Fully implement the SECTIONS clause.
[deliverable/binutils-gdb.git] / gold / script.cc
1 // script.cc -- handle linker scripts for gold.
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <fnmatch.h>
26 #include <string>
27 #include <vector>
28 #include <cstdio>
29 #include <cstdlib>
30 #include "filenames.h"
31
32 #include "elfcpp.h"
33 #include "demangle.h"
34 #include "dirsearch.h"
35 #include "options.h"
36 #include "fileread.h"
37 #include "workqueue.h"
38 #include "readsyms.h"
39 #include "parameters.h"
40 #include "layout.h"
41 #include "symtab.h"
42 #include "script.h"
43 #include "script-c.h"
44
45 namespace gold
46 {
47
48 // A token read from a script file. We don't implement keywords here;
49 // all keywords are simply represented as a string.
50
51 class Token
52 {
53 public:
54 // Token classification.
55 enum Classification
56 {
57 // Token is invalid.
58 TOKEN_INVALID,
59 // Token indicates end of input.
60 TOKEN_EOF,
61 // Token is a string of characters.
62 TOKEN_STRING,
63 // Token is a quoted string of characters.
64 TOKEN_QUOTED_STRING,
65 // Token is an operator.
66 TOKEN_OPERATOR,
67 // Token is a number (an integer).
68 TOKEN_INTEGER
69 };
70
71 // We need an empty constructor so that we can put this STL objects.
72 Token()
73 : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
74 opcode_(0), lineno_(0), charpos_(0)
75 { }
76
77 // A general token with no value.
78 Token(Classification classification, int lineno, int charpos)
79 : classification_(classification), value_(NULL), value_length_(0),
80 opcode_(0), lineno_(lineno), charpos_(charpos)
81 {
82 gold_assert(classification == TOKEN_INVALID
83 || classification == TOKEN_EOF);
84 }
85
86 // A general token with a value.
87 Token(Classification classification, const char* value, size_t length,
88 int lineno, int charpos)
89 : classification_(classification), value_(value), value_length_(length),
90 opcode_(0), lineno_(lineno), charpos_(charpos)
91 {
92 gold_assert(classification != TOKEN_INVALID
93 && classification != TOKEN_EOF);
94 }
95
96 // A token representing an operator.
97 Token(int opcode, int lineno, int charpos)
98 : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
99 opcode_(opcode), lineno_(lineno), charpos_(charpos)
100 { }
101
102 // Return whether the token is invalid.
103 bool
104 is_invalid() const
105 { return this->classification_ == TOKEN_INVALID; }
106
107 // Return whether this is an EOF token.
108 bool
109 is_eof() const
110 { return this->classification_ == TOKEN_EOF; }
111
112 // Return the token classification.
113 Classification
114 classification() const
115 { return this->classification_; }
116
117 // Return the line number at which the token starts.
118 int
119 lineno() const
120 { return this->lineno_; }
121
122 // Return the character position at this the token starts.
123 int
124 charpos() const
125 { return this->charpos_; }
126
127 // Get the value of a token.
128
129 const char*
130 string_value(size_t* length) const
131 {
132 gold_assert(this->classification_ == TOKEN_STRING
133 || this->classification_ == TOKEN_QUOTED_STRING);
134 *length = this->value_length_;
135 return this->value_;
136 }
137
138 int
139 operator_value() const
140 {
141 gold_assert(this->classification_ == TOKEN_OPERATOR);
142 return this->opcode_;
143 }
144
145 uint64_t
146 integer_value() const
147 {
148 gold_assert(this->classification_ == TOKEN_INTEGER);
149 // Null terminate.
150 std::string s(this->value_, this->value_length_);
151 return strtoull(s.c_str(), NULL, 0);
152 }
153
154 private:
155 // The token classification.
156 Classification classification_;
157 // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
158 // TOKEN_INTEGER.
159 const char* value_;
160 // The length of the token value.
161 size_t value_length_;
162 // The token value, for TOKEN_OPERATOR.
163 int opcode_;
164 // The line number where this token started (one based).
165 int lineno_;
166 // The character position within the line where this token started
167 // (one based).
168 int charpos_;
169 };
170
171 // This class handles lexing a file into a sequence of tokens.
172
173 class Lex
174 {
175 public:
176 // We unfortunately have to support different lexing modes, because
177 // when reading different parts of a linker script we need to parse
178 // things differently.
179 enum Mode
180 {
181 // Reading an ordinary linker script.
182 LINKER_SCRIPT,
183 // Reading an expression in a linker script.
184 EXPRESSION,
185 // Reading a version script.
186 VERSION_SCRIPT
187 };
188
189 Lex(const char* input_string, size_t input_length, int parsing_token)
190 : input_string_(input_string), input_length_(input_length),
191 current_(input_string), mode_(LINKER_SCRIPT),
192 first_token_(parsing_token), token_(),
193 lineno_(1), linestart_(input_string)
194 { }
195
196 // Read a file into a string.
197 static void
198 read_file(Input_file*, std::string*);
199
200 // Return the next token.
201 const Token*
202 next_token();
203
204 // Return the current lexing mode.
205 Lex::Mode
206 mode() const
207 { return this->mode_; }
208
209 // Set the lexing mode.
210 void
211 set_mode(Mode mode)
212 { this->mode_ = mode; }
213
214 private:
215 Lex(const Lex&);
216 Lex& operator=(const Lex&);
217
218 // Make a general token with no value at the current location.
219 Token
220 make_token(Token::Classification c, const char* start) const
221 { return Token(c, this->lineno_, start - this->linestart_ + 1); }
222
223 // Make a general token with a value at the current location.
224 Token
225 make_token(Token::Classification c, const char* v, size_t len,
226 const char* start)
227 const
228 { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
229
230 // Make an operator token at the current location.
231 Token
232 make_token(int opcode, const char* start) const
233 { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
234
235 // Make an invalid token at the current location.
236 Token
237 make_invalid_token(const char* start)
238 { return this->make_token(Token::TOKEN_INVALID, start); }
239
240 // Make an EOF token at the current location.
241 Token
242 make_eof_token(const char* start)
243 { return this->make_token(Token::TOKEN_EOF, start); }
244
245 // Return whether C can be the first character in a name. C2 is the
246 // next character, since we sometimes need that.
247 inline bool
248 can_start_name(char c, char c2);
249
250 // If C can appear in a name which has already started, return a
251 // pointer to a character later in the token or just past
252 // it. Otherwise, return NULL.
253 inline const char*
254 can_continue_name(const char* c);
255
256 // Return whether C, C2, C3 can start a hex number.
257 inline bool
258 can_start_hex(char c, char c2, char c3);
259
260 // If C can appear in a hex number which has already started, return
261 // a pointer to a character later in the token or just past
262 // it. Otherwise, return NULL.
263 inline const char*
264 can_continue_hex(const char* c);
265
266 // Return whether C can start a non-hex number.
267 static inline bool
268 can_start_number(char c);
269
270 // If C can appear in a decimal number which has already started,
271 // return a pointer to a character later in the token or just past
272 // it. Otherwise, return NULL.
273 inline const char*
274 can_continue_number(const char* c)
275 { return Lex::can_start_number(*c) ? c + 1 : NULL; }
276
277 // If C1 C2 C3 form a valid three character operator, return the
278 // opcode. Otherwise return 0.
279 static inline int
280 three_char_operator(char c1, char c2, char c3);
281
282 // If C1 C2 form a valid two character operator, return the opcode.
283 // Otherwise return 0.
284 static inline int
285 two_char_operator(char c1, char c2);
286
287 // If C1 is a valid one character operator, return the opcode.
288 // Otherwise return 0.
289 static inline int
290 one_char_operator(char c1);
291
292 // Read the next token.
293 Token
294 get_token(const char**);
295
296 // Skip a C style /* */ comment. Return false if the comment did
297 // not end.
298 bool
299 skip_c_comment(const char**);
300
301 // Skip a line # comment. Return false if there was no newline.
302 bool
303 skip_line_comment(const char**);
304
305 // Build a token CLASSIFICATION from all characters that match
306 // CAN_CONTINUE_FN. The token starts at START. Start matching from
307 // MATCH. Set *PP to the character following the token.
308 inline Token
309 gather_token(Token::Classification,
310 const char* (Lex::*can_continue_fn)(const char*),
311 const char* start, const char* match, const char** pp);
312
313 // Build a token from a quoted string.
314 Token
315 gather_quoted_string(const char** pp);
316
317 // The string we are tokenizing.
318 const char* input_string_;
319 // The length of the string.
320 size_t input_length_;
321 // The current offset into the string.
322 const char* current_;
323 // The current lexing mode.
324 Mode mode_;
325 // The code to use for the first token. This is set to 0 after it
326 // is used.
327 int first_token_;
328 // The current token.
329 Token token_;
330 // The current line number.
331 int lineno_;
332 // The start of the current line in the string.
