
2565
2566 // Stop processing entries for an output section.
2567
2568 void
2569 Script_sections::finish_output_section(
2570 const Parser_output_section_trailer* trailer)
2571 {
2572 gold_assert(this->output_section_ != NULL);
2573 this->output_section_->finish(trailer);
2574 this->output_section_ = NULL;
2575 }
2576
2577 // Add a data item to the current output section.
2578
2579 void
2580 Script_sections::add_data(int size, bool is_signed, Expression* val)
2581 {
2582 gold_assert(this->output_section_ != NULL);
2583 this->output_section_->add_data(size, is_signed, val);
2584 }
2585
2586 // Add a fill value setting to the current output section.
2587
2588 void
2589 Script_sections::add_fill(Expression* val)
2590 {
2591 gold_assert(this->output_section_ != NULL);
2592 this->output_section_->add_fill(val);
2593 }
2594
2595 // Add an input section specification to the current output section.
2596
2597 void
2598 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
2599 {
2600 gold_assert(this->output_section_ != NULL);
2601 this->output_section_->add_input_section(spec, keep);
2602 }
2603
2604 // This is called when we see DATA_SEGMENT_ALIGN. It means that any
2605 // subsequent output sections may be relro.
2606
2607 void
2608 Script_sections::data_segment_align()
2609 {
2610 if (this->saw_data_segment_align_)
2611 gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
2612 gold_assert(!this->sections_elements_->empty());
2613 Sections_elements::iterator p = this->sections_elements_->end();
2614 --p;
2615 this->data_segment_align_start_ = p;
2616 this->saw_data_segment_align_ = true;
2617 }
2618
2619 // This is called when we see DATA_SEGMENT_RELRO_END. It means that
2620 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
2621
2622 void
2623 Script_sections::data_segment_relro_end()
2624 {
2625 if (this->saw_relro_end_)
2626 gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
2627 "in a linker script"));
2628 this->saw_relro_end_ = true;
2629
2630 if (!this->saw_data_segment_align_)
2631 gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
2632 else
2633 {
2634 Sections_elements::iterator p = this->data_segment_align_start_;
2635 for (++p; p != this->sections_elements_->end(); ++p)
2636 (*p)->set_is_relro();
2637 }
2638 }
2639
2640 // Create any required sections.
2641
2642 void
2643 Script_sections::create_sections(Layout* layout)
2644 {
2645 if (!this->saw_sections_clause_)
2646 return;
2647 for (Sections_elements::iterator p = this->sections_elements_->begin();
2648 p != this->sections_elements_->end();
2649 ++p)
2650 (*p)->create_sections(layout);
2651 }
2652
2653 // Add any symbols we are defining to the symbol table.
2654
2655 void
2656 Script_sections::add_symbols_to_table(Symbol_table* symtab)
2657 {
2658 if (!this->saw_sections_clause_)
2659 return;
2660 for (Sections_elements::iterator p = this->sections_elements_->begin();
2661 p != this->sections_elements_->end();
2662 ++p)
2663 (*p)->add_symbols_to_table(symtab);
2664 }
2665
2666 // Finalize symbols and check assertions.
2667
2668 void
2669 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
2670 {
2671 if (!this->saw_sections_clause_)
2672 return;
2673 uint64_t dot_value = 0;
2674 for (Sections_elements::iterator p = this->sections_elements_->begin();
2675 p != this->sections_elements_->end();
2676 ++p)
2677 (*p)->finalize_symbols(symtab, layout, &dot_value);
2678 }
2679
2680 // Return the name of the output section to use for an input file name
2681 // and section name.
2682
2683 const char*
2684 Script_sections::output_section_name(const char* file_name,
2685 const char* section_name,
2686 Output_section*** output_section_slot)
2687 {
2688 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2689 p != this->sections_elements_->end();
2690 ++p)
2691 {
2692 const char* ret = (*p)->output_section_name(file_name, section_name,
2693 output_section_slot);
2694
2695 if (ret != NULL)
2696 {
2697 // The special name /DISCARD/ means that the input section
2698 // should be discarded.
2699 if (strcmp(ret, "/DISCARD/") == 0)
2700 {
2701 *output_section_slot = NULL;
2702 return NULL;
2703 }
2704 return ret;
2705 }
2706 }
2707
2708 // If we couldn't find a mapping for the name, the output section
2709 // gets the name of the input section.
