Fix edge cases in orphan section placement.
[deliverable/binutils-gdb.git] / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright (C) 2008-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // A region of memory.
47 class Memory_region
48 {
49 public:
50 Memory_region(const char* name, size_t namelen, unsigned int attributes,
51 Expression* start, Expression* length)
52 : name_(name, namelen),
53 attributes_(attributes),
54 start_(start),
55 length_(length),
56 current_offset_(0),
57 vma_sections_(),
58 lma_sections_(),
59 last_section_(NULL)
60 { }
61
62 // Return the name of this region.
63 const std::string&
64 name() const
65 { return this->name_; }
66
67 // Return the start address of this region.
68 Expression*
69 start_address() const
70 { return this->start_; }
71
72 // Return the length of this region.
73 Expression*
74 length() const
75 { return this->length_; }
76
77 // Print the region (when debugging).
78 void
79 print(FILE*) const;
80
81 // Return true if <name,namelen> matches this region.
82 bool
83 name_match(const char* name, size_t namelen)
84 {
85 return (this->name_.length() == namelen
86 && strncmp(this->name_.c_str(), name, namelen) == 0);
87 }
88
89 Expression*
90 get_current_address() const
91 {
92 return
93 script_exp_binary_add(this->start_,
94 script_exp_integer(this->current_offset_));
95 }
96
97 void
98 set_address(uint64_t addr, const Symbol_table* symtab, const Layout* layout)
99 {
100 uint64_t start = this->start_->eval(symtab, layout, false);
101 uint64_t len = this->length_->eval(symtab, layout, false);
102 if (addr < start || addr >= start + len)
103 gold_error(_("address 0x%llx is not within region %s"),
104 static_cast<unsigned long long>(addr),
105 this->name_.c_str());
106 else if (addr < start + this->current_offset_)
107 gold_error(_("address 0x%llx moves dot backwards in region %s"),
108 static_cast<unsigned long long>(addr),
109 this->name_.c_str());
110 this->current_offset_ = addr - start;
111 }
112
113 void
114 increment_offset(std::string section_name, uint64_t amount,
115 const Symbol_table* symtab, const Layout* layout)
116 {
117 this->current_offset_ += amount;
118
119 if (this->current_offset_
120 > this->length_->eval(symtab, layout, false))
121 gold_error(_("section %s overflows end of region %s"),
122 section_name.c_str(), this->name_.c_str());
123 }
124
125 // Returns true iff there is room left in this region
126 // for AMOUNT more bytes of data.
127 bool
128 has_room_for(const Symbol_table* symtab, const Layout* layout,
129 uint64_t amount) const
130 {
131 return (this->current_offset_ + amount
132 < this->length_->eval(symtab, layout, false));
133 }
134
135 // Return true if the provided section flags
136 // are compatible with this region's attributes.
137 bool
138 attributes_compatible(elfcpp::Elf_Xword flags, elfcpp::Elf_Xword type) const;
139
140 void
141 add_section(Output_section_definition* sec, bool vma)
142 {
143 if (vma)
144 this->vma_sections_.push_back(sec);
145 else
146 this->lma_sections_.push_back(sec);
147 }
148
149 typedef std::vector<Output_section_definition*> Section_list;
150
151 // Return the start of the list of sections
152 // whose VMAs are taken from this region.
153 Section_list::const_iterator
154 get_vma_section_list_start() const
155 { return this->vma_sections_.begin(); }
156
157 // Return the start of the list of sections
158 // whose LMAs are taken from this region.
159 Section_list::const_iterator
160 get_lma_section_list_start() const
161 { return this->lma_sections_.begin(); }
162
163 // Return the end of the list of sections
164 // whose VMAs are taken from this region.
165 Section_list::const_iterator
166 get_vma_section_list_end() const
167 { return this->vma_sections_.end(); }
168
169 // Return the end of the list of sections
170 // whose LMAs are taken from this region.
171 Section_list::const_iterator
172 get_lma_section_list_end() const
173 { return this->lma_sections_.end(); }
174
175 Output_section_definition*
176 get_last_section() const
177 { return this->last_section_; }
178
179 void
180 set_last_section(Output_section_definition* sec)
181 { this->last_section_ = sec; }
182
183 private:
184
185 std::string name_;
186 unsigned int attributes_;
187 Expression* start_;
188 Expression* length_;
189 // The offset to the next free byte in the region.
190 // Note - for compatibility with GNU LD we only maintain one offset
191 // regardless of whether the region is being used for VMA values,
192 // LMA values, or both.
193 uint64_t current_offset_;
194 // A list of sections whose VMAs are set inside this region.
195 Section_list vma_sections_;
196 // A list of sections whose LMAs are set inside this region.
197 Section_list lma_sections_;
198 // The latest section to make use of this region.
199 Output_section_definition* last_section_;
200 };
201
202 // Return true if the provided section flags
203 // are compatible with this region's attributes.
204
205 bool
206 Memory_region::attributes_compatible(elfcpp::Elf_Xword flags,
207 elfcpp::Elf_Xword type) const
208 {
209 unsigned int attrs = this->attributes_;
210
211 // No attributes means that this region is not compatible with anything.
212 if (attrs == 0)
213 return false;
214
215 bool match = true;
216 do
217 {
218 switch (attrs & - attrs)
219 {
220 case MEM_EXECUTABLE:
221 if ((flags & elfcpp::SHF_EXECINSTR) == 0)
222 match = false;
223 break;
224
225 case MEM_WRITEABLE:
226 if ((flags & elfcpp::SHF_WRITE) == 0)
227 match = false;
228 break;
229
230 case MEM_READABLE:
231 // All sections are presumed readable.
232 break;
233
234 case MEM_ALLOCATABLE:
235 if ((flags & elfcpp::SHF_ALLOC) == 0)
236 match = false;
237 break;
238
239 case MEM_INITIALIZED:
240 if ((type & elfcpp::SHT_NOBITS) != 0)
241 match = false;
242 break;
243 }
244 attrs &= ~ (attrs & - attrs);
245 }
246 while (attrs != 0);
247
248 return match;
249 }
250
251 // Print a memory region.
252
253 void
254 Memory_region::print(FILE* f) const
255 {
256 fprintf(f, " %s", this->name_.c_str());
257
258 unsigned int attrs = this->attributes_;
259 if (attrs != 0)
260 {
261 fprintf(f, " (");
262 do
263 {
264 switch (attrs & - attrs)
265 {
266 case MEM_EXECUTABLE: fputc('x', f); break;
267 case MEM_WRITEABLE: fputc('w', f); break;
268 case MEM_READABLE: fputc('r', f); break;
269 case MEM_ALLOCATABLE: fputc('a', f); break;
270 case MEM_INITIALIZED: fputc('i', f); break;
271 default:
272 gold_unreachable();
273 }
274 attrs &= ~ (attrs & - attrs);
275 }
276 while (attrs != 0);
277 fputc(')', f);
278 }
279
280 fprintf(f, " : origin = ");
281 this->start_->print(f);
282 fprintf(f, ", length = ");
283 this->length_->print(f);
284 fprintf(f, "\n");
285 }
286
287 // Manage orphan sections. This is intended to be largely compatible
288 // with the GNU linker. The Linux kernel implicitly relies on
289 // something similar to the GNU linker's orphan placement. We
290 // originally used a simpler scheme here, but it caused the kernel
291 // build to fail, and was also rather inefficient.
292
293 class Orphan_section_placement
294 {
295 private:
296 typedef Script_sections::Elements_iterator Elements_iterator;
297
298 public:
299 Orphan_section_placement();
300
301 // Handle an output section during initialization of this mapping.
302 void
303 output_section_init(const std::string& name, Output_section*,
304 Elements_iterator location);
305
306 // Initialize the last location.
307 void
308 last_init(Elements_iterator location);
309
310 // Set *PWHERE to the address of an iterator pointing to the
311 // location to use for an orphan section. Return true if the
312 // iterator has a value, false otherwise.
313 bool
314 find_place(Output_section*, Elements_iterator** pwhere);
315
316 // Update PLACE_LAST_ALLOC.
317 void
318 update_last_alloc(Elements_iterator where);
319
320 // Return the iterator being used for sections at the very end of
321 // the linker script.
322 Elements_iterator
323 last_place() const;
324
325 private:
326 // The places that we specifically recognize. This list is copied
327 // from the GNU linker.
328 enum Place_index
329 {
330 PLACE_TEXT,
331 PLACE_RODATA,
332 PLACE_DATA,
333 PLACE_TLS,
334 PLACE_TLS_BSS,
335 PLACE_BSS,
336 PLACE_LAST_ALLOC,
337 PLACE_REL,
338 PLACE_INTERP,
339 PLACE_NONALLOC,
340 PLACE_LAST,
341 PLACE_MAX
342 };
343
344 // The information we keep for a specific place.
345 struct Place
346 {
347 // The name of sections for this place.
348 const char* name;
349 // Whether we have a location for this place.
350 bool have_location;
351 // The iterator for this place.
352 Elements_iterator location;
353 };
354
355 // Initialize one place element.
356 void
357 initialize_place(Place_index, const char*);
358
359 // The places.
360 Place places_[PLACE_MAX];
361 // True if this is the first call to output_section_init.
362 bool first_init_;
363 };
364
365 // Initialize Orphan_section_placement.
366
367 Orphan_section_placement::Orphan_section_placement()
368 : first_init_(true)
369 {
370 this->initialize_place(PLACE_TEXT, ".text");
371 this->initialize_place(PLACE_RODATA, ".rodata");
372 this->initialize_place(PLACE_DATA, ".data");
373 this->initialize_place(PLACE_TLS, NULL);
374 this->initialize_place(PLACE_TLS_BSS, NULL);
375 this->initialize_place(PLACE_BSS, ".bss");
376 this->initialize_place(PLACE_LAST_ALLOC, NULL);
377 this->initialize_place(PLACE_REL, NULL);
378 this->initialize_place(PLACE_INTERP, ".interp");
379 this->initialize_place(PLACE_NONALLOC, NULL);
380 this->initialize_place(PLACE_LAST, NULL);
381 }
382
383 // Initialize one place element.
384
385 void
386 Orphan_section_placement::initialize_place(Place_index index, const char* name)
387 {
388 this->places_[index].name = name;
389 this->places_[index].have_location = false;
390 }
391
392 // While initializing the Orphan_section_placement information, this
393 // is called once for each output section named in the linker script.
394 // If we found an output section during the link, it will be passed in
395 // OS.
396
397 void
398 Orphan_section_placement::output_section_init(const std::string& name,
399 Output_section* os,
400 Elements_iterator location)
401 {
402 bool first_init = this->first_init_;
403 this->first_init_ = false;
404
405 // Remember the last allocated section. Any orphan bss sections
406 // will be placed after it.
407 if (os != NULL
408 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
409 {
410 this->places_[PLACE_LAST_ALLOC].location = location;
411 this->places_[PLACE_LAST_ALLOC].have_location = true;
412 }
413
414 for (int i = 0; i < PLACE_MAX; ++i)
415 {
416 if (this->places_[i].name != NULL && this->places_[i].name == name)
417 {
418 if (this->places_[i].have_location)
419 {
420 // We have already seen a section with this name.
421 return;
422 }
423
424 this->places_[i].location = location;
425 this->places_[i].have_location = true;
426
427 // If we just found the .bss section, restart the search for
428 // an unallocated section. This follows the GNU linker's
429 // behaviour.
430 if (i == PLACE_BSS)
431 this->places_[PLACE_NONALLOC].have_location = false;
432
433 return;
434 }
435 }
436
437 // Relocation sections.
438 if (!this->places_[PLACE_REL].have_location
439 && os != NULL
440 && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
441 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
442 {
443 this->places_[PLACE_REL].location = location;
444 this->places_[PLACE_REL].have_location = true;
445 }
446
447 // We find the location for unallocated sections by finding the
448 // first debugging or comment section after the BSS section (if
449 // there is one).
450 if (!this->places_[PLACE_NONALLOC].have_location
451 && (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
452 {
453 // We add orphan sections after the location in PLACES_. We
454 // want to store unallocated sections before LOCATION. If this
455 // is the very first section, we can't use it.
456 if (!first_init)
457 {
458 --location;
459 this->places_[PLACE_NONALLOC].location = location;
460 this->places_[PLACE_NONALLOC].have_location = true;
461 }
462 }
463 }
464
465 // Initialize the last location.
466
467 void
468 Orphan_section_placement::last_init(Elements_iterator location)
469 {
470 this->places_[PLACE_LAST].location = location;
471 this->places_[PLACE_LAST].have_location = true;
472 }
473
474 // Set *PWHERE to the address of an iterator pointing to the location
475 // to use for an orphan section. Return true if the iterator has a
476 // value, false otherwise.
477
478 bool
479 Orphan_section_placement::find_place(Output_section* os,
480 Elements_iterator** pwhere)
481 {
482 // Figure out where OS should go. This is based on the GNU linker
483 // code. FIXME: The GNU linker handles small data sections
484 // specially, but we don't.
485 elfcpp::Elf_Word type = os->type();
486 elfcpp::Elf_Xword flags = os->flags();
487 Place_index index;
488 if ((flags & elfcpp::SHF_ALLOC) == 0
489 && !Layout::is_debug_info_section(os->name()))
490 index = PLACE_NONALLOC;
491 else if ((flags & elfcpp::SHF_ALLOC) == 0)
492 index = PLACE_LAST;
493 else if (type == elfcpp::SHT_NOTE)
494 index = PLACE_INTERP;
495 else if ((flags & elfcpp::SHF_TLS) != 0)
496 {
497 if (type == elfcpp::SHT_NOBITS)
498 index = PLACE_TLS_BSS;
499 else
500 index = PLACE_TLS;
501 }
502 else if (type == elfcpp::SHT_NOBITS)
503 index = PLACE_BSS;
504 else if ((flags & elfcpp::SHF_WRITE) != 0)
505 index = PLACE_DATA;
506 else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
507 index = PLACE_REL;
508 else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
509 index = PLACE_RODATA;
510 else
511 index = PLACE_TEXT;
512
513 // If we don't have a location yet, try to find one based on a
514 // plausible ordering of sections.
515 if (!this->places_[index].have_location)
516 {
517 Place_index follow;
518 switch (index)
519 {
520 default:
521 follow = PLACE_MAX;
522 break;
523 case PLACE_RODATA:
524 follow = PLACE_TEXT;
525 break;
526 case PLACE_DATA:
527 follow = PLACE_RODATA;
528 if (!this->places_[PLACE_RODATA].have_location)
529 follow = PLACE_TEXT;
530 break;
531 case PLACE_BSS:
532 follow = PLACE_LAST_ALLOC;
533 break;
534 case PLACE_REL:
535 follow = PLACE_TEXT;
536 break;
537 case PLACE_INTERP:
538 follow = PLACE_TEXT;
539 break;
540 case PLACE_TLS:
541 follow = PLACE_DATA;
542 break;
543 case PLACE_TLS_BSS:
544 follow = PLACE_TLS;
545 if (!this->places_[PLACE_TLS].have_location)
546 follow = PLACE_DATA;
547 break;
548 }
549 if (follow != PLACE_MAX && this->places_[follow].have_location)
550 {
551 // Set the location of INDEX to the location of FOLLOW. The
552 // location of INDEX will then be incremented by the caller,
553 // so anything in INDEX will continue to be after anything
554 // in FOLLOW.
555 this->places_[index].location = this->places_[follow].location;
556 this->places_[index].have_location = true;
557 }
558 }
559
560 *pwhere = &this->places_[index].location;
561 bool ret = this->places_[index].have_location;
562
563 // The caller will set the location.
564 this->places_[index].have_location = true;
565
566 return ret;
567 }
568
569 // Update PLACE_LAST_ALLOC.
570 void
571 Orphan_section_placement::update_last_alloc(Elements_iterator elem)
572 {
573 Elements_iterator prev = elem;
574 --prev;
575 if (this->places_[PLACE_LAST_ALLOC].have_location
576 && this->places_[PLACE_LAST_ALLOC].location == prev)
577 {
578 this->places_[PLACE_LAST_ALLOC].have_location = true;
579 this->places_[PLACE_LAST_ALLOC].location = elem;
580 }
581 }
582
583 // Return the iterator being used for sections at the very end of the
584 // linker script.
585
586 Orphan_section_placement::Elements_iterator
587 Orphan_section_placement::last_place() const
588 {
589 gold_assert(this->places_[PLACE_LAST].have_location);
590 return this->places_[PLACE_LAST].location;
591 }
592
593 // An element in a SECTIONS clause.
594
595 class Sections_element
596 {
597 public:
598 Sections_element()
599 { }
600
601 virtual ~Sections_element()
602 { }
603
604 // Return whether an output section is relro.
605 virtual bool
606 is_relro() const
607 { return false; }
608
609 // Record that an output section is relro.
610 virtual void
611 set_is_relro()
612 { }
613
614 // Create any required output sections. The only real
615 // implementation is in Output_section_definition.
616 virtual void
617 create_sections(Layout*)
618 { }
619
620 // Add any symbol being defined to the symbol table.
621 virtual void
622 add_symbols_to_table(Symbol_table*)
623 { }
624
625 // Finalize symbols and check assertions.
626 virtual void
627 finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
628 { }
629
630 // Return the output section name to use for an input file name and
631 // section name. This only real implementation is in
632 // Output_section_definition.