333 const char* linestart_;
334 };
335
336 // Read the whole file into memory. We don't expect linker scripts to
337 // be large, so we just use a std::string as a buffer. We ignore the
338 // data we've already read, so that we read aligned buffers.
339
340 void
341 Lex::read_file(Input_file* input_file, std::string* contents)
342 {
343 off_t filesize = input_file->file().filesize();
344 contents->clear();
345 contents->reserve(filesize);
346
347 off_t off = 0;
348 unsigned char buf[BUFSIZ];
349 while (off < filesize)
350 {
351 off_t get = BUFSIZ;
352 if (get > filesize - off)
353 get = filesize - off;
354 input_file->file().read(off, get, buf);
355 contents->append(reinterpret_cast<char*>(&buf[0]), get);
356 off += get;
357 }
358 }
359
360 // Return whether C can be the start of a name, if the next character
361 // is C2. A name can being with a letter, underscore, period, or
362 // dollar sign. Because a name can be a file name, we also permit
363 // forward slash, backslash, and tilde. Tilde is the tricky case
364 // here; GNU ld also uses it as a bitwise not operator. It is only
365 // recognized as the operator if it is not immediately followed by
366 // some character which can appear in a symbol. That is, when we
367 // don't know that we are looking at an expression, "~0" is a file
368 // name, and "~ 0" is an expression using bitwise not. We are
369 // compatible.
370
371 inline bool
372 Lex::can_start_name(char c, char c2)
373 {
374 switch (c)
375 {
376 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
377 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
378 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
379 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
380 case 'Y': case 'Z':
381 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
382 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
383 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
384 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
385 case 'y': case 'z':
386 case '_': case '.': case '$':
387 return true;
388
389 case '/': case '\\':
390 return this->mode_ == LINKER_SCRIPT;
391
392 case '~':
393 return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
394
395 case '*': case '[':
396 return this->mode_ == VERSION_SCRIPT;
397
398 default:
399 return false;
400 }
401 }
402
403 // Return whether C can continue a name which has already started.
404 // Subsequent characters in a name are the same as the leading
405 // characters, plus digits and "=+-:[],?*". So in general the linker
406 // script language requires spaces around operators, unless we know
407 // that we are parsing an expression.
408
409 inline const char*
410 Lex::can_continue_name(const char* c)
411 {
412 switch (*c)
413 {
414 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
415 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
416 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
417 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
418 case 'Y': case 'Z':
419 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
420 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
421 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
422 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
423 case 'y': case 'z':
424 case '_': case '.': case '$':
425 case '0': case '1': case '2': case '3': case '4':
426 case '5': case '6': case '7': case '8': case '9':
427 return c + 1;
428
429 case '/': case '\\': case '~':
430 case '=': case '+':
431 case ',': case '?':
432 if (this->mode_ == LINKER_SCRIPT)
433 return c + 1;
434 return NULL;
435
436 case '[': case ']': case '*': case '-':
437 if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT)
438 return c + 1;
439 return NULL;
440
441 case '^':
442 if (this->mode_ == VERSION_SCRIPT)
443 return c + 1;
444 return NULL;
445
446 case ':':
447 if (this->mode_ == LINKER_SCRIPT)
448 return c + 1;
449 else if (this->mode_ == VERSION_SCRIPT && (c[1] == ':'))
450 {
451 // A name can have '::' in it, as that's a c++ namespace
452 // separator. But a single colon is not part of a name.
453 return c + 2;
454 }
455 return NULL;
456
457 default:
458 return NULL;
459 }
460 }
461
462 // For a number we accept 0x followed by hex digits, or any sequence
463 // of digits. The old linker accepts leading '$' for hex, and
464 // trailing HXBOD. Those are for MRI compatibility and we don't
465 // accept them. The old linker also accepts trailing MK for mega or
466 // kilo. FIXME: Those are mentioned in the documentation, and we
467 // should accept them.
468
469 // Return whether C1 C2 C3 can start a hex number.
470
471 inline bool
472 Lex::can_start_hex(char c1, char c2, char c3)
473 {
474 if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
475 return this->can_continue_hex(&c3);
476 return false;
477 }
478
479 // Return whether C can appear in a hex number.
480
481 inline const char*
482 Lex::can_continue_hex(const char* c)
483 {
484 switch (*c)
485 {
486 case '0': case '1': case '2': case '3': case '4':
487 case '5': case '6': case '7': case '8': case '9':
488 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
489 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
490 return c + 1;
491
492 default:
493 return NULL;
494 }
495 }
496
497 // Return whether C can start a non-hex number.
498
499 inline bool
500 Lex::can_start_number(char c)
501 {
502 switch (c)
503 {
504 case '0': case '1': case '2': case '3': case '4':
505 case '5': case '6': case '7': case '8': case '9':
506 return true;
507
508 default:
509 return false;
510 }
511 }
512
513 // If C1 C2 C3 form a valid three character operator, return the
514 // opcode (defined in the yyscript.h file generated from yyscript.y).
515 // Otherwise return 0.
516
517 inline int
518 Lex::three_char_operator(char c1, char c2, char c3)
519 {
520 switch (c1)
521 {
522 case '<':
523 if (c2 == '<' && c3 == '=')
524 return LSHIFTEQ;
525 break;
526 case '>':
527 if (c2 == '>' && c3 == '=')
528 return RSHIFTEQ;
529 break;
530 default:
531 break;
532 }
533 return 0;
534 }
535
536 // If C1 C2 form a valid two character operator, return the opcode
537 // (defined in the yyscript.h file generated from yyscript.y).
538 // Otherwise return 0.
539
540 inline int
541 Lex::two_char_operator(char c1, char c2)
542 {
543 switch (c1)
544 {
545 case '=':
546 if (c2 == '=')
547 return EQ;
548 break;
549 case '!':
550 if (c2 == '=')
551 return NE;
552 break;
553 case '+':
554 if (c2 == '=')
555 return PLUSEQ;
556 break;
557 case '-':
558 if (c2 == '=')
559 return MINUSEQ;
560 break;
561 case '*':
562 if (c2 == '=')
563 return MULTEQ;
564 break;
565 case '/':
566 if (c2 == '=')
567 return DIVEQ;
568 break;
569 case '|':
570 if (c2 == '=')
571 return OREQ;
572 if (c2 == '|')
573 return OROR;
574 break;
575 case '&':
576 if (c2 == '=')
577 return ANDEQ;
578 if (c2 == '&')
579 return ANDAND;
580 break;
581 case '>':
582 if (c2 == '=')
583 return GE;
584 if (c2 == '>')
585 return RSHIFT;
586 break;
587 case '<':
588 if (c2 == '=')
589 return LE;
590 if (c2 == '<')
591 return LSHIFT;
592 break;
593 default:
594 break;
595 }
596 return 0;
597 }
598
599 // If C1 is a valid operator, return the opcode. Otherwise return 0.
600
601 inline int
602 Lex::one_char_operator(char c1)
603 {
604 switch (c1)
605 {
606 case '+':
607 case '-':
608 case '*':
609 case '/':
610 case '%':
611 case '!':
612 case '&':
613 case '|':
614 case '^':
615 case '~':
616 case '<':
617 case '>':
618 case '=':
619 case '?':
620 case ',':
621 case '(':
622 case ')':
623 case '{':
624 case '}':
625 case '[':
626 case ']':
627 case ':':
628 case ';':
629 return c1;
630 default:
631 return 0;
632 }
633 }
634
635 // Skip a C style comment. *PP points to just after the "/*". Return
636 // false if the comment did not end.
637
638 bool
639 Lex::skip_c_comment(const char** pp)
640 {
641 const char* p = *pp;
642 while (p[0] != '*' || p[1] != '/')
643 {
644 if (*p == '\0')
645 {
646 *pp = p;
647 return false;
648 }
649
650 if (*p == '\n')
651 {
652 ++this->lineno_;
653 this->linestart_ = p + 1;
654 }
655 ++p;
656 }
657
658 *pp = p + 2;
659 return true;
660 }
661
662 // Skip a line # comment. Return false if there was no newline.
663
664 bool
665 Lex::skip_line_comment(const char** pp)
666 {
667 const char* p = *pp;
668 size_t skip = strcspn(p, "\n");
669 if (p[skip] == '\0')
670 {
671 *pp = p + skip;
672 return false;
673 }
674
675 p += skip + 1;
676 ++this->lineno_;
677 this->linestart_ = p;
678 *pp = p;
679
680 return true;
681 }
682
683 // Build a token CLASSIFICATION from all characters that match
684 // CAN_CONTINUE_FN. Update *PP.
685
686 inline Token
687 Lex::gather_token(Token::Classification classification,
688 const char* (Lex::*can_continue_fn)(const char*),
689 const char* start,
690 const char* match,
691 const char **pp)
692 {
693 const char* new_match = NULL;
694 while ((new_match = (this->*can_continue_fn)(match)))
695 match = new_match;
696 *pp = match;
697 return this->make_token(classification, start, match - start, start);
698 }
699
700 // Build a token from a quoted string.