2710
2711 *output_section_slot = NULL;
2712
2713 return section_name;
2714 }
2715
2716 // Place a marker for an orphan output section into the SECTIONS
2717 // clause.
2718
2719 void
2720 Script_sections::place_orphan(Output_section* os)
2721 {
2722 Orphan_section_placement* osp = this->orphan_section_placement_;
2723 if (osp == NULL)
2724 {
2725 // Initialize the Orphan_section_placement structure.
2726 osp = new Orphan_section_placement();
2727 for (Sections_elements::iterator p = this->sections_elements_->begin();
2728 p != this->sections_elements_->end();
2729 ++p)
2730 (*p)->orphan_section_init(osp, p);
2731 gold_assert(!this->sections_elements_->empty());
2732 Sections_elements::iterator last = this->sections_elements_->end();
2733 --last;
2734 osp->last_init(last);
2735 this->orphan_section_placement_ = osp;
2736 }
2737
2738 Orphan_output_section* orphan = new Orphan_output_section(os);
2739
2740 // Look for where to put ORPHAN.
2741 Sections_elements::iterator* where;
2742 if (osp->find_place(os, &where))
2743 {
2744 if ((**where)->is_relro())
2745 os->set_is_relro();
2746 else
2747 os->clear_is_relro();
2748
2749 // We want to insert ORPHAN after *WHERE, and then update *WHERE
2750 // so that the next one goes after this one.
2751 Sections_elements::iterator p = *where;
2752 gold_assert(p != this->sections_elements_->end());
2753 ++p;
2754 *where = this->sections_elements_->insert(p, orphan);
2755 }
2756 else
2757 {
2758 os->clear_is_relro();
2759 // We don't have a place to put this orphan section. Put it,
2760 // and all other sections like it, at the end, but before the
2761 // sections which always come at the end.
2762 Sections_elements::iterator last = osp->last_place();
2763 *where = this->sections_elements_->insert(last, orphan);
2764 }
2765 }
2766
2767 // Set the addresses of all the output sections. Walk through all the
2768 // elements, tracking the dot symbol. Apply assignments which set
2769 // absolute symbol values, in case they are used when setting dot.
2770 // Fill in data statement values. As we find output sections, set the
2771 // address, set the address of all associated input sections, and
2772 // update dot. Return the segment which should hold the file header
2773 // and segment headers, if any.
2774
2775 Output_segment*
2776 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
2777 {
2778 gold_assert(this->saw_sections_clause_);
2779
2780 // Implement ONLY_IF_RO/ONLY_IF_RW constraints. These are a pain
2781 // for our representation.
2782 for (Sections_elements::iterator p = this->sections_elements_->begin();
2783 p != this->sections_elements_->end();
2784 ++p)
2785 {
2786 Output_section_definition* posd;
2787 Section_constraint failed_constraint = (*p)->check_constraint(&posd);
2788 if (failed_constraint != CONSTRAINT_NONE)
2789 {
2790 Sections_elements::iterator q;
2791 for (q = this->sections_elements_->begin();
2792 q != this->sections_elements_->end();
2793 ++q)
2794 {
2795 if (q != p)
2796 {
2797 if ((*q)->alternate_constraint(posd, failed_constraint))
2798 break;
2799 }
2800 }
2801
2802 if (q == this->sections_elements_->end())
2803 gold_error(_("no matching section constraint"));
2804 }
2805 }
2806
2807 // Force the alignment of the first TLS section to be the maximum
2808 // alignment of all TLS sections.
2809 Output_section* first_tls = NULL;
2810 uint64_t tls_align = 0;
2811 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2812 p != this->sections_elements_->end();
2813 ++p)
2814 {
2815 Output_section *os = (*p)->get_output_section();
2816 if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
2817 {
2818 if (first_tls == NULL)
2819 first_tls = os;
2820 if (os->addralign() > tls_align)
2821 tls_align = os->addralign();
2822 }
2823 }
2824 if (first_tls != NULL)
2825 first_tls->set_addralign(tls_align);
2826
2827 // For a relocatable link, we implicitly set dot to zero.
