* Makefile.in (copying.c): Use the top-level COPYING3 as the file
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 #include "gold.h"
4
5 #include <stdint.h>
6 #include <string>
7 #include <utility>
8
9 #include "object.h"
10 #include "dynobj.h"
11 #include "output.h"
12 #include "target.h"
13 #include "workqueue.h"
14 #include "symtab.h"
15
16 namespace gold
17 {
18
19 // Class Symbol.
20
21 // Initialize fields in Symbol. This initializes everything except u_
22 // and source_.
23
24 void
25 Symbol::init_fields(const char* name, const char* version,
26 elfcpp::STT type, elfcpp::STB binding,
27 elfcpp::STV visibility, unsigned char nonvis)
28 {
29 this->name_ = name;
30 this->version_ = version;
31 this->symtab_index_ = 0;
32 this->dynsym_index_ = 0;
33 this->got_offset_ = 0;
34 this->type_ = type;
35 this->binding_ = binding;
36 this->visibility_ = visibility;
37 this->nonvis_ = nonvis;
38 this->is_target_special_ = false;
39 this->is_def_ = false;
40 this->is_forwarder_ = false;
41 this->needs_dynsym_entry_ = false;
42 this->in_reg_ = false;
43 this->in_dyn_ = false;
44 this->has_got_offset_ = false;
45 this->has_warning_ = false;
46 }
47
48 // Initialize the fields in the base class Symbol for SYM in OBJECT.
49
50 template<int size, bool big_endian>
51 void
52 Symbol::init_base(const char* name, const char* version, Object* object,
53 const elfcpp::Sym<size, big_endian>& sym)
54 {
55 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
56 sym.get_st_visibility(), sym.get_st_nonvis());
57 this->u_.from_object.object = object;
58 // FIXME: Handle SHN_XINDEX.
59 this->u_.from_object.shndx = sym.get_st_shndx();
60 this->source_ = FROM_OBJECT;
61 this->in_reg_ = !object->is_dynamic();
62 this->in_dyn_ = object->is_dynamic();
63 }
64
65 // Initialize the fields in the base class Symbol for a symbol defined
66 // in an Output_data.
67
68 void
69 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
70 elfcpp::STB binding, elfcpp::STV visibility,
71 unsigned char nonvis, bool offset_is_from_end)
72 {
73 this->init_fields(name, NULL, type, binding, visibility, nonvis);
74 this->u_.in_output_data.output_data = od;
75 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
76 this->source_ = IN_OUTPUT_DATA;
77 this->in_reg_ = true;
78 }
79
80 // Initialize the fields in the base class Symbol for a symbol defined
81 // in an Output_segment.
82
83 void
84 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
85 elfcpp::STB binding, elfcpp::STV visibility,
86 unsigned char nonvis, Segment_offset_base offset_base)
87 {
88 this->init_fields(name, NULL, type, binding, visibility, nonvis);
89 this->u_.in_output_segment.output_segment = os;
90 this->u_.in_output_segment.offset_base = offset_base;
91 this->source_ = IN_OUTPUT_SEGMENT;
92 this->in_reg_ = true;
93 }
94
95 // Initialize the fields in the base class Symbol for a symbol defined
96 // as a constant.
97
98 void
99 Symbol::init_base(const char* name, elfcpp::STT type,
100 elfcpp::STB binding, elfcpp::STV visibility,
101 unsigned char nonvis)
102 {
103 this->init_fields(name, NULL, type, binding, visibility, nonvis);
104 this->source_ = CONSTANT;
105 this->in_reg_ = true;
106 }
107
108 // Initialize the fields in Sized_symbol for SYM in OBJECT.
109
110 template<int size>
111 template<bool big_endian>
112 void
113 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
114 const elfcpp::Sym<size, big_endian>& sym)
115 {
116 this->init_base(name, version, object, sym);
117 this->value_ = sym.get_st_value();
118 this->symsize_ = sym.get_st_size();
119 }
120
121 // Initialize the fields in Sized_symbol for a symbol defined in an
122 // Output_data.
123
124 template<int size>
125 void
126 Sized_symbol<size>::init(const char* name, Output_data* od,
127 Value_type value, Size_type symsize,
128 elfcpp::STT type, elfcpp::STB binding,
129 elfcpp::STV visibility, unsigned char nonvis,
130 bool offset_is_from_end)
131 {
132 this->init_base(name, od, type, binding, visibility, nonvis,
133 offset_is_from_end);
134 this->value_ = value;
135 this->symsize_ = symsize;
136 }
137
138 // Initialize the fields in Sized_symbol for a symbol defined in an
139 // Output_segment.