701
702 Token
703 Lex::gather_quoted_string(const char** pp)
704 {
705 const char* start = *pp;
706 const char* p = start;
707 ++p;
708 size_t skip = strcspn(p, "\"\n");
709 if (p[skip] != '"')
710 return this->make_invalid_token(start);
711 *pp = p + skip + 1;
712 return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
713 }
714
715 // Return the next token at *PP. Update *PP. General guideline: we
716 // require linker scripts to be simple ASCII. No unicode linker
717 // scripts. In particular we can assume that any '\0' is the end of
718 // the input.
719
720 Token
721 Lex::get_token(const char** pp)
722 {
723 const char* p = *pp;
724
725 while (true)
726 {
727 if (*p == '\0')
728 {
729 *pp = p;
730 return this->make_eof_token(p);
731 }
732
733 // Skip whitespace quickly.
734 while (*p == ' ' || *p == '\t')
735 ++p;
736
737 if (*p == '\n')
738 {
739 ++p;
740 ++this->lineno_;
741 this->linestart_ = p;
742 continue;
743 }
744
745 // Skip C style comments.
746 if (p[0] == '/' && p[1] == '*')
747 {
748 int lineno = this->lineno_;
749 int charpos = p - this->linestart_ + 1;
750
751 *pp = p + 2;
752 if (!this->skip_c_comment(pp))
753 return Token(Token::TOKEN_INVALID, lineno, charpos);
754 p = *pp;
755
756 continue;
757 }
758
759 // Skip line comments.
760 if (*p == '#')
761 {
762 *pp = p + 1;
763 if (!this->skip_line_comment(pp))
764 return this->make_eof_token(p);
765 p = *pp;
766 continue;
767 }
768
769 // Check for a name.
770 if (this->can_start_name(p[0], p[1]))
771 return this->gather_token(Token::TOKEN_STRING,
772 &Lex::can_continue_name,
773 p, p + 1, pp);
774
775 // We accept any arbitrary name in double quotes, as long as it
776 // does not cross a line boundary.
777 if (*p == '"')
778 {
779 *pp = p;
780 return this->gather_quoted_string(pp);
781 }
782
783 // Check for a number.
784
785 if (this->can_start_hex(p[0], p[1], p[2]))
786 return this->gather_token(Token::TOKEN_INTEGER,
787 &Lex::can_continue_hex,
788 p, p + 3, pp);
789
790 if (Lex::can_start_number(p[0]))
791 return this->gather_token(Token::TOKEN_INTEGER,
792 &Lex::can_continue_number,
793 p, p + 1, pp);
794
795 // Check for operators.
796
797 int opcode = Lex::three_char_operator(p[0], p[1], p[2]);
798 if (opcode != 0)
799 {
800 *pp = p + 3;
801 return this->make_token(opcode, p);
802 }
803
804 opcode = Lex::two_char_operator(p[0], p[1]);
805 if (opcode != 0)
806 {
807 *pp = p + 2;
808 return this->make_token(opcode, p);
809 }
810
811 opcode = Lex::one_char_operator(p[0]);
812 if (opcode != 0)
813 {
814 *pp = p + 1;
815 return this->make_token(opcode, p);
816 }
817
818 return this->make_token(Token::TOKEN_INVALID, p);
819 }
820 }
821
822 // Return the next token.
823
824 const Token*
825 Lex::next_token()
826 {
827 // The first token is special.
828 if (this->first_token_ != 0)
829 {
830 this->token_ = Token(this->first_token_, 0, 0);
831 this->first_token_ = 0;
832 return &this->token_;
833 }
834
835 this->token_ = this->get_token(&this->current_);
836
837 // Don't let an early null byte fool us into thinking that we've
838 // reached the end of the file.
839 if (this->token_.is_eof()
840 && (static_cast<size_t>(this->current_ - this->input_string_)
841 < this->input_length_))
842 this->token_ = this->make_invalid_token(this->current_);
843
844 return &this->token_;
845 }
846
847 // A trivial task which waits for THIS_BLOCKER to be clear and then
848 // clears NEXT_BLOCKER. THIS_BLOCKER may be NULL.
849
850 class Script_unblock : public Task
851 {
852 public:
853 Script_unblock(Task_token* this_blocker, Task_token* next_blocker)
854 : this_blocker_(this_blocker), next_blocker_(next_blocker)
855 { }
856
857 ~Script_unblock()
858 {
859 if (this->this_blocker_ != NULL)
860 delete this->this_blocker_;
861 }
862
863 Task_token*
864 is_runnable()
865 {
866 if (this->this_blocker_ != NULL && this->this_blocker_->is_blocked())
867 return this->this_blocker_;
868 return NULL;
869 }
870
871 void
872 locks(Task_locker* tl)
873 { tl->add(this, this->next_blocker_); }
874
875 void
876 run(Workqueue*)
877 { }
878
879 std::string
880 get_name() const
881 { return "Script_unblock"; }
882
883 private:
884 Task_token* this_blocker_;
885 Task_token* next_blocker_;
886 };
887
888 // class Symbol_assignment.
889
890 // Add the symbol to the symbol table. This makes sure the symbol is
891 // there and defined. The actual value is stored later. We can't
892 // determine the actual value at this point, because we can't
893 // necessarily evaluate the expression until all ordinary symbols have
894 // been finalized.
895
896 void
897 Symbol_assignment::add_to_table(Symbol_table* symtab)
898 {
899 elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
900 this->sym_ = symtab->define_as_constant(this->name_.c_str(),
901 NULL, // version
902 0, // value
903 0, // size
904 elfcpp::STT_NOTYPE,
905 elfcpp::STB_GLOBAL,
906 vis,
907 0, // nonvis
908 this->provide_);
909 }
910
911 // Finalize a symbol value.
912
913 void
914 Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
915 {
916 this->finalize_maybe_dot(symtab, layout, false, false, 0);
917 }
918
919 // Finalize a symbol value which can refer to the dot symbol.
920
921 void
922 Symbol_assignment::finalize_with_dot(Symbol_table* symtab,
923 const Layout* layout,
924 bool dot_has_value,
925 uint64_t dot_value)
926 {
927 this->finalize_maybe_dot(symtab, layout, true, dot_has_value, dot_value);
928 }
929
930 // Finalize a symbol value, internal version.
931
932 void
933 Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab,
934 const Layout* layout,
935 bool is_dot_available,
936 bool dot_has_value,
937 uint64_t dot_value)
938 {
939 // If we were only supposed to provide this symbol, the sym_ field
940 // will be NULL if the symbol was not referenced.
941 if (this->sym_ == NULL)
942 {
943 gold_assert(this->provide_);
944 return;
945 }
946
947 if (parameters->get_size() == 32)
948 {
949 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
950 this->sized_finalize<32>(symtab, layout, is_dot_available, dot_has_value,
951 dot_value);
952 #else
953 gold_unreachable();
954 #endif
955 }
956 else if (parameters->get_size() == 64)
957 {
958 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
959 this->sized_finalize<64>(symtab, layout, is_dot_available, dot_has_value,
960 dot_value);
961 #else
962 gold_unreachable();
963 #endif
964 }
965 else
966 gold_unreachable();
967 }
968
969 template<int size>
970 void
971 Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout,
972 bool is_dot_available, bool dot_has_value,
973 uint64_t dot_value)
974 {
975 bool dummy;
976 uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout,
977 is_dot_available,
978 dot_has_value, dot_value,
979 &dummy);
980 Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
981 ssym->set_value(final_val);
982 }
983
984 // Set the symbol value if the expression yields an absolute value.
985
986 void
987 Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout,
988 bool is_dot_available, bool dot_has_value,
989 uint64_t dot_value)
990 {
991 if (this->sym_ == NULL)
992 return;
993
994 bool is_absolute;
995 uint64_t val = this->val_->eval_maybe_dot(symtab, layout, is_dot_available,
996 dot_has_value, dot_value,
997 &is_absolute);
998 if (!is_absolute)
999 return;
1000
1001 if (parameters->get_size() == 32)
1002 {
1003 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1004 Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_);
1005 ssym->set_value(val);
1006 #else
1007 gold_unreachable();
1008 #endif
1009 }
1010 else if (parameters->get_size() == 64)
1011 {
1012 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1013 Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_);
1014 ssym->set_value(val);
1015 #else
1016 gold_unreachable();
1017 #endif
1018 }
1019 else
1020 gold_unreachable();
1021 }
1022
1023 // Print for debugging.
