Fold i386-v4-nat.c into i386-sol2-nat.c
[deliverable/binutils-gdb.git] / gold / script.cc
1 // script.cc -- handle linker scripts for gold.
2
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdio>
26 #include <cstdlib>
27 #include <cstring>
28 #include <fnmatch.h>
29 #include <string>
30 #include <vector>
31 #include "filenames.h"
32
33 #include "elfcpp.h"
34 #include "demangle.h"
35 #include "dirsearch.h"
36 #include "options.h"
37 #include "fileread.h"
38 #include "workqueue.h"
39 #include "readsyms.h"
40 #include "parameters.h"
41 #include "layout.h"
42 #include "symtab.h"
43 #include "target-select.h"
44 #include "script.h"
45 #include "script-c.h"
46 #include "incremental.h"
47
48 namespace gold
49 {
50
51 // A token read from a script file. We don't implement keywords here;
52 // all keywords are simply represented as a string.
53
54 class Token
55 {
56 public:
57 // Token classification.
58 enum Classification
59 {
60 // Token is invalid.
61 TOKEN_INVALID,
62 // Token indicates end of input.
63 TOKEN_EOF,
64 // Token is a string of characters.
65 TOKEN_STRING,
66 // Token is a quoted string of characters.
67 TOKEN_QUOTED_STRING,
68 // Token is an operator.
69 TOKEN_OPERATOR,
70 // Token is a number (an integer).
71 TOKEN_INTEGER
72 };
73
74 // We need an empty constructor so that we can put this STL objects.
75 Token()
76 : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
77 opcode_(0), lineno_(0), charpos_(0)
78 { }
79
80 // A general token with no value.
81 Token(Classification classification, int lineno, int charpos)
82 : classification_(classification), value_(NULL), value_length_(0),
83 opcode_(0), lineno_(lineno), charpos_(charpos)
84 {
85 gold_assert(classification == TOKEN_INVALID
86 || classification == TOKEN_EOF);
87 }
88
89 // A general token with a value.
90 Token(Classification classification, const char* value, size_t length,
91 int lineno, int charpos)
92 : classification_(classification), value_(value), value_length_(length),
93 opcode_(0), lineno_(lineno), charpos_(charpos)
94 {
95 gold_assert(classification != TOKEN_INVALID
96 && classification != TOKEN_EOF);
97 }
98
99 // A token representing an operator.
100 Token(int opcode, int lineno, int charpos)
101 : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
102 opcode_(opcode), lineno_(lineno), charpos_(charpos)
103 { }
104
105 // Return whether the token is invalid.
106 bool
107 is_invalid() const
108 { return this->classification_ == TOKEN_INVALID; }
109
110 // Return whether this is an EOF token.
111 bool
112 is_eof() const
113 { return this->classification_ == TOKEN_EOF; }
114
115 // Return the token classification.
116 Classification
117 classification() const
118 { return this->classification_; }
119
120 // Return the line number at which the token starts.
121 int
122 lineno() const
123 { return this->lineno_; }
124
125 // Return the character position at this the token starts.
126 int
127 charpos() const
128 { return this->charpos_; }
129
130 // Get the value of a token.
131
132 const char*
133 string_value(size_t* length) const
134 {
135 gold_assert(this->classification_ == TOKEN_STRING
136 || this->classification_ == TOKEN_QUOTED_STRING);
137 *length = this->value_length_;
138 return this->value_;
139 }
140
141 int
142 operator_value() const
143 {
144 gold_assert(this->classification_ == TOKEN_OPERATOR);
145 return this->opcode_;
146 }
147
148 uint64_t
149 integer_value() const;
150
151 private:
152 // The token classification.
153 Classification classification_;
154 // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
155 // TOKEN_INTEGER.
156 const char* value_;
157 // The length of the token value.
158 size_t value_length_;
159 // The token value, for TOKEN_OPERATOR.
160 int opcode_;
161 // The line number where this token started (one based).
162 int lineno_;
163 // The character position within the line where this token started
164 // (one based).
165 int charpos_;
166 };
167
168 // Return the value of a TOKEN_INTEGER.
169
170 uint64_t
171 Token::integer_value() const
172 {
173 gold_assert(this->classification_ == TOKEN_INTEGER);
174
175 size_t len = this->value_length_;
176
177 uint64_t multiplier = 1;
178 char last = this->value_[len - 1];
179 if (last == 'm' || last == 'M')
180 {
181 multiplier = 1024 * 1024;
182 --len;
183 }
184 else if (last == 'k' || last == 'K')
185 {
186 multiplier = 1024;
187 --len;
188 }
189
190 char *end;
191 uint64_t ret = strtoull(this->value_, &end, 0);
192 gold_assert(static_cast<size_t>(end - this->value_) == len);
193
194 return ret * multiplier;
195 }
196
197 // This class handles lexing a file into a sequence of tokens.
198
199 class Lex
200 {
201 public:
202 // We unfortunately have to support different lexing modes, because
203 // when reading different parts of a linker script we need to parse
204 // things differently.
205 enum Mode
206 {
207 // Reading an ordinary linker script.
208 LINKER_SCRIPT,
209 // Reading an expression in a linker script.
210 EXPRESSION,
211 // Reading a version script.
212 VERSION_SCRIPT,
213 // Reading a --dynamic-list file.
214 DYNAMIC_LIST
215 };
216
217 Lex(const char* input_string, size_t input_length, int parsing_token)
218 : input_string_(input_string), input_length_(input_length),
219 current_(input_string), mode_(LINKER_SCRIPT),
220 first_token_(parsing_token), token_(),
221 lineno_(1), linestart_(input_string)
222 { }
223
224 // Read a file into a string.
225 static void
226 read_file(Input_file*, std::string*);
227
228 // Return the next token.
229 const Token*
230 next_token();
231
232 // Return the current lexing mode.
233 Lex::Mode
234 mode() const
235 { return this->mode_; }
236
237 // Set the lexing mode.
238 void
239 set_mode(Mode mode)
240 { this->mode_ = mode; }
241
242 private:
243 Lex(const Lex&);
244 Lex& operator=(const Lex&);
245
246 // Make a general token with no value at the current location.
247 Token
248 make_token(Token::Classification c, const char* start) const
249 { return Token(c, this->lineno_, start - this->linestart_ + 1); }
250
251 // Make a general token with a value at the current location.
252 Token
253 make_token(Token::Classification c, const char* v, size_t len,
254 const char* start)
255 const
256 { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
257
258 // Make an operator token at the current location.
259 Token
260 make_token(int opcode, const char* start) const
261 { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
262
263 // Make an invalid token at the current location.
264 Token
265 make_invalid_token(const char* start)
266 { return this->make_token(Token::TOKEN_INVALID, start); }
267
268 // Make an EOF token at the current location.
269 Token
270 make_eof_token(const char* start)
271 { return this->make_token(Token::TOKEN_EOF, start); }
272
273 // Return whether C can be the first character in a name. C2 is the
274 // next character, since we sometimes need that.
275 inline bool
276 can_start_name(char c, char c2);
277
278 // If C can appear in a name which has already started, return a
279 // pointer to a character later in the token or just past
280 // it. Otherwise, return NULL.
281 inline const char*
282 can_continue_name(const char* c);
283
284 // Return whether C, C2, C3 can start a hex number.
285 inline bool
286 can_start_hex(char c, char c2, char c3);
287
288 // If C can appear in a hex number which has already started, return
289 // a pointer to a character later in the token or just past
290 // it. Otherwise, return NULL.
291 inline const char*
292 can_continue_hex(const char* c);
293
294 // Return whether C can start a non-hex number.
295 static inline bool
296 can_start_number(char c);
297
298 // If C can appear in a decimal number which has already started,
299 // return a pointer to a character later in the token or just past
300 // it. Otherwise, return NULL.
301 inline const char*
302 can_continue_number(const char* c)
303 { return Lex::can_start_number(*c) ? c + 1 : NULL; }
304
305 // If C1 C2 C3 form a valid three character operator, return the
306 // opcode. Otherwise return 0.
307 static inline int
308 three_char_operator(char c1, char c2, char c3);
309
310 // If C1 C2 form a valid two character operator, return the opcode.
311 // Otherwise return 0.
312 static inline int
313 two_char_operator(char c1, char c2);
314
315 // If C1 is a valid one character operator, return the opcode.
316 // Otherwise return 0.
317 static inline int
318 one_char_operator(char c1);
319
320 // Read the next token.
321 Token
322 get_token(const char**);
323
324 // Skip a C style /* */ comment. Return false if the comment did
325 // not end.
326 bool
327 skip_c_comment(const char**);
328
329 // Skip a line # comment. Return false if there was no newline.
330 bool
331 skip_line_comment(const char**);
332
333 // Build a token CLASSIFICATION from all characters that match
334 // CAN_CONTINUE_FN. The token starts at START. Start matching from
335 // MATCH. Set *PP to the character following the token.
336 inline Token
337 gather_token(Token::Classification,
338 const char* (Lex::*can_continue_fn)(const char*),
339 const char* start, const char* match, const char** pp);
340
341 // Build a token from a quoted string.
342 Token
343 gather_quoted_string(const char** pp);
344
345 // The string we are tokenizing.
346 const char* input_string_;
347 // The length of the string.
348 size_t input_length_;
349 // The current offset into the string.
350 const char* current_;
351 // The current lexing mode.
352 Mode mode_;
353 // The code to use for the first token. This is set to 0 after it
354 // is used.
355 int first_token_;
356 // The current token.
357 Token token_;
358 // The current line number.
359 int lineno_;
360 // The start of the current line in the string.
361 const char* linestart_;
362 };
363
364 // Read the whole file into memory. We don't expect linker scripts to
365 // be large, so we just use a std::string as a buffer. We ignore the
366 // data we've already read, so that we read aligned buffers.
367
368 void
369 Lex::read_file(Input_file* input_file, std::string* contents)
370 {
371 off_t filesize = input_file->file().filesize();
372 contents->clear();
373 contents->reserve(filesize);
374
375 off_t off = 0;
376 unsigned char buf[BUFSIZ];
377 while (off < filesize)
378 {
379 off_t get = BUFSIZ;
380 if (get > filesize - off)
381 get = filesize - off;
382 input_file->file().read(off, get, buf);
383 contents->append(reinterpret_cast<char*>(&buf[0]), get);
384 off += get;
385 }
386 }
387
388 // Return whether C can be the start of a name, if the next character
389 // is C2. A name can being with a letter, underscore, period, or
390 // dollar sign. Because a name can be a file name, we also permit
391 // forward slash, backslash, and tilde. Tilde is the tricky case
392 // here; GNU ld also uses it as a bitwise not operator. It is only
393 // recognized as the operator if it is not immediately followed by
394 // some character which can appear in a symbol. That is, when we
395 // don't know that we are looking at an expression, "~0" is a file
396 // name, and "~ 0" is an expression using bitwise not. We are
397 // compatible.
398
399 inline bool
400 Lex::can_start_name(char c, char c2)
401 {
402 switch (c)
403 {
404 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
405 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
406 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
407 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
408 case 'Y': case 'Z':
409 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
410 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
411 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
412 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
413 case 'y': case 'z':
414 case '_': case '.': case '$':
415 return true;
416
417 case '/': case '\\':
418 return this->mode_ == LINKER_SCRIPT;
419
420 case '~':
421 return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
422
423 case '*': case '[':
424 return (this->mode_ == VERSION_SCRIPT
425 || this->mode_ == DYNAMIC_LIST
426 || (this->mode_ == LINKER_SCRIPT
427 && can_continue_name(&c2)));
428
429 default:
430 return false;
431 }
432 }
433
434 // Return whether C can continue a name which has already started.
435 // Subsequent characters in a name are the same as the leading
436 // characters, plus digits and "=+-:[],?*". So in general the linker
437 // script language requires spaces around operators, unless we know
438 // that we are parsing an expression.
439
440 inline const char*
441 Lex::can_continue_name(const char* c)
442 {
443 switch (*c)
444 {
445 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
446 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
447 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
448 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
449 case 'Y': case 'Z':
450 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
451 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
452 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
453 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
454 case 'y': case 'z':
455 case '_': case '.': case '$':
456 case '0': case '1': case '2': case '3': case '4':
457 case '5': case '6': case '7': case '8': case '9':
458 return c + 1;
459
460 // TODO(csilvers): why not allow ~ in names for version-scripts?
461 case '/': case '\\': case '~':
462 case '=': case '+':
463 case ',':
464 if (this->mode_ == LINKER_SCRIPT)
465 return c + 1;
466 return NULL;
467
468 case '[': case ']': case '*': case '?': case '-':
469 if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT
470 || this->mode_ == DYNAMIC_LIST)
471 return c + 1;
472 return NULL;
473
474 // TODO(csilvers): why allow this? ^ is meaningless in version scripts.
475 case '^':
476 if (this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
477 return c + 1;
478 return NULL;
479
480 case ':':
481 if (this->mode_ == LINKER_SCRIPT)
482 return c + 1;
483 else if ((this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
484 && (c[1] == ':'))
485 {
486 // A name can have '::' in it, as that's a c++ namespace
487 // separator. But a single colon is not part of a name.
488 return c + 2;
489 }
490 return NULL;
491
492 default:
493 return NULL;
494 }
495 }
496
497 // For a number we accept 0x followed by hex digits, or any sequence
498 // of digits. The old linker accepts leading '$' for hex, and
499 // trailing HXBOD. Those are for MRI compatibility and we don't
500 // accept them.
