Regenerate gold/Makefile.in.
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
290 {
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292 this->value_ = 0;
293 this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
304 ret.push_back('@');
305 if (this->is_def_)
306 ret.push_back('@');
307 ret += this->version_;
308 return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327 this->allocate_base_common(od);
328 this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340 // If the symbol is only present on plugin files, the plugin decided we
341 // don't need it.
342 if (!this->in_real_elf())
343 return false;
344
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
347 return true;
348
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
356 {
357 Relobj* relobj = static_cast<Relobj*>(this->object());
358 bool is_ordinary;
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
363 return false;
364 }
365
366 // If the symbol was forced dynamic in a --dynamic-list file
367 // or an --export-dynamic-symbol option, add it.
368 if (!this->is_from_dynobj()
369 && (parameters->options().in_dynamic_list(this->name())
370 || parameters->options().is_export_dynamic_symbol(this->name())))
371 {
372 if (!this->is_forced_local())
373 return true;
374 gold_warning(_("Cannot export local symbol '%s'"),
375 this->demangled_name().c_str());
376 return false;
377 }
378
379 // If the symbol was forced local in a version script, do not add it.
380 if (this->is_forced_local())
381 return false;
382
383 // If dynamic-list-data was specified, add any STT_OBJECT.
384 if (parameters->options().dynamic_list_data()
385 && !this->is_from_dynobj()
386 && this->type() == elfcpp::STT_OBJECT)
387 return true;
388
389 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391 if ((parameters->options().dynamic_list_cpp_new()
392 || parameters->options().dynamic_list_cpp_typeinfo())
393 && !this->is_from_dynobj())
394 {
395 // TODO(csilvers): We could probably figure out if we're an operator
396 // new/delete or typeinfo without the need to demangle.
397 char* demangled_name = cplus_demangle(this->name(),
398 DMGL_ANSI | DMGL_PARAMS);
399 if (demangled_name == NULL)
400 {
401 // Not a C++ symbol, so it can't satisfy these flags
402 }
403 else if (parameters->options().dynamic_list_cpp_new()
404 && (strprefix(demangled_name, "operator new")
405 || strprefix(demangled_name, "operator delete")))
406 {
407 free(demangled_name);
408 return true;
409 }
410 else if (parameters->options().dynamic_list_cpp_typeinfo()
411 && (strprefix(demangled_name, "typeinfo name for")
412 || strprefix(demangled_name, "typeinfo for")))
413 {
414 free(demangled_name);
415 return true;
416 }
417 else
418 free(demangled_name);
419 }
420
421 // If exporting all symbols or building a shared library,
422 // and the symbol is defined in a regular object and is
423 // externally visible, we need to add it.
424 if ((parameters->options().export_dynamic() || parameters->options().shared())
425 && !this->is_from_dynobj()
426 && !this->is_undefined()
427 && this->is_externally_visible())
428 return true;
429
430 return false;
431 }
432
433 // Return true if the final value of this symbol is known at link
434 // time.
435
436 bool
437 Symbol::final_value_is_known() const
438 {
439 // If we are not generating an executable, then no final values are
440 // known, since they will change at runtime.
441 if (parameters->options().output_is_position_independent()
442 || parameters->options().relocatable())
443 return false;
444
445 // If the symbol is not from an object file, and is not undefined,
446 // then it is defined, and known.
447 if (this->source_ != FROM_OBJECT)
448 {
449 if (this->source_ != IS_UNDEFINED)
450 return true;
451 }
452 else
453 {
454 // If the symbol is from a dynamic object, then the final value
455 // is not known.
456 if (this->object()->is_dynamic())
457 return false;
458
459 // If the symbol is not undefined (it is defined or common),
460 // then the final value is known.
461 if (!this->is_undefined())
462 return true;
463 }
464
465 // If the symbol is undefined, then whether the final value is known
466 // depends on whether we are doing a static link. If we are doing a
467 // dynamic link, then the final value could be filled in at runtime.
468 // This could reasonably be the case for a weak undefined symbol.
469 return parameters->doing_static_link();
470 }
471
472 // Return the output section where this symbol is defined.
473
474 Output_section*
475 Symbol::output_section() const
476 {
477 switch (this->source_)
478 {
479 case FROM_OBJECT:
480 {
481 unsigned int shndx = this->u_.from_object.shndx;
482 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
483 {
484 gold_assert(!this->u_.from_object.object->is_dynamic());
485 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
486 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
487 return relobj->output_section(shndx);
488 }
489 return NULL;
490 }
491
492 case IN_OUTPUT_DATA:
493 return this->u_.in_output_data.output_data->output_section();
494
495 case IN_OUTPUT_SEGMENT:
496 case IS_CONSTANT:
497 case IS_UNDEFINED:
498 return NULL;
499
500 default:
501 gold_unreachable();
502 }
503 }
504
505 // Set the symbol's output section. This is used for symbols defined
506 // in scripts. This should only be called after the symbol table has
507 // been finalized.
508
509 void
510 Symbol::set_output_section(Output_section* os)
511 {
512 switch (this->source_)
513 {
514 case FROM_OBJECT:
515 case IN_OUTPUT_DATA:
516 gold_assert(this->output_section() == os);
517 break;
518 case IS_CONSTANT:
519 this->source_ = IN_OUTPUT_DATA;
520 this->u_.in_output_data.output_data = os;
521 this->u_.in_output_data.offset_is_from_end = false;
522 break;
523 case IN_OUTPUT_SEGMENT:
524 case IS_UNDEFINED:
525 default:
526 gold_unreachable();
527 }
528 }
529
530 // Set the symbol's output segment. This is used for pre-defined
531 // symbols whose segments aren't known until after layout is done
532 // (e.g., __ehdr_start).
533
534 void
535 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
536 {
537 gold_assert(this->is_predefined_);
538 this->source_ = IN_OUTPUT_SEGMENT;
539 this->u_.in_output_segment.output_segment = os;
540 this->u_.in_output_segment.offset_base = base;
541 }
542
543 // Set the symbol to undefined. This is used for pre-defined
544 // symbols whose segments aren't known until after layout is done
545 // (e.g., __ehdr_start).
546
547 void
548 Symbol::set_undefined()
549 {
550 gold_assert(this->is_predefined_);
551 this->source_ = IS_UNDEFINED;
552 this->is_predefined_ = false;
553 }
554
555 // Class Symbol_table.
556
557 Symbol_table::Symbol_table(unsigned int count,
558 const Version_script_info& version_script)
559 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
560 forwarders_(), commons_(), tls_commons_(), small_commons_(),
561 large_commons_(), forced_locals_(), warnings_(),
562 version_script_(version_script), gc_(NULL), icf_(NULL)
563 {
564 namepool_.reserve(count);
565 }
566
567 Symbol_table::~Symbol_table()
568 {
569 }
570
571 // The symbol table key equality function. This is called with
572 // Stringpool keys.
573
574 inline bool
575 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
576 const Symbol_table_key& k2) const
577 {
578 return k1.first == k2.first && k1.second == k2.second;
579 }
580
581 bool
582 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
583 {
584 return (parameters->options().icf_enabled()
585 && this->icf_->is_section_folded(obj, shndx));
586 }
587
588 // For symbols that have been listed with a -u or --export-dynamic-symbol
589 // option, add them to the work list to avoid gc'ing them.
590
591 void
592 Symbol_table::gc_mark_undef_symbols(Layout* layout)
593 {
594 for (options::String_set::const_iterator p =
595 parameters->options().undefined_begin();
596 p != parameters->options().undefined_end();
597 ++p)
598 {
599 const char* name = p->c_str();
600 Symbol* sym = this->lookup(name);
601 gold_assert(sym != NULL);
602 if (sym->source() == Symbol::FROM_OBJECT
603 && !sym->object()->is_dynamic())
604 {
605 this->gc_mark_symbol(sym);
606 }
607 }
608
609 for (options::String_set::const_iterator p =
610 parameters->options().export_dynamic_symbol_begin();
611 p != parameters->options().export_dynamic_symbol_end();
612 ++p)
613 {
614 const char* name = p->c_str();
615 Symbol* sym = this->lookup(name);
616 // It's not an error if a symbol named by --export-dynamic-symbol
617 // is undefined.
618 if (sym != NULL
619 && sym->source() == Symbol::FROM_OBJECT
620 && !sym->object()->is_dynamic())
621 {
622 this->gc_mark_symbol(sym);
623 }
624 }
625
626 for (Script_options::referenced_const_iterator p =
627 layout->script_options()->referenced_begin();
628 p != layout->script_options()->referenced_end();
629 ++p)
630 {
631 Symbol* sym = this->lookup(p->c_str());
632 gold_assert(sym != NULL);
633 if (sym->source() == Symbol::FROM_OBJECT
634 && !sym->object()->is_dynamic())
635 {
636 this->gc_mark_symbol(sym);
637 }
638 }
639 }
640
641 void
642 Symbol_table::gc_mark_symbol(Symbol* sym)
643 {
644 // Add the object and section to the work list.
645 bool is_ordinary;
646 unsigned int shndx = sym->shndx(&is_ordinary);
647 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
648 {
649 gold_assert(this->gc_!= NULL);
650 this->gc_->worklist().push(Section_id(sym->object(), shndx));
651 }
652 parameters->target().gc_mark_symbol(this, sym);
653 }
654
655 // When doing garbage collection, keep symbols that have been seen in
656 // dynamic objects.
657 inline void
658 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
659 {
660 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
661 && !sym->object()->is_dynamic())
662 this->gc_mark_symbol(sym);
663 }
664
665 // Make TO a symbol which forwards to FROM.
666
667 void
668 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
669 {
670 gold_assert(from != to);
671 gold_assert(!from->is_forwarder() && !to->is_forwarder());
672 this->forwarders_[from] = to;
673 from->set_forwarder();
674 }
675
676 // Resolve the forwards from FROM, returning the real symbol.
677
678 Symbol*
679 Symbol_table::resolve_forwards(const Symbol* from) const
680 {
681 gold_assert(from->is_forwarder());
682 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
683 this->forwarders_.find(from);
684 gold_assert(p != this->forwarders_.end());
685 return p->second;
686 }
687
688 // Look up a symbol by name.
689
690 Symbol*
691 Symbol_table::lookup(const char* name, const char* version) const
692 {
693 Stringpool::Key name_key;
694 name = this->namepool_.find(name, &name_key);
695 if (name == NULL)
696 return NULL;
697
698 Stringpool::Key version_key = 0;
699 if (version != NULL)
700 {
701 version = this->namepool_.find(version, &version_key);
702 if (version == NULL)
703 return NULL;
704 }
705
706 Symbol_table_key key(name_key, version_key);
707 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
708 if (p == this->table_.end())
709 return NULL;
710 return p->second;
711 }
712
713 // Resolve a Symbol with another Symbol. This is only used in the
714 // unusual case where there are references to both an unversioned
715 // symbol and a symbol with a version, and we then discover that that
716 // version is the default version. Because this is unusual, we do
717 // this the slow way, by converting back to an ELF symbol.
718
719 template<int size, bool big_endian>
720 void
721 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
722 {
723 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
724 elfcpp::Sym_write<size, big_endian> esym(buf);
725 // We don't bother to set the st_name or the st_shndx field.
726 esym.put_st_value(from->value());
727 esym.put_st_size(from->symsize());
728 esym.put_st_info(from->binding(), from->type());
729 esym.put_st_other(from->visibility(), from->nonvis());
730 bool is_ordinary;
731 unsigned int shndx = from->shndx(&is_ordinary);
732 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
733 from->version());
734 if (from->in_reg())
735 to->set_in_reg();
736 if (from->in_dyn())
737 to->set_in_dyn();
738 if (parameters->options().gc_sections())
739 this->gc_mark_dyn_syms(to);
740 }
741
742 // Record that a symbol is forced to be local by a version script or
743 // by visibility.
744
745 void
746 Symbol_table::force_local(Symbol* sym)
747 {
748 if (!sym->is_defined() && !sym->is_common())
749 return;
750 if (sym->is_forced_local())
751 {
752 // We already got this one.
753 return;
754 }
755 sym->set_is_forced_local();
756 this->forced_locals_.push_back(sym);
757 }
758
759 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
760 // is only called for undefined symbols, when at least one --wrap
761 // option was used.
762
763 const char*
764 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
765 {
766 // For some targets, we need to ignore a specific character when
767 // wrapping, and add it back later.
768 char prefix = '\0';
769 if (name[0] == parameters->target().wrap_char())
770 {
771 prefix = name[0];
772 ++name;
773 }
774
775 if (parameters->options().is_wrap(name))
776 {
777 // Turn NAME into __wrap_NAME.
778 std::string s;
779 if (prefix != '\0')
780 s += prefix;
781 s += "__wrap_";
782 s += name;
783
784 // This will give us both the old and new name in NAMEPOOL_, but
785 // that is OK. Only the versions we need will wind up in the
786 // real string table in the output file.
787 return this->namepool_.add(s.c_str(), true, name_key);
788 }
789
790 const char* const real_prefix = "__real_";
791 const size_t real_prefix_length = strlen(real_prefix);
792 if (strncmp(name, real_prefix, real_prefix_length) == 0
793 && parameters->options().is_wrap(name + real_prefix_length))
794 {
795 // Turn __real_NAME into NAME.
