1 // symtab.cc -- the gold symbol table
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
35 #include "dwarf_reader.h"
39 #include "workqueue.h"
43 #include "incremental.h"
50 // Initialize fields in Symbol. This initializes everything except u_
54 Symbol::init_fields(const char* name
, const char* version
,
55 elfcpp::STT type
, elfcpp::STB binding
,
56 elfcpp::STV visibility
, unsigned char nonvis
)
59 this->version_
= version
;
60 this->symtab_index_
= 0;
61 this->dynsym_index_
= 0;
62 this->got_offsets_
.init();
63 this->plt_offset_
= -1U;
65 this->binding_
= binding
;
66 this->visibility_
= visibility
;
67 this->nonvis_
= nonvis
;
68 this->is_def_
= false;
69 this->is_forwarder_
= false;
70 this->has_alias_
= false;
71 this->needs_dynsym_entry_
= false;
72 this->in_reg_
= false;
73 this->in_dyn_
= false;
74 this->has_warning_
= false;
75 this->is_copied_from_dynobj_
= false;
76 this->is_forced_local_
= false;
77 this->is_ordinary_shndx_
= false;
78 this->in_real_elf_
= false;
79 this->is_defined_in_discarded_section_
= false;
80 this->undef_binding_set_
= false;
81 this->undef_binding_weak_
= false;
82 this->is_predefined_
= false;
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
89 demangle(const char* name
)
91 if (!parameters
->options().do_demangle())
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name
= cplus_demangle(name
, DMGL_ANSI
| DMGL_PARAMS
);
97 if (demangled_name
== NULL
)
100 std::string
retval(demangled_name
);
101 free(demangled_name
);
106 Symbol::demangled_name() const
108 return demangle(this->name());
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
113 template<int size
, bool big_endian
>
115 Symbol::init_base_object(const char* name
, const char* version
, Object
* object
,
116 const elfcpp::Sym
<size
, big_endian
>& sym
,
117 unsigned int st_shndx
, bool is_ordinary
)
119 this->init_fields(name
, version
, sym
.get_st_type(), sym
.get_st_bind(),
120 sym
.get_st_visibility(), sym
.get_st_nonvis());
121 this->u_
.from_object
.object
= object
;
122 this->u_
.from_object
.shndx
= st_shndx
;
123 this->is_ordinary_shndx_
= is_ordinary
;
124 this->source_
= FROM_OBJECT
;
125 this->in_reg_
= !object
->is_dynamic();
126 this->in_dyn_
= object
->is_dynamic();
127 this->in_real_elf_
= object
->pluginobj() == NULL
;
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
134 Symbol::init_base_output_data(const char* name
, const char* version
,
135 Output_data
* od
, elfcpp::STT type
,
136 elfcpp::STB binding
, elfcpp::STV visibility
,
137 unsigned char nonvis
, bool offset_is_from_end
,
140 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
141 this->u_
.in_output_data
.output_data
= od
;
142 this->u_
.in_output_data
.offset_is_from_end
= offset_is_from_end
;
143 this->source_
= IN_OUTPUT_DATA
;
144 this->in_reg_
= true;
145 this->in_real_elf_
= true;
146 this->is_predefined_
= is_predefined
;
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
153 Symbol::init_base_output_segment(const char* name
, const char* version
,
154 Output_segment
* os
, elfcpp::STT type
,
155 elfcpp::STB binding
, elfcpp::STV visibility
,
156 unsigned char nonvis
,
157 Segment_offset_base offset_base
,
160 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
161 this->u_
.in_output_segment
.output_segment
= os
;
162 this->u_
.in_output_segment
.offset_base
= offset_base
;
163 this->source_
= IN_OUTPUT_SEGMENT
;
164 this->in_reg_
= true;
165 this->in_real_elf_
= true;
166 this->is_predefined_
= is_predefined
;
169 // Initialize the fields in the base class Symbol for a symbol defined
173 Symbol::init_base_constant(const char* name
, const char* version
,
174 elfcpp::STT type
, elfcpp::STB binding
,
175 elfcpp::STV visibility
, unsigned char nonvis
,
178 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
179 this->source_
= IS_CONSTANT
;
180 this->in_reg_
= true;
181 this->in_real_elf_
= true;
182 this->is_predefined_
= is_predefined
;
185 // Initialize the fields in the base class Symbol for an undefined
189 Symbol::init_base_undefined(const char* name
, const char* version
,
190 elfcpp::STT type
, elfcpp::STB binding
,
191 elfcpp::STV visibility
, unsigned char nonvis
)
193 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
194 this->dynsym_index_
= -1U;
195 this->source_
= IS_UNDEFINED
;
196 this->in_reg_
= true;
197 this->in_real_elf_
= true;
200 // Allocate a common symbol in the base.
203 Symbol::allocate_base_common(Output_data
* od
)
205 gold_assert(this->is_common());
206 this->source_
= IN_OUTPUT_DATA
;
207 this->u_
.in_output_data
.output_data
= od
;
208 this->u_
.in_output_data
.offset_is_from_end
= false;
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
214 template<bool big_endian
>
216 Sized_symbol
<size
>::init_object(const char* name
, const char* version
,
218 const elfcpp::Sym
<size
, big_endian
>& sym
,
219 unsigned int st_shndx
, bool is_ordinary
)
221 this->init_base_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
222 this->value_
= sym
.get_st_value();
223 this->symsize_
= sym
.get_st_size();
226 // Initialize the fields in Sized_symbol for a symbol defined in an
231 Sized_symbol
<size
>::init_output_data(const char* name
, const char* version
,
232 Output_data
* od
, Value_type value
,
233 Size_type symsize
, elfcpp::STT type
,
235 elfcpp::STV visibility
,
236 unsigned char nonvis
,
237 bool offset_is_from_end
,
240 this->init_base_output_data(name
, version
, od
, type
, binding
, visibility
,
241 nonvis
, offset_is_from_end
, is_predefined
);
242 this->value_
= value
;
243 this->symsize_
= symsize
;
246 // Initialize the fields in Sized_symbol for a symbol defined in an
251 Sized_symbol
<size
>::init_output_segment(const char* name
, const char* version
,
252 Output_segment
* os
, Value_type value
,
253 Size_type symsize
, elfcpp::STT type
,
255 elfcpp::STV visibility
,
256 unsigned char nonvis
,
257 Segment_offset_base offset_base
,
260 this->init_base_output_segment(name
, version
, os
, type
, binding
, visibility
,
261 nonvis
, offset_base
, is_predefined
);
262 this->value_
= value
;
263 this->symsize_
= symsize
;
266 // Initialize the fields in Sized_symbol for a symbol defined as a
271 Sized_symbol
<size
>::init_constant(const char* name
, const char* version
,
272 Value_type value
, Size_type symsize
,
273 elfcpp::STT type
, elfcpp::STB binding
,
274 elfcpp::STV visibility
, unsigned char nonvis
,
277 this->init_base_constant(name
, version
, type
, binding
, visibility
, nonvis
,
279 this->value_
= value
;
280 this->symsize_
= symsize
;
283 // Initialize the fields in Sized_symbol for an undefined symbol.
287 Sized_symbol
<size
>::init_undefined(const char* name
, const char* version
,
288 elfcpp::STT type
, elfcpp::STB binding
,
289 elfcpp::STV visibility
, unsigned char nonvis
)
291 this->init_base_undefined(name
, version
, type
, binding
, visibility
, nonvis
);
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
300 Symbol::versioned_name() const
302 gold_assert(this->version_
!= NULL
);
303 std::string ret
= this->name_
;
307 ret
+= this->version_
;
311 // Return true if SHNDX represents a common symbol.
314 Symbol::is_common_shndx(unsigned int shndx
)
316 return (shndx
== elfcpp::SHN_COMMON
317 || shndx
== parameters
->target().small_common_shndx()
318 || shndx
== parameters
->target().large_common_shndx());
321 // Allocate a common symbol.
325 Sized_symbol
<size
>::allocate_common(Output_data
* od
, Value_type value
)
327 this->allocate_base_common(od
);
328 this->value_
= value
;
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
334 // Return true if this symbol should be added to the dynamic symbol
338 Symbol::should_add_dynsym_entry(Symbol_table
* symtab
) const
340 // If the symbol is only present on plugin files, the plugin decided we
342 if (!this->in_real_elf())
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters
->options().gc_sections()
353 && !parameters
->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
357 Relobj
* relobj
= static_cast<Relobj
*>(this->object());
359 unsigned int shndx
= this->shndx(&is_ordinary
);
360 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
361 && !relobj
->is_section_included(shndx
)
362 && !symtab
->is_section_folded(relobj
, shndx
))
366 // If the symbol was forced dynamic in a --dynamic-list file
367 // or an --export-dynamic-symbol option, add it.
368 if (!this->is_from_dynobj()
369 && (parameters
->options().in_dynamic_list(this->name())
370 || parameters
->options().is_export_dynamic_symbol(this->name())))
372 if (!this->is_forced_local())
374 gold_warning(_("Cannot export local symbol '%s'"),
375 this->demangled_name().c_str());
379 // If the symbol was forced local in a version script, do not add it.
380 if (this->is_forced_local())
383 // If dynamic-list-data was specified, add any STT_OBJECT.
384 if (parameters
->options().dynamic_list_data()
385 && !this->is_from_dynobj()
386 && this->type() == elfcpp::STT_OBJECT
)
389 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391 if ((parameters
->options().dynamic_list_cpp_new()
392 || parameters
->options().dynamic_list_cpp_typeinfo())
393 && !this->is_from_dynobj())
395 // TODO(csilvers): We could probably figure out if we're an operator
396 // new/delete or typeinfo without the need to demangle.
397 char* demangled_name
= cplus_demangle(this->name(),
398 DMGL_ANSI
| DMGL_PARAMS
);
399 if (demangled_name
== NULL
)
401 // Not a C++ symbol, so it can't satisfy these flags
403 else if (parameters
->options().dynamic_list_cpp_new()
404 && (strprefix(demangled_name
, "operator new")
405 || strprefix(demangled_name
, "operator delete")))
407 free(demangled_name
);
410 else if (parameters
->options().dynamic_list_cpp_typeinfo()
411 && (strprefix(demangled_name
, "typeinfo name for")
412 || strprefix(demangled_name
, "typeinfo for")))
414 free(demangled_name
);
418 free(demangled_name
);
421 // If exporting all symbols or building a shared library,
422 // and the symbol is defined in a regular object and is
423 // externally visible, we need to add it.
424 if ((parameters
->options().export_dynamic() || parameters
->options().shared())
425 && !this->is_from_dynobj()
426 && !this->is_undefined()
427 && this->is_externally_visible())
433 // Return true if the final value of this symbol is known at link
437 Symbol::final_value_is_known() const
439 // If we are not generating an executable, then no final values are
440 // known, since they will change at runtime.
441 if (parameters
->options().output_is_position_independent()
442 || parameters
->options().relocatable())
445 // If the symbol is not from an object file, and is not undefined,
446 // then it is defined, and known.
447 if (this->source_
!= FROM_OBJECT
)
449 if (this->source_
!= IS_UNDEFINED
)
454 // If the symbol is from a dynamic object, then the final value
456 if (this->object()->is_dynamic())
459 // If the symbol is not undefined (it is defined or common),
460 // then the final value is known.
461 if (!this->is_undefined())
465 // If the symbol is undefined, then whether the final value is known
466 // depends on whether we are doing a static link. If we are doing a
467 // dynamic link, then the final value could be filled in at runtime.
468 // This could reasonably be the case for a weak undefined symbol.
469 return parameters
->doing_static_link();
472 // Return the output section where this symbol is defined.
475 Symbol::output_section() const
477 switch (this->source_
)
481 unsigned int shndx
= this->u_
.from_object
.shndx
;
482 if (shndx
!= elfcpp::SHN_UNDEF
&& this->is_ordinary_shndx_
)
484 gold_assert(!this->u_
.from_object
.object
->is_dynamic());
485 gold_assert(this->u_
.from_object
.object
->pluginobj() == NULL
);
486 Relobj
* relobj
= static_cast<Relobj
*>(this->u_
.from_object
.object
);
487 return relobj
->output_section(shndx
);
493 return this->u_
.in_output_data
.output_data
->output_section();
495 case IN_OUTPUT_SEGMENT
:
505 // Set the symbol's output section. This is used for symbols defined
506 // in scripts. This should only be called after the symbol table has
510 Symbol::set_output_section(Output_section
* os
)
512 switch (this->source_
)
516 gold_assert(this->output_section() == os
);
519 this->source_
= IN_OUTPUT_DATA
;
520 this->u_
.in_output_data
.output_data
= os
;
521 this->u_
.in_output_data
.offset_is_from_end
= false;
523 case IN_OUTPUT_SEGMENT
:
530 // Set the symbol's output segment. This is used for pre-defined
531 // symbols whose segments aren't known until after layout is done
532 // (e.g., __ehdr_start).
