2009-01-19 Andrew Stubbs <ams@codesourcery.com>
[deliverable/binutils-gdb.git] / gold / script.cc
1 // script.cc -- handle linker scripts for gold.
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdio>
26 #include <cstdlib>
27 #include <cstring>
28 #include <fnmatch.h>
29 #include <string>
30 #include <vector>
31 #include "filenames.h"
32
33 #include "elfcpp.h"
34 #include "demangle.h"
35 #include "dirsearch.h"
36 #include "options.h"
37 #include "fileread.h"
38 #include "workqueue.h"
39 #include "readsyms.h"
40 #include "parameters.h"
41 #include "layout.h"
42 #include "symtab.h"
43 #include "script.h"
44 #include "script-c.h"
45
46 namespace gold
47 {
48
49 // A token read from a script file. We don't implement keywords here;
50 // all keywords are simply represented as a string.
51
52 class Token
53 {
54 public:
55 // Token classification.
56 enum Classification
57 {
58 // Token is invalid.
59 TOKEN_INVALID,
60 // Token indicates end of input.
61 TOKEN_EOF,
62 // Token is a string of characters.
63 TOKEN_STRING,
64 // Token is a quoted string of characters.
65 TOKEN_QUOTED_STRING,
66 // Token is an operator.
67 TOKEN_OPERATOR,
68 // Token is a number (an integer).
69 TOKEN_INTEGER
70 };
71
72 // We need an empty constructor so that we can put this STL objects.
73 Token()
74 : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
75 opcode_(0), lineno_(0), charpos_(0)
76 { }
77
78 // A general token with no value.
79 Token(Classification classification, int lineno, int charpos)
80 : classification_(classification), value_(NULL), value_length_(0),
81 opcode_(0), lineno_(lineno), charpos_(charpos)
82 {
83 gold_assert(classification == TOKEN_INVALID
84 || classification == TOKEN_EOF);
85 }
86
87 // A general token with a value.
88 Token(Classification classification, const char* value, size_t length,
89 int lineno, int charpos)
90 : classification_(classification), value_(value), value_length_(length),
91 opcode_(0), lineno_(lineno), charpos_(charpos)
92 {
93 gold_assert(classification != TOKEN_INVALID
94 && classification != TOKEN_EOF);
95 }
96
97 // A token representing an operator.
98 Token(int opcode, int lineno, int charpos)
99 : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
100 opcode_(opcode), lineno_(lineno), charpos_(charpos)
101 { }
102
103 // Return whether the token is invalid.
104 bool
105 is_invalid() const
106 { return this->classification_ == TOKEN_INVALID; }
107
108 // Return whether this is an EOF token.
109 bool
110 is_eof() const
111 { return this->classification_ == TOKEN_EOF; }
112
113 // Return the token classification.
114 Classification
115 classification() const
116 { return this->classification_; }
117
118 // Return the line number at which the token starts.
119 int
120 lineno() const
121 { return this->lineno_; }
122
123 // Return the character position at this the token starts.
124 int
125 charpos() const
126 { return this->charpos_; }
127
128 // Get the value of a token.
129
130 const char*
131 string_value(size_t* length) const
132 {
133 gold_assert(this->classification_ == TOKEN_STRING
134 || this->classification_ == TOKEN_QUOTED_STRING);
135 *length = this->value_length_;
136 return this->value_;
137 }
138
139 int
140 operator_value() const
141 {
142 gold_assert(this->classification_ == TOKEN_OPERATOR);
143 return this->opcode_;
144 }
145
146 uint64_t
147 integer_value() const
148 {
149 gold_assert(this->classification_ == TOKEN_INTEGER);
150 // Null terminate.
151 std::string s(this->value_, this->value_length_);
152 return strtoull(s.c_str(), NULL, 0);
153 }
154
155 private:
156 // The token classification.
157 Classification classification_;
158 // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
159 // TOKEN_INTEGER.
160 const char* value_;
161 // The length of the token value.
162 size_t value_length_;
163 // The token value, for TOKEN_OPERATOR.
164 int opcode_;
165 // The line number where this token started (one based).
166 int lineno_;
167 // The character position within the line where this token started
168 // (one based).
169 int charpos_;
170 };
171
172 // This class handles lexing a file into a sequence of tokens.
173
174 class Lex
175 {
176 public:
177 // We unfortunately have to support different lexing modes, because
178 // when reading different parts of a linker script we need to parse
179 // things differently.
180 enum Mode
181 {
182 // Reading an ordinary linker script.
183 LINKER_SCRIPT,
184 // Reading an expression in a linker script.
185 EXPRESSION,
186 // Reading a version script.
187 VERSION_SCRIPT,
188 // Reading a --dynamic-list file.
189 DYNAMIC_LIST
190 };
191
192 Lex(const char* input_string, size_t input_length, int parsing_token)
193 : input_string_(input_string), input_length_(input_length),
194 current_(input_string), mode_(LINKER_SCRIPT),
195 first_token_(parsing_token), token_(),
196 lineno_(1), linestart_(input_string)
197 { }
198
199 // Read a file into a string.
200 static void
201 read_file(Input_file*, std::string*);
202
203 // Return the next token.
204 const Token*
205 next_token();
206
207 // Return the current lexing mode.
208 Lex::Mode
209 mode() const
210 { return this->mode_; }
211
212 // Set the lexing mode.
213 void
214 set_mode(Mode mode)
215 { this->mode_ = mode; }
216
217 private:
218 Lex(const Lex&);
219 Lex& operator=(const Lex&);
220
221 // Make a general token with no value at the current location.
222 Token
223 make_token(Token::Classification c, const char* start) const
224 { return Token(c, this->lineno_, start - this->linestart_ + 1); }
225
226 // Make a general token with a value at the current location.
227 Token
228 make_token(Token::Classification c, const char* v, size_t len,
229 const char* start)
230 const
231 { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
232
233 // Make an operator token at the current location.
234 Token
235 make_token(int opcode, const char* start) const
236 { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
237
238 // Make an invalid token at the current location.
239 Token
240 make_invalid_token(const char* start)
241 { return this->make_token(Token::TOKEN_INVALID, start); }
242
243 // Make an EOF token at the current location.
244 Token
245 make_eof_token(const char* start)
246 { return this->make_token(Token::TOKEN_EOF, start); }
247
248 // Return whether C can be the first character in a name. C2 is the
249 // next character, since we sometimes need that.
250 inline bool
251 can_start_name(char c, char c2);
252
253 // If C can appear in a name which has already started, return a
254 // pointer to a character later in the token or just past
255 // it. Otherwise, return NULL.
256 inline const char*
257 can_continue_name(const char* c);
258
259 // Return whether C, C2, C3 can start a hex number.
260 inline bool
261 can_start_hex(char c, char c2, char c3);
262
263 // If C can appear in a hex number which has already started, return
264 // a pointer to a character later in the token or just past
265 // it. Otherwise, return NULL.
266 inline const char*
267 can_continue_hex(const char* c);
268
269 // Return whether C can start a non-hex number.
270 static inline bool
271 can_start_number(char c);
272
273 // If C can appear in a decimal number which has already started,
274 // return a pointer to a character later in the token or just past
275 // it. Otherwise, return NULL.
276 inline const char*
277 can_continue_number(const char* c)
278 { return Lex::can_start_number(*c) ? c + 1 : NULL; }
279
280 // If C1 C2 C3 form a valid three character operator, return the
281 // opcode. Otherwise return 0.
282 static inline int
283 three_char_operator(char c1, char c2, char c3);
284
285 // If C1 C2 form a valid two character operator, return the opcode.
286 // Otherwise return 0.
287 static inline int
288 two_char_operator(char c1, char c2);
289
290 // If C1 is a valid one character operator, return the opcode.
291 // Otherwise return 0.
292 static inline int
293 one_char_operator(char c1);
294
295 // Read the next token.
296 Token
297 get_token(const char**);
298
299 // Skip a C style /* */ comment. Return false if the comment did
300 // not end.
301 bool
302 skip_c_comment(const char**);
303
304 // Skip a line # comment. Return false if there was no newline.
305 bool
306 skip_line_comment(const char**);
307
308 // Build a token CLASSIFICATION from all characters that match
309 // CAN_CONTINUE_FN. The token starts at START. Start matching from
310 // MATCH. Set *PP to the character following the token.
311 inline Token
312 gather_token(Token::Classification,
313 const char* (Lex::*can_continue_fn)(const char*),
314 const char* start, const char* match, const char** pp);
315
316 // Build a token from a quoted string.
317 Token
318 gather_quoted_string(const char** pp);
319
320 // The string we are tokenizing.
321 const char* input_string_;
322 // The length of the string.
323 size_t input_length_;
324 // The current offset into the string.
325 const char* current_;
326 // The current lexing mode.
327 Mode mode_;
328 // The code to use for the first token. This is set to 0 after it
329 // is used.
330 int first_token_;
331 // The current token.
332 Token token_;
333 // The current line number.
334 int lineno_;
335 // The start of the current line in the string.
336 const char* linestart_;
337 };
338
339 // Read the whole file into memory. We don't expect linker scripts to
340 // be large, so we just use a std::string as a buffer. We ignore the
341 // data we've already read, so that we read aligned buffers.