796 std::string s;
797 if (prefix != '\0')
798 s += prefix;
799 s += name + real_prefix_length;
800 return this->namepool_.add(s.c_str(), true, name_key);
801 }
802
803 return name;
804 }
805
806 // This is called when we see a symbol NAME/VERSION, and the symbol
807 // already exists in the symbol table, and VERSION is marked as being
808 // the default version. SYM is the NAME/VERSION symbol we just added.
809 // DEFAULT_IS_NEW is true if this is the first time we have seen the
810 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
811
812 template<int size, bool big_endian>
813 void
814 Symbol_table::define_default_version(Sized_symbol<size>* sym,
815 bool default_is_new,
816 Symbol_table_type::iterator pdef)
817 {
818 if (default_is_new)
819 {
820 // This is the first time we have seen NAME/NULL. Make
821 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
822 // version.
823 pdef->second = sym;
824 sym->set_is_default();
825 }
826 else if (pdef->second == sym)
827 {
828 // NAME/NULL already points to NAME/VERSION. Don't mark the
829 // symbol as the default if it is not already the default.
830 }
831 else
832 {
833 // This is the unfortunate case where we already have entries
834 // for both NAME/VERSION and NAME/NULL. We now see a symbol
835 // NAME/VERSION where VERSION is the default version. We have
836 // already resolved this new symbol with the existing
837 // NAME/VERSION symbol.
838
839 // It's possible that NAME/NULL and NAME/VERSION are both
840 // defined in regular objects. This can only happen if one
841 // object file defines foo and another defines foo@@ver. This
842 // is somewhat obscure, but we call it a multiple definition
843 // error.
844
845 // It's possible that NAME/NULL actually has a version, in which
846 // case it won't be the same as VERSION. This happens with
847 // ver_test_7.so in the testsuite for the symbol t2_2. We see
848 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
849 // then see an unadorned t2_2 in an object file and give it
850 // version VER1 from the version script. This looks like a
851 // default definition for VER1, so it looks like we should merge
852 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
853 // not obvious that this is an error, either. So we just punt.
854
855 // If one of the symbols has non-default visibility, and the
856 // other is defined in a shared object, then they are different
857 // symbols.
858
859 // Otherwise, we just resolve the symbols as though they were
860 // the same.
861
862 if (pdef->second->version() != NULL)
863 gold_assert(pdef->second->version() != sym->version());
864 else if (sym->visibility() != elfcpp::STV_DEFAULT
865 && pdef->second->is_from_dynobj())
866 ;
867 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
868 && sym->is_from_dynobj())
869 ;
870 else
871 {
872 const Sized_symbol<size>* symdef;
873 symdef = this->get_sized_symbol<size>(pdef->second);
874 Symbol_table::resolve<size, big_endian>(sym, symdef);
875 this->make_forwarder(pdef->second, sym);
876 pdef->second = sym;
877 sym->set_is_default();
878 }
879 }
880 }
881
882 // Add one symbol from OBJECT to the symbol table. NAME is symbol
883 // name and VERSION is the version; both are canonicalized. DEF is
884 // whether this is the default version. ST_SHNDX is the symbol's
885 // section index; IS_ORDINARY is whether this is a normal section
886 // rather than a special code.
887
888 // If IS_DEFAULT_VERSION is true, then this is the definition of a
889 // default version of a symbol. That means that any lookup of
890 // NAME/NULL and any lookup of NAME/VERSION should always return the
891 // same symbol. This is obvious for references, but in particular we
892 // want to do this for definitions: overriding NAME/NULL should also
893 // override NAME/VERSION. If we don't do that, it would be very hard
894 // to override functions in a shared library which uses versioning.
895
896 // We implement this by simply making both entries in the hash table
897 // point to the same Symbol structure. That is easy enough if this is
898 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
899 // that we have seen both already, in which case they will both have
900 // independent entries in the symbol table. We can't simply change
901 // the symbol table entry, because we have pointers to the entries
902 // attached to the object files. So we mark the entry attached to the
903 // object file as a forwarder, and record it in the forwarders_ map.
904 // Note that entries in the hash table will never be marked as
905 // forwarders.
906 //
907 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
908 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
909 // for a special section code. ST_SHNDX may be modified if the symbol
910 // is defined in a section being discarded.
911
912 template<int size, bool big_endian>
913 Sized_symbol<size>*
914 Symbol_table::add_from_object(Object* object,
915 const char* name,
916 Stringpool::Key name_key,
917 const char* version,
918 Stringpool::Key version_key,
919 bool is_default_version,
920 const elfcpp::Sym<size, big_endian>& sym,
921 unsigned int st_shndx,
922 bool is_ordinary,
923 unsigned int orig_st_shndx)
924 {
925 // Print a message if this symbol is being traced.
926 if (parameters->options().is_trace_symbol(name))
927 {
928 if (orig_st_shndx == elfcpp::SHN_UNDEF)
929 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
930 else
931 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
932 }
933
934 // For an undefined symbol, we may need to adjust the name using
935 // --wrap.
936 if (orig_st_shndx == elfcpp::SHN_UNDEF
937 && parameters->options().any_wrap())
938 {
939 const char* wrap_name = this->wrap_symbol(name, &name_key);
940 if (wrap_name != name)
941 {
942 // If we see a reference to malloc with version GLIBC_2.0,
943 // and we turn it into a reference to __wrap_malloc, then we
944 // discard the version number. Otherwise the user would be
945 // required to specify the correct version for
946 // __wrap_malloc.
947 version = NULL;
948 version_key = 0;
949 name = wrap_name;
950 }
951 }
952
953 Symbol* const snull = NULL;
954 std::pair<typename Symbol_table_type::iterator, bool> ins =
955 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
956 snull));
957
958 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
959 std::make_pair(this->table_.end(), false);
960 if (is_default_version)
961 {
962 const Stringpool::Key vnull_key = 0;
963 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
964 vnull_key),
965 snull));
966 }
967
968 // ins.first: an iterator, which is a pointer to a pair.
969 // ins.first->first: the key (a pair of name and version).
970 // ins.first->second: the value (Symbol*).
971 // ins.second: true if new entry was inserted, false if not.
972
973 Sized_symbol<size>* ret;
974 bool was_undefined;
975 bool was_common;
976 if (!ins.second)
977 {
978 // We already have an entry for NAME/VERSION.
979 ret = this->get_sized_symbol<size>(ins.first->second);
980 gold_assert(ret != NULL);
981
982 was_undefined = ret->is_undefined();
983 was_common = ret->is_common();
984
985 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
986 version);
987 if (parameters->options().gc_sections())
988 this->gc_mark_dyn_syms(ret);
989
990 if (is_default_version)
991 this->define_default_version<size, big_endian>(ret, insdefault.second,
992 insdefault.first);
993 }
994 else
995 {
996 // This is the first time we have seen NAME/VERSION.
997 gold_assert(ins.first->second == NULL);
998
999 if (is_default_version && !insdefault.second)
1000 {
1001 // We already have an entry for NAME/NULL. If we override
1002 // it, then change it to NAME/VERSION.
1003 ret = this->get_sized_symbol<size>(insdefault.first->second);
1004
1005 was_undefined = ret->is_undefined();
1006 was_common = ret->is_common();
1007
1008 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1009 version);
1010 if (parameters->options().gc_sections())
1011 this->gc_mark_dyn_syms(ret);
1012 ins.first->second = ret;
1013 }
1014 else
1015 {
1016 was_undefined = false;
1017 was_common = false;
1018
1019 Sized_target<size, big_endian>* target =
1020 parameters->sized_target<size, big_endian>();
1021 if (!target->has_make_symbol())
1022 ret = new Sized_symbol<size>();
1023 else
1024 {
1025 ret = target->make_symbol();
1026 if (ret == NULL)
1027 {
1028 // This means that we don't want a symbol table
1029 // entry after all.
1030 if (!is_default_version)
1031 this->table_.erase(ins.first);
1032 else
1033 {
1034 this->table_.erase(insdefault.first);
1035 // Inserting INSDEFAULT invalidated INS.
1036 this->table_.erase(std::make_pair(name_key,
1037 version_key));
1038 }
1039 return NULL;
1040 }
1041 }
1042
1043 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1044
1045 ins.first->second = ret;
1046 if (is_default_version)
1047 {
1048 // This is the first time we have seen NAME/NULL. Point
1049 // it at the new entry for NAME/VERSION.
1050 gold_assert(insdefault.second);
1051 insdefault.first->second = ret;
1052 }
1053 }
1054
1055 if (is_default_version)
1056 ret->set_is_default();
1057 }
1058
1059 // Record every time we see a new undefined symbol, to speed up
1060 // archive groups.
1061 if (!was_undefined && ret->is_undefined())
1062 {
1063 ++this->saw_undefined_;
1064 if (parameters->options().has_plugins())
1065 parameters->options().plugins()->new_undefined_symbol(ret);
1066 }
1067
1068 // Keep track of common symbols, to speed up common symbol
1069 // allocation.
1070 if (!was_common && ret->is_common())
1071 {
1072 if (ret->type() == elfcpp::STT_TLS)
1073 this->tls_commons_.push_back(ret);
1074 else if (!is_ordinary
1075 && st_shndx == parameters->target().small_common_shndx())
1076 this->small_commons_.push_back(ret);
1077 else if (!is_ordinary
1078 && st_shndx == parameters->target().large_common_shndx())
1079 this->large_commons_.push_back(ret);
1080 else
1081 this->commons_.push_back(ret);
1082 }
1083
1084 // If we're not doing a relocatable link, then any symbol with
1085 // hidden or internal visibility is local.
1086 if ((ret->visibility() == elfcpp::STV_HIDDEN
1087 || ret->visibility() == elfcpp::STV_INTERNAL)
1088 && (ret->binding() == elfcpp::STB_GLOBAL
1089 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1090 || ret->binding() == elfcpp::STB_WEAK)
1091 && !parameters->options().relocatable())
1092 this->force_local(ret);
1093
1094 return ret;
1095 }
1096
1097 // Add all the symbols in a relocatable object to the hash table.
1098
1099 template<int size, bool big_endian>
1100 void
1101 Symbol_table::add_from_relobj(
1102 Sized_relobj_file<size, big_endian>* relobj,
1103 const unsigned char* syms,
1104 size_t count,
1105 size_t symndx_offset,
1106 const char* sym_names,
1107 size_t sym_name_size,
1108 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1109 size_t* defined)
1110 {
1111 *defined = 0;
1112
1113 gold_assert(size == parameters->target().get_size());
1114
1115 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1116
1117 const bool just_symbols = relobj->just_symbols();
1118
1119 const unsigned char* p = syms;
1120 for (size_t i = 0; i < count; ++i, p += sym_size)
1121 {
1122 (*sympointers)[i] = NULL;
1123
1124 elfcpp::Sym<size, big_endian> sym(p);
1125
1126 unsigned int st_name = sym.get_st_name();
1127 if (st_name >= sym_name_size)
1128 {
1129 relobj->error(_("bad global symbol name offset %u at %zu"),
1130 st_name, i);
1131 continue;
1132 }
1133
1134 const char* name = sym_names + st_name;
1135
1136 if (strcmp (name, "__gnu_lto_slim") == 0)
1137 gold_info(_("%s: plugin needed to handle lto object"),
1138 relobj->name().c_str());
1139
1140 bool is_ordinary;
1141 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1142 sym.get_st_shndx(),
1143 &is_ordinary);
1144 unsigned int orig_st_shndx = st_shndx;
1145 if (!is_ordinary)
1146 orig_st_shndx = elfcpp::SHN_UNDEF;
1147
1148 if (st_shndx != elfcpp::SHN_UNDEF)
1149 ++*defined;
1150
1151 // A symbol defined in a section which we are not including must
1152 // be treated as an undefined symbol.
1153 bool is_defined_in_discarded_section = false;
1154 if (st_shndx != elfcpp::SHN_UNDEF
1155 && is_ordinary
1156 && !relobj->is_section_included(st_shndx)
1157 && !this->is_section_folded(relobj, st_shndx))
1158 {
1159 st_shndx = elfcpp::SHN_UNDEF;
1160 is_defined_in_discarded_section = true;
1161 }
1162
1163 // In an object file, an '@' in the name separates the symbol
1164 // name from the version name. If there are two '@' characters,
1165 // this is the default version.
1166 const char* ver = strchr(name, '@');
1167 Stringpool::Key ver_key = 0;
1168 int namelen = 0;
1169 // IS_DEFAULT_VERSION: is the version default?
1170 // IS_FORCED_LOCAL: is the symbol forced local?
1171 bool is_default_version = false;
1172 bool is_forced_local = false;
1173
1174 // FIXME: For incremental links, we don't store version information,
1175 // so we need to ignore version symbols for now.