535 Symbol::set_output_segment(Output_segment
* os
, Segment_offset_base base
)
537 gold_assert(this->is_predefined_
);
538 this->source_
= IN_OUTPUT_SEGMENT
;
539 this->u_
.in_output_segment
.output_segment
= os
;
540 this->u_
.in_output_segment
.offset_base
= base
;
543 // Set the symbol to undefined. This is used for pre-defined
544 // symbols whose segments aren't known until after layout is done
545 // (e.g., __ehdr_start).
548 Symbol::set_undefined()
550 gold_assert(this->is_predefined_
);
551 this->source_
= IS_UNDEFINED
;
552 this->is_predefined_
= false;
555 // Class Symbol_table.
557 Symbol_table::Symbol_table(unsigned int count
,
558 const Version_script_info
& version_script
)
559 : saw_undefined_(0), offset_(0), table_(count
), namepool_(),
560 forwarders_(), commons_(), tls_commons_(), small_commons_(),
561 large_commons_(), forced_locals_(), warnings_(),
562 version_script_(version_script
), gc_(NULL
), icf_(NULL
)
564 namepool_
.reserve(count
);
567 Symbol_table::~Symbol_table()
571 // The symbol table key equality function. This is called with
575 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key
& k1
,
576 const Symbol_table_key
& k2
) const
578 return k1
.first
== k2
.first
&& k1
.second
== k2
.second
;
582 Symbol_table::is_section_folded(Object
* obj
, unsigned int shndx
) const
584 return (parameters
->options().icf_enabled()
585 && this->icf_
->is_section_folded(obj
, shndx
));
588 // For symbols that have been listed with a -u or --export-dynamic-symbol
589 // option, add them to the work list to avoid gc'ing them.
592 Symbol_table::gc_mark_undef_symbols(Layout
* layout
)
594 for (options::String_set::const_iterator p
=
595 parameters
->options().undefined_begin();
596 p
!= parameters
->options().undefined_end();
599 const char* name
= p
->c_str();
600 Symbol
* sym
= this->lookup(name
);
601 gold_assert(sym
!= NULL
);
602 if (sym
->source() == Symbol::FROM_OBJECT
603 && !sym
->object()->is_dynamic())
605 this->gc_mark_symbol(sym
);
609 for (options::String_set::const_iterator p
=
610 parameters
->options().export_dynamic_symbol_begin();
611 p
!= parameters
->options().export_dynamic_symbol_end();
614 const char* name
= p
->c_str();
615 Symbol
* sym
= this->lookup(name
);
616 // It's not an error if a symbol named by --export-dynamic-symbol
619 && sym
->source() == Symbol::FROM_OBJECT
620 && !sym
->object()->is_dynamic())
622 this->gc_mark_symbol(sym
);
626 for (Script_options::referenced_const_iterator p
=
627 layout
->script_options()->referenced_begin();
628 p
!= layout
->script_options()->referenced_end();
631 Symbol
* sym
= this->lookup(p
->c_str());
632 gold_assert(sym
!= NULL
);
633 if (sym
->source() == Symbol::FROM_OBJECT
634 && !sym
->object()->is_dynamic())
636 this->gc_mark_symbol(sym
);
642 Symbol_table::gc_mark_symbol(Symbol
* sym
)
644 // Add the object and section to the work list.
646 unsigned int shndx
= sym
->shndx(&is_ordinary
);
647 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
)
649 gold_assert(this->gc_
!= NULL
);
650 this->gc_
->worklist().push(Section_id(sym
->object(), shndx
));
652 parameters
->target().gc_mark_symbol(this, sym
);
655 // When doing garbage collection, keep symbols that have been seen in
658 Symbol_table::gc_mark_dyn_syms(Symbol
* sym
)
660 if (sym
->in_dyn() && sym
->source() == Symbol::FROM_OBJECT
661 && !sym
->object()->is_dynamic())
662 this->gc_mark_symbol(sym
);
665 // Make TO a symbol which forwards to FROM.
668 Symbol_table::make_forwarder(Symbol
* from
, Symbol
* to
)
670 gold_assert(from
!= to
);
671 gold_assert(!from
->is_forwarder() && !to
->is_forwarder());
672 this->forwarders_
[from
] = to
;
673 from
->set_forwarder();
676 // Resolve the forwards from FROM, returning the real symbol.
679 Symbol_table::resolve_forwards(const Symbol
* from
) const
681 gold_assert(from
->is_forwarder());
682 Unordered_map
<const Symbol
*, Symbol
*>::const_iterator p
=
683 this->forwarders_
.find(from
);
684 gold_assert(p
!= this->forwarders_
.end());
688 // Look up a symbol by name.
691 Symbol_table::lookup(const char* name
, const char* version
) const
693 Stringpool::Key name_key
;
694 name
= this->namepool_
.find(name
, &name_key
);
698 Stringpool::Key version_key
= 0;
701 version
= this->namepool_
.find(version
, &version_key
);
706 Symbol_table_key
key(name_key
, version_key
);
707 Symbol_table::Symbol_table_type::const_iterator p
= this->table_
.find(key
);
708 if (p
== this->table_
.end())
713 // Resolve a Symbol with another Symbol. This is only used in the
714 // unusual case where there are references to both an unversioned
715 // symbol and a symbol with a version, and we then discover that that
716 // version is the default version. Because this is unusual, we do
717 // this the slow way, by converting back to an ELF symbol.
719 template<int size
, bool big_endian
>
721 Symbol_table::resolve(Sized_symbol
<size
>* to
, const Sized_symbol
<size
>* from
)
723 unsigned char buf
[elfcpp::Elf_sizes
<size
>::sym_size
];
724 elfcpp::Sym_write
<size
, big_endian
> esym(buf
);
725 // We don't bother to set the st_name or the st_shndx field.
726 esym
.put_st_value(from
->value());
727 esym
.put_st_size(from
->symsize());
728 esym
.put_st_info(from
->binding(), from
->type());
729 esym
.put_st_other(from
->visibility(), from
->nonvis());
731 unsigned int shndx
= from
->shndx(&is_ordinary
);
732 this->resolve(to
, esym
.sym(), shndx
, is_ordinary
, shndx
, from
->object(),
738 if (parameters
->options().gc_sections())
739 this->gc_mark_dyn_syms(to
);
742 // Record that a symbol is forced to be local by a version script or
746 Symbol_table::force_local(Symbol
* sym
)
748 if (!sym
->is_defined() && !sym
->is_common())
750 if (sym
->is_forced_local())
752 // We already got this one.
755 sym
->set_is_forced_local();
756 this->forced_locals_
.push_back(sym
);
759 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
760 // is only called for undefined symbols, when at least one --wrap
764 Symbol_table::wrap_symbol(const char* name
, Stringpool::Key
* name_key
)
766 // For some targets, we need to ignore a specific character when
767 // wrapping, and add it back later.
769 if (name
[0] == parameters
->target().wrap_char())
775 if (parameters
->options().is_wrap(name
))
777 // Turn NAME into __wrap_NAME.
784 // This will give us both the old and new name in NAMEPOOL_, but
785 // that is OK. Only the versions we need will wind up in the
786 // real string table in the output file.
787 return this->namepool_
.add(s
.c_str(), true, name_key
);
790 const char* const real_prefix
= "__real_";
791 const size_t real_prefix_length
= strlen(real_prefix
);
792 if (strncmp(name
, real_prefix
, real_prefix_length
) == 0
793 && parameters
->options().is_wrap(name
+ real_prefix_length
))
795 // Turn __real_NAME into NAME.
799 s
+= name
+ real_prefix_length
;
800 return this->namepool_
.add(s
.c_str(), true, name_key
);
806 // This is called when we see a symbol NAME/VERSION, and the symbol
807 // already exists in the symbol table, and VERSION is marked as being
808 // the default version. SYM is the NAME/VERSION symbol we just added.
809 // DEFAULT_IS_NEW is true if this is the first time we have seen the
810 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
812 template<int size
, bool big_endian
>
814 Symbol_table::define_default_version(Sized_symbol
<size
>* sym
,
816 Symbol_table_type::iterator pdef
)
820 // This is the first time we have seen NAME/NULL. Make
821 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
824 sym
->set_is_default();
826 else if (pdef
->second
== sym
)
828 // NAME/NULL already points to NAME/VERSION. Don't mark the
829 // symbol as the default if it is not already the default.
833 // This is the unfortunate case where we already have entries
834 // for both NAME/VERSION and NAME/NULL. We now see a symbol
835 // NAME/VERSION where VERSION is the default version. We have
836 // already resolved this new symbol with the existing
837 // NAME/VERSION symbol.
839 // It's possible that NAME/NULL and NAME/VERSION are both
840 // defined in regular objects. This can only happen if one
841 // object file defines foo and another defines foo@@ver. This
842 // is somewhat obscure, but we call it a multiple definition
845 // It's possible that NAME/NULL actually has a version, in which
846 // case it won't be the same as VERSION. This happens with
847 // ver_test_7.so in the testsuite for the symbol t2_2. We see
848 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
849 // then see an unadorned t2_2 in an object file and give it
850 // version VER1 from the version script. This looks like a
851 // default definition for VER1, so it looks like we should merge
852 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
853 // not obvious that this is an error, either. So we just punt.
855 // If one of the symbols has non-default visibility, and the
856 // other is defined in a shared object, then they are different
859 // Otherwise, we just resolve the symbols as though they were
862 if (pdef
->second
->version() != NULL
)
863 gold_assert(pdef
->second
->version() != sym
->version());
864 else if (sym
->visibility() != elfcpp::STV_DEFAULT
865 && pdef
->second
->is_from_dynobj())
867 else if (pdef
->second
->visibility() != elfcpp::STV_DEFAULT
868 && sym
->is_from_dynobj())
872 const Sized_symbol
<size
>* symdef
;
873 symdef
= this->get_sized_symbol
<size
>(pdef
->second
);
874 Symbol_table::resolve
<size
, big_endian
>(sym
, symdef
);
875 this->make_forwarder(pdef
->second
, sym
);
877 sym
->set_is_default();
882 // Add one symbol from OBJECT to the symbol table. NAME is symbol
883 // name and VERSION is the version; both are canonicalized. DEF is
884 // whether this is the default version. ST_SHNDX is the symbol's
885 // section index; IS_ORDINARY is whether this is a normal section
886 // rather than a special code.
888 // If IS_DEFAULT_VERSION is true, then this is the definition of a
889 // default version of a symbol. That means that any lookup of
890 // NAME/NULL and any lookup of NAME/VERSION should always return the
891 // same symbol. This is obvious for references, but in particular we
892 // want to do this for definitions: overriding NAME/NULL should also
893 // override NAME/VERSION. If we don't do that, it would be very hard
894 // to override functions in a shared library which uses versioning.
896 // We implement this by simply making both entries in the hash table
897 // point to the same Symbol structure. That is easy enough if this is
898 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
899 // that we have seen both already, in which case they will both have
900 // independent entries in the symbol table. We can't simply change
901 // the symbol table entry, because we have pointers to the entries
902 // attached to the object files. So we mark the entry attached to the
903 // object file as a forwarder, and record it in the forwarders_ map.
904 // Note that entries in the hash table will never be marked as
907 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
908 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
909 // for a special section code. ST_SHNDX may be modified if the symbol
910 // is defined in a section being discarded.
912 template<int size
, bool big_endian
>
914 Symbol_table::add_from_object(Object
* object
,
916 Stringpool::Key name_key
,
918 Stringpool::Key version_key
,
919 bool is_default_version
,
920 const elfcpp::Sym
<size
, big_endian
>& sym
,
921 unsigned int st_shndx
,
923 unsigned int orig_st_shndx
)
925 // Print a message if this symbol is being traced.
926 if (parameters
->options().is_trace_symbol(name
))
928 if (orig_st_shndx
== elfcpp::SHN_UNDEF
)
929 gold_info(_("%s: reference to %s"), object
->name().c_str(), name
);
931 gold_info(_("%s: definition of %s"), object
->name().c_str(), name
);
934 // For an undefined symbol, we may need to adjust the name using
936 if (orig_st_shndx
== elfcpp::SHN_UNDEF
937 && parameters
->options().any_wrap())
939 const char* wrap_name
= this->wrap_symbol(name
, &name_key
);
940 if (wrap_name
!= name
)
942 // If we see a reference to malloc with version GLIBC_2.0,
943 // and we turn it into a reference to __wrap_malloc, then we
944 // discard the version number. Otherwise the user would be
945 // required to specify the correct version for
953 Symbol
* const snull
= NULL
;
954 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
955 this->table_
.insert(std::make_pair(std::make_pair(name_key
, version_key
),
958 std::pair
<typename
Symbol_table_type::iterator
, bool> insdefault
=
959 std::make_pair(this->table_
.end(), false);
960 if (is_default_version
)
962 const Stringpool::Key vnull_key
= 0;
963 insdefault
= this->table_
.insert(std::make_pair(std::make_pair(name_key
,
968 // ins.first: an iterator, which is a pointer to a pair.