342
343 void
344 Lex::read_file(Input_file* input_file, std::string* contents)
345 {
346 off_t filesize = input_file->file().filesize();
347 contents->clear();
348 contents->reserve(filesize);
349
350 off_t off = 0;
351 unsigned char buf[BUFSIZ];
352 while (off < filesize)
353 {
354 off_t get = BUFSIZ;
355 if (get > filesize - off)
356 get = filesize - off;
357 input_file->file().read(off, get, buf);
358 contents->append(reinterpret_cast<char*>(&buf[0]), get);
359 off += get;
360 }
361 }
362
363 // Return whether C can be the start of a name, if the next character
364 // is C2. A name can being with a letter, underscore, period, or
365 // dollar sign. Because a name can be a file name, we also permit
366 // forward slash, backslash, and tilde. Tilde is the tricky case
367 // here; GNU ld also uses it as a bitwise not operator. It is only
368 // recognized as the operator if it is not immediately followed by
369 // some character which can appear in a symbol. That is, when we
370 // don't know that we are looking at an expression, "~0" is a file
371 // name, and "~ 0" is an expression using bitwise not. We are
372 // compatible.
373
374 inline bool
375 Lex::can_start_name(char c, char c2)
376 {
377 switch (c)
378 {
379 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
380 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
381 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
382 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
383 case 'Y': case 'Z':
384 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
385 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
386 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
387 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
388 case 'y': case 'z':
389 case '_': case '.': case '$':
390 return true;
391
392 case '/': case '\\':
393 return this->mode_ == LINKER_SCRIPT;
394
395 case '~':
396 return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
397
398 case '*': case '[':
399 return (this->mode_ == VERSION_SCRIPT
400 || this->mode_ == DYNAMIC_LIST
401 || (this->mode_ == LINKER_SCRIPT
402 && can_continue_name(&c2)));
403
404 default:
405 return false;
406 }
407 }
408
409 // Return whether C can continue a name which has already started.
410 // Subsequent characters in a name are the same as the leading
411 // characters, plus digits and "=+-:[],?*". So in general the linker
412 // script language requires spaces around operators, unless we know
413 // that we are parsing an expression.
414
415 inline const char*
416 Lex::can_continue_name(const char* c)
417 {
418 switch (*c)
419 {
420 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
421 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
422 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
423 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
424 case 'Y': case 'Z':
425 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
426 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
427 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
428 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
429 case 'y': case 'z':
430 case '_': case '.': case '$':
431 case '0': case '1': case '2': case '3': case '4':
432 case '5': case '6': case '7': case '8': case '9':
433 return c + 1;
434
435 // TODO(csilvers): why not allow ~ in names for version-scripts?
436 case '/': case '\\': case '~':
437 case '=': case '+':
438 case ',':
439 if (this->mode_ == LINKER_SCRIPT)
440 return c + 1;
441 return NULL;
442
443 case '[': case ']': case '*': case '?': case '-':
444 if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT
445 || this->mode_ == DYNAMIC_LIST)
446 return c + 1;
447 return NULL;
448
449 // TODO(csilvers): why allow this? ^ is meaningless in version scripts.
450 case '^':
451 if (this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
452 return c + 1;
453 return NULL;
454
455 case ':':
456 if (this->mode_ == LINKER_SCRIPT)
457 return c + 1;
458 else if ((this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
459 && (c[1] == ':'))
460 {
461 // A name can have '::' in it, as that's a c++ namespace
462 // separator. But a single colon is not part of a name.
463 return c + 2;
464 }
465 return NULL;
466
467 default:
468 return NULL;
469 }
470 }
471
472 // For a number we accept 0x followed by hex digits, or any sequence
473 // of digits. The old linker accepts leading '$' for hex, and
474 // trailing HXBOD. Those are for MRI compatibility and we don't
475 // accept them. The old linker also accepts trailing MK for mega or
476 // kilo. FIXME: Those are mentioned in the documentation, and we
477 // should accept them.
478
479 // Return whether C1 C2 C3 can start a hex number.
480
481 inline bool
482 Lex::can_start_hex(char c1, char c2, char c3)
483 {
484 if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
485 return this->can_continue_hex(&c3);
486 return false;
487 }
488
489 // Return whether C can appear in a hex number.
490
491 inline const char*
492 Lex::can_continue_hex(const char* c)
493 {
494 switch (*c)
495 {
496 case '0': case '1': case '2': case '3': case '4':
497 case '5': case '6': case '7': case '8': case '9':
498 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
499 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
500 return c + 1;
501
502 default:
503 return NULL;
504 }
505 }
506
507 // Return whether C can start a non-hex number.
508
509 inline bool
510 Lex::can_start_number(char c)
511 {
512 switch (c)
513 {
514 case '0': case '1': case '2': case '3': case '4':
515 case '5': case '6': case '7': case '8': case '9':
516 return true;
517
518 default:
519 return false;
520 }
521 }
522
523 // If C1 C2 C3 form a valid three character operator, return the
524 // opcode (defined in the yyscript.h file generated from yyscript.y).
525 // Otherwise return 0.
526
527 inline int
528 Lex::three_char_operator(char c1, char c2, char c3)
529 {
530 switch (c1)
531 {
532 case '<':
533 if (c2 == '<' && c3 == '=')
534 return LSHIFTEQ;
535 break;
536 case '>':
537 if (c2 == '>' && c3 == '=')
538 return RSHIFTEQ;
539 break;
540 default:
541 break;
542 }
543 return 0;
544 }
545
546 // If C1 C2 form a valid two character operator, return the opcode
547 // (defined in the yyscript.h file generated from yyscript.y).
548 // Otherwise return 0.
549
550 inline int
551 Lex::two_char_operator(char c1, char c2)
552 {
553 switch (c1)
554 {
555 case '=':
556 if (c2 == '=')
557 return EQ;
558 break;
559 case '!':
560 if (c2 == '=')
561 return NE;
562 break;
563 case '+':
564 if (c2 == '=')
565 return PLUSEQ;
566 break;
567 case '-':
568 if (c2 == '=')
569 return MINUSEQ;
570 break;
571 case '*':
572 if (c2 == '=')
573 return MULTEQ;
574 break;
575 case '/':
576 if (c2 == '=')
577 return DIVEQ;
578 break;
579 case '|':
580 if (c2 == '=')
581 return OREQ;
582 if (c2 == '|')
583 return OROR;
584 break;
585 case '&':
586 if (c2 == '=')
587 return ANDEQ;
588 if (c2 == '&')
589 return ANDAND;
590 break;
591 case '>':
592 if (c2 == '=')
593 return GE;
594 if (c2 == '>')
595 return RSHIFT;
596 break;
597 case '<':
598 if (c2 == '=')
599 return LE;
600 if (c2 == '<')
601 return LSHIFT;
602 break;
603 default:
604 break;
605 }
606 return 0;
607 }
608
609 // If C1 is a valid operator, return the opcode. Otherwise return 0.
610
611 inline int
612 Lex::one_char_operator(char c1)
613 {
614 switch (c1)
615 {
616 case '+':
617 case '-':
618 case '*':
619 case '/':
620 case '%':
621 case '!':
622 case '&':
623 case '|':
624 case '^':
625 case '~':
626 case '<':
627 case '>':
628 case '=':
629 case '?':
630 case ',':
631 case '(':
632 case ')':
633 case '{':
634 case '}':
635 case '[':
636 case ']':
637 case ':':
638 case ';':
639 return c1;
640 default:
641 return 0;
642 }
643 }
644
645 // Skip a C style comment. *PP points to just after the "/*". Return
646 // false if the comment did not end.
647
648 bool
649 Lex::skip_c_comment(const char** pp)
650 {
651 const char* p = *pp;
652 while (p[0] != '*' || p[1] != '/')
653 {
654 if (*p == '\0')
655 {
656 *pp = p;
657 return false;
658 }
659
660 if (*p == '\n')
661 {
662 ++this->lineno_;
663 this->linestart_ = p + 1;
664 }
665 ++p;
666 }
667
668 *pp = p + 2;
669 return true;
670 }
671
672 // Skip a line # comment. Return false if there was no newline.
673
674 bool
675 Lex::skip_line_comment(const char** pp)
676 {
677 const char* p = *pp;
678 size_t skip = strcspn(p, "\n");
679 if (p[skip] == '\0')
680 {
681 *pp = p + skip;
682 return false;
683 }
684
685 p += skip + 1;
686 ++this->lineno_;
687 this->linestart_ = p;
688 *pp = p;
689
690 return true;
691 }
692
693 // Build a token CLASSIFICATION from all characters that match
694 // CAN_CONTINUE_FN. Update *PP.
695
696 inline Token
697 Lex::gather_token(Token::Classification classification,
698 const char* (Lex::*can_continue_fn)(const char*),
699 const char* start,
700 const char* match,
701 const char **pp)
702 {
703 const char* new_match = NULL;
704 while ((new_match = (this->*can_continue_fn)(match)))
705 match = new_match;
706 *pp = match;
707 return this->make_token(classification, start, match - start, start);
708 }
709
710 // Build a token from a quoted string.
711
712 Token
713 Lex::gather_quoted_string(const char** pp)
714 {
715 const char* start = *pp;
716 const char* p = start;
717 ++p;
718 size_t skip = strcspn(p, "\"\n");
719 if (p[skip] != '"')
720 return this->make_invalid_token(start);
721 *pp = p + skip + 1;
722 return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
723 }
724
725 // Return the next token at *PP. Update *PP. General guideline: we
726 // require linker scripts to be simple ASCII. No unicode linker
727 // scripts. In particular we can assume that any '\0' is the end of
728 // the input.
729
730 Token
731 Lex::get_token(const char** pp)
732 {
733 const char* p = *pp;
734
735 while (true)
736 {
737 if (*p == '\0')
738 {
739 *pp = p;
740 return this->make_eof_token(p);
741 }
742
743 // Skip whitespace quickly.
744 while (*p == ' ' || *p == '\t')
745 ++p;
746
747 if (*p == '\n')
748 {
749 ++p;
750 ++this->lineno_;
751 this->linestart_ = p;
752 continue;
753 }
754
755 // Skip C style comments.