1024
1025 void
1026 Symbol_assignment::print(FILE* f) const
1027 {
1028 if (this->provide_ && this->hidden_)
1029 fprintf(f, "PROVIDE_HIDDEN(");
1030 else if (this->provide_)
1031 fprintf(f, "PROVIDE(");
1032 else if (this->hidden_)
1033 gold_unreachable();
1034
1035 fprintf(f, "%s = ", this->name_.c_str());
1036 this->val_->print(f);
1037
1038 if (this->provide_ || this->hidden_)
1039 fprintf(f, ")");
1040
1041 fprintf(f, "\n");
1042 }
1043
1044 // Class Script_assertion.
1045
1046 // Check the assertion.
1047
1048 void
1049 Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
1050 {
1051 if (!this->check_->eval(symtab, layout))
1052 gold_error("%s", this->message_.c_str());
1053 }
1054
1055 // Print for debugging.
1056
1057 void
1058 Script_assertion::print(FILE* f) const
1059 {
1060 fprintf(f, "ASSERT(");
1061 this->check_->print(f);
1062 fprintf(f, ", \"%s\")\n", this->message_.c_str());
1063 }
1064
1065 // Class Script_options.
1066
1067 Script_options::Script_options()
1068 : entry_(), symbol_assignments_(), version_script_info_(),
1069 script_sections_()
1070 {
1071 }
1072
1073 // Add a symbol to be defined.
1074
1075 void
1076 Script_options::add_symbol_assignment(const char* name, size_t length,
1077 Expression* value, bool provide,
1078 bool hidden)
1079 {
1080 if (length != 1 || name[0] != '.')
1081 {
1082 if (this->script_sections_.in_sections_clause())
1083 this->script_sections_.add_symbol_assignment(name, length, value,
1084 provide, hidden);
1085 else
1086 {
1087 Symbol_assignment* p = new Symbol_assignment(name, length, value,
1088 provide, hidden);
1089 this->symbol_assignments_.push_back(p);
1090 }
1091 }
1092 else
1093 {
1094 if (provide || hidden)
1095 gold_error(_("invalid use of PROVIDE for dot symbol"));
1096 if (!this->script_sections_.in_sections_clause())
1097 gold_error(_("invalid assignment to dot outside of SECTIONS"));
1098 else
1099 this->script_sections_.add_dot_assignment(value);
1100 }
1101 }
1102
1103 // Add an assertion.
1104
1105 void
1106 Script_options::add_assertion(Expression* check, const char* message,
1107 size_t messagelen)
1108 {
1109 if (this->script_sections_.in_sections_clause())
1110 this->script_sections_.add_assertion(check, message, messagelen);
1111 else
1112 {
1113 Script_assertion* p = new Script_assertion(check, message, messagelen);
1114 this->assertions_.push_back(p);
1115 }
1116 }
1117
1118 // Add any symbols we are defining to the symbol table.
1119
1120 void
1121 Script_options::add_symbols_to_table(Symbol_table* symtab)
1122 {
1123 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1124 p != this->symbol_assignments_.end();
1125 ++p)
1126 (*p)->add_to_table(symtab);
1127 this->script_sections_.add_symbols_to_table(symtab);
1128 }
1129
1130 // Finalize symbol values. Also check assertions.
1131
1132 void
1133 Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1134 {
1135 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1136 p != this->symbol_assignments_.end();
1137 ++p)
1138 (*p)->finalize(symtab, layout);
1139
1140 for (Assertions::iterator p = this->assertions_.begin();
1141 p != this->assertions_.end();
1142 ++p)
1143 (*p)->check(symtab, layout);
1144
1145 this->script_sections_.finalize_symbols(symtab, layout);
1146 }
1147
1148 // Set section addresses. We set all the symbols which have absolute
1149 // values. Then we let the SECTIONS clause do its thing. This
1150 // returns the segment which holds the file header and segment
1151 // headers, if any.
1152
1153 Output_segment*
1154 Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout)
1155 {
1156 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1157 p != this->symbol_assignments_.end();
1158 ++p)
1159 (*p)->set_if_absolute(symtab, layout, false, false, 0);
1160
1161 return this->script_sections_.set_section_addresses(symtab, layout);
1162 }
1163
1164 // This class holds data passed through the parser to the lexer and to
1165 // the parser support functions. This avoids global variables. We
1166 // can't use global variables because we need not be called by a
1167 // singleton thread.
1168
1169 class Parser_closure
1170 {
1171 public:
1172 Parser_closure(const char* filename,
1173 const Position_dependent_options& posdep_options,
1174 bool in_group, bool is_in_sysroot,
1175 Command_line* command_line,
1176 Script_options* script_options,
1177 Lex* lex)
1178 : filename_(filename), posdep_options_(posdep_options),
1179 in_group_(in_group), is_in_sysroot_(is_in_sysroot),
1180 command_line_(command_line), script_options_(script_options),
1181 version_script_info_(script_options->version_script_info()),
1182 lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL)
1183 {
1184 // We start out processing C symbols in the default lex mode.
1185 language_stack_.push_back("");
1186 lex_mode_stack_.push_back(lex->mode());
1187 }
1188
1189 // Return the file name.
1190 const char*
1191 filename() const
1192 { return this->filename_; }
1193
1194 // Return the position dependent options. The caller may modify
1195 // this.
1196 Position_dependent_options&
1197 position_dependent_options()
1198 { return this->posdep_options_; }
1199
1200 // Return whether this script is being run in a group.
1201 bool
1202 in_group() const
1203 { return this->in_group_; }
1204
1205 // Return whether this script was found using a directory in the
1206 // sysroot.
1207 bool
1208 is_in_sysroot() const
1209 { return this->is_in_sysroot_; }
1210
1211 // Returns the Command_line structure passed in at constructor time.
1212 // This value may be NULL. The caller may modify this, which modifies
1213 // the passed-in Command_line object (not a copy).
1214 Command_line*
1215 command_line()
1216 { return this->command_line_; }
1217
1218 // Return the options which may be set by a script.
1219 Script_options*
1220 script_options()
1221 { return this->script_options_; }
1222
1223 // Return the object in which version script information should be stored.
1224 Version_script_info*
1225 version_script()
1226 { return this->version_script_info_; }
1227
1228 // Return the next token, and advance.
1229 const Token*
1230 next_token()
1231 {
1232 const Token* token = this->lex_->next_token();
1233 this->lineno_ = token->lineno();
1234 this->charpos_ = token->charpos();
1235 return token;
1236 }
1237
1238 // Set a new lexer mode, pushing the current one.
1239 void
1240 push_lex_mode(Lex::Mode mode)
1241 {
1242 this->lex_mode_stack_.push_back(this->lex_->mode());
1243 this->lex_->set_mode(mode);
1244 }
1245
1246 // Pop the lexer mode.
1247 void
1248 pop_lex_mode()
1249 {
1250 gold_assert(!this->lex_mode_stack_.empty());
1251 this->lex_->set_mode(this->lex_mode_stack_.back());
1252 this->lex_mode_stack_.pop_back();
1253 }
1254
1255 // Return the current lexer mode.
1256 Lex::Mode
1257 lex_mode() const
1258 { return this->lex_mode_stack_.back(); }
1259
1260 // Return the line number of the last token.
1261 int
1262 lineno() const
1263 { return this->lineno_; }
1264
1265 // Return the character position in the line of the last token.
1266 int
1267 charpos() const
1268 { return this->charpos_; }
1269
1270 // Return the list of input files, creating it if necessary. This
1271 // is a space leak--we never free the INPUTS_ pointer.
1272 Input_arguments*
1273 inputs()
1274 {
1275 if (this->inputs_ == NULL)
1276 this->inputs_ = new Input_arguments();
1277 return this->inputs_;
1278 }
1279
1280 // Return whether we saw any input files.
1281 bool
1282 saw_inputs() const
1283 { return this->inputs_ != NULL && !this->inputs_->empty(); }
1284
1285 // Return the current language being processed in a version script
1286 // (eg, "C++"). The empty string represents unmangled C names.
1287 const std::string&
1288 get_current_language() const
1289 { return this->language_stack_.back(); }
1290
1291 // Push a language onto the stack when entering an extern block.
1292 void push_language(const std::string& lang)
1293 { this->language_stack_.push_back(lang); }
1294
1295 // Pop a language off of the stack when exiting an extern block.
1296 void pop_language()
1297 {
1298 gold_assert(!this->language_stack_.empty());
1299 this->language_stack_.pop_back();
1300 }
1301
1302 private:
1303 // The name of the file we are reading.
1304 const char* filename_;
1305 // The position dependent options.
1306 Position_dependent_options posdep_options_;
1307 // Whether we are currently in a --start-group/--end-group.
1308 bool in_group_;
1309 // Whether the script was found in a sysrooted directory.
1310 bool is_in_sysroot_;
1311 // May be NULL if the user chooses not to pass one in.
1312 Command_line* command_line_;
1313 // Options which may be set from any linker script.
1314 Script_options* script_options_;
1315 // Information parsed from a version script.
1316 Version_script_info* version_script_info_;
1317 // The lexer.
1318 Lex* lex_;
1319 // The line number of the last token returned by next_token.