633 virtual const char*
634 output_section_name(const char*, const char*, Output_section***,
635 Script_sections::Section_type*, bool*)
636 { return NULL; }
637
638 // Initialize OSP with an output section.
639 virtual void
640 orphan_section_init(Orphan_section_placement*,
641 Script_sections::Elements_iterator)
642 { }
643
644 // Set section addresses. This includes applying assignments if the
645 // expression is an absolute value.
646 virtual void
647 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
648 uint64_t*)
649 { }
650
651 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
652 // this section is constrained, and the input sections do not match,
653 // return the constraint, and set *POSD.
654 virtual Section_constraint
655 check_constraint(Output_section_definition**)
656 { return CONSTRAINT_NONE; }
657
658 // See if this is the alternate output section for a constrained
659 // output section. If it is, transfer the Output_section and return
660 // true. Otherwise return false.
661 virtual bool
662 alternate_constraint(Output_section_definition*, Section_constraint)
663 { return false; }
664
665 // Get the list of segments to use for an allocated section when
666 // using a PHDRS clause. If this is an allocated section, return
667 // the Output_section, and set *PHDRS_LIST (the first parameter) to
668 // the list of PHDRS to which it should be attached. If the PHDRS
669 // were not specified, don't change *PHDRS_LIST. When not returning
670 // NULL, set *ORPHAN (the second parameter) according to whether
671 // this is an orphan section--one that is not mentioned in the
672 // linker script.
673 virtual Output_section*
674 allocate_to_segment(String_list**, bool*)
675 { return NULL; }
676
677 // Look for an output section by name and return the address, the
678 // load address, the alignment, and the size. This is used when an
679 // expression refers to an output section which was not actually
680 // created. This returns true if the section was found, false
681 // otherwise. The only real definition is for
682 // Output_section_definition.
683 virtual bool
684 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
685 uint64_t*) const
686 { return false; }
687
688 // Return the associated Output_section if there is one.
689 virtual Output_section*
690 get_output_section() const
691 { return NULL; }
692
693 // Set the section's memory regions.
694 virtual void
695 set_memory_region(Memory_region*, bool)
696 { gold_error(_("Attempt to set a memory region for a non-output section")); }
697
698 // Print the element for debugging purposes.
699 virtual void
700 print(FILE* f) const = 0;
701 };
702
703 // An assignment in a SECTIONS clause outside of an output section.
704
705 class Sections_element_assignment : public Sections_element
706 {
707 public:
708 Sections_element_assignment(const char* name, size_t namelen,
709 Expression* val, bool provide, bool hidden)
710 : assignment_(name, namelen, false, val, provide, hidden)
711 { }
712
713 // Add the symbol to the symbol table.
714 void
715 add_symbols_to_table(Symbol_table* symtab)
716 { this->assignment_.add_to_table(symtab); }
717
718 // Finalize the symbol.
719 void
720 finalize_symbols(Symbol_table* symtab, const Layout* layout,
721 uint64_t* dot_value)
722 {
723 this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
724 }
725
726 // Set the section address. There is no section here, but if the
727 // value is absolute, we set the symbol. This permits us to use
728 // absolute symbols when setting dot.
729 void
730 set_section_addresses(Symbol_table* symtab, Layout* layout,
731 uint64_t* dot_value, uint64_t*, uint64_t*)
732 {
733 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value, NULL);
734 }
735
736 // Print for debugging.
737 void
738 print(FILE* f) const
739 {
740 fprintf(f, " ");
741 this->assignment_.print(f);
742 }
743
744 private:
745 Symbol_assignment assignment_;
746 };
747
748 // An assignment to the dot symbol in a SECTIONS clause outside of an
749 // output section.
750
751 class Sections_element_dot_assignment : public Sections_element
752 {
753 public:
754 Sections_element_dot_assignment(Expression* val)
755 : val_(val)
756 { }
757
758 // Finalize the symbol.
759 void
760 finalize_symbols(Symbol_table* symtab, const Layout* layout,
761 uint64_t* dot_value)
762 {
763 // We ignore the section of the result because outside of an
764 // output section definition the dot symbol is always considered
765 // to be absolute.
766 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
767 NULL, NULL, NULL, false);
768 }
769
770 // Update the dot symbol while setting section addresses.
771 void
772 set_section_addresses(Symbol_table* symtab, Layout* layout,
773 uint64_t* dot_value, uint64_t* dot_alignment,
774 uint64_t* load_address)
775 {
776 *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
777 NULL, NULL, dot_alignment, false);
778 *load_address = *dot_value;
779 }
780
781 // Print for debugging.
782 void
783 print(FILE* f) const
784 {
785 fprintf(f, " . = ");
786 this->val_->print(f);
787 fprintf(f, "\n");
788 }
789
790 private:
791 Expression* val_;
792 };
793
794 // An assertion in a SECTIONS clause outside of an output section.
795
796 class Sections_element_assertion : public Sections_element
797 {
798 public:
799 Sections_element_assertion(Expression* check, const char* message,
800 size_t messagelen)
801 : assertion_(check, message, messagelen)
802 { }
803
804 // Check the assertion.
805 void
806 finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
807 { this->assertion_.check(symtab, layout); }
808
809 // Print for debugging.
810 void
811 print(FILE* f) const
812 {
813 fprintf(f, " ");
814 this->assertion_.print(f);
815 }
816
817 private:
818 Script_assertion assertion_;
819 };
820
821 // An element in an output section in a SECTIONS clause.
822
823 class Output_section_element
824 {
825 public:
826 // A list of input sections.
827 typedef std::list<Output_section::Input_section> Input_section_list;
828
829 Output_section_element()
830 { }
831
832 virtual ~Output_section_element()
833 { }
834
835 // Return whether this element requires an output section to exist.
836 virtual bool
837 needs_output_section() const
838 { return false; }
839
840 // Add any symbol being defined to the symbol table.
841 virtual void
842 add_symbols_to_table(Symbol_table*)
843 { }
844
845 // Finalize symbols and check assertions.
846 virtual void
847 finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
848 { }
849
850 // Return whether this element matches FILE_NAME and SECTION_NAME.
851 // The only real implementation is in Output_section_element_input.
852 virtual bool
853 match_name(const char*, const char*, bool *) const
854 { return false; }
855
856 // Set section addresses. This includes applying assignments if the
857 // expression is an absolute value.
858 virtual void
859 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
860 uint64_t*, uint64_t*, Output_section**, std::string*,
861 Input_section_list*)
862 { }
863
864 // Print the element for debugging purposes.
865 virtual void
866 print(FILE* f) const = 0;
867
868 protected:
869 // Return a fill string that is LENGTH bytes long, filling it with
870 // FILL.
871 std::string
872 get_fill_string(const std::string* fill, section_size_type length) const;
873 };
874
875 std::string
876 Output_section_element::get_fill_string(const std::string* fill,
877 section_size_type length) const
878 {
879 std::string this_fill;
880 this_fill.reserve(length);
881 while (this_fill.length() + fill->length() <= length)
882 this_fill += *fill;
883 if (this_fill.length() < length)
884 this_fill.append(*fill, 0, length - this_fill.length());
885 return this_fill;
886 }
887
888 // A symbol assignment in an output section.
889
890 class Output_section_element_assignment : public Output_section_element
891 {
892 public:
893 Output_section_element_assignment(const char* name, size_t namelen,
894 Expression* val, bool provide,
895 bool hidden)
896 : assignment_(name, namelen, false, val, provide, hidden)
897 { }
898
899 // Add the symbol to the symbol table.
900 void
901 add_symbols_to_table(Symbol_table* symtab)
902 { this->assignment_.add_to_table(symtab); }
903
904 // Finalize the symbol.
905 void
906 finalize_symbols(Symbol_table* symtab, const Layout* layout,
907 uint64_t* dot_value, Output_section** dot_section)
908 {
909 this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
910 *dot_section);
911 }
912
913 // Set the section address. There is no section here, but if the
914 // value is absolute, we set the symbol. This permits us to use
915 // absolute symbols when setting dot.
916 void
917 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
918 uint64_t, uint64_t* dot_value, uint64_t*,
919 Output_section** dot_section, std::string*,
920 Input_section_list*)
921 {
922 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value,
923 *dot_section);
924 }
925
926 // Print for debugging.
927 void
928 print(FILE* f) const
929 {
930 fprintf(f, " ");
931 this->assignment_.print(f);
932 }
933
934 private:
935 Symbol_assignment assignment_;
936 };
937
938 // An assignment to the dot symbol in an output section.
939
940 class Output_section_element_dot_assignment : public Output_section_element
941 {
942 public:
943 Output_section_element_dot_assignment(Expression* val)
944 : val_(val)
945 { }
946
947 // An assignment to dot within an output section is enough to force
948 // the output section to exist.
949 bool
950 needs_output_section() const
951 { return true; }
952
953 // Finalize the symbol.
954 void
955 finalize_symbols(Symbol_table* symtab, const Layout* layout,
956 uint64_t* dot_value, Output_section** dot_section)
957 {
958 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
959 *dot_section, dot_section, NULL,
960 true);
961 }
962
963 // Update the dot symbol while setting section addresses.
964 void
965 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
966 uint64_t, uint64_t* dot_value, uint64_t*,
967 Output_section** dot_section, std::string*,
968 Input_section_list*);
969
970 // Print for debugging.
971 void
972 print(FILE* f) const
973 {
974 fprintf(f, " . = ");
975 this->val_->print(f);
976 fprintf(f, "\n");
977 }
978
979 private:
980 Expression* val_;
981 };
982
983 // Update the dot symbol while setting section addresses.
984
985 void
986 Output_section_element_dot_assignment::set_section_addresses(
987 Symbol_table* symtab,
988 Layout* layout,
989 Output_section* output_section,
990 uint64_t,
991 uint64_t* dot_value,
992 uint64_t* dot_alignment,
993 Output_section** dot_section,
994 std::string* fill,
995 Input_section_list*)
996 {
997 uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
998 *dot_value, *dot_section,
999 dot_section, dot_alignment,
1000 true);
1001 if (next_dot < *dot_value)
1002 gold_error(_("dot may not move backward"));
1003 if (next_dot > *dot_value && output_section != NULL)
1004 {
1005 section_size_type length = convert_to_section_size_type(next_dot
1006 - *dot_value);
1007 Output_section_data* posd;
1008 if (fill->empty())
1009 posd = new Output_data_zero_fill(length, 0);
1010 else
1011 {
1012 std::string this_fill = this->get_fill_string(fill, length);
1013 posd = new Output_data_const(this_fill, 0);
1014 }
1015 output_section->add_output_section_data(posd);
1016 layout->new_output_section_data_from_script(posd);
1017 }
1018 *dot_value = next_dot;
1019 }
1020
1021 // An assertion in an output section.
1022
1023 class Output_section_element_assertion : public Output_section_element
1024 {
1025 public:
1026 Output_section_element_assertion(Expression* check, const char* message,
1027 size_t messagelen)
1028 : assertion_(check, message, messagelen)
1029 { }
1030
1031 void
1032 print(FILE* f) const
1033 {
1034 fprintf(f, " ");
1035 this->assertion_.print(f);
1036 }
1037
1038 private:
1039 Script_assertion assertion_;
1040 };
1041
1042 // We use a special instance of Output_section_data to handle BYTE,
1043 // SHORT, etc. This permits forward references to symbols in the
1044 // expressions.
1045
1046 class Output_data_expression : public Output_section_data
1047 {
1048 public:
1049 Output_data_expression(int size, bool is_signed, Expression* val,
1050 const Symbol_table* symtab, const Layout* layout,
1051 uint64_t dot_value, Output_section* dot_section)
1052 : Output_section_data(size, 0, true),
1053 is_signed_(is_signed), val_(val), symtab_(symtab),
1054 layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
1055 { }
1056
1057 protected:
1058 // Write the data to the output file.
1059 void
1060 do_write(Output_file*);
1061
1062 // Write the data to a buffer.
1063 void
1064 do_write_to_buffer(unsigned char*);
1065
1066 // Write to a map file.
1067 void
1068 do_print_to_mapfile(Mapfile* mapfile) const
1069 { mapfile->print_output_data(this, _("** expression")); }
1070
1071 private:
1072 template<bool big_endian>
1073 void
1074 endian_write_to_buffer(uint64_t, unsigned char*);
1075
1076 bool is_signed_;
1077 Expression* val_;
1078 const Symbol_table* symtab_;
1079 const Layout* layout_;
1080 uint64_t dot_value_;
1081 Output_section* dot_section_;
1082 };
1083
1084 // Write the data element to the output file.
1085
1086 void
1087 Output_data_expression::do_write(Output_file* of)
1088 {
1089 unsigned char* view = of->get_output_view(this->offset(), this->data_size());
1090 this->write_to_buffer(view);
1091 of->write_output_view(this->offset(), this->data_size(), view);
1092 }
1093
1094 // Write the data element to a buffer.
1095
1096 void
1097 Output_data_expression::do_write_to_buffer(unsigned char* buf)
1098 {
1099 uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
1100 true, this->dot_value_,
1101 this->dot_section_, NULL, NULL,
1102 false);
1103
1104 if (parameters->target().is_big_endian())
1105 this->endian_write_to_buffer<true>(val, buf);
1106 else
1107 this->endian_write_to_buffer<false>(val, buf);
1108 }
1109
1110 template<bool big_endian>
1111 void
1112 Output_data_expression::endian_write_to_buffer(uint64_t val,
1113 unsigned char* buf)
1114 {
1115 switch (this->data_size())
1116 {
1117 case 1:
1118 elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
1119 break;
1120 case 2:
1121 elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
1122 break;
1123 case 4:
1124 elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
1125 break;
1126 case 8:
1127 if (parameters->target().get_size() == 32)
1128 {
1129 val &= 0xffffffff;
1130 if (this->is_signed_ && (val & 0x80000000) != 0)
1131 val |= 0xffffffff00000000LL;
1132 }
1133 elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
1134 break;
1135 default:
1136 gold_unreachable();
1137 }
1138 }
1139
1140 // A data item in an output section.
1141
1142 class Output_section_element_data : public Output_section_element
1143 {
1144 public:
1145 Output_section_element_data(int size, bool is_signed, Expression* val)
1146 : size_(size), is_signed_(is_signed), val_(val)
1147 { }
1148
1149 // If there is a data item, then we must create an output section.
1150 bool
1151 needs_output_section() const
1152 { return true; }
1153
1154 // Finalize symbols--we just need to update dot.
1155 void
1156 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1157 Output_section**)
1158 { *dot_value += this->size_; }
1159
1160 // Store the value in the section.
1161 void
1162 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
1163 uint64_t* dot_value, uint64_t*, Output_section**,
1164 std::string*, Input_section_list*);
1165
1166 // Print for debugging.
1167 void
1168 print(FILE*) const;
1169
1170 private:
1171 // The size in bytes.
1172 int size_;
1173 // Whether the value is signed.
1174 bool is_signed_;
1175 // The value.
1176 Expression* val_;
1177 };
1178
1179 // Store the value in the section.
1180
1181 void
1182 Output_section_element_data::set_section_addresses(
1183 Symbol_table* symtab,
1184 Layout* layout,
1185 Output_section* os,
1186 uint64_t,
1187 uint64_t* dot_value,
1188 uint64_t*,
1189 Output_section** dot_section,
1190 std::string*,
1191 Input_section_list*)
1192 {
1193 gold_assert(os != NULL);
1194 Output_data_expression* expression =
1195 new Output_data_expression(this->size_, this->is_signed_, this->val_,
1196 symtab, layout, *dot_value, *dot_section);
1197 os->add_output_section_data(expression);
1198 layout->new_output_section_data_from_script(expression);
1199 *dot_value += this->size_;
1200 }
1201
1202 // Print for debugging.
1203
1204 void
1205 Output_section_element_data::print(FILE* f) const
1206 {
1207 const char* s;
1208 switch (this->size_)
1209 {
1210 case 1:
1211 s = "BYTE";
1212 break;
1213 case 2:
1214 s = "SHORT";
1215 break;
1216 case 4:
1217 s = "LONG";
1218 break;
1219 case 8:
1220 if (this->is_signed_)
1221 s = "SQUAD";
1222 else
1223 s = "QUAD";
1224 break;
1225 default:
1226 gold_unreachable();
1227 }
1228 fprintf(f, " %s(", s);
1229 this->val_->print(f);
1230 fprintf(f, ")\n");
1231 }
1232
1233 // A fill value setting in an output section.
1234
1235 class Output_section_element_fill : public Output_section_element
1236 {
1237 public:
1238 Output_section_element_fill(Expression* val)
1239 : val_(val)
1240 { }
1241
1242 // Update the fill value while setting section addresses.
1243 void
1244 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1245 uint64_t, uint64_t* dot_value, uint64_t*,
1246 Output_section** dot_section,
1247 std::string* fill, Input_section_list*)
1248 {
1249 Output_section* fill_section;
1250 uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
1251 *dot_value, *dot_section,
1252 &fill_section, NULL, false);
1253 if (fill_section != NULL)
1254 gold_warning(_("fill value is not absolute"));
1255 // FIXME: The GNU linker supports fill values of arbitrary length.
1256 unsigned char fill_buff[4];
1257 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1258 fill->assign(reinterpret_cast<char*>(fill_buff), 4);
1259 }
1260
1261 // Print for debugging.