756 if (p[0] == '/' && p[1] == '*')
757 {
758 int lineno = this->lineno_;
759 int charpos = p - this->linestart_ + 1;
760
761 *pp = p + 2;
762 if (!this->skip_c_comment(pp))
763 return Token(Token::TOKEN_INVALID, lineno, charpos);
764 p = *pp;
765
766 continue;
767 }
768
769 // Skip line comments.
770 if (*p == '#')
771 {
772 *pp = p + 1;
773 if (!this->skip_line_comment(pp))
774 return this->make_eof_token(p);
775 p = *pp;
776 continue;
777 }
778
779 // Check for a name.
780 if (this->can_start_name(p[0], p[1]))
781 return this->gather_token(Token::TOKEN_STRING,
782 &Lex::can_continue_name,
783 p, p + 1, pp);
784
785 // We accept any arbitrary name in double quotes, as long as it
786 // does not cross a line boundary.
787 if (*p == '"')
788 {
789 *pp = p;
790 return this->gather_quoted_string(pp);
791 }
792
793 // Check for a number.
794
795 if (this->can_start_hex(p[0], p[1], p[2]))
796 return this->gather_token(Token::TOKEN_INTEGER,
797 &Lex::can_continue_hex,
798 p, p + 3, pp);
799
800 if (Lex::can_start_number(p[0]))
801 return this->gather_token(Token::TOKEN_INTEGER,
802 &Lex::can_continue_number,
803 p, p + 1, pp);
804
805 // Check for operators.
806
807 int opcode = Lex::three_char_operator(p[0], p[1], p[2]);
808 if (opcode != 0)
809 {
810 *pp = p + 3;
811 return this->make_token(opcode, p);
812 }
813
814 opcode = Lex::two_char_operator(p[0], p[1]);
815 if (opcode != 0)
816 {
817 *pp = p + 2;
818 return this->make_token(opcode, p);
819 }
820
821 opcode = Lex::one_char_operator(p[0]);
822 if (opcode != 0)
823 {
824 *pp = p + 1;
825 return this->make_token(opcode, p);
826 }
827
828 return this->make_token(Token::TOKEN_INVALID, p);
829 }
830 }
831
832 // Return the next token.
833
834 const Token*
835 Lex::next_token()
836 {
837 // The first token is special.
838 if (this->first_token_ != 0)
839 {
840 this->token_ = Token(this->first_token_, 0, 0);
841 this->first_token_ = 0;
842 return &this->token_;
843 }
844
845 this->token_ = this->get_token(&this->current_);
846
847 // Don't let an early null byte fool us into thinking that we've
848 // reached the end of the file.
849 if (this->token_.is_eof()
850 && (static_cast<size_t>(this->current_ - this->input_string_)
851 < this->input_length_))
852 this->token_ = this->make_invalid_token(this->current_);
853
854 return &this->token_;
855 }
856
857 // class Symbol_assignment.
858
859 // Add the symbol to the symbol table. This makes sure the symbol is
860 // there and defined. The actual value is stored later. We can't
861 // determine the actual value at this point, because we can't
862 // necessarily evaluate the expression until all ordinary symbols have
863 // been finalized.
864
865 // The GNU linker lets symbol assignments in the linker script
866 // silently override defined symbols in object files. We are
867 // compatible. FIXME: Should we issue a warning?
868
869 void
870 Symbol_assignment::add_to_table(Symbol_table* symtab)
871 {
872 elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
873 this->sym_ = symtab->define_as_constant(this->name_.c_str(),
874 NULL, // version
875 0, // value
876 0, // size
877 elfcpp::STT_NOTYPE,
878 elfcpp::STB_GLOBAL,
879 vis,
880 0, // nonvis
881 this->provide_,
882 true); // force_override
883 }
884
885 // Finalize a symbol value.
886
887 void
888 Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
889 {
890 this->finalize_maybe_dot(symtab, layout, false, 0, NULL);
891 }
892
893 // Finalize a symbol value which can refer to the dot symbol.
894
895 void
896 Symbol_assignment::finalize_with_dot(Symbol_table* symtab,
897 const Layout* layout,
898 uint64_t dot_value,
899 Output_section* dot_section)
900 {
901 this->finalize_maybe_dot(symtab, layout, true, dot_value, dot_section);
902 }
903
904 // Finalize a symbol value, internal version.
905
906 void
907 Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab,
908 const Layout* layout,
909 bool is_dot_available,
910 uint64_t dot_value,
911 Output_section* dot_section)
912 {
913 // If we were only supposed to provide this symbol, the sym_ field
914 // will be NULL if the symbol was not referenced.
915 if (this->sym_ == NULL)
916 {
917 gold_assert(this->provide_);
918 return;
919 }
920
921 if (parameters->target().get_size() == 32)
922 {
923 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
924 this->sized_finalize<32>(symtab, layout, is_dot_available, dot_value,
925 dot_section);
926 #else
927 gold_unreachable();
928 #endif
929 }
930 else if (parameters->target().get_size() == 64)
931 {
932 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
933 this->sized_finalize<64>(symtab, layout, is_dot_available, dot_value,
934 dot_section);
935 #else
936 gold_unreachable();
937 #endif
938 }
939 else
940 gold_unreachable();
941 }
942
943 template<int size>
944 void
945 Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout,
946 bool is_dot_available, uint64_t dot_value,
947 Output_section* dot_section)
948 {
949 Output_section* section;
950 uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout, true,
951 is_dot_available,
952 dot_value, dot_section,
953 &section);
954 Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
955 ssym->set_value(final_val);
956 if (section != NULL)
957 ssym->set_output_section(section);
958 }
959
960 // Set the symbol value if the expression yields an absolute value.
961
962 void
963 Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout,
964 bool is_dot_available, uint64_t dot_value)
965 {
966 if (this->sym_ == NULL)
967 return;
968
969 Output_section* val_section;
970 uint64_t val = this->val_->eval_maybe_dot(symtab, layout, false,
971 is_dot_available, dot_value,
972 NULL, &val_section);
973 if (val_section != NULL)
974 return;
975
976 if (parameters->target().get_size() == 32)
977 {
978 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
979 Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_);
980 ssym->set_value(val);
981 #else
982 gold_unreachable();
983 #endif
984 }
985 else if (parameters->target().get_size() == 64)
986 {
987 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
988 Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_);
989 ssym->set_value(val);
990 #else
991 gold_unreachable();
992 #endif
993 }
994 else
995 gold_unreachable();
996 }
997
998 // Print for debugging.
999
1000 void
1001 Symbol_assignment::print(FILE* f) const
1002 {
1003 if (this->provide_ && this->hidden_)
1004 fprintf(f, "PROVIDE_HIDDEN(");
1005 else if (this->provide_)
1006 fprintf(f, "PROVIDE(");
1007 else if (this->hidden_)
1008 gold_unreachable();
1009
1010 fprintf(f, "%s = ", this->name_.c_str());
1011 this->val_->print(f);
1012
1013 if (this->provide_ || this->hidden_)
1014 fprintf(f, ")");
1015
1016 fprintf(f, "\n");
1017 }
1018
1019 // Class Script_assertion.
1020
1021 // Check the assertion.
1022
1023 void
1024 Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
1025 {
1026 if (!this->check_->eval(symtab, layout, true))
1027 gold_error("%s", this->message_.c_str());
1028 }
1029
1030 // Print for debugging.
1031
1032 void
1033 Script_assertion::print(FILE* f) const
1034 {
1035 fprintf(f, "ASSERT(");
1036 this->check_->print(f);
1037 fprintf(f, ", \"%s\")\n", this->message_.c_str());
1038 }
1039
1040 // Class Script_options.
1041
1042 Script_options::Script_options()
1043 : entry_(), symbol_assignments_(), version_script_info_(),
1044 script_sections_()
1045 {
1046 }
1047
1048 // Add a symbol to be defined.
1049
1050 void
1051 Script_options::add_symbol_assignment(const char* name, size_t length,
1052 Expression* value, bool provide,
1053 bool hidden)
1054 {
1055 if (length != 1 || name[0] != '.')
1056 {
1057 if (this->script_sections_.in_sections_clause())
1058 this->script_sections_.add_symbol_assignment(name, length, value,
1059 provide, hidden);
1060 else
1061 {
1062 Symbol_assignment* p = new Symbol_assignment(name, length, value,
1063 provide, hidden);
1064 this->symbol_assignments_.push_back(p);
1065 }
1066 }
1067 else
1068 {
1069 if (provide || hidden)
1070 gold_error(_("invalid use of PROVIDE for dot symbol"));
1071 if (!this->script_sections_.in_sections_clause())
1072 gold_error(_("invalid assignment to dot outside of SECTIONS"));
1073 else
1074 this->script_sections_.add_dot_assignment(value);
1075 }
1076 }
1077
1078 // Add an assertion.
1079
1080 void
1081 Script_options::add_assertion(Expression* check, const char* message,
1082 size_t messagelen)
1083 {
1084 if (this->script_sections_.in_sections_clause())
1085 this->script_sections_.add_assertion(check, message, messagelen);
1086 else
1087 {
1088 Script_assertion* p = new Script_assertion(check, message, messagelen);
1089 this->assertions_.push_back(p);
1090 }
1091 }
1092
1093 // Create sections required by any linker scripts.
1094
1095 void
1096 Script_options::create_script_sections(Layout* layout)
1097 {
1098 if (this->saw_sections_clause())
1099 this->script_sections_.create_sections(layout);
1100 }
1101
1102 // Add any symbols we are defining to the symbol table.