2828 uint64_t dot_value = 0;
2829 uint64_t load_address = 0;
2830 for (Sections_elements::iterator p = this->sections_elements_->begin();
2831 p != this->sections_elements_->end();
2832 ++p)
2833 (*p)->set_section_addresses(symtab, layout, &dot_value, &load_address);
2834
2835 if (this->phdrs_elements_ != NULL)
2836 {
2837 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
2838 p != this->phdrs_elements_->end();
2839 ++p)
2840 (*p)->eval_load_address(symtab, layout);
2841 }
2842
2843 return this->create_segments(layout);
2844 }
2845
2846 // Sort the sections in order to put them into segments.
2847
2848 class Sort_output_sections
2849 {
2850 public:
2851 bool
2852 operator()(const Output_section* os1, const Output_section* os2) const;
2853 };
2854
2855 bool
2856 Sort_output_sections::operator()(const Output_section* os1,
2857 const Output_section* os2) const
2858 {
2859 // Sort first by the load address.
2860 uint64_t lma1 = (os1->has_load_address()
2861 ? os1->load_address()
2862 : os1->address());
2863 uint64_t lma2 = (os2->has_load_address()
2864 ? os2->load_address()
2865 : os2->address());
2866 if (lma1 != lma2)
2867 return lma1 < lma2;
2868
2869 // Then sort by the virtual address.
2870 if (os1->address() != os2->address())
2871 return os1->address() < os2->address();
2872
2873 // Sort TLS sections to the end.
2874 bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
2875 bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
2876 if (tls1 != tls2)
2877 return tls2;
2878
2879 // Sort PROGBITS before NOBITS.
2880 if (os1->type() == elfcpp::SHT_PROGBITS && os2->type() == elfcpp::SHT_NOBITS)
2881 return true;
2882 if (os1->type() == elfcpp::SHT_NOBITS && os2->type() == elfcpp::SHT_PROGBITS)
2883 return false;
2884
2885 // Otherwise we don't care.
2886 return false;
2887 }
2888
2889 // Return whether OS is a BSS section. This is a SHT_NOBITS section.
2890 // We treat a section with the SHF_TLS flag set as taking up space
2891 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
2892 // space for them in the file.
2893
2894 bool
2895 Script_sections::is_bss_section(const Output_section* os)
2896 {
2897 return (os->type() == elfcpp::SHT_NOBITS
2898 && (os->flags() & elfcpp::SHF_TLS) == 0);
2899 }
2900
2901 // Return the size taken by the file header and the program headers.
2902
2903 size_t
2904 Script_sections::total_header_size(Layout* layout) const
2905 {
2906 size_t segment_count = layout->segment_count();
2907 size_t file_header_size;
2908 size_t segment_headers_size;
2909 if (parameters->target().get_size() == 32)
2910 {
2911 file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
2912 segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
2913 }
2914 else if (parameters->target().get_size() == 64)
2915 {
2916 file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
2917 segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
2918 }
2919 else
2920 gold_unreachable();
2921
2922 return file_header_size + segment_headers_size;
2923 }
2924
2925 // Return the amount we have to subtract from the LMA to accomodate
2926 // headers of the given size. The complication is that the file
2927 // header have to be at the start of a page, as otherwise it will not
2928 // be at the start of the file.
2929
2930 uint64_t
2931 Script_sections::header_size_adjustment(uint64_t lma,
2932 size_t sizeof_headers) const
2933 {
2934 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
2935 uint64_t hdr_lma = lma - sizeof_headers;
2936 hdr_lma &= ~(abi_pagesize - 1);
2937 return lma - hdr_lma;
2938 }
2939
2940 // Create the PT_LOAD segments when using a SECTIONS clause. Returns
2941 // the segment which should hold the file header and segment headers,
2942 // if any.
2943
2944 Output_segment*
2945 Script_sections::create_segments(Layout* layout)
2946 {
2947 gold_assert(this->saw_sections_clause_);
2948
2949 if (parameters->options().relocatable())
2950 return NULL;
2951
2952 if (this->saw_phdrs_clause())
2953 return create_segments_from_phdrs_clause(layout);
2954
2955 Layout::Section_list sections;
2956 layout->get_allocated_sections(&sections);
2957
2958 // Sort the sections by address.