501
502 // Return whether C1 C2 C3 can start a hex number.
503
504 inline bool
505 Lex::can_start_hex(char c1, char c2, char c3)
506 {
507 if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
508 return this->can_continue_hex(&c3);
509 return false;
510 }
511
512 // Return whether C can appear in a hex number.
513
514 inline const char*
515 Lex::can_continue_hex(const char* c)
516 {
517 switch (*c)
518 {
519 case '0': case '1': case '2': case '3': case '4':
520 case '5': case '6': case '7': case '8': case '9':
521 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
522 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
523 return c + 1;
524
525 default:
526 return NULL;
527 }
528 }
529
530 // Return whether C can start a non-hex number.
531
532 inline bool
533 Lex::can_start_number(char c)
534 {
535 switch (c)
536 {
537 case '0': case '1': case '2': case '3': case '4':
538 case '5': case '6': case '7': case '8': case '9':
539 return true;
540
541 default:
542 return false;
543 }
544 }
545
546 // If C1 C2 C3 form a valid three character operator, return the
547 // opcode (defined in the yyscript.h file generated from yyscript.y).
548 // Otherwise return 0.
549
550 inline int
551 Lex::three_char_operator(char c1, char c2, char c3)
552 {
553 switch (c1)
554 {
555 case '<':
556 if (c2 == '<' && c3 == '=')
557 return LSHIFTEQ;
558 break;
559 case '>':
560 if (c2 == '>' && c3 == '=')
561 return RSHIFTEQ;
562 break;
563 default:
564 break;
565 }
566 return 0;
567 }
568
569 // If C1 C2 form a valid two character operator, return the opcode
570 // (defined in the yyscript.h file generated from yyscript.y).
571 // Otherwise return 0.
572
573 inline int
574 Lex::two_char_operator(char c1, char c2)
575 {
576 switch (c1)
577 {
578 case '=':
579 if (c2 == '=')
580 return EQ;
581 break;
582 case '!':
583 if (c2 == '=')
584 return NE;
585 break;
586 case '+':
587 if (c2 == '=')
588 return PLUSEQ;
589 break;
590 case '-':
591 if (c2 == '=')
592 return MINUSEQ;
593 break;
594 case '*':
595 if (c2 == '=')
596 return MULTEQ;
597 break;
598 case '/':
599 if (c2 == '=')
600 return DIVEQ;
601 break;
602 case '|':
603 if (c2 == '=')
604 return OREQ;
605 if (c2 == '|')
606 return OROR;
607 break;
608 case '&':
609 if (c2 == '=')
610 return ANDEQ;
611 if (c2 == '&')
612 return ANDAND;
613 break;
614 case '>':
615 if (c2 == '=')
616 return GE;
617 if (c2 == '>')
618 return RSHIFT;
619 break;
620 case '<':
621 if (c2 == '=')
622 return LE;
623 if (c2 == '<')
624 return LSHIFT;
625 break;
626 default:
627 break;
628 }
629 return 0;
630 }
631
632 // If C1 is a valid operator, return the opcode. Otherwise return 0.
633
634 inline int
635 Lex::one_char_operator(char c1)
636 {
637 switch (c1)
638 {
639 case '+':
640 case '-':
641 case '*':
642 case '/':
643 case '%':
644 case '!':
645 case '&':
646 case '|':
647 case '^':
648 case '~':
649 case '<':
650 case '>':
651 case '=':
652 case '?':
653 case ',':
654 case '(':
655 case ')':
656 case '{':
657 case '}':
658 case '[':
659 case ']':
660 case ':':
661 case ';':
662 return c1;
663 default:
664 return 0;
665 }
666 }
667
668 // Skip a C style comment. *PP points to just after the "/*". Return
669 // false if the comment did not end.
670
671 bool
672 Lex::skip_c_comment(const char** pp)
673 {
674 const char* p = *pp;
675 while (p[0] != '*' || p[1] != '/')
676 {
677 if (*p == '\0')
678 {
679 *pp = p;
680 return false;
681 }
682
683 if (*p == '\n')
684 {
685 ++this->lineno_;
686 this->linestart_ = p + 1;
687 }
688 ++p;
689 }
690
691 *pp = p + 2;
692 return true;
693 }
694
695 // Skip a line # comment. Return false if there was no newline.
696
697 bool
698 Lex::skip_line_comment(const char** pp)
699 {
700 const char* p = *pp;
701 size_t skip = strcspn(p, "\n");
702 if (p[skip] == '\0')
703 {
704 *pp = p + skip;
705 return false;
706 }
707
708 p += skip + 1;
709 ++this->lineno_;
710 this->linestart_ = p;
711 *pp = p;
712
713 return true;
714 }
715
716 // Build a token CLASSIFICATION from all characters that match
717 // CAN_CONTINUE_FN. Update *PP.
718
719 inline Token
720 Lex::gather_token(Token::Classification classification,
721 const char* (Lex::*can_continue_fn)(const char*),
722 const char* start,
723 const char* match,
724 const char** pp)
725 {
726 const char* new_match = NULL;
727 while ((new_match = (this->*can_continue_fn)(match)) != NULL)
728 match = new_match;
729
730 // A special case: integers may be followed by a single M or K,
731 // case-insensitive.
732 if (classification == Token::TOKEN_INTEGER
733 && (*match == 'm' || *match == 'M' || *match == 'k' || *match == 'K'))
734 ++match;
735
736 *pp = match;
737 return this->make_token(classification, start, match - start, start);
738 }
739
740 // Build a token from a quoted string.
741
742 Token
743 Lex::gather_quoted_string(const char** pp)
744 {
745 const char* start = *pp;
746 const char* p = start;
747 ++p;
748 size_t skip = strcspn(p, "\"\n");
749 if (p[skip] != '"')
750 return this->make_invalid_token(start);
751 *pp = p + skip + 1;
752 return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
753 }
754
755 // Return the next token at *PP. Update *PP. General guideline: we
756 // require linker scripts to be simple ASCII. No unicode linker
757 // scripts. In particular we can assume that any '\0' is the end of
758 // the input.
759
760 Token
761 Lex::get_token(const char** pp)
762 {
763 const char* p = *pp;
764
765 while (true)
766 {
767 // Skip whitespace quickly.
768 while (*p == ' ' || *p == '\t' || *p == '\r')
769 ++p;
770
771 if (*p == '\n')
772 {
773 ++p;
774 ++this->lineno_;
775 this->linestart_ = p;
776 continue;
777 }
778
779 char c0 = *p;
780
781 if (c0 == '\0')
782 {
783 *pp = p;
784 return this->make_eof_token(p);
785 }
786
787 char c1 = p[1];
788
789 // Skip C style comments.
790 if (c0 == '/' && c1 == '*')
791 {
792 int lineno = this->lineno_;
793 int charpos = p - this->linestart_ + 1;
794
795 *pp = p + 2;
796 if (!this->skip_c_comment(pp))
797 return Token(Token::TOKEN_INVALID, lineno, charpos);
798 p = *pp;
799
800 continue;
801 }
802
803 // Skip line comments.
804 if (c0 == '#')
805 {
806 *pp = p + 1;
807 if (!this->skip_line_comment(pp))
808 return this->make_eof_token(p);
809 p = *pp;
810 continue;
811 }
812
813 // Check for a name.
814 if (this->can_start_name(c0, c1))
815 return this->gather_token(Token::TOKEN_STRING,
816 &Lex::can_continue_name,
817 p, p + 1, pp);
818
819 // We accept any arbitrary name in double quotes, as long as it
820 // does not cross a line boundary.
821 if (*p == '"')
822 {
823 *pp = p;
824 return this->gather_quoted_string(pp);
825 }
826
827 // Be careful not to lookahead past the end of the buffer.
828 char c2 = (c1 == '\0' ? '\0' : p[2]);
829
830 // Check for a number.
831
832 if (this->can_start_hex(c0, c1, c2))
833 return this->gather_token(Token::TOKEN_INTEGER,
834 &Lex::can_continue_hex,
835 p, p + 3, pp);
836
837 if (Lex::can_start_number(c0))
838 return this->gather_token(Token::TOKEN_INTEGER,
839 &Lex::can_continue_number,
840 p, p + 1, pp);
841
842 // Check for operators.
843
844 int opcode = Lex::three_char_operator(c0, c1, c2);
845 if (opcode != 0)
846 {
847 *pp = p + 3;
848 return this->make_token(opcode, p);
849 }
850
851 opcode = Lex::two_char_operator(c0, c1);
852 if (opcode != 0)
853 {
854 *pp = p + 2;
855 return this->make_token(opcode, p);
856 }
857
858 opcode = Lex::one_char_operator(c0);
859 if (opcode != 0)
860 {
861 *pp = p + 1;
862 return this->make_token(opcode, p);
863 }
864
865 return this->make_token(Token::TOKEN_INVALID, p);
866 }
867 }
868
869 // Return the next token.
870
871 const Token*
872 Lex::next_token()
873 {
874 // The first token is special.
875 if (this->first_token_ != 0)
876 {
877 this->token_ = Token(this->first_token_, 0, 0);
878 this->first_token_ = 0;
879 return &this->token_;
880 }
881
882 this->token_ = this->get_token(&this->current_);
883
884 // Don't let an early null byte fool us into thinking that we've
885 // reached the end of the file.
886 if (this->token_.is_eof()
887 && (static_cast<size_t>(this->current_ - this->input_string_)
888 < this->input_length_))
889 this->token_ = this->make_invalid_token(this->current_);
890
891 return &this->token_;
892 }
893
894 // class Symbol_assignment.
895
896 // Add the symbol to the symbol table. This makes sure the symbol is
897 // there and defined. The actual value is stored later. We can't
898 // determine the actual value at this point, because we can't
899 // necessarily evaluate the expression until all ordinary symbols have
900 // been finalized.
901
902 // The GNU linker lets symbol assignments in the linker script
903 // silently override defined symbols in object files. We are
904 // compatible. FIXME: Should we issue a warning?
905
906 void
907 Symbol_assignment::add_to_table(Symbol_table* symtab)
908 {
909 elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
910 this->sym_ = symtab->define_as_constant(this->name_.c_str(),
911 NULL, // version
912 (this->is_defsym_
913 ? Symbol_table::DEFSYM
914 : Symbol_table::SCRIPT),
915 0, // value
916 0, // size
917 elfcpp::STT_NOTYPE,
918 elfcpp::STB_GLOBAL,
919 vis,
920 0, // nonvis
921 this->provide_,
922 true); // force_override
923 }
924
925 // Finalize a symbol value.
926
927 void
928 Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
929 {
930 this->finalize_maybe_dot(symtab, layout, false, 0, NULL);
931 }
932
933 // Finalize a symbol value which can refer to the dot symbol.
934
935 void
936 Symbol_assignment::finalize_with_dot(Symbol_table* symtab,
937 const Layout* layout,
938 uint64_t dot_value,
939 Output_section* dot_section)
940 {
941 this->finalize_maybe_dot(symtab, layout, true, dot_value, dot_section);
942 }
943
944 // Finalize a symbol value, internal version.
945
946 void
947 Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab,
948 const Layout* layout,
949 bool is_dot_available,
950 uint64_t dot_value,
951 Output_section* dot_section)
952 {
953 // If we were only supposed to provide this symbol, the sym_ field
954 // will be NULL if the symbol was not referenced.
955 if (this->sym_ == NULL)
956 {
957 gold_assert(this->provide_);
958 return;
959 }
960
961 if (parameters->target().get_size() == 32)
962 {
963 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
964 this->sized_finalize<32>(symtab, layout, is_dot_available, dot_value,
965 dot_section);
966 #else
967 gold_unreachable();
968 #endif
969 }
970 else if (parameters->target().get_size() == 64)
971 {
972 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
973 this->sized_finalize<64>(symtab, layout, is_dot_available, dot_value,
974 dot_section);
975 #else
976 gold_unreachable();
977 #endif
978 }
979 else
980 gold_unreachable();
981 }
982
983 template<int size>
984 void
985 Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout,
986 bool is_dot_available, uint64_t dot_value,
987 Output_section* dot_section)
988 {
989 Output_section* section;
990 elfcpp::STT type = elfcpp::STT_NOTYPE;
991 elfcpp::STV vis = elfcpp::STV_DEFAULT;
992 unsigned char nonvis = 0;
993 uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout, true,
994 is_dot_available,
995 dot_value, dot_section,
996 &section, NULL, &type,
997 &vis, &nonvis, false, NULL);
998 Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
999 ssym->set_value(final_val);
1000 ssym->set_type(type);
1001 ssym->set_visibility(vis);
1002 ssym->set_nonvis(nonvis);
1003 if (section != NULL)
1004 ssym->set_output_section(section);
1005 }
1006
1007 // Set the symbol value if the expression yields an absolute value or
1008 // a value relative to DOT_SECTION.
1009
1010 void
1011 Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout,
1012 bool is_dot_available, uint64_t dot_value,
1013 Output_section* dot_section)
1014 {
1015 if (this->sym_ == NULL)
1016 return;
1017
1018 Output_section* val_section;
1019 bool is_valid;
1020 uint64_t val = this->val_->eval_maybe_dot(symtab, layout, false,
1021 is_dot_available, dot_value,
1022 dot_section, &val_section, NULL,
1023 NULL, NULL, NULL, false, &is_valid);
1024 if (!is_valid || (val_section != NULL && val_section != dot_section))
1025 return;
1026
1027 if (parameters->target().get_size() == 32)
1028 {
1029 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1030 Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_);
1031 ssym->set_value(val);
1032 #else
1033 gold_unreachable();
1034 #endif
1035 }
1036 else if (parameters->target().get_size() == 64)
1037 {
1038 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1039 Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_);
1040 ssym->set_value(val);
1041 #else
1042 gold_unreachable();
1043 #endif
1044 }
1045 else
1046 gold_unreachable();
1047 if (val_section != NULL)
1048 this->sym_->set_output_section(val_section);
1049 }
1050
1051 // Print for debugging.