140
141 template<int size>
142 void
143 Sized_symbol<size>::init(const char* name, Output_segment* os,
144 Value_type value, Size_type symsize,
145 elfcpp::STT type, elfcpp::STB binding,
146 elfcpp::STV visibility, unsigned char nonvis,
147 Segment_offset_base offset_base)
148 {
149 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
150 this->value_ = value;
151 this->symsize_ = symsize;
152 }
153
154 // Initialize the fields in Sized_symbol for a symbol defined as a
155 // constant.
156
157 template<int size>
158 void
159 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
160 elfcpp::STT type, elfcpp::STB binding,
161 elfcpp::STV visibility, unsigned char nonvis)
162 {
163 this->init_base(name, type, binding, visibility, nonvis);
164 this->value_ = value;
165 this->symsize_ = symsize;
166 }
167
168 // Class Symbol_table.
169
170 Symbol_table::Symbol_table()
171 : size_(0), saw_undefined_(0), offset_(0), table_(), namepool_(),
172 forwarders_(), commons_(), warnings_()
173 {
174 }
175
176 Symbol_table::~Symbol_table()
177 {
178 }
179
180 // The hash function. The key is always canonicalized, so we use a
181 // simple combination of the pointers.
182
183 size_t
184 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
185 {
186 return key.first ^ key.second;
187 }
188
189 // The symbol table key equality function. This is only called with
190 // canonicalized name and version strings, so we can use pointer
191 // comparison.
192
193 bool
194 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
195 const Symbol_table_key& k2) const
196 {
197 return k1.first == k2.first && k1.second == k2.second;
198 }
199
200 // Make TO a symbol which forwards to FROM.
201
202 void
203 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
204 {
205 gold_assert(from != to);
206 gold_assert(!from->is_forwarder() && !to->is_forwarder());
207 this->forwarders_[from] = to;
208 from->set_forwarder();
209 }
210
211 // Resolve the forwards from FROM, returning the real symbol.
212
213 Symbol*
214 Symbol_table::resolve_forwards(const Symbol* from) const
215 {
216 gold_assert(from->is_forwarder());
217 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
218 this->forwarders_.find(from);
219 gold_assert(p != this->forwarders_.end());
220 return p->second;
221 }
222
223 // Look up a symbol by name.
224
225 Symbol*
226 Symbol_table::lookup(const char* name, const char* version) const
227 {
228 Stringpool::Key name_key;
229 name = this->namepool_.find(name, &name_key);
230 if (name == NULL)
231 return NULL;
232
233 Stringpool::Key version_key = 0;
234 if (version != NULL)
235 {
236 version = this->namepool_.find(version, &version_key);
237 if (version == NULL)
238 return NULL;
239 }
240
241 Symbol_table_key key(name_key, version_key);
242 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
243 if (p == this->table_.end())
244 return NULL;
245 return p->second;
246 }
247
248 // Resolve a Symbol with another Symbol. This is only used in the
249 // unusual case where there are references to both an unversioned
250 // symbol and a symbol with a version, and we then discover that that
251 // version is the default version. Because this is unusual, we do
252 // this the slow way, by converting back to an ELF symbol.
253
254 template<int size, bool big_endian>
255 void
256 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
257 const char* version ACCEPT_SIZE_ENDIAN)
258 {
259 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
260 elfcpp::Sym_write<size, big_endian> esym(buf);
261 // We don't bother to set the st_name field.
262 esym.put_st_value(from->value());
263 esym.put_st_size(from->symsize());
264 esym.put_st_info(from->binding(), from->type());
265 esym.put_st_other(from->visibility(), from->nonvis());
266 esym.put_st_shndx(from->shndx());
267 Symbol_table::resolve(to, esym.sym(), from->object(), version);
268 }
269
270 // Add one symbol from OBJECT to the symbol table. NAME is symbol
271 // name and VERSION is the version; both are canonicalized. DEF is
272 // whether this is the default version.
273
274 // If DEF is true, then this is the definition of a default version of
275 // a symbol. That means that any lookup of NAME/NULL and any lookup
276 // of NAME/VERSION should always return the same symbol. This is
277 // obvious for references, but in particular we want to do this for
278 // definitions: overriding NAME/NULL should also override
279 // NAME/VERSION. If we don't do that, it would be very hard to
280 // override functions in a shared library which uses versioning.
281
282 // We implement this by simply making both entries in the hash table
283 // point to the same Symbol structure. That is easy enough if this is
284 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
285 // that we have seen both already, in which case they will both have
286 // independent entries in the symbol table. We can't simply change
287 // the symbol table entry, because we have pointers to the entries
288 // attached to the object files. So we mark the entry attached to the
289 // object file as a forwarder, and record it in the forwarders_ map.