1103
1104 void
1105 Script_options::add_symbols_to_table(Symbol_table* symtab)
1106 {
1107 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1108 p != this->symbol_assignments_.end();
1109 ++p)
1110 (*p)->add_to_table(symtab);
1111 this->script_sections_.add_symbols_to_table(symtab);
1112 }
1113
1114 // Finalize symbol values. Also check assertions.
1115
1116 void
1117 Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1118 {
1119 // We finalize the symbols defined in SECTIONS first, because they
1120 // are the ones which may have changed. This way if symbol outside
1121 // SECTIONS are defined in terms of symbols inside SECTIONS, they
1122 // will get the right value.
1123 this->script_sections_.finalize_symbols(symtab, layout);
1124
1125 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1126 p != this->symbol_assignments_.end();
1127 ++p)
1128 (*p)->finalize(symtab, layout);
1129
1130 for (Assertions::iterator p = this->assertions_.begin();
1131 p != this->assertions_.end();
1132 ++p)
1133 (*p)->check(symtab, layout);
1134 }
1135
1136 // Set section addresses. We set all the symbols which have absolute
1137 // values. Then we let the SECTIONS clause do its thing. This
1138 // returns the segment which holds the file header and segment
1139 // headers, if any.
1140
1141 Output_segment*
1142 Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout)
1143 {
1144 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1145 p != this->symbol_assignments_.end();
1146 ++p)
1147 (*p)->set_if_absolute(symtab, layout, false, 0);
1148
1149 return this->script_sections_.set_section_addresses(symtab, layout);
1150 }
1151
1152 // This class holds data passed through the parser to the lexer and to
1153 // the parser support functions. This avoids global variables. We
1154 // can't use global variables because we need not be called by a
1155 // singleton thread.
1156
1157 class Parser_closure
1158 {
1159 public:
1160 Parser_closure(const char* filename,
1161 const Position_dependent_options& posdep_options,
1162 bool in_group, bool is_in_sysroot,
1163 Command_line* command_line,
1164 Script_options* script_options,
1165 Lex* lex)
1166 : filename_(filename), posdep_options_(posdep_options),
1167 in_group_(in_group), is_in_sysroot_(is_in_sysroot),
1168 command_line_(command_line), script_options_(script_options),
1169 version_script_info_(script_options->version_script_info()),
1170 lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL)
1171 {
1172 // We start out processing C symbols in the default lex mode.
1173 language_stack_.push_back("");
1174 lex_mode_stack_.push_back(lex->mode());
1175 }
1176
1177 // Return the file name.
1178 const char*
1179 filename() const
1180 { return this->filename_; }
1181
1182 // Return the position dependent options. The caller may modify
1183 // this.
1184 Position_dependent_options&
1185 position_dependent_options()
1186 { return this->posdep_options_; }
1187
1188 // Return whether this script is being run in a group.
1189 bool
1190 in_group() const
1191 { return this->in_group_; }
1192
1193 // Return whether this script was found using a directory in the
1194 // sysroot.
1195 bool
1196 is_in_sysroot() const
1197 { return this->is_in_sysroot_; }
1198
1199 // Returns the Command_line structure passed in at constructor time.
1200 // This value may be NULL. The caller may modify this, which modifies
1201 // the passed-in Command_line object (not a copy).
1202 Command_line*
1203 command_line()
1204 { return this->command_line_; }
1205
1206 // Return the options which may be set by a script.
1207 Script_options*
1208 script_options()
1209 { return this->script_options_; }
1210
1211 // Return the object in which version script information should be stored.
1212 Version_script_info*
1213 version_script()
1214 { return this->version_script_info_; }
1215
1216 // Return the next token, and advance.
1217 const Token*
1218 next_token()
1219 {
1220 const Token* token = this->lex_->next_token();
1221 this->lineno_ = token->lineno();
1222 this->charpos_ = token->charpos();
1223 return token;
1224 }
1225
1226 // Set a new lexer mode, pushing the current one.
1227 void
1228 push_lex_mode(Lex::Mode mode)
1229 {
1230 this->lex_mode_stack_.push_back(this->lex_->mode());
1231 this->lex_->set_mode(mode);
1232 }
1233
1234 // Pop the lexer mode.
1235 void
1236 pop_lex_mode()
1237 {
1238 gold_assert(!this->lex_mode_stack_.empty());
1239 this->lex_->set_mode(this->lex_mode_stack_.back());
1240 this->lex_mode_stack_.pop_back();
1241 }
1242
1243 // Return the current lexer mode.
1244 Lex::Mode
1245 lex_mode() const
1246 { return this->lex_mode_stack_.back(); }
1247
1248 // Return the line number of the last token.
1249 int
1250 lineno() const
1251 { return this->lineno_; }
1252
1253 // Return the character position in the line of the last token.
1254 int
1255 charpos() const
1256 { return this->charpos_; }
1257
1258 // Return the list of input files, creating it if necessary. This
1259 // is a space leak--we never free the INPUTS_ pointer.
1260 Input_arguments*
1261 inputs()
1262 {
1263 if (this->inputs_ == NULL)
1264 this->inputs_ = new Input_arguments();
1265 return this->inputs_;
1266 }
1267
1268 // Return whether we saw any input files.
1269 bool
1270 saw_inputs() const
1271 { return this->inputs_ != NULL && !this->inputs_->empty(); }
1272
1273 // Return the current language being processed in a version script
1274 // (eg, "C++"). The empty string represents unmangled C names.
1275 const std::string&
1276 get_current_language() const
1277 { return this->language_stack_.back(); }
1278
1279 // Push a language onto the stack when entering an extern block.
1280 void push_language(const std::string& lang)
1281 { this->language_stack_.push_back(lang); }
1282
1283 // Pop a language off of the stack when exiting an extern block.
1284 void pop_language()
1285 {
1286 gold_assert(!this->language_stack_.empty());
1287 this->language_stack_.pop_back();
1288 }
1289
1290 private:
1291 // The name of the file we are reading.
1292 const char* filename_;
1293 // The position dependent options.
1294 Position_dependent_options posdep_options_;
1295 // Whether we are currently in a --start-group/--end-group.
1296 bool in_group_;
1297 // Whether the script was found in a sysrooted directory.
1298 bool is_in_sysroot_;
1299 // May be NULL if the user chooses not to pass one in.
1300 Command_line* command_line_;
1301 // Options which may be set from any linker script.
1302 Script_options* script_options_;
1303 // Information parsed from a version script.
1304 Version_script_info* version_script_info_;
1305 // The lexer.
1306 Lex* lex_;
1307 // The line number of the last token returned by next_token.
1308 int lineno_;
1309 // The column number of the last token returned by next_token.
1310 int charpos_;
1311 // A stack of lexer modes.
1312 std::vector<Lex::Mode> lex_mode_stack_;
1313 // A stack of which extern/language block we're inside. Can be C++,
1314 // java, or empty for C.
1315 std::vector<std::string> language_stack_;
1316 // New input files found to add to the link.
1317 Input_arguments* inputs_;
1318 };
1319
1320 // FILE was found as an argument on the command line. Try to read it
1321 // as a script. Return true if the file was handled.
1322
1323 bool
1324 read_input_script(Workqueue* workqueue, const General_options& options,
1325 Symbol_table* symtab, Layout* layout,
1326 Dirsearch* dirsearch, Input_objects* input_objects,
1327 Mapfile* mapfile, Input_group* input_group,
1328 const Input_argument* input_argument,
1329 Input_file* input_file, Task_token* next_blocker,
1330 bool* used_next_blocker)
1331 {
1332 *used_next_blocker = false;
1333
1334 std::string input_string;
1335 Lex::read_file(input_file, &input_string);
1336
1337 Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1338
1339 Parser_closure closure(input_file->filename().c_str(),
1340 input_argument->file().options(),
1341 input_group != NULL,
1342 input_file->is_in_sysroot(),
1343 NULL,
1344 layout->script_options(),
1345 &lex);
1346
1347 if (yyparse(&closure) != 0)
1348 return false;
1349
1350 if (!closure.saw_inputs())
1351 return true;
1352
1353 Task_token* this_blocker = NULL;
1354 for (Input_arguments::const_iterator p = closure.inputs()->begin();
1355 p != closure.inputs()->end();
1356 ++p)
1357 {
1358 Task_token* nb;
1359 if (p + 1 == closure.inputs()->end())
1360 nb = next_blocker;
1361 else
1362 {
1363 nb = new Task_token(true);
1364 nb->add_blocker();
1365 }
1366 workqueue->queue_soon(new Read_symbols(options, input_objects, symtab,
1367 layout, dirsearch, mapfile, &*p,
1368 input_group, this_blocker, nb));
1369 this_blocker = nb;
1370 }
1371
1372 *used_next_blocker = true;
1373
1374 return true;
1375 }
1376
1377 // Helper function for read_version_script() and
1378 // read_commandline_script(). Processes the given file in the mode
1379 // indicated by first_token and lex_mode.
1380
1381 static bool
1382 read_script_file(const char* filename, Command_line* cmdline,
1383 Script_options* script_options,
1384 int first_token, Lex::Mode lex_mode)
1385 {
1386 // TODO: if filename is a relative filename, search for it manually
1387 // using "." + cmdline->options()->search_path() -- not dirsearch.
1388 Dirsearch dirsearch;
1389
1390 // The file locking code wants to record a Task, but we haven't
1391 // started the workqueue yet. This is only for debugging purposes,
1392 // so we invent a fake value.
1393 const Task* task = reinterpret_cast<const Task*>(-1);
1394
1395 // We don't want this file to be opened in binary mode.