1052
1053 void
1054 Symbol_assignment::print(FILE* f) const
1055 {
1056 if (this->provide_ && this->hidden_)
1057 fprintf(f, "PROVIDE_HIDDEN(");
1058 else if (this->provide_)
1059 fprintf(f, "PROVIDE(");
1060 else if (this->hidden_)
1061 gold_unreachable();
1062
1063 fprintf(f, "%s = ", this->name_.c_str());
1064 this->val_->print(f);
1065
1066 if (this->provide_ || this->hidden_)
1067 fprintf(f, ")");
1068
1069 fprintf(f, "\n");
1070 }
1071
1072 // Class Script_assertion.
1073
1074 // Check the assertion.
1075
1076 void
1077 Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
1078 {
1079 if (!this->check_->eval(symtab, layout, true))
1080 gold_error("%s", this->message_.c_str());
1081 }
1082
1083 // Print for debugging.
1084
1085 void
1086 Script_assertion::print(FILE* f) const
1087 {
1088 fprintf(f, "ASSERT(");
1089 this->check_->print(f);
1090 fprintf(f, ", \"%s\")\n", this->message_.c_str());
1091 }
1092
1093 // Class Script_options.
1094
1095 Script_options::Script_options()
1096 : entry_(), symbol_assignments_(), symbol_definitions_(),
1097 symbol_references_(), version_script_info_(), script_sections_()
1098 {
1099 }
1100
1101 // Returns true if NAME is on the list of symbol assignments waiting
1102 // to be processed.
1103
1104 bool
1105 Script_options::is_pending_assignment(const char* name)
1106 {
1107 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1108 p != this->symbol_assignments_.end();
1109 ++p)
1110 if ((*p)->name() == name)
1111 return true;
1112 return false;
1113 }
1114
1115 // Populates the set with symbols defined in defsym LHS.
1116
1117 void Script_options::find_defsym_defs(Unordered_set<std::string>& defsym_set)
1118 {
1119 for (Symbol_assignments::const_iterator p = this->symbol_assignments_.begin();
1120 p != this->symbol_assignments_.end();
1121 ++p)
1122 {
1123 defsym_set.insert((*p)->name());
1124 }
1125 }
1126
1127 void
1128 Script_options::set_defsym_uses_in_real_elf(Symbol_table* symtab) const
1129 {
1130 for (Symbol_assignments::const_iterator p = this->symbol_assignments_.begin();
1131 p != this->symbol_assignments_.end();
1132 ++p)
1133 {
1134 (*p)->value()->set_expr_sym_in_real_elf(symtab);
1135 }
1136 }
1137
1138 // Add a symbol to be defined.
1139
1140 void
1141 Script_options::add_symbol_assignment(const char* name, size_t length,
1142 bool is_defsym, Expression* value,
1143 bool provide, bool hidden)
1144 {
1145 if (length != 1 || name[0] != '.')
1146 {
1147 if (this->script_sections_.in_sections_clause())
1148 {
1149 gold_assert(!is_defsym);
1150 this->script_sections_.add_symbol_assignment(name, length, value,
1151 provide, hidden);
1152 }
1153 else
1154 {
1155 Symbol_assignment* p = new Symbol_assignment(name, length, is_defsym,
1156 value, provide, hidden);
1157 this->symbol_assignments_.push_back(p);
1158 }
1159
1160 if (!provide)
1161 {
1162 std::string n(name, length);
1163 this->symbol_definitions_.insert(n);
1164 this->symbol_references_.erase(n);
1165 }
1166 }
1167 else
1168 {
1169 if (provide || hidden)
1170 gold_error(_("invalid use of PROVIDE for dot symbol"));
1171
1172 // The GNU linker permits assignments to dot outside of SECTIONS
1173 // clauses and treats them as occurring inside, so we don't
1174 // check in_sections_clause here.
1175 this->script_sections_.add_dot_assignment(value);
1176 }
1177 }
1178
1179 // Add a reference to a symbol.
1180
1181 void
1182 Script_options::add_symbol_reference(const char* name, size_t length)
1183 {
1184 if (length != 1 || name[0] != '.')
1185 {
1186 std::string n(name, length);
1187 if (this->symbol_definitions_.find(n) == this->symbol_definitions_.end())
1188 this->symbol_references_.insert(n);
1189 }
1190 }
1191
1192 // Add an assertion.
1193
1194 void
1195 Script_options::add_assertion(Expression* check, const char* message,
1196 size_t messagelen)
1197 {
1198 if (this->script_sections_.in_sections_clause())
1199 this->script_sections_.add_assertion(check, message, messagelen);
1200 else
1201 {
1202 Script_assertion* p = new Script_assertion(check, message, messagelen);
1203 this->assertions_.push_back(p);
1204 }
1205 }
1206
1207 // Create sections required by any linker scripts.
1208
1209 void
1210 Script_options::create_script_sections(Layout* layout)
1211 {
1212 if (this->saw_sections_clause())
1213 this->script_sections_.create_sections(layout);
1214 }
1215
1216 // Add any symbols we are defining to the symbol table.
1217
1218 void
1219 Script_options::add_symbols_to_table(Symbol_table* symtab)
1220 {
1221 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1222 p != this->symbol_assignments_.end();
1223 ++p)
1224 (*p)->add_to_table(symtab);
1225 this->script_sections_.add_symbols_to_table(symtab);
1226 }
1227
1228 // Finalize symbol values. Also check assertions.
1229
1230 void
1231 Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1232 {
1233 // We finalize the symbols defined in SECTIONS first, because they
1234 // are the ones which may have changed. This way if symbol outside
1235 // SECTIONS are defined in terms of symbols inside SECTIONS, they
1236 // will get the right value.
1237 this->script_sections_.finalize_symbols(symtab, layout);
1238
1239 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1240 p != this->symbol_assignments_.end();
1241 ++p)
1242 (*p)->finalize(symtab, layout);
1243
1244 for (Assertions::iterator p = this->assertions_.begin();
1245 p != this->assertions_.end();
1246 ++p)
1247 (*p)->check(symtab, layout);
1248 }
1249
1250 // Set section addresses. We set all the symbols which have absolute
1251 // values. Then we let the SECTIONS clause do its thing. This
1252 // returns the segment which holds the file header and segment
1253 // headers, if any.
1254
1255 Output_segment*
1256 Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout)
1257 {
1258 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1259 p != this->symbol_assignments_.end();
1260 ++p)
1261 (*p)->set_if_absolute(symtab, layout, false, 0, NULL);
1262
1263 return this->script_sections_.set_section_addresses(symtab, layout);
1264 }
1265
1266 // This class holds data passed through the parser to the lexer and to
1267 // the parser support functions. This avoids global variables. We
1268 // can't use global variables because we need not be called by a
1269 // singleton thread.
1270
1271 class Parser_closure
1272 {
1273 public:
1274 Parser_closure(const char* filename,
1275 const Position_dependent_options& posdep_options,
1276 bool parsing_defsym, bool in_group, bool is_in_sysroot,
1277 Command_line* command_line,
1278 Script_options* script_options,
1279 Lex* lex,
1280 bool skip_on_incompatible_target,
1281 Script_info* script_info)
1282 : filename_(filename), posdep_options_(posdep_options),
1283 parsing_defsym_(parsing_defsym), in_group_(in_group),
1284 is_in_sysroot_(is_in_sysroot),
1285 skip_on_incompatible_target_(skip_on_incompatible_target),
1286 found_incompatible_target_(false),
1287 command_line_(command_line), script_options_(script_options),
1288 version_script_info_(script_options->version_script_info()),
1289 lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL),
1290 script_info_(script_info)
1291 {
1292 // We start out processing C symbols in the default lex mode.
1293 this->language_stack_.push_back(Version_script_info::LANGUAGE_C);
1294 this->lex_mode_stack_.push_back(lex->mode());
1295 }
1296
1297 // Return the file name.
1298 const char*
1299 filename() const
1300 { return this->filename_; }
1301
1302 // Return the position dependent options. The caller may modify
1303 // this.
1304 Position_dependent_options&
1305 position_dependent_options()
1306 { return this->posdep_options_; }
1307
1308 // Whether we are parsing a --defsym.
1309 bool
1310 parsing_defsym() const
1311 { return this->parsing_defsym_; }
1312
1313 // Return whether this script is being run in a group.
1314 bool
1315 in_group() const
1316 { return this->in_group_; }
1317
1318 // Return whether this script was found using a directory in the
1319 // sysroot.
1320 bool
1321 is_in_sysroot() const
1322 { return this->is_in_sysroot_; }
1323
1324 // Whether to skip to the next file with the same name if we find an
1325 // incompatible target in an OUTPUT_FORMAT statement.
1326 bool
1327 skip_on_incompatible_target() const
1328 { return this->skip_on_incompatible_target_; }
1329
1330 // Stop skipping to the next file on an incompatible target. This
1331 // is called when we make some unrevocable change to the data
1332 // structures.
1333 void
1334 clear_skip_on_incompatible_target()
1335 { this->skip_on_incompatible_target_ = false; }
1336
1337 // Whether we found an incompatible target in an OUTPUT_FORMAT
1338 // statement.
1339 bool
1340 found_incompatible_target() const
1341 { return this->found_incompatible_target_; }
1342
1343 // Note that we found an incompatible target.
1344 void
1345 set_found_incompatible_target()
1346 { this->found_incompatible_target_ = true; }
1347
1348 // Returns the Command_line structure passed in at constructor time.
1349 // This value may be NULL. The caller may modify this, which modifies
1350 // the passed-in Command_line object (not a copy).
1351 Command_line*
1352 command_line()
1353 { return this->command_line_; }
1354
1355 // Return the options which may be set by a script.
1356 Script_options*
1357 script_options()
1358 { return this->script_options_; }
1359
1360 // Return the object in which version script information should be stored.
1361 Version_script_info*
1362 version_script()
1363 { return this->version_script_info_; }
1364
1365 // Return the next token, and advance.
1366 const Token*
1367 next_token()
1368 {
1369 const Token* token = this->lex_->next_token();
1370 this->lineno_ = token->lineno();
1371 this->charpos_ = token->charpos();
1372 return token;
1373 }
1374
1375 // Set a new lexer mode, pushing the current one.
1376 void
1377 push_lex_mode(Lex::Mode mode)
1378 {
1379 this->lex_mode_stack_.push_back(this->lex_->mode());
1380 this->lex_->set_mode(mode);
1381 }
1382
1383 // Pop the lexer mode.
1384 void
1385 pop_lex_mode()
1386 {
1387 gold_assert(!this->lex_mode_stack_.empty());
1388 this->lex_->set_mode(this->lex_mode_stack_.back());
1389 this->lex_mode_stack_.pop_back();
1390 }
1391
1392 // Return the current lexer mode.
1393 Lex::Mode
1394 lex_mode() const
1395 { return this->lex_mode_stack_.back(); }
1396
1397 // Return the line number of the last token.
1398 int
1399 lineno() const
1400 { return this->lineno_; }
1401
1402 // Return the character position in the line of the last token.
1403 int
1404 charpos() const
1405 { return this->charpos_; }
1406
1407 // Return the list of input files, creating it if necessary. This
1408 // is a space leak--we never free the INPUTS_ pointer.
1409 Input_arguments*
1410 inputs()
1411 {
1412 if (this->inputs_ == NULL)
1413 this->inputs_ = new Input_arguments();
1414 return this->inputs_;
1415 }
1416
1417 // Return whether we saw any input files.
1418 bool
1419 saw_inputs() const
1420 { return this->inputs_ != NULL && !this->inputs_->empty(); }
1421
1422 // Return the current language being processed in a version script
1423 // (eg, "C++"). The empty string represents unmangled C names.
1424 Version_script_info::Language
1425 get_current_language() const
1426 { return this->language_stack_.back(); }
1427
1428 // Push a language onto the stack when entering an extern block.
1429 void
1430 push_language(Version_script_info::Language lang)
1431 { this->language_stack_.push_back(lang); }
1432
1433 // Pop a language off of the stack when exiting an extern block.
1434 void
1435 pop_language()
1436 {
1437 gold_assert(!this->language_stack_.empty());
1438 this->language_stack_.pop_back();
1439 }
1440
1441 // Return a pointer to the incremental info.
1442 Script_info*
1443 script_info()
1444 { return this->script_info_; }
1445
1446 private:
1447 // The name of the file we are reading.
1448 const char* filename_;
1449 // The position dependent options.
1450 Position_dependent_options posdep_options_;
1451 // True if we are parsing a --defsym.
1452 bool parsing_defsym_;
1453 // Whether we are currently in a --start-group/--end-group.
1454 bool in_group_;
1455 // Whether the script was found in a sysrooted directory.
1456 bool is_in_sysroot_;
1457 // If this is true, then if we find an OUTPUT_FORMAT with an
1458 // incompatible target, then we tell the parser to abort so that we
1459 // can search for the next file with the same name.