969 // ins.first->first: the key (a pair of name and version).
970 // ins.first->second: the value (Symbol*).
971 // ins.second: true if new entry was inserted, false if not.
973 Sized_symbol
<size
>* ret
;
978 // We already have an entry for NAME/VERSION.
979 ret
= this->get_sized_symbol
<size
>(ins
.first
->second
);
980 gold_assert(ret
!= NULL
);
982 was_undefined
= ret
->is_undefined();
983 was_common
= ret
->is_common();
985 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
987 if (parameters
->options().gc_sections())
988 this->gc_mark_dyn_syms(ret
);
990 if (is_default_version
)
991 this->define_default_version
<size
, big_endian
>(ret
, insdefault
.second
,
996 // This is the first time we have seen NAME/VERSION.
997 gold_assert(ins
.first
->second
== NULL
);
999 if (is_default_version
&& !insdefault
.second
)
1001 // We already have an entry for NAME/NULL. If we override
1002 // it, then change it to NAME/VERSION.
1003 ret
= this->get_sized_symbol
<size
>(insdefault
.first
->second
);
1005 was_undefined
= ret
->is_undefined();
1006 was_common
= ret
->is_common();
1008 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
1010 if (parameters
->options().gc_sections())
1011 this->gc_mark_dyn_syms(ret
);
1012 ins
.first
->second
= ret
;
1016 was_undefined
= false;
1019 Sized_target
<size
, big_endian
>* target
=
1020 parameters
->sized_target
<size
, big_endian
>();
1021 if (!target
->has_make_symbol())
1022 ret
= new Sized_symbol
<size
>();
1025 ret
= target
->make_symbol();
1028 // This means that we don't want a symbol table
1030 if (!is_default_version
)
1031 this->table_
.erase(ins
.first
);
1034 this->table_
.erase(insdefault
.first
);
1035 // Inserting INSDEFAULT invalidated INS.
1036 this->table_
.erase(std::make_pair(name_key
,
1043 ret
->init_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
1045 ins
.first
->second
= ret
;
1046 if (is_default_version
)
1048 // This is the first time we have seen NAME/NULL. Point
1049 // it at the new entry for NAME/VERSION.
1050 gold_assert(insdefault
.second
);
1051 insdefault
.first
->second
= ret
;
1055 if (is_default_version
)
1056 ret
->set_is_default();
1059 // Record every time we see a new undefined symbol, to speed up
1061 if (!was_undefined
&& ret
->is_undefined())
1063 ++this->saw_undefined_
;
1064 if (parameters
->options().has_plugins())
1065 parameters
->options().plugins()->new_undefined_symbol(ret
);
1068 // Keep track of common symbols, to speed up common symbol
1070 if (!was_common
&& ret
->is_common())
1072 if (ret
->type() == elfcpp::STT_TLS
)
1073 this->tls_commons_
.push_back(ret
);
1074 else if (!is_ordinary
1075 && st_shndx
== parameters
->target().small_common_shndx())
1076 this->small_commons_
.push_back(ret
);
1077 else if (!is_ordinary
1078 && st_shndx
== parameters
->target().large_common_shndx())
1079 this->large_commons_
.push_back(ret
);
1081 this->commons_
.push_back(ret
);
1084 // If we're not doing a relocatable link, then any symbol with
1085 // hidden or internal visibility is local.
1086 if ((ret
->visibility() == elfcpp::STV_HIDDEN
1087 || ret
->visibility() == elfcpp::STV_INTERNAL
)
1088 && (ret
->binding() == elfcpp::STB_GLOBAL
1089 || ret
->binding() == elfcpp::STB_GNU_UNIQUE
1090 || ret
->binding() == elfcpp::STB_WEAK
)
1091 && !parameters
->options().relocatable())
1092 this->force_local(ret
);
1097 // Add all the symbols in a relocatable object to the hash table.
1099 template<int size
, bool big_endian
>
1101 Symbol_table::add_from_relobj(
1102 Sized_relobj_file
<size
, big_endian
>* relobj
,
1103 const unsigned char* syms
,
1105 size_t symndx_offset
,
1106 const char* sym_names
,
1107 size_t sym_name_size
,
1108 typename Sized_relobj_file
<size
, big_endian
>::Symbols
* sympointers
,
1113 gold_assert(size
== parameters
->target().get_size());
1115 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1117 const bool just_symbols
= relobj
->just_symbols();
1119 const unsigned char* p
= syms
;
1120 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
1122 (*sympointers
)[i
] = NULL
;
1124 elfcpp::Sym
<size
, big_endian
> sym(p
);
1126 unsigned int st_name
= sym
.get_st_name();
1127 if (st_name
>= sym_name_size
)
1129 relobj
->error(_("bad global symbol name offset %u at %zu"),
1134 const char* name
= sym_names
+ st_name
;
1136 if (strcmp (name
, "__gnu_lto_slim") == 0)
1137 gold_info(_("%s: plugin needed to handle lto object"),
1138 relobj
->name().c_str());
1141 unsigned int st_shndx
= relobj
->adjust_sym_shndx(i
+ symndx_offset
,
1144 unsigned int orig_st_shndx
= st_shndx
;
1146 orig_st_shndx
= elfcpp::SHN_UNDEF
;
1148 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1151 // A symbol defined in a section which we are not including must
1152 // be treated as an undefined symbol.
1153 bool is_defined_in_discarded_section
= false;
1154 if (st_shndx
!= elfcpp::SHN_UNDEF
1156 && !relobj
->is_section_included(st_shndx
)
1157 && !this->is_section_folded(relobj
, st_shndx
))
1159 st_shndx
= elfcpp::SHN_UNDEF
;
1160 is_defined_in_discarded_section
= true;
1163 // In an object file, an '@' in the name separates the symbol
1164 // name from the version name. If there are two '@' characters,
1165 // this is the default version.
1166 const char* ver
= strchr(name
, '@');
1167 Stringpool::Key ver_key
= 0;
1169 // IS_DEFAULT_VERSION: is the version default?
1170 // IS_FORCED_LOCAL: is the symbol forced local?
1171 bool is_default_version
= false;
1172 bool is_forced_local
= false;
1174 // FIXME: For incremental links, we don't store version information,
1175 // so we need to ignore version symbols for now.
1176 if (parameters
->incremental_update() && ver
!= NULL
)
1178 namelen
= ver
- name
;
1184 // The symbol name is of the form foo@VERSION or foo@@VERSION
1185 namelen
= ver
- name
;
1189 is_default_version
= true;
1192 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1194 // We don't want to assign a version to an undefined symbol,
1195 // even if it is listed in the version script. FIXME: What
1196 // about a common symbol?
1199 namelen
= strlen(name
);
1200 if (!this->version_script_
.empty()
1201 && st_shndx
!= elfcpp::SHN_UNDEF
)
1203 // The symbol name did not have a version, but the
1204 // version script may assign a version anyway.
1205 std::string version
;
1207 if (this->version_script_
.get_symbol_version(name
, &version
,
1211 is_forced_local
= true;
1212 else if (!version
.empty())
1214 ver
= this->namepool_
.add_with_length(version
.c_str(),
1218 is_default_version
= true;
1224 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1225 unsigned char symbuf
[sym_size
];
1226 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1229 memcpy(symbuf
, p
, sym_size
);
1230 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1231 if (orig_st_shndx
!= elfcpp::SHN_UNDEF
1233 && relobj
->e_type() == elfcpp::ET_REL
)
1235 // Symbol values in relocatable object files are section
1236 // relative. This is normally what we want, but since here
1237 // we are converting the symbol to absolute we need to add
1238 // the section address. The section address in an object
1239 // file is normally zero, but people can use a linker
1240 // script to change it.
1241 sw
.put_st_value(sym
.get_st_value()
1242 + relobj
->section_address(orig_st_shndx
));
1244 st_shndx
= elfcpp::SHN_ABS
;
1245 is_ordinary
= false;
1249 // Fix up visibility if object has no-export set.
1250 if (relobj
->no_export()
1251 && (orig_st_shndx
!= elfcpp::SHN_UNDEF
|| !is_ordinary
))
1253 // We may have copied symbol already above.
1256 memcpy(symbuf
, p
, sym_size
);
1260 elfcpp::STV visibility
= sym2
.get_st_visibility();
1261 if (visibility
== elfcpp::STV_DEFAULT
1262 || visibility
== elfcpp::STV_PROTECTED
)
1264 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1265 unsigned char nonvis
= sym2
.get_st_nonvis();
1266 sw
.put_st_other(elfcpp::STV_HIDDEN
, nonvis
);
1270 Stringpool::Key name_key
;
1271 name
= this->namepool_
.add_with_length(name
, namelen
, true,
1274 Sized_symbol
<size
>* res
;
1275 res
= this->add_from_object(relobj
, name
, name_key
, ver
, ver_key
,
1276 is_default_version
, *psym
, st_shndx
,
1277 is_ordinary
, orig_st_shndx
);
1279 if (is_forced_local
)
1280 this->force_local(res
);
1282 // Do not treat this symbol as garbage if this symbol will be
1283 // exported to the dynamic symbol table. This is true when
1284 // building a shared library or using --export-dynamic and
1285 // the symbol is externally visible.
1286 if (parameters
->options().gc_sections()
1287 && res
->is_externally_visible()
1288 && !res
->is_from_dynobj()
1289 && (parameters
->options().shared()
1290 || parameters
->options().export_dynamic()
1291 || parameters
->options().in_dynamic_list(res
->name())))
1292 this->gc_mark_symbol(res
);
1294 if (is_defined_in_discarded_section
)
1295 res
->set_is_defined_in_discarded_section();
1297 (*sympointers
)[i
] = res
;
1301 // Add a symbol from a plugin-claimed file.
1303 template<int size
, bool big_endian
>
1305 Symbol_table::add_from_pluginobj(
1306 Sized_pluginobj
<size
, big_endian
>* obj
,
1309 elfcpp::Sym
<size
, big_endian
>* sym
)
1311 unsigned int st_shndx
= sym
->get_st_shndx();
1312 bool is_ordinary
= st_shndx
< elfcpp::SHN_LORESERVE
;
1314 Stringpool::Key ver_key
= 0;
1315 bool is_default_version
= false;
1316 bool is_forced_local
= false;
1320 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1322 // We don't want to assign a version to an undefined symbol,
1323 // even if it is listed in the version script. FIXME: What
1324 // about a common symbol?
1327 if (!this->version_script_
.empty()
1328 && st_shndx
!= elfcpp::SHN_UNDEF
)
1330 // The symbol name did not have a version, but the
1331 // version script may assign a version anyway.
1332 std::string version
;
1334 if (this->version_script_
.get_symbol_version(name
, &version
,
1338 is_forced_local
= true;
1339 else if (!version
.empty())
1341 ver
= this->namepool_
.add_with_length(version
.c_str(),
1345 is_default_version
= true;
1351 Stringpool::Key name_key
;
1352 name
= this->namepool_
.add(name
, true, &name_key
);
1354 Sized_symbol
<size
>* res
;
1355 res
= this->add_from_object(obj
, name
, name_key
, ver
, ver_key
,
1356 is_default_version
, *sym
, st_shndx
,
1357 is_ordinary
, st_shndx
);
1359 if (is_forced_local
)
1360 this->force_local(res
);
1365 // Add all the symbols in a dynamic object to the hash table.
1367 template<int size
, bool big_endian
>
1369 Symbol_table::add_from_dynobj(
1370 Sized_dynobj
<size
, big_endian
>* dynobj
,
1371 const unsigned char* syms
,
1373 const char* sym_names
,
1374 size_t sym_name_size
,
1375 const unsigned char* versym
,
1377 const std::vector
<const char*>* version_map
,
1378 typename Sized_relobj_file
<size
, big_endian
>::Symbols
* sympointers
,
1383 gold_assert(size
== parameters
->target().get_size());
1385 if (dynobj
->just_symbols())
1387 gold_error(_("--just-symbols does not make sense with a shared object"));
1391 // FIXME: For incremental links, we don't store version information,
1392 // so we need to ignore version symbols for now.
1393 if (parameters
->incremental_update())
1396 if (versym
!= NULL
&& versym_size
/ 2 < count
)
1398 dynobj
->error(_("too few symbol versions"));
1402 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1404 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1405 // weak aliases. This is necessary because if the dynamic object
1406 // provides the same variable under two names, one of which is a
1407 // weak definition, and the regular object refers to the weak
1408 // definition, we have to put both the weak definition and the
1409 // strong definition into the dynamic symbol table. Given a weak
1410 // definition, the only way that we can find the corresponding
1411 // strong definition, if any, is to search the symbol table.