1262 void
1263 print(FILE* f) const
1264 {
1265 fprintf(f, " FILL(");
1266 this->val_->print(f);
1267 fprintf(f, ")\n");
1268 }
1269
1270 private:
1271 // The new fill value.
1272 Expression* val_;
1273 };
1274
1275 // An input section specification in an output section
1276
1277 class Output_section_element_input : public Output_section_element
1278 {
1279 public:
1280 Output_section_element_input(const Input_section_spec* spec, bool keep);
1281
1282 // Finalize symbols--just update the value of the dot symbol.
1283 void
1284 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1285 Output_section** dot_section)
1286 {
1287 *dot_value = this->final_dot_value_;
1288 *dot_section = this->final_dot_section_;
1289 }
1290
1291 // See whether we match FILE_NAME and SECTION_NAME as an input section.
1292 // If we do then also indicate whether the section should be KEPT.
1293 bool
1294 match_name(const char* file_name, const char* section_name, bool* keep) const;
1295
1296 // Set the section address.
1297 void
1298 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1299 uint64_t subalign, uint64_t* dot_value, uint64_t*,
1300 Output_section**, std::string* fill,
1301 Input_section_list*);
1302
1303 // Print for debugging.
1304 void
1305 print(FILE* f) const;
1306
1307 private:
1308 // An input section pattern.
1309 struct Input_section_pattern
1310 {
1311 std::string pattern;
1312 bool pattern_is_wildcard;
1313 Sort_wildcard sort;
1314
1315 Input_section_pattern(const char* patterna, size_t patternlena,
1316 Sort_wildcard sorta)
1317 : pattern(patterna, patternlena),
1318 pattern_is_wildcard(is_wildcard_string(this->pattern.c_str())),
1319 sort(sorta)
1320 { }
1321 };
1322
1323 typedef std::vector<Input_section_pattern> Input_section_patterns;
1324
1325 // Filename_exclusions is a pair of filename pattern and a bool
1326 // indicating whether the filename is a wildcard.
1327 typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
1328
1329 // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1330 // indicates whether this is a wildcard pattern.
1331 static inline bool
1332 match(const char* string, const char* pattern, bool is_wildcard_pattern)
1333 {
1334 return (is_wildcard_pattern
1335 ? fnmatch(pattern, string, 0) == 0
1336 : strcmp(string, pattern) == 0);
1337 }
1338
1339 // See if we match a file name.
1340 bool
1341 match_file_name(const char* file_name) const;
1342
1343 // The file name pattern. If this is the empty string, we match all
1344 // files.
1345 std::string filename_pattern_;
1346 // Whether the file name pattern is a wildcard.
1347 bool filename_is_wildcard_;
1348 // How the file names should be sorted. This may only be
1349 // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1350 Sort_wildcard filename_sort_;
1351 // The list of file names to exclude.
1352 Filename_exclusions filename_exclusions_;
1353 // The list of input section patterns.
1354 Input_section_patterns input_section_patterns_;
1355 // Whether to keep this section when garbage collecting.
1356 bool keep_;
1357 // The value of dot after including all matching sections.
1358 uint64_t final_dot_value_;
1359 // The section where dot is defined after including all matching
1360 // sections.
1361 Output_section* final_dot_section_;
1362 };
1363
1364 // Construct Output_section_element_input. The parser records strings
1365 // as pointers into a copy of the script file, which will go away when
1366 // parsing is complete. We make sure they are in std::string objects.
1367
1368 Output_section_element_input::Output_section_element_input(
1369 const Input_section_spec* spec,
1370 bool keep)
1371 : filename_pattern_(),
1372 filename_is_wildcard_(false),
1373 filename_sort_(spec->file.sort),
1374 filename_exclusions_(),
1375 input_section_patterns_(),
1376 keep_(keep),
1377 final_dot_value_(0),
1378 final_dot_section_(NULL)
1379 {
1380 // The filename pattern "*" is common, and matches all files. Turn
1381 // it into the empty string.
1382 if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
1383 this->filename_pattern_.assign(spec->file.name.value,
1384 spec->file.name.length);
1385 this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_.c_str());
1386
1387 if (spec->input_sections.exclude != NULL)
1388 {
1389 for (String_list::const_iterator p =
1390 spec->input_sections.exclude->begin();
1391 p != spec->input_sections.exclude->end();
1392 ++p)
1393 {
1394 bool is_wildcard = is_wildcard_string((*p).c_str());
1395 this->filename_exclusions_.push_back(std::make_pair(*p,
1396 is_wildcard));
1397 }
1398 }
1399
1400 if (spec->input_sections.sections != NULL)
1401 {
1402 Input_section_patterns& isp(this->input_section_patterns_);
1403 for (String_sort_list::const_iterator p =
1404 spec->input_sections.sections->begin();
1405 p != spec->input_sections.sections->end();
1406 ++p)
1407 isp.push_back(Input_section_pattern(p->name.value, p->name.length,
1408 p->sort));
1409 }
1410 }
1411
1412 // See whether we match FILE_NAME.
1413
1414 bool
1415 Output_section_element_input::match_file_name(const char* file_name) const
1416 {
1417 if (!this->filename_pattern_.empty())
1418 {
1419 // If we were called with no filename, we refuse to match a
1420 // pattern which requires a file name.
1421 if (file_name == NULL)
1422 return false;
1423
1424 if (!match(file_name, this->filename_pattern_.c_str(),
1425 this->filename_is_wildcard_))
1426 return false;
1427 }
1428
1429 if (file_name != NULL)
1430 {
1431 // Now we have to see whether FILE_NAME matches one of the
1432 // exclusion patterns, if any.
1433 for (Filename_exclusions::const_iterator p =
1434 this->filename_exclusions_.begin();
1435 p != this->filename_exclusions_.end();
1436 ++p)
1437 {
1438 if (match(file_name, p->first.c_str(), p->second))
1439 return false;
1440 }
1441 }
1442
1443 return true;
1444 }
1445
1446 // See whether we match FILE_NAME and SECTION_NAME. If we do then
1447 // KEEP indicates whether the section should survive garbage collection.
1448
1449 bool
1450 Output_section_element_input::match_name(const char* file_name,
1451 const char* section_name,
1452 bool *keep) const
1453 {
1454 if (!this->match_file_name(file_name))
1455 return false;
1456
1457 *keep = this->keep_;
1458
1459 // If there are no section name patterns, then we match.
1460 if (this->input_section_patterns_.empty())
1461 return true;
1462
1463 // See whether we match the section name patterns.
1464 for (Input_section_patterns::const_iterator p =
1465 this->input_section_patterns_.begin();
1466 p != this->input_section_patterns_.end();
1467 ++p)
1468 {
1469 if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
1470 return true;
1471 }
1472
1473 // We didn't match any section names, so we didn't match.
1474 return false;
1475 }
1476
1477 // Information we use to sort the input sections.
1478
1479 class Input_section_info
1480 {
1481 public:
1482 Input_section_info(const Output_section::Input_section& input_section)
1483 : input_section_(input_section), section_name_(),
1484 size_(0), addralign_(1)
1485 { }
1486
1487 // Return the simple input section.
1488 const Output_section::Input_section&
1489 input_section() const
1490 { return this->input_section_; }
1491
1492 // Return the object.
1493 Relobj*
1494 relobj() const
1495 { return this->input_section_.relobj(); }
1496
1497 // Return the section index.
1498 unsigned int
1499 shndx()
1500 { return this->input_section_.shndx(); }
1501
1502 // Return the section name.
1503 const std::string&
1504 section_name() const
1505 { return this->section_name_; }
1506
1507 // Set the section name.
1508 void
1509 set_section_name(const std::string name)
1510 {
1511 if (is_compressed_debug_section(name.c_str()))
1512 this->section_name_ = corresponding_uncompressed_section_name(name);
1513 else
1514 this->section_name_ = name;
1515 }
1516
1517 // Return the section size.
1518 uint64_t
1519 size() const
1520 { return this->size_; }
1521
1522 // Set the section size.
1523 void
1524 set_size(uint64_t size)
1525 { this->size_ = size; }
1526
1527 // Return the address alignment.
1528 uint64_t
1529 addralign() const
1530 { return this->addralign_; }
1531
1532 // Set the address alignment.
1533 void
1534 set_addralign(uint64_t addralign)
1535 { this->addralign_ = addralign; }
1536
1537 private:
1538 // Input section, can be a relaxed section.
1539 Output_section::Input_section input_section_;
1540 // Name of the section.
1541 std::string section_name_;
1542 // Section size.
1543 uint64_t size_;
1544 // Address alignment.
1545 uint64_t addralign_;
1546 };
1547
1548 // A class to sort the input sections.
1549
1550 class Input_section_sorter
1551 {
1552 public:
1553 Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
1554 : filename_sort_(filename_sort), section_sort_(section_sort)
1555 { }
1556
1557 bool
1558 operator()(const Input_section_info&, const Input_section_info&) const;
1559
1560 private:
1561 static unsigned long
1562 get_init_priority(const char*);
1563
1564 Sort_wildcard filename_sort_;
1565 Sort_wildcard section_sort_;
1566 };
1567
1568 // Return a relative priority of the section with the specified NAME
1569 // (a lower value meand a higher priority), or 0 if it should be compared
1570 // with others as strings.
1571 // The implementation of this function is copied from ld/ldlang.c.
1572
1573 unsigned long
1574 Input_section_sorter::get_init_priority(const char* name)
1575 {
1576 char* end;
1577 unsigned long init_priority;
1578
1579 // GCC uses the following section names for the init_priority
1580 // attribute with numerical values 101 and 65535 inclusive. A
1581 // lower value means a higher priority.
1582 //
1583 // 1: .init_array.NNNN/.fini_array.NNNN: Where NNNN is the
1584 // decimal numerical value of the init_priority attribute.
1585 // The order of execution in .init_array is forward and
1586 // .fini_array is backward.
1587 // 2: .ctors.NNNN/.dtors.NNNN: Where NNNN is 65535 minus the
1588 // decimal numerical value of the init_priority attribute.
1589 // The order of execution in .ctors is backward and .dtors
1590 // is forward.
1591
1592 if (strncmp(name, ".init_array.", 12) == 0
1593 || strncmp(name, ".fini_array.", 12) == 0)
1594 {
1595 init_priority = strtoul(name + 12, &end, 10);
1596 return *end ? 0 : init_priority;
1597 }
1598 else if (strncmp(name, ".ctors.", 7) == 0
1599 || strncmp(name, ".dtors.", 7) == 0)
1600 {
1601 init_priority = strtoul(name + 7, &end, 10);
1602 return *end ? 0 : 65535 - init_priority;
1603 }
1604
1605 return 0;
1606 }
1607
1608 bool
1609 Input_section_sorter::operator()(const Input_section_info& isi1,
1610 const Input_section_info& isi2) const
1611 {
1612 if (this->section_sort_ == SORT_WILDCARD_BY_INIT_PRIORITY)
1613 {
1614 unsigned long ip1 = get_init_priority(isi1.section_name().c_str());
1615 unsigned long ip2 = get_init_priority(isi2.section_name().c_str());
1616 if (ip1 != 0 && ip2 != 0 && ip1 != ip2)
1617 return ip1 < ip2;
1618 }
1619 if (this->section_sort_ == SORT_WILDCARD_BY_NAME
1620 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1621 || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1622 && isi1.addralign() == isi2.addralign())
1623 || this->section_sort_ == SORT_WILDCARD_BY_INIT_PRIORITY)
1624 {
1625 if (isi1.section_name() != isi2.section_name())
1626 return isi1.section_name() < isi2.section_name();
1627 }
1628 if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
1629 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1630 || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
1631 {
1632 if (isi1.addralign() != isi2.addralign())
1633 return isi1.addralign() < isi2.addralign();
1634 }
1635 if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
1636 {
1637 if (isi1.relobj()->name() != isi2.relobj()->name())
1638 return (isi1.relobj()->name() < isi2.relobj()->name());
1639 }
1640
1641 // Otherwise we leave them in the same order.
1642 return false;
1643 }
1644
1645 // Set the section address. Look in INPUT_SECTIONS for sections which
1646 // match this spec, sort them as specified, and add them to the output
1647 // section.
1648
1649 void
1650 Output_section_element_input::set_section_addresses(
1651 Symbol_table*,
1652 Layout* layout,
1653 Output_section* output_section,
1654 uint64_t subalign,
1655 uint64_t* dot_value,
1656 uint64_t*,
1657 Output_section** dot_section,
1658 std::string* fill,
1659 Input_section_list* input_sections)
1660 {
1661 // We build a list of sections which match each
1662 // Input_section_pattern.
1663
1664 // If none of the patterns specify a sort option, we throw all
1665 // matching input sections into a single bin, in the order we
1666 // find them. Otherwise, we put matching input sections into
1667 // a separate bin for each pattern, and sort each one as
1668 // specified. Thus, an input section spec like this:
1669 // *(.foo .bar)
1670 // will group all .foo and .bar sections in the order seen,
1671 // whereas this:
1672 // *(.foo) *(.bar)
1673 // will group all .foo sections followed by all .bar sections.
1674 // This matches Gnu ld behavior.
1675
1676 // Things get really weird, though, when you add a sort spec
1677 // on some, but not all, of the patterns, like this:
1678 // *(SORT_BY_NAME(.foo) .bar)
1679 // We do not attempt to match Gnu ld behavior in this case.
1680
1681 typedef std::vector<std::vector<Input_section_info> > Matching_sections;
1682 size_t input_pattern_count = this->input_section_patterns_.size();
1683 size_t bin_count = 1;
1684 bool any_patterns_with_sort = false;
1685 for (size_t i = 0; i < input_pattern_count; ++i)
1686 {
1687 const Input_section_pattern& isp(this->input_section_patterns_[i]);
1688 if (isp.sort != SORT_WILDCARD_NONE)
1689 any_patterns_with_sort = true;
1690 }
1691 if (any_patterns_with_sort)
1692 bin_count = input_pattern_count;
1693 Matching_sections matching_sections(bin_count);
1694
1695 // Look through the list of sections for this output section. Add
1696 // each one which matches to one of the elements of
1697 // MATCHING_SECTIONS.
1698
1699 Input_section_list::iterator p = input_sections->begin();
1700 while (p != input_sections->end())
1701 {
1702 Relobj* relobj = p->relobj();
1703 unsigned int shndx = p->shndx();
1704 Input_section_info isi(*p);
1705
1706 // Calling section_name and section_addralign is not very
1707 // efficient.
1708
1709 // Lock the object so that we can get information about the
1710 // section. This is OK since we know we are single-threaded
1711 // here.
1712 {
1713 const Task* task = reinterpret_cast<const Task*>(-1);
1714 Task_lock_obj<Object> tl(task, relobj);
1715
1716 isi.set_section_name(relobj->section_name(shndx));
1717 if (p->is_relaxed_input_section())
1718 {
1719 // We use current data size because relaxed section sizes may not
1720 // have finalized yet.
1721 isi.set_size(p->relaxed_input_section()->current_data_size());
1722 isi.set_addralign(p->relaxed_input_section()->addralign());
1723 }
1724 else
1725 {
1726 isi.set_size(relobj->section_size(shndx));
1727 isi.set_addralign(relobj->section_addralign(shndx));
1728 }
1729 }
1730
1731 if (!this->match_file_name(relobj->name().c_str()))
1732 ++p;
1733 else if (this->input_section_patterns_.empty())
1734 {
1735 matching_sections[0].push_back(isi);
1736 p = input_sections->erase(p);
1737 }
1738 else
1739 {
1740 size_t i;
1741 for (i = 0; i < input_pattern_count; ++i)
1742 {
1743 const Input_section_pattern&
1744 isp(this->input_section_patterns_[i]);
1745 if (match(isi.section_name().c_str(), isp.pattern.c_str(),
1746 isp.pattern_is_wildcard))
1747 break;
1748 }
1749
1750 if (i >= input_pattern_count)
1751 ++p;
1752 else
1753 {
1754 if (i >= bin_count)
1755 i = 0;
1756 matching_sections[i].push_back(isi);
1757 p = input_sections->erase(p);
1758 }
1759 }
1760 }
1761
1762 // Look through MATCHING_SECTIONS. Sort each one as specified,
1763 // using a stable sort so that we get the default order when
1764 // sections are otherwise equal. Add each input section to the
1765 // output section.
1766
1767 uint64_t dot = *dot_value;
1768 for (size_t i = 0; i < bin_count; ++i)
1769 {
1770 if (matching_sections[i].empty())
1771 continue;
1772
1773 gold_assert(output_section != NULL);
1774
1775 const Input_section_pattern& isp(this->input_section_patterns_[i]);
1776 if (isp.sort != SORT_WILDCARD_NONE
1777 || this->filename_sort_ != SORT_WILDCARD_NONE)
1778 std::stable_sort(matching_sections[i].begin(),
1779 matching_sections[i].end(),
1780 Input_section_sorter(this->filename_sort_,
1781 isp.sort));
1782
1783 for (std::vector<Input_section_info>::const_iterator p =
1784 matching_sections[i].begin();
1785 p != matching_sections[i].end();
1786 ++p)
1787 {
1788 // Override the original address alignment if SUBALIGN is specified.
1789 // We need to make a copy of the input section to modify the
1790 // alignment.