2959 std::stable_sort(sections.begin(), sections.end(), Sort_output_sections());
2960
2961 this->create_note_and_tls_segments(layout, &sections);
2962
2963 // Walk through the sections adding them to PT_LOAD segments.
2964 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
2965 Output_segment* first_seg = NULL;
2966 Output_segment* current_seg = NULL;
2967 bool is_current_seg_readonly = true;
2968 Layout::Section_list::iterator plast = sections.end();
2969 uint64_t last_vma = 0;
2970 uint64_t last_lma = 0;
2971 uint64_t last_size = 0;
2972 for (Layout::Section_list::iterator p = sections.begin();
2973 p != sections.end();
2974 ++p)
2975 {
2976 const uint64_t vma = (*p)->address();
2977 const uint64_t lma = ((*p)->has_load_address()
2978 ? (*p)->load_address()
2979 : vma);
2980 const uint64_t size = (*p)->current_data_size();
2981
2982 bool need_new_segment;
2983 if (current_seg == NULL)
2984 need_new_segment = true;
2985 else if (lma - vma != last_lma - last_vma)
2986 {
2987 // This section has a different LMA relationship than the
2988 // last one; we need a new segment.
2989 need_new_segment = true;
2990 }
2991 else if (align_address(last_lma + last_size, abi_pagesize)
2992 < align_address(lma, abi_pagesize))
2993 {
2994 // Putting this section in the segment would require
2995 // skipping a page.
2996 need_new_segment = true;
2997 }
2998 else if (is_bss_section(*plast) && !is_bss_section(*p))
2999 {
3000 // A non-BSS section can not follow a BSS section in the
3001 // same segment.
3002 need_new_segment = true;
3003 }
3004 else if (is_current_seg_readonly
3005 && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
3006 && !parameters->options().omagic())
3007 {
3008 // Don't put a writable section in the same segment as a
3009 // non-writable section.
3010 need_new_segment = true;
3011 }
3012 else
3013 {
3014 // Otherwise, reuse the existing segment.
3015 need_new_segment = false;
3016 }
3017
3018 elfcpp::Elf_Word seg_flags =
3019 Layout::section_flags_to_segment((*p)->flags());
3020
3021 if (need_new_segment)
3022 {
3023 current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3024 seg_flags);
3025 current_seg->set_addresses(vma, lma);
3026 if (first_seg == NULL)
3027 first_seg = current_seg;
3028 is_current_seg_readonly = true;
3029 }
3030
3031 current_seg->add_output_section(*p, seg_flags);
3032
3033 if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
3034 is_current_seg_readonly = false;
3035
3036 plast = p;
3037 last_vma = vma;
3038 last_lma = lma;
3039 last_size = size;
3040 }
3041
3042 // An ELF program should work even if the program headers are not in
3043 // a PT_LOAD segment. However, it appears that the Linux kernel
3044 // does not set the AT_PHDR auxiliary entry in that case. It sets
3045 // the load address to p_vaddr - p_offset of the first PT_LOAD
3046 // segment. It then sets AT_PHDR to the load address plus the
3047 // offset to the program headers, e_phoff in the file header. This
3048 // fails when the program headers appear in the file before the
3049 // first PT_LOAD segment. Therefore, we always create a PT_LOAD
3050 // segment to hold the file header and the program headers. This is
3051 // effectively what the GNU linker does, and it is slightly more
3052 // efficient in any case. We try to use the first PT_LOAD segment
3053 // if we can, otherwise we make a new one.
3054
3055 if (first_seg == NULL)
3056 return NULL;
3057
3058 // -n or -N mean that the program is not demand paged and there is
3059 // no need to put the program headers in a PT_LOAD segment.
3060 if (parameters->options().nmagic() || parameters->options().omagic())
3061 return NULL;
3062
3063 size_t sizeof_headers = this->total_header_size(layout);
3064
3065 uint64_t vma = first_seg->vaddr();
3066 uint64_t lma = first_seg->paddr();
3067
3068 uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
3069
3070 if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
3071 {
3072 first_seg->set_addresses(vma - subtract, lma - subtract);
3073 return first_seg;
3074 }
3075
3076 // If there is no room to squeeze in the headers, then punt. The
3077 // resulting executable probably won't run on GNU/Linux, but we
3078 // trust that the user knows what they are doing.