1176 if (parameters->incremental_update() && ver != NULL)
1177 {
1178 namelen = ver - name;
1179 ver = NULL;
1180 }
1181
1182 if (ver != NULL)
1183 {
1184 // The symbol name is of the form foo@VERSION or foo@@VERSION
1185 namelen = ver - name;
1186 ++ver;
1187 if (*ver == '@')
1188 {
1189 is_default_version = true;
1190 ++ver;
1191 }
1192 ver = this->namepool_.add(ver, true, &ver_key);
1193 }
1194 // We don't want to assign a version to an undefined symbol,
1195 // even if it is listed in the version script. FIXME: What
1196 // about a common symbol?
1197 else
1198 {
1199 namelen = strlen(name);
1200 if (!this->version_script_.empty()
1201 && st_shndx != elfcpp::SHN_UNDEF)
1202 {
1203 // The symbol name did not have a version, but the
1204 // version script may assign a version anyway.
1205 std::string version;
1206 bool is_global;
1207 if (this->version_script_.get_symbol_version(name, &version,
1208 &is_global))
1209 {
1210 if (!is_global)
1211 is_forced_local = true;
1212 else if (!version.empty())
1213 {
1214 ver = this->namepool_.add_with_length(version.c_str(),
1215 version.length(),
1216 true,
1217 &ver_key);
1218 is_default_version = true;
1219 }
1220 }
1221 }
1222 }
1223
1224 elfcpp::Sym<size, big_endian>* psym = &sym;
1225 unsigned char symbuf[sym_size];
1226 elfcpp::Sym<size, big_endian> sym2(symbuf);
1227 if (just_symbols)
1228 {
1229 memcpy(symbuf, p, sym_size);
1230 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1231 if (orig_st_shndx != elfcpp::SHN_UNDEF
1232 && is_ordinary
1233 && relobj->e_type() == elfcpp::ET_REL)
1234 {
1235 // Symbol values in relocatable object files are section
1236 // relative. This is normally what we want, but since here
1237 // we are converting the symbol to absolute we need to add
1238 // the section address. The section address in an object
1239 // file is normally zero, but people can use a linker
1240 // script to change it.
1241 sw.put_st_value(sym.get_st_value()
1242 + relobj->section_address(orig_st_shndx));
1243 }
1244 st_shndx = elfcpp::SHN_ABS;
1245 is_ordinary = false;
1246 psym = &sym2;
1247 }
1248
1249 // Fix up visibility if object has no-export set.
1250 if (relobj->no_export()
1251 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1252 {
1253 // We may have copied symbol already above.
1254 if (psym != &sym2)
1255 {
1256 memcpy(symbuf, p, sym_size);
1257 psym = &sym2;
1258 }
1259
1260 elfcpp::STV visibility = sym2.get_st_visibility();
1261 if (visibility == elfcpp::STV_DEFAULT
1262 || visibility == elfcpp::STV_PROTECTED)
1263 {
1264 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1265 unsigned char nonvis = sym2.get_st_nonvis();
1266 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1267 }
1268 }
1269
1270 Stringpool::Key name_key;
1271 name = this->namepool_.add_with_length(name, namelen, true,
1272 &name_key);
1273
1274 Sized_symbol<size>* res;
1275 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1276 is_default_version, *psym, st_shndx,
1277 is_ordinary, orig_st_shndx);
1278
1279 if (is_forced_local)
1280 this->force_local(res);
1281
1282 // Do not treat this symbol as garbage if this symbol will be
1283 // exported to the dynamic symbol table. This is true when
1284 // building a shared library or using --export-dynamic and
1285 // the symbol is externally visible.
1286 if (parameters->options().gc_sections()
1287 && res->is_externally_visible()
1288 && !res->is_from_dynobj()
1289 && (parameters->options().shared()
1290 || parameters->options().export_dynamic()
1291 || parameters->options().in_dynamic_list(res->name())))
1292 this->gc_mark_symbol(res);
1293
1294 if (is_defined_in_discarded_section)
1295 res->set_is_defined_in_discarded_section();
1296
1297 (*sympointers)[i] = res;
1298 }
1299 }
1300
1301 // Add a symbol from a plugin-claimed file.
1302
1303 template<int size, bool big_endian>
1304 Symbol*
1305 Symbol_table::add_from_pluginobj(
1306 Sized_pluginobj<size, big_endian>* obj,
1307 const char* name,
1308 const char* ver,
1309 elfcpp::Sym<size, big_endian>* sym)
1310 {
1311 unsigned int st_shndx = sym->get_st_shndx();
1312 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1313
1314 Stringpool::Key ver_key = 0;
1315 bool is_default_version = false;
1316 bool is_forced_local = false;
1317
1318 if (ver != NULL)
1319 {
1320 ver = this->namepool_.add(ver, true, &ver_key);
1321 }
1322 // We don't want to assign a version to an undefined symbol,
1323 // even if it is listed in the version script. FIXME: What
1324 // about a common symbol?
1325 else
1326 {
1327 if (!this->version_script_.empty()
1328 && st_shndx != elfcpp::SHN_UNDEF)
1329 {
1330 // The symbol name did not have a version, but the
1331 // version script may assign a version anyway.
1332 std::string version;
1333 bool is_global;
1334 if (this->version_script_.get_symbol_version(name, &version,
1335 &is_global))
1336 {
1337 if (!is_global)
1338 is_forced_local = true;
1339 else if (!version.empty())
1340 {
1341 ver = this->namepool_.add_with_length(version.c_str(),
1342 version.length(),
1343 true,
1344 &ver_key);
1345 is_default_version = true;
1346 }
1347 }
1348 }
1349 }
1350
1351 Stringpool::Key name_key;
1352 name = this->namepool_.add(name, true, &name_key);
1353
1354 Sized_symbol<size>* res;
1355 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1356 is_default_version, *sym, st_shndx,
1357 is_ordinary, st_shndx);
1358
1359 if (is_forced_local)
1360 this->force_local(res);
1361
1362 return res;
1363 }
1364
1365 // Add all the symbols in a dynamic object to the hash table.
1366
1367 template<int size, bool big_endian>
1368 void
1369 Symbol_table::add_from_dynobj(
1370 Sized_dynobj<size, big_endian>* dynobj,
1371 const unsigned char* syms,
1372 size_t count,
1373 const char* sym_names,
1374 size_t sym_name_size,
1375 const unsigned char* versym,
1376 size_t versym_size,
1377 const std::vector<const char*>* version_map,
1378 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1379 size_t* defined)
1380 {
1381 *defined = 0;
1382
1383 gold_assert(size == parameters->target().get_size());
1384
1385 if (dynobj->just_symbols())
1386 {
1387 gold_error(_("--just-symbols does not make sense with a shared object"));
1388 return;
1389 }
1390
1391 // FIXME: For incremental links, we don't store version information,
1392 // so we need to ignore version symbols for now.
1393 if (parameters->incremental_update())
1394 versym = NULL;
1395
1396 if (versym != NULL && versym_size / 2 < count)
1397 {
1398 dynobj->error(_("too few symbol versions"));
1399 return;
1400 }
1401
1402 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1403
1404 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1405 // weak aliases. This is necessary because if the dynamic object
1406 // provides the same variable under two names, one of which is a
1407 // weak definition, and the regular object refers to the weak
1408 // definition, we have to put both the weak definition and the
1409 // strong definition into the dynamic symbol table. Given a weak
1410 // definition, the only way that we can find the corresponding
1411 // strong definition, if any, is to search the symbol table.
1412 std::vector<Sized_symbol<size>*> object_symbols;
1413
1414 const unsigned char* p = syms;
1415 const unsigned char* vs = versym;
1416 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1417 {
1418 elfcpp::Sym<size, big_endian> sym(p);
1419
1420 if (sympointers != NULL)
1421 (*sympointers)[i] = NULL;
1422
1423 // Ignore symbols with local binding or that have
1424 // internal or hidden visibility.
1425 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1426 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1427 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1428 continue;
1429
1430 // A protected symbol in a shared library must be treated as a
1431 // normal symbol when viewed from outside the shared library.
1432 // Implement this by overriding the visibility here.
1433 elfcpp::Sym<size, big_endian>* psym = &sym;
1434 unsigned char symbuf[sym_size];
1435 elfcpp::Sym<size, big_endian> sym2(symbuf);
1436 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1437 {
1438 memcpy(symbuf, p, sym_size);
1439 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1440 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1441 psym = &sym2;
1442 }
1443
1444 unsigned int st_name = psym->get_st_name();
1445 if (st_name >= sym_name_size)
1446 {
1447 dynobj->error(_("bad symbol name offset %u at %zu"),
1448 st_name, i);
1449 continue;
1450 }
1451
1452 const char* name = sym_names + st_name;
1453
1454 bool is_ordinary;
1455 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1456 &is_ordinary);
1457
1458 if (st_shndx != elfcpp::SHN_UNDEF)
1459 ++*defined;
1460
1461 Sized_symbol<size>* res;
1462
1463 if (versym == NULL)
1464 {
1465 Stringpool::Key name_key;
1466 name = this->namepool_.add(name, true, &name_key);
1467 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1468 false, *psym, st_shndx, is_ordinary,
1469 st_shndx);
1470 }
1471 else
1472 {
1473 // Read the version information.
1474
1475 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1476
1477 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1478 v &= elfcpp::VERSYM_VERSION;
1479
1480 // The Sun documentation says that V can be VER_NDX_LOCAL,
1481 // or VER_NDX_GLOBAL, or a version index. The meaning of
1482 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1483 // The old GNU linker will happily generate VER_NDX_LOCAL
1484 // for an undefined symbol. I don't know what the Sun
1485 // linker will generate.
1486
1487 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1488 && st_shndx != elfcpp::SHN_UNDEF)
1489 {
1490 // This symbol should not be visible outside the object.
1491 continue;
1492 }
1493
1494 // At this point we are definitely going to add this symbol.
1495 Stringpool::Key name_key;
1496 name = this->namepool_.add(name, true, &name_key);
1497
1498 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1499 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1500 {
1501 // This symbol does not have a version.
1502 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1503 false, *psym, st_shndx, is_ordinary,
1504 st_shndx);
1505 }
1506 else
1507 {
1508 if (v >= version_map->size())
1509 {
1510 dynobj->error(_("versym for symbol %zu out of range: %u"),
1511 i, v);
1512 continue;
1513 }
1514
1515 const char* version = (*version_map)[v];
1516 if (version == NULL)
1517 {
1518 dynobj->error(_("versym for symbol %zu has no name: %u"),
1519 i, v);
1520 continue;
1521 }
1522
1523 Stringpool::Key version_key;
1524 version = this->namepool_.add(version, true, &version_key);
1525
1526 // If this is an absolute symbol, and the version name
1527 // and symbol name are the same, then this is the
1528 // version definition symbol. These symbols exist to
1529 // support using -u to pull in particular versions. We
1530 // do not want to record a version for them.
1531 if (st_shndx == elfcpp::SHN_ABS
1532 && !is_ordinary
1533 && name_key == version_key)
1534 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1535 false, *psym, st_shndx, is_ordinary,
1536 st_shndx);
1537 else
1538 {
1539 const bool is_default_version =
1540 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1541 res = this->add_from_object(dynobj, name, name_key, version,
1542 version_key, is_default_version,
1543 *psym, st_shndx,
1544 is_ordinary, st_shndx);
1545 }
1546 }
1547 }
1548
1549 // Note that it is possible that RES was overridden by an
1550 // earlier object, in which case it can't be aliased here.
1551 if (st_shndx != elfcpp::SHN_UNDEF
1552 && is_ordinary
1553 && psym->get_st_type() == elfcpp::STT_OBJECT
1554 && res->source() == Symbol::FROM_OBJECT
1555 && res->object() == dynobj)
1556 object_symbols.push_back(res);
1557
1558 if (sympointers != NULL)
1559 (*sympointers)[i] = res;
1560 }
1561
1562 this->record_weak_aliases(&object_symbols);
1563 }
1564
1565 // Add a symbol from a incremental object file.
1566
1567 template<int size, bool big_endian>
1568 Sized_symbol<size>*
1569 Symbol_table::add_from_incrobj(
1570 Object* obj,
1571 const char* name,
1572 const char* ver,
1573 elfcpp::Sym<size, big_endian>* sym)
1574 {
1575 unsigned int st_shndx = sym->get_st_shndx();
1576 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1577
1578 Stringpool::Key ver_key = 0;
1579 bool is_default_version = false;
1580 bool is_forced_local = false;
1581
1582 Stringpool::Key name_key;
1583 name = this->namepool_.add(name, true, &name_key);
1584
1585 Sized_symbol<size>* res;
1586 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1587 is_default_version, *sym, st_shndx,
1588 is_ordinary, st_shndx);
1589
1590 if (is_forced_local)
1591 this->force_local(res);
1592
1593 return res;
1594 }
1595
1596 // This is used to sort weak aliases. We sort them first by section
1597 // index, then by offset, then by weak ahead of strong.