1320 int lineno_;
1321 // The column number of the last token returned by next_token.
1322 int charpos_;
1323 // A stack of lexer modes.
1324 std::vector<Lex::Mode> lex_mode_stack_;
1325 // A stack of which extern/language block we're inside. Can be C++,
1326 // java, or empty for C.
1327 std::vector<std::string> language_stack_;
1328 // New input files found to add to the link.
1329 Input_arguments* inputs_;
1330 };
1331
1332 // FILE was found as an argument on the command line. Try to read it
1333 // as a script. We've already read BYTES of data into P, but we
1334 // ignore that. Return true if the file was handled.
1335
1336 bool
1337 read_input_script(Workqueue* workqueue, const General_options& options,
1338 Symbol_table* symtab, Layout* layout,
1339 Dirsearch* dirsearch, Input_objects* input_objects,
1340 Input_group* input_group,
1341 const Input_argument* input_argument,
1342 Input_file* input_file, const unsigned char*, off_t,
1343 Task_token* this_blocker, Task_token* next_blocker)
1344 {
1345 std::string input_string;
1346 Lex::read_file(input_file, &input_string);
1347
1348 Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1349
1350 Parser_closure closure(input_file->filename().c_str(),
1351 input_argument->file().options(),
1352 input_group != NULL,
1353 input_file->is_in_sysroot(),
1354 NULL,
1355 layout->script_options(),
1356 &lex);
1357
1358 if (yyparse(&closure) != 0)
1359 return false;
1360
1361 // THIS_BLOCKER must be clear before we may add anything to the
1362 // symbol table. We are responsible for unblocking NEXT_BLOCKER
1363 // when we are done. We are responsible for deleting THIS_BLOCKER
1364 // when it is unblocked.
1365
1366 if (!closure.saw_inputs())
1367 {
1368 // The script did not add any files to read. Note that we are
1369 // not permitted to call NEXT_BLOCKER->unblock() here even if
1370 // THIS_BLOCKER is NULL, as we do not hold the workqueue lock.
1371 workqueue->queue(new Script_unblock(this_blocker, next_blocker));
1372 return true;
1373 }
1374
1375 for (Input_arguments::const_iterator p = closure.inputs()->begin();
1376 p != closure.inputs()->end();
1377 ++p)
1378 {
1379 Task_token* nb;
1380 if (p + 1 == closure.inputs()->end())
1381 nb = next_blocker;
1382 else
1383 {
1384 nb = new Task_token(true);
1385 nb->add_blocker();
1386 }
1387 workqueue->queue(new Read_symbols(options, input_objects, symtab,
1388 layout, dirsearch, &*p,
1389 input_group, this_blocker, nb));
1390 this_blocker = nb;
1391 }
1392
1393 return true;
1394 }
1395
1396 // Helper function for read_version_script() and
1397 // read_commandline_script(). Processes the given file in the mode
1398 // indicated by first_token and lex_mode.
1399
1400 static bool
1401 read_script_file(const char* filename, Command_line* cmdline,
1402 int first_token, Lex::Mode lex_mode)
1403 {
1404 // TODO: if filename is a relative filename, search for it manually
1405 // using "." + cmdline->options()->search_path() -- not dirsearch.
1406 Dirsearch dirsearch;
1407
1408 // The file locking code wants to record a Task, but we haven't
1409 // started the workqueue yet. This is only for debugging purposes,
1410 // so we invent a fake value.
1411 const Task* task = reinterpret_cast<const Task*>(-1);
1412
1413 Input_file_argument input_argument(filename, false, "",
1414 cmdline->position_dependent_options());
1415 Input_file input_file(&input_argument);
1416 if (!input_file.open(cmdline->options(), dirsearch, task))
1417 return false;
1418
1419 std::string input_string;
1420 Lex::read_file(&input_file, &input_string);
1421
1422 Lex lex(input_string.c_str(), input_string.length(), first_token);
1423 lex.set_mode(lex_mode);
1424
1425 Parser_closure closure(filename,
1426 cmdline->position_dependent_options(),
1427 false,
1428 input_file.is_in_sysroot(),
1429 cmdline,
1430 cmdline->script_options(),
1431 &lex);
1432 if (yyparse(&closure) != 0)
1433 {
1434 input_file.file().unlock(task);
1435 return false;
1436 }
1437
1438 input_file.file().unlock(task);
1439
1440 gold_assert(!closure.saw_inputs());
1441
1442 return true;
1443 }
1444
1445 // FILENAME was found as an argument to --script (-T).
1446 // Read it as a script, and execute its contents immediately.
1447
1448 bool
1449 read_commandline_script(const char* filename, Command_line* cmdline)
1450 {
1451 return read_script_file(filename, cmdline,
1452 PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1453 }
1454
1455 // FILE was found as an argument to --version-script. Read it as a
1456 // version script, and store its contents in
1457 // cmdline->script_options()->version_script_info().
1458
1459 bool
1460 read_version_script(const char* filename, Command_line* cmdline)
1461 {
1462 return read_script_file(filename, cmdline,
1463 PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1464 }
1465
1466 // Implement the --defsym option on the command line. Return true if
1467 // all is well.
1468
1469 bool
1470 Script_options::define_symbol(const char* definition)
1471 {
1472 Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1473 lex.set_mode(Lex::EXPRESSION);
1474
1475 // Dummy value.
1476 Position_dependent_options posdep_options;
1477
1478 Parser_closure closure("command line", posdep_options, false, false, NULL,
1479 this, &lex);
1480
1481 if (yyparse(&closure) != 0)
1482 return false;
1483
1484 gold_assert(!closure.saw_inputs());
1485
1486 return true;
1487 }
1488
1489 // Print the script to F for debugging.
1490
1491 void
1492 Script_options::print(FILE* f) const
1493 {
1494 fprintf(f, "%s: Dumping linker script\n", program_name);
1495
1496 if (!this->entry_.empty())
1497 fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1498
1499 for (Symbol_assignments::const_iterator p =
1500 this->symbol_assignments_.begin();
1501 p != this->symbol_assignments_.end();
1502 ++p)
1503 (*p)->print(f);
1504
1505 for (Assertions::const_iterator p = this->assertions_.begin();
1506 p != this->assertions_.end();
1507 ++p)
1508 (*p)->print(f);
1509
1510 this->script_sections_.print(f);
1511
1512 this->version_script_info_.print(f);
1513 }
1514
1515 // Manage mapping from keywords to the codes expected by the bison
1516 // parser. We construct one global object for each lex mode with
1517 // keywords.
1518
1519 class Keyword_to_parsecode
1520 {
1521 public:
1522 // The structure which maps keywords to parsecodes.
1523 struct Keyword_parsecode
1524 {
1525 // Keyword.
1526 const char* keyword;
1527 // Corresponding parsecode.
1528 int parsecode;
1529 };
1530
1531 Keyword_to_parsecode(const Keyword_parsecode* keywords,
1532 int keyword_count)
1533 : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1534 { }
1535
1536 // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1537 // keyword.
1538 int
1539 keyword_to_parsecode(const char* keyword, size_t len) const;
1540
1541 private:
1542 const Keyword_parsecode* keyword_parsecodes_;
1543 const int keyword_count_;
1544 };
1545
1546 // Mapping from keyword string to keyword parsecode. This array must
1547 // be kept in sorted order. Parsecodes are looked up using bsearch.
1548 // This array must correspond to the list of parsecodes in yyscript.y.