1460 bool skip_on_incompatible_target_;
1461 // True if we found an OUTPUT_FORMAT with an incompatible target.
1462 bool found_incompatible_target_;
1463 // May be NULL if the user chooses not to pass one in.
1464 Command_line* command_line_;
1465 // Options which may be set from any linker script.
1466 Script_options* script_options_;
1467 // Information parsed from a version script.
1468 Version_script_info* version_script_info_;
1469 // The lexer.
1470 Lex* lex_;
1471 // The line number of the last token returned by next_token.
1472 int lineno_;
1473 // The column number of the last token returned by next_token.
1474 int charpos_;
1475 // A stack of lexer modes.
1476 std::vector<Lex::Mode> lex_mode_stack_;
1477 // A stack of which extern/language block we're inside. Can be C++,
1478 // java, or empty for C.
1479 std::vector<Version_script_info::Language> language_stack_;
1480 // New input files found to add to the link.
1481 Input_arguments* inputs_;
1482 // Pointer to incremental linking info.
1483 Script_info* script_info_;
1484 };
1485
1486 // FILE was found as an argument on the command line. Try to read it
1487 // as a script. Return true if the file was handled.
1488
1489 bool
1490 read_input_script(Workqueue* workqueue, Symbol_table* symtab, Layout* layout,
1491 Dirsearch* dirsearch, int dirindex,
1492 Input_objects* input_objects, Mapfile* mapfile,
1493 Input_group* input_group,
1494 const Input_argument* input_argument,
1495 Input_file* input_file, Task_token* next_blocker,
1496 bool* used_next_blocker)
1497 {
1498 *used_next_blocker = false;
1499
1500 std::string input_string;
1501 Lex::read_file(input_file, &input_string);
1502
1503 Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1504
1505 Script_info* script_info = NULL;
1506 if (layout->incremental_inputs() != NULL)
1507 {
1508 const std::string& filename = input_file->filename();
1509 Timespec mtime = input_file->file().get_mtime();
1510 unsigned int arg_serial = input_argument->file().arg_serial();
1511 script_info = new Script_info(filename);
1512 layout->incremental_inputs()->report_script(script_info, arg_serial,
1513 mtime);
1514 }
1515
1516 Parser_closure closure(input_file->filename().c_str(),
1517 input_argument->file().options(),
1518 false,
1519 input_group != NULL,
1520 input_file->is_in_sysroot(),
1521 NULL,
1522 layout->script_options(),
1523 &lex,
1524 input_file->will_search_for(),
1525 script_info);
1526
1527 bool old_saw_sections_clause =
1528 layout->script_options()->saw_sections_clause();
1529
1530 if (yyparse(&closure) != 0)
1531 {
1532 if (closure.found_incompatible_target())
1533 {
1534 Read_symbols::incompatible_warning(input_argument, input_file);
1535 Read_symbols::requeue(workqueue, input_objects, symtab, layout,
1536 dirsearch, dirindex, mapfile, input_argument,
1537 input_group, next_blocker);
1538 return true;
1539 }
1540 return false;
1541 }
1542
1543 if (!old_saw_sections_clause
1544 && layout->script_options()->saw_sections_clause()
1545 && layout->have_added_input_section())
1546 gold_error(_("%s: SECTIONS seen after other input files; try -T/--script"),
1547 input_file->filename().c_str());
1548
1549 if (!closure.saw_inputs())
1550 return true;
1551
1552 Task_token* this_blocker = NULL;
1553 for (Input_arguments::const_iterator p = closure.inputs()->begin();
1554 p != closure.inputs()->end();
1555 ++p)
1556 {
1557 Task_token* nb;
1558 if (p + 1 == closure.inputs()->end())
1559 nb = next_blocker;
1560 else
1561 {
1562 nb = new Task_token(true);
1563 nb->add_blocker();
1564 }
1565 workqueue->queue_soon(new Read_symbols(input_objects, symtab,
1566 layout, dirsearch, 0, mapfile, &*p,
1567 input_group, NULL, this_blocker, nb));
1568 this_blocker = nb;
1569 }
1570
1571 *used_next_blocker = true;
1572
1573 return true;
1574 }
1575
1576 // Helper function for read_version_script(), read_commandline_script() and
1577 // script_include_directive(). Processes the given file in the mode indicated
1578 // by first_token and lex_mode.
1579
1580 static bool
1581 read_script_file(const char* filename, Command_line* cmdline,
1582 Script_options* script_options,
1583 int first_token, Lex::Mode lex_mode)
1584 {
1585 Dirsearch dirsearch;
1586 std::string name = filename;
1587
1588 // If filename is a relative filename, search for it manually using "." +
1589 // cmdline->options()->library_path() -- not dirsearch.
1590 if (!IS_ABSOLUTE_PATH(filename))
1591 {
1592 const General_options::Dir_list& search_path =
1593 cmdline->options().library_path();
1594 name = Dirsearch::find_file_in_dir_list(name, search_path, ".");
1595 }
1596
1597 // The file locking code wants to record a Task, but we haven't
1598 // started the workqueue yet. This is only for debugging purposes,
1599 // so we invent a fake value.
1600 const Task* task = reinterpret_cast<const Task*>(-1);
1601
1602 // We don't want this file to be opened in binary mode.
1603 Position_dependent_options posdep = cmdline->position_dependent_options();
1604 if (posdep.format_enum() == General_options::OBJECT_FORMAT_BINARY)
1605 posdep.set_format_enum(General_options::OBJECT_FORMAT_ELF);
1606 Input_file_argument input_argument(name.c_str(),
1607 Input_file_argument::INPUT_FILE_TYPE_FILE,
1608 "", false, posdep);
1609 Input_file input_file(&input_argument);
1610 int dummy = 0;
1611 if (!input_file.open(dirsearch, task, &dummy))
1612 return false;
1613
1614 std::string input_string;
1615 Lex::read_file(&input_file, &input_string);
1616
1617 Lex lex(input_string.c_str(), input_string.length(), first_token);
1618 lex.set_mode(lex_mode);
1619
1620 Parser_closure closure(filename,
1621 cmdline->position_dependent_options(),
1622 first_token == Lex::DYNAMIC_LIST,
1623 false,
1624 input_file.is_in_sysroot(),
1625 cmdline,
1626 script_options,
1627 &lex,
1628 false,
1629 NULL);
1630 if (yyparse(&closure) != 0)
1631 {
1632 input_file.file().unlock(task);
1633 return false;
1634 }
1635
1636 input_file.file().unlock(task);
1637
1638 gold_assert(!closure.saw_inputs());
1639
1640 return true;
1641 }
1642
1643 // FILENAME was found as an argument to --script (-T).
1644 // Read it as a script, and execute its contents immediately.
1645
1646 bool
1647 read_commandline_script(const char* filename, Command_line* cmdline)
1648 {
1649 return read_script_file(filename, cmdline, &cmdline->script_options(),
1650 PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1651 }
1652
1653 // FILENAME was found as an argument to --version-script. Read it as
1654 // a version script, and store its contents in
1655 // cmdline->script_options()->version_script_info().
1656
1657 bool
1658 read_version_script(const char* filename, Command_line* cmdline)
1659 {
1660 return read_script_file(filename, cmdline, &cmdline->script_options(),
1661 PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1662 }
1663
1664 // FILENAME was found as an argument to --dynamic-list. Read it as a
1665 // list of symbols, and store its contents in DYNAMIC_LIST.
1666
1667 bool
1668 read_dynamic_list(const char* filename, Command_line* cmdline,
1669 Script_options* dynamic_list)
1670 {
1671 return read_script_file(filename, cmdline, dynamic_list,
1672 PARSING_DYNAMIC_LIST, Lex::DYNAMIC_LIST);
1673 }
1674
1675 // Implement the --defsym option on the command line. Return true if
1676 // all is well.
1677
1678 bool
1679 Script_options::define_symbol(const char* definition)
1680 {
1681 Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1682 lex.set_mode(Lex::EXPRESSION);
1683
1684 // Dummy value.
1685 Position_dependent_options posdep_options;
1686
1687 Parser_closure closure("command line", posdep_options, true,
1688 false, false, NULL, this, &lex, false, NULL);
1689
1690 if (yyparse(&closure) != 0)
1691 return false;
1692
1693 gold_assert(!closure.saw_inputs());
1694
1695 return true;
1696 }
1697
1698 // Print the script to F for debugging.
1699
1700 void
1701 Script_options::print(FILE* f) const
1702 {
1703 fprintf(f, "%s: Dumping linker script\n", program_name);
1704
1705 if (!this->entry_.empty())
1706 fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1707
1708 for (Symbol_assignments::const_iterator p =
1709 this->symbol_assignments_.begin();
1710 p != this->symbol_assignments_.end();
1711 ++p)
1712 (*p)->print(f);
1713
1714 for (Assertions::const_iterator p = this->assertions_.begin();
1715 p != this->assertions_.end();
1716 ++p)
1717 (*p)->print(f);
1718
1719 this->script_sections_.print(f);
1720
1721 this->version_script_info_.print(f);
1722 }
1723
1724 // Manage mapping from keywords to the codes expected by the bison
1725 // parser. We construct one global object for each lex mode with
1726 // keywords.
1727
1728 class Keyword_to_parsecode
1729 {
1730 public:
1731 // The structure which maps keywords to parsecodes.
1732 struct Keyword_parsecode
1733 {
1734 // Keyword.
1735 const char* keyword;
1736 // Corresponding parsecode.
1737 int parsecode;
1738 };
1739
1740 Keyword_to_parsecode(const Keyword_parsecode* keywords,
1741 int keyword_count)
1742 : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1743 { }
1744
1745 // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1746 // keyword.
1747 int
1748 keyword_to_parsecode(const char* keyword, size_t len) const;
1749
1750 private:
1751 const Keyword_parsecode* keyword_parsecodes_;
1752 const int keyword_count_;
1753 };
1754
1755 // Mapping from keyword string to keyword parsecode. This array must
1756 // be kept in sorted order. Parsecodes are looked up using bsearch.
1757 // This array must correspond to the list of parsecodes in yyscript.y.
1758
1759 static const Keyword_to_parsecode::Keyword_parsecode
1760 script_keyword_parsecodes[] =
1761 {
1762 { "ABSOLUTE", ABSOLUTE },
1763 { "ADDR", ADDR },
1764 { "ALIGN", ALIGN_K },
1765 { "ALIGNOF", ALIGNOF },
1766 { "ASSERT", ASSERT_K },
1767 { "AS_NEEDED", AS_NEEDED },
1768 { "AT", AT },
1769 { "BIND", BIND },
1770 { "BLOCK", BLOCK },
1771 { "BYTE", BYTE },
1772 { "CONSTANT", CONSTANT },
1773 { "CONSTRUCTORS", CONSTRUCTORS },
1774 { "COPY", COPY },
1775 { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1776 { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1777 { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1778 { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1779 { "DEFINED", DEFINED },
1780 { "DSECT", DSECT },
1781 { "ENTRY", ENTRY },
1782 { "EXCLUDE_FILE", EXCLUDE_FILE },
1783 { "EXTERN", EXTERN },
1784 { "FILL", FILL },
1785 { "FLOAT", FLOAT },
1786 { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1787 { "GROUP", GROUP },
1788 { "HIDDEN", HIDDEN },
1789 { "HLL", HLL },
1790 { "INCLUDE", INCLUDE },
1791 { "INFO", INFO },
1792 { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1793 { "INPUT", INPUT },
1794 { "KEEP", KEEP },
1795 { "LENGTH", LENGTH },
1796 { "LOADADDR", LOADADDR },
1797 { "LONG", LONG },
1798 { "MAP", MAP },
1799 { "MAX", MAX_K },
1800 { "MEMORY", MEMORY },
1801 { "MIN", MIN_K },
1802 { "NEXT", NEXT },
1803 { "NOCROSSREFS", NOCROSSREFS },
1804 { "NOFLOAT", NOFLOAT },
1805 { "NOLOAD", NOLOAD },
1806 { "ONLY_IF_RO", ONLY_IF_RO },
1807 { "ONLY_IF_RW", ONLY_IF_RW },
1808 { "OPTION", OPTION },
1809 { "ORIGIN", ORIGIN },
1810 { "OUTPUT", OUTPUT },
1811 { "OUTPUT_ARCH", OUTPUT_ARCH },
1812 { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1813 { "OVERLAY", OVERLAY },
1814 { "PHDRS", PHDRS },
1815 { "PROVIDE", PROVIDE },
1816 { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1817 { "QUAD", QUAD },
1818 { "SEARCH_DIR", SEARCH_DIR },
1819 { "SECTIONS", SECTIONS },
1820 { "SEGMENT_START", SEGMENT_START },
1821 { "SHORT", SHORT },
1822 { "SIZEOF", SIZEOF },
1823 { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1824 { "SORT", SORT_BY_NAME },
1825 { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1826 { "SORT_BY_INIT_PRIORITY", SORT_BY_INIT_PRIORITY },
1827 { "SORT_BY_NAME", SORT_BY_NAME },
1828 { "SPECIAL", SPECIAL },
1829 { "SQUAD", SQUAD },
1830 { "STARTUP", STARTUP },
1831 { "SUBALIGN", SUBALIGN },
1832 { "SYSLIB", SYSLIB },
1833 { "TARGET", TARGET_K },
1834 { "TRUNCATE", TRUNCATE },
1835 { "VERSION", VERSIONK },
1836 { "global", GLOBAL },
1837 { "l", LENGTH },
1838 { "len", LENGTH },
1839 { "local", LOCAL },
1840 { "o", ORIGIN },
1841 { "org", ORIGIN },
1842 { "sizeof_headers", SIZEOF_HEADERS },
1843 };
1844
1845 static const Keyword_to_parsecode
1846 script_keywords(&script_keyword_parsecodes[0],
1847 (sizeof(script_keyword_parsecodes)
1848 / sizeof(script_keyword_parsecodes[0])));
1849
1850 static const Keyword_to_parsecode::Keyword_parsecode
1851 version_script_keyword_parsecodes[] =
1852 {
1853 { "extern", EXTERN },
1854 { "global", GLOBAL },
1855 { "local", LOCAL },
1856 };
1857
1858 static const Keyword_to_parsecode
1859 version_script_keywords(&version_script_keyword_parsecodes[0],
1860 (sizeof(version_script_keyword_parsecodes)
1861 / sizeof(version_script_keyword_parsecodes[0])));
1862
1863 static const Keyword_to_parsecode::Keyword_parsecode
1864 dynamic_list_keyword_parsecodes[] =
1865 {
1866 { "extern", EXTERN },
1867 };
1868
1869 static const Keyword_to_parsecode
1870 dynamic_list_keywords(&dynamic_list_keyword_parsecodes[0],
1871 (sizeof(dynamic_list_keyword_parsecodes)
1872 / sizeof(dynamic_list_keyword_parsecodes[0])));
1873
1874
1875
1876 // Comparison function passed to bsearch.