1598
1599 template<int size>
1600 class Weak_alias_sorter
1601 {
1602 public:
1603 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1604 };
1605
1606 template<int size>
1607 bool
1608 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1609 const Sized_symbol<size>* s2) const
1610 {
1611 bool is_ordinary;
1612 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1613 gold_assert(is_ordinary);
1614 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1615 gold_assert(is_ordinary);
1616 if (s1_shndx != s2_shndx)
1617 return s1_shndx < s2_shndx;
1618
1619 if (s1->value() != s2->value())
1620 return s1->value() < s2->value();
1621 if (s1->binding() != s2->binding())
1622 {
1623 if (s1->binding() == elfcpp::STB_WEAK)
1624 return true;
1625 if (s2->binding() == elfcpp::STB_WEAK)
1626 return false;
1627 }
1628 return std::string(s1->name()) < std::string(s2->name());
1629 }
1630
1631 // SYMBOLS is a list of object symbols from a dynamic object. Look
1632 // for any weak aliases, and record them so that if we add the weak
1633 // alias to the dynamic symbol table, we also add the corresponding
1634 // strong symbol.
1635
1636 template<int size>
1637 void
1638 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1639 {
1640 // Sort the vector by section index, then by offset, then by weak
1641 // ahead of strong.
1642 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1643
1644 // Walk through the vector. For each weak definition, record
1645 // aliases.
1646 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1647 symbols->begin();
1648 p != symbols->end();
1649 ++p)
1650 {
1651 if ((*p)->binding() != elfcpp::STB_WEAK)
1652 continue;
1653
1654 // Build a circular list of weak aliases. Each symbol points to
1655 // the next one in the circular list.
1656
1657 Sized_symbol<size>* from_sym = *p;
1658 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1659 for (q = p + 1; q != symbols->end(); ++q)
1660 {
1661 bool dummy;
1662 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1663 || (*q)->value() != from_sym->value())
1664 break;
1665
1666 this->weak_aliases_[from_sym] = *q;
1667 from_sym->set_has_alias();
1668 from_sym = *q;
1669 }
1670
1671 if (from_sym != *p)
1672 {
1673 this->weak_aliases_[from_sym] = *p;
1674 from_sym->set_has_alias();
1675 }
1676
1677 p = q - 1;
1678 }
1679 }
1680
1681 // Create and return a specially defined symbol. If ONLY_IF_REF is
1682 // true, then only create the symbol if there is a reference to it.
1683 // If this does not return NULL, it sets *POLDSYM to the existing
1684 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1685 // resolve the newly created symbol to the old one. This
1686 // canonicalizes *PNAME and *PVERSION.
1687
1688 template<int size, bool big_endian>
1689 Sized_symbol<size>*
1690 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1691 bool only_if_ref,
1692 Sized_symbol<size>** poldsym,
1693 bool* resolve_oldsym)
1694 {
1695 *resolve_oldsym = false;
1696 *poldsym = NULL;
1697
1698 // If the caller didn't give us a version, see if we get one from
1699 // the version script.
1700 std::string v;
1701 bool is_default_version = false;
1702 if (*pversion == NULL)
1703 {
1704 bool is_global;
1705 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1706 {
1707 if (is_global && !v.empty())
1708 {
1709 *pversion = v.c_str();
1710 // If we get the version from a version script, then we
1711 // are also the default version.
1712 is_default_version = true;
1713 }
1714 }
1715 }
1716
1717 Symbol* oldsym;
1718 Sized_symbol<size>* sym;
1719
1720 bool add_to_table = false;
1721 typename Symbol_table_type::iterator add_loc = this->table_.end();
1722 bool add_def_to_table = false;
1723 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1724
1725 if (only_if_ref)
1726 {
1727 oldsym = this->lookup(*pname, *pversion);
1728 if (oldsym == NULL && is_default_version)
1729 oldsym = this->lookup(*pname, NULL);
1730 if (oldsym == NULL || !oldsym->is_undefined())
1731 return NULL;
1732
1733 *pname = oldsym->name();
1734 if (is_default_version)
1735 *pversion = this->namepool_.add(*pversion, true, NULL);
1736 else
1737 *pversion = oldsym->version();
1738 }
1739 else
1740 {
1741 // Canonicalize NAME and VERSION.
1742 Stringpool::Key name_key;
1743 *pname = this->namepool_.add(*pname, true, &name_key);
1744
1745 Stringpool::Key version_key = 0;
1746 if (*pversion != NULL)
1747 *pversion = this->namepool_.add(*pversion, true, &version_key);
1748
1749 Symbol* const snull = NULL;
1750 std::pair<typename Symbol_table_type::iterator, bool> ins =
1751 this->table_.insert(std::make_pair(std::make_pair(name_key,
1752 version_key),
1753 snull));
1754
1755 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1756 std::make_pair(this->table_.end(), false);
1757 if (is_default_version)
1758 {
1759 const Stringpool::Key vnull = 0;
1760 insdefault =
1761 this->table_.insert(std::make_pair(std::make_pair(name_key,
1762 vnull),
1763 snull));
1764 }
1765
1766 if (!ins.second)
1767 {
1768 // We already have a symbol table entry for NAME/VERSION.
1769 oldsym = ins.first->second;
1770 gold_assert(oldsym != NULL);
1771
1772 if (is_default_version)
1773 {
1774 Sized_symbol<size>* soldsym =
1775 this->get_sized_symbol<size>(oldsym);
1776 this->define_default_version<size, big_endian>(soldsym,
1777 insdefault.second,
1778 insdefault.first);
1779 }
1780 }
1781 else
1782 {
1783 // We haven't seen this symbol before.
1784 gold_assert(ins.first->second == NULL);
1785
1786 add_to_table = true;
1787 add_loc = ins.first;
1788
1789 if (is_default_version && !insdefault.second)
1790 {
1791 // We are adding NAME/VERSION, and it is the default
1792 // version. We already have an entry for NAME/NULL.
1793 oldsym = insdefault.first->second;
1794 *resolve_oldsym = true;
1795 }
1796 else
1797 {
1798 oldsym = NULL;
1799
1800 if (is_default_version)
1801 {
1802 add_def_to_table = true;
1803 add_def_loc = insdefault.first;
1804 }
1805 }
1806 }
1807 }
1808
1809 const Target& target = parameters->target();
1810 if (!target.has_make_symbol())
1811 sym = new Sized_symbol<size>();
1812 else
1813 {
1814 Sized_target<size, big_endian>* sized_target =
1815 parameters->sized_target<size, big_endian>();
1816 sym = sized_target->make_symbol();
1817 if (sym == NULL)
1818 return NULL;
1819 }
1820
1821 if (add_to_table)
1822 add_loc->second = sym;
1823 else
1824 gold_assert(oldsym != NULL);
1825
1826 if (add_def_to_table)
1827 add_def_loc->second = sym;
1828
1829 *poldsym = this->get_sized_symbol<size>(oldsym);
1830
1831 return sym;
1832 }
1833
1834 // Define a symbol based on an Output_data.
1835
1836 Symbol*
1837 Symbol_table::define_in_output_data(const char* name,
1838 const char* version,
1839 Defined defined,
1840 Output_data* od,
1841 uint64_t value,
1842 uint64_t symsize,
1843 elfcpp::STT type,
1844 elfcpp::STB binding,
1845 elfcpp::STV visibility,
1846 unsigned char nonvis,
1847 bool offset_is_from_end,
1848 bool only_if_ref)
1849 {
1850 if (parameters->target().get_size() == 32)
1851 {
1852 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1853 return this->do_define_in_output_data<32>(name, version, defined, od,
1854 value, symsize, type, binding,
1855 visibility, nonvis,
1856 offset_is_from_end,
1857 only_if_ref);
1858 #else
1859 gold_unreachable();
1860 #endif
1861 }
1862 else if (parameters->target().get_size() == 64)
1863 {
1864 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1865 return this->do_define_in_output_data<64>(name, version, defined, od,
1866 value, symsize, type, binding,
1867 visibility, nonvis,
1868 offset_is_from_end,
1869 only_if_ref);
1870 #else
1871 gold_unreachable();
1872 #endif
1873 }
1874 else
1875 gold_unreachable();
1876 }
1877
1878 // Define a symbol in an Output_data, sized version.
1879
1880 template<int size>
1881 Sized_symbol<size>*
1882 Symbol_table::do_define_in_output_data(
1883 const char* name,
1884 const char* version,
1885 Defined defined,
1886 Output_data* od,
1887 typename elfcpp::Elf_types<size>::Elf_Addr value,
1888 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1889 elfcpp::STT type,
1890 elfcpp::STB binding,
1891 elfcpp::STV visibility,
1892 unsigned char nonvis,
1893 bool offset_is_from_end,
1894 bool only_if_ref)
1895 {
1896 Sized_symbol<size>* sym;
1897 Sized_symbol<size>* oldsym;
1898 bool resolve_oldsym;
1899
1900 if (parameters->target().is_big_endian())
1901 {
1902 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1903 sym = this->define_special_symbol<size, true>(&name, &version,
1904 only_if_ref, &oldsym,
1905 &resolve_oldsym);
1906 #else
1907 gold_unreachable();
1908 #endif
1909 }
1910 else
1911 {
1912 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1913 sym = this->define_special_symbol<size, false>(&name, &version,
1914 only_if_ref, &oldsym,
1915 &resolve_oldsym);
1916 #else
1917 gold_unreachable();
1918 #endif
1919 }
1920
1921 if (sym == NULL)
1922 return NULL;
1923
1924 sym->init_output_data(name, version, od, value, symsize, type, binding,
1925 visibility, nonvis, offset_is_from_end,
1926 defined == PREDEFINED);
1927
1928 if (oldsym == NULL)
1929 {
1930 if (binding == elfcpp::STB_LOCAL
1931 || this->version_script_.symbol_is_local(name))
1932 this->force_local(sym);
1933 else if (version != NULL)
1934 sym->set_is_default();
1935 return sym;
1936 }
1937
1938 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1939 this->override_with_special(oldsym, sym);
1940
1941 if (resolve_oldsym)
1942 return sym;
1943 else
1944 {
1945 delete sym;
1946 return oldsym;
1947 }
1948 }
1949
1950 // Define a symbol based on an Output_segment.
1951
1952 Symbol*
1953 Symbol_table::define_in_output_segment(const char* name,
1954 const char* version,
1955 Defined defined,
1956 Output_segment* os,
1957 uint64_t value,
1958 uint64_t symsize,
1959 elfcpp::STT type,
1960 elfcpp::STB binding,
1961 elfcpp::STV visibility,
1962 unsigned char nonvis,
1963 Symbol::Segment_offset_base offset_base,
1964 bool only_if_ref)
1965 {
1966 if (parameters->target().get_size() == 32)
1967 {
1968 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1969 return this->do_define_in_output_segment<32>(name, version, defined, os,
1970 value, symsize, type,
1971 binding, visibility, nonvis,
1972 offset_base, only_if_ref);
1973 #else
1974 gold_unreachable();
1975 #endif
1976 }
1977 else if (parameters->target().get_size() == 64)
1978 {
1979 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1980 return this->do_define_in_output_segment<64>(name, version, defined, os,
1981 value, symsize, type,
1982 binding, visibility, nonvis,
1983 offset_base, only_if_ref);
1984 #else
1985 gold_unreachable();
1986 #endif
1987 }
1988 else
1989 gold_unreachable();
1990 }
1991
1992 // Define a symbol in an Output_segment, sized version.
1993
1994 template<int size>
1995 Sized_symbol<size>*
1996 Symbol_table::do_define_in_output_segment(
1997 const char* name,
1998 const char* version,
1999 Defined defined,
2000 Output_segment* os,
2001 typename elfcpp::Elf_types<size>::Elf_Addr value,
2002 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2003 elfcpp::STT type,
2004 elfcpp::STB binding,
2005 elfcpp::STV visibility,
2006 unsigned char nonvis,
2007 Symbol::Segment_offset_base offset_base,
2008 bool only_if_ref)
2009 {
2010 Sized_symbol<size>* sym;
2011 Sized_symbol<size>* oldsym;
2012 bool resolve_oldsym;
2013
2014 if (parameters->target().is_big_endian())
2015 {
2016 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2017 sym = this->define_special_symbol<size, true>(&name, &version,
2018 only_if_ref, &oldsym,
2019 &resolve_oldsym);
2020 #else
2021 gold_unreachable();
2022 #endif
2023 }
2024 else
2025 {
2026 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2027 sym = this->define_special_symbol<size, false>(&name, &version,
2028 only_if_ref, &oldsym,
2029 &resolve_oldsym);
2030 #else
2031 gold_unreachable();
2032 #endif
2033 }
2034
2035 if (sym == NULL)
2036 return NULL;
2037
2038 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2039 visibility, nonvis, offset_base,
2040 defined == PREDEFINED);
2041
2042 if (oldsym == NULL)
2043 {
2044 if (binding == elfcpp::STB_LOCAL
2045 || this->version_script_.symbol_is_local(name))
2046 this->force_local(sym);
2047 else if (version != NULL)
2048 sym->set_is_default();
2049 return sym;
2050 }
2051
2052 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2053 this->override_with_special(oldsym, sym);
2054
2055 if (resolve_oldsym)
2056 return sym;
2057 else
2058 {
2059 delete sym;
2060 return oldsym;
2061 }
2062 }
2063
2064 // Define a special symbol with a constant value. It is a multiple
2065 // definition error if this symbol is already defined.