1396 Position_dependent_options posdep = cmdline->position_dependent_options();
1397 if (posdep.format_enum() == General_options::OBJECT_FORMAT_BINARY)
1398 posdep.set_format_enum(General_options::OBJECT_FORMAT_ELF);
1399 Input_file_argument input_argument(filename, false, "", false, posdep);
1400 Input_file input_file(&input_argument);
1401 if (!input_file.open(cmdline->options(), dirsearch, task))
1402 return false;
1403
1404 std::string input_string;
1405 Lex::read_file(&input_file, &input_string);
1406
1407 Lex lex(input_string.c_str(), input_string.length(), first_token);
1408 lex.set_mode(lex_mode);
1409
1410 Parser_closure closure(filename,
1411 cmdline->position_dependent_options(),
1412 false,
1413 input_file.is_in_sysroot(),
1414 cmdline,
1415 script_options,
1416 &lex);
1417 if (yyparse(&closure) != 0)
1418 {
1419 input_file.file().unlock(task);
1420 return false;
1421 }
1422
1423 input_file.file().unlock(task);
1424
1425 gold_assert(!closure.saw_inputs());
1426
1427 return true;
1428 }
1429
1430 // FILENAME was found as an argument to --script (-T).
1431 // Read it as a script, and execute its contents immediately.
1432
1433 bool
1434 read_commandline_script(const char* filename, Command_line* cmdline)
1435 {
1436 return read_script_file(filename, cmdline, &cmdline->script_options(),
1437 PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1438 }
1439
1440 // FILENAME was found as an argument to --version-script. Read it as
1441 // a version script, and store its contents in
1442 // cmdline->script_options()->version_script_info().
1443
1444 bool
1445 read_version_script(const char* filename, Command_line* cmdline)
1446 {
1447 return read_script_file(filename, cmdline, &cmdline->script_options(),
1448 PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1449 }
1450
1451 // FILENAME was found as an argument to --dynamic-list. Read it as a
1452 // list of symbols, and store its contents in DYNAMIC_LIST.
1453
1454 bool
1455 read_dynamic_list(const char* filename, Command_line* cmdline,
1456 Script_options* dynamic_list)
1457 {
1458 return read_script_file(filename, cmdline, dynamic_list,
1459 PARSING_DYNAMIC_LIST, Lex::DYNAMIC_LIST);
1460 }
1461
1462 // Implement the --defsym option on the command line. Return true if
1463 // all is well.
1464
1465 bool
1466 Script_options::define_symbol(const char* definition)
1467 {
1468 Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1469 lex.set_mode(Lex::EXPRESSION);
1470
1471 // Dummy value.
1472 Position_dependent_options posdep_options;
1473
1474 Parser_closure closure("command line", posdep_options, false, false, NULL,
1475 this, &lex);
1476
1477 if (yyparse(&closure) != 0)
1478 return false;
1479
1480 gold_assert(!closure.saw_inputs());
1481
1482 return true;
1483 }
1484
1485 // Print the script to F for debugging.
1486
1487 void
1488 Script_options::print(FILE* f) const
1489 {
1490 fprintf(f, "%s: Dumping linker script\n", program_name);
1491
1492 if (!this->entry_.empty())
1493 fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1494
1495 for (Symbol_assignments::const_iterator p =
1496 this->symbol_assignments_.begin();
1497 p != this->symbol_assignments_.end();
1498 ++p)
1499 (*p)->print(f);
1500
1501 for (Assertions::const_iterator p = this->assertions_.begin();
1502 p != this->assertions_.end();
1503 ++p)
1504 (*p)->print(f);
1505
1506 this->script_sections_.print(f);
1507
1508 this->version_script_info_.print(f);
1509 }
1510
1511 // Manage mapping from keywords to the codes expected by the bison
1512 // parser. We construct one global object for each lex mode with
1513 // keywords.
1514
1515 class Keyword_to_parsecode
1516 {
1517 public:
1518 // The structure which maps keywords to parsecodes.
1519 struct Keyword_parsecode
1520 {
1521 // Keyword.
1522 const char* keyword;
1523 // Corresponding parsecode.
1524 int parsecode;
1525 };
1526
1527 Keyword_to_parsecode(const Keyword_parsecode* keywords,
1528 int keyword_count)
1529 : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1530 { }
1531
1532 // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1533 // keyword.
1534 int
1535 keyword_to_parsecode(const char* keyword, size_t len) const;
1536
1537 private:
1538 const Keyword_parsecode* keyword_parsecodes_;
1539 const int keyword_count_;
1540 };
1541
1542 // Mapping from keyword string to keyword parsecode. This array must
1543 // be kept in sorted order. Parsecodes are looked up using bsearch.
1544 // This array must correspond to the list of parsecodes in yyscript.y.
1545
1546 static const Keyword_to_parsecode::Keyword_parsecode
1547 script_keyword_parsecodes[] =
1548 {
1549 { "ABSOLUTE", ABSOLUTE },
1550 { "ADDR", ADDR },
1551 { "ALIGN", ALIGN_K },
1552 { "ALIGNOF", ALIGNOF },
1553 { "ASSERT", ASSERT_K },
1554 { "AS_NEEDED", AS_NEEDED },
1555 { "AT", AT },
1556 { "BIND", BIND },
1557 { "BLOCK", BLOCK },
1558 { "BYTE", BYTE },
1559 { "CONSTANT", CONSTANT },
1560 { "CONSTRUCTORS", CONSTRUCTORS },
1561 { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1562 { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1563 { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1564 { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1565 { "DEFINED", DEFINED },
1566 { "ENTRY", ENTRY },
1567 { "EXCLUDE_FILE", EXCLUDE_FILE },
1568 { "EXTERN", EXTERN },
1569 { "FILL", FILL },
1570 { "FLOAT", FLOAT },
1571 { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1572 { "GROUP", GROUP },
1573 { "HLL", HLL },
1574 { "INCLUDE", INCLUDE },
1575 { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1576 { "INPUT", INPUT },
1577 { "KEEP", KEEP },
1578 { "LENGTH", LENGTH },
1579 { "LOADADDR", LOADADDR },
1580 { "LONG", LONG },
1581 { "MAP", MAP },
1582 { "MAX", MAX_K },
1583 { "MEMORY", MEMORY },
1584 { "MIN", MIN_K },
1585 { "NEXT", NEXT },
1586 { "NOCROSSREFS", NOCROSSREFS },
1587 { "NOFLOAT", NOFLOAT },
1588 { "ONLY_IF_RO", ONLY_IF_RO },
1589 { "ONLY_IF_RW", ONLY_IF_RW },
1590 { "OPTION", OPTION },
1591 { "ORIGIN", ORIGIN },
1592 { "OUTPUT", OUTPUT },
1593 { "OUTPUT_ARCH", OUTPUT_ARCH },
1594 { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1595 { "OVERLAY", OVERLAY },
1596 { "PHDRS", PHDRS },
1597 { "PROVIDE", PROVIDE },
1598 { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1599 { "QUAD", QUAD },
1600 { "SEARCH_DIR", SEARCH_DIR },
1601 { "SECTIONS", SECTIONS },
1602 { "SEGMENT_START", SEGMENT_START },
1603 { "SHORT", SHORT },
1604 { "SIZEOF", SIZEOF },
1605 { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1606 { "SORT", SORT_BY_NAME },
1607 { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1608 { "SORT_BY_NAME", SORT_BY_NAME },
1609 { "SPECIAL", SPECIAL },
1610 { "SQUAD", SQUAD },
1611 { "STARTUP", STARTUP },
1612 { "SUBALIGN", SUBALIGN },
1613 { "SYSLIB", SYSLIB },
1614 { "TARGET", TARGET_K },
1615 { "TRUNCATE", TRUNCATE },
1616 { "VERSION", VERSIONK },
1617 { "global", GLOBAL },
1618 { "l", LENGTH },
1619 { "len", LENGTH },
1620 { "local", LOCAL },
1621 { "o", ORIGIN },
1622 { "org", ORIGIN },
1623 { "sizeof_headers", SIZEOF_HEADERS },
1624 };
1625
1626 static const Keyword_to_parsecode
1627 script_keywords(&script_keyword_parsecodes[0],
1628 (sizeof(script_keyword_parsecodes)
1629 / sizeof(script_keyword_parsecodes[0])));
1630
1631 static const Keyword_to_parsecode::Keyword_parsecode
1632 version_script_keyword_parsecodes[] =
1633 {
1634 { "extern", EXTERN },
1635 { "global", GLOBAL },
1636 { "local", LOCAL },
1637 };
1638
1639 static const Keyword_to_parsecode
1640 version_script_keywords(&version_script_keyword_parsecodes[0],
1641 (sizeof(version_script_keyword_parsecodes)
1642 / sizeof(version_script_keyword_parsecodes[0])));
1643
1644 static const Keyword_to_parsecode::Keyword_parsecode
1645 dynamic_list_keyword_parsecodes[] =
1646 {
1647 { "extern", EXTERN },
1648 };
1649
1650 static const Keyword_to_parsecode
1651 dynamic_list_keywords(&dynamic_list_keyword_parsecodes[0],
1652 (sizeof(dynamic_list_keyword_parsecodes)
1653 / sizeof(dynamic_list_keyword_parsecodes[0])));
1654
1655
1656
1657 // Comparison function passed to bsearch.
1658
1659 extern "C"
1660 {
1661
1662 struct Ktt_key
1663 {
1664 const char* str;
1665 size_t len;
1666 };
1667
1668 static int
1669 ktt_compare(const void* keyv, const void* kttv)
1670 {
1671 const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1672 const Keyword_to_parsecode::Keyword_parsecode* ktt =
1673 static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1674 int i = strncmp(key->str, ktt->keyword, key->len);
1675 if (i != 0)
1676 return i;
1677 if (ktt->keyword[key->len] != '\0')
1678 return -1;
1679 return 0;
1680 }
1681
1682 } // End extern "C".