1412 std::vector
<Sized_symbol
<size
>*> object_symbols
;
1414 const unsigned char* p
= syms
;
1415 const unsigned char* vs
= versym
;
1416 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
, vs
+= 2)
1418 elfcpp::Sym
<size
, big_endian
> sym(p
);
1420 if (sympointers
!= NULL
)
1421 (*sympointers
)[i
] = NULL
;
1423 // Ignore symbols with local binding or that have
1424 // internal or hidden visibility.
1425 if (sym
.get_st_bind() == elfcpp::STB_LOCAL
1426 || sym
.get_st_visibility() == elfcpp::STV_INTERNAL
1427 || sym
.get_st_visibility() == elfcpp::STV_HIDDEN
)
1430 // A protected symbol in a shared library must be treated as a
1431 // normal symbol when viewed from outside the shared library.
1432 // Implement this by overriding the visibility here.
1433 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1434 unsigned char symbuf
[sym_size
];
1435 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1436 if (sym
.get_st_visibility() == elfcpp::STV_PROTECTED
)
1438 memcpy(symbuf
, p
, sym_size
);
1439 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1440 sw
.put_st_other(elfcpp::STV_DEFAULT
, sym
.get_st_nonvis());
1444 unsigned int st_name
= psym
->get_st_name();
1445 if (st_name
>= sym_name_size
)
1447 dynobj
->error(_("bad symbol name offset %u at %zu"),
1452 const char* name
= sym_names
+ st_name
;
1455 unsigned int st_shndx
= dynobj
->adjust_sym_shndx(i
, psym
->get_st_shndx(),
1458 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1461 Sized_symbol
<size
>* res
;
1465 Stringpool::Key name_key
;
1466 name
= this->namepool_
.add(name
, true, &name_key
);
1467 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1468 false, *psym
, st_shndx
, is_ordinary
,
1473 // Read the version information.
1475 unsigned int v
= elfcpp::Swap
<16, big_endian
>::readval(vs
);
1477 bool hidden
= (v
& elfcpp::VERSYM_HIDDEN
) != 0;
1478 v
&= elfcpp::VERSYM_VERSION
;
1480 // The Sun documentation says that V can be VER_NDX_LOCAL,
1481 // or VER_NDX_GLOBAL, or a version index. The meaning of
1482 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1483 // The old GNU linker will happily generate VER_NDX_LOCAL
1484 // for an undefined symbol. I don't know what the Sun
1485 // linker will generate.
1487 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1488 && st_shndx
!= elfcpp::SHN_UNDEF
)
1490 // This symbol should not be visible outside the object.
1494 // At this point we are definitely going to add this symbol.
1495 Stringpool::Key name_key
;
1496 name
= this->namepool_
.add(name
, true, &name_key
);
1498 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1499 || v
== static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL
))
1501 // This symbol does not have a version.
1502 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1503 false, *psym
, st_shndx
, is_ordinary
,
1508 if (v
>= version_map
->size())
1510 dynobj
->error(_("versym for symbol %zu out of range: %u"),
1515 const char* version
= (*version_map
)[v
];
1516 if (version
== NULL
)
1518 dynobj
->error(_("versym for symbol %zu has no name: %u"),
1523 Stringpool::Key version_key
;
1524 version
= this->namepool_
.add(version
, true, &version_key
);
1526 // If this is an absolute symbol, and the version name
1527 // and symbol name are the same, then this is the
1528 // version definition symbol. These symbols exist to
1529 // support using -u to pull in particular versions. We
1530 // do not want to record a version for them.
1531 if (st_shndx
== elfcpp::SHN_ABS
1533 && name_key
== version_key
)
1534 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1535 false, *psym
, st_shndx
, is_ordinary
,
1539 const bool is_default_version
=
1540 !hidden
&& st_shndx
!= elfcpp::SHN_UNDEF
;
1541 res
= this->add_from_object(dynobj
, name
, name_key
, version
,
1542 version_key
, is_default_version
,
1544 is_ordinary
, st_shndx
);
1549 // Note that it is possible that RES was overridden by an
1550 // earlier object, in which case it can't be aliased here.
1551 if (st_shndx
!= elfcpp::SHN_UNDEF
1553 && psym
->get_st_type() == elfcpp::STT_OBJECT
1554 && res
->source() == Symbol::FROM_OBJECT
1555 && res
->object() == dynobj
)
1556 object_symbols
.push_back(res
);
1558 if (sympointers
!= NULL
)
1559 (*sympointers
)[i
] = res
;
1562 this->record_weak_aliases(&object_symbols
);
1565 // Add a symbol from a incremental object file.
1567 template<int size
, bool big_endian
>
1569 Symbol_table::add_from_incrobj(
1573 elfcpp::Sym
<size
, big_endian
>* sym
)
1575 unsigned int st_shndx
= sym
->get_st_shndx();
1576 bool is_ordinary
= st_shndx
< elfcpp::SHN_LORESERVE
;
1578 Stringpool::Key ver_key
= 0;
1579 bool is_default_version
= false;
1580 bool is_forced_local
= false;
1582 Stringpool::Key name_key
;
1583 name
= this->namepool_
.add(name
, true, &name_key
);
1585 Sized_symbol
<size
>* res
;
1586 res
= this->add_from_object(obj
, name
, name_key
, ver
, ver_key
,
1587 is_default_version
, *sym
, st_shndx
,
1588 is_ordinary
, st_shndx
);
1590 if (is_forced_local
)
1591 this->force_local(res
);
1596 // This is used to sort weak aliases. We sort them first by section
1597 // index, then by offset, then by weak ahead of strong.
1600 class Weak_alias_sorter
1603 bool operator()(const Sized_symbol
<size
>*, const Sized_symbol
<size
>*) const;
1608 Weak_alias_sorter
<size
>::operator()(const Sized_symbol
<size
>* s1
,
1609 const Sized_symbol
<size
>* s2
) const
1612 unsigned int s1_shndx
= s1
->shndx(&is_ordinary
);
1613 gold_assert(is_ordinary
);
1614 unsigned int s2_shndx
= s2
->shndx(&is_ordinary
);
1615 gold_assert(is_ordinary
);
1616 if (s1_shndx
!= s2_shndx
)
1617 return s1_shndx
< s2_shndx
;
1619 if (s1
->value() != s2
->value())
1620 return s1
->value() < s2
->value();
1621 if (s1
->binding() != s2
->binding())
1623 if (s1
->binding() == elfcpp::STB_WEAK
)
1625 if (s2
->binding() == elfcpp::STB_WEAK
)
1628 return std::string(s1
->name()) < std::string(s2
->name());
1631 // SYMBOLS is a list of object symbols from a dynamic object. Look
1632 // for any weak aliases, and record them so that if we add the weak
1633 // alias to the dynamic symbol table, we also add the corresponding
1638 Symbol_table::record_weak_aliases(std::vector
<Sized_symbol
<size
>*>* symbols
)
1640 // Sort the vector by section index, then by offset, then by weak
1642 std::sort(symbols
->begin(), symbols
->end(), Weak_alias_sorter
<size
>());
1644 // Walk through the vector. For each weak definition, record
1646 for (typename
std::vector
<Sized_symbol
<size
>*>::const_iterator p
=
1648 p
!= symbols
->end();
1651 if ((*p
)->binding() != elfcpp::STB_WEAK
)
1654 // Build a circular list of weak aliases. Each symbol points to
1655 // the next one in the circular list.
1657 Sized_symbol
<size
>* from_sym
= *p
;
1658 typename
std::vector
<Sized_symbol
<size
>*>::const_iterator q
;
1659 for (q
= p
+ 1; q
!= symbols
->end(); ++q
)
1662 if ((*q
)->shndx(&dummy
) != from_sym
->shndx(&dummy
)
1663 || (*q
)->value() != from_sym
->value())
1666 this->weak_aliases_
[from_sym
] = *q
;
1667 from_sym
->set_has_alias();
1673 this->weak_aliases_
[from_sym
] = *p
;
1674 from_sym
->set_has_alias();
1681 // Create and return a specially defined symbol. If ONLY_IF_REF is
1682 // true, then only create the symbol if there is a reference to it.
1683 // If this does not return NULL, it sets *POLDSYM to the existing
1684 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1685 // resolve the newly created symbol to the old one. This
1686 // canonicalizes *PNAME and *PVERSION.
1688 template<int size
, bool big_endian
>
1690 Symbol_table::define_special_symbol(const char** pname
, const char** pversion
,
1692 Sized_symbol
<size
>** poldsym
,
1693 bool* resolve_oldsym
)
1695 *resolve_oldsym
= false;
1698 // If the caller didn't give us a version, see if we get one from
1699 // the version script.
1701 bool is_default_version
= false;
1702 if (*pversion
== NULL
)
1705 if (this->version_script_
.get_symbol_version(*pname
, &v
, &is_global
))
1707 if (is_global
&& !v
.empty())
1709 *pversion
= v
.c_str();
1710 // If we get the version from a version script, then we
1711 // are also the default version.
1712 is_default_version
= true;
1718 Sized_symbol
<size
>* sym
;
1720 bool add_to_table
= false;
1721 typename
Symbol_table_type::iterator add_loc
= this->table_
.end();
1722 bool add_def_to_table
= false;
1723 typename
Symbol_table_type::iterator add_def_loc
= this->table_
.end();
1727 oldsym
= this->lookup(*pname
, *pversion
);
1728 if (oldsym
== NULL
&& is_default_version
)
1729 oldsym
= this->lookup(*pname
, NULL
);
1730 if (oldsym
== NULL
|| !oldsym
->is_undefined())
1733 *pname
= oldsym
->name();
1734 if (is_default_version
)
1735 *pversion
= this->namepool_
.add(*pversion
, true, NULL
);
1737 *pversion
= oldsym
->version();
1741 // Canonicalize NAME and VERSION.
1742 Stringpool::Key name_key
;
1743 *pname
= this->namepool_
.add(*pname
, true, &name_key
);
1745 Stringpool::Key version_key
= 0;
1746 if (*pversion
!= NULL
)
1747 *pversion
= this->namepool_
.add(*pversion
, true, &version_key
);
1749 Symbol
* const snull
= NULL
;
1750 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
1751 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1755 std::pair
<typename
Symbol_table_type::iterator
, bool> insdefault
=
1756 std::make_pair(this->table_
.end(), false);
1757 if (is_default_version
)
1759 const Stringpool::Key vnull
= 0;
1761 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1768 // We already have a symbol table entry for NAME/VERSION.
1769 oldsym
= ins
.first
->second
;
1770 gold_assert(oldsym
!= NULL
);
1772 if (is_default_version
)
1774 Sized_symbol
<size
>* soldsym
=
1775 this->get_sized_symbol
<size
>(oldsym
);
1776 this->define_default_version
<size
, big_endian
>(soldsym
,
1783 // We haven't seen this symbol before.
1784 gold_assert(ins
.first
->second
== NULL
);
1786 add_to_table
= true;
1787 add_loc
= ins
.first
;
1789 if (is_default_version
&& !insdefault
.second
)
1791 // We are adding NAME/VERSION, and it is the default
1792 // version. We already have an entry for NAME/NULL.
1793 oldsym
= insdefault
.first
->second
;
1794 *resolve_oldsym
= true;
1800 if (is_default_version
)
1802 add_def_to_table
= true;
1803 add_def_loc
= insdefault
.first
;
1809 const Target
& target
= parameters
->target();
1810 if (!target
.has_make_symbol())
1811 sym
= new Sized_symbol
<size
>();
1814 Sized_target
<size
, big_endian
>* sized_target
=
1815 parameters
->sized_target
<size
, big_endian
>();
1816 sym
= sized_target
->make_symbol();
1822 add_loc
->second
= sym
;
1824 gold_assert(oldsym
!= NULL
);
1826 if (add_def_to_table
)
1827 add_def_loc
->second
= sym
;
1829 *poldsym
= this->get_sized_symbol
<size
>(oldsym
);
1834 // Define a symbol based on an Output_data.
1837 Symbol_table::define_in_output_data(const char* name
,
1838 const char* version
,
1844 elfcpp::STB binding
,
1845 elfcpp::STV visibility
,
1846 unsigned char nonvis
,
1847 bool offset_is_from_end
,
1850 if (parameters
->target().get_size() == 32)
1852 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1853 return this->do_define_in_output_data
<32>(name
, version
, defined
, od
,
1854 value
, symsize
, type
, binding
,
1862 else if (parameters
->target().get_size() == 64)
1864 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1865 return this->do_define_in_output_data
<64>(name
, version
, defined
, od
,
1866 value
, symsize
, type
, binding
,
1878 // Define a symbol in an Output_data, sized version.