1877
1878 extern "C"
1879 {
1880
1881 struct Ktt_key
1882 {
1883 const char* str;
1884 size_t len;
1885 };
1886
1887 static int
1888 ktt_compare(const void* keyv, const void* kttv)
1889 {
1890 const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1891 const Keyword_to_parsecode::Keyword_parsecode* ktt =
1892 static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1893 int i = strncmp(key->str, ktt->keyword, key->len);
1894 if (i != 0)
1895 return i;
1896 if (ktt->keyword[key->len] != '\0')
1897 return -1;
1898 return 0;
1899 }
1900
1901 } // End extern "C".
1902
1903 int
1904 Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1905 size_t len) const
1906 {
1907 Ktt_key key;
1908 key.str = keyword;
1909 key.len = len;
1910 void* kttv = bsearch(&key,
1911 this->keyword_parsecodes_,
1912 this->keyword_count_,
1913 sizeof(this->keyword_parsecodes_[0]),
1914 ktt_compare);
1915 if (kttv == NULL)
1916 return 0;
1917 Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1918 return ktt->parsecode;
1919 }
1920
1921 // The following structs are used within the VersionInfo class as well
1922 // as in the bison helper functions. They store the information
1923 // parsed from the version script.
1924
1925 // A single version expression.
1926 // For example, pattern="std::map*" and language="C++".
1927 struct Version_expression
1928 {
1929 Version_expression(const std::string& a_pattern,
1930 Version_script_info::Language a_language,
1931 bool a_exact_match)
1932 : pattern(a_pattern), language(a_language), exact_match(a_exact_match),
1933 was_matched_by_symbol(false)
1934 { }
1935
1936 std::string pattern;
1937 Version_script_info::Language language;
1938 // If false, we use glob() to match pattern. If true, we use strcmp().
1939 bool exact_match;
1940 // True if --no-undefined-version is in effect and we found this
1941 // version in get_symbol_version. We use mutable because this
1942 // struct is generally not modifiable after it has been created.
1943 mutable bool was_matched_by_symbol;
1944 };
1945
1946 // A list of expressions.
1947 struct Version_expression_list
1948 {
1949 std::vector<struct Version_expression> expressions;
1950 };
1951
1952 // A list of which versions upon which another version depends.
1953 // Strings should be from the Stringpool.
1954 struct Version_dependency_list
1955 {
1956 std::vector<std::string> dependencies;
1957 };
1958
1959 // The total definition of a version. It includes the tag for the
1960 // version, its global and local expressions, and any dependencies.
1961 struct Version_tree
1962 {
1963 Version_tree()
1964 : tag(), global(NULL), local(NULL), dependencies(NULL)
1965 { }
1966
1967 std::string tag;
1968 const struct Version_expression_list* global;
1969 const struct Version_expression_list* local;
1970 const struct Version_dependency_list* dependencies;
1971 };
1972
1973 // Helper class that calls cplus_demangle when needed and takes care of freeing
1974 // the result.
1975
1976 class Lazy_demangler
1977 {
1978 public:
1979 Lazy_demangler(const char* symbol, int options)
1980 : symbol_(symbol), options_(options), demangled_(NULL), did_demangle_(false)
1981 { }
1982
1983 ~Lazy_demangler()
1984 { free(this->demangled_); }
1985
1986 // Return the demangled name. The actual demangling happens on the first call,
1987 // and the result is later cached.
1988 inline char*
1989 get();
1990
1991 private:
1992 // The symbol to demangle.
1993 const char* symbol_;
1994 // Option flags to pass to cplus_demagle.
1995 const int options_;
1996 // The cached demangled value, or NULL if demangling didn't happen yet or
1997 // failed.
1998 char* demangled_;
1999 // Whether we already called cplus_demangle
2000 bool did_demangle_;
2001 };
2002
2003 // Return the demangled name. The actual demangling happens on the first call,
2004 // and the result is later cached. Returns NULL if the symbol cannot be
2005 // demangled.
2006
2007 inline char*
2008 Lazy_demangler::get()
2009 {
2010 if (!this->did_demangle_)
2011 {
2012 this->demangled_ = cplus_demangle(this->symbol_, this->options_);
2013 this->did_demangle_ = true;
2014 }
2015 return this->demangled_;
2016 }
2017
2018 // Class Version_script_info.
2019
2020 Version_script_info::Version_script_info()
2021 : dependency_lists_(), expression_lists_(), version_trees_(), globs_(),
2022 default_version_(NULL), default_is_global_(false), is_finalized_(false)
2023 {
2024 for (int i = 0; i < LANGUAGE_COUNT; ++i)
2025 this->exact_[i] = NULL;
2026 }
2027
2028 Version_script_info::~Version_script_info()
2029 {
2030 }
2031
2032 // Forget all the known version script information.
2033
2034 void
2035 Version_script_info::clear()
2036 {
2037 for (size_t k = 0; k < this->dependency_lists_.size(); ++k)
2038 delete this->dependency_lists_[k];
2039 this->dependency_lists_.clear();
2040 for (size_t k = 0; k < this->version_trees_.size(); ++k)
2041 delete this->version_trees_[k];
2042 this->version_trees_.clear();
2043 for (size_t k = 0; k < this->expression_lists_.size(); ++k)
2044 delete this->expression_lists_[k];
2045 this->expression_lists_.clear();
2046 }
2047
2048 // Finalize the version script information.
2049
2050 void
2051 Version_script_info::finalize()
2052 {
2053 if (!this->is_finalized_)
2054 {
2055 this->build_lookup_tables();
2056 this->is_finalized_ = true;
2057 }
2058 }
2059
2060 // Return all the versions.
2061
2062 std::vector<std::string>
2063 Version_script_info::get_versions() const
2064 {
2065 std::vector<std::string> ret;
2066 for (size_t j = 0; j < this->version_trees_.size(); ++j)
2067 if (!this->version_trees_[j]->tag.empty())
2068 ret.push_back(this->version_trees_[j]->tag);
2069 return ret;
2070 }
2071
2072 // Return the dependencies of VERSION.
2073
2074 std::vector<std::string>
2075 Version_script_info::get_dependencies(const char* version) const
2076 {
2077 std::vector<std::string> ret;
2078 for (size_t j = 0; j < this->version_trees_.size(); ++j)
2079 if (this->version_trees_[j]->tag == version)
2080 {
2081 const struct Version_dependency_list* deps =
2082 this->version_trees_[j]->dependencies;
2083 if (deps != NULL)
2084 for (size_t k = 0; k < deps->dependencies.size(); ++k)
2085 ret.push_back(deps->dependencies[k]);
2086 return ret;
2087 }
2088 return ret;
2089 }
2090
2091 // A version script essentially maps a symbol name to a version tag
2092 // and an indication of whether symbol is global or local within that
2093 // version tag. Each symbol maps to at most one version tag.
2094 // Unfortunately, in practice, version scripts are ambiguous, and list
2095 // symbols multiple times. Thus, we have to document the matching
2096 // process.
2097
2098 // This is a description of what the GNU linker does as of 2010-01-11.
2099 // It walks through the version tags in the order in which they appear
2100 // in the version script. For each tag, it first walks through the
2101 // global patterns for that tag, then the local patterns. When
2102 // looking at a single pattern, it first applies any language specific
2103 // demangling as specified for the pattern, and then matches the
2104 // resulting symbol name to the pattern. If it finds an exact match
2105 // for a literal pattern (a pattern enclosed in quotes or with no
2106 // wildcard characters), then that is the match that it uses. If
2107 // finds a match with a wildcard pattern, then it saves it and
2108 // continues searching. Wildcard patterns that are exactly "*" are
2109 // saved separately.
2110
2111 // If no exact match with a literal pattern is ever found, then if a
2112 // wildcard match with a global pattern was found it is used,
2113 // otherwise if a wildcard match with a local pattern was found it is
2114 // used.
2115
2116 // This is the result:
2117 // * If there is an exact match, then we use the first tag in the
2118 // version script where it matches.
2119 // + If the exact match in that tag is global, it is used.
2120 // + Otherwise the exact match in that tag is local, and is used.
2121 // * Otherwise, if there is any match with a global wildcard pattern:
2122 // + If there is any match with a wildcard pattern which is not
2123 // "*", then we use the tag in which the *last* such pattern
2124 // appears.
2125 // + Otherwise, we matched "*". If there is no match with a local
2126 // wildcard pattern which is not "*", then we use the *last*
2127 // match with a global "*". Otherwise, continue.
2128 // * Otherwise, if there is any match with a local wildcard pattern:
2129 // + If there is any match with a wildcard pattern which is not
2130 // "*", then we use the tag in which the *last* such pattern
2131 // appears.
2132 // + Otherwise, we matched "*", and we use the tag in which the
2133 // *last* such match occurred.
2134
2135 // There is an additional wrinkle. When the GNU linker finds a symbol
2136 // with a version defined in an object file due to a .symver
2137 // directive, it looks up that symbol name in that version tag. If it
2138 // finds it, it matches the symbol name against the patterns for that
2139 // version. If there is no match with a global pattern, but there is
2140 // a match with a local pattern, then the GNU linker marks the symbol
2141 // as local.
2142
2143 // We want gold to be generally compatible, but we also want gold to
2144 // be fast. These are the rules that gold implements:
2145 // * If there is an exact match for the mangled name, we use it.
2146 // + If there is more than one exact match, we give a warning, and
2147 // we use the first tag in the script which matches.
2148 // + If a symbol has an exact match as both global and local for
2149 // the same version tag, we give an error.
2150 // * Otherwise, we look for an extern C++ or an extern Java exact
2151 // match. If we find an exact match, we use it.
2152 // + If there is more than one exact match, we give a warning, and
2153 // we use the first tag in the script which matches.
2154 // + If a symbol has an exact match as both global and local for
2155 // the same version tag, we give an error.
2156 // * Otherwise, we look through the wildcard patterns, ignoring "*"
2157 // patterns. We look through the version tags in reverse order.
2158 // For each version tag, we look through the global patterns and
2159 // then the local patterns. We use the first match we find (i.e.,
2160 // the last matching version tag in the file).
2161 // * Otherwise, we use the "*" pattern if there is one. We give an
2162 // error if there are multiple "*" patterns.
2163
2164 // At least for now, gold does not look up the version tag for a
2165 // symbol version found in an object file to see if it should be
2166 // forced local. There are other ways to force a symbol to be local,
2167 // and I don't understand why this one is useful.
2168
2169 // Build a set of fast lookup tables for a version script.
2170
2171 void
2172 Version_script_info::build_lookup_tables()
2173 {
2174 size_t size = this->version_trees_.size();
2175 for (size_t j = 0; j < size; ++j)
2176 {
2177 const Version_tree* v = this->version_trees_[j];
2178 this->build_expression_list_lookup(v->local, v, false);
2179 this->build_expression_list_lookup(v->global, v, true);
2180 }
2181 }
2182
2183 // If a pattern has backlashes but no unquoted wildcard characters,
2184 // then we apply backslash unquoting and look for an exact match.
2185 // Otherwise we treat it as a wildcard pattern. This function returns
2186 // true for a wildcard pattern. Otherwise, it does backslash
2187 // unquoting on *PATTERN and returns false. If this returns true,
2188 // *PATTERN may have been partially unquoted.
2189
2190 bool
2191 Version_script_info::unquote(std::string* pattern) const
2192 {
2193 bool saw_backslash = false;
2194 size_t len = pattern->length();
2195 size_t j = 0;
2196 for (size_t i = 0; i < len; ++i)
2197 {
2198 if (saw_backslash)
2199 saw_backslash = false;
2200 else
2201 {
2202 switch ((*pattern)[i])
2203 {
2204 case '?': case '[': case '*':
2205 return true;
2206 case '\\':
2207 saw_backslash = true;
2208 continue;
2209 default:
2210 break;
2211 }
2212 }
2213
2214 if (i != j)
2215 (*pattern)[j] = (*pattern)[i];
2216 ++j;
2217 }
2218 return false;
2219 }
2220
2221 // Add an exact match for MATCH to *PE. The result of the match is
2222 // V/IS_GLOBAL.