1683
1684 int
1685 Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1686 size_t len) const
1687 {
1688 Ktt_key key;
1689 key.str = keyword;
1690 key.len = len;
1691 void* kttv = bsearch(&key,
1692 this->keyword_parsecodes_,
1693 this->keyword_count_,
1694 sizeof(this->keyword_parsecodes_[0]),
1695 ktt_compare);
1696 if (kttv == NULL)
1697 return 0;
1698 Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1699 return ktt->parsecode;
1700 }
1701
1702 // The following structs are used within the VersionInfo class as well
1703 // as in the bison helper functions. They store the information
1704 // parsed from the version script.
1705
1706 // A single version expression.
1707 // For example, pattern="std::map*" and language="C++".
1708 // pattern and language should be from the stringpool
1709 struct Version_expression {
1710 Version_expression(const std::string& pattern,
1711 const std::string& language,
1712 bool exact_match)
1713 : pattern(pattern), language(language), exact_match(exact_match) {}
1714
1715 std::string pattern;
1716 std::string language;
1717 // If false, we use glob() to match pattern. If true, we use strcmp().
1718 bool exact_match;
1719 };
1720
1721
1722 // A list of expressions.
1723 struct Version_expression_list {
1724 std::vector<struct Version_expression> expressions;
1725 };
1726
1727
1728 // A list of which versions upon which another version depends.
1729 // Strings should be from the Stringpool.
1730 struct Version_dependency_list {
1731 std::vector<std::string> dependencies;
1732 };
1733
1734
1735 // The total definition of a version. It includes the tag for the
1736 // version, its global and local expressions, and any dependencies.
1737 struct Version_tree {
1738 Version_tree()
1739 : tag(), global(NULL), local(NULL), dependencies(NULL) {}
1740
1741 std::string tag;
1742 const struct Version_expression_list* global;
1743 const struct Version_expression_list* local;
1744 const struct Version_dependency_list* dependencies;
1745 };
1746
1747 Version_script_info::~Version_script_info()
1748 {
1749 this->clear();
1750 }
1751
1752 void
1753 Version_script_info::clear()
1754 {
1755 for (size_t k = 0; k < dependency_lists_.size(); ++k)
1756 delete dependency_lists_[k];
1757 this->dependency_lists_.clear();
1758 for (size_t k = 0; k < version_trees_.size(); ++k)
1759 delete version_trees_[k];
1760 this->version_trees_.clear();
1761 for (size_t k = 0; k < expression_lists_.size(); ++k)
1762 delete expression_lists_[k];
1763 this->expression_lists_.clear();
1764 }
1765
1766 std::vector<std::string>
1767 Version_script_info::get_versions() const
1768 {
1769 std::vector<std::string> ret;
1770 for (size_t j = 0; j < version_trees_.size(); ++j)
1771 if (!this->version_trees_[j]->tag.empty())
1772 ret.push_back(this->version_trees_[j]->tag);
1773 return ret;
1774 }
1775
1776 std::vector<std::string>
1777 Version_script_info::get_dependencies(const char* version) const
1778 {
1779 std::vector<std::string> ret;
1780 for (size_t j = 0; j < version_trees_.size(); ++j)
1781 if (version_trees_[j]->tag == version)
1782 {
1783 const struct Version_dependency_list* deps =
1784 version_trees_[j]->dependencies;
1785 if (deps != NULL)
1786 for (size_t k = 0; k < deps->dependencies.size(); ++k)
1787 ret.push_back(deps->dependencies[k]);
1788 return ret;
1789 }
1790 return ret;
1791 }
1792
1793 // Look up SYMBOL_NAME in the list of versions. If CHECK_GLOBAL is
1794 // true look at the globally visible symbols, otherwise look at the
1795 // symbols listed as "local:". Return true if the symbol is found,
1796 // false otherwise. If the symbol is found, then if PVERSION is not
1797 // NULL, set *PVERSION to the version.
1798
1799 bool
1800 Version_script_info::get_symbol_version_helper(const char* symbol_name,
1801 bool check_global,
1802 std::string* pversion) const
1803 {
1804 for (size_t j = 0; j < version_trees_.size(); ++j)
1805 {
1806 // Is it a global symbol for this version?
1807 const Version_expression_list* explist =
1808 check_global ? version_trees_[j]->global : version_trees_[j]->local;
1809 if (explist != NULL)
1810 for (size_t k = 0; k < explist->expressions.size(); ++k)
1811 {
1812 const char* name_to_match = symbol_name;
1813 const struct Version_expression& exp = explist->expressions[k];
1814 char* demangled_name = NULL;
1815 if (exp.language == "C++")
1816 {
1817 demangled_name = cplus_demangle(symbol_name,
1818 DMGL_ANSI | DMGL_PARAMS);
1819 // This isn't a C++ symbol.
1820 if (demangled_name == NULL)
1821 continue;
1822 name_to_match = demangled_name;
1823 }
1824 else if (exp.language == "Java")
1825 {
1826 demangled_name = cplus_demangle(symbol_name,
1827 (DMGL_ANSI | DMGL_PARAMS
1828 | DMGL_JAVA));
1829 // This isn't a Java symbol.
1830 if (demangled_name == NULL)
1831 continue;
1832 name_to_match = demangled_name;
1833 }
1834 bool matched;
1835 if (exp.exact_match)
1836 matched = strcmp(exp.pattern.c_str(), name_to_match) == 0;
1837 else
1838 matched = fnmatch(exp.pattern.c_str(), name_to_match,
1839 FNM_NOESCAPE) == 0;
1840 if (demangled_name != NULL)
1841 free(demangled_name);
1842 if (matched)
1843 {
1844 if (pversion != NULL)
1845 *pversion = this->version_trees_[j]->tag;
1846 return true;
1847 }
1848 }
1849 }
1850 return false;
1851 }
1852
1853 struct Version_dependency_list*
1854 Version_script_info::allocate_dependency_list()
1855 {
1856 dependency_lists_.push_back(new Version_dependency_list);
1857 return dependency_lists_.back();
1858 }
1859
1860 struct Version_expression_list*
1861 Version_script_info::allocate_expression_list()
1862 {
1863 expression_lists_.push_back(new Version_expression_list);
1864 return expression_lists_.back();
1865 }
1866
1867 struct Version_tree*
1868 Version_script_info::allocate_version_tree()
1869 {
1870 version_trees_.push_back(new Version_tree);
1871 return version_trees_.back();
1872 }
1873
1874 // Print for debugging.
1875
1876 void
1877 Version_script_info::print(FILE* f) const
1878 {
1879 if (this->empty())
1880 return;
1881
1882 fprintf(f, "VERSION {");
1883
1884 for (size_t i = 0; i < this->version_trees_.size(); ++i)
1885 {
1886 const Version_tree* vt = this->version_trees_[i];
1887
1888 if (vt->tag.empty())
1889 fprintf(f, " {\n");
1890 else
1891 fprintf(f, " %s {\n", vt->tag.c_str());
1892
1893 if (vt->global != NULL)
1894 {
1895 fprintf(f, " global :\n");
1896 this->print_expression_list(f, vt->global);
1897 }
1898
1899 if (vt->local != NULL)
1900 {
1901 fprintf(f, " local :\n");
1902 this->print_expression_list(f, vt->local);
1903 }
1904
1905 fprintf(f, " }");
1906 if (vt->dependencies != NULL)
1907 {
1908 const Version_dependency_list* deps = vt->dependencies;
1909 for (size_t j = 0; j < deps->dependencies.size(); ++j)
1910 {
1911 if (j < deps->dependencies.size() - 1)
1912 fprintf(f, "\n");
1913 fprintf(f, " %s", deps->dependencies[j].c_str());
1914 }
1915 }
1916 fprintf(f, ";\n");
1917 }
1918
1919 fprintf(f, "}\n");
1920 }
1921
1922 void
1923 Version_script_info::print_expression_list(
1924 FILE* f,
1925 const Version_expression_list* vel) const
1926 {
1927 std::string current_language;
1928 for (size_t i = 0; i < vel->expressions.size(); ++i)
1929 {
1930 const Version_expression& ve(vel->expressions[i]);
1931
1932 if (ve.language != current_language)
1933 {
1934 if (!current_language.empty())
1935 fprintf(f, " }\n");
1936 fprintf(f, " extern \"%s\" {\n", ve.language.c_str());
1937 current_language = ve.language;
1938 }
1939
1940 fprintf(f, " ");
1941 if (!current_language.empty())
1942 fprintf(f, " ");
1943
1944 if (ve.exact_match)
1945 fprintf(f, "\"");
1946 fprintf(f, "%s", ve.pattern.c_str());
1947 if (ve.exact_match)
1948 fprintf(f, "\"");
1949
1950 fprintf(f, "\n");
1951 }
1952
1953 if (!current_language.empty())
1954 fprintf(f, " }\n");
1955 }
1956
1957 } // End namespace gold.
1958
1959 // The remaining functions are extern "C", so it's clearer to not put
1960 // them in namespace gold.
1961
1962 using namespace gold;
1963
1964 // This function is called by the bison parser to return the next
1965 // token.
1966
1967 extern "C" int
1968 yylex(YYSTYPE* lvalp, void* closurev)
1969 {
1970 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
1971 const Token* token = closure->next_token();
1972 switch (token->classification())
1973 {
1974 default:
1975 gold_unreachable();
1976
1977 case Token::TOKEN_INVALID:
1978 yyerror(closurev, "invalid character");
1979 return 0;
1980
1981 case Token::TOKEN_EOF:
1982 return 0;
1983
1984 case Token::TOKEN_STRING:
1985 {
1986 // This is either a keyword or a STRING.