3079 if (lma < subtract || vma < subtract)
3080 return NULL;
3081
3082 Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3083 elfcpp::PF_R);
3084 load_seg->set_addresses(vma - subtract, lma - subtract);
3085
3086 return load_seg;
3087 }
3088
3089 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
3090 // segment if there are any SHT_TLS sections.
3091
3092 void
3093 Script_sections::create_note_and_tls_segments(
3094 Layout* layout,
3095 const Layout::Section_list* sections)
3096 {
3097 gold_assert(!this->saw_phdrs_clause());
3098
3099 bool saw_tls = false;
3100 for (Layout::Section_list::const_iterator p = sections->begin();
3101 p != sections->end();
3102 ++p)
3103 {
3104 if ((*p)->type() == elfcpp::SHT_NOTE)
3105 {
3106 elfcpp::Elf_Word seg_flags =
3107 Layout::section_flags_to_segment((*p)->flags());
3108 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
3109 seg_flags);
3110 oseg->add_output_section(*p, seg_flags);
3111
3112 // Incorporate any subsequent SHT_NOTE sections, in the
3113 // hopes that the script is sensible.
3114 Layout::Section_list::const_iterator pnext = p + 1;
3115 while (pnext != sections->end()
3116 && (*pnext)->type() == elfcpp::SHT_NOTE)
3117 {
3118 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3119 oseg->add_output_section(*pnext, seg_flags);
3120 p = pnext;
3121 ++pnext;
3122 }
3123 }
3124
3125 if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3126 {
3127 if (saw_tls)
3128 gold_error(_("TLS sections are not adjacent"));
3129
3130 elfcpp::Elf_Word seg_flags =
3131 Layout::section_flags_to_segment((*p)->flags());
3132 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
3133 seg_flags);
3134 oseg->add_output_section(*p, seg_flags);
3135
3136 Layout::Section_list::const_iterator pnext = p + 1;
3137 while (pnext != sections->end()
3138 && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
3139 {
3140 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3141 oseg->add_output_section(*pnext, seg_flags);
3142 p = pnext;
3143 ++pnext;
3144 }
3145
3146 saw_tls = true;
3147 }
3148 }
3149 }
3150
3151 // Add a program header. The PHDRS clause is syntactically distinct
3152 // from the SECTIONS clause, but we implement it with the SECTIONS
3153 // support because PHDRS is useless if there is no SECTIONS clause.
3154
3155 void
3156 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
3157 bool includes_filehdr, bool includes_phdrs,
3158 bool is_flags_valid, unsigned int flags,
3159 Expression* load_address)
3160 {
3161 if (this->phdrs_elements_ == NULL)
3162 this->phdrs_elements_ = new Phdrs_elements();
3163 this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
3164 includes_filehdr,
3165 includes_phdrs,
3166 is_flags_valid, flags,
3167 load_address));
3168 }
3169
3170 // Return the number of segments we expect to create based on the
3171 // SECTIONS clause. This is used to implement SIZEOF_HEADERS.
3172
3173 size_t
3174 Script_sections::expected_segment_count(const Layout* layout) const
3175 {
3176 if (this->saw_phdrs_clause())
3177 return this->phdrs_elements_->size();
3178
3179 Layout::Section_list sections;
3180 layout->get_allocated_sections(&sections);
3181
3182 // We assume that we will need two PT_LOAD segments.
3183 size_t ret = 2;
3184
3185 bool saw_note = false;
3186 bool saw_tls = false;
3187 for (Layout::Section_list::const_iterator p = sections.begin();
3188 p != sections.end();
3189 ++p)
3190 {
3191 if ((*p)->type() == elfcpp::SHT_NOTE)
3192 {
3193 // Assume that all note sections will fit into a single
3194 // PT_NOTE segment.
3195 if (!saw_note)
3196 {
3197 ++ret;
3198 saw_note = true;
3199 }
3200 }
3201 else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3202 {
3203 // There can only be one PT_TLS segment.
3204 if (!saw_tls)
3205 {
3206 ++ret;
3207 saw_tls = true;
3208 }
3209 }
3210 }
3211
3212 return ret;
3213 }
3214
3215 // Create the segments from a PHDRS clause. Return the segment which
3216 // should hold the file header and program headers, if any.