2223
2224 void
2225 Version_script_info::add_exact_match(const std::string& match,
2226 const Version_tree* v, bool is_global,
2227 const Version_expression* ve,
2228 Exact* pe)
2229 {
2230 std::pair<Exact::iterator, bool> ins =
2231 pe->insert(std::make_pair(match, Version_tree_match(v, is_global, ve)));
2232 if (ins.second)
2233 {
2234 // This is the first time we have seen this match.
2235 return;
2236 }
2237
2238 Version_tree_match& vtm(ins.first->second);
2239 if (vtm.real->tag != v->tag)
2240 {
2241 // This is an ambiguous match. We still return the
2242 // first version that we found in the script, but we
2243 // record the new version to issue a warning if we
2244 // wind up looking up this symbol.
2245 if (vtm.ambiguous == NULL)
2246 vtm.ambiguous = v;
2247 }
2248 else if (is_global != vtm.is_global)
2249 {
2250 // We have a match for both the global and local entries for a
2251 // version tag. That's got to be wrong.
2252 gold_error(_("'%s' appears as both a global and a local symbol "
2253 "for version '%s' in script"),
2254 match.c_str(), v->tag.c_str());
2255 }
2256 }
2257
2258 // Build fast lookup information for EXPLIST and store it in LOOKUP.
2259 // All matches go to V, and IS_GLOBAL is true if they are global
2260 // matches.
2261
2262 void
2263 Version_script_info::build_expression_list_lookup(
2264 const Version_expression_list* explist,
2265 const Version_tree* v,
2266 bool is_global)
2267 {
2268 if (explist == NULL)
2269 return;
2270 size_t size = explist->expressions.size();
2271 for (size_t i = 0; i < size; ++i)
2272 {
2273 const Version_expression& exp(explist->expressions[i]);
2274
2275 if (exp.pattern.length() == 1 && exp.pattern[0] == '*')
2276 {
2277 if (this->default_version_ != NULL
2278 && this->default_version_->tag != v->tag)
2279 gold_warning(_("wildcard match appears in both version '%s' "
2280 "and '%s' in script"),
2281 this->default_version_->tag.c_str(), v->tag.c_str());
2282 else if (this->default_version_ != NULL
2283 && this->default_is_global_ != is_global)
2284 gold_error(_("wildcard match appears as both global and local "
2285 "in version '%s' in script"),
2286 v->tag.c_str());
2287 this->default_version_ = v;
2288 this->default_is_global_ = is_global;
2289 continue;
2290 }
2291
2292 std::string pattern = exp.pattern;
2293 if (!exp.exact_match)
2294 {
2295 if (this->unquote(&pattern))
2296 {
2297 this->globs_.push_back(Glob(&exp, v, is_global));
2298 continue;
2299 }
2300 }
2301
2302 if (this->exact_[exp.language] == NULL)
2303 this->exact_[exp.language] = new Exact();
2304 this->add_exact_match(pattern, v, is_global, &exp,
2305 this->exact_[exp.language]);
2306 }
2307 }
2308
2309 // Return the name to match given a name, a language code, and two
2310 // lazy demanglers.
2311
2312 const char*
2313 Version_script_info::get_name_to_match(const char* name,
2314 int language,
2315 Lazy_demangler* cpp_demangler,
2316 Lazy_demangler* java_demangler) const
2317 {
2318 switch (language)
2319 {
2320 case LANGUAGE_C:
2321 return name;
2322 case LANGUAGE_CXX:
2323 return cpp_demangler->get();
2324 case LANGUAGE_JAVA:
2325 return java_demangler->get();
2326 default:
2327 gold_unreachable();
2328 }
2329 }
2330
2331 // Look up SYMBOL_NAME in the list of versions. Return true if the
2332 // symbol is found, false if not. If the symbol is found, then if
2333 // PVERSION is not NULL, set *PVERSION to the version tag, and if
2334 // P_IS_GLOBAL is not NULL, set *P_IS_GLOBAL according to whether the
2335 // symbol is global or not.
2336
2337 bool
2338 Version_script_info::get_symbol_version(const char* symbol_name,
2339 std::string* pversion,
2340 bool* p_is_global) const
2341 {
2342 Lazy_demangler cpp_demangled_name(symbol_name, DMGL_ANSI | DMGL_PARAMS);
2343 Lazy_demangler java_demangled_name(symbol_name,
2344 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
2345
2346 gold_assert(this->is_finalized_);
2347 for (int i = 0; i < LANGUAGE_COUNT; ++i)
2348 {
2349 Exact* exact = this->exact_[i];
2350 if (exact == NULL)
2351 continue;
2352
2353 const char* name_to_match = this->get_name_to_match(symbol_name, i,
2354 &cpp_demangled_name,
2355 &java_demangled_name);
2356 if (name_to_match == NULL)
2357 {
2358 // If the name can not be demangled, the GNU linker goes
2359 // ahead and tries to match it anyhow. That does not
2360 // make sense to me and I have not implemented it.
2361 continue;
2362 }
2363
2364 Exact::const_iterator pe = exact->find(name_to_match);
2365 if (pe != exact->end())
2366 {
2367 const Version_tree_match& vtm(pe->second);
2368 if (vtm.ambiguous != NULL)
2369 gold_warning(_("using '%s' as version for '%s' which is also "
2370 "named in version '%s' in script"),
2371 vtm.real->tag.c_str(), name_to_match,
2372 vtm.ambiguous->tag.c_str());
2373
2374 if (pversion != NULL)
2375 *pversion = vtm.real->tag;
2376 if (p_is_global != NULL)
2377 *p_is_global = vtm.is_global;
2378
2379 // If we are using --no-undefined-version, and this is a
2380 // global symbol, we have to record that we have found this
2381 // symbol, so that we don't warn about it. We have to do
2382 // this now, because otherwise we have no way to get from a
2383 // non-C language back to the demangled name that we
2384 // matched.
2385 if (p_is_global != NULL && vtm.is_global)
2386 vtm.expression->was_matched_by_symbol = true;
2387
2388 return true;
2389 }
2390 }
2391
2392 // Look through the glob patterns in reverse order.
2393
2394 for (Globs::const_reverse_iterator p = this->globs_.rbegin();
2395 p != this->globs_.rend();
2396 ++p)
2397 {
2398 int language = p->expression->language;
2399 const char* name_to_match = this->get_name_to_match(symbol_name,
2400 language,
2401 &cpp_demangled_name,
2402 &java_demangled_name);
2403 if (name_to_match == NULL)
2404 continue;
2405
2406 if (fnmatch(p->expression->pattern.c_str(), name_to_match,
2407 FNM_NOESCAPE) == 0)
2408 {
2409 if (pversion != NULL)
2410 *pversion = p->version->tag;
2411 if (p_is_global != NULL)
2412 *p_is_global = p->is_global;
2413 return true;
2414 }
2415 }
2416
2417 // Finally, there may be a wildcard.
2418 if (this->default_version_ != NULL)
2419 {
2420 if (pversion != NULL)
2421 *pversion = this->default_version_->tag;
2422 if (p_is_global != NULL)
2423 *p_is_global = this->default_is_global_;
2424 return true;
2425 }
2426
2427 return false;
2428 }
2429
2430 // Give an error if any exact symbol names (not wildcards) appear in a
2431 // version script, but there is no such symbol.
2432
2433 void
2434 Version_script_info::check_unmatched_names(const Symbol_table* symtab) const
2435 {
2436 for (size_t i = 0; i < this->version_trees_.size(); ++i)
2437 {
2438 const Version_tree* vt = this->version_trees_[i];
2439 if (vt->global == NULL)
2440 continue;
2441 for (size_t j = 0; j < vt->global->expressions.size(); ++j)
2442 {
2443 const Version_expression& expression(vt->global->expressions[j]);
2444
2445 // Ignore cases where we used the version because we saw a
2446 // symbol that we looked up. Note that
2447 // WAS_MATCHED_BY_SYMBOL will be true even if the symbol was
2448 // not a definition. That's OK as in that case we most
2449 // likely gave an undefined symbol error anyhow.
2450 if (expression.was_matched_by_symbol)
2451 continue;
2452
2453 // Just ignore names which are in languages other than C.
2454 // We have no way to look them up in the symbol table.
2455 if (expression.language != LANGUAGE_C)
2456 continue;
2457
2458 // Remove backslash quoting, and ignore wildcard patterns.
2459 std::string pattern = expression.pattern;
2460 if (!expression.exact_match)
2461 {
2462 if (this->unquote(&pattern))
2463 continue;
2464 }
2465
2466 if (symtab->lookup(pattern.c_str(), vt->tag.c_str()) == NULL)
2467 gold_error(_("version script assignment of %s to symbol %s "
2468 "failed: symbol not defined"),
2469 vt->tag.c_str(), pattern.c_str());
2470 }
2471 }
2472 }
2473
2474 struct Version_dependency_list*
2475 Version_script_info::allocate_dependency_list()
2476 {
2477 dependency_lists_.push_back(new Version_dependency_list);
2478 return dependency_lists_.back();
2479 }
2480
2481 struct Version_expression_list*
2482 Version_script_info::allocate_expression_list()
2483 {
2484 expression_lists_.push_back(new Version_expression_list);
2485 return expression_lists_.back();
2486 }
2487
2488 struct Version_tree*
2489 Version_script_info::allocate_version_tree()
2490 {
2491 version_trees_.push_back(new Version_tree);
2492 return version_trees_.back();
2493 }
2494
2495 // Print for debugging.
2496
2497 void
2498 Version_script_info::print(FILE* f) const
2499 {
2500 if (this->empty())
2501 return;
2502
2503 fprintf(f, "VERSION {");
2504
2505 for (size_t i = 0; i < this->version_trees_.size(); ++i)
2506 {
2507 const Version_tree* vt = this->version_trees_[i];
2508
2509 if (vt->tag.empty())
2510 fprintf(f, " {\n");
2511 else
2512 fprintf(f, " %s {\n", vt->tag.c_str());
2513
2514 if (vt->global != NULL)
2515 {
2516 fprintf(f, " global :\n");
2517 this->print_expression_list(f, vt->global);
2518 }
2519
2520 if (vt->local != NULL)
2521 {
2522 fprintf(f, " local :\n");
2523 this->print_expression_list(f, vt->local);
2524 }
2525
2526 fprintf(f, " }");
2527 if (vt->dependencies != NULL)
2528 {
2529 const Version_dependency_list* deps = vt->dependencies;
2530 for (size_t j = 0; j < deps->dependencies.size(); ++j)
2531 {
2532 if (j < deps->dependencies.size() - 1)
2533 fprintf(f, "\n");
2534 fprintf(f, " %s", deps->dependencies[j].c_str());
2535 }
2536 }
2537 fprintf(f, ";\n");
2538 }
2539
2540 fprintf(f, "}\n");
2541 }
2542
2543 void
2544 Version_script_info::print_expression_list(
2545 FILE* f,
2546 const Version_expression_list* vel) const
2547 {
2548 Version_script_info::Language current_language = LANGUAGE_C;
2549 for (size_t i = 0; i < vel->expressions.size(); ++i)
2550 {
2551 const Version_expression& ve(vel->expressions[i]);
2552
2553 if (ve.language != current_language)
2554 {
2555 if (current_language != LANGUAGE_C)
2556 fprintf(f, " }\n");
2557 switch (ve.language)
2558 {
2559 case LANGUAGE_C:
2560 break;
2561 case LANGUAGE_CXX:
2562 fprintf(f, " extern \"C++\" {\n");
2563 break;
2564 case LANGUAGE_JAVA:
2565 fprintf(f, " extern \"Java\" {\n");
2566 break;
2567 default:
2568 gold_unreachable();
2569 }
2570 current_language = ve.language;
2571 }
2572
2573 fprintf(f, " ");
2574 if (current_language != LANGUAGE_C)
2575 fprintf(f, " ");
2576
2577 if (ve.exact_match)
2578 fprintf(f, "\"");
2579 fprintf(f, "%s", ve.pattern.c_str());
2580 if (ve.exact_match)
2581 fprintf(f, "\"");
2582
2583 fprintf(f, "\n");
2584 }
2585
2586 if (current_language != LANGUAGE_C)
2587 fprintf(f, " }\n");
2588 }
2589
2590 } // End namespace gold.
2591
2592 // The remaining functions are extern "C", so it's clearer to not put
2593 // them in namespace gold.
2594
2595 using namespace gold;
2596
2597 // This function is called by the bison parser to return the next
2598 // token.
2599
2600 extern "C" int
2601 yylex(YYSTYPE* lvalp, void* closurev)
2602 {
2603 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2604 const Token* token = closure->next_token();
2605 switch (token->classification())
2606 {
2607 default:
2608 gold_unreachable();
2609
2610 case Token::TOKEN_INVALID:
2611 yyerror(closurev, "invalid character");
2612 return 0;
2613
2614 case Token::TOKEN_EOF:
2615 return 0;
2616
2617 case Token::TOKEN_STRING:
2618 {
2619 // This is either a keyword or a STRING.