1549
1550 static const Keyword_to_parsecode::Keyword_parsecode
1551 script_keyword_parsecodes[] =
1552 {
1553 { "ABSOLUTE", ABSOLUTE },
1554 { "ADDR", ADDR },
1555 { "ALIGN", ALIGN_K },
1556 { "ALIGNOF", ALIGNOF },
1557 { "ASSERT", ASSERT_K },
1558 { "AS_NEEDED", AS_NEEDED },
1559 { "AT", AT },
1560 { "BIND", BIND },
1561 { "BLOCK", BLOCK },
1562 { "BYTE", BYTE },
1563 { "CONSTANT", CONSTANT },
1564 { "CONSTRUCTORS", CONSTRUCTORS },
1565 { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1566 { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1567 { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1568 { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1569 { "DEFINED", DEFINED },
1570 { "ENTRY", ENTRY },
1571 { "EXCLUDE_FILE", EXCLUDE_FILE },
1572 { "EXTERN", EXTERN },
1573 { "FILL", FILL },
1574 { "FLOAT", FLOAT },
1575 { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1576 { "GROUP", GROUP },
1577 { "HLL", HLL },
1578 { "INCLUDE", INCLUDE },
1579 { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1580 { "INPUT", INPUT },
1581 { "KEEP", KEEP },
1582 { "LENGTH", LENGTH },
1583 { "LOADADDR", LOADADDR },
1584 { "LONG", LONG },
1585 { "MAP", MAP },
1586 { "MAX", MAX_K },
1587 { "MEMORY", MEMORY },
1588 { "MIN", MIN_K },
1589 { "NEXT", NEXT },
1590 { "NOCROSSREFS", NOCROSSREFS },
1591 { "NOFLOAT", NOFLOAT },
1592 { "ONLY_IF_RO", ONLY_IF_RO },
1593 { "ONLY_IF_RW", ONLY_IF_RW },
1594 { "OPTION", OPTION },
1595 { "ORIGIN", ORIGIN },
1596 { "OUTPUT", OUTPUT },
1597 { "OUTPUT_ARCH", OUTPUT_ARCH },
1598 { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1599 { "OVERLAY", OVERLAY },
1600 { "PHDRS", PHDRS },
1601 { "PROVIDE", PROVIDE },
1602 { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1603 { "QUAD", QUAD },
1604 { "SEARCH_DIR", SEARCH_DIR },
1605 { "SECTIONS", SECTIONS },
1606 { "SEGMENT_START", SEGMENT_START },
1607 { "SHORT", SHORT },
1608 { "SIZEOF", SIZEOF },
1609 { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1610 { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1611 { "SORT_BY_NAME", SORT_BY_NAME },
1612 { "SPECIAL", SPECIAL },
1613 { "SQUAD", SQUAD },
1614 { "STARTUP", STARTUP },
1615 { "SUBALIGN", SUBALIGN },
1616 { "SYSLIB", SYSLIB },
1617 { "TARGET", TARGET_K },
1618 { "TRUNCATE", TRUNCATE },
1619 { "VERSION", VERSIONK },
1620 { "global", GLOBAL },
1621 { "l", LENGTH },
1622 { "len", LENGTH },
1623 { "local", LOCAL },
1624 { "o", ORIGIN },
1625 { "org", ORIGIN },
1626 { "sizeof_headers", SIZEOF_HEADERS },
1627 };
1628
1629 static const Keyword_to_parsecode
1630 script_keywords(&script_keyword_parsecodes[0],
1631 (sizeof(script_keyword_parsecodes)
1632 / sizeof(script_keyword_parsecodes[0])));
1633
1634 static const Keyword_to_parsecode::Keyword_parsecode
1635 version_script_keyword_parsecodes[] =
1636 {
1637 { "extern", EXTERN },
1638 { "global", GLOBAL },
1639 { "local", LOCAL },
1640 };
1641
1642 static const Keyword_to_parsecode
1643 version_script_keywords(&version_script_keyword_parsecodes[0],
1644 (sizeof(version_script_keyword_parsecodes)
1645 / sizeof(version_script_keyword_parsecodes[0])));
1646
1647 // Comparison function passed to bsearch.
1648
1649 extern "C"
1650 {
1651
1652 struct Ktt_key
1653 {
1654 const char* str;
1655 size_t len;
1656 };
1657
1658 static int
1659 ktt_compare(const void* keyv, const void* kttv)
1660 {
1661 const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1662 const Keyword_to_parsecode::Keyword_parsecode* ktt =
1663 static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1664 int i = strncmp(key->str, ktt->keyword, key->len);
1665 if (i != 0)
1666 return i;
1667 if (ktt->keyword[key->len] != '\0')
1668 return -1;
1669 return 0;
1670 }
1671
1672 } // End extern "C".
1673
1674 int
1675 Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1676 size_t len) const
1677 {
1678 Ktt_key key;
1679 key.str = keyword;
1680 key.len = len;
1681 void* kttv = bsearch(&key,
1682 this->keyword_parsecodes_,
1683 this->keyword_count_,
1684 sizeof(this->keyword_parsecodes_[0]),
1685 ktt_compare);
1686 if (kttv == NULL)
1687 return 0;
1688 Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1689 return ktt->parsecode;
1690 }
1691
1692 // The following structs are used within the VersionInfo class as well
1693 // as in the bison helper functions. They store the information
1694 // parsed from the version script.
1695
1696 // A single version expression.
1697 // For example, pattern="std::map*" and language="C++".
1698 // pattern and language should be from the stringpool
1699 struct Version_expression {
1700 Version_expression(const std::string& pattern,
1701 const std::string& language,
1702 bool exact_match)
1703 : pattern(pattern), language(language), exact_match(exact_match) {}
1704
1705 std::string pattern;
1706 std::string language;
1707 // If false, we use glob() to match pattern. If true, we use strcmp().
1708 bool exact_match;
1709 };
1710
1711
1712 // A list of expressions.
1713 struct Version_expression_list {
1714 std::vector<struct Version_expression> expressions;
1715 };
1716
1717
1718 // A list of which versions upon which another version depends.
1719 // Strings should be from the Stringpool.
1720 struct Version_dependency_list {
1721 std::vector<std::string> dependencies;
1722 };
1723
1724
1725 // The total definition of a version. It includes the tag for the
1726 // version, its global and local expressions, and any dependencies.
1727 struct Version_tree {
1728 Version_tree()
1729 : tag(), global(NULL), local(NULL), dependencies(NULL) {}
1730
1731 std::string tag;
1732 const struct Version_expression_list* global;
1733 const struct Version_expression_list* local;
1734 const struct Version_dependency_list* dependencies;
1735 };
1736
1737 Version_script_info::~Version_script_info()
1738 {
1739 for (size_t k = 0; k < dependency_lists_.size(); ++k)
1740 delete dependency_lists_[k];
1741 for (size_t k = 0; k < version_trees_.size(); ++k)
1742 delete version_trees_[k];
1743 for (size_t k = 0; k < expression_lists_.size(); ++k)
1744 delete expression_lists_[k];
1745 }
1746
1747 std::vector<std::string>
1748 Version_script_info::get_versions() const
1749 {
1750 std::vector<std::string> ret;
1751 for (size_t j = 0; j < version_trees_.size(); ++j)
1752 ret.push_back(version_trees_[j]->tag);
1753 return ret;
1754 }
1755
1756 std::vector<std::string>
1757 Version_script_info::get_dependencies(const char* version) const
1758 {
1759 std::vector<std::string> ret;
1760 for (size_t j = 0; j < version_trees_.size(); ++j)
1761 if (version_trees_[j]->tag == version)
1762 {
1763 const struct Version_dependency_list* deps =
1764 version_trees_[j]->dependencies;
1765 if (deps != NULL)
1766 for (size_t k = 0; k < deps->dependencies.size(); ++k)
1767 ret.push_back(deps->dependencies[k]);
1768 return ret;
1769 }
1770 return ret;
1771 }
1772
1773 const std::string&
1774 Version_script_info::get_symbol_version_helper(const char* symbol_name,
1775 bool check_global) const
1776 {
1777 for (size_t j = 0; j < version_trees_.size(); ++j)
1778 {
1779 // Is it a global symbol for this version?
1780 const Version_expression_list* explist =
1781 check_global ? version_trees_[j]->global : version_trees_[j]->local;
1782 if (explist != NULL)
1783 for (size_t k = 0; k < explist->expressions.size(); ++k)
1784 {
1785 const char* name_to_match = symbol_name;
1786 const struct Version_expression& exp = explist->expressions[k];
1787 char* demangled_name = NULL;
1788 if (exp.language == "C++")
1789 {
1790 demangled_name = cplus_demangle(symbol_name,
1791 DMGL_ANSI | DMGL_PARAMS);
1792 // This isn't a C++ symbol.
1793 if (demangled_name == NULL)
1794 continue;
1795 name_to_match = demangled_name;
1796 }
1797 else if (exp.language == "Java")
1798 {
1799 demangled_name = cplus_demangle(symbol_name,
1800 (DMGL_ANSI | DMGL_PARAMS
1801 | DMGL_JAVA));
1802 // This isn't a Java symbol.
1803 if (demangled_name == NULL)
1804 continue;
1805 name_to_match = demangled_name;
1806 }
1807 bool matched;
1808 if (exp.exact_match)
1809 matched = strcmp(exp.pattern.c_str(), name_to_match) == 0;
1810 else
1811 matched = fnmatch(exp.pattern.c_str(), name_to_match,
1812 FNM_NOESCAPE) == 0;
1813 if (demangled_name != NULL)
1814 free(demangled_name);
1815 if (matched)
1816 return version_trees_[j]->tag;
1817 }
1818 }
1819 static const std::string empty = "";
1820 return empty;
1821 }
1822
1823 struct Version_dependency_list*
1824 Version_script_info::allocate_dependency_list()
1825 {
1826 dependency_lists_.push_back(new Version_dependency_list);
1827 return dependency_lists_.back();
1828 }
1829
1830 struct Version_expression_list*
1831 Version_script_info::allocate_expression_list()
1832 {
1833 expression_lists_.push_back(new Version_expression_list);
1834 return expression_lists_.back();
1835 }
1836
1837 struct Version_tree*
1838 Version_script_info::allocate_version_tree()
1839 {
1840 version_trees_.push_back(new Version_tree);
1841 return version_trees_.back();
1842 }
1843
1844 // Print for debugging.