1882 Symbol_table::do_define_in_output_data(
1884 const char* version
,
1887 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1888 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1890 elfcpp::STB binding
,
1891 elfcpp::STV visibility
,
1892 unsigned char nonvis
,
1893 bool offset_is_from_end
,
1896 Sized_symbol
<size
>* sym
;
1897 Sized_symbol
<size
>* oldsym
;
1898 bool resolve_oldsym
;
1900 if (parameters
->target().is_big_endian())
1902 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1903 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1904 only_if_ref
, &oldsym
,
1912 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1913 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1914 only_if_ref
, &oldsym
,
1924 sym
->init_output_data(name
, version
, od
, value
, symsize
, type
, binding
,
1925 visibility
, nonvis
, offset_is_from_end
,
1926 defined
== PREDEFINED
);
1930 if (binding
== elfcpp::STB_LOCAL
1931 || this->version_script_
.symbol_is_local(name
))
1932 this->force_local(sym
);
1933 else if (version
!= NULL
)
1934 sym
->set_is_default();
1938 if (Symbol_table::should_override_with_special(oldsym
, type
, defined
))
1939 this->override_with_special(oldsym
, sym
);
1950 // Define a symbol based on an Output_segment.
1953 Symbol_table::define_in_output_segment(const char* name
,
1954 const char* version
,
1960 elfcpp::STB binding
,
1961 elfcpp::STV visibility
,
1962 unsigned char nonvis
,
1963 Symbol::Segment_offset_base offset_base
,
1966 if (parameters
->target().get_size() == 32)
1968 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1969 return this->do_define_in_output_segment
<32>(name
, version
, defined
, os
,
1970 value
, symsize
, type
,
1971 binding
, visibility
, nonvis
,
1972 offset_base
, only_if_ref
);
1977 else if (parameters
->target().get_size() == 64)
1979 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1980 return this->do_define_in_output_segment
<64>(name
, version
, defined
, os
,
1981 value
, symsize
, type
,
1982 binding
, visibility
, nonvis
,
1983 offset_base
, only_if_ref
);
1992 // Define a symbol in an Output_segment, sized version.
1996 Symbol_table::do_define_in_output_segment(
1998 const char* version
,
2001 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2002 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
2004 elfcpp::STB binding
,
2005 elfcpp::STV visibility
,
2006 unsigned char nonvis
,
2007 Symbol::Segment_offset_base offset_base
,
2010 Sized_symbol
<size
>* sym
;
2011 Sized_symbol
<size
>* oldsym
;
2012 bool resolve_oldsym
;
2014 if (parameters
->target().is_big_endian())
2016 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2017 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2018 only_if_ref
, &oldsym
,
2026 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2027 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2028 only_if_ref
, &oldsym
,
2038 sym
->init_output_segment(name
, version
, os
, value
, symsize
, type
, binding
,
2039 visibility
, nonvis
, offset_base
,
2040 defined
== PREDEFINED
);
2044 if (binding
== elfcpp::STB_LOCAL
2045 || this->version_script_
.symbol_is_local(name
))
2046 this->force_local(sym
);
2047 else if (version
!= NULL
)
2048 sym
->set_is_default();
2052 if (Symbol_table::should_override_with_special(oldsym
, type
, defined
))
2053 this->override_with_special(oldsym
, sym
);
2064 // Define a special symbol with a constant value. It is a multiple
2065 // definition error if this symbol is already defined.
2068 Symbol_table::define_as_constant(const char* name
,
2069 const char* version
,
2074 elfcpp::STB binding
,
2075 elfcpp::STV visibility
,
2076 unsigned char nonvis
,
2078 bool force_override
)
2080 if (parameters
->target().get_size() == 32)
2082 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2083 return this->do_define_as_constant
<32>(name
, version
, defined
, value
,
2084 symsize
, type
, binding
,
2085 visibility
, nonvis
, only_if_ref
,
2091 else if (parameters
->target().get_size() == 64)
2093 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2094 return this->do_define_as_constant
<64>(name
, version
, defined
, value
,
2095 symsize
, type
, binding
,
2096 visibility
, nonvis
, only_if_ref
,
2106 // Define a symbol as a constant, sized version.
2110 Symbol_table::do_define_as_constant(
2112 const char* version
,
2114 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2115 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
2117 elfcpp::STB binding
,
2118 elfcpp::STV visibility
,
2119 unsigned char nonvis
,
2121 bool force_override
)
2123 Sized_symbol
<size
>* sym
;
2124 Sized_symbol
<size
>* oldsym
;
2125 bool resolve_oldsym
;
2127 if (parameters
->target().is_big_endian())
2129 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2130 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2131 only_if_ref
, &oldsym
,
2139 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2140 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2141 only_if_ref
, &oldsym
,
2151 sym
->init_constant(name
, version
, value
, symsize
, type
, binding
, visibility
,
2152 nonvis
, defined
== PREDEFINED
);
2156 // Version symbols are absolute symbols with name == version.
2157 // We don't want to force them to be local.
2158 if ((version
== NULL
2161 && (binding
== elfcpp::STB_LOCAL
2162 || this->version_script_
.symbol_is_local(name
)))
2163 this->force_local(sym
);
2164 else if (version
!= NULL
2165 && (name
!= version
|| value
!= 0))
2166 sym
->set_is_default();
2171 || Symbol_table::should_override_with_special(oldsym
, type
, defined
))
2172 this->override_with_special(oldsym
, sym
);
2183 // Define a set of symbols in output sections.
2186 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2187 const Define_symbol_in_section
* p
,
2190 for (int i
= 0; i
< count
; ++i
, ++p
)
2192 Output_section
* os
= layout
->find_output_section(p
->output_section
);
2194 this->define_in_output_data(p
->name
, NULL
, PREDEFINED
, os
, p
->value
,
2195 p
->size
, p
->type
, p
->binding
,
2196 p
->visibility
, p
->nonvis
,
2197 p
->offset_is_from_end
,
2198 only_if_ref
|| p
->only_if_ref
);
2200 this->define_as_constant(p
->name
, NULL
, PREDEFINED
, 0, p
->size
,
2201 p
->type
, p
->binding
, p
->visibility
, p
->nonvis
,
2202 only_if_ref
|| p
->only_if_ref
,
2207 // Define a set of symbols in output segments.
2210 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2211 const Define_symbol_in_segment
* p
,
2214 for (int i
= 0; i
< count
; ++i
, ++p
)
2216 Output_segment
* os
= layout
->find_output_segment(p
->segment_type
,
2217 p
->segment_flags_set
,
2218 p
->segment_flags_clear
);
2220 this->define_in_output_segment(p
->name
, NULL
, PREDEFINED
, os
, p
->value
,
2221 p
->size
, p
->type
, p
->binding
,
2222 p
->visibility
, p
->nonvis
,
2224 only_if_ref
|| p
->only_if_ref
);
2226 this->define_as_constant(p
->name
, NULL
, PREDEFINED
, 0, p
->size
,
2227 p
->type
, p
->binding
, p
->visibility
, p
->nonvis
,
2228 only_if_ref
|| p
->only_if_ref
,
2233 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2234 // symbol should be defined--typically a .dyn.bss section. VALUE is
2235 // the offset within POSD.
2239 Symbol_table::define_with_copy_reloc(
2240 Sized_symbol
<size
>* csym
,
2242 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
)
2244 gold_assert(csym
->is_from_dynobj());
2245 gold_assert(!csym
->is_copied_from_dynobj());
2246 Object
* object
= csym
->object();
2247 gold_assert(object
->is_dynamic());
2248 Dynobj
* dynobj
= static_cast<Dynobj
*>(object
);
2250 // Our copied variable has to override any variable in a shared
2252 elfcpp::STB binding
= csym
->binding();
2253 if (binding
== elfcpp::STB_WEAK
)
2254 binding
= elfcpp::STB_GLOBAL
;
2256 this->define_in_output_data(csym
->name(), csym
->version(), COPY
,
2257 posd
, value
, csym
->symsize(),
2258 csym
->type(), binding
,
2259 csym
->visibility(), csym
->nonvis(),
2262 csym
->set_is_copied_from_dynobj();
2263 csym
->set_needs_dynsym_entry();
2265 this->copied_symbol_dynobjs_
[csym
] = dynobj
;
2267 // We have now defined all aliases, but we have not entered them all
2268 // in the copied_symbol_dynobjs_ map.
2269 if (csym
->has_alias())
2274 sym
= this->weak_aliases_
[sym
];
2277 gold_assert(sym
->output_data() == posd
);
2279 sym
->set_is_copied_from_dynobj();
2280 this->copied_symbol_dynobjs_
[sym
] = dynobj
;
2285 // SYM is defined using a COPY reloc. Return the dynamic object where
2286 // the original definition was found.
2289 Symbol_table::get_copy_source(const Symbol
* sym
) const
2291 gold_assert(sym
->is_copied_from_dynobj());
2292 Copied_symbol_dynobjs::const_iterator p
=
2293 this->copied_symbol_dynobjs_
.find(sym
);
2294 gold_assert(p
!= this->copied_symbol_dynobjs_
.end());
2298 // Add any undefined symbols named on the command line.
2301 Symbol_table::add_undefined_symbols_from_command_line(Layout
* layout
)
2303 if (parameters
->options().any_undefined()
2304 || layout
->script_options()->any_unreferenced())
2306 if (parameters
->target().get_size() == 32)
2308 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2309 this->do_add_undefined_symbols_from_command_line
<32>(layout
);
2314 else if (parameters
->target().get_size() == 64)
2316 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2317 this->do_add_undefined_symbols_from_command_line
<64>(layout
);
2329 Symbol_table::do_add_undefined_symbols_from_command_line(Layout
* layout
)
2331 for (options::String_set::const_iterator p
=
2332 parameters
->options().undefined_begin();
2333 p
!= parameters
->options().undefined_end();
2335 this->add_undefined_symbol_from_command_line
<size
>(p
->c_str());
2337 for (options::String_set::const_iterator p
=
2338 parameters
->options().export_dynamic_symbol_begin();
2339 p
!= parameters
->options().export_dynamic_symbol_end();
2341 this->add_undefined_symbol_from_command_line
<size
>(p
->c_str());
2343 for (Script_options::referenced_const_iterator p
=
2344 layout
->script_options()->referenced_begin();
2345 p
!= layout
->script_options()->referenced_end();
2347 this->add_undefined_symbol_from_command_line
<size
>(p
->c_str());
2352 Symbol_table::add_undefined_symbol_from_command_line(const char* name
)
2354 if (this->lookup(name
) != NULL
)
2357 const char* version
= NULL
;
2359 Sized_symbol
<size
>* sym
;
2360 Sized_symbol
<size
>* oldsym
;
2361 bool resolve_oldsym
;
2362 if (parameters
->target().is_big_endian())
2364 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2365 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2374 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2375 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2383 gold_assert(oldsym
== NULL
);
2385 sym
->init_undefined(name
, version
, elfcpp::STT_NOTYPE
, elfcpp::STB_GLOBAL
,
2386 elfcpp::STV_DEFAULT
, 0);
2387 ++this->saw_undefined_
;
2390 // Set the dynamic symbol indexes. INDEX is the index of the first
2391 // global dynamic symbol. Pointers to the symbols are stored into the
2392 // vector SYMS. The names are added to DYNPOOL. This returns an
2393 // updated dynamic symbol index.
2396 Symbol_table::set_dynsym_indexes(unsigned int index
,
2397 std::vector
<Symbol
*>* syms
,
2398 Stringpool
* dynpool
,
2401 std::vector
<Symbol
*> as_needed_sym
;
2403 // Allow a target to set dynsym indexes.
2404 if (parameters
->target().has_custom_set_dynsym_indexes())
2406 std::vector
<Symbol
*> dyn_symbols
;
2407 for (Symbol_table_type::iterator p
= this->table_
.begin();
2408 p
!= this->table_
.end();
2411 Symbol
* sym
= p
->second
;
2412 if (!sym
->should_add_dynsym_entry(this))
2413 sym
->set_dynsym_index(-1U);
2415 dyn_symbols
.push_back(sym
);
2418 return parameters
->target().set_dynsym_indexes(&dyn_symbols
, index
, syms
,
2419 dynpool
, versions
, this);
2422 for (Symbol_table_type::iterator p
= this->table_
.begin();
2423 p
!= this->table_
.end();
2426 Symbol
* sym
= p
->second
;
2428 // Note that SYM may already have a dynamic symbol index, since
2429 // some symbols appear more than once in the symbol table, with
2430 // and without a version.