3217
3218 Output_segment*
3219 Script_sections::create_segments_from_phdrs_clause(Layout* layout)
3220 {
3221 this->attach_sections_using_phdrs_clause(layout);
3222 return this->set_phdrs_clause_addresses(layout);
3223 }
3224
3225 // Create the segments from the PHDRS clause, and put the output
3226 // sections in them.
3227
3228 void
3229 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
3230 {
3231 typedef std::map<std::string, Output_segment*> Name_to_segment;
3232 Name_to_segment name_to_segment;
3233 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3234 p != this->phdrs_elements_->end();
3235 ++p)
3236 name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
3237
3238 // Walk through the output sections and attach them to segments.
3239 // Output sections in the script which do not list segments are
3240 // attached to the same set of segments as the immediately preceding
3241 // output section.
3242
3243 String_list* phdr_names = NULL;
3244 bool load_segments_only = false;
3245 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3246 p != this->sections_elements_->end();
3247 ++p)
3248 {
3249 bool orphan;
3250 String_list* old_phdr_names = phdr_names;
3251 Output_section* os = (*p)->allocate_to_segment(&phdr_names, &orphan);
3252 if (os == NULL)
3253 continue;
3254
3255 if (phdr_names == NULL)
3256 {
3257 gold_error(_("allocated section not in any segment"));
3258 continue;
3259 }
3260
3261 // We see a list of segments names. Disable PT_LOAD segment only
3262 // filtering.
3263 if (old_phdr_names != phdr_names)
3264 load_segments_only = false;
3265
3266 // If this is an orphan section--one that was not explicitly
3267 // mentioned in the linker script--then it should not inherit
3268 // any segment type other than PT_LOAD. Otherwise, e.g., the
3269 // PT_INTERP segment will pick up following orphan sections,
3270 // which does not make sense. If this is not an orphan section,
3271 // we trust the linker script.
3272 if (orphan)
3273 {
3274 // Enable PT_LOAD segments only filtering until we see another
3275 // list of segment names.
3276 load_segments_only = true;
3277 }
3278
3279 bool in_load_segment = false;
3280 for (String_list::const_iterator q = phdr_names->begin();
3281 q != phdr_names->end();
3282 ++q)
3283 {
3284 Name_to_segment::const_iterator r = name_to_segment.find(*q);
3285 if (r == name_to_segment.end())
3286 gold_error(_("no segment %s"), q->c_str());
3287 else
3288 {
3289 if (load_segments_only
3290 && r->second->type() != elfcpp::PT_LOAD)
3291 continue;
3292
3293 elfcpp::Elf_Word seg_flags =
3294 Layout::section_flags_to_segment(os->flags());
3295 r->second->add_output_section(os, seg_flags);
3296
3297 if (r->second->type() == elfcpp::PT_LOAD)
3298 {
3299 if (in_load_segment)
3300 gold_error(_("section in two PT_LOAD segments"));
3301 in_load_segment = true;
3302 }
3303 }
3304 }
3305
3306 if (!in_load_segment)
3307 gold_error(_("allocated section not in any PT_LOAD segment"));
3308 }
3309 }
3310
3311 // Set the addresses for segments created from a PHDRS clause. Return
3312 // the segment which should hold the file header and program headers,
3313 // if any.
3314
3315 Output_segment*
3316 Script_sections::set_phdrs_clause_addresses(Layout* layout)
3317 {
3318 Output_segment* load_seg = NULL;
3319 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3320 p != this->phdrs_elements_->end();
3321 ++p)
3322 {
3323 // Note that we have to set the flags after adding the output
3324 // sections to the segment, as adding an output segment can
3325 // change the flags.
3326 (*p)->set_flags_if_valid();
3327
3328 Output_segment* oseg = (*p)->segment();
3329
3330 if (oseg->type() != elfcpp::PT_LOAD)
3331 {
3332 // The addresses of non-PT_LOAD segments are set from the
3333 // PT_LOAD segments.
3334 if ((*p)->has_load_address())
3335 gold_error(_("may only specify load address for PT_LOAD segment"));
3336 continue;
3337 }
3338
3339 // The output sections should have addresses from the SECTIONS
3340 // clause. The addresses don't have to be in order, so find the
3341 // one with the lowest load address. Use that to set the
3342 // address of the segment.