2066
2067 Symbol*
2068 Symbol_table::define_as_constant(const char* name,
2069 const char* version,
2070 Defined defined,
2071 uint64_t value,
2072 uint64_t symsize,
2073 elfcpp::STT type,
2074 elfcpp::STB binding,
2075 elfcpp::STV visibility,
2076 unsigned char nonvis,
2077 bool only_if_ref,
2078 bool force_override)
2079 {
2080 if (parameters->target().get_size() == 32)
2081 {
2082 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2083 return this->do_define_as_constant<32>(name, version, defined, value,
2084 symsize, type, binding,
2085 visibility, nonvis, only_if_ref,
2086 force_override);
2087 #else
2088 gold_unreachable();
2089 #endif
2090 }
2091 else if (parameters->target().get_size() == 64)
2092 {
2093 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2094 return this->do_define_as_constant<64>(name, version, defined, value,
2095 symsize, type, binding,
2096 visibility, nonvis, only_if_ref,
2097 force_override);
2098 #else
2099 gold_unreachable();
2100 #endif
2101 }
2102 else
2103 gold_unreachable();
2104 }
2105
2106 // Define a symbol as a constant, sized version.
2107
2108 template<int size>
2109 Sized_symbol<size>*
2110 Symbol_table::do_define_as_constant(
2111 const char* name,
2112 const char* version,
2113 Defined defined,
2114 typename elfcpp::Elf_types<size>::Elf_Addr value,
2115 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2116 elfcpp::STT type,
2117 elfcpp::STB binding,
2118 elfcpp::STV visibility,
2119 unsigned char nonvis,
2120 bool only_if_ref,
2121 bool force_override)
2122 {
2123 Sized_symbol<size>* sym;
2124 Sized_symbol<size>* oldsym;
2125 bool resolve_oldsym;
2126
2127 if (parameters->target().is_big_endian())
2128 {
2129 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2130 sym = this->define_special_symbol<size, true>(&name, &version,
2131 only_if_ref, &oldsym,
2132 &resolve_oldsym);
2133 #else
2134 gold_unreachable();
2135 #endif
2136 }
2137 else
2138 {
2139 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2140 sym = this->define_special_symbol<size, false>(&name, &version,
2141 only_if_ref, &oldsym,
2142 &resolve_oldsym);
2143 #else
2144 gold_unreachable();
2145 #endif
2146 }
2147
2148 if (sym == NULL)
2149 return NULL;
2150
2151 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2152 nonvis, defined == PREDEFINED);
2153
2154 if (oldsym == NULL)
2155 {
2156 // Version symbols are absolute symbols with name == version.
2157 // We don't want to force them to be local.
2158 if ((version == NULL
2159 || name != version
2160 || value != 0)
2161 && (binding == elfcpp::STB_LOCAL
2162 || this->version_script_.symbol_is_local(name)))
2163 this->force_local(sym);
2164 else if (version != NULL
2165 && (name != version || value != 0))
2166 sym->set_is_default();
2167 return sym;
2168 }
2169
2170 if (force_override
2171 || Symbol_table::should_override_with_special(oldsym, type, defined))
2172 this->override_with_special(oldsym, sym);
2173
2174 if (resolve_oldsym)
2175 return sym;
2176 else
2177 {
2178 delete sym;
2179 return oldsym;
2180 }
2181 }
2182
2183 // Define a set of symbols in output sections.
2184
2185 void
2186 Symbol_table::define_symbols(const Layout* layout, int count,
2187 const Define_symbol_in_section* p,
2188 bool only_if_ref)
2189 {
2190 for (int i = 0; i < count; ++i, ++p)
2191 {
2192 Output_section* os = layout->find_output_section(p->output_section);
2193 if (os != NULL)
2194 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2195 p->size, p->type, p->binding,
2196 p->visibility, p->nonvis,
2197 p->offset_is_from_end,
2198 only_if_ref || p->only_if_ref);
2199 else
2200 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2201 p->type, p->binding, p->visibility, p->nonvis,
2202 only_if_ref || p->only_if_ref,
2203 false);
2204 }
2205 }
2206
2207 // Define a set of symbols in output segments.
2208
2209 void
2210 Symbol_table::define_symbols(const Layout* layout, int count,
2211 const Define_symbol_in_segment* p,
2212 bool only_if_ref)
2213 {
2214 for (int i = 0; i < count; ++i, ++p)
2215 {
2216 Output_segment* os = layout->find_output_segment(p->segment_type,
2217 p->segment_flags_set,
2218 p->segment_flags_clear);
2219 if (os != NULL)
2220 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2221 p->size, p->type, p->binding,
2222 p->visibility, p->nonvis,
2223 p->offset_base,
2224 only_if_ref || p->only_if_ref);
2225 else
2226 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2227 p->type, p->binding, p->visibility, p->nonvis,
2228 only_if_ref || p->only_if_ref,
2229 false);
2230 }
2231 }
2232
2233 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2234 // symbol should be defined--typically a .dyn.bss section. VALUE is
2235 // the offset within POSD.
2236
2237 template<int size>
2238 void
2239 Symbol_table::define_with_copy_reloc(
2240 Sized_symbol<size>* csym,
2241 Output_data* posd,
2242 typename elfcpp::Elf_types<size>::Elf_Addr value)
2243 {
2244 gold_assert(csym->is_from_dynobj());
2245 gold_assert(!csym->is_copied_from_dynobj());
2246 Object* object = csym->object();
2247 gold_assert(object->is_dynamic());
2248 Dynobj* dynobj = static_cast<Dynobj*>(object);
2249
2250 // Our copied variable has to override any variable in a shared
2251 // library.
2252 elfcpp::STB binding = csym->binding();
2253 if (binding == elfcpp::STB_WEAK)
2254 binding = elfcpp::STB_GLOBAL;
2255
2256 this->define_in_output_data(csym->name(), csym->version(), COPY,
2257 posd, value, csym->symsize(),
2258 csym->type(), binding,
2259 csym->visibility(), csym->nonvis(),
2260 false, false);
2261
2262 csym->set_is_copied_from_dynobj();
2263 csym->set_needs_dynsym_entry();
2264
2265 this->copied_symbol_dynobjs_[csym] = dynobj;
2266
2267 // We have now defined all aliases, but we have not entered them all
2268 // in the copied_symbol_dynobjs_ map.
2269 if (csym->has_alias())
2270 {
2271 Symbol* sym = csym;
2272 while (true)
2273 {
2274 sym = this->weak_aliases_[sym];
2275 if (sym == csym)
2276 break;
2277 gold_assert(sym->output_data() == posd);
2278
2279 sym->set_is_copied_from_dynobj();
2280 this->copied_symbol_dynobjs_[sym] = dynobj;
2281 }
2282 }
2283 }
2284
2285 // SYM is defined using a COPY reloc. Return the dynamic object where
2286 // the original definition was found.
2287
2288 Dynobj*
2289 Symbol_table::get_copy_source(const Symbol* sym) const
2290 {
2291 gold_assert(sym->is_copied_from_dynobj());
2292 Copied_symbol_dynobjs::const_iterator p =
2293 this->copied_symbol_dynobjs_.find(sym);
2294 gold_assert(p != this->copied_symbol_dynobjs_.end());
2295 return p->second;
2296 }
2297
2298 // Add any undefined symbols named on the command line.
2299
2300 void
2301 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2302 {
2303 if (parameters->options().any_undefined()
2304 || layout->script_options()->any_unreferenced())
2305 {
2306 if (parameters->target().get_size() == 32)
2307 {
2308 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2309 this->do_add_undefined_symbols_from_command_line<32>(layout);
2310 #else
2311 gold_unreachable();
2312 #endif
2313 }
2314 else if (parameters->target().get_size() == 64)
2315 {
2316 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2317 this->do_add_undefined_symbols_from_command_line<64>(layout);
2318 #else
2319 gold_unreachable();
2320 #endif
2321 }
2322 else
2323 gold_unreachable();
2324 }
2325 }
2326
2327 template<int size>
2328 void
2329 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2330 {
2331 for (options::String_set::const_iterator p =
2332 parameters->options().undefined_begin();
2333 p != parameters->options().undefined_end();
2334 ++p)
2335 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2336
2337 for (options::String_set::const_iterator p =
2338 parameters->options().export_dynamic_symbol_begin();
2339 p != parameters->options().export_dynamic_symbol_end();
2340 ++p)
2341 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2342
2343 for (Script_options::referenced_const_iterator p =
2344 layout->script_options()->referenced_begin();
2345 p != layout->script_options()->referenced_end();
2346 ++p)
2347 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2348 }
2349
2350 template<int size>
2351 void
2352 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2353 {
2354 if (this->lookup(name) != NULL)
2355 return;
2356
2357 const char* version = NULL;
2358
2359 Sized_symbol<size>* sym;
2360 Sized_symbol<size>* oldsym;
2361 bool resolve_oldsym;
2362 if (parameters->target().is_big_endian())
2363 {
2364 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2365 sym = this->define_special_symbol<size, true>(&name, &version,
2366 false, &oldsym,
2367 &resolve_oldsym);
2368 #else
2369 gold_unreachable();
2370 #endif
2371 }
2372 else
2373 {
2374 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2375 sym = this->define_special_symbol<size, false>(&name, &version,
2376 false, &oldsym,
2377 &resolve_oldsym);
2378 #else
2379 gold_unreachable();
2380 #endif
2381 }
2382
2383 gold_assert(oldsym == NULL);
2384
2385 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2386 elfcpp::STV_DEFAULT, 0);
2387 ++this->saw_undefined_;
2388 }
2389
2390 // Set the dynamic symbol indexes. INDEX is the index of the first
2391 // global dynamic symbol. Pointers to the symbols are stored into the
2392 // vector SYMS. The names are added to DYNPOOL. This returns an
2393 // updated dynamic symbol index.
2394
2395 unsigned int
2396 Symbol_table::set_dynsym_indexes(unsigned int index,
2397 std::vector<Symbol*>* syms,
2398 Stringpool* dynpool,
2399 Versions* versions)
2400 {
2401 std::vector<Symbol*> as_needed_sym;
2402
2403 // Allow a target to set dynsym indexes.
2404 if (parameters->target().has_custom_set_dynsym_indexes())
2405 {
2406 std::vector<Symbol*> dyn_symbols;
2407 for (Symbol_table_type::iterator p = this->table_.begin();
2408 p != this->table_.end();
2409 ++p)
2410 {
2411 Symbol* sym = p->second;
2412 if (!sym->should_add_dynsym_entry(this))
2413 sym->set_dynsym_index(-1U);
2414 else
2415 dyn_symbols.push_back(sym);
2416 }
2417
2418 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2419 dynpool, versions, this);
2420 }
2421
2422 for (Symbol_table_type::iterator p = this->table_.begin();
2423 p != this->table_.end();
2424 ++p)
2425 {
2426 Symbol* sym = p->second;
2427
2428 // Note that SYM may already have a dynamic symbol index, since
2429 // some symbols appear more than once in the symbol table, with
2430 // and without a version.
2431
2432 if (!sym->should_add_dynsym_entry(this))
2433 sym->set_dynsym_index(-1U);
2434 else if (!sym->has_dynsym_index())
2435 {
2436 sym->set_dynsym_index(index);
2437 ++index;
2438 syms->push_back(sym);
2439 dynpool->add(sym->name(), false, NULL);
2440
2441 // If the symbol is defined in a dynamic object and is
2442 // referenced strongly in a regular object, then mark the
2443 // dynamic object as needed. This is used to implement
2444 // --as-needed.
2445 if (sym->is_from_dynobj()
2446 && sym->in_reg()
2447 && !sym->is_undef_binding_weak())
2448 sym->object()->set_is_needed();
2449
2450 // Record any version information, except those from
2451 // as-needed libraries not seen to be needed. Note that the
2452 // is_needed state for such libraries can change in this loop.
2453 if (sym->version() != NULL)
2454 {
2455 if (!sym->is_from_dynobj()
2456 || !sym->object()->as_needed()
2457 || sym->object()->is_needed())
2458 versions->record_version(this, dynpool, sym);
2459 else
2460 as_needed_sym.push_back(sym);
2461 }
2462 }
2463 }
2464
2465 // Process version information for symbols from as-needed libraries.
2466 for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2467 p != as_needed_sym.end();
2468 ++p)
2469 {
2470 Symbol* sym = *p;
2471
2472 if (sym->object()->is_needed())
2473 versions->record_version(this, dynpool, sym);
2474 else
2475 sym->clear_version();
2476 }
2477
2478 // Finish up the versions. In some cases this may add new dynamic
2479 // symbols.
2480 index = versions->finalize(this, index, syms);
2481
2482 return index;
2483 }
2484
2485 // Set the final values for all the symbols. The index of the first
2486 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2487 // file offset OFF. Add their names to POOL. Return the new file
2488 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2489
2490 off_t
2491 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2492 size_t dyncount, Stringpool* pool,
2493 unsigned int* plocal_symcount)
2494 {
2495 off_t ret;
2496
2497 gold_assert(*plocal_symcount != 0);
2498 this->first_global_index_ = *plocal_symcount;
2499
2500 this->dynamic_offset_ = dynoff;
2501 this->first_dynamic_global_index_ = dyn_global_index;
2502 this->dynamic_count_ = dyncount;
2503
2504 if (parameters->target().get_size() == 32)
2505 {
2506 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2507 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2508 #else
2509 gold_unreachable();
2510 #endif
2511 }
2512 else if (parameters->target().get_size() == 64)
2513 {
2514 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2515 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2516 #else
2517 gold_unreachable();
2518 #endif
2519 }
2520 else
2521 gold_unreachable();
2522
2523 // Now that we have the final symbol table, we can reliably note
2524 // which symbols should get warnings.