2432 if (!sym
->should_add_dynsym_entry(this))
2433 sym
->set_dynsym_index(-1U);
2434 else if (!sym
->has_dynsym_index())
2436 sym
->set_dynsym_index(index
);
2438 syms
->push_back(sym
);
2439 dynpool
->add(sym
->name(), false, NULL
);
2441 // If the symbol is defined in a dynamic object and is
2442 // referenced strongly in a regular object, then mark the
2443 // dynamic object as needed. This is used to implement
2445 if (sym
->is_from_dynobj()
2447 && !sym
->is_undef_binding_weak())
2448 sym
->object()->set_is_needed();
2450 // Record any version information, except those from
2451 // as-needed libraries not seen to be needed. Note that the
2452 // is_needed state for such libraries can change in this loop.
2453 if (sym
->version() != NULL
)
2455 if (!sym
->is_from_dynobj()
2456 || !sym
->object()->as_needed()
2457 || sym
->object()->is_needed())
2458 versions
->record_version(this, dynpool
, sym
);
2460 as_needed_sym
.push_back(sym
);
2465 // Process version information for symbols from as-needed libraries.
2466 for (std::vector
<Symbol
*>::iterator p
= as_needed_sym
.begin();
2467 p
!= as_needed_sym
.end();
2472 if (sym
->object()->is_needed())
2473 versions
->record_version(this, dynpool
, sym
);
2475 sym
->clear_version();
2478 // Finish up the versions. In some cases this may add new dynamic
2480 index
= versions
->finalize(this, index
, syms
);
2485 // Set the final values for all the symbols. The index of the first
2486 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2487 // file offset OFF. Add their names to POOL. Return the new file
2488 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2491 Symbol_table::finalize(off_t off
, off_t dynoff
, size_t dyn_global_index
,
2492 size_t dyncount
, Stringpool
* pool
,
2493 unsigned int* plocal_symcount
)
2497 gold_assert(*plocal_symcount
!= 0);
2498 this->first_global_index_
= *plocal_symcount
;
2500 this->dynamic_offset_
= dynoff
;
2501 this->first_dynamic_global_index_
= dyn_global_index
;
2502 this->dynamic_count_
= dyncount
;
2504 if (parameters
->target().get_size() == 32)
2506 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2507 ret
= this->sized_finalize
<32>(off
, pool
, plocal_symcount
);
2512 else if (parameters
->target().get_size() == 64)
2514 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2515 ret
= this->sized_finalize
<64>(off
, pool
, plocal_symcount
);
2523 // Now that we have the final symbol table, we can reliably note
2524 // which symbols should get warnings.
2525 this->warnings_
.note_warnings(this);
2530 // SYM is going into the symbol table at *PINDEX. Add the name to
2531 // POOL, update *PINDEX and *POFF.
2535 Symbol_table::add_to_final_symtab(Symbol
* sym
, Stringpool
* pool
,
2536 unsigned int* pindex
, off_t
* poff
)
2538 sym
->set_symtab_index(*pindex
);
2539 if (sym
->version() == NULL
|| !parameters
->options().relocatable())
2540 pool
->add(sym
->name(), false, NULL
);
2542 pool
->add(sym
->versioned_name(), true, NULL
);
2544 *poff
+= elfcpp::Elf_sizes
<size
>::sym_size
;
2547 // Set the final value for all the symbols. This is called after
2548 // Layout::finalize, so all the output sections have their final
2553 Symbol_table::sized_finalize(off_t off
, Stringpool
* pool
,
2554 unsigned int* plocal_symcount
)
2556 off
= align_address(off
, size
>> 3);
2557 this->offset_
= off
;
2559 unsigned int index
= *plocal_symcount
;
2560 const unsigned int orig_index
= index
;
2562 // First do all the symbols which have been forced to be local, as
2563 // they must appear before all global symbols.
2564 for (Forced_locals::iterator p
= this->forced_locals_
.begin();
2565 p
!= this->forced_locals_
.end();
2569 gold_assert(sym
->is_forced_local());
2570 if (this->sized_finalize_symbol
<size
>(sym
))
2572 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2577 // Now do all the remaining symbols.
2578 for (Symbol_table_type::iterator p
= this->table_
.begin();
2579 p
!= this->table_
.end();
2582 Symbol
* sym
= p
->second
;
2583 if (this->sized_finalize_symbol
<size
>(sym
))
2584 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2587 this->output_count_
= index
- orig_index
;
2592 // Compute the final value of SYM and store status in location PSTATUS.
2593 // During relaxation, this may be called multiple times for a symbol to
2594 // compute its would-be final value in each relaxation pass.
2597 typename Sized_symbol
<size
>::Value_type
2598 Symbol_table::compute_final_value(
2599 const Sized_symbol
<size
>* sym
,
2600 Compute_final_value_status
* pstatus
) const
2602 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
2605 switch (sym
->source())
2607 case Symbol::FROM_OBJECT
:
2610 unsigned int shndx
= sym
->shndx(&is_ordinary
);
2613 && shndx
!= elfcpp::SHN_ABS
2614 && !Symbol::is_common_shndx(shndx
))
2616 *pstatus
= CFVS_UNSUPPORTED_SYMBOL_SECTION
;
2620 Object
* symobj
= sym
->object();
2621 if (symobj
->is_dynamic())
2624 shndx
= elfcpp::SHN_UNDEF
;
2626 else if (symobj
->pluginobj() != NULL
)
2629 shndx
= elfcpp::SHN_UNDEF
;
2631 else if (shndx
== elfcpp::SHN_UNDEF
)
2633 else if (!is_ordinary
2634 && (shndx
== elfcpp::SHN_ABS
2635 || Symbol::is_common_shndx(shndx
)))
2636 value
= sym
->value();
2639 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2640 Output_section
* os
= relobj
->output_section(shndx
);
2642 if (this->is_section_folded(relobj
, shndx
))
2644 gold_assert(os
== NULL
);
2645 // Get the os of the section it is folded onto.
2646 Section_id folded
= this->icf_
->get_folded_section(relobj
,
2648 gold_assert(folded
.first
!= NULL
);
2649 Relobj
* folded_obj
= reinterpret_cast<Relobj
*>(folded
.first
);
2650 unsigned folded_shndx
= folded
.second
;
2652 os
= folded_obj
->output_section(folded_shndx
);
2653 gold_assert(os
!= NULL
);
2655 // Replace (relobj, shndx) with canonical ICF input section.
2656 shndx
= folded_shndx
;
2657 relobj
= folded_obj
;
2660 uint64_t secoff64
= relobj
->output_section_offset(shndx
);
2663 bool static_or_reloc
= (parameters
->doing_static_link() ||
2664 parameters
->options().relocatable());
2665 gold_assert(static_or_reloc
|| sym
->dynsym_index() == -1U);
2667 *pstatus
= CFVS_NO_OUTPUT_SECTION
;
2671 if (secoff64
== -1ULL)
2673 // The section needs special handling (e.g., a merge section).
2675 value
= os
->output_address(relobj
, shndx
, sym
->value());
2680 convert_types
<Value_type
, uint64_t>(secoff64
);
2681 if (sym
->type() == elfcpp::STT_TLS
)
2682 value
= sym
->value() + os
->tls_offset() + secoff
;
2684 value
= sym
->value() + os
->address() + secoff
;
2690 case Symbol::IN_OUTPUT_DATA
:
2692 Output_data
* od
= sym
->output_data();
2693 value
= sym
->value();
2694 if (sym
->type() != elfcpp::STT_TLS
)
2695 value
+= od
->address();
2698 Output_section
* os
= od
->output_section();
2699 gold_assert(os
!= NULL
);
2700 value
+= os
->tls_offset() + (od
->address() - os
->address());
2702 if (sym
->offset_is_from_end())
2703 value
+= od
->data_size();
2707 case Symbol::IN_OUTPUT_SEGMENT
:
2709 Output_segment
* os
= sym
->output_segment();
2710 value
= sym
->value();
2711 if (sym
->type() != elfcpp::STT_TLS
)
2712 value
+= os
->vaddr();
2713 switch (sym
->offset_base())
2715 case Symbol::SEGMENT_START
:
2717 case Symbol::SEGMENT_END
:
2718 value
+= os
->memsz();
2720 case Symbol::SEGMENT_BSS
:
2721 value
+= os
->filesz();
2729 case Symbol::IS_CONSTANT
:
2730 value
= sym
->value();
2733 case Symbol::IS_UNDEFINED
:
2745 // Finalize the symbol SYM. This returns true if the symbol should be
2746 // added to the symbol table, false otherwise.
2750 Symbol_table::sized_finalize_symbol(Symbol
* unsized_sym
)
2752 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
2754 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(unsized_sym
);
2756 // The default version of a symbol may appear twice in the symbol
2757 // table. We only need to finalize it once.
2758 if (sym
->has_symtab_index())
2763 gold_assert(!sym
->has_symtab_index());
2764 sym
->set_symtab_index(-1U);
2765 gold_assert(sym
->dynsym_index() == -1U);
2769 // If the symbol is only present on plugin files, the plugin decided we
2771 if (!sym
->in_real_elf())
2773 gold_assert(!sym
->has_symtab_index());
2774 sym
->set_symtab_index(-1U);
2778 // Compute final symbol value.
2779 Compute_final_value_status status
;
2780 Value_type value
= this->compute_final_value(sym
, &status
);
2786 case CFVS_UNSUPPORTED_SYMBOL_SECTION
:
2789 unsigned int shndx
= sym
->shndx(&is_ordinary
);
2790 gold_error(_("%s: unsupported symbol section 0x%x"),
2791 sym
->demangled_name().c_str(), shndx
);
2794 case CFVS_NO_OUTPUT_SECTION
:
2795 sym
->set_symtab_index(-1U);
2801 sym
->set_value(value
);
2803 if (parameters
->options().strip_all()
2804 || !parameters
->options().should_retain_symbol(sym
->name()))
2806 sym
->set_symtab_index(-1U);
2813 // Write out the global symbols.
2816 Symbol_table::write_globals(const Stringpool
* sympool
,
2817 const Stringpool
* dynpool
,
2818 Output_symtab_xindex
* symtab_xindex
,
2819 Output_symtab_xindex
* dynsym_xindex
,
2820 Output_file
* of
) const
2822 switch (parameters
->size_and_endianness())
2824 #ifdef HAVE_TARGET_32_LITTLE
2825 case Parameters::TARGET_32_LITTLE
:
2826 this->sized_write_globals
<32, false>(sympool
, dynpool
, symtab_xindex
,
2830 #ifdef HAVE_TARGET_32_BIG
2831 case Parameters::TARGET_32_BIG
:
2832 this->sized_write_globals
<32, true>(sympool
, dynpool
, symtab_xindex
,
2836 #ifdef HAVE_TARGET_64_LITTLE
2837 case Parameters::TARGET_64_LITTLE
:
2838 this->sized_write_globals
<64, false>(sympool
, dynpool
, symtab_xindex
,
2842 #ifdef HAVE_TARGET_64_BIG
2843 case Parameters::TARGET_64_BIG
:
2844 this->sized_write_globals
<64, true>(sympool
, dynpool
, symtab_xindex
,
2853 // Write out the global symbols.
2855 template<int size
, bool big_endian
>
2857 Symbol_table::sized_write_globals(const Stringpool
* sympool
,
2858 const Stringpool
* dynpool
,
2859 Output_symtab_xindex
* symtab_xindex
,
2860 Output_symtab_xindex
* dynsym_xindex
,
2861 Output_file
* of
) const
2863 const Target
& target
= parameters
->target();
2865 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2867 const unsigned int output_count
= this->output_count_
;
2868 const section_size_type oview_size
= output_count
* sym_size
;
2869 const unsigned int first_global_index
= this->first_global_index_
;
2870 unsigned char* psyms
;
2871 if (this->offset_
== 0 || output_count
== 0)
2874 psyms
= of
->get_output_view(this->offset_
, oview_size
);
2876 const unsigned int dynamic_count
= this->dynamic_count_
;
2877 const section_size_type dynamic_size
= dynamic_count
* sym_size
;
2878 const unsigned int first_dynamic_global_index
=
2879 this->first_dynamic_global_index_
;
2880 unsigned char* dynamic_view
;
2881 if (this->dynamic_offset_
== 0 || dynamic_count
== 0)
2882 dynamic_view
= NULL
;
2884 dynamic_view
= of
->get_output_view(this->dynamic_offset_
, dynamic_size
);
2886 for (Symbol_table_type::const_iterator p
= this->table_
.begin();
2887 p
!= this->table_
.end();
2890 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(p
->second
);
2892 // Possibly warn about unresolved symbols in shared libraries.
2893 this->warn_about_undefined_dynobj_symbol(sym
);
2895 unsigned int sym_index
= sym
->symtab_index();
2896 unsigned int dynsym_index
;
2897 if (dynamic_view
== NULL
)
2900 dynsym_index
= sym
->dynsym_index();
2902 if (sym_index
== -1U && dynsym_index
== -1U)
2904 // This symbol is not included in the output file.