1791 Output_section::Input_section sis(p->input_section());
1792
1793 uint64_t this_subalign = sis.addralign();
1794 if (!sis.is_input_section())
1795 sis.output_section_data()->finalize_data_size();
1796 uint64_t data_size = sis.data_size();
1797 if (subalign > 0)
1798 {
1799 this_subalign = subalign;
1800 sis.set_addralign(subalign);
1801 }
1802
1803 uint64_t address = align_address(dot, this_subalign);
1804
1805 if (address > dot && !fill->empty())
1806 {
1807 section_size_type length =
1808 convert_to_section_size_type(address - dot);
1809 std::string this_fill = this->get_fill_string(fill, length);
1810 Output_section_data* posd = new Output_data_const(this_fill, 0);
1811 output_section->add_output_section_data(posd);
1812 layout->new_output_section_data_from_script(posd);
1813 }
1814
1815 output_section->add_script_input_section(sis);
1816 dot = address + data_size;
1817 }
1818 }
1819
1820 // An SHF_TLS/SHT_NOBITS section does not take up any
1821 // address space.
1822 if (output_section == NULL
1823 || (output_section->flags() & elfcpp::SHF_TLS) == 0
1824 || output_section->type() != elfcpp::SHT_NOBITS)
1825 *dot_value = dot;
1826
1827 this->final_dot_value_ = *dot_value;
1828 this->final_dot_section_ = *dot_section;
1829 }
1830
1831 // Print for debugging.
1832
1833 void
1834 Output_section_element_input::print(FILE* f) const
1835 {
1836 fprintf(f, " ");
1837
1838 if (this->keep_)
1839 fprintf(f, "KEEP(");
1840
1841 if (!this->filename_pattern_.empty())
1842 {
1843 bool need_close_paren = false;
1844 switch (this->filename_sort_)
1845 {
1846 case SORT_WILDCARD_NONE:
1847 break;
1848 case SORT_WILDCARD_BY_NAME:
1849 fprintf(f, "SORT_BY_NAME(");
1850 need_close_paren = true;
1851 break;
1852 default:
1853 gold_unreachable();
1854 }
1855
1856 fprintf(f, "%s", this->filename_pattern_.c_str());
1857
1858 if (need_close_paren)
1859 fprintf(f, ")");
1860 }
1861
1862 if (!this->input_section_patterns_.empty()
1863 || !this->filename_exclusions_.empty())
1864 {
1865 fprintf(f, "(");
1866
1867 bool need_space = false;
1868 if (!this->filename_exclusions_.empty())
1869 {
1870 fprintf(f, "EXCLUDE_FILE(");
1871 bool need_comma = false;
1872 for (Filename_exclusions::const_iterator p =
1873 this->filename_exclusions_.begin();
1874 p != this->filename_exclusions_.end();
1875 ++p)
1876 {
1877 if (need_comma)
1878 fprintf(f, ", ");
1879 fprintf(f, "%s", p->first.c_str());
1880 need_comma = true;
1881 }
1882 fprintf(f, ")");
1883 need_space = true;
1884 }
1885
1886 for (Input_section_patterns::const_iterator p =
1887 this->input_section_patterns_.begin();
1888 p != this->input_section_patterns_.end();
1889 ++p)
1890 {
1891 if (need_space)
1892 fprintf(f, " ");
1893
1894 int close_parens = 0;
1895 switch (p->sort)
1896 {
1897 case SORT_WILDCARD_NONE:
1898 break;
1899 case SORT_WILDCARD_BY_NAME:
1900 fprintf(f, "SORT_BY_NAME(");
1901 close_parens = 1;
1902 break;
1903 case SORT_WILDCARD_BY_ALIGNMENT:
1904 fprintf(f, "SORT_BY_ALIGNMENT(");
1905 close_parens = 1;
1906 break;
1907 case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1908 fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1909 close_parens = 2;
1910 break;
1911 case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1912 fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1913 close_parens = 2;
1914 break;
1915 case SORT_WILDCARD_BY_INIT_PRIORITY:
1916 fprintf(f, "SORT_BY_INIT_PRIORITY(");
1917 close_parens = 1;
1918 break;
1919 default:
1920 gold_unreachable();
1921 }
1922
1923 fprintf(f, "%s", p->pattern.c_str());
1924
1925 for (int i = 0; i < close_parens; ++i)
1926 fprintf(f, ")");
1927
1928 need_space = true;
1929 }
1930
1931 fprintf(f, ")");
1932 }
1933
1934 if (this->keep_)
1935 fprintf(f, ")");
1936
1937 fprintf(f, "\n");
1938 }
1939
1940 // An output section.
1941
1942 class Output_section_definition : public Sections_element
1943 {
1944 public:
1945 typedef Output_section_element::Input_section_list Input_section_list;
1946
1947 Output_section_definition(const char* name, size_t namelen,
1948 const Parser_output_section_header* header);
1949
1950 // Finish the output section with the information in the trailer.
1951 void
1952 finish(const Parser_output_section_trailer* trailer);
1953
1954 // Add a symbol to be defined.
1955 void
1956 add_symbol_assignment(const char* name, size_t length, Expression* value,
1957 bool provide, bool hidden);
1958
1959 // Add an assignment to the special dot symbol.
1960 void
1961 add_dot_assignment(Expression* value);
1962
1963 // Add an assertion.
1964 void
1965 add_assertion(Expression* check, const char* message, size_t messagelen);
1966
1967 // Add a data item to the current output section.
1968 void
1969 add_data(int size, bool is_signed, Expression* val);
1970
1971 // Add a setting for the fill value.
1972 void
1973 add_fill(Expression* val);
1974
1975 // Add an input section specification.
1976 void
1977 add_input_section(const Input_section_spec* spec, bool keep);
1978
1979 // Return whether the output section is relro.
1980 bool
1981 is_relro() const
1982 { return this->is_relro_; }
1983
1984 // Record that the output section is relro.
1985 void
1986 set_is_relro()
1987 { this->is_relro_ = true; }
1988
1989 // Create any required output sections.
1990 void
1991 create_sections(Layout*);
1992
1993 // Add any symbols being defined to the symbol table.
1994 void
1995 add_symbols_to_table(Symbol_table* symtab);
1996
1997 // Finalize symbols and check assertions.
1998 void
1999 finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
2000
2001 // Return the output section name to use for an input file name and
2002 // section name.
2003 const char*
2004 output_section_name(const char* file_name, const char* section_name,
2005 Output_section***, Script_sections::Section_type*,
2006 bool*);
2007
2008 // Initialize OSP with an output section.
2009 void
2010 orphan_section_init(Orphan_section_placement* osp,
2011 Script_sections::Elements_iterator p)
2012 { osp->output_section_init(this->name_, this->output_section_, p); }
2013
2014 // Set the section address.
2015 void
2016 set_section_addresses(Symbol_table* symtab, Layout* layout,
2017 uint64_t* dot_value, uint64_t*,
2018 uint64_t* load_address);
2019
2020 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
2021 // this section is constrained, and the input sections do not match,
2022 // return the constraint, and set *POSD.
2023 Section_constraint
2024 check_constraint(Output_section_definition** posd);
2025
2026 // See if this is the alternate output section for a constrained
2027 // output section. If it is, transfer the Output_section and return
2028 // true. Otherwise return false.
2029 bool
2030 alternate_constraint(Output_section_definition*, Section_constraint);
2031
2032 // Get the list of segments to use for an allocated section when
2033 // using a PHDRS clause.
2034 Output_section*
2035 allocate_to_segment(String_list** phdrs_list, bool* orphan);
2036
2037 // Look for an output section by name and return the address, the
2038 // load address, the alignment, and the size. This is used when an
2039 // expression refers to an output section which was not actually
2040 // created. This returns true if the section was found, false
2041 // otherwise.
2042 bool
2043 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
2044 uint64_t*) const;
2045
2046 // Return the associated Output_section if there is one.
2047 Output_section*
2048 get_output_section() const
2049 { return this->output_section_; }
2050
2051 // Print the contents to the FILE. This is for debugging.
2052 void
2053 print(FILE*) const;
2054
2055 // Return the output section type if specified or Script_sections::ST_NONE.
2056 Script_sections::Section_type
2057 section_type() const;
2058
2059 // Store the memory region to use.
2060 void
2061 set_memory_region(Memory_region*, bool set_vma);
2062
2063 void
2064 set_section_vma(Expression* address)
2065 { this->address_ = address; }
2066
2067 void
2068 set_section_lma(Expression* address)
2069 { this->load_address_ = address; }
2070
2071 const std::string&
2072 get_section_name() const
2073 { return this->name_; }
2074
2075 private:
2076 static const char*
2077 script_section_type_name(Script_section_type);
2078
2079 typedef std::vector<Output_section_element*> Output_section_elements;
2080
2081 // The output section name.
2082 std::string name_;
2083 // The address. This may be NULL.
2084 Expression* address_;
2085 // The load address. This may be NULL.
2086 Expression* load_address_;
2087 // The alignment. This may be NULL.
2088 Expression* align_;
2089 // The input section alignment. This may be NULL.
2090 Expression* subalign_;
2091 // The constraint, if any.
2092 Section_constraint constraint_;
2093 // The fill value. This may be NULL.
2094 Expression* fill_;
2095 // The list of segments this section should go into. This may be
2096 // NULL.
2097 String_list* phdrs_;
2098 // The list of elements defining the section.
2099 Output_section_elements elements_;
2100 // The Output_section created for this definition. This will be
2101 // NULL if none was created.
2102 Output_section* output_section_;
2103 // The address after it has been evaluated.
2104 uint64_t evaluated_address_;
2105 // The load address after it has been evaluated.
2106 uint64_t evaluated_load_address_;
2107 // The alignment after it has been evaluated.
2108 uint64_t evaluated_addralign_;
2109 // The output section is relro.
2110 bool is_relro_;
2111 // The output section type if specified.
2112 enum Script_section_type script_section_type_;
2113 };
2114
2115 // Constructor.
2116
2117 Output_section_definition::Output_section_definition(
2118 const char* name,
2119 size_t namelen,
2120 const Parser_output_section_header* header)
2121 : name_(name, namelen),
2122 address_(header->address),
2123 load_address_(header->load_address),
2124 align_(header->align),
2125 subalign_(header->subalign),
2126 constraint_(header->constraint),
2127 fill_(NULL),
2128 phdrs_(NULL),
2129 elements_(),
2130 output_section_(NULL),
2131 evaluated_address_(0),
2132 evaluated_load_address_(0),
2133 evaluated_addralign_(0),
2134 is_relro_(false),
2135 script_section_type_(header->section_type)
2136 {
2137 }
2138
2139 // Finish an output section.
2140
2141 void
2142 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
2143 {
2144 this->fill_ = trailer->fill;
2145 this->phdrs_ = trailer->phdrs;
2146 }
2147
2148 // Add a symbol to be defined.
2149
2150 void
2151 Output_section_definition::add_symbol_assignment(const char* name,
2152 size_t length,
2153 Expression* value,
2154 bool provide,
2155 bool hidden)
2156 {
2157 Output_section_element* p = new Output_section_element_assignment(name,
2158 length,
2159 value,
2160 provide,
2161 hidden);
2162 this->elements_.push_back(p);
2163 }
2164
2165 // Add an assignment to the special dot symbol.
2166
2167 void
2168 Output_section_definition::add_dot_assignment(Expression* value)
2169 {
2170 Output_section_element* p = new Output_section_element_dot_assignment(value);
2171 this->elements_.push_back(p);
2172 }
2173
2174 // Add an assertion.
2175
2176 void
2177 Output_section_definition::add_assertion(Expression* check,
2178 const char* message,
2179 size_t messagelen)
2180 {
2181 Output_section_element* p = new Output_section_element_assertion(check,
2182 message,
2183 messagelen);
2184 this->elements_.push_back(p);
2185 }
2186
2187 // Add a data item to the current output section.
2188
2189 void
2190 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
2191 {
2192 Output_section_element* p = new Output_section_element_data(size, is_signed,
2193 val);
2194 this->elements_.push_back(p);
2195 }
2196
2197 // Add a setting for the fill value.
2198
2199 void
2200 Output_section_definition::add_fill(Expression* val)
2201 {
2202 Output_section_element* p = new Output_section_element_fill(val);
2203 this->elements_.push_back(p);
2204 }
2205
2206 // Add an input section specification.
2207
2208 void
2209 Output_section_definition::add_input_section(const Input_section_spec* spec,
2210 bool keep)
2211 {
2212 Output_section_element* p = new Output_section_element_input(spec, keep);
2213 this->elements_.push_back(p);
2214 }
2215
2216 // Create any required output sections. We need an output section if
2217 // there is a data statement here.
2218
2219 void
2220 Output_section_definition::create_sections(Layout* layout)
2221 {
2222 if (this->output_section_ != NULL)
2223 return;
2224 for (Output_section_elements::const_iterator p = this->elements_.begin();
2225 p != this->elements_.end();
2226 ++p)
2227 {
2228 if ((*p)->needs_output_section())
2229 {
2230 const char* name = this->name_.c_str();
2231 this->output_section_ =
2232 layout->make_output_section_for_script(name, this->section_type());
2233 return;
2234 }
2235 }
2236 }
2237
2238 // Add any symbols being defined to the symbol table.
2239
2240 void
2241 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
2242 {
2243 for (Output_section_elements::iterator p = this->elements_.begin();
2244 p != this->elements_.end();
2245 ++p)
2246 (*p)->add_symbols_to_table(symtab);
2247 }
2248
2249 // Finalize symbols and check assertions.
2250
2251 void
2252 Output_section_definition::finalize_symbols(Symbol_table* symtab,
2253 const Layout* layout,
2254 uint64_t* dot_value)
2255 {
2256 if (this->output_section_ != NULL)
2257 *dot_value = this->output_section_->address();
2258 else
2259 {
2260 uint64_t address = *dot_value;
2261 if (this->address_ != NULL)
2262 {
2263 address = this->address_->eval_with_dot(symtab, layout, true,
2264 *dot_value, NULL,
2265 NULL, NULL, false);
2266 }
2267 if (this->align_ != NULL)
2268 {
2269 uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
2270 *dot_value, NULL,
2271 NULL, NULL, false);
2272 address = align_address(address, align);
2273 }
2274 *dot_value = address;
2275 }
2276
2277 Output_section* dot_section = this->output_section_;
2278 for (Output_section_elements::iterator p = this->elements_.begin();
2279 p != this->elements_.end();
2280 ++p)
2281 (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
2282 }
2283
2284 // Return the output section name to use for an input section name.
2285
2286 const char*
2287 Output_section_definition::output_section_name(
2288 const char* file_name,
2289 const char* section_name,
2290 Output_section*** slot,
2291 Script_sections::Section_type* psection_type,
2292 bool* keep)
2293 {
2294 // Ask each element whether it matches NAME.
2295 for (Output_section_elements::const_iterator p = this->elements_.begin();
2296 p != this->elements_.end();
2297 ++p)
2298 {
2299 if ((*p)->match_name(file_name, section_name, keep))
2300 {
2301 // We found a match for NAME, which means that it should go
2302 // into this output section.
2303 *slot = &this->output_section_;
2304 *psection_type = this->section_type();
2305 return this->name_.c_str();
2306 }
2307 }
2308
2309 // We don't know about this section name.
2310 return NULL;
2311 }
2312
2313 // Return true if memory from START to START + LENGTH is contained
2314 // within a memory region.
2315
2316 bool
2317 Script_sections::block_in_region(Symbol_table* symtab, Layout* layout,
2318 uint64_t start, uint64_t length) const
2319 {
2320 if (this->memory_regions_ == NULL)
2321 return false;
2322
2323 for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2324 mr != this->memory_regions_->end();
2325 ++mr)
2326 {
2327 uint64_t s = (*mr)->start_address()->eval(symtab, layout, false);
2328 uint64_t l = (*mr)->length()->eval(symtab, layout, false);
2329
2330 if (s <= start
2331 && (s + l) >= (start + length))
2332 return true;
2333 }
2334
2335 return false;
2336 }
2337
2338 // Find a memory region that should be used by a given output SECTION.
2339 // If provided set PREVIOUS_SECTION_RETURN to point to the last section
2340 // that used the return memory region.
2341
2342 Memory_region*
2343 Script_sections::find_memory_region(
2344 Output_section_definition* section,
2345 bool find_vma_region,
2346 bool explicit_only,
2347 Output_section_definition** previous_section_return)
2348 {
2349 if (previous_section_return != NULL)
2350 * previous_section_return = NULL;
2351
2352 // Walk the memory regions specified in this script, if any.
2353 if (this->memory_regions_ == NULL)
2354 return NULL;
2355
2356 // The /DISCARD/ section never gets assigned to any region.
2357 if (section->get_section_name() == "/DISCARD/")
2358 return NULL;
2359
2360 Memory_region* first_match = NULL;
2361
2362 // First check to see if a region has been assigned to this section.