2525 this->warnings_.note_warnings(this);
2526
2527 return ret;
2528 }
2529
2530 // SYM is going into the symbol table at *PINDEX. Add the name to
2531 // POOL, update *PINDEX and *POFF.
2532
2533 template<int size>
2534 void
2535 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2536 unsigned int* pindex, off_t* poff)
2537 {
2538 sym->set_symtab_index(*pindex);
2539 if (sym->version() == NULL || !parameters->options().relocatable())
2540 pool->add(sym->name(), false, NULL);
2541 else
2542 pool->add(sym->versioned_name(), true, NULL);
2543 ++*pindex;
2544 *poff += elfcpp::Elf_sizes<size>::sym_size;
2545 }
2546
2547 // Set the final value for all the symbols. This is called after
2548 // Layout::finalize, so all the output sections have their final
2549 // address.
2550
2551 template<int size>
2552 off_t
2553 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2554 unsigned int* plocal_symcount)
2555 {
2556 off = align_address(off, size >> 3);
2557 this->offset_ = off;
2558
2559 unsigned int index = *plocal_symcount;
2560 const unsigned int orig_index = index;
2561
2562 // First do all the symbols which have been forced to be local, as
2563 // they must appear before all global symbols.
2564 for (Forced_locals::iterator p = this->forced_locals_.begin();
2565 p != this->forced_locals_.end();
2566 ++p)
2567 {
2568 Symbol* sym = *p;
2569 gold_assert(sym->is_forced_local());
2570 if (this->sized_finalize_symbol<size>(sym))
2571 {
2572 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2573 ++*plocal_symcount;
2574 }
2575 }
2576
2577 // Now do all the remaining symbols.
2578 for (Symbol_table_type::iterator p = this->table_.begin();
2579 p != this->table_.end();
2580 ++p)
2581 {
2582 Symbol* sym = p->second;
2583 if (this->sized_finalize_symbol<size>(sym))
2584 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2585 }
2586
2587 this->output_count_ = index - orig_index;
2588
2589 return off;
2590 }
2591
2592 // Compute the final value of SYM and store status in location PSTATUS.
2593 // During relaxation, this may be called multiple times for a symbol to
2594 // compute its would-be final value in each relaxation pass.
2595
2596 template<int size>
2597 typename Sized_symbol<size>::Value_type
2598 Symbol_table::compute_final_value(
2599 const Sized_symbol<size>* sym,
2600 Compute_final_value_status* pstatus) const
2601 {
2602 typedef typename Sized_symbol<size>::Value_type Value_type;
2603 Value_type value;
2604
2605 switch (sym->source())
2606 {
2607 case Symbol::FROM_OBJECT:
2608 {
2609 bool is_ordinary;
2610 unsigned int shndx = sym->shndx(&is_ordinary);
2611
2612 if (!is_ordinary
2613 && shndx != elfcpp::SHN_ABS
2614 && !Symbol::is_common_shndx(shndx))
2615 {
2616 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2617 return 0;
2618 }
2619
2620 Object* symobj = sym->object();
2621 if (symobj->is_dynamic())
2622 {
2623 value = 0;
2624 shndx = elfcpp::SHN_UNDEF;
2625 }
2626 else if (symobj->pluginobj() != NULL)
2627 {
2628 value = 0;
2629 shndx = elfcpp::SHN_UNDEF;
2630 }
2631 else if (shndx == elfcpp::SHN_UNDEF)
2632 value = 0;
2633 else if (!is_ordinary
2634 && (shndx == elfcpp::SHN_ABS
2635 || Symbol::is_common_shndx(shndx)))
2636 value = sym->value();
2637 else
2638 {
2639 Relobj* relobj = static_cast<Relobj*>(symobj);
2640 Output_section* os = relobj->output_section(shndx);
2641
2642 if (this->is_section_folded(relobj, shndx))
2643 {
2644 gold_assert(os == NULL);
2645 // Get the os of the section it is folded onto.
2646 Section_id folded = this->icf_->get_folded_section(relobj,
2647 shndx);
2648 gold_assert(folded.first != NULL);
2649 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2650 unsigned folded_shndx = folded.second;
2651
2652 os = folded_obj->output_section(folded_shndx);
2653 gold_assert(os != NULL);
2654
2655 // Replace (relobj, shndx) with canonical ICF input section.
2656 shndx = folded_shndx;
2657 relobj = folded_obj;
2658 }
2659
2660 uint64_t secoff64 = relobj->output_section_offset(shndx);
2661 if (os == NULL)
2662 {
2663 bool static_or_reloc = (parameters->doing_static_link() ||
2664 parameters->options().relocatable());
2665 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2666
2667 *pstatus = CFVS_NO_OUTPUT_SECTION;
2668 return 0;
2669 }
2670
2671 if (secoff64 == -1ULL)
2672 {
2673 // The section needs special handling (e.g., a merge section).
2674
2675 value = os->output_address(relobj, shndx, sym->value());
2676 }
2677 else
2678 {
2679 Value_type secoff =
2680 convert_types<Value_type, uint64_t>(secoff64);
2681 if (sym->type() == elfcpp::STT_TLS)
2682 value = sym->value() + os->tls_offset() + secoff;
2683 else
2684 value = sym->value() + os->address() + secoff;
2685 }
2686 }
2687 }
2688 break;
2689
2690 case Symbol::IN_OUTPUT_DATA:
2691 {
2692 Output_data* od = sym->output_data();
2693 value = sym->value();
2694 if (sym->type() != elfcpp::STT_TLS)
2695 value += od->address();
2696 else
2697 {
2698 Output_section* os = od->output_section();
2699 gold_assert(os != NULL);
2700 value += os->tls_offset() + (od->address() - os->address());
2701 }
2702 if (sym->offset_is_from_end())
2703 value += od->data_size();
2704 }
2705 break;
2706
2707 case Symbol::IN_OUTPUT_SEGMENT:
2708 {
2709 Output_segment* os = sym->output_segment();
2710 value = sym->value();
2711 if (sym->type() != elfcpp::STT_TLS)
2712 value += os->vaddr();
2713 switch (sym->offset_base())
2714 {
2715 case Symbol::SEGMENT_START:
2716 break;
2717 case Symbol::SEGMENT_END:
2718 value += os->memsz();
2719 break;
2720 case Symbol::SEGMENT_BSS:
2721 value += os->filesz();
2722 break;
2723 default:
2724 gold_unreachable();
2725 }
2726 }
2727 break;
2728
2729 case Symbol::IS_CONSTANT:
2730 value = sym->value();
2731 break;
2732
2733 case Symbol::IS_UNDEFINED:
2734 value = 0;
2735 break;
2736
2737 default:
2738 gold_unreachable();
2739 }
2740
2741 *pstatus = CFVS_OK;
2742 return value;
2743 }
2744
2745 // Finalize the symbol SYM. This returns true if the symbol should be
2746 // added to the symbol table, false otherwise.
2747
2748 template<int size>
2749 bool
2750 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2751 {
2752 typedef typename Sized_symbol<size>::Value_type Value_type;
2753
2754 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2755
2756 // The default version of a symbol may appear twice in the symbol
2757 // table. We only need to finalize it once.
2758 if (sym->has_symtab_index())
2759 return false;
2760
2761 if (!sym->in_reg())
2762 {
2763 gold_assert(!sym->has_symtab_index());
2764 sym->set_symtab_index(-1U);
2765 gold_assert(sym->dynsym_index() == -1U);
2766 return false;
2767 }
2768
2769 // If the symbol is only present on plugin files, the plugin decided we
2770 // don't need it.
2771 if (!sym->in_real_elf())
2772 {
2773 gold_assert(!sym->has_symtab_index());
2774 sym->set_symtab_index(-1U);
2775 return false;
2776 }
2777
2778 // Compute final symbol value.
2779 Compute_final_value_status status;
2780 Value_type value = this->compute_final_value(sym, &status);
2781
2782 switch (status)
2783 {
2784 case CFVS_OK:
2785 break;
2786 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2787 {
2788 bool is_ordinary;
2789 unsigned int shndx = sym->shndx(&is_ordinary);
2790 gold_error(_("%s: unsupported symbol section 0x%x"),
2791 sym->demangled_name().c_str(), shndx);
2792 }
2793 break;
2794 case CFVS_NO_OUTPUT_SECTION:
2795 sym->set_symtab_index(-1U);
2796 return false;
2797 default:
2798 gold_unreachable();
2799 }
2800
2801 sym->set_value(value);
2802
2803 if (parameters->options().strip_all()
2804 || !parameters->options().should_retain_symbol(sym->name()))
2805 {
2806 sym->set_symtab_index(-1U);
2807 return false;
2808 }
2809
2810 return true;
2811 }
2812
2813 // Write out the global symbols.
2814
2815 void
2816 Symbol_table::write_globals(const Stringpool* sympool,
2817 const Stringpool* dynpool,
2818 Output_symtab_xindex* symtab_xindex,
2819 Output_symtab_xindex* dynsym_xindex,
2820 Output_file* of) const
2821 {
2822 switch (parameters->size_and_endianness())
2823 {
2824 #ifdef HAVE_TARGET_32_LITTLE
2825 case Parameters::TARGET_32_LITTLE:
2826 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2827 dynsym_xindex, of);
2828 break;
2829 #endif
2830 #ifdef HAVE_TARGET_32_BIG
2831 case Parameters::TARGET_32_BIG:
2832 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2833 dynsym_xindex, of);
2834 break;
2835 #endif
2836 #ifdef HAVE_TARGET_64_LITTLE
2837 case Parameters::TARGET_64_LITTLE:
2838 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2839 dynsym_xindex, of);
2840 break;
2841 #endif
2842 #ifdef HAVE_TARGET_64_BIG
2843 case Parameters::TARGET_64_BIG:
2844 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2845 dynsym_xindex, of);
2846 break;
2847 #endif
2848 default:
2849 gold_unreachable();
2850 }
2851 }
2852
2853 // Write out the global symbols.
2854
2855 template<int size, bool big_endian>
2856 void
2857 Symbol_table::sized_write_globals(const Stringpool* sympool,
2858 const Stringpool* dynpool,
2859 Output_symtab_xindex* symtab_xindex,
2860 Output_symtab_xindex* dynsym_xindex,
2861 Output_file* of) const
2862 {
2863 const Target& target = parameters->target();
2864
2865 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2866
2867 const unsigned int output_count = this->output_count_;
2868 const section_size_type oview_size = output_count * sym_size;
2869 const unsigned int first_global_index = this->first_global_index_;
2870 unsigned char* psyms;
2871 if (this->offset_ == 0 || output_count == 0)
2872 psyms = NULL;
2873 else
2874 psyms = of->get_output_view(this->offset_, oview_size);
2875
2876 const unsigned int dynamic_count = this->dynamic_count_;
2877 const section_size_type dynamic_size = dynamic_count * sym_size;
2878 const unsigned int first_dynamic_global_index =
2879 this->first_dynamic_global_index_;
2880 unsigned char* dynamic_view;
2881 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2882 dynamic_view = NULL;
2883 else
2884 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2885
2886 for (Symbol_table_type::const_iterator p = this->table_.begin();
2887 p != this->table_.end();
2888 ++p)
2889 {
2890 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2891
2892 // Possibly warn about unresolved symbols in shared libraries.
2893 this->warn_about_undefined_dynobj_symbol(sym);
2894
2895 unsigned int sym_index = sym->symtab_index();
2896 unsigned int dynsym_index;
2897 if (dynamic_view == NULL)
2898 dynsym_index = -1U;
2899 else
2900 dynsym_index = sym->dynsym_index();
2901
2902 if (sym_index == -1U && dynsym_index == -1U)
2903 {
2904 // This symbol is not included in the output file.