2909 typename
elfcpp::Elf_types
<size
>::Elf_Addr sym_value
= sym
->value();
2910 typename
elfcpp::Elf_types
<size
>::Elf_Addr dynsym_value
= sym_value
;
2911 elfcpp::STB binding
= sym
->binding();
2913 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2914 if (binding
== elfcpp::STB_GNU_UNIQUE
2915 && !parameters
->options().gnu_unique())
2916 binding
= elfcpp::STB_GLOBAL
;
2918 switch (sym
->source())
2920 case Symbol::FROM_OBJECT
:
2923 unsigned int in_shndx
= sym
->shndx(&is_ordinary
);
2926 && in_shndx
!= elfcpp::SHN_ABS
2927 && !Symbol::is_common_shndx(in_shndx
))
2929 gold_error(_("%s: unsupported symbol section 0x%x"),
2930 sym
->demangled_name().c_str(), in_shndx
);
2935 Object
* symobj
= sym
->object();
2936 if (symobj
->is_dynamic())
2938 if (sym
->needs_dynsym_value())
2939 dynsym_value
= target
.dynsym_value(sym
);
2940 shndx
= elfcpp::SHN_UNDEF
;
2941 if (sym
->is_undef_binding_weak())
2942 binding
= elfcpp::STB_WEAK
;
2944 binding
= elfcpp::STB_GLOBAL
;
2946 else if (symobj
->pluginobj() != NULL
)
2947 shndx
= elfcpp::SHN_UNDEF
;
2948 else if (in_shndx
== elfcpp::SHN_UNDEF
2950 && (in_shndx
== elfcpp::SHN_ABS
2951 || Symbol::is_common_shndx(in_shndx
))))
2955 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2956 Output_section
* os
= relobj
->output_section(in_shndx
);
2957 if (this->is_section_folded(relobj
, in_shndx
))
2959 // This global symbol must be written out even though
2961 // Get the os of the section it is folded onto.
2963 this->icf_
->get_folded_section(relobj
, in_shndx
);
2964 gold_assert(folded
.first
!=NULL
);
2965 Relobj
* folded_obj
=
2966 reinterpret_cast<Relobj
*>(folded
.first
);
2967 os
= folded_obj
->output_section(folded
.second
);
2968 gold_assert(os
!= NULL
);
2970 gold_assert(os
!= NULL
);
2971 shndx
= os
->out_shndx();
2973 if (shndx
>= elfcpp::SHN_LORESERVE
)
2975 if (sym_index
!= -1U)
2976 symtab_xindex
->add(sym_index
, shndx
);
2977 if (dynsym_index
!= -1U)
2978 dynsym_xindex
->add(dynsym_index
, shndx
);
2979 shndx
= elfcpp::SHN_XINDEX
;
2982 // In object files symbol values are section
2984 if (parameters
->options().relocatable())
2985 sym_value
-= os
->address();
2991 case Symbol::IN_OUTPUT_DATA
:
2993 Output_data
* od
= sym
->output_data();
2995 shndx
= od
->out_shndx();
2996 if (shndx
>= elfcpp::SHN_LORESERVE
)
2998 if (sym_index
!= -1U)
2999 symtab_xindex
->add(sym_index
, shndx
);
3000 if (dynsym_index
!= -1U)
3001 dynsym_xindex
->add(dynsym_index
, shndx
);
3002 shndx
= elfcpp::SHN_XINDEX
;
3005 // In object files symbol values are section
3007 if (parameters
->options().relocatable())
3008 sym_value
-= od
->address();
3012 case Symbol::IN_OUTPUT_SEGMENT
:
3013 shndx
= elfcpp::SHN_ABS
;
3016 case Symbol::IS_CONSTANT
:
3017 shndx
= elfcpp::SHN_ABS
;
3020 case Symbol::IS_UNDEFINED
:
3021 shndx
= elfcpp::SHN_UNDEF
;
3028 if (sym_index
!= -1U)
3030 sym_index
-= first_global_index
;
3031 gold_assert(sym_index
< output_count
);
3032 unsigned char* ps
= psyms
+ (sym_index
* sym_size
);
3033 this->sized_write_symbol
<size
, big_endian
>(sym
, sym_value
, shndx
,
3034 binding
, sympool
, ps
);
3037 if (dynsym_index
!= -1U)
3039 dynsym_index
-= first_dynamic_global_index
;
3040 gold_assert(dynsym_index
< dynamic_count
);
3041 unsigned char* pd
= dynamic_view
+ (dynsym_index
* sym_size
);
3042 this->sized_write_symbol
<size
, big_endian
>(sym
, dynsym_value
, shndx
,
3043 binding
, dynpool
, pd
);
3044 // Allow a target to adjust dynamic symbol value.
3045 parameters
->target().adjust_dyn_symbol(sym
, pd
);
3049 of
->write_output_view(this->offset_
, oview_size
, psyms
);
3050 if (dynamic_view
!= NULL
)
3051 of
->write_output_view(this->dynamic_offset_
, dynamic_size
, dynamic_view
);
3054 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3055 // strtab holding the name.
3057 template<int size
, bool big_endian
>
3059 Symbol_table::sized_write_symbol(
3060 Sized_symbol
<size
>* sym
,
3061 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
3063 elfcpp::STB binding
,
3064 const Stringpool
* pool
,
3065 unsigned char* p
) const
3067 elfcpp::Sym_write
<size
, big_endian
> osym(p
);
3068 if (sym
->version() == NULL
|| !parameters
->options().relocatable())
3069 osym
.put_st_name(pool
->get_offset(sym
->name()));
3071 osym
.put_st_name(pool
->get_offset(sym
->versioned_name()));
3072 osym
.put_st_value(value
);
3073 // Use a symbol size of zero for undefined symbols from shared libraries.
3074 if (shndx
== elfcpp::SHN_UNDEF
&& sym
->is_from_dynobj())
3075 osym
.put_st_size(0);
3077 osym
.put_st_size(sym
->symsize());
3078 elfcpp::STT type
= sym
->type();
3079 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3080 if (type
== elfcpp::STT_GNU_IFUNC
3081 && sym
->is_from_dynobj())
3082 type
= elfcpp::STT_FUNC
;
3083 // A version script may have overridden the default binding.
3084 if (sym
->is_forced_local())
3085 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
, type
));
3087 osym
.put_st_info(elfcpp::elf_st_info(binding
, type
));
3088 osym
.put_st_other(elfcpp::elf_st_other(sym
->visibility(), sym
->nonvis()));
3089 osym
.put_st_shndx(shndx
);
3092 // Check for unresolved symbols in shared libraries. This is
3093 // controlled by the --allow-shlib-undefined option.
3095 // We only warn about libraries for which we have seen all the
3096 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3097 // which were not seen in this link. If we didn't see a DT_NEEDED
3098 // entry, we aren't going to be able to reliably report whether the
3099 // symbol is undefined.
3101 // We also don't warn about libraries found in a system library
3102 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3103 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3104 // can have undefined references satisfied by ld-linux.so.
3107 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol
* sym
) const
3110 if (sym
->source() == Symbol::FROM_OBJECT
3111 && sym
->object()->is_dynamic()
3112 && sym
->shndx(&dummy
) == elfcpp::SHN_UNDEF
3113 && sym
->binding() != elfcpp::STB_WEAK
3114 && !parameters
->options().allow_shlib_undefined()
3115 && !parameters
->target().is_defined_by_abi(sym
)
3116 && !sym
->object()->is_in_system_directory())
3118 // A very ugly cast.
3119 Dynobj
* dynobj
= static_cast<Dynobj
*>(sym
->object());
3120 if (!dynobj
->has_unknown_needed_entries())
3121 gold_undefined_symbol(sym
);
3125 // Write out a section symbol. Return the update offset.
3128 Symbol_table::write_section_symbol(const Output_section
* os
,
3129 Output_symtab_xindex
* symtab_xindex
,
3133 switch (parameters
->size_and_endianness())
3135 #ifdef HAVE_TARGET_32_LITTLE
3136 case Parameters::TARGET_32_LITTLE
:
3137 this->sized_write_section_symbol
<32, false>(os
, symtab_xindex
, of
,
3141 #ifdef HAVE_TARGET_32_BIG
3142 case Parameters::TARGET_32_BIG
:
3143 this->sized_write_section_symbol
<32, true>(os
, symtab_xindex
, of
,
3147 #ifdef HAVE_TARGET_64_LITTLE
3148 case Parameters::TARGET_64_LITTLE
:
3149 this->sized_write_section_symbol
<64, false>(os
, symtab_xindex
, of
,
3153 #ifdef HAVE_TARGET_64_BIG
3154 case Parameters::TARGET_64_BIG
:
3155 this->sized_write_section_symbol
<64, true>(os
, symtab_xindex
, of
,
3164 // Write out a section symbol, specialized for size and endianness.
3166 template<int size
, bool big_endian
>
3168 Symbol_table::sized_write_section_symbol(const Output_section
* os
,
3169 Output_symtab_xindex
* symtab_xindex
,
3173 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
3175 unsigned char* pov
= of
->get_output_view(offset
, sym_size
);
3177 elfcpp::Sym_write
<size
, big_endian
> osym(pov
);
3178 osym
.put_st_name(0);
3179 if (parameters
->options().relocatable())
3180 osym
.put_st_value(0);
3182 osym
.put_st_value(os
->address());
3183 osym
.put_st_size(0);
3184 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
,
3185 elfcpp::STT_SECTION
));
3186 osym
.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT
, 0));
3188 unsigned int shndx
= os
->out_shndx();
3189 if (shndx
>= elfcpp::SHN_LORESERVE
)
3191 symtab_xindex
->add(os
->symtab_index(), shndx
);
3192 shndx
= elfcpp::SHN_XINDEX
;
3194 osym
.put_st_shndx(shndx
);
3196 of
->write_output_view(offset
, sym_size
, pov
);
3199 // Print statistical information to stderr. This is used for --stats.
3202 Symbol_table::print_stats() const
3204 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3205 fprintf(stderr
, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3206 program_name
, this->table_
.size(), this->table_
.bucket_count());
3208 fprintf(stderr
, _("%s: symbol table entries: %zu\n"),
3209 program_name
, this->table_
.size());
3211 this->namepool_
.print_stats("symbol table stringpool");
3214 // We check for ODR violations by looking for symbols with the same
3215 // name for which the debugging information reports that they were
3216 // defined in disjoint source locations. When comparing the source
3217 // location, we consider instances with the same base filename to be
3218 // the same. This is because different object files/shared libraries
3219 // can include the same header file using different paths, and
3220 // different optimization settings can make the line number appear to
3221 // be a couple lines off, and we don't want to report an ODR violation
3224 // This struct is used to compare line information, as returned by
3225 // Dwarf_line_info::one_addr2line. It implements a < comparison
3226 // operator used with std::sort.
3228 struct Odr_violation_compare
3231 operator()(const std::string
& s1
, const std::string
& s2
) const
3233 // Inputs should be of the form "dirname/filename:linenum" where
3234 // "dirname/" is optional. We want to compare just the filename:linenum.
3236 // Find the last '/' in each string.
3237 std::string::size_type s1begin
= s1
.rfind('/');
3238 std::string::size_type s2begin
= s2
.rfind('/');
3239 // If there was no '/' in a string, start at the beginning.
3240 if (s1begin
== std::string::npos
)
3242 if (s2begin
== std::string::npos
)
3244 return s1
.compare(s1begin
, std::string::npos
,
3245 s2
, s2begin
, std::string::npos
) < 0;
3249 // Returns all of the lines attached to LOC, not just the one the
3250 // instruction actually came from.
3251 std::vector
<std::string
>
3252 Symbol_table::linenos_from_loc(const Task
* task
,
3253 const Symbol_location
& loc
)
3255 // We need to lock the object in order to read it. This
3256 // means that we have to run in a singleton Task. If we
3257 // want to run this in a general Task for better
3258 // performance, we will need one Task for object, plus
3259 // appropriate locking to ensure that we don't conflict with
3260 // other uses of the object. Also note, one_addr2line is not
3261 // currently thread-safe.
3262 Task_lock_obj
<Object
> tl(task
, loc
.object
);
3264 std::vector
<std::string
> result
;
3265 Symbol_location code_loc
= loc
;
3266 parameters
->target().function_location(&code_loc
);
3267 // 16 is the size of the object-cache that one_addr2line should use.
3268 std::string canonical_result
= Dwarf_line_info::one_addr2line(
3269 code_loc
.object
, code_loc
.shndx
, code_loc
.offset
, 16, &result
);
3270 if (!canonical_result
.empty())
3271 result
.push_back(canonical_result
);
3275 // OutputIterator that records if it was ever assigned to. This
3276 // allows it to be used with std::set_intersection() to check for
3277 // intersection rather than computing the intersection.