1845
1846 void
1847 Version_script_info::print(FILE* f) const
1848 {
1849 if (this->empty())
1850 return;
1851
1852 fprintf(f, "VERSION {");
1853
1854 for (size_t i = 0; i < this->version_trees_.size(); ++i)
1855 {
1856 const Version_tree* vt = this->version_trees_[i];
1857
1858 if (vt->tag.empty())
1859 fprintf(f, " {\n");
1860 else
1861 fprintf(f, " %s {\n", vt->tag.c_str());
1862
1863 if (vt->global != NULL)
1864 {
1865 fprintf(f, " global :\n");
1866 this->print_expression_list(f, vt->global);
1867 }
1868
1869 if (vt->local != NULL)
1870 {
1871 fprintf(f, " local :\n");
1872 this->print_expression_list(f, vt->local);
1873 }
1874
1875 fprintf(f, " }");
1876 if (vt->dependencies != NULL)
1877 {
1878 const Version_dependency_list* deps = vt->dependencies;
1879 for (size_t j = 0; j < deps->dependencies.size(); ++j)
1880 {
1881 if (j < deps->dependencies.size() - 1)
1882 fprintf(f, "\n");
1883 fprintf(f, " %s", deps->dependencies[j].c_str());
1884 }
1885 }
1886 fprintf(f, ";\n");
1887 }
1888
1889 fprintf(f, "}\n");
1890 }
1891
1892 void
1893 Version_script_info::print_expression_list(
1894 FILE* f,
1895 const Version_expression_list* vel) const
1896 {
1897 std::string current_language;
1898 for (size_t i = 0; i < vel->expressions.size(); ++i)
1899 {
1900 const Version_expression& ve(vel->expressions[i]);
1901
1902 if (ve.language != current_language)
1903 {
1904 if (!current_language.empty())
1905 fprintf(f, " }\n");
1906 fprintf(f, " extern \"%s\" {\n", ve.language.c_str());
1907 current_language = ve.language;
1908 }
1909
1910 fprintf(f, " ");
1911 if (!current_language.empty())
1912 fprintf(f, " ");
1913
1914 if (ve.exact_match)
1915 fprintf(f, "\"");
1916 fprintf(f, "%s", ve.pattern.c_str());
1917 if (ve.exact_match)
1918 fprintf(f, "\"");
1919
1920 fprintf(f, "\n");
1921 }
1922
1923 if (!current_language.empty())
1924 fprintf(f, " }\n");
1925 }
1926
1927 } // End namespace gold.
1928
1929 // The remaining functions are extern "C", so it's clearer to not put
1930 // them in namespace gold.
1931
1932 using namespace gold;
1933
1934 // This function is called by the bison parser to return the next
1935 // token.
1936
1937 extern "C" int
1938 yylex(YYSTYPE* lvalp, void* closurev)
1939 {
1940 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
1941 const Token* token = closure->next_token();
1942 switch (token->classification())
1943 {
1944 default:
1945 gold_unreachable();
1946
1947 case Token::TOKEN_INVALID:
1948 yyerror(closurev, "invalid character");
1949 return 0;
1950
1951 case Token::TOKEN_EOF:
1952 return 0;
1953
1954 case Token::TOKEN_STRING:
1955 {
1956 // This is either a keyword or a STRING.
1957 size_t len;
1958 const char* str = token->string_value(&len);
1959 int parsecode = 0;
1960 switch (closure->lex_mode())
1961 {
1962 case Lex::LINKER_SCRIPT:
1963 parsecode = script_keywords.keyword_to_parsecode(str, len);
1964 break;
1965 case Lex::VERSION_SCRIPT:
1966 parsecode = version_script_keywords.keyword_to_parsecode(str, len);
1967 break;
1968 default:
1969 break;
1970 }
1971 if (parsecode != 0)
1972 return parsecode;
1973 lvalp->string.value = str;
1974 lvalp->string.length = len;
1975 return STRING;
1976 }
1977
1978 case Token::TOKEN_QUOTED_STRING:
1979 lvalp->string.value = token->string_value(&lvalp->string.length);
1980 return QUOTED_STRING;
1981
1982 case Token::TOKEN_OPERATOR:
1983 return token->operator_value();
1984
1985 case Token::TOKEN_INTEGER:
1986 lvalp->integer = token->integer_value();
1987 return INTEGER;
1988 }
1989 }
1990
1991 // This function is called by the bison parser to report an error.
1992
1993 extern "C" void
1994 yyerror(void* closurev, const char* message)
1995 {
1996 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
1997 gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
1998 closure->charpos(), message);
1999 }
2000
2001 // Called by the bison parser to add a file to the link.
2002
2003 extern "C" void
2004 script_add_file(void* closurev, const char* name, size_t length)
2005 {
2006 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2007
2008 // If this is an absolute path, and we found the script in the
2009 // sysroot, then we want to prepend the sysroot to the file name.
2010 // For example, this is how we handle a cross link to the x86_64
2011 // libc.so, which refers to /lib/libc.so.6.
2012 std::string name_string(name, length);
2013 const char* extra_search_path = ".";
2014 std::string script_directory;
2015 if (IS_ABSOLUTE_PATH(name_string.c_str()))
2016 {
2017 if (closure->is_in_sysroot())
2018 {
2019 const std::string& sysroot(parameters->sysroot());
2020 gold_assert(!sysroot.empty());
2021 name_string = sysroot + name_string;
2022 }
2023 }
2024 else
2025 {
2026 // In addition to checking the normal library search path, we
2027 // also want to check in the script-directory.
2028 const char *slash = strrchr(closure->filename(), '/');
2029 if (slash != NULL)
2030 {
2031 script_directory.assign(closure->filename(),
2032 slash - closure->filename() + 1);
2033 extra_search_path = script_directory.c_str();
2034 }
2035 }
2036
2037 Input_file_argument file(name_string.c_str(), false, extra_search_path,
2038 closure->position_dependent_options());
2039 closure->inputs()->add_file(file);
2040 }
2041
2042 // Called by the bison parser to start a group. If we are already in
2043 // a group, that means that this script was invoked within a
2044 // --start-group --end-group sequence on the command line, or that
2045 // this script was found in a GROUP of another script. In that case,
2046 // we simply continue the existing group, rather than starting a new
2047 // one. It is possible to construct a case in which this will do
2048 // something other than what would happen if we did a recursive group,
2049 // but it's hard to imagine why the different behaviour would be
2050 // useful for a real program. Avoiding recursive groups is simpler
2051 // and more efficient.
2052
2053 extern "C" void
2054 script_start_group(void* closurev)
2055 {
2056 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2057 if (!closure->in_group())
2058 closure->inputs()->start_group();
2059 }
2060
2061 // Called by the bison parser at the end of a group.
2062
2063 extern "C" void
2064 script_end_group(void* closurev)
2065 {
2066 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2067 if (!closure->in_group())
2068 closure->inputs()->end_group();
2069 }
2070
2071 // Called by the bison parser to start an AS_NEEDED list.
2072
2073 extern "C" void
2074 script_start_as_needed(void* closurev)
2075 {
2076 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2077 closure->position_dependent_options().set_as_needed();
2078 }
2079
2080 // Called by the bison parser at the end of an AS_NEEDED list.
2081
2082 extern "C" void
2083 script_end_as_needed(void* closurev)
2084 {
2085 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2086 closure->position_dependent_options().clear_as_needed();
2087 }
2088
2089 // Called by the bison parser to set the entry symbol.
2090
2091 extern "C" void
2092 script_set_entry(void* closurev, const char* entry, size_t length)
2093 {
2094 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2095 closure->script_options()->set_entry(entry, length);
2096 }
2097
2098 // Called by the bison parser to define a symbol.
2099
2100 extern "C" void
2101 script_set_symbol(void* closurev, const char* name, size_t length,
2102 Expression* value, int providei, int hiddeni)
2103 {
2104 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2105 const bool provide = providei != 0;
2106 const bool hidden = hiddeni != 0;
2107 closure->script_options()->add_symbol_assignment(name, length, value,
2108 provide, hidden);
2109 }
2110
2111 // Called by the bison parser to add an assertion.
2112
2113 extern "C" void
2114 script_add_assertion(void* closurev, Expression* check, const char* message,
2115 size_t messagelen)
2116 {
2117 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2118 closure->script_options()->add_assertion(check, message, messagelen);
2119 }
2120
2121 // Called by the bison parser to parse an OPTION.
2122
2123 extern "C" void
2124 script_parse_option(void* closurev, const char* option, size_t length)
2125 {
2126 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2127 // We treat the option as a single command-line option, even if
2128 // it has internal whitespace.
2129 if (closure->command_line() == NULL)
2130 {
2131 // There are some options that we could handle here--e.g.,
2132 // -lLIBRARY. Should we bother?