2905 continue;
2906 }
2907
2908 unsigned int shndx;
2909 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2910 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2911 elfcpp::STB binding = sym->binding();
2912
2913 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2914 if (binding == elfcpp::STB_GNU_UNIQUE
2915 && !parameters->options().gnu_unique())
2916 binding = elfcpp::STB_GLOBAL;
2917
2918 switch (sym->source())
2919 {
2920 case Symbol::FROM_OBJECT:
2921 {
2922 bool is_ordinary;
2923 unsigned int in_shndx = sym->shndx(&is_ordinary);
2924
2925 if (!is_ordinary
2926 && in_shndx != elfcpp::SHN_ABS
2927 && !Symbol::is_common_shndx(in_shndx))
2928 {
2929 gold_error(_("%s: unsupported symbol section 0x%x"),
2930 sym->demangled_name().c_str(), in_shndx);
2931 shndx = in_shndx;
2932 }
2933 else
2934 {
2935 Object* symobj = sym->object();
2936 if (symobj->is_dynamic())
2937 {
2938 if (sym->needs_dynsym_value())
2939 dynsym_value = target.dynsym_value(sym);
2940 shndx = elfcpp::SHN_UNDEF;
2941 if (sym->is_undef_binding_weak())
2942 binding = elfcpp::STB_WEAK;
2943 else
2944 binding = elfcpp::STB_GLOBAL;
2945 }
2946 else if (symobj->pluginobj() != NULL)
2947 shndx = elfcpp::SHN_UNDEF;
2948 else if (in_shndx == elfcpp::SHN_UNDEF
2949 || (!is_ordinary
2950 && (in_shndx == elfcpp::SHN_ABS
2951 || Symbol::is_common_shndx(in_shndx))))
2952 shndx = in_shndx;
2953 else
2954 {
2955 Relobj* relobj = static_cast<Relobj*>(symobj);
2956 Output_section* os = relobj->output_section(in_shndx);
2957 if (this->is_section_folded(relobj, in_shndx))
2958 {
2959 // This global symbol must be written out even though
2960 // it is folded.
2961 // Get the os of the section it is folded onto.
2962 Section_id folded =
2963 this->icf_->get_folded_section(relobj, in_shndx);
2964 gold_assert(folded.first !=NULL);
2965 Relobj* folded_obj =
2966 reinterpret_cast<Relobj*>(folded.first);
2967 os = folded_obj->output_section(folded.second);
2968 gold_assert(os != NULL);
2969 }
2970 gold_assert(os != NULL);
2971 shndx = os->out_shndx();
2972
2973 if (shndx >= elfcpp::SHN_LORESERVE)
2974 {
2975 if (sym_index != -1U)
2976 symtab_xindex->add(sym_index, shndx);
2977 if (dynsym_index != -1U)
2978 dynsym_xindex->add(dynsym_index, shndx);
2979 shndx = elfcpp::SHN_XINDEX;
2980 }
2981
2982 // In object files symbol values are section
2983 // relative.
2984 if (parameters->options().relocatable())
2985 sym_value -= os->address();
2986 }
2987 }
2988 }
2989 break;
2990
2991 case Symbol::IN_OUTPUT_DATA:
2992 {
2993 Output_data* od = sym->output_data();
2994
2995 shndx = od->out_shndx();
2996 if (shndx >= elfcpp::SHN_LORESERVE)
2997 {
2998 if (sym_index != -1U)
2999 symtab_xindex->add(sym_index, shndx);
3000 if (dynsym_index != -1U)
3001 dynsym_xindex->add(dynsym_index, shndx);
3002 shndx = elfcpp::SHN_XINDEX;
3003 }
3004
3005 // In object files symbol values are section
3006 // relative.
3007 if (parameters->options().relocatable())
3008 sym_value -= od->address();
3009 }
3010 break;
3011
3012 case Symbol::IN_OUTPUT_SEGMENT:
3013 shndx = elfcpp::SHN_ABS;
3014 break;
3015
3016 case Symbol::IS_CONSTANT:
3017 shndx = elfcpp::SHN_ABS;
3018 break;
3019
3020 case Symbol::IS_UNDEFINED:
3021 shndx = elfcpp::SHN_UNDEF;
3022 break;
3023
3024 default:
3025 gold_unreachable();
3026 }
3027
3028 if (sym_index != -1U)
3029 {
3030 sym_index -= first_global_index;
3031 gold_assert(sym_index < output_count);
3032 unsigned char* ps = psyms + (sym_index * sym_size);
3033 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3034 binding, sympool, ps);
3035 }
3036
3037 if (dynsym_index != -1U)
3038 {
3039 dynsym_index -= first_dynamic_global_index;
3040 gold_assert(dynsym_index < dynamic_count);
3041 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3042 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3043 binding, dynpool, pd);
3044 // Allow a target to adjust dynamic symbol value.
3045 parameters->target().adjust_dyn_symbol(sym, pd);
3046 }
3047 }
3048
3049 of->write_output_view(this->offset_, oview_size, psyms);
3050 if (dynamic_view != NULL)
3051 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3052 }
3053
3054 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3055 // strtab holding the name.
3056
3057 template<int size, bool big_endian>
3058 void
3059 Symbol_table::sized_write_symbol(
3060 Sized_symbol<size>* sym,
3061 typename elfcpp::Elf_types<size>::Elf_Addr value,
3062 unsigned int shndx,
3063 elfcpp::STB binding,
3064 const Stringpool* pool,
3065 unsigned char* p) const
3066 {
3067 elfcpp::Sym_write<size, big_endian> osym(p);
3068 if (sym->version() == NULL || !parameters->options().relocatable())
3069 osym.put_st_name(pool->get_offset(sym->name()));
3070 else
3071 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3072 osym.put_st_value(value);
3073 // Use a symbol size of zero for undefined symbols from shared libraries.
3074 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3075 osym.put_st_size(0);
3076 else
3077 osym.put_st_size(sym->symsize());
3078 elfcpp::STT type = sym->type();
3079 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3080 if (type == elfcpp::STT_GNU_IFUNC
3081 && sym->is_from_dynobj())
3082 type = elfcpp::STT_FUNC;
3083 // A version script may have overridden the default binding.
3084 if (sym->is_forced_local())
3085 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3086 else
3087 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3088 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3089 osym.put_st_shndx(shndx);
3090 }
3091
3092 // Check for unresolved symbols in shared libraries. This is
3093 // controlled by the --allow-shlib-undefined option.
3094
3095 // We only warn about libraries for which we have seen all the
3096 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3097 // which were not seen in this link. If we didn't see a DT_NEEDED
3098 // entry, we aren't going to be able to reliably report whether the
3099 // symbol is undefined.
3100
3101 // We also don't warn about libraries found in a system library
3102 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3103 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3104 // can have undefined references satisfied by ld-linux.so.
3105
3106 inline void
3107 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3108 {
3109 bool dummy;
3110 if (sym->source() == Symbol::FROM_OBJECT
3111 && sym->object()->is_dynamic()
3112 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3113 && sym->binding() != elfcpp::STB_WEAK
3114 && !parameters->options().allow_shlib_undefined()
3115 && !parameters->target().is_defined_by_abi(sym)
3116 && !sym->object()->is_in_system_directory())
3117 {
3118 // A very ugly cast.
3119 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3120 if (!dynobj->has_unknown_needed_entries())
3121 gold_undefined_symbol(sym);
3122 }
3123 }
3124
3125 // Write out a section symbol. Return the update offset.
3126
3127 void
3128 Symbol_table::write_section_symbol(const Output_section* os,
3129 Output_symtab_xindex* symtab_xindex,
3130 Output_file* of,
3131 off_t offset) const
3132 {
3133 switch (parameters->size_and_endianness())
3134 {
3135 #ifdef HAVE_TARGET_32_LITTLE
3136 case Parameters::TARGET_32_LITTLE:
3137 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3138 offset);
3139 break;
3140 #endif
3141 #ifdef HAVE_TARGET_32_BIG
3142 case Parameters::TARGET_32_BIG:
3143 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3144 offset);
3145 break;
3146 #endif
3147 #ifdef HAVE_TARGET_64_LITTLE
3148 case Parameters::TARGET_64_LITTLE:
3149 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3150 offset);
3151 break;
3152 #endif
3153 #ifdef HAVE_TARGET_64_BIG
3154 case Parameters::TARGET_64_BIG:
3155 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3156 offset);
3157 break;
3158 #endif
3159 default:
3160 gold_unreachable();
3161 }
3162 }
3163
3164 // Write out a section symbol, specialized for size and endianness.
3165
3166 template<int size, bool big_endian>
3167 void
3168 Symbol_table::sized_write_section_symbol(const Output_section* os,
3169 Output_symtab_xindex* symtab_xindex,
3170 Output_file* of,
3171 off_t offset) const
3172 {
3173 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3174
3175 unsigned char* pov = of->get_output_view(offset, sym_size);
3176
3177 elfcpp::Sym_write<size, big_endian> osym(pov);
3178 osym.put_st_name(0);
3179 if (parameters->options().relocatable())
3180 osym.put_st_value(0);
3181 else
3182 osym.put_st_value(os->address());
3183 osym.put_st_size(0);
3184 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3185 elfcpp::STT_SECTION));
3186 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3187
3188 unsigned int shndx = os->out_shndx();
3189 if (shndx >= elfcpp::SHN_LORESERVE)
3190 {
3191 symtab_xindex->add(os->symtab_index(), shndx);
3192 shndx = elfcpp::SHN_XINDEX;
3193 }
3194 osym.put_st_shndx(shndx);
3195
3196 of->write_output_view(offset, sym_size, pov);
3197 }
3198
3199 // Print statistical information to stderr. This is used for --stats.
3200
3201 void
3202 Symbol_table::print_stats() const
3203 {
3204 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3205 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3206 program_name, this->table_.size(), this->table_.bucket_count());
3207 #else
3208 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3209 program_name, this->table_.size());
3210 #endif
3211 this->namepool_.print_stats("symbol table stringpool");
3212 }
3213
3214 // We check for ODR violations by looking for symbols with the same
3215 // name for which the debugging information reports that they were
3216 // defined in disjoint source locations. When comparing the source
3217 // location, we consider instances with the same base filename to be
3218 // the same. This is because different object files/shared libraries
3219 // can include the same header file using different paths, and
3220 // different optimization settings can make the line number appear to
3221 // be a couple lines off, and we don't want to report an ODR violation
3222 // in those cases.
3223
3224 // This struct is used to compare line information, as returned by
3225 // Dwarf_line_info::one_addr2line. It implements a < comparison
3226 // operator used with std::sort.
3227
3228 struct Odr_violation_compare
3229 {
3230 bool
3231 operator()(const std::string& s1, const std::string& s2) const
3232 {
3233 // Inputs should be of the form "dirname/filename:linenum" where
3234 // "dirname/" is optional. We want to compare just the filename:linenum.
3235
3236 // Find the last '/' in each string.
3237 std::string::size_type s1begin = s1.rfind('/');
3238 std::string::size_type s2begin = s2.rfind('/');
3239 // If there was no '/' in a string, start at the beginning.
3240 if (s1begin == std::string::npos)
3241 s1begin = 0;
3242 if (s2begin == std::string::npos)
3243 s2begin = 0;
3244 return s1.compare(s1begin, std::string::npos,
3245 s2, s2begin, std::string::npos) < 0;
3246 }
3247 };
3248
3249 // Returns all of the lines attached to LOC, not just the one the
3250 // instruction actually came from.
3251 std::vector<std::string>
3252 Symbol_table::linenos_from_loc(const Task* task,
3253 const Symbol_location& loc)
3254 {
3255 // We need to lock the object in order to read it. This
3256 // means that we have to run in a singleton Task. If we
3257 // want to run this in a general Task for better
3258 // performance, we will need one Task for object, plus
3259 // appropriate locking to ensure that we don't conflict with
3260 // other uses of the object. Also note, one_addr2line is not
3261 // currently thread-safe.
3262 Task_lock_obj<Object> tl(task, loc.object);
3263
3264 std::vector<std::string> result;
3265 Symbol_location code_loc = loc;
3266 parameters->target().function_location(&code_loc);
3267 // 16 is the size of the object-cache that one_addr2line should use.
3268 std::string canonical_result = Dwarf_line_info::one_addr2line(
3269 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3270 if (!canonical_result.empty())
3271 result.push_back(canonical_result);
3272 return result;
3273 }
3274
3275 // OutputIterator that records if it was ever assigned to. This
3276 // allows it to be used with std::set_intersection() to check for
3277 // intersection rather than computing the intersection.
3278 struct Check_intersection
3279 {
3280 Check_intersection()
3281 : value_(false)
3282 {}
3283
3284 bool had_intersection() const
3285 { return this->value_; }
3286
3287 Check_intersection& operator++()
3288 { return *this; }
3289
3290 Check_intersection& operator*()
3291 { return *this; }
3292
3293 template<typename T>
3294 Check_intersection& operator=(const T&)
3295 {
3296 this->value_ = true;
3297 return *this;
3298 }
3299
3300 private:
3301 bool value_;
3302 };
3303
3304 // Check candidate_odr_violations_ to find symbols with the same name
3305 // but apparently different definitions (different source-file/line-no
3306 // for each line assigned to the first instruction).
3307
3308 void
3309 Symbol_table::detect_odr_violations(const Task* task,
3310 const char* output_file_name) const
3311 {
3312 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3313 it != candidate_odr_violations_.end();
3314 ++it)
3315 {
3316 const char* const symbol_name = it->first;
3317
3318 std::string first_object_name;
3319 std::vector<std::string> first_object_linenos;
3320
3321 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3322 locs = it->second.begin();
3323 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3324 locs_end = it->second.end();
3325 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3326 {
3327 // Save the line numbers from the first definition to
3328 // compare to the other definitions. Ideally, we'd compare
3329 // every definition to every other, but we don't want to
3330 // take O(N^2) time to do this. This shortcut may cause
3331 // false negatives that appear or disappear depending on the
3332 // link order, but it won't cause false positives.