2620 size_t len;
2621 const char* str = token->string_value(&len);
2622 int parsecode = 0;
2623 switch (closure->lex_mode())
2624 {
2625 case Lex::LINKER_SCRIPT:
2626 parsecode = script_keywords.keyword_to_parsecode(str, len);
2627 break;
2628 case Lex::VERSION_SCRIPT:
2629 parsecode = version_script_keywords.keyword_to_parsecode(str, len);
2630 break;
2631 case Lex::DYNAMIC_LIST:
2632 parsecode = dynamic_list_keywords.keyword_to_parsecode(str, len);
2633 break;
2634 default:
2635 break;
2636 }
2637 if (parsecode != 0)
2638 return parsecode;
2639 lvalp->string.value = str;
2640 lvalp->string.length = len;
2641 return STRING;
2642 }
2643
2644 case Token::TOKEN_QUOTED_STRING:
2645 lvalp->string.value = token->string_value(&lvalp->string.length);
2646 return QUOTED_STRING;
2647
2648 case Token::TOKEN_OPERATOR:
2649 return token->operator_value();
2650
2651 case Token::TOKEN_INTEGER:
2652 lvalp->integer = token->integer_value();
2653 return INTEGER;
2654 }
2655 }
2656
2657 // This function is called by the bison parser to report an error.
2658
2659 extern "C" void
2660 yyerror(void* closurev, const char* message)
2661 {
2662 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2663 gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
2664 closure->charpos(), message);
2665 }
2666
2667 // Called by the bison parser to add an external symbol to the link.
2668
2669 extern "C" void
2670 script_add_extern(void* closurev, const char* name, size_t length)
2671 {
2672 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2673 closure->script_options()->add_symbol_reference(name, length);
2674 }
2675
2676 // Called by the bison parser to add a file to the link.
2677
2678 extern "C" void
2679 script_add_file(void* closurev, const char* name, size_t length)
2680 {
2681 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2682
2683 // If this is an absolute path, and we found the script in the
2684 // sysroot, then we want to prepend the sysroot to the file name.
2685 // For example, this is how we handle a cross link to the x86_64
2686 // libc.so, which refers to /lib/libc.so.6.
2687 std::string name_string(name, length);
2688 const char* extra_search_path = ".";
2689 std::string script_directory;
2690 if (IS_ABSOLUTE_PATH(name_string.c_str()))
2691 {
2692 if (closure->is_in_sysroot())
2693 {
2694 const std::string& sysroot(parameters->options().sysroot());
2695 gold_assert(!sysroot.empty());
2696 name_string = sysroot + name_string;
2697 }
2698 }
2699 else
2700 {
2701 // In addition to checking the normal library search path, we
2702 // also want to check in the script-directory.
2703 const char* slash = strrchr(closure->filename(), '/');
2704 if (slash != NULL)
2705 {
2706 script_directory.assign(closure->filename(),
2707 slash - closure->filename() + 1);
2708 extra_search_path = script_directory.c_str();
2709 }
2710 }
2711
2712 Input_file_argument file(name_string.c_str(),
2713 Input_file_argument::INPUT_FILE_TYPE_FILE,
2714 extra_search_path, false,
2715 closure->position_dependent_options());
2716 Input_argument& arg = closure->inputs()->add_file(file);
2717 arg.set_script_info(closure->script_info());
2718 }
2719
2720 // Called by the bison parser to add a library to the link.
2721
2722 extern "C" void
2723 script_add_library(void* closurev, const char* name, size_t length)
2724 {
2725 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2726 std::string name_string(name, length);
2727
2728 if (name_string[0] != 'l')
2729 gold_error(_("library name must be prefixed with -l"));
2730
2731 Input_file_argument file(name_string.c_str() + 1,
2732 Input_file_argument::INPUT_FILE_TYPE_LIBRARY,
2733 "", false,
2734 closure->position_dependent_options());
2735 Input_argument& arg = closure->inputs()->add_file(file);
2736 arg.set_script_info(closure->script_info());
2737 }
2738
2739 // Called by the bison parser to start a group. If we are already in
2740 // a group, that means that this script was invoked within a
2741 // --start-group --end-group sequence on the command line, or that
2742 // this script was found in a GROUP of another script. In that case,
2743 // we simply continue the existing group, rather than starting a new
2744 // one. It is possible to construct a case in which this will do
2745 // something other than what would happen if we did a recursive group,
2746 // but it's hard to imagine why the different behaviour would be
2747 // useful for a real program. Avoiding recursive groups is simpler
2748 // and more efficient.
2749
2750 extern "C" void
2751 script_start_group(void* closurev)
2752 {
2753 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2754 if (!closure->in_group())
2755 closure->inputs()->start_group();
2756 }
2757
2758 // Called by the bison parser at the end of a group.
2759
2760 extern "C" void
2761 script_end_group(void* closurev)
2762 {
2763 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2764 if (!closure->in_group())
2765 closure->inputs()->end_group();
2766 }
2767
2768 // Called by the bison parser to start an AS_NEEDED list.
2769
2770 extern "C" void
2771 script_start_as_needed(void* closurev)
2772 {
2773 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2774 closure->position_dependent_options().set_as_needed(true);
2775 }
2776
2777 // Called by the bison parser at the end of an AS_NEEDED list.
2778
2779 extern "C" void
2780 script_end_as_needed(void* closurev)
2781 {
2782 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2783 closure->position_dependent_options().set_as_needed(false);
2784 }
2785
2786 // Called by the bison parser to set the entry symbol.
2787
2788 extern "C" void
2789 script_set_entry(void* closurev, const char* entry, size_t length)
2790 {
2791 // We'll parse this exactly the same as --entry=ENTRY on the commandline
2792 // TODO(csilvers): FIXME -- call set_entry directly.
2793 std::string arg("--entry=");
2794 arg.append(entry, length);
2795 script_parse_option(closurev, arg.c_str(), arg.size());
2796 }
2797
2798 // Called by the bison parser to set whether to define common symbols.
2799
2800 extern "C" void
2801 script_set_common_allocation(void* closurev, int set)
2802 {
2803 const char* arg = set != 0 ? "--define-common" : "--no-define-common";
2804 script_parse_option(closurev, arg, strlen(arg));
2805 }
2806
2807 // Called by the bison parser to refer to a symbol.
2808
2809 extern "C" Expression*
2810 script_symbol(void* closurev, const char* name, size_t length)
2811 {
2812 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2813 if (length != 1 || name[0] != '.')
2814 closure->script_options()->add_symbol_reference(name, length);
2815 return script_exp_string(name, length);
2816 }
2817
2818 // Called by the bison parser to define a symbol.
2819
2820 extern "C" void
2821 script_set_symbol(void* closurev, const char* name, size_t length,
2822 Expression* value, int providei, int hiddeni)
2823 {
2824 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2825 const bool provide = providei != 0;
2826 const bool hidden = hiddeni != 0;
2827 closure->script_options()->add_symbol_assignment(name, length,
2828 closure->parsing_defsym(),
2829 value, provide, hidden);
2830 closure->clear_skip_on_incompatible_target();
2831 }
2832
2833 // Called by the bison parser to add an assertion.
2834
2835 extern "C" void
2836 script_add_assertion(void* closurev, Expression* check, const char* message,
2837 size_t messagelen)
2838 {
2839 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2840 closure->script_options()->add_assertion(check, message, messagelen);
2841 closure->clear_skip_on_incompatible_target();
2842 }
2843
2844 // Called by the bison parser to parse an OPTION.
2845
2846 extern "C" void
2847 script_parse_option(void* closurev, const char* option, size_t length)
2848 {
2849 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2850 // We treat the option as a single command-line option, even if
2851 // it has internal whitespace.
2852 if (closure->command_line() == NULL)
2853 {
2854 // There are some options that we could handle here--e.g.,
2855 // -lLIBRARY. Should we bother?
2856 gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2857 " for scripts specified via -T/--script"),
2858 closure->filename(), closure->lineno(), closure->charpos());
2859 }
2860 else
2861 {
2862 bool past_a_double_dash_option = false;
2863 const char* mutable_option = strndup(option, length);
2864 gold_assert(mutable_option != NULL);
2865 closure->command_line()->process_one_option(1, &mutable_option, 0,
2866 &past_a_double_dash_option);
2867 // The General_options class will quite possibly store a pointer
2868 // into mutable_option, so we can't free it. In cases the class
2869 // does not store such a pointer, this is a memory leak. Alas. :(
2870 }
2871 closure->clear_skip_on_incompatible_target();
2872 }
2873
2874 // Called by the bison parser to handle OUTPUT_FORMAT. OUTPUT_FORMAT
2875 // takes either one or three arguments. In the three argument case,
2876 // the format depends on the endianness option, which we don't
2877 // currently support (FIXME). If we see an OUTPUT_FORMAT for the
2878 // wrong format, then we want to search for a new file. Returning 0
2879 // here will cause the parser to immediately abort.
2880
2881 extern "C" int
2882 script_check_output_format(void* closurev,
2883 const char* default_name, size_t default_length,
2884 const char*, size_t, const char*, size_t)
2885 {
2886 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2887 std::string name(default_name, default_length);
2888 Target* target = select_target_by_bfd_name(name.c_str());
2889 if (target == NULL || !parameters->is_compatible_target(target))
2890 {
2891 if (closure->skip_on_incompatible_target())
2892 {
2893 closure->set_found_incompatible_target();
2894 return 0;
2895 }
2896 // FIXME: Should we warn about the unknown target?
2897 }
2898 return 1;
2899 }
2900
2901 // Called by the bison parser to handle TARGET.
2902
2903 extern "C" void
2904 script_set_target(void* closurev, const char* target, size_t len)
2905 {
2906 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2907 std::string s(target, len);
2908 General_options::Object_format format_enum;
2909 format_enum = General_options::string_to_object_format(s.c_str());
2910 closure->position_dependent_options().set_format_enum(format_enum);
2911 }
2912
2913 // Called by the bison parser to handle SEARCH_DIR. This is handled
2914 // exactly like a -L option.
2915
2916 extern "C" void
2917 script_add_search_dir(void* closurev, const char* option, size_t length)
2918 {
2919 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2920 if (closure->command_line() == NULL)
2921 gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid"
2922 " for scripts specified via -T/--script"),
2923 closure->filename(), closure->lineno(), closure->charpos());
2924 else if (!closure->command_line()->options().nostdlib())
2925 {
2926 std::string s = "-L" + std::string(option, length);
2927 script_parse_option(closurev, s.c_str(), s.size());
2928 }
2929 }
2930
2931 /* Called by the bison parser to push the lexer into expression
2932 mode. */
2933
2934 extern "C" void
2935 script_push_lex_into_expression_mode(void* closurev)
2936 {
2937 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2938 closure->push_lex_mode(Lex::EXPRESSION);
2939 }
2940
2941 /* Called by the bison parser to push the lexer into version
2942 mode. */
2943
2944 extern "C" void
2945 script_push_lex_into_version_mode(void* closurev)
2946 {
2947 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2948 if (closure->version_script()->is_finalized())
2949 gold_error(_("%s:%d:%d: invalid use of VERSION in input file"),
2950 closure->filename(), closure->lineno(), closure->charpos());
2951 closure->push_lex_mode(Lex::VERSION_SCRIPT);
2952 }
2953
2954 /* Called by the bison parser to pop the lexer mode. */
2955
2956 extern "C" void
2957 script_pop_lex_mode(void* closurev)
2958 {
2959 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2960 closure->pop_lex_mode();
2961 }
2962
2963 // Register an entire version node. For example:
2964 //
2965 // GLIBC_2.1 {
2966 // global: foo;
2967 // } GLIBC_2.0;
2968 //
2969 // - tag is "GLIBC_2.1"
2970 // - tree contains the information "global: foo"
2971 // - deps contains "GLIBC_2.0"
2972
2973 extern "C" void
2974 script_register_vers_node(void*,
2975 const char* tag,
2976 int taglen,
2977 struct Version_tree* tree,
2978 struct Version_dependency_list* deps)
2979 {
2980 gold_assert(tree != NULL);
2981 tree->dependencies = deps;
2982 if (tag != NULL)
2983 tree->tag = std::string(tag, taglen);
2984 }
2985
2986 // Add a dependencies to the list of existing dependencies, if any,
2987 // and return the expanded list.
2988
2989 extern "C" struct Version_dependency_list*
2990 script_add_vers_depend(void* closurev,
2991 struct Version_dependency_list* all_deps,
2992 const char* depend_to_add, int deplen)
2993 {
2994 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2995 if (all_deps == NULL)
2996 all_deps = closure->version_script()->allocate_dependency_list();
2997 all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2998 return all_deps;
2999 }
3000
3001 // Add a pattern expression to an existing list of expressions, if any.
3002
3003 extern "C" struct Version_expression_list*
3004 script_new_vers_pattern(void* closurev,
3005 struct Version_expression_list* expressions,
3006 const char* pattern, int patlen, int exact_match)
3007 {
3008 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3009 if (expressions == NULL)
3010 expressions = closure->version_script()->allocate_expression_list();
3011 expressions->expressions.push_back(
3012 Version_expression(std::string(pattern, patlen),
3013 closure->get_current_language(),
3014 static_cast<bool>(exact_match)));
3015 return expressions;
3016 }
3017
3018 // Attaches b to the end of a, and clears b. So a = a + b and b = {}.
3019
3020 extern "C" struct Version_expression_list*
3021 script_merge_expressions(struct Version_expression_list* a,
3022 struct Version_expression_list* b)
3023 {
3024 a->expressions.insert(a->expressions.end(),
3025 b->expressions.begin(), b->expressions.end());
3026 // We could delete b and remove it from expressions_lists_, but
3027 // that's a lot of work. This works just as well.