2363 for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2364 mr != this->memory_regions_->end();
2365 ++mr)
2366 {
2367 if (find_vma_region)
2368 {
2369 for (Memory_region::Section_list::const_iterator s =
2370 (*mr)->get_vma_section_list_start();
2371 s != (*mr)->get_vma_section_list_end();
2372 ++s)
2373 if ((*s) == section)
2374 {
2375 (*mr)->set_last_section(section);
2376 return *mr;
2377 }
2378 }
2379 else
2380 {
2381 for (Memory_region::Section_list::const_iterator s =
2382 (*mr)->get_lma_section_list_start();
2383 s != (*mr)->get_lma_section_list_end();
2384 ++s)
2385 if ((*s) == section)
2386 {
2387 (*mr)->set_last_section(section);
2388 return *mr;
2389 }
2390 }
2391
2392 if (!explicit_only)
2393 {
2394 // Make a note of the first memory region whose attributes
2395 // are compatible with the section. If we do not find an
2396 // explicit region assignment, then we will return this region.
2397 Output_section* out_sec = section->get_output_section();
2398 if (first_match == NULL
2399 && out_sec != NULL
2400 && (*mr)->attributes_compatible(out_sec->flags(),
2401 out_sec->type()))
2402 first_match = *mr;
2403 }
2404 }
2405
2406 // With LMA computations, if an explicit region has not been specified then
2407 // we will want to set the difference between the VMA and the LMA of the
2408 // section were searching for to be the same as the difference between the
2409 // VMA and LMA of the last section to be added to first matched region.
2410 // Hence, if it was asked for, we return a pointer to the last section
2411 // known to be used by the first matched region.
2412 if (first_match != NULL
2413 && previous_section_return != NULL)
2414 *previous_section_return = first_match->get_last_section();
2415
2416 return first_match;
2417 }
2418
2419 // Set the section address. Note that the OUTPUT_SECTION_ field will
2420 // be NULL if no input sections were mapped to this output section.
2421 // We still have to adjust dot and process symbol assignments.
2422
2423 void
2424 Output_section_definition::set_section_addresses(Symbol_table* symtab,
2425 Layout* layout,
2426 uint64_t* dot_value,
2427 uint64_t* dot_alignment,
2428 uint64_t* load_address)
2429 {
2430 Memory_region* vma_region = NULL;
2431 Memory_region* lma_region = NULL;
2432 Script_sections* script_sections =
2433 layout->script_options()->script_sections();
2434 uint64_t address;
2435 uint64_t old_dot_value = *dot_value;
2436 uint64_t old_load_address = *load_address;
2437
2438 // If input section sorting is requested via --section-ordering-file or
2439 // linker plugins, then do it here. This is important because we want
2440 // any sorting specified in the linker scripts, which will be done after
2441 // this, to take precedence. The final order of input sections is then
2442 // guaranteed to be according to the linker script specification.
2443 if (this->output_section_ != NULL
2444 && this->output_section_->input_section_order_specified())
2445 this->output_section_->sort_attached_input_sections();
2446
2447 // Decide the start address for the section. The algorithm is:
2448 // 1) If an address has been specified in a linker script, use that.
2449 // 2) Otherwise if a memory region has been specified for the section,
2450 // use the next free address in the region.
2451 // 3) Otherwise if memory regions have been specified find the first
2452 // region whose attributes are compatible with this section and
2453 // install it into that region.
2454 // 4) Otherwise use the current location counter.
2455
2456 if (this->output_section_ != NULL
2457 // Check for --section-start.
2458 && parameters->options().section_start(this->output_section_->name(),
2459 &address))
2460 ;
2461 else if (this->address_ == NULL)
2462 {
2463 vma_region = script_sections->find_memory_region(this, true, false, NULL);
2464 if (vma_region != NULL)
2465 address = vma_region->get_current_address()->eval(symtab, layout,
2466 false);
2467 else
2468 address = *dot_value;
2469 }
2470 else
2471 {
2472 vma_region = script_sections->find_memory_region(this, true, true, NULL);
2473 address = this->address_->eval_with_dot(symtab, layout, true,
2474 *dot_value, NULL, NULL,
2475 dot_alignment, false);
2476 if (vma_region != NULL)
2477 vma_region->set_address(address, symtab, layout);
2478 }
2479
2480 uint64_t align;
2481 if (this->align_ == NULL)
2482 {
2483 if (this->output_section_ == NULL)
2484 align = 0;
2485 else
2486 align = this->output_section_->addralign();
2487 }
2488 else
2489 {
2490 Output_section* align_section;
2491 align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
2492 NULL, &align_section, NULL, false);
2493 if (align_section != NULL)
2494 gold_warning(_("alignment of section %s is not absolute"),
2495 this->name_.c_str());
2496 if (this->output_section_ != NULL)
2497 this->output_section_->set_addralign(align);
2498 }
2499
2500 uint64_t subalign;
2501 if (this->subalign_ == NULL)
2502 subalign = 0;
2503 else
2504 {
2505 Output_section* subalign_section;
2506 subalign = this->subalign_->eval_with_dot(symtab, layout, true,
2507 *dot_value, NULL,
2508 &subalign_section, NULL,
2509 false);
2510 if (subalign_section != NULL)
2511 gold_warning(_("subalign of section %s is not absolute"),
2512 this->name_.c_str());
2513
2514 // Reserve a value of 0 to mean there is no SUBALIGN property.
2515 if (subalign == 0)
2516 subalign = 1;
2517
2518 // The external alignment of the output section must be at least
2519 // as large as that of the input sections. If there is no
2520 // explicit ALIGN property, we set the output section alignment
2521 // to match the input section alignment.
2522 if (align < subalign || this->align_ == NULL)
2523 {
2524 align = subalign;
2525 this->output_section_->set_addralign(align);
2526 }
2527 }
2528
2529 address = align_address(address, align);
2530
2531 uint64_t start_address = address;
2532
2533 *dot_value = address;
2534
2535 // Except for NOLOAD sections, the address of non-SHF_ALLOC sections is
2536 // forced to zero, regardless of what the linker script wants.
2537 if (this->output_section_ != NULL
2538 && ((this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0
2539 || this->output_section_->is_noload()))
2540 this->output_section_->set_address(address);
2541
2542 this->evaluated_address_ = address;
2543 this->evaluated_addralign_ = align;
2544
2545 uint64_t laddr;
2546
2547 if (this->load_address_ == NULL)
2548 {
2549 Output_section_definition* previous_section;
2550
2551 // Determine if an LMA region has been set for this section.
2552 lma_region = script_sections->find_memory_region(this, false, false,
2553 &previous_section);
2554
2555 if (lma_region != NULL)
2556 {
2557 if (previous_section == NULL)
2558 // The LMA address was explicitly set to the given region.
2559 laddr = lma_region->get_current_address()->eval(symtab, layout,
2560 false);
2561 else
2562 {
2563 // We are not going to use the discovered lma_region, so
2564 // make sure that we do not update it in the code below.
2565 lma_region = NULL;
2566
2567 if (this->address_ != NULL || previous_section == this)
2568 {
2569 // Either an explicit VMA address has been set, or an
2570 // explicit VMA region has been set, so set the LMA equal to
2571 // the VMA.
2572 laddr = address;
2573 }
2574 else
2575 {
2576 // The LMA address was not explicitly or implicitly set.
2577 //
2578 // We have been given the first memory region that is
2579 // compatible with the current section and a pointer to the
2580 // last section to use this region. Set the LMA of this
2581 // section so that the difference between its' VMA and LMA
2582 // is the same as the difference between the VMA and LMA of
2583 // the last section in the given region.
2584 laddr = address + (previous_section->evaluated_load_address_
2585 - previous_section->evaluated_address_);
2586 }
2587 }
2588
2589 if (this->output_section_ != NULL)
2590 this->output_section_->set_load_address(laddr);
2591 }
2592 else
2593 {
2594 // Do not set the load address of the output section, if one exists.
2595 // This allows future sections to determine what the load address
2596 // should be. If none is ever set, it will default to being the
2597 // same as the vma address.
2598 laddr = address;
2599 }
2600 }
2601 else
2602 {
2603 laddr = this->load_address_->eval_with_dot(symtab, layout, true,
2604 *dot_value,
2605 this->output_section_,
2606 NULL, NULL, false);
2607 if (this->output_section_ != NULL)
2608 this->output_section_->set_load_address(laddr);
2609 }
2610
2611 this->evaluated_load_address_ = laddr;
2612
2613 std::string fill;
2614 if (this->fill_ != NULL)
2615 {
2616 // FIXME: The GNU linker supports fill values of arbitrary
2617 // length.
2618 Output_section* fill_section;
2619 uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
2620 *dot_value,
2621 NULL, &fill_section,
2622 NULL, false);
2623 if (fill_section != NULL)
2624 gold_warning(_("fill of section %s is not absolute"),
2625 this->name_.c_str());
2626 unsigned char fill_buff[4];
2627 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
2628 fill.assign(reinterpret_cast<char*>(fill_buff), 4);
2629 }
2630
2631 Input_section_list input_sections;
2632 if (this->output_section_ != NULL)
2633 {
2634 // Get the list of input sections attached to this output
2635 // section. This will leave the output section with only
2636 // Output_section_data entries.
2637 address += this->output_section_->get_input_sections(address,
2638 fill,
2639 &input_sections);
2640 *dot_value = address;
2641 }
2642
2643 Output_section* dot_section = this->output_section_;
2644 for (Output_section_elements::iterator p = this->elements_.begin();
2645 p != this->elements_.end();
2646 ++p)
2647 (*p)->set_section_addresses(symtab, layout, this->output_section_,
2648 subalign, dot_value, dot_alignment,
2649 &dot_section, &fill, &input_sections);
2650
2651 gold_assert(input_sections.empty());
2652
2653 if (vma_region != NULL)
2654 {
2655 // Update the VMA region being used by the section now that we know how
2656 // big it is. Use the current address in the region, rather than
2657 // start_address because that might have been aligned upwards and we
2658 // need to allow for the padding.
2659 Expression* addr = vma_region->get_current_address();
2660 uint64_t size = *dot_value - addr->eval(symtab, layout, false);
2661
2662 vma_region->increment_offset(this->get_section_name(), size,
2663 symtab, layout);
2664 }
2665
2666 // If the LMA region is different from the VMA region, then increment the
2667 // offset there as well. Note that we use the same "dot_value -
2668 // start_address" formula that is used in the load_address assignment below.
2669 if (lma_region != NULL && lma_region != vma_region)
2670 lma_region->increment_offset(this->get_section_name(),
2671 *dot_value - start_address,
2672 symtab, layout);
2673
2674 // Compute the load address for the following section.
2675 if (this->output_section_ == NULL)
2676 *load_address = *dot_value;
2677 else if (this->load_address_ == NULL)
2678 {
2679 if (lma_region == NULL)
2680 *load_address = *dot_value;
2681 else
2682 *load_address =
2683 lma_region->get_current_address()->eval(symtab, layout, false);
2684 }
2685 else
2686 *load_address = (this->output_section_->load_address()
2687 + (*dot_value - start_address));
2688
2689 if (this->output_section_ != NULL)
2690 {
2691 if (this->is_relro_)
2692 this->output_section_->set_is_relro();
2693 else
2694 this->output_section_->clear_is_relro();
2695
2696 // If this is a NOLOAD section, keep dot and load address unchanged.
2697 if (this->output_section_->is_noload())
2698 {
2699 *dot_value = old_dot_value;
2700 *load_address = old_load_address;
2701 }
2702 }
2703 }
2704
2705 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
2706 // this section is constrained, and the input sections do not match,
2707 // return the constraint, and set *POSD.
2708
2709 Section_constraint
2710 Output_section_definition::check_constraint(Output_section_definition** posd)
2711 {
2712 switch (this->constraint_)
2713 {
2714 case CONSTRAINT_NONE:
2715 return CONSTRAINT_NONE;
2716
2717 case CONSTRAINT_ONLY_IF_RO:
2718 if (this->output_section_ != NULL
2719 && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
2720 {
2721 *posd = this;
2722 return CONSTRAINT_ONLY_IF_RO;
2723 }
2724 return CONSTRAINT_NONE;
2725
2726 case CONSTRAINT_ONLY_IF_RW:
2727 if (this->output_section_ != NULL
2728 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
2729 {
2730 *posd = this;
2731 return CONSTRAINT_ONLY_IF_RW;
2732 }
2733 return CONSTRAINT_NONE;
2734
2735 case CONSTRAINT_SPECIAL:
2736 if (this->output_section_ != NULL)
2737 gold_error(_("SPECIAL constraints are not implemented"));
2738 return CONSTRAINT_NONE;
2739
2740 default:
2741 gold_unreachable();
2742 }
2743 }
2744
2745 // See if this is the alternate output section for a constrained
2746 // output section. If it is, transfer the Output_section and return
2747 // true. Otherwise return false.
2748
2749 bool
2750 Output_section_definition::alternate_constraint(
2751 Output_section_definition* posd,
2752 Section_constraint constraint)
2753 {
2754 if (this->name_ != posd->name_)
2755 return false;
2756
2757 switch (constraint)
2758 {
2759 case CONSTRAINT_ONLY_IF_RO:
2760 if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
2761 return false;
2762 break;
2763
2764 case CONSTRAINT_ONLY_IF_RW:
2765 if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
2766 return false;
2767 break;
2768
2769 default:
2770 gold_unreachable();
2771 }
2772
2773 // We have found the alternate constraint. We just need to move
2774 // over the Output_section. When constraints are used properly,
2775 // THIS should not have an output_section pointer, as all the input
2776 // sections should have matched the other definition.
2777
2778 if (this->output_section_ != NULL)
2779 gold_error(_("mismatched definition for constrained sections"));
2780
2781 this->output_section_ = posd->output_section_;
2782 posd->output_section_ = NULL;
2783
2784 if (this->is_relro_)
2785 this->output_section_->set_is_relro();
2786 else
2787 this->output_section_->clear_is_relro();
2788
2789 return true;
2790 }
2791
2792 // Get the list of segments to use for an allocated section when using
2793 // a PHDRS clause.
2794
2795 Output_section*
2796 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
2797 bool* orphan)
2798 {
2799 // Update phdrs_list even if we don't have an output section. It
2800 // might be used by the following sections.
2801 if (this->phdrs_ != NULL)
2802 *phdrs_list = this->phdrs_;
2803
2804 if (this->output_section_ == NULL)
2805 return NULL;
2806 if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
2807 return NULL;
2808 *orphan = false;
2809 return this->output_section_;
2810 }
2811
2812 // Look for an output section by name and return the address, the load
2813 // address, the alignment, and the size. This is used when an
2814 // expression refers to an output section which was not actually
2815 // created. This returns true if the section was found, false
2816 // otherwise.
2817
2818 bool
2819 Output_section_definition::get_output_section_info(const char* name,
2820 uint64_t* address,
2821 uint64_t* load_address,
2822 uint64_t* addralign,
2823 uint64_t* size) const
2824 {
2825 if (this->name_ != name)
2826 return false;
2827
2828 if (this->output_section_ != NULL)
2829 {
2830 *address = this->output_section_->address();
2831 if (this->output_section_->has_load_address())
2832 *load_address = this->output_section_->load_address();
2833 else
2834 *load_address = *address;
2835 *addralign = this->output_section_->addralign();
2836 *size = this->output_section_->current_data_size();
2837 }
2838 else
2839 {
2840 *address = this->evaluated_address_;
2841 *load_address = this->evaluated_load_address_;
2842 *addralign = this->evaluated_addralign_;
2843 *size = 0;
2844 }
2845
2846 return true;
2847 }
2848
2849 // Print for debugging.
2850
2851 void
2852 Output_section_definition::print(FILE* f) const
2853 {
2854 fprintf(f, " %s ", this->name_.c_str());
2855
2856 if (this->address_ != NULL)
2857 {
2858 this->address_->print(f);
2859 fprintf(f, " ");
2860 }
2861
2862 if (this->script_section_type_ != SCRIPT_SECTION_TYPE_NONE)
2863 fprintf(f, "(%s) ",
2864 this->script_section_type_name(this->script_section_type_));
2865
2866 fprintf(f, ": ");
2867
2868 if (this->load_address_ != NULL)
2869 {
2870 fprintf(f, "AT(");
2871 this->load_address_->print(f);
2872 fprintf(f, ") ");
2873 }
2874
2875 if (this->align_ != NULL)
2876 {
2877 fprintf(f, "ALIGN(");
2878 this->align_->print(f);
2879 fprintf(f, ") ");
2880 }
2881
2882 if (this->subalign_ != NULL)
2883 {
2884 fprintf(f, "SUBALIGN(");
2885 this->subalign_->print(f);
2886 fprintf(f, ") ");
2887 }
2888
2889 fprintf(f, "{\n");
2890
2891 for (Output_section_elements::const_iterator p = this->elements_.begin();
2892 p != this->elements_.end();
2893 ++p)
2894 (*p)->print(f);
2895
2896 fprintf(f, " }");
2897
2898 if (this->fill_ != NULL)
2899 {
2900 fprintf(f, " = ");
2901 this->fill_->print(f);
2902 }
2903
2904 if (this->phdrs_ != NULL)
2905 {
2906 for (String_list::const_iterator p = this->phdrs_->begin();
2907 p != this->phdrs_->end();
2908 ++p)
2909 fprintf(f, " :%s", p->c_str());
2910 }
2911
2912 fprintf(f, "\n");
2913 }
2914
2915 Script_sections::Section_type
2916 Output_section_definition::section_type() const
2917 {
2918 switch (this->script_section_type_)
2919 {
2920 case SCRIPT_SECTION_TYPE_NONE:
2921 return Script_sections::ST_NONE;
2922 case SCRIPT_SECTION_TYPE_NOLOAD:
2923 return Script_sections::ST_NOLOAD;
2924 case SCRIPT_SECTION_TYPE_COPY:
2925 case SCRIPT_SECTION_TYPE_DSECT:
2926 case SCRIPT_SECTION_TYPE_INFO:
2927 case SCRIPT_SECTION_TYPE_OVERLAY:
2928 // There are not really support so we treat them as ST_NONE. The
2929 // parse should have issued errors for them already.