1987 size_t len;
1988 const char* str = token->string_value(&len);
1989 int parsecode = 0;
1990 switch (closure->lex_mode())
1991 {
1992 case Lex::LINKER_SCRIPT:
1993 parsecode = script_keywords.keyword_to_parsecode(str, len);
1994 break;
1995 case Lex::VERSION_SCRIPT:
1996 parsecode = version_script_keywords.keyword_to_parsecode(str, len);
1997 break;
1998 case Lex::DYNAMIC_LIST:
1999 parsecode = dynamic_list_keywords.keyword_to_parsecode(str, len);
2000 break;
2001 default:
2002 break;
2003 }
2004 if (parsecode != 0)
2005 return parsecode;
2006 lvalp->string.value = str;
2007 lvalp->string.length = len;
2008 return STRING;
2009 }
2010
2011 case Token::TOKEN_QUOTED_STRING:
2012 lvalp->string.value = token->string_value(&lvalp->string.length);
2013 return QUOTED_STRING;
2014
2015 case Token::TOKEN_OPERATOR:
2016 return token->operator_value();
2017
2018 case Token::TOKEN_INTEGER:
2019 lvalp->integer = token->integer_value();
2020 return INTEGER;
2021 }
2022 }
2023
2024 // This function is called by the bison parser to report an error.
2025
2026 extern "C" void
2027 yyerror(void* closurev, const char* message)
2028 {
2029 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2030 gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
2031 closure->charpos(), message);
2032 }
2033
2034 // Called by the bison parser to add a file to the link.
2035
2036 extern "C" void
2037 script_add_file(void* closurev, const char* name, size_t length)
2038 {
2039 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2040
2041 // If this is an absolute path, and we found the script in the
2042 // sysroot, then we want to prepend the sysroot to the file name.
2043 // For example, this is how we handle a cross link to the x86_64
2044 // libc.so, which refers to /lib/libc.so.6.
2045 std::string name_string(name, length);
2046 const char* extra_search_path = ".";
2047 std::string script_directory;
2048 if (IS_ABSOLUTE_PATH(name_string.c_str()))
2049 {
2050 if (closure->is_in_sysroot())
2051 {
2052 const std::string& sysroot(parameters->options().sysroot());
2053 gold_assert(!sysroot.empty());
2054 name_string = sysroot + name_string;
2055 }
2056 }
2057 else
2058 {
2059 // In addition to checking the normal library search path, we
2060 // also want to check in the script-directory.
2061 const char *slash = strrchr(closure->filename(), '/');
2062 if (slash != NULL)
2063 {
2064 script_directory.assign(closure->filename(),
2065 slash - closure->filename() + 1);
2066 extra_search_path = script_directory.c_str();
2067 }
2068 }
2069
2070 Input_file_argument file(name_string.c_str(), false, extra_search_path,
2071 false, closure->position_dependent_options());
2072 closure->inputs()->add_file(file);
2073 }
2074
2075 // Called by the bison parser to start a group. If we are already in
2076 // a group, that means that this script was invoked within a
2077 // --start-group --end-group sequence on the command line, or that
2078 // this script was found in a GROUP of another script. In that case,
2079 // we simply continue the existing group, rather than starting a new
2080 // one. It is possible to construct a case in which this will do
2081 // something other than what would happen if we did a recursive group,
2082 // but it's hard to imagine why the different behaviour would be
2083 // useful for a real program. Avoiding recursive groups is simpler
2084 // and more efficient.
2085
2086 extern "C" void
2087 script_start_group(void* closurev)
2088 {
2089 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2090 if (!closure->in_group())
2091 closure->inputs()->start_group();
2092 }
2093
2094 // Called by the bison parser at the end of a group.
2095
2096 extern "C" void
2097 script_end_group(void* closurev)
2098 {
2099 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2100 if (!closure->in_group())
2101 closure->inputs()->end_group();
2102 }
2103
2104 // Called by the bison parser to start an AS_NEEDED list.
2105
2106 extern "C" void
2107 script_start_as_needed(void* closurev)
2108 {
2109 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2110 closure->position_dependent_options().set_as_needed(true);
2111 }
2112
2113 // Called by the bison parser at the end of an AS_NEEDED list.
2114
2115 extern "C" void
2116 script_end_as_needed(void* closurev)
2117 {
2118 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2119 closure->position_dependent_options().set_as_needed(false);
2120 }
2121
2122 // Called by the bison parser to set the entry symbol.
2123
2124 extern "C" void
2125 script_set_entry(void* closurev, const char* entry, size_t length)
2126 {
2127 // We'll parse this exactly the same as --entry=ENTRY on the commandline
2128 // TODO(csilvers): FIXME -- call set_entry directly.
2129 std::string arg("--entry=");
2130 arg.append(entry, length);
2131 script_parse_option(closurev, arg.c_str(), arg.size());
2132 }
2133
2134 // Called by the bison parser to set whether to define common symbols.
2135
2136 extern "C" void
2137 script_set_common_allocation(void* closurev, int set)
2138 {
2139 const char* arg = set != 0 ? "--define-common" : "--no-define-common";
2140 script_parse_option(closurev, arg, strlen(arg));
2141 }
2142
2143 // Called by the bison parser to define a symbol.
2144
2145 extern "C" void
2146 script_set_symbol(void* closurev, const char* name, size_t length,
2147 Expression* value, int providei, int hiddeni)
2148 {
2149 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2150 const bool provide = providei != 0;
2151 const bool hidden = hiddeni != 0;
2152 closure->script_options()->add_symbol_assignment(name, length, value,
2153 provide, hidden);
2154 }
2155
2156 // Called by the bison parser to add an assertion.
2157
2158 extern "C" void
2159 script_add_assertion(void* closurev, Expression* check, const char* message,
2160 size_t messagelen)
2161 {
2162 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2163 closure->script_options()->add_assertion(check, message, messagelen);
2164 }
2165
2166 // Called by the bison parser to parse an OPTION.
2167
2168 extern "C" void
2169 script_parse_option(void* closurev, const char* option, size_t length)
2170 {
2171 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2172 // We treat the option as a single command-line option, even if
2173 // it has internal whitespace.
2174 if (closure->command_line() == NULL)
2175 {
2176 // There are some options that we could handle here--e.g.,
2177 // -lLIBRARY. Should we bother?
2178 gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2179 " for scripts specified via -T/--script"),
2180 closure->filename(), closure->lineno(), closure->charpos());
2181 }
2182 else
2183 {
2184 bool past_a_double_dash_option = false;
2185 const char* mutable_option = strndup(option, length);
2186 gold_assert(mutable_option != NULL);
2187 closure->command_line()->process_one_option(1, &mutable_option, 0,
2188 &past_a_double_dash_option);
2189 // The General_options class will quite possibly store a pointer
2190 // into mutable_option, so we can't free it. In cases the class
2191 // does not store such a pointer, this is a memory leak. Alas. :(
2192 }
2193 }
2194
2195 // Called by the bison parser to handle SEARCH_DIR. This is handled
2196 // exactly like a -L option.
2197
2198 extern "C" void
2199 script_add_search_dir(void* closurev, const char* option, size_t length)
2200 {
2201 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2202 if (closure->command_line() == NULL)
2203 gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid"
2204 " for scripts specified via -T/--script"),
2205 closure->filename(), closure->lineno(), closure->charpos());
2206 else
2207 {
2208 std::string s = "-L" + std::string(option, length);
2209 script_parse_option(closurev, s.c_str(), s.size());
2210 }
2211 }
2212
2213 /* Called by the bison parser to push the lexer into expression
2214 mode. */
2215
2216 extern "C" void
2217 script_push_lex_into_expression_mode(void* closurev)
2218 {
2219 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2220 closure->push_lex_mode(Lex::EXPRESSION);
2221 }
2222
2223 /* Called by the bison parser to push the lexer into version
2224 mode. */
2225
2226 extern "C" void
2227 script_push_lex_into_version_mode(void* closurev)
2228 {
2229 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2230 closure->push_lex_mode(Lex::VERSION_SCRIPT);
2231 }
2232
2233 /* Called by the bison parser to pop the lexer mode. */
2234
2235 extern "C" void
2236 script_pop_lex_mode(void* closurev)
2237 {
2238 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2239 closure->pop_lex_mode();
2240 }
2241
2242 // Register an entire version node. For example:
2243 //
2244 // GLIBC_2.1 {
2245 // global: foo;
2246 // } GLIBC_2.0;
2247 //
2248 // - tag is "GLIBC_2.1"
2249 // - tree contains the information "global: foo"
2250 // - deps contains "GLIBC_2.0"
2251
2252 extern "C" void
2253 script_register_vers_node(void*,
2254 const char* tag,
2255 int taglen,
2256 struct Version_tree *tree,
2257 struct Version_dependency_list *deps)
2258 {
2259 gold_assert(tree != NULL);
2260 tree->dependencies = deps;
2261 if (tag != NULL)
2262 tree->tag = std::string(tag, taglen);
2263 }
2264
2265 // Add a dependencies to the list of existing dependencies, if any,
2266 // and return the expanded list.
2267
2268 extern "C" struct Version_dependency_list *
2269 script_add_vers_depend(void* closurev,
2270 struct Version_dependency_list *all_deps,
2271 const char *depend_to_add, int deplen)
2272 {
2273 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2274 if (all_deps == NULL)
2275 all_deps = closure->version_script()->allocate_dependency_list();
2276 all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2277 return all_deps;
2278 }
2279
2280 // Add a pattern expression to an existing list of expressions, if any.