3028 b->expressions.clear();
3029 return a;
3030 }
3031
3032 // Combine the global and local expressions into a a Version_tree.
3033
3034 extern "C" struct Version_tree*
3035 script_new_vers_node(void* closurev,
3036 struct Version_expression_list* global,
3037 struct Version_expression_list* local)
3038 {
3039 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3040 Version_tree* tree = closure->version_script()->allocate_version_tree();
3041 tree->global = global;
3042 tree->local = local;
3043 return tree;
3044 }
3045
3046 // Handle a transition in language, such as at the
3047 // start or end of 'extern "C++"'
3048
3049 extern "C" void
3050 version_script_push_lang(void* closurev, const char* lang, int langlen)
3051 {
3052 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3053 std::string language(lang, langlen);
3054 Version_script_info::Language code;
3055 if (language.empty() || language == "C")
3056 code = Version_script_info::LANGUAGE_C;
3057 else if (language == "C++")
3058 code = Version_script_info::LANGUAGE_CXX;
3059 else if (language == "Java")
3060 code = Version_script_info::LANGUAGE_JAVA;
3061 else
3062 {
3063 char* buf = new char[langlen + 100];
3064 snprintf(buf, langlen + 100,
3065 _("unrecognized version script language '%s'"),
3066 language.c_str());
3067 yyerror(closurev, buf);
3068 delete[] buf;
3069 code = Version_script_info::LANGUAGE_C;
3070 }
3071 closure->push_language(code);
3072 }
3073
3074 extern "C" void
3075 version_script_pop_lang(void* closurev)
3076 {
3077 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3078 closure->pop_language();
3079 }
3080
3081 // Called by the bison parser to start a SECTIONS clause.
3082
3083 extern "C" void
3084 script_start_sections(void* closurev)
3085 {
3086 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3087 closure->script_options()->script_sections()->start_sections();
3088 closure->clear_skip_on_incompatible_target();
3089 }
3090
3091 // Called by the bison parser to finish a SECTIONS clause.
3092
3093 extern "C" void
3094 script_finish_sections(void* closurev)
3095 {
3096 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3097 closure->script_options()->script_sections()->finish_sections();
3098 }
3099
3100 // Start processing entries for an output section.
3101
3102 extern "C" void
3103 script_start_output_section(void* closurev, const char* name, size_t namelen,
3104 const struct Parser_output_section_header* header)
3105 {
3106 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3107 closure->script_options()->script_sections()->start_output_section(name,
3108 namelen,
3109 header);
3110 }
3111
3112 // Finish processing entries for an output section.
3113
3114 extern "C" void
3115 script_finish_output_section(void* closurev,
3116 const struct Parser_output_section_trailer* trail)
3117 {
3118 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3119 closure->script_options()->script_sections()->finish_output_section(trail);
3120 }
3121
3122 // Add a data item (e.g., "WORD (0)") to the current output section.
3123
3124 extern "C" void
3125 script_add_data(void* closurev, int data_token, Expression* val)
3126 {
3127 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3128 int size;
3129 bool is_signed = true;
3130 switch (data_token)
3131 {
3132 case QUAD:
3133 size = 8;
3134 is_signed = false;
3135 break;
3136 case SQUAD:
3137 size = 8;
3138 break;
3139 case LONG:
3140 size = 4;
3141 break;
3142 case SHORT:
3143 size = 2;
3144 break;
3145 case BYTE:
3146 size = 1;
3147 break;
3148 default:
3149 gold_unreachable();
3150 }
3151 closure->script_options()->script_sections()->add_data(size, is_signed, val);
3152 }
3153
3154 // Add a clause setting the fill value to the current output section.
3155
3156 extern "C" void
3157 script_add_fill(void* closurev, Expression* val)
3158 {
3159 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3160 closure->script_options()->script_sections()->add_fill(val);
3161 }
3162
3163 // Add a new input section specification to the current output
3164 // section.
3165
3166 extern "C" void
3167 script_add_input_section(void* closurev,
3168 const struct Input_section_spec* spec,
3169 int keepi)
3170 {
3171 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3172 bool keep = keepi != 0;
3173 closure->script_options()->script_sections()->add_input_section(spec, keep);
3174 }
3175
3176 // When we see DATA_SEGMENT_ALIGN we record that following output
3177 // sections may be relro.
3178
3179 extern "C" void
3180 script_data_segment_align(void* closurev)
3181 {
3182 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3183 if (!closure->script_options()->saw_sections_clause())
3184 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3185 closure->filename(), closure->lineno(), closure->charpos());
3186 else
3187 closure->script_options()->script_sections()->data_segment_align();
3188 }
3189
3190 // When we see DATA_SEGMENT_RELRO_END we know that all output sections
3191 // since DATA_SEGMENT_ALIGN should be relro.
3192
3193 extern "C" void
3194 script_data_segment_relro_end(void* closurev)
3195 {
3196 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3197 if (!closure->script_options()->saw_sections_clause())
3198 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3199 closure->filename(), closure->lineno(), closure->charpos());
3200 else
3201 closure->script_options()->script_sections()->data_segment_relro_end();
3202 }
3203
3204 // Create a new list of string/sort pairs.
3205
3206 extern "C" String_sort_list_ptr
3207 script_new_string_sort_list(const struct Wildcard_section* string_sort)
3208 {
3209 return new String_sort_list(1, *string_sort);
3210 }
3211
3212 // Add an entry to a list of string/sort pairs. The way the parser
3213 // works permits us to simply modify the first parameter, rather than
3214 // copy the vector.
3215
3216 extern "C" String_sort_list_ptr
3217 script_string_sort_list_add(String_sort_list_ptr pv,
3218 const struct Wildcard_section* string_sort)
3219 {
3220 if (pv == NULL)
3221 return script_new_string_sort_list(string_sort);
3222 else
3223 {
3224 pv->push_back(*string_sort);
3225 return pv;
3226 }
3227 }
3228
3229 // Create a new list of strings.
3230
3231 extern "C" String_list_ptr
3232 script_new_string_list(const char* str, size_t len)
3233 {
3234 return new String_list(1, std::string(str, len));
3235 }
3236
3237 // Add an element to a list of strings. The way the parser works
3238 // permits us to simply modify the first parameter, rather than copy
3239 // the vector.
3240
3241 extern "C" String_list_ptr
3242 script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
3243 {
3244 if (pv == NULL)
3245 return script_new_string_list(str, len);
3246 else
3247 {
3248 pv->push_back(std::string(str, len));
3249 return pv;
3250 }
3251 }
3252
3253 // Concatenate two string lists. Either or both may be NULL. The way
3254 // the parser works permits us to modify the parameters, rather than
3255 // copy the vector.
3256
3257 extern "C" String_list_ptr
3258 script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
3259 {
3260 if (pv1 == NULL)
3261 return pv2;
3262 if (pv2 == NULL)
3263 return pv1;
3264 pv1->insert(pv1->end(), pv2->begin(), pv2->end());
3265 return pv1;
3266 }
3267
3268 // Add a new program header.
3269
3270 extern "C" void
3271 script_add_phdr(void* closurev, const char* name, size_t namelen,
3272 unsigned int type, const Phdr_info* info)
3273 {
3274 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3275 bool includes_filehdr = info->includes_filehdr != 0;
3276 bool includes_phdrs = info->includes_phdrs != 0;
3277 bool is_flags_valid = info->is_flags_valid != 0;
3278 Script_sections* ss = closure->script_options()->script_sections();
3279 ss->add_phdr(name, namelen, type, includes_filehdr, includes_phdrs,
3280 is_flags_valid, info->flags, info->load_address);
3281 closure->clear_skip_on_incompatible_target();
3282 }
3283
3284 // Convert a program header string to a type.
3285
3286 #define PHDR_TYPE(NAME) { #NAME, sizeof(#NAME) - 1, elfcpp::NAME }
3287
3288 static struct
3289 {
3290 const char* name;
3291 size_t namelen;
3292 unsigned int val;
3293 } phdr_type_names[] =
3294 {
3295 PHDR_TYPE(PT_NULL),
3296 PHDR_TYPE(PT_LOAD),
3297 PHDR_TYPE(PT_DYNAMIC),
3298 PHDR_TYPE(PT_INTERP),
3299 PHDR_TYPE(PT_NOTE),
3300 PHDR_TYPE(PT_SHLIB),
3301 PHDR_TYPE(PT_PHDR),
3302 PHDR_TYPE(PT_TLS),
3303 PHDR_TYPE(PT_GNU_EH_FRAME),
3304 PHDR_TYPE(PT_GNU_STACK),
3305 PHDR_TYPE(PT_GNU_RELRO)
3306 };
3307
3308 extern "C" unsigned int
3309 script_phdr_string_to_type(void* closurev, const char* name, size_t namelen)
3310 {
3311 for (unsigned int i = 0;
3312 i < sizeof(phdr_type_names) / sizeof(phdr_type_names[0]);
3313 ++i)
3314 if (namelen == phdr_type_names[i].namelen
3315 && strncmp(name, phdr_type_names[i].name, namelen) == 0)
3316 return phdr_type_names[i].val;
3317 yyerror(closurev, _("unknown PHDR type (try integer)"));
3318 return elfcpp::PT_NULL;
3319 }
3320
3321 extern "C" void
3322 script_saw_segment_start_expression(void* closurev)
3323 {
3324 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3325 Script_sections* ss = closure->script_options()->script_sections();
3326 ss->set_saw_segment_start_expression(true);
3327 }
3328
3329 extern "C" void
3330 script_set_section_region(void* closurev, const char* name, size_t namelen,
3331 int set_vma)
3332 {
3333 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3334 if (!closure->script_options()->saw_sections_clause())
3335 {
3336 gold_error(_("%s:%d:%d: MEMORY region '%.*s' referred to outside of "
3337 "SECTIONS clause"),
3338 closure->filename(), closure->lineno(), closure->charpos(),
3339 static_cast<int>(namelen), name);
3340 return;
3341 }
3342
3343 Script_sections* ss = closure->script_options()->script_sections();
3344 Memory_region* mr = ss->find_memory_region(name, namelen);
3345 if (mr == NULL)
3346 {
3347 gold_error(_("%s:%d:%d: MEMORY region '%.*s' not declared"),
3348 closure->filename(), closure->lineno(), closure->charpos(),
3349 static_cast<int>(namelen), name);
3350 return;
3351 }
3352
3353 ss->set_memory_region(mr, set_vma);
3354 }
3355
3356 extern "C" void
3357 script_add_memory(void* closurev, const char* name, size_t namelen,
3358 unsigned int attrs, Expression* origin, Expression* length)
3359 {
3360 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3361 Script_sections* ss = closure->script_options()->script_sections();
3362 ss->add_memory_region(name, namelen, attrs, origin, length);
3363 }
3364
3365 extern "C" unsigned int
3366 script_parse_memory_attr(void* closurev, const char* attrs, size_t attrlen,
3367 int invert)
3368 {
3369 int attributes = 0;
3370
3371 while (attrlen--)
3372 switch (*attrs++)
3373 {
3374 case 'R':
3375 case 'r':
3376 attributes |= MEM_READABLE; break;
3377 case 'W':
3378 case 'w':
3379 attributes |= MEM_READABLE | MEM_WRITEABLE; break;
3380 case 'X':
3381 case 'x':
3382 attributes |= MEM_EXECUTABLE; break;
3383 case 'A':
3384 case 'a':
3385 attributes |= MEM_ALLOCATABLE; break;
3386 case 'I':
3387 case 'i':
3388 case 'L':
3389 case 'l':
3390 attributes |= MEM_INITIALIZED; break;
3391 default:
3392 yyerror(closurev, _("unknown MEMORY attribute"));
3393 }
3394
3395 if (invert)
3396 attributes = (~ attributes) & MEM_ATTR_MASK;
3397
3398 return attributes;
3399 }
3400
3401 extern "C" void
3402 script_include_directive(int first_token, void* closurev,
3403 const char* filename, size_t length)
3404 {
3405 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3406 std::string name(filename, length);
3407 Command_line* cmdline = closure->command_line();
3408 read_script_file(name.c_str(), cmdline, &cmdline->script_options(),
3409 first_token, Lex::LINKER_SCRIPT);
3410 }
3411
3412 // Functions for memory regions.
3413
3414 extern "C" Expression*
3415 script_exp_function_origin(void* closurev, const char* name, size_t namelen)
3416 {
3417 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3418 Script_sections* ss = closure->script_options()->script_sections();
3419 Expression* origin = ss->find_memory_region_origin(name, namelen);
3420
3421 if (origin == NULL)
3422 {
3423 gold_error(_("undefined memory region '%s' referenced "
3424 "in ORIGIN expression"),
3425 name);
3426 // Create a dummy expression to prevent crashes later on.
3427 origin = script_exp_integer(0);
3428 }
3429
3430 return origin;
3431 }
3432
3433 extern "C" Expression*
3434 script_exp_function_length(void* closurev, const char* name, size_t namelen)
3435 {
3436 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3437 Script_sections* ss = closure->script_options()->script_sections();
3438 Expression* length = ss->find_memory_region_length(name, namelen);
3439
3440 if (length == NULL)
3441 {
3442 gold_error(_("undefined memory region '%s' referenced "
3443 "in LENGTH expression"),
3444 name);
3445 // Create a dummy expression to prevent crashes later on.
3446 length = script_exp_integer(0);
3447 }
3448
3449 return length;
3450 }
This page took 0.102647 seconds and 4 git commands to generate.