2133 gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2134 " for scripts specified via -T/--script"),
2135 closure->filename(), closure->lineno(), closure->charpos());
2136 }
2137 else
2138 {
2139 bool past_a_double_dash_option = false;
2140 char* mutable_option = strndup(option, length);
2141 gold_assert(mutable_option != NULL);
2142 closure->command_line()->process_one_option(1, &mutable_option, 0,
2143 &past_a_double_dash_option);
2144 free(mutable_option);
2145 }
2146 }
2147
2148 /* Called by the bison parser to push the lexer into expression
2149 mode. */
2150
2151 extern "C" void
2152 script_push_lex_into_expression_mode(void* closurev)
2153 {
2154 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2155 closure->push_lex_mode(Lex::EXPRESSION);
2156 }
2157
2158 /* Called by the bison parser to push the lexer into version
2159 mode. */
2160
2161 extern "C" void
2162 script_push_lex_into_version_mode(void* closurev)
2163 {
2164 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2165 closure->push_lex_mode(Lex::VERSION_SCRIPT);
2166 }
2167
2168 /* Called by the bison parser to pop the lexer mode. */
2169
2170 extern "C" void
2171 script_pop_lex_mode(void* closurev)
2172 {
2173 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2174 closure->pop_lex_mode();
2175 }
2176
2177 // Register an entire version node. For example:
2178 //
2179 // GLIBC_2.1 {
2180 // global: foo;
2181 // } GLIBC_2.0;
2182 //
2183 // - tag is "GLIBC_2.1"
2184 // - tree contains the information "global: foo"
2185 // - deps contains "GLIBC_2.0"
2186
2187 extern "C" void
2188 script_register_vers_node(void*,
2189 const char* tag,
2190 int taglen,
2191 struct Version_tree *tree,
2192 struct Version_dependency_list *deps)
2193 {
2194 gold_assert(tree != NULL);
2195 gold_assert(tag != NULL);
2196 tree->dependencies = deps;
2197 tree->tag = std::string(tag, taglen);
2198 }
2199
2200 // Add a dependencies to the list of existing dependencies, if any,
2201 // and return the expanded list.
2202
2203 extern "C" struct Version_dependency_list *
2204 script_add_vers_depend(void* closurev,
2205 struct Version_dependency_list *all_deps,
2206 const char *depend_to_add, int deplen)
2207 {
2208 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2209 if (all_deps == NULL)
2210 all_deps = closure->version_script()->allocate_dependency_list();
2211 all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2212 return all_deps;
2213 }
2214
2215 // Add a pattern expression to an existing list of expressions, if any.
2216 // TODO: In the old linker, the last argument used to be a bool, but I
2217 // don't know what it meant.
2218
2219 extern "C" struct Version_expression_list *
2220 script_new_vers_pattern(void* closurev,
2221 struct Version_expression_list *expressions,
2222 const char *pattern, int patlen, int exact_match)
2223 {
2224 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2225 if (expressions == NULL)
2226 expressions = closure->version_script()->allocate_expression_list();
2227 expressions->expressions.push_back(
2228 Version_expression(std::string(pattern, patlen),
2229 closure->get_current_language(),
2230 static_cast<bool>(exact_match)));
2231 return expressions;
2232 }
2233
2234 // Attaches b to the end of a, and clears b. So a = a + b and b = {}.
2235
2236 extern "C" struct Version_expression_list*
2237 script_merge_expressions(struct Version_expression_list *a,
2238 struct Version_expression_list *b)
2239 {
2240 a->expressions.insert(a->expressions.end(),
2241 b->expressions.begin(), b->expressions.end());
2242 // We could delete b and remove it from expressions_lists_, but
2243 // that's a lot of work. This works just as well.
2244 b->expressions.clear();
2245 return a;
2246 }
2247
2248 // Combine the global and local expressions into a a Version_tree.
2249
2250 extern "C" struct Version_tree *
2251 script_new_vers_node(void* closurev,
2252 struct Version_expression_list *global,
2253 struct Version_expression_list *local)
2254 {
2255 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2256 Version_tree* tree = closure->version_script()->allocate_version_tree();
2257 tree->global = global;
2258 tree->local = local;
2259 return tree;
2260 }
2261
2262 // Handle a transition in language, such as at the
2263 // start or end of 'extern "C++"'
2264
2265 extern "C" void
2266 version_script_push_lang(void* closurev, const char* lang, int langlen)
2267 {
2268 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2269 closure->push_language(std::string(lang, langlen));
2270 }
2271
2272 extern "C" void
2273 version_script_pop_lang(void* closurev)
2274 {
2275 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2276 closure->pop_language();
2277 }
2278
2279 // Called by the bison parser to start a SECTIONS clause.
2280
2281 extern "C" void
2282 script_start_sections(void* closurev)
2283 {
2284 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2285 closure->script_options()->script_sections()->start_sections();
2286 }
2287
2288 // Called by the bison parser to finish a SECTIONS clause.
2289
2290 extern "C" void
2291 script_finish_sections(void* closurev)
2292 {
2293 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2294 closure->script_options()->script_sections()->finish_sections();
2295 }
2296
2297 // Start processing entries for an output section.
2298
2299 extern "C" void
2300 script_start_output_section(void* closurev, const char* name, size_t namelen,
2301 const struct Parser_output_section_header* header)
2302 {
2303 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2304 closure->script_options()->script_sections()->start_output_section(name,
2305 namelen,
2306 header);
2307 }
2308
2309 // Finish processing entries for an output section.
2310
2311 extern "C" void
2312 script_finish_output_section(void* closurev,
2313 const struct Parser_output_section_trailer* trail)
2314 {
2315 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2316 closure->script_options()->script_sections()->finish_output_section(trail);
2317 }
2318
2319 // Add a data item (e.g., "WORD (0)") to the current output section.
2320
2321 extern "C" void
2322 script_add_data(void* closurev, int data_token, Expression* val)
2323 {
2324 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2325 int size;
2326 bool is_signed = true;
2327 switch (data_token)
2328 {
2329 case QUAD:
2330 size = 8;
2331 is_signed = false;
2332 break;
2333 case SQUAD:
2334 size = 8;
2335 break;
2336 case LONG:
2337 size = 4;
2338 break;
2339 case SHORT:
2340 size = 2;
2341 break;
2342 case BYTE:
2343 size = 1;
2344 break;
2345 default:
2346 gold_unreachable();
2347 }
2348 closure->script_options()->script_sections()->add_data(size, is_signed, val);
2349 }
2350
2351 // Add a clause setting the fill value to the current output section.
2352
2353 extern "C" void
2354 script_add_fill(void* closurev, Expression* val)
2355 {
2356 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2357 closure->script_options()->script_sections()->add_fill(val);
2358 }
2359
2360 // Add a new input section specification to the current output
2361 // section.
2362
2363 extern "C" void
2364 script_add_input_section(void* closurev,
2365 const struct Input_section_spec* spec,
2366 int keepi)
2367 {
2368 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2369 bool keep = keepi != 0;
2370 closure->script_options()->script_sections()->add_input_section(spec, keep);
2371 }
2372
2373 // Create a new list of string/sort pairs.
2374
2375 extern "C" String_sort_list_ptr
2376 script_new_string_sort_list(const struct Wildcard_section* string_sort)
2377 {
2378 return new String_sort_list(1, *string_sort);
2379 }
2380
2381 // Add an entry to a list of string/sort pairs. The way the parser
2382 // works permits us to simply modify the first parameter, rather than
2383 // copy the vector.
2384
2385 extern "C" String_sort_list_ptr
2386 script_string_sort_list_add(String_sort_list_ptr pv,
2387 const struct Wildcard_section* string_sort)
2388 {
2389 if (pv == NULL)
2390 return script_new_string_sort_list(string_sort);
2391 else
2392 {
2393 pv->push_back(*string_sort);
2394 return pv;
2395 }
2396 }
2397
2398 // Create a new list of strings.
2399
2400 extern "C" String_list_ptr
2401 script_new_string_list(const char* str, size_t len)
2402 {
2403 return new String_list(1, std::string(str, len));
2404 }
2405
2406 // Add an element to a list of strings. The way the parser works
2407 // permits us to simply modify the first parameter, rather than copy
2408 // the vector.
2409
2410 extern "C" String_list_ptr
2411 script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
2412 {
2413 pv->push_back(std::string(str, len));
2414 return pv;
2415 }
2416
2417 // Concatenate two string lists. Either or both may be NULL. The way
2418 // the parser works permits us to modify the parameters, rather than
2419 // copy the vector.
2420
2421 extern "C" String_list_ptr
2422 script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
2423 {
2424 if (pv1 == NULL)
2425 return pv2;
2426 if (pv2 == NULL)
2427 return pv1;
2428 pv1->insert(pv1->end(), pv2->begin(), pv2->end());
2429 return pv1;
2430 }
This page took 0.076799 seconds and 5 git commands to generate.