2281 // TODO: In the old linker, the last argument used to be a bool, but I
2282 // don't know what it meant.
2283
2284 extern "C" struct Version_expression_list *
2285 script_new_vers_pattern(void* closurev,
2286 struct Version_expression_list *expressions,
2287 const char *pattern, int patlen, int exact_match)
2288 {
2289 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2290 if (expressions == NULL)
2291 expressions = closure->version_script()->allocate_expression_list();
2292 expressions->expressions.push_back(
2293 Version_expression(std::string(pattern, patlen),
2294 closure->get_current_language(),
2295 static_cast<bool>(exact_match)));
2296 return expressions;
2297 }
2298
2299 // Attaches b to the end of a, and clears b. So a = a + b and b = {}.
2300
2301 extern "C" struct Version_expression_list*
2302 script_merge_expressions(struct Version_expression_list *a,
2303 struct Version_expression_list *b)
2304 {
2305 a->expressions.insert(a->expressions.end(),
2306 b->expressions.begin(), b->expressions.end());
2307 // We could delete b and remove it from expressions_lists_, but
2308 // that's a lot of work. This works just as well.
2309 b->expressions.clear();
2310 return a;
2311 }
2312
2313 // Combine the global and local expressions into a a Version_tree.
2314
2315 extern "C" struct Version_tree *
2316 script_new_vers_node(void* closurev,
2317 struct Version_expression_list *global,
2318 struct Version_expression_list *local)
2319 {
2320 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2321 Version_tree* tree = closure->version_script()->allocate_version_tree();
2322 tree->global = global;
2323 tree->local = local;
2324 return tree;
2325 }
2326
2327 // Handle a transition in language, such as at the
2328 // start or end of 'extern "C++"'
2329
2330 extern "C" void
2331 version_script_push_lang(void* closurev, const char* lang, int langlen)
2332 {
2333 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2334 closure->push_language(std::string(lang, langlen));
2335 }
2336
2337 extern "C" void
2338 version_script_pop_lang(void* closurev)
2339 {
2340 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2341 closure->pop_language();
2342 }
2343
2344 // Called by the bison parser to start a SECTIONS clause.
2345
2346 extern "C" void
2347 script_start_sections(void* closurev)
2348 {
2349 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2350 closure->script_options()->script_sections()->start_sections();
2351 }
2352
2353 // Called by the bison parser to finish a SECTIONS clause.
2354
2355 extern "C" void
2356 script_finish_sections(void* closurev)
2357 {
2358 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2359 closure->script_options()->script_sections()->finish_sections();
2360 }
2361
2362 // Start processing entries for an output section.
2363
2364 extern "C" void
2365 script_start_output_section(void* closurev, const char* name, size_t namelen,
2366 const struct Parser_output_section_header* header)
2367 {
2368 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2369 closure->script_options()->script_sections()->start_output_section(name,
2370 namelen,
2371 header);
2372 }
2373
2374 // Finish processing entries for an output section.
2375
2376 extern "C" void
2377 script_finish_output_section(void* closurev,
2378 const struct Parser_output_section_trailer* trail)
2379 {
2380 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2381 closure->script_options()->script_sections()->finish_output_section(trail);
2382 }
2383
2384 // Add a data item (e.g., "WORD (0)") to the current output section.
2385
2386 extern "C" void
2387 script_add_data(void* closurev, int data_token, Expression* val)
2388 {
2389 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2390 int size;
2391 bool is_signed = true;
2392 switch (data_token)
2393 {
2394 case QUAD:
2395 size = 8;
2396 is_signed = false;
2397 break;
2398 case SQUAD:
2399 size = 8;
2400 break;
2401 case LONG:
2402 size = 4;
2403 break;
2404 case SHORT:
2405 size = 2;
2406 break;
2407 case BYTE:
2408 size = 1;
2409 break;
2410 default:
2411 gold_unreachable();
2412 }
2413 closure->script_options()->script_sections()->add_data(size, is_signed, val);
2414 }
2415
2416 // Add a clause setting the fill value to the current output section.
2417
2418 extern "C" void
2419 script_add_fill(void* closurev, Expression* val)
2420 {
2421 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2422 closure->script_options()->script_sections()->add_fill(val);
2423 }
2424
2425 // Add a new input section specification to the current output
2426 // section.
2427
2428 extern "C" void
2429 script_add_input_section(void* closurev,
2430 const struct Input_section_spec* spec,
2431 int keepi)
2432 {
2433 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2434 bool keep = keepi != 0;
2435 closure->script_options()->script_sections()->add_input_section(spec, keep);
2436 }
2437
2438 // When we see DATA_SEGMENT_ALIGN we record that following output
2439 // sections may be relro.
2440
2441 extern "C" void
2442 script_data_segment_align(void* closurev)
2443 {
2444 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2445 if (!closure->script_options()->saw_sections_clause())
2446 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
2447 closure->filename(), closure->lineno(), closure->charpos());
2448 else
2449 closure->script_options()->script_sections()->data_segment_align();
2450 }
2451
2452 // When we see DATA_SEGMENT_RELRO_END we know that all output sections
2453 // since DATA_SEGMENT_ALIGN should be relro.
2454
2455 extern "C" void
2456 script_data_segment_relro_end(void* closurev)
2457 {
2458 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2459 if (!closure->script_options()->saw_sections_clause())
2460 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
2461 closure->filename(), closure->lineno(), closure->charpos());
2462 else
2463 closure->script_options()->script_sections()->data_segment_relro_end();
2464 }
2465
2466 // Create a new list of string/sort pairs.
2467
2468 extern "C" String_sort_list_ptr
2469 script_new_string_sort_list(const struct Wildcard_section* string_sort)
2470 {
2471 return new String_sort_list(1, *string_sort);
2472 }
2473
2474 // Add an entry to a list of string/sort pairs. The way the parser
2475 // works permits us to simply modify the first parameter, rather than
2476 // copy the vector.
2477
2478 extern "C" String_sort_list_ptr
2479 script_string_sort_list_add(String_sort_list_ptr pv,
2480 const struct Wildcard_section* string_sort)
2481 {
2482 if (pv == NULL)
2483 return script_new_string_sort_list(string_sort);
2484 else
2485 {
2486 pv->push_back(*string_sort);
2487 return pv;
2488 }
2489 }
2490
2491 // Create a new list of strings.
2492
2493 extern "C" String_list_ptr
2494 script_new_string_list(const char* str, size_t len)
2495 {
2496 return new String_list(1, std::string(str, len));
2497 }
2498
2499 // Add an element to a list of strings. The way the parser works
2500 // permits us to simply modify the first parameter, rather than copy
2501 // the vector.
2502
2503 extern "C" String_list_ptr
2504 script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
2505 {
2506 if (pv == NULL)
2507 return script_new_string_list(str, len);
2508 else
2509 {
2510 pv->push_back(std::string(str, len));
2511 return pv;
2512 }
2513 }
2514
2515 // Concatenate two string lists. Either or both may be NULL. The way
2516 // the parser works permits us to modify the parameters, rather than
2517 // copy the vector.
2518
2519 extern "C" String_list_ptr
2520 script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
2521 {
2522 if (pv1 == NULL)
2523 return pv2;
2524 if (pv2 == NULL)
2525 return pv1;
2526 pv1->insert(pv1->end(), pv2->begin(), pv2->end());
2527 return pv1;
2528 }
2529
2530 // Add a new program header.
2531
2532 extern "C" void
2533 script_add_phdr(void* closurev, const char* name, size_t namelen,
2534 unsigned int type, const Phdr_info* info)
2535 {
2536 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2537 bool includes_filehdr = info->includes_filehdr != 0;
2538 bool includes_phdrs = info->includes_phdrs != 0;
2539 bool is_flags_valid = info->is_flags_valid != 0;
2540 Script_sections* ss = closure->script_options()->script_sections();
2541 ss->add_phdr(name, namelen, type, includes_filehdr, includes_phdrs,
2542 is_flags_valid, info->flags, info->load_address);
2543 }
2544
2545 // Convert a program header string to a type.
2546
2547 #define PHDR_TYPE(NAME) { #NAME, sizeof(#NAME) - 1, elfcpp::NAME }
2548
2549 static struct
2550 {
2551 const char* name;
2552 size_t namelen;
2553 unsigned int val;
2554 } phdr_type_names[] =
2555 {
2556 PHDR_TYPE(PT_NULL),
2557 PHDR_TYPE(PT_LOAD),
2558 PHDR_TYPE(PT_DYNAMIC),
2559 PHDR_TYPE(PT_INTERP),
2560 PHDR_TYPE(PT_NOTE),
2561 PHDR_TYPE(PT_SHLIB),
2562 PHDR_TYPE(PT_PHDR),
2563 PHDR_TYPE(PT_TLS),
2564 PHDR_TYPE(PT_GNU_EH_FRAME),
2565 PHDR_TYPE(PT_GNU_STACK),
2566 PHDR_TYPE(PT_GNU_RELRO)
2567 };
2568
2569 extern "C" unsigned int
2570 script_phdr_string_to_type(void* closurev, const char* name, size_t namelen)
2571 {
2572 for (unsigned int i = 0;
2573 i < sizeof(phdr_type_names) / sizeof(phdr_type_names[0]);
2574 ++i)
2575 if (namelen == phdr_type_names[i].namelen
2576 && strncmp(name, phdr_type_names[i].name, namelen) == 0)
2577 return phdr_type_names[i].val;
2578 yyerror(closurev, _("unknown PHDR type (try integer)"));
2579 return elfcpp::PT_NULL;
2580 }
This page took 0.12806 seconds and 4 git commands to generate.