2930 return Script_sections::ST_NONE;
2931 default:
2932 gold_unreachable();
2933 }
2934 }
2935
2936 // Return the name of a script section type.
2937
2938 const char*
2939 Output_section_definition::script_section_type_name(
2940 Script_section_type script_section_type)
2941 {
2942 switch (script_section_type)
2943 {
2944 case SCRIPT_SECTION_TYPE_NONE:
2945 return "NONE";
2946 case SCRIPT_SECTION_TYPE_NOLOAD:
2947 return "NOLOAD";
2948 case SCRIPT_SECTION_TYPE_DSECT:
2949 return "DSECT";
2950 case SCRIPT_SECTION_TYPE_COPY:
2951 return "COPY";
2952 case SCRIPT_SECTION_TYPE_INFO:
2953 return "INFO";
2954 case SCRIPT_SECTION_TYPE_OVERLAY:
2955 return "OVERLAY";
2956 default:
2957 gold_unreachable();
2958 }
2959 }
2960
2961 void
2962 Output_section_definition::set_memory_region(Memory_region* mr, bool set_vma)
2963 {
2964 gold_assert(mr != NULL);
2965 // Add the current section to the specified region's list.
2966 mr->add_section(this, set_vma);
2967 }
2968
2969 // An output section created to hold orphaned input sections. These
2970 // do not actually appear in linker scripts. However, for convenience
2971 // when setting the output section addresses, we put a marker to these
2972 // sections in the appropriate place in the list of SECTIONS elements.
2973
2974 class Orphan_output_section : public Sections_element
2975 {
2976 public:
2977 Orphan_output_section(Output_section* os)
2978 : os_(os)
2979 { }
2980
2981 // Return whether the orphan output section is relro. We can just
2982 // check the output section because we always set the flag, if
2983 // needed, just after we create the Orphan_output_section.
2984 bool
2985 is_relro() const
2986 { return this->os_->is_relro(); }
2987
2988 // Initialize OSP with an output section. This should have been
2989 // done already.
2990 void
2991 orphan_section_init(Orphan_section_placement*,
2992 Script_sections::Elements_iterator)
2993 { gold_unreachable(); }
2994
2995 // Set section addresses.
2996 void
2997 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
2998 uint64_t*);
2999
3000 // Get the list of segments to use for an allocated section when
3001 // using a PHDRS clause.
3002 Output_section*
3003 allocate_to_segment(String_list**, bool*);
3004
3005 // Return the associated Output_section.
3006 Output_section*
3007 get_output_section() const
3008 { return this->os_; }
3009
3010 // Print for debugging.
3011 void
3012 print(FILE* f) const
3013 {
3014 fprintf(f, " marker for orphaned output section %s\n",
3015 this->os_->name());
3016 }
3017
3018 private:
3019 Output_section* os_;
3020 };
3021
3022 // Set section addresses.
3023
3024 void
3025 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
3026 uint64_t* dot_value,
3027 uint64_t*,
3028 uint64_t* load_address)
3029 {
3030 typedef std::list<Output_section::Input_section> Input_section_list;
3031
3032 bool have_load_address = *load_address != *dot_value;
3033
3034 uint64_t address = *dot_value;
3035 address = align_address(address, this->os_->addralign());
3036
3037 // If input section sorting is requested via --section-ordering-file or
3038 // linker plugins, then do it here. This is important because we want
3039 // any sorting specified in the linker scripts, which will be done after
3040 // this, to take precedence. The final order of input sections is then
3041 // guaranteed to be according to the linker script specification.
3042 if (this->os_ != NULL
3043 && this->os_->input_section_order_specified())
3044 this->os_->sort_attached_input_sections();
3045
3046 // For a relocatable link, all orphan sections are put at
3047 // address 0. In general we expect all sections to be at
3048 // address 0 for a relocatable link, but we permit the linker
3049 // script to override that for specific output sections.
3050 if (parameters->options().relocatable())
3051 {
3052 address = 0;
3053 *load_address = 0;
3054 have_load_address = false;
3055 }
3056
3057 if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
3058 {
3059 this->os_->set_address(address);
3060 if (have_load_address)
3061 this->os_->set_load_address(align_address(*load_address,
3062 this->os_->addralign()));
3063 }
3064
3065 Input_section_list input_sections;
3066 address += this->os_->get_input_sections(address, "", &input_sections);
3067
3068 for (Input_section_list::iterator p = input_sections.begin();
3069 p != input_sections.end();
3070 ++p)
3071 {
3072 uint64_t addralign = p->addralign();
3073 if (!p->is_input_section())
3074 p->output_section_data()->finalize_data_size();
3075 uint64_t size = p->data_size();
3076 address = align_address(address, addralign);
3077 this->os_->add_script_input_section(*p);
3078 address += size;
3079 }
3080
3081 if (parameters->options().relocatable())
3082 {
3083 // For a relocatable link, reset DOT_VALUE to 0.
3084 *dot_value = 0;
3085 *load_address = 0;
3086 }
3087 else if (this->os_ == NULL
3088 || (this->os_->flags() & elfcpp::SHF_TLS) == 0
3089 || this->os_->type() != elfcpp::SHT_NOBITS)
3090 {
3091 // An SHF_TLS/SHT_NOBITS section does not take up any address space.
3092 if (!have_load_address)
3093 *load_address = address;
3094 else
3095 *load_address += address - *dot_value;
3096
3097 *dot_value = address;
3098 }
3099 }
3100
3101 // Get the list of segments to use for an allocated section when using
3102 // a PHDRS clause. If this is an allocated section, return the
3103 // Output_section. We don't change the list of segments.
3104
3105 Output_section*
3106 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
3107 {
3108 if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
3109 return NULL;
3110 *orphan = true;
3111 return this->os_;
3112 }
3113
3114 // Class Phdrs_element. A program header from a PHDRS clause.
3115
3116 class Phdrs_element
3117 {
3118 public:
3119 Phdrs_element(const char* name, size_t namelen, unsigned int type,
3120 bool includes_filehdr, bool includes_phdrs,
3121 bool is_flags_valid, unsigned int flags,
3122 Expression* load_address)
3123 : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
3124 includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
3125 flags_(flags), load_address_(load_address), load_address_value_(0),
3126 segment_(NULL)
3127 { }
3128
3129 // Return the name of this segment.
3130 const std::string&
3131 name() const
3132 { return this->name_; }
3133
3134 // Return the type of the segment.
3135 unsigned int
3136 type() const
3137 { return this->type_; }
3138
3139 // Whether to include the file header.
3140 bool
3141 includes_filehdr() const
3142 { return this->includes_filehdr_; }
3143
3144 // Whether to include the program headers.
3145 bool
3146 includes_phdrs() const
3147 { return this->includes_phdrs_; }
3148
3149 // Return whether there is a load address.
3150 bool
3151 has_load_address() const
3152 { return this->load_address_ != NULL; }
3153
3154 // Evaluate the load address expression if there is one.
3155 void
3156 eval_load_address(Symbol_table* symtab, Layout* layout)
3157 {
3158 if (this->load_address_ != NULL)
3159 this->load_address_value_ = this->load_address_->eval(symtab, layout,
3160 true);
3161 }
3162
3163 // Return the load address.
3164 uint64_t
3165 load_address() const
3166 {
3167 gold_assert(this->load_address_ != NULL);
3168 return this->load_address_value_;
3169 }
3170
3171 // Create the segment.
3172 Output_segment*
3173 create_segment(Layout* layout)
3174 {
3175 this->segment_ = layout->make_output_segment(this->type_, this->flags_);
3176 return this->segment_;
3177 }
3178
3179 // Return the segment.
3180 Output_segment*
3181 segment()
3182 { return this->segment_; }
3183
3184 // Release the segment.
3185 void
3186 release_segment()
3187 { this->segment_ = NULL; }
3188
3189 // Set the segment flags if appropriate.
3190 void
3191 set_flags_if_valid()
3192 {
3193 if (this->is_flags_valid_)
3194 this->segment_->set_flags(this->flags_);
3195 }
3196
3197 // Print for debugging.
3198 void
3199 print(FILE*) const;
3200
3201 private:
3202 // The name used in the script.
3203 std::string name_;
3204 // The type of the segment (PT_LOAD, etc.).
3205 unsigned int type_;
3206 // Whether this segment includes the file header.
3207 bool includes_filehdr_;
3208 // Whether this segment includes the section headers.
3209 bool includes_phdrs_;
3210 // Whether the flags were explicitly specified.
3211 bool is_flags_valid_;
3212 // The flags for this segment (PF_R, etc.) if specified.
3213 unsigned int flags_;
3214 // The expression for the load address for this segment. This may
3215 // be NULL.
3216 Expression* load_address_;
3217 // The actual load address from evaluating the expression.
3218 uint64_t load_address_value_;
3219 // The segment itself.
3220 Output_segment* segment_;
3221 };
3222
3223 // Print for debugging.
3224
3225 void
3226 Phdrs_element::print(FILE* f) const
3227 {
3228 fprintf(f, " %s 0x%x", this->name_.c_str(), this->type_);
3229 if (this->includes_filehdr_)
3230 fprintf(f, " FILEHDR");
3231 if (this->includes_phdrs_)
3232 fprintf(f, " PHDRS");
3233 if (this->is_flags_valid_)
3234 fprintf(f, " FLAGS(%u)", this->flags_);
3235 if (this->load_address_ != NULL)
3236 {
3237 fprintf(f, " AT(");
3238 this->load_address_->print(f);
3239 fprintf(f, ")");
3240 }
3241 fprintf(f, ";\n");
3242 }
3243
3244 // Add a memory region.
3245
3246 void
3247 Script_sections::add_memory_region(const char* name, size_t namelen,
3248 unsigned int attributes,
3249 Expression* start, Expression* length)
3250 {
3251 if (this->memory_regions_ == NULL)
3252 this->memory_regions_ = new Memory_regions();
3253 else if (this->find_memory_region(name, namelen))
3254 {
3255 gold_error(_("region '%.*s' already defined"), static_cast<int>(namelen),
3256 name);
3257 // FIXME: Add a GOLD extension to allow multiple regions with the same
3258 // name. This would amount to a single region covering disjoint blocks
3259 // of memory, which is useful for embedded devices.
3260 }
3261
3262 // FIXME: Check the length and start values. Currently we allow
3263 // non-constant expressions for these values, whereas LD does not.
3264
3265 // FIXME: Add a GOLD extension to allow NEGATIVE LENGTHS. This would
3266 // describe a region that packs from the end address going down, rather
3267 // than the start address going up. This would be useful for embedded
3268 // devices.
3269
3270 this->memory_regions_->push_back(new Memory_region(name, namelen, attributes,
3271 start, length));
3272 }
3273
3274 // Find a memory region.
3275
3276 Memory_region*
3277 Script_sections::find_memory_region(const char* name, size_t namelen)
3278 {
3279 if (this->memory_regions_ == NULL)
3280 return NULL;
3281
3282 for (Memory_regions::const_iterator m = this->memory_regions_->begin();
3283 m != this->memory_regions_->end();
3284 ++m)
3285 if ((*m)->name_match(name, namelen))
3286 return *m;
3287
3288 return NULL;
3289 }
3290
3291 // Find a memory region's origin.
3292
3293 Expression*
3294 Script_sections::find_memory_region_origin(const char* name, size_t namelen)
3295 {
3296 Memory_region* mr = find_memory_region(name, namelen);
3297 if (mr == NULL)
3298 return NULL;
3299
3300 return mr->start_address();
3301 }
3302
3303 // Find a memory region's length.
3304
3305 Expression*
3306 Script_sections::find_memory_region_length(const char* name, size_t namelen)
3307 {
3308 Memory_region* mr = find_memory_region(name, namelen);
3309 if (mr == NULL)
3310 return NULL;
3311
3312 return mr->length();
3313 }
3314
3315 // Set the memory region to use for the current section.
3316
3317 void
3318 Script_sections::set_memory_region(Memory_region* mr, bool set_vma)
3319 {
3320 gold_assert(!this->sections_elements_->empty());
3321 this->sections_elements_->back()->set_memory_region(mr, set_vma);
3322 }
3323
3324 // Class Script_sections.
3325
3326 Script_sections::Script_sections()
3327 : saw_sections_clause_(false),
3328 in_sections_clause_(false),
3329 sections_elements_(NULL),
3330 output_section_(NULL),
3331 memory_regions_(NULL),
3332 phdrs_elements_(NULL),
3333 orphan_section_placement_(NULL),
3334 data_segment_align_start_(),
3335 saw_data_segment_align_(false),
3336 saw_relro_end_(false),
3337 saw_segment_start_expression_(false),
3338 segments_created_(false)
3339 {
3340 }
3341
3342 // Start a SECTIONS clause.
3343
3344 void
3345 Script_sections::start_sections()
3346 {
3347 gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
3348 this->saw_sections_clause_ = true;
3349 this->in_sections_clause_ = true;
3350 if (this->sections_elements_ == NULL)
3351 this->sections_elements_ = new Sections_elements;
3352 }
3353
3354 // Finish a SECTIONS clause.
3355
3356 void
3357 Script_sections::finish_sections()
3358 {
3359 gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
3360 this->in_sections_clause_ = false;
3361 }
3362
3363 // Add a symbol to be defined.
3364
3365 void
3366 Script_sections::add_symbol_assignment(const char* name, size_t length,
3367 Expression* val, bool provide,
3368 bool hidden)
3369 {
3370 if (this->output_section_ != NULL)
3371 this->output_section_->add_symbol_assignment(name, length, val,
3372 provide, hidden);
3373 else
3374 {
3375 Sections_element* p = new Sections_element_assignment(name, length,
3376 val, provide,
3377 hidden);
3378 this->sections_elements_->push_back(p);
3379 }
3380 }
3381
3382 // Add an assignment to the special dot symbol.
3383
3384 void
3385 Script_sections::add_dot_assignment(Expression* val)
3386 {
3387 if (this->output_section_ != NULL)
3388 this->output_section_->add_dot_assignment(val);
3389 else
3390 {
3391 // The GNU linker permits assignments to . to appears outside of
3392 // a SECTIONS clause, and treats it as appearing inside, so
3393 // sections_elements_ may be NULL here.
3394 if (this->sections_elements_ == NULL)
3395 {
3396 this->sections_elements_ = new Sections_elements;
3397 this->saw_sections_clause_ = true;
3398 }
3399
3400 Sections_element* p = new Sections_element_dot_assignment(val);
3401 this->sections_elements_->push_back(p);
3402 }
3403 }
3404
3405 // Add an assertion.
3406
3407 void
3408 Script_sections::add_assertion(Expression* check, const char* message,
3409 size_t messagelen)
3410 {
3411 if (this->output_section_ != NULL)
3412 this->output_section_->add_assertion(check, message, messagelen);
3413 else
3414 {
3415 Sections_element* p = new Sections_element_assertion(check, message,
3416 messagelen);
3417 this->sections_elements_->push_back(p);
3418 }
3419 }
3420
3421 // Start processing entries for an output section.
3422
3423 void
3424 Script_sections::start_output_section(
3425 const char* name,
3426 size_t namelen,
3427 const Parser_output_section_header* header)
3428 {
3429 Output_section_definition* posd = new Output_section_definition(name,
3430 namelen,
3431 header);
3432 this->sections_elements_->push_back(posd);
3433 gold_assert(this->output_section_ == NULL);
3434 this->output_section_ = posd;
3435 }
3436
3437 // Stop processing entries for an output section.
3438
3439 void
3440 Script_sections::finish_output_section(
3441 const Parser_output_section_trailer* trailer)
3442 {
3443 gold_assert(this->output_section_ != NULL);
3444 this->output_section_->finish(trailer);
3445 this->output_section_ = NULL;
3446 }
3447
3448 // Add a data item to the current output section.
3449
3450 void
3451 Script_sections::add_data(int size, bool is_signed, Expression* val)
3452 {
3453 gold_assert(this->output_section_ != NULL);
3454 this->output_section_->add_data(size, is_signed, val);
3455 }
3456
3457 // Add a fill value setting to the current output section.
3458
3459 void
3460 Script_sections::add_fill(Expression* val)
3461 {
3462 gold_assert(this->output_section_ != NULL);
3463 this->output_section_->add_fill(val);
3464 }
3465
3466 // Add an input section specification to the current output section.
3467
3468 void
3469 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
3470 {
3471 gold_assert(this->output_section_ != NULL);
3472 this->output_section_->add_input_section(spec, keep);
3473 }
3474
3475 // This is called when we see DATA_SEGMENT_ALIGN. It means that any
3476 // subsequent output sections may be relro.