3333 first_object_name = locs->object->name();
3334 first_object_linenos = this->linenos_from_loc(task, *locs);
3335 }
3336
3337 // Sort by Odr_violation_compare to make std::set_intersection work.
3338 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3339 Odr_violation_compare());
3340
3341 for (; locs != locs_end; ++locs)
3342 {
3343 std::vector<std::string> linenos =
3344 this->linenos_from_loc(task, *locs);
3345 // linenos will be empty if we couldn't parse the debug info.
3346 if (linenos.empty())
3347 continue;
3348 // Sort by Odr_violation_compare to make std::set_intersection work.
3349 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3350
3351 Check_intersection intersection_result =
3352 std::set_intersection(first_object_linenos.begin(),
3353 first_object_linenos.end(),
3354 linenos.begin(),
3355 linenos.end(),
3356 Check_intersection(),
3357 Odr_violation_compare());
3358 if (!intersection_result.had_intersection())
3359 {
3360 gold_warning(_("while linking %s: symbol '%s' defined in "
3361 "multiple places (possible ODR violation):"),
3362 output_file_name, demangle(symbol_name).c_str());
3363 // This only prints one location from each definition,
3364 // which may not be the location we expect to intersect
3365 // with another definition. We could print the whole
3366 // set of locations, but that seems too verbose.
3367 gold_assert(!first_object_linenos.empty());
3368 gold_assert(!linenos.empty());
3369 fprintf(stderr, _(" %s from %s\n"),
3370 first_object_linenos[0].c_str(),
3371 first_object_name.c_str());
3372 fprintf(stderr, _(" %s from %s\n"),
3373 linenos[0].c_str(),
3374 locs->object->name().c_str());
3375 // Only print one broken pair, to avoid needing to
3376 // compare against a list of the disjoint definition
3377 // locations we've found so far. (If we kept comparing
3378 // against just the first one, we'd get a lot of
3379 // redundant complaints about the second definition
3380 // location.)
3381 break;
3382 }
3383 }
3384 }
3385 // We only call one_addr2line() in this function, so we can clear its cache.
3386 Dwarf_line_info::clear_addr2line_cache();
3387 }
3388
3389 // Warnings functions.
3390
3391 // Add a new warning.
3392
3393 void
3394 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3395 const std::string& warning)
3396 {
3397 name = symtab->canonicalize_name(name);
3398 this->warnings_[name].set(obj, warning);
3399 }
3400
3401 // Look through the warnings and mark the symbols for which we should
3402 // warn. This is called during Layout::finalize when we know the
3403 // sources for all the symbols.
3404
3405 void
3406 Warnings::note_warnings(Symbol_table* symtab)
3407 {
3408 for (Warning_table::iterator p = this->warnings_.begin();
3409 p != this->warnings_.end();
3410 ++p)
3411 {
3412 Symbol* sym = symtab->lookup(p->first, NULL);
3413 if (sym != NULL
3414 && sym->source() == Symbol::FROM_OBJECT
3415 && sym->object() == p->second.object)
3416 sym->set_has_warning();
3417 }
3418 }
3419
3420 // Issue a warning. This is called when we see a relocation against a
3421 // symbol for which has a warning.
3422
3423 template<int size, bool big_endian>
3424 void
3425 Warnings::issue_warning(const Symbol* sym,
3426 const Relocate_info<size, big_endian>* relinfo,
3427 size_t relnum, off_t reloffset) const
3428 {
3429 gold_assert(sym->has_warning());
3430
3431 // We don't want to issue a warning for a relocation against the
3432 // symbol in the same object file in which the symbol is defined.
3433 if (sym->object() == relinfo->object)
3434 return;
3435
3436 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3437 gold_assert(p != this->warnings_.end());
3438 gold_warning_at_location(relinfo, relnum, reloffset,
3439 "%s", p->second.text.c_str());
3440 }
3441
3442 // Instantiate the templates we need. We could use the configure
3443 // script to restrict this to only the ones needed for implemented
3444 // targets.
3445
3446 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3447 template
3448 void
3449 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3450 #endif
3451
3452 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3453 template
3454 void
3455 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3456 #endif
3457
3458 #ifdef HAVE_TARGET_32_LITTLE
3459 template
3460 void
3461 Symbol_table::add_from_relobj<32, false>(
3462 Sized_relobj_file<32, false>* relobj,
3463 const unsigned char* syms,
3464 size_t count,
3465 size_t symndx_offset,
3466 const char* sym_names,
3467 size_t sym_name_size,
3468 Sized_relobj_file<32, false>::Symbols* sympointers,
3469 size_t* defined);
3470 #endif
3471
3472 #ifdef HAVE_TARGET_32_BIG
3473 template
3474 void
3475 Symbol_table::add_from_relobj<32, true>(
3476 Sized_relobj_file<32, true>* relobj,
3477 const unsigned char* syms,
3478 size_t count,
3479 size_t symndx_offset,
3480 const char* sym_names,
3481 size_t sym_name_size,
3482 Sized_relobj_file<32, true>::Symbols* sympointers,
3483 size_t* defined);
3484 #endif
3485
3486 #ifdef HAVE_TARGET_64_LITTLE
3487 template
3488 void
3489 Symbol_table::add_from_relobj<64, false>(
3490 Sized_relobj_file<64, false>* relobj,
3491 const unsigned char* syms,
3492 size_t count,
3493 size_t symndx_offset,
3494 const char* sym_names,
3495 size_t sym_name_size,
3496 Sized_relobj_file<64, false>::Symbols* sympointers,
3497 size_t* defined);
3498 #endif
3499
3500 #ifdef HAVE_TARGET_64_BIG
3501 template
3502 void
3503 Symbol_table::add_from_relobj<64, true>(
3504 Sized_relobj_file<64, true>* relobj,
3505 const unsigned char* syms,
3506 size_t count,
3507 size_t symndx_offset,
3508 const char* sym_names,
3509 size_t sym_name_size,
3510 Sized_relobj_file<64, true>::Symbols* sympointers,
3511 size_t* defined);
3512 #endif
3513
3514 #ifdef HAVE_TARGET_32_LITTLE
3515 template
3516 Symbol*
3517 Symbol_table::add_from_pluginobj<32, false>(
3518 Sized_pluginobj<32, false>* obj,
3519 const char* name,
3520 const char* ver,
3521 elfcpp::Sym<32, false>* sym);
3522 #endif
3523
3524 #ifdef HAVE_TARGET_32_BIG
3525 template
3526 Symbol*
3527 Symbol_table::add_from_pluginobj<32, true>(
3528 Sized_pluginobj<32, true>* obj,
3529 const char* name,
3530 const char* ver,
3531 elfcpp::Sym<32, true>* sym);
3532 #endif
3533
3534 #ifdef HAVE_TARGET_64_LITTLE
3535 template
3536 Symbol*
3537 Symbol_table::add_from_pluginobj<64, false>(
3538 Sized_pluginobj<64, false>* obj,
3539 const char* name,
3540 const char* ver,
3541 elfcpp::Sym<64, false>* sym);
3542 #endif
3543
3544 #ifdef HAVE_TARGET_64_BIG
3545 template
3546 Symbol*
3547 Symbol_table::add_from_pluginobj<64, true>(
3548 Sized_pluginobj<64, true>* obj,
3549 const char* name,
3550 const char* ver,
3551 elfcpp::Sym<64, true>* sym);
3552 #endif
3553
3554 #ifdef HAVE_TARGET_32_LITTLE
3555 template
3556 void
3557 Symbol_table::add_from_dynobj<32, false>(
3558 Sized_dynobj<32, false>* dynobj,
3559 const unsigned char* syms,
3560 size_t count,
3561 const char* sym_names,
3562 size_t sym_name_size,
3563 const unsigned char* versym,
3564 size_t versym_size,
3565 const std::vector<const char*>* version_map,
3566 Sized_relobj_file<32, false>::Symbols* sympointers,
3567 size_t* defined);
3568 #endif
3569
3570 #ifdef HAVE_TARGET_32_BIG
3571 template
3572 void
3573 Symbol_table::add_from_dynobj<32, true>(
3574 Sized_dynobj<32, true>* dynobj,
3575 const unsigned char* syms,
3576 size_t count,
3577 const char* sym_names,
3578 size_t sym_name_size,
3579 const unsigned char* versym,
3580 size_t versym_size,
3581 const std::vector<const char*>* version_map,
3582 Sized_relobj_file<32, true>::Symbols* sympointers,
3583 size_t* defined);
3584 #endif
3585
3586 #ifdef HAVE_TARGET_64_LITTLE
3587 template
3588 void
3589 Symbol_table::add_from_dynobj<64, false>(
3590 Sized_dynobj<64, false>* dynobj,
3591 const unsigned char* syms,
3592 size_t count,
3593 const char* sym_names,
3594 size_t sym_name_size,
3595 const unsigned char* versym,
3596 size_t versym_size,
3597 const std::vector<const char*>* version_map,
3598 Sized_relobj_file<64, false>::Symbols* sympointers,
3599 size_t* defined);
3600 #endif
3601
3602 #ifdef HAVE_TARGET_64_BIG
3603 template
3604 void
3605 Symbol_table::add_from_dynobj<64, true>(
3606 Sized_dynobj<64, true>* dynobj,
3607 const unsigned char* syms,
3608 size_t count,
3609 const char* sym_names,
3610 size_t sym_name_size,
3611 const unsigned char* versym,
3612 size_t versym_size,
3613 const std::vector<const char*>* version_map,
3614 Sized_relobj_file<64, true>::Symbols* sympointers,
3615 size_t* defined);
3616 #endif
3617
3618 #ifdef HAVE_TARGET_32_LITTLE
3619 template
3620 Sized_symbol<32>*
3621 Symbol_table::add_from_incrobj(
3622 Object* obj,
3623 const char* name,
3624 const char* ver,
3625 elfcpp::Sym<32, false>* sym);
3626 #endif
3627
3628 #ifdef HAVE_TARGET_32_BIG
3629 template
3630 Sized_symbol<32>*
3631 Symbol_table::add_from_incrobj(
3632 Object* obj,
3633 const char* name,
3634 const char* ver,
3635 elfcpp::Sym<32, true>* sym);
3636 #endif
3637
3638 #ifdef HAVE_TARGET_64_LITTLE
3639 template
3640 Sized_symbol<64>*
3641 Symbol_table::add_from_incrobj(
3642 Object* obj,
3643 const char* name,
3644 const char* ver,
3645 elfcpp::Sym<64, false>* sym);
3646 #endif
3647
3648 #ifdef HAVE_TARGET_64_BIG
3649 template
3650 Sized_symbol<64>*
3651 Symbol_table::add_from_incrobj(
3652 Object* obj,
3653 const char* name,
3654 const char* ver,
3655 elfcpp::Sym<64, true>* sym);
3656 #endif
3657
3658 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3659 template
3660 void
3661 Symbol_table::define_with_copy_reloc<32>(
3662 Sized_symbol<32>* sym,
3663 Output_data* posd,
3664 elfcpp::Elf_types<32>::Elf_Addr value);
3665 #endif
3666
3667 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3668 template
3669 void
3670 Symbol_table::define_with_copy_reloc<64>(
3671 Sized_symbol<64>* sym,
3672 Output_data* posd,
3673 elfcpp::Elf_types<64>::Elf_Addr value);
3674 #endif
3675
3676 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3677 template
3678 void
3679 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3680 Output_data* od, Value_type value,
3681 Size_type symsize, elfcpp::STT type,
3682 elfcpp::STB binding,
3683 elfcpp::STV visibility,
3684 unsigned char nonvis,
3685 bool offset_is_from_end,
3686 bool is_predefined);
3687 #endif
3688
3689 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3690 template
3691 void
3692 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3693 Output_data* od, Value_type value,
3694 Size_type symsize, elfcpp::STT type,
3695 elfcpp::STB binding,
3696 elfcpp::STV visibility,
3697 unsigned char nonvis,
3698 bool offset_is_from_end,
3699 bool is_predefined);
3700 #endif
3701
3702 #ifdef HAVE_TARGET_32_LITTLE
3703 template
3704 void
3705 Warnings::issue_warning<32, false>(const Symbol* sym,
3706 const Relocate_info<32, false>* relinfo,
3707 size_t relnum, off_t reloffset) const;
3708 #endif
3709
3710 #ifdef HAVE_TARGET_32_BIG
3711 template
3712 void
3713 Warnings::issue_warning<32, true>(const Symbol* sym,
3714 const Relocate_info<32, true>* relinfo,
3715 size_t relnum, off_t reloffset) const;
3716 #endif
3717
3718 #ifdef HAVE_TARGET_64_LITTLE
3719 template
3720 void
3721 Warnings::issue_warning<64, false>(const Symbol* sym,
3722 const Relocate_info<64, false>* relinfo,
3723 size_t relnum, off_t reloffset) const;
3724 #endif
3725
3726 #ifdef HAVE_TARGET_64_BIG
3727 template
3728 void
3729 Warnings::issue_warning<64, true>(const Symbol* sym,
3730 const Relocate_info<64, true>* relinfo,
3731 size_t relnum, off_t reloffset) const;
3732 #endif
3733
3734 } // End namespace gold.
This page took 0.113432 seconds and 4 git commands to generate.