3343
3344 Output_section* osec = oseg->section_with_lowest_load_address();
3345 if (osec == NULL)
3346 {
3347 oseg->set_addresses(0, 0);
3348 continue;
3349 }
3350
3351 uint64_t vma = osec->address();
3352 uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
3353
3354 // Override the load address of the section with the load
3355 // address specified for the segment.
3356 if ((*p)->has_load_address())
3357 {
3358 if (osec->has_load_address())
3359 gold_warning(_("PHDRS load address overrides "
3360 "section %s load address"),
3361 osec->name());
3362
3363 lma = (*p)->load_address();
3364 }
3365
3366 bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
3367 if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
3368 {
3369 // We could support this if we wanted to.
3370 gold_error(_("using only one of FILEHDR and PHDRS is "
3371 "not currently supported"));
3372 }
3373 if (headers)
3374 {
3375 size_t sizeof_headers = this->total_header_size(layout);
3376 uint64_t subtract = this->header_size_adjustment(lma,
3377 sizeof_headers);
3378 if (lma >= subtract && vma >= subtract)
3379 {
3380 lma -= subtract;
3381 vma -= subtract;
3382 }
3383 else
3384 {
3385 gold_error(_("sections loaded on first page without room "
3386 "for file and program headers "
3387 "are not supported"));
3388 }
3389
3390 if (load_seg != NULL)
3391 gold_error(_("using FILEHDR and PHDRS on more than one "
3392 "PT_LOAD segment is not currently supported"));
3393 load_seg = oseg;
3394 }
3395
3396 oseg->set_addresses(vma, lma);
3397 }
3398
3399 return load_seg;
3400 }
3401
3402 // Add the file header and segment headers to non-load segments
3403 // specified in the PHDRS clause.
3404
3405 void
3406 Script_sections::put_headers_in_phdrs(Output_data* file_header,
3407 Output_data* segment_headers)
3408 {
3409 gold_assert(this->saw_phdrs_clause());
3410 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3411 p != this->phdrs_elements_->end();
3412 ++p)
3413 {
3414 if ((*p)->type() != elfcpp::PT_LOAD)
3415 {
3416 if ((*p)->includes_phdrs())
3417 (*p)->segment()->add_initial_output_data(segment_headers);
3418 if ((*p)->includes_filehdr())
3419 (*p)->segment()->add_initial_output_data(file_header);
3420 }
3421 }
3422 }
3423
3424 // Look for an output section by name and return the address, the load
3425 // address, the alignment, and the size. This is used when an
3426 // expression refers to an output section which was not actually
3427 // created. This returns true if the section was found, false
3428 // otherwise.
3429
3430 bool
3431 Script_sections::get_output_section_info(const char* name, uint64_t* address,
3432 uint64_t* load_address,
3433 uint64_t* addralign,
3434 uint64_t* size) const
3435 {
3436 if (!this->saw_sections_clause_)
3437 return false;
3438 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3439 p != this->sections_elements_->end();
3440 ++p)
3441 if ((*p)->get_output_section_info(name, address, load_address, addralign,
3442 size))
3443 return true;
3444 return false;
3445 }
3446
3447 // Release all Output_segments. This remove all pointers to all
3448 // Output_segments.
3449
3450 void
3451 Script_sections::release_segments()
3452 {
3453 if (this->saw_phdrs_clause())
3454 {
3455 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3456 p != this->phdrs_elements_->end();
3457 ++p)
3458 (*p)->release_segment();
3459 }
3460 }
3461
3462 // Print the SECTIONS clause to F for debugging.
3463
3464 void
3465 Script_sections::print(FILE* f) const
3466 {
3467 if (!this->saw_sections_clause_)
3468 return;
3469
3470 fprintf(f, "SECTIONS {\n");
3471
3472 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3473 p != this->sections_elements_->end();
3474 ++p)
3475 (*p)->print(f);
3476
3477 fprintf(f, "}\n");
3478
3479 if (this->phdrs_elements_ != NULL)
3480 {
3481 fprintf(f, "PHDRS {\n");
3482 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3483 p != this->phdrs_elements_->end();
3484 ++p)
3485 (*p)->print(f);
3486 fprintf(f, "}\n");
3487 }
3488 }
3489
3490 } // End namespace gold.
This page took 0.106562 seconds and 5 git commands to generate.