3477
3478 void
3479 Script_sections::data_segment_align()
3480 {
3481 if (this->saw_data_segment_align_)
3482 gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
3483 gold_assert(!this->sections_elements_->empty());
3484 Sections_elements::iterator p = this->sections_elements_->end();
3485 --p;
3486 this->data_segment_align_start_ = p;
3487 this->saw_data_segment_align_ = true;
3488 }
3489
3490 // This is called when we see DATA_SEGMENT_RELRO_END. It means that
3491 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
3492
3493 void
3494 Script_sections::data_segment_relro_end()
3495 {
3496 if (this->saw_relro_end_)
3497 gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
3498 "in a linker script"));
3499 this->saw_relro_end_ = true;
3500
3501 if (!this->saw_data_segment_align_)
3502 gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
3503 else
3504 {
3505 Sections_elements::iterator p = this->data_segment_align_start_;
3506 for (++p; p != this->sections_elements_->end(); ++p)
3507 (*p)->set_is_relro();
3508 }
3509 }
3510
3511 // Create any required sections.
3512
3513 void
3514 Script_sections::create_sections(Layout* layout)
3515 {
3516 if (!this->saw_sections_clause_)
3517 return;
3518 for (Sections_elements::iterator p = this->sections_elements_->begin();
3519 p != this->sections_elements_->end();
3520 ++p)
3521 (*p)->create_sections(layout);
3522 }
3523
3524 // Add any symbols we are defining to the symbol table.
3525
3526 void
3527 Script_sections::add_symbols_to_table(Symbol_table* symtab)
3528 {
3529 if (!this->saw_sections_clause_)
3530 return;
3531 for (Sections_elements::iterator p = this->sections_elements_->begin();
3532 p != this->sections_elements_->end();
3533 ++p)
3534 (*p)->add_symbols_to_table(symtab);
3535 }
3536
3537 // Finalize symbols and check assertions.
3538
3539 void
3540 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
3541 {
3542 if (!this->saw_sections_clause_)
3543 return;
3544 uint64_t dot_value = 0;
3545 for (Sections_elements::iterator p = this->sections_elements_->begin();
3546 p != this->sections_elements_->end();
3547 ++p)
3548 (*p)->finalize_symbols(symtab, layout, &dot_value);
3549 }
3550
3551 // Return the name of the output section to use for an input file name
3552 // and section name.
3553
3554 const char*
3555 Script_sections::output_section_name(
3556 const char* file_name,
3557 const char* section_name,
3558 Output_section*** output_section_slot,
3559 Script_sections::Section_type* psection_type,
3560 bool* keep)
3561 {
3562 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3563 p != this->sections_elements_->end();
3564 ++p)
3565 {
3566 const char* ret = (*p)->output_section_name(file_name, section_name,
3567 output_section_slot,
3568 psection_type, keep);
3569
3570 if (ret != NULL)
3571 {
3572 // The special name /DISCARD/ means that the input section
3573 // should be discarded.
3574 if (strcmp(ret, "/DISCARD/") == 0)
3575 {
3576 *output_section_slot = NULL;
3577 *psection_type = Script_sections::ST_NONE;
3578 return NULL;
3579 }
3580 return ret;
3581 }
3582 }
3583
3584 // If we couldn't find a mapping for the name, the output section
3585 // gets the name of the input section.
3586
3587 *output_section_slot = NULL;
3588 *psection_type = Script_sections::ST_NONE;
3589 *keep = false;
3590
3591 return section_name;
3592 }
3593
3594 // Place a marker for an orphan output section into the SECTIONS
3595 // clause.
3596
3597 void
3598 Script_sections::place_orphan(Output_section* os)
3599 {
3600 Orphan_section_placement* osp = this->orphan_section_placement_;
3601 if (osp == NULL)
3602 {
3603 // Initialize the Orphan_section_placement structure.
3604 osp = new Orphan_section_placement();
3605 for (Sections_elements::iterator p = this->sections_elements_->begin();
3606 p != this->sections_elements_->end();
3607 ++p)
3608 (*p)->orphan_section_init(osp, p);
3609 gold_assert(!this->sections_elements_->empty());
3610 Sections_elements::iterator last = this->sections_elements_->end();
3611 --last;
3612 osp->last_init(last);
3613 this->orphan_section_placement_ = osp;
3614 }
3615
3616 Orphan_output_section* orphan = new Orphan_output_section(os);
3617
3618 // Look for where to put ORPHAN.
3619 Sections_elements::iterator* where;
3620 if (osp->find_place(os, &where))
3621 {
3622 if ((**where)->is_relro())
3623 os->set_is_relro();
3624 else
3625 os->clear_is_relro();
3626
3627 // We want to insert ORPHAN after *WHERE, and then update *WHERE
3628 // so that the next one goes after this one.
3629 Sections_elements::iterator p = *where;
3630 gold_assert(p != this->sections_elements_->end());
3631 ++p;
3632 *where = this->sections_elements_->insert(p, orphan);
3633 }
3634 else
3635 {
3636 os->clear_is_relro();
3637 // We don't have a place to put this orphan section. Put it,
3638 // and all other sections like it, at the end, but before the
3639 // sections which always come at the end.
3640 Sections_elements::iterator last = osp->last_place();
3641 *where = this->sections_elements_->insert(last, orphan);
3642 }
3643
3644 if ((os->flags() & elfcpp::SHF_ALLOC) != 0)
3645 osp->update_last_alloc(*where);
3646 }
3647
3648 // Set the addresses of all the output sections. Walk through all the
3649 // elements, tracking the dot symbol. Apply assignments which set
3650 // absolute symbol values, in case they are used when setting dot.
3651 // Fill in data statement values. As we find output sections, set the
3652 // address, set the address of all associated input sections, and
3653 // update dot. Return the segment which should hold the file header
3654 // and segment headers, if any.
3655
3656 Output_segment*
3657 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
3658 {
3659 gold_assert(this->saw_sections_clause_);
3660
3661 // Implement ONLY_IF_RO/ONLY_IF_RW constraints. These are a pain
3662 // for our representation.
3663 for (Sections_elements::iterator p = this->sections_elements_->begin();
3664 p != this->sections_elements_->end();
3665 ++p)
3666 {
3667 Output_section_definition* posd;
3668 Section_constraint failed_constraint = (*p)->check_constraint(&posd);
3669 if (failed_constraint != CONSTRAINT_NONE)
3670 {
3671 Sections_elements::iterator q;
3672 for (q = this->sections_elements_->begin();
3673 q != this->sections_elements_->end();
3674 ++q)
3675 {
3676 if (q != p)
3677 {
3678 if ((*q)->alternate_constraint(posd, failed_constraint))
3679 break;
3680 }
3681 }
3682
3683 if (q == this->sections_elements_->end())
3684 gold_error(_("no matching section constraint"));
3685 }
3686 }
3687
3688 // Force the alignment of the first TLS section to be the maximum
3689 // alignment of all TLS sections.
3690 Output_section* first_tls = NULL;
3691 uint64_t tls_align = 0;
3692 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3693 p != this->sections_elements_->end();
3694 ++p)
3695 {
3696 Output_section* os = (*p)->get_output_section();
3697 if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
3698 {
3699 if (first_tls == NULL)
3700 first_tls = os;
3701 if (os->addralign() > tls_align)
3702 tls_align = os->addralign();
3703 }
3704 }
3705 if (first_tls != NULL)
3706 first_tls->set_addralign(tls_align);
3707
3708 // For a relocatable link, we implicitly set dot to zero.
3709 uint64_t dot_value = 0;
3710 uint64_t dot_alignment = 0;
3711 uint64_t load_address = 0;
3712
3713 // Check to see if we want to use any of -Ttext, -Tdata and -Tbss options
3714 // to set section addresses. If the script has any SEGMENT_START
3715 // expression, we do not set the section addresses.
3716 bool use_tsection_options =
3717 (!this->saw_segment_start_expression_
3718 && (parameters->options().user_set_Ttext()
3719 || parameters->options().user_set_Tdata()
3720 || parameters->options().user_set_Tbss()));
3721
3722 for (Sections_elements::iterator p = this->sections_elements_->begin();
3723 p != this->sections_elements_->end();
3724 ++p)
3725 {
3726 Output_section* os = (*p)->get_output_section();
3727
3728 // Handle -Ttext, -Tdata and -Tbss options. We do this by looking for
3729 // the special sections by names and doing dot assignments.
3730 if (use_tsection_options
3731 && os != NULL
3732 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
3733 {
3734 uint64_t new_dot_value = dot_value;
3735
3736 if (parameters->options().user_set_Ttext()
3737 && strcmp(os->name(), ".text") == 0)
3738 new_dot_value = parameters->options().Ttext();
3739 else if (parameters->options().user_set_Tdata()
3740 && strcmp(os->name(), ".data") == 0)
3741 new_dot_value = parameters->options().Tdata();
3742 else if (parameters->options().user_set_Tbss()
3743 && strcmp(os->name(), ".bss") == 0)
3744 new_dot_value = parameters->options().Tbss();
3745
3746 // Update dot and load address if necessary.
3747 if (new_dot_value < dot_value)
3748 gold_error(_("dot may not move backward"));
3749 else if (new_dot_value != dot_value)
3750 {
3751 dot_value = new_dot_value;
3752 load_address = new_dot_value;
3753 }
3754 }
3755
3756 (*p)->set_section_addresses(symtab, layout, &dot_value, &dot_alignment,
3757 &load_address);
3758 }
3759
3760 if (this->phdrs_elements_ != NULL)
3761 {
3762 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3763 p != this->phdrs_elements_->end();
3764 ++p)
3765 (*p)->eval_load_address(symtab, layout);
3766 }
3767
3768 return this->create_segments(layout, dot_alignment);
3769 }
3770
3771 // Sort the sections in order to put them into segments.
3772
3773 class Sort_output_sections
3774 {
3775 public:
3776 Sort_output_sections(const Script_sections::Sections_elements* elements)
3777 : elements_(elements)
3778 { }
3779
3780 bool
3781 operator()(const Output_section* os1, const Output_section* os2) const;
3782
3783 private:
3784 int
3785 script_compare(const Output_section* os1, const Output_section* os2) const;
3786
3787 private:
3788 const Script_sections::Sections_elements* elements_;
3789 };
3790
3791 bool
3792 Sort_output_sections::operator()(const Output_section* os1,
3793 const Output_section* os2) const
3794 {
3795 // Sort first by the load address.
3796 uint64_t lma1 = (os1->has_load_address()
3797 ? os1->load_address()
3798 : os1->address());
3799 uint64_t lma2 = (os2->has_load_address()
3800 ? os2->load_address()
3801 : os2->address());
3802 if (lma1 != lma2)
3803 return lma1 < lma2;
3804
3805 // Then sort by the virtual address.
3806 if (os1->address() != os2->address())
3807 return os1->address() < os2->address();
3808
3809 // If the linker script says which of these sections is first, go
3810 // with what it says.
3811 int i = this->script_compare(os1, os2);
3812 if (i != 0)
3813 return i < 0;
3814
3815 // Sort PROGBITS before NOBITS.
3816 bool nobits1 = os1->type() == elfcpp::SHT_NOBITS;
3817 bool nobits2 = os2->type() == elfcpp::SHT_NOBITS;
3818 if (nobits1 != nobits2)
3819 return nobits2;
3820
3821 // Sort PROGBITS TLS sections to the end, NOBITS TLS sections to the
3822 // beginning.
3823 bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
3824 bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
3825 if (tls1 != tls2)
3826 return nobits1 ? tls1 : tls2;
3827
3828 // Sort non-NOLOAD before NOLOAD.
3829 if (os1->is_noload() && !os2->is_noload())
3830 return true;
3831 if (!os1->is_noload() && os2->is_noload())
3832 return true;
3833
3834 // The sections seem practically identical. Sort by name to get a
3835 // stable sort.
3836 return os1->name() < os2->name();
3837 }
3838
3839 // Return -1 if OS1 comes before OS2 in ELEMENTS_, 1 if comes after, 0
3840 // if either OS1 or OS2 is not mentioned. This ensures that we keep
3841 // empty sections in the order in which they appear in a linker
3842 // script.
3843
3844 int
3845 Sort_output_sections::script_compare(const Output_section* os1,
3846 const Output_section* os2) const
3847 {
3848 if (this->elements_ == NULL)
3849 return 0;
3850
3851 bool found_os1 = false;
3852 bool found_os2 = false;
3853 for (Script_sections::Sections_elements::const_iterator
3854 p = this->elements_->begin();
3855 p != this->elements_->end();
3856 ++p)
3857 {
3858 if (os2 == (*p)->get_output_section())
3859 {
3860 if (found_os1)
3861 return -1;
3862 found_os2 = true;
3863 }
3864 else if (os1 == (*p)->get_output_section())
3865 {
3866 if (found_os2)
3867 return 1;
3868 found_os1 = true;
3869 }
3870 }
3871
3872 return 0;
3873 }
3874
3875 // Return whether OS is a BSS section. This is a SHT_NOBITS section.
3876 // We treat a section with the SHF_TLS flag set as taking up space
3877 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
3878 // space for them in the file.
3879
3880 bool
3881 Script_sections::is_bss_section(const Output_section* os)
3882 {
3883 return (os->type() == elfcpp::SHT_NOBITS
3884 && (os->flags() & elfcpp::SHF_TLS) == 0);
3885 }
3886
3887 // Return the size taken by the file header and the program headers.
3888
3889 size_t
3890 Script_sections::total_header_size(Layout* layout) const
3891 {
3892 size_t segment_count = layout->segment_count();
3893 size_t file_header_size;
3894 size_t segment_headers_size;
3895 if (parameters->target().get_size() == 32)
3896 {
3897 file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
3898 segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
3899 }
3900 else if (parameters->target().get_size() == 64)
3901 {
3902 file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
3903 segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
3904 }
3905 else
3906 gold_unreachable();
3907
3908 return file_header_size + segment_headers_size;
3909 }
3910
3911 // Return the amount we have to subtract from the LMA to accommodate
3912 // headers of the given size. The complication is that the file
3913 // header have to be at the start of a page, as otherwise it will not
3914 // be at the start of the file.
3915
3916 uint64_t
3917 Script_sections::header_size_adjustment(uint64_t lma,
3918 size_t sizeof_headers) const
3919 {
3920 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3921 uint64_t hdr_lma = lma - sizeof_headers;
3922 hdr_lma &= ~(abi_pagesize - 1);
3923 return lma - hdr_lma;
3924 }
3925
3926 // Create the PT_LOAD segments when using a SECTIONS clause. Returns
3927 // the segment which should hold the file header and segment headers,
3928 // if any.
3929
3930 Output_segment*
3931 Script_sections::create_segments(Layout* layout, uint64_t dot_alignment)
3932 {
3933 gold_assert(this->saw_sections_clause_);
3934
3935 if (parameters->options().relocatable())
3936 return NULL;
3937
3938 if (this->saw_phdrs_clause())
3939 return create_segments_from_phdrs_clause(layout, dot_alignment);
3940
3941 Layout::Section_list sections;
3942 layout->get_allocated_sections(&sections);
3943
3944 // Sort the sections by address.
3945 std::stable_sort(sections.begin(), sections.end(),
3946 Sort_output_sections(this->sections_elements_));
3947
3948 this->create_note_and_tls_segments(layout, &sections);
3949
3950 // Walk through the sections adding them to PT_LOAD segments.
3951 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3952 Output_segment* first_seg = NULL;
3953 Output_segment* current_seg = NULL;
3954 bool is_current_seg_readonly = true;
3955 uint64_t last_vma = 0;
3956 uint64_t last_lma = 0;
3957 uint64_t last_size = 0;
3958 bool in_bss = false;
3959 for (Layout::Section_list::iterator p = sections.begin();
3960 p != sections.end();
3961 ++p)
3962 {
3963 const uint64_t vma = (*p)->address();
3964 const uint64_t lma = ((*p)->has_load_address()
3965 ? (*p)->load_address()
3966 : vma);
3967 const uint64_t size = (*p)->current_data_size();
3968
3969 bool need_new_segment;
3970 if (current_seg == NULL)
3971 need_new_segment = true;
3972 else if (lma - vma != last_lma - last_vma)
3973 {
3974 // This section has a different LMA relationship than the
3975 // last one; we need a new segment.
3976 need_new_segment = true;
3977 }
3978 else if (align_address(last_lma + last_size, abi_pagesize)
3979 < align_address(lma, abi_pagesize))
3980 {
3981 // Putting this section in the segment would require
3982 // skipping a page.
3983 need_new_segment = true;
3984 }
3985 else if (in_bss && !is_bss_section(*p))
3986 {
3987 // A non-BSS section can not follow a BSS section in the
3988 // same segment.
3989 need_new_segment = true;
3990 }
3991 else if (is_current_seg_readonly
3992 && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
3993 && !parameters->options().omagic())
3994 {
3995 // Don't put a writable section in the same segment as a
3996 // non-writable section.
3997 need_new_segment = true;
3998 }
3999 else
4000 {
4001 // Otherwise, reuse the existing segment.