3278 struct Check_intersection
3280 Check_intersection()
3284 bool had_intersection() const
3285 { return this->value_
; }
3287 Check_intersection
& operator++()
3290 Check_intersection
& operator*()
3293 template<typename T
>
3294 Check_intersection
& operator=(const T
&)
3296 this->value_
= true;
3304 // Check candidate_odr_violations_ to find symbols with the same name
3305 // but apparently different definitions (different source-file/line-no
3306 // for each line assigned to the first instruction).
3309 Symbol_table::detect_odr_violations(const Task
* task
,
3310 const char* output_file_name
) const
3312 for (Odr_map::const_iterator it
= candidate_odr_violations_
.begin();
3313 it
!= candidate_odr_violations_
.end();
3316 const char* const symbol_name
= it
->first
;
3318 std::string first_object_name
;
3319 std::vector
<std::string
> first_object_linenos
;
3321 Unordered_set
<Symbol_location
, Symbol_location_hash
>::const_iterator
3322 locs
= it
->second
.begin();
3323 const Unordered_set
<Symbol_location
, Symbol_location_hash
>::const_iterator
3324 locs_end
= it
->second
.end();
3325 for (; locs
!= locs_end
&& first_object_linenos
.empty(); ++locs
)
3327 // Save the line numbers from the first definition to
3328 // compare to the other definitions. Ideally, we'd compare
3329 // every definition to every other, but we don't want to
3330 // take O(N^2) time to do this. This shortcut may cause
3331 // false negatives that appear or disappear depending on the
3332 // link order, but it won't cause false positives.
3333 first_object_name
= locs
->object
->name();
3334 first_object_linenos
= this->linenos_from_loc(task
, *locs
);
3337 // Sort by Odr_violation_compare to make std::set_intersection work.
3338 std::sort(first_object_linenos
.begin(), first_object_linenos
.end(),
3339 Odr_violation_compare());
3341 for (; locs
!= locs_end
; ++locs
)
3343 std::vector
<std::string
> linenos
=
3344 this->linenos_from_loc(task
, *locs
);
3345 // linenos will be empty if we couldn't parse the debug info.
3346 if (linenos
.empty())
3348 // Sort by Odr_violation_compare to make std::set_intersection work.
3349 std::sort(linenos
.begin(), linenos
.end(), Odr_violation_compare());
3351 Check_intersection intersection_result
=
3352 std::set_intersection(first_object_linenos
.begin(),
3353 first_object_linenos
.end(),
3356 Check_intersection(),
3357 Odr_violation_compare());
3358 if (!intersection_result
.had_intersection())
3360 gold_warning(_("while linking %s: symbol '%s' defined in "
3361 "multiple places (possible ODR violation):"),
3362 output_file_name
, demangle(symbol_name
).c_str());
3363 // This only prints one location from each definition,
3364 // which may not be the location we expect to intersect
3365 // with another definition. We could print the whole
3366 // set of locations, but that seems too verbose.
3367 gold_assert(!first_object_linenos
.empty());
3368 gold_assert(!linenos
.empty());
3369 fprintf(stderr
, _(" %s from %s\n"),
3370 first_object_linenos
[0].c_str(),
3371 first_object_name
.c_str());
3372 fprintf(stderr
, _(" %s from %s\n"),
3374 locs
->object
->name().c_str());
3375 // Only print one broken pair, to avoid needing to
3376 // compare against a list of the disjoint definition
3377 // locations we've found so far. (If we kept comparing
3378 // against just the first one, we'd get a lot of
3379 // redundant complaints about the second definition
3385 // We only call one_addr2line() in this function, so we can clear its cache.
3386 Dwarf_line_info::clear_addr2line_cache();
3389 // Warnings functions.
3391 // Add a new warning.
3394 Warnings::add_warning(Symbol_table
* symtab
, const char* name
, Object
* obj
,
3395 const std::string
& warning
)
3397 name
= symtab
->canonicalize_name(name
);
3398 this->warnings_
[name
].set(obj
, warning
);
3401 // Look through the warnings and mark the symbols for which we should
3402 // warn. This is called during Layout::finalize when we know the
3403 // sources for all the symbols.
3406 Warnings::note_warnings(Symbol_table
* symtab
)
3408 for (Warning_table::iterator p
= this->warnings_
.begin();
3409 p
!= this->warnings_
.end();
3412 Symbol
* sym
= symtab
->lookup(p
->first
, NULL
);
3414 && sym
->source() == Symbol::FROM_OBJECT
3415 && sym
->object() == p
->second
.object
)
3416 sym
->set_has_warning();
3420 // Issue a warning. This is called when we see a relocation against a
3421 // symbol for which has a warning.
3423 template<int size
, bool big_endian
>
3425 Warnings::issue_warning(const Symbol
* sym
,
3426 const Relocate_info
<size
, big_endian
>* relinfo
,
3427 size_t relnum
, off_t reloffset
) const
3429 gold_assert(sym
->has_warning());
3431 // We don't want to issue a warning for a relocation against the
3432 // symbol in the same object file in which the symbol is defined.
3433 if (sym
->object() == relinfo
->object
)
3436 Warning_table::const_iterator p
= this->warnings_
.find(sym
->name());
3437 gold_assert(p
!= this->warnings_
.end());
3438 gold_warning_at_location(relinfo
, relnum
, reloffset
,
3439 "%s", p
->second
.text
.c_str());
3442 // Instantiate the templates we need. We could use the configure
3443 // script to restrict this to only the ones needed for implemented
3446 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3449 Sized_symbol
<32>::allocate_common(Output_data
*, Value_type
);
3452 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3455 Sized_symbol
<64>::allocate_common(Output_data
*, Value_type
);
3458 #ifdef HAVE_TARGET_32_LITTLE
3461 Symbol_table::add_from_relobj
<32, false>(
3462 Sized_relobj_file
<32, false>* relobj
,
3463 const unsigned char* syms
,
3465 size_t symndx_offset
,
3466 const char* sym_names
,
3467 size_t sym_name_size
,
3468 Sized_relobj_file
<32, false>::Symbols
* sympointers
,
3472 #ifdef HAVE_TARGET_32_BIG
3475 Symbol_table::add_from_relobj
<32, true>(
3476 Sized_relobj_file
<32, true>* relobj
,
3477 const unsigned char* syms
,
3479 size_t symndx_offset
,
3480 const char* sym_names
,
3481 size_t sym_name_size
,
3482 Sized_relobj_file
<32, true>::Symbols
* sympointers
,
3486 #ifdef HAVE_TARGET_64_LITTLE
3489 Symbol_table::add_from_relobj
<64, false>(
3490 Sized_relobj_file
<64, false>* relobj
,
3491 const unsigned char* syms
,
3493 size_t symndx_offset
,
3494 const char* sym_names
,
3495 size_t sym_name_size
,
3496 Sized_relobj_file
<64, false>::Symbols
* sympointers
,
3500 #ifdef HAVE_TARGET_64_BIG
3503 Symbol_table::add_from_relobj
<64, true>(
3504 Sized_relobj_file
<64, true>* relobj
,
3505 const unsigned char* syms
,
3507 size_t symndx_offset
,
3508 const char* sym_names
,
3509 size_t sym_name_size
,
3510 Sized_relobj_file
<64, true>::Symbols
* sympointers
,
3514 #ifdef HAVE_TARGET_32_LITTLE
3517 Symbol_table::add_from_pluginobj
<32, false>(
3518 Sized_pluginobj
<32, false>* obj
,
3521 elfcpp::Sym
<32, false>* sym
);
3524 #ifdef HAVE_TARGET_32_BIG
3527 Symbol_table::add_from_pluginobj
<32, true>(
3528 Sized_pluginobj
<32, true>* obj
,
3531 elfcpp::Sym
<32, true>* sym
);
3534 #ifdef HAVE_TARGET_64_LITTLE
3537 Symbol_table::add_from_pluginobj
<64, false>(
3538 Sized_pluginobj
<64, false>* obj
,
3541 elfcpp::Sym
<64, false>* sym
);
3544 #ifdef HAVE_TARGET_64_BIG
3547 Symbol_table::add_from_pluginobj
<64, true>(
3548 Sized_pluginobj
<64, true>* obj
,
3551 elfcpp::Sym
<64, true>* sym
);
3554 #ifdef HAVE_TARGET_32_LITTLE
3557 Symbol_table::add_from_dynobj
<32, false>(
3558 Sized_dynobj
<32, false>* dynobj
,
3559 const unsigned char* syms
,
3561 const char* sym_names
,
3562 size_t sym_name_size
,
3563 const unsigned char* versym
,
3565 const std::vector
<const char*>* version_map
,
3566 Sized_relobj_file
<32, false>::Symbols
* sympointers
,
3570 #ifdef HAVE_TARGET_32_BIG
3573 Symbol_table::add_from_dynobj
<32, true>(
3574 Sized_dynobj
<32, true>* dynobj
,
3575 const unsigned char* syms
,
3577 const char* sym_names
,
3578 size_t sym_name_size
,
3579 const unsigned char* versym
,
3581 const std::vector
<const char*>* version_map
,
3582 Sized_relobj_file
<32, true>::Symbols
* sympointers
,
3586 #ifdef HAVE_TARGET_64_LITTLE
3589 Symbol_table::add_from_dynobj
<64, false>(
3590 Sized_dynobj
<64, false>* dynobj
,
3591 const unsigned char* syms
,
3593 const char* sym_names
,
3594 size_t sym_name_size
,
3595 const unsigned char* versym
,
3597 const std::vector
<const char*>* version_map
,
3598 Sized_relobj_file
<64, false>::Symbols
* sympointers
,
3602 #ifdef HAVE_TARGET_64_BIG
3605 Symbol_table::add_from_dynobj
<64, true>(
3606 Sized_dynobj
<64, true>* dynobj
,
3607 const unsigned char* syms
,
3609 const char* sym_names
,
3610 size_t sym_name_size
,
3611 const unsigned char* versym
,
3613 const std::vector
<const char*>* version_map
,
3614 Sized_relobj_file
<64, true>::Symbols
* sympointers
,
3618 #ifdef HAVE_TARGET_32_LITTLE
3621 Symbol_table::add_from_incrobj(
3625 elfcpp::Sym
<32, false>* sym
);
3628 #ifdef HAVE_TARGET_32_BIG
3631 Symbol_table::add_from_incrobj(
3635 elfcpp::Sym
<32, true>* sym
);
3638 #ifdef HAVE_TARGET_64_LITTLE
3641 Symbol_table::add_from_incrobj(
3645 elfcpp::Sym
<64, false>* sym
);
3648 #ifdef HAVE_TARGET_64_BIG
3651 Symbol_table::add_from_incrobj(
3655 elfcpp::Sym
<64, true>* sym
);
3658 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3661 Symbol_table::define_with_copy_reloc
<32>(
3662 Sized_symbol
<32>* sym
,
3664 elfcpp::Elf_types
<32>::Elf_Addr value
);
3667 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3670 Symbol_table::define_with_copy_reloc
<64>(
3671 Sized_symbol
<64>* sym
,
3673 elfcpp::Elf_types
<64>::Elf_Addr value
);
3676 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3679 Sized_symbol
<32>::init_output_data(const char* name
, const char* version
,
3680 Output_data
* od
, Value_type value
,
3681 Size_type symsize
, elfcpp::STT type
,
3682 elfcpp::STB binding
,
3683 elfcpp::STV visibility
,
3684 unsigned char nonvis
,
3685 bool offset_is_from_end
,
3686 bool is_predefined
);
3689 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3692 Sized_symbol
<64>::init_output_data(const char* name
, const char* version
,
3693 Output_data
* od
, Value_type value
,
3694 Size_type symsize
, elfcpp::STT type
,
3695 elfcpp::STB binding
,
3696 elfcpp::STV visibility
,
3697 unsigned char nonvis
,
3698 bool offset_is_from_end
,
3699 bool is_predefined
);
3702 #ifdef HAVE_TARGET_32_LITTLE
3705 Warnings::issue_warning
<32, false>(const Symbol
* sym
,
3706 const Relocate_info
<32, false>* relinfo
,
3707 size_t relnum
, off_t reloffset
) const;
3710 #ifdef HAVE_TARGET_32_BIG
3713 Warnings::issue_warning
<32, true>(const Symbol
* sym
,
3714 const Relocate_info
<32, true>* relinfo
,
3715 size_t relnum
, off_t reloffset
) const;
3718 #ifdef HAVE_TARGET_64_LITTLE
3721 Warnings::issue_warning
<64, false>(const Symbol
* sym
,
3722 const Relocate_info
<64, false>* relinfo
,
3723 size_t relnum
, off_t reloffset
) const;
3726 #ifdef HAVE_TARGET_64_BIG
3729 Warnings::issue_warning
<64, true>(const Symbol
* sym
,
3730 const Relocate_info
<64, true>* relinfo
,
3731 size_t relnum
, off_t reloffset
) const;
3734 } // End namespace gold.