4002 need_new_segment = false;
4003 }
4004
4005 elfcpp::Elf_Word seg_flags =
4006 Layout::section_flags_to_segment((*p)->flags());
4007
4008 if (need_new_segment)
4009 {
4010 current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
4011 seg_flags);
4012 current_seg->set_addresses(vma, lma);
4013 current_seg->set_minimum_p_align(dot_alignment);
4014 if (first_seg == NULL)
4015 first_seg = current_seg;
4016 is_current_seg_readonly = true;
4017 in_bss = false;
4018 }
4019
4020 current_seg->add_output_section_to_load(layout, *p, seg_flags);
4021
4022 if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
4023 is_current_seg_readonly = false;
4024
4025 if (is_bss_section(*p) && size > 0)
4026 in_bss = true;
4027
4028 last_vma = vma;
4029 last_lma = lma;
4030 last_size = size;
4031 }
4032
4033 // An ELF program should work even if the program headers are not in
4034 // a PT_LOAD segment. However, it appears that the Linux kernel
4035 // does not set the AT_PHDR auxiliary entry in that case. It sets
4036 // the load address to p_vaddr - p_offset of the first PT_LOAD
4037 // segment. It then sets AT_PHDR to the load address plus the
4038 // offset to the program headers, e_phoff in the file header. This
4039 // fails when the program headers appear in the file before the
4040 // first PT_LOAD segment. Therefore, we always create a PT_LOAD
4041 // segment to hold the file header and the program headers. This is
4042 // effectively what the GNU linker does, and it is slightly more
4043 // efficient in any case. We try to use the first PT_LOAD segment
4044 // if we can, otherwise we make a new one.
4045
4046 if (first_seg == NULL)
4047 return NULL;
4048
4049 // -n or -N mean that the program is not demand paged and there is
4050 // no need to put the program headers in a PT_LOAD segment.
4051 if (parameters->options().nmagic() || parameters->options().omagic())
4052 return NULL;
4053
4054 size_t sizeof_headers = this->total_header_size(layout);
4055
4056 uint64_t vma = first_seg->vaddr();
4057 uint64_t lma = first_seg->paddr();
4058
4059 uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
4060
4061 if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
4062 {
4063 first_seg->set_addresses(vma - subtract, lma - subtract);
4064 return first_seg;
4065 }
4066
4067 // If there is no room to squeeze in the headers, then punt. The
4068 // resulting executable probably won't run on GNU/Linux, but we
4069 // trust that the user knows what they are doing.
4070 if (lma < subtract || vma < subtract)
4071 return NULL;
4072
4073 // If memory regions have been specified and the address range
4074 // we are about to use is not contained within any region then
4075 // issue a warning message about the segment we are going to
4076 // create. It will be outside of any region and so possibly
4077 // using non-existent or protected memory. We test LMA rather
4078 // than VMA since we assume that the headers will never be
4079 // relocated.
4080 if (this->memory_regions_ != NULL
4081 && !this->block_in_region (NULL, layout, lma - subtract, subtract))
4082 gold_warning(_("creating a segment to contain the file and program"
4083 " headers outside of any MEMORY region"));
4084
4085 Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
4086 elfcpp::PF_R);
4087 load_seg->set_addresses(vma - subtract, lma - subtract);
4088
4089 return load_seg;
4090 }
4091
4092 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
4093 // segment if there are any SHT_TLS sections.
4094
4095 void
4096 Script_sections::create_note_and_tls_segments(
4097 Layout* layout,
4098 const Layout::Section_list* sections)
4099 {
4100 gold_assert(!this->saw_phdrs_clause());
4101
4102 bool saw_tls = false;
4103 for (Layout::Section_list::const_iterator p = sections->begin();
4104 p != sections->end();
4105 ++p)
4106 {
4107 if ((*p)->type() == elfcpp::SHT_NOTE)
4108 {
4109 elfcpp::Elf_Word seg_flags =
4110 Layout::section_flags_to_segment((*p)->flags());
4111 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
4112 seg_flags);
4113 oseg->add_output_section_to_nonload(*p, seg_flags);
4114
4115 // Incorporate any subsequent SHT_NOTE sections, in the
4116 // hopes that the script is sensible.
4117 Layout::Section_list::const_iterator pnext = p + 1;
4118 while (pnext != sections->end()
4119 && (*pnext)->type() == elfcpp::SHT_NOTE)
4120 {
4121 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
4122 oseg->add_output_section_to_nonload(*pnext, seg_flags);
4123 p = pnext;
4124 ++pnext;
4125 }
4126 }
4127
4128 if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
4129 {
4130 if (saw_tls)
4131 gold_error(_("TLS sections are not adjacent"));
4132
4133 elfcpp::Elf_Word seg_flags =
4134 Layout::section_flags_to_segment((*p)->flags());
4135 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
4136 seg_flags);
4137 oseg->add_output_section_to_nonload(*p, seg_flags);
4138
4139 Layout::Section_list::const_iterator pnext = p + 1;
4140 while (pnext != sections->end()
4141 && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
4142 {
4143 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
4144 oseg->add_output_section_to_nonload(*pnext, seg_flags);
4145 p = pnext;
4146 ++pnext;
4147 }
4148
4149 saw_tls = true;
4150 }
4151
4152 // If we see a section named .interp then put the .interp section
4153 // in a PT_INTERP segment.
4154 // This is for GNU ld compatibility.
4155 if (strcmp((*p)->name(), ".interp") == 0)
4156 {
4157 elfcpp::Elf_Word seg_flags =
4158 Layout::section_flags_to_segment((*p)->flags());
4159 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_INTERP,
4160 seg_flags);
4161 oseg->add_output_section_to_nonload(*p, seg_flags);
4162 }
4163 }
4164
4165 this->segments_created_ = true;
4166 }
4167
4168 // Add a program header. The PHDRS clause is syntactically distinct
4169 // from the SECTIONS clause, but we implement it with the SECTIONS
4170 // support because PHDRS is useless if there is no SECTIONS clause.
4171
4172 void
4173 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
4174 bool includes_filehdr, bool includes_phdrs,
4175 bool is_flags_valid, unsigned int flags,
4176 Expression* load_address)
4177 {
4178 if (this->phdrs_elements_ == NULL)
4179 this->phdrs_elements_ = new Phdrs_elements();
4180 this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
4181 includes_filehdr,
4182 includes_phdrs,
4183 is_flags_valid, flags,
4184 load_address));
4185 }
4186
4187 // Return the number of segments we expect to create based on the
4188 // SECTIONS clause. This is used to implement SIZEOF_HEADERS.
4189
4190 size_t
4191 Script_sections::expected_segment_count(const Layout* layout) const
4192 {
4193 // If we've already created the segments, we won't be adding any more.
4194 if (this->segments_created_)
4195 return 0;
4196
4197 if (this->saw_phdrs_clause())
4198 return this->phdrs_elements_->size();
4199
4200 Layout::Section_list sections;
4201 layout->get_allocated_sections(&sections);
4202
4203 // We assume that we will need two PT_LOAD segments.
4204 size_t ret = 2;
4205
4206 bool saw_note = false;
4207 bool saw_tls = false;
4208 bool saw_interp = false;
4209 for (Layout::Section_list::const_iterator p = sections.begin();
4210 p != sections.end();
4211 ++p)
4212 {
4213 if ((*p)->type() == elfcpp::SHT_NOTE)
4214 {
4215 // Assume that all note sections will fit into a single
4216 // PT_NOTE segment.
4217 if (!saw_note)
4218 {
4219 ++ret;
4220 saw_note = true;
4221 }
4222 }
4223 else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
4224 {
4225 // There can only be one PT_TLS segment.
4226 if (!saw_tls)
4227 {
4228 ++ret;
4229 saw_tls = true;
4230 }
4231 }
4232 else if (strcmp((*p)->name(), ".interp") == 0)
4233 {
4234 // There can only be one PT_INTERP segment.
4235 if (!saw_interp)
4236 {
4237 ++ret;
4238 saw_interp = true;
4239 }
4240 }
4241 }
4242
4243 return ret;
4244 }
4245
4246 // Create the segments from a PHDRS clause. Return the segment which
4247 // should hold the file header and program headers, if any.
4248
4249 Output_segment*
4250 Script_sections::create_segments_from_phdrs_clause(Layout* layout,
4251 uint64_t dot_alignment)
4252 {
4253 this->attach_sections_using_phdrs_clause(layout);
4254 return this->set_phdrs_clause_addresses(layout, dot_alignment);
4255 }
4256
4257 // Create the segments from the PHDRS clause, and put the output
4258 // sections in them.
4259
4260 void
4261 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
4262 {
4263 typedef std::map<std::string, Output_segment*> Name_to_segment;
4264 Name_to_segment name_to_segment;
4265 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4266 p != this->phdrs_elements_->end();
4267 ++p)
4268 name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
4269 this->segments_created_ = true;
4270
4271 // Walk through the output sections and attach them to segments.
4272 // Output sections in the script which do not list segments are
4273 // attached to the same set of segments as the immediately preceding
4274 // output section.
4275
4276 String_list* phdr_names = NULL;
4277 bool load_segments_only = false;
4278 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4279 p != this->sections_elements_->end();
4280 ++p)
4281 {
4282 bool is_orphan;
4283 String_list* old_phdr_names = phdr_names;
4284 Output_section* os = (*p)->allocate_to_segment(&phdr_names, &is_orphan);
4285 if (os == NULL)
4286 continue;
4287
4288 elfcpp::Elf_Word seg_flags =
4289 Layout::section_flags_to_segment(os->flags());
4290
4291 if (phdr_names == NULL)
4292 {
4293 // Don't worry about empty orphan sections.
4294 if (is_orphan && os->current_data_size() > 0)
4295 gold_error(_("allocated section %s not in any segment"),
4296 os->name());
4297
4298 // To avoid later crashes drop this section into the first
4299 // PT_LOAD segment.
4300 for (Phdrs_elements::const_iterator ppe =
4301 this->phdrs_elements_->begin();
4302 ppe != this->phdrs_elements_->end();
4303 ++ppe)
4304 {
4305 Output_segment* oseg = (*ppe)->segment();
4306 if (oseg->type() == elfcpp::PT_LOAD)
4307 {
4308 oseg->add_output_section_to_load(layout, os, seg_flags);
4309 break;
4310 }
4311 }
4312
4313 continue;
4314 }
4315
4316 // We see a list of segments names. Disable PT_LOAD segment only
4317 // filtering.
4318 if (old_phdr_names != phdr_names)
4319 load_segments_only = false;
4320
4321 // If this is an orphan section--one that was not explicitly
4322 // mentioned in the linker script--then it should not inherit
4323 // any segment type other than PT_LOAD. Otherwise, e.g., the
4324 // PT_INTERP segment will pick up following orphan sections,
4325 // which does not make sense. If this is not an orphan section,
4326 // we trust the linker script.
4327 if (is_orphan)
4328 {
4329 // Enable PT_LOAD segments only filtering until we see another
4330 // list of segment names.
4331 load_segments_only = true;
4332 }
4333
4334 bool in_load_segment = false;
4335 for (String_list::const_iterator q = phdr_names->begin();
4336 q != phdr_names->end();
4337 ++q)
4338 {
4339 Name_to_segment::const_iterator r = name_to_segment.find(*q);
4340 if (r == name_to_segment.end())
4341 gold_error(_("no segment %s"), q->c_str());
4342 else
4343 {
4344 if (load_segments_only
4345 && r->second->type() != elfcpp::PT_LOAD)
4346 continue;
4347
4348 if (r->second->type() != elfcpp::PT_LOAD)
4349 r->second->add_output_section_to_nonload(os, seg_flags);
4350 else
4351 {
4352 r->second->add_output_section_to_load(layout, os, seg_flags);
4353 if (in_load_segment)
4354 gold_error(_("section in two PT_LOAD segments"));
4355 in_load_segment = true;
4356 }
4357 }
4358 }
4359
4360 if (!in_load_segment)
4361 gold_error(_("allocated section not in any PT_LOAD segment"));
4362 }
4363 }
4364
4365 // Set the addresses for segments created from a PHDRS clause. Return
4366 // the segment which should hold the file header and program headers,
4367 // if any.
4368
4369 Output_segment*
4370 Script_sections::set_phdrs_clause_addresses(Layout* layout,
4371 uint64_t dot_alignment)
4372 {
4373 Output_segment* load_seg = NULL;
4374 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4375 p != this->phdrs_elements_->end();
4376 ++p)
4377 {
4378 // Note that we have to set the flags after adding the output
4379 // sections to the segment, as adding an output segment can
4380 // change the flags.
4381 (*p)->set_flags_if_valid();
4382
4383 Output_segment* oseg = (*p)->segment();
4384
4385 if (oseg->type() != elfcpp::PT_LOAD)
4386 {
4387 // The addresses of non-PT_LOAD segments are set from the
4388 // PT_LOAD segments.
4389 if ((*p)->has_load_address())
4390 gold_error(_("may only specify load address for PT_LOAD segment"));
4391 continue;
4392 }
4393
4394 oseg->set_minimum_p_align(dot_alignment);
4395
4396 // The output sections should have addresses from the SECTIONS
4397 // clause. The addresses don't have to be in order, so find the
4398 // one with the lowest load address. Use that to set the
4399 // address of the segment.
4400
4401 Output_section* osec = oseg->section_with_lowest_load_address();
4402 if (osec == NULL)
4403 {
4404 oseg->set_addresses(0, 0);
4405 continue;
4406 }
4407
4408 uint64_t vma = osec->address();
4409 uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
4410
4411 // Override the load address of the section with the load
4412 // address specified for the segment.
4413 if ((*p)->has_load_address())
4414 {
4415 if (osec->has_load_address())
4416 gold_warning(_("PHDRS load address overrides "
4417 "section %s load address"),
4418 osec->name());
4419
4420 lma = (*p)->load_address();
4421 }
4422
4423 bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
4424 if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
4425 {
4426 // We could support this if we wanted to.
4427 gold_error(_("using only one of FILEHDR and PHDRS is "
4428 "not currently supported"));
4429 }
4430 if (headers)
4431 {
4432 size_t sizeof_headers = this->total_header_size(layout);
4433 uint64_t subtract = this->header_size_adjustment(lma,
4434 sizeof_headers);
4435 if (lma >= subtract && vma >= subtract)
4436 {
4437 lma -= subtract;
4438 vma -= subtract;
4439 }
4440 else
4441 {
4442 gold_error(_("sections loaded on first page without room "
4443 "for file and program headers "
4444 "are not supported"));
4445 }
4446
4447 if (load_seg != NULL)
4448 gold_error(_("using FILEHDR and PHDRS on more than one "
4449 "PT_LOAD segment is not currently supported"));
4450 load_seg = oseg;
4451 }
4452
4453 oseg->set_addresses(vma, lma);
4454 }
4455
4456 return load_seg;
4457 }
4458
4459 // Add the file header and segment headers to non-load segments
4460 // specified in the PHDRS clause.
4461
4462 void
4463 Script_sections::put_headers_in_phdrs(Output_data* file_header,
4464 Output_data* segment_headers)
4465 {
4466 gold_assert(this->saw_phdrs_clause());
4467 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
4468 p != this->phdrs_elements_->end();
4469 ++p)
4470 {
4471 if ((*p)->type() != elfcpp::PT_LOAD)
4472 {
4473 if ((*p)->includes_phdrs())
4474 (*p)->segment()->add_initial_output_data(segment_headers);
4475 if ((*p)->includes_filehdr())
4476 (*p)->segment()->add_initial_output_data(file_header);
4477 }
4478 }
4479 }
4480
4481 // Look for an output section by name and return the address, the load
4482 // address, the alignment, and the size. This is used when an
4483 // expression refers to an output section which was not actually
4484 // created. This returns true if the section was found, false
4485 // otherwise.
4486
4487 bool
4488 Script_sections::get_output_section_info(const char* name, uint64_t* address,
4489 uint64_t* load_address,
4490 uint64_t* addralign,
4491 uint64_t* size) const
4492 {
4493 if (!this->saw_sections_clause_)
4494 return false;
4495 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4496 p != this->sections_elements_->end();
4497 ++p)
4498 if ((*p)->get_output_section_info(name, address, load_address, addralign,
4499 size))
4500 return true;
4501 return false;
4502 }
4503
4504 // Release all Output_segments. This remove all pointers to all
4505 // Output_segments.
4506
4507 void
4508 Script_sections::release_segments()
4509 {
4510 if (this->saw_phdrs_clause())
4511 {
4512 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4513 p != this->phdrs_elements_->end();
4514 ++p)
4515 (*p)->release_segment();
4516 }
4517 this->segments_created_ = false;
4518 }
4519
4520 // Print the SECTIONS clause to F for debugging.
4521
4522 void
4523 Script_sections::print(FILE* f) const
4524 {
4525 if (this->phdrs_elements_ != NULL)
4526 {
4527 fprintf(f, "PHDRS {\n");
4528 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4529 p != this->phdrs_elements_->end();
4530 ++p)
4531 (*p)->print(f);
4532 fprintf(f, "}\n");
4533 }
4534
4535 if (this->memory_regions_ != NULL)
4536 {
4537 fprintf(f, "MEMORY {\n");
4538 for (Memory_regions::const_iterator m = this->memory_regions_->begin();
4539 m != this->memory_regions_->end();
4540 ++m)
4541 (*m)->print(f);
4542 fprintf(f, "}\n");
4543 }
4544
4545 if (!this->saw_sections_clause_)
4546 return;
4547
4548 fprintf(f, "SECTIONS {\n");
4549
4550 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4551 p != this->sections_elements_->end();
4552 ++p)
4553 (*p)->print(f);
4554
4555 fprintf(f, "}\n");
4556 }
4557
4558 } // End namespace gold.
This page took 0.117214 seconds and 5 git commands to generate.