290 // Note that entries in the hash table will never be marked as
291 // forwarders.
292
293 template<int size, bool big_endian>
294 Symbol*
295 Symbol_table::add_from_object(Object* object,
296 const char *name,
297 Stringpool::Key name_key,
298 const char *version,
299 Stringpool::Key version_key,
300 bool def,
301 const elfcpp::Sym<size, big_endian>& sym)
302 {
303 Symbol* const snull = NULL;
304 std::pair<typename Symbol_table_type::iterator, bool> ins =
305 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
306 snull));
307
308 std::pair<typename Symbol_table_type::iterator, bool> insdef =
309 std::make_pair(this->table_.end(), false);
310 if (def)
311 {
312 const Stringpool::Key vnull_key = 0;
313 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
314 vnull_key),
315 snull));
316 }
317
318 // ins.first: an iterator, which is a pointer to a pair.
319 // ins.first->first: the key (a pair of name and version).
320 // ins.first->second: the value (Symbol*).
321 // ins.second: true if new entry was inserted, false if not.
322
323 Sized_symbol<size>* ret;
324 bool was_undefined;
325 bool was_common;
326 if (!ins.second)
327 {
328 // We already have an entry for NAME/VERSION.
329 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
330 SELECT_SIZE(size));
331 gold_assert(ret != NULL);
332
333 was_undefined = ret->is_undefined();
334 was_common = ret->is_common();
335
336 Symbol_table::resolve(ret, sym, object, version);
337
338 if (def)
339 {
340 if (insdef.second)
341 {
342 // This is the first time we have seen NAME/NULL. Make
343 // NAME/NULL point to NAME/VERSION.
344 insdef.first->second = ret;
345 }
346 else if (insdef.first->second != ret)
347 {
348 // This is the unfortunate case where we already have
349 // entries for both NAME/VERSION and NAME/NULL.
350 const Sized_symbol<size>* sym2;
351 sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
352 insdef.first->second
353 SELECT_SIZE(size));
354 Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
355 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
356 this->make_forwarder(insdef.first->second, ret);
357 insdef.first->second = ret;
358 }
359 }
360 }
361 else
362 {
363 // This is the first time we have seen NAME/VERSION.
364 gold_assert(ins.first->second == NULL);
365
366 was_undefined = false;
367 was_common = false;
368
369 if (def && !insdef.second)
370 {
371 // We already have an entry for NAME/NULL. If we override
372 // it, then change it to NAME/VERSION.
373 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
374 insdef.first->second
375 SELECT_SIZE(size));
376 Symbol_table::resolve(ret, sym, object, version);
377 ins.first->second = ret;
378 }
379 else
380 {
381 Sized_target<size, big_endian>* target =
382 object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
383 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
384 if (!target->has_make_symbol())
385 ret = new Sized_symbol<size>();
386 else
387 {
388 ret = target->make_symbol();
389 if (ret == NULL)
390 {
391 // This means that we don't want a symbol table
392 // entry after all.
393 if (!def)
394 this->table_.erase(ins.first);
395 else
396 {
397 this->table_.erase(insdef.first);
398 // Inserting insdef invalidated ins.
399 this->table_.erase(std::make_pair(name_key,
400 version_key));
401 }
402 return NULL;
403 }
404 }
405
406 ret->init(name, version, object, sym);
407
408 ins.first->second = ret;
409 if (def)
410 {
411 // This is the first time we have seen NAME/NULL. Point
412 // it at the new entry for NAME/VERSION.
413 gold_assert(insdef.second);
414 insdef.first->second = ret;
415 }
416 }
417 }
418
419 // Record every time we see a new undefined symbol, to speed up
420 // archive groups.
421 if (!was_undefined && ret->is_undefined())
422 ++this->saw_undefined_;
423
424 // Keep track of common symbols, to speed up common symbol
425 // allocation.
426 if (!was_common && ret->is_common())
427 this->commons_.push_back(ret);
428
429 return ret;
430 }
431
432 // Add all the symbols in a relocatable object to the hash table.
433
434 template<int size, bool big_endian>
435 void
436 Symbol_table::add_from_relobj(
437 Sized_relobj<size, big_endian>* relobj,
438 const unsigned char* syms,
439 size_t count,
440 const char* sym_names,
441 size_t sym_name_size,
442 Symbol** sympointers)
443 {
444 // We take the size from the first object we see.
445 if (this->get_size() == 0)
446 this->set_size(size);
447
448 if (size != this->get_size() || size != relobj->target()->get_size())
449 {
450 fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
451 program_name, relobj->name().c_str());
452 gold_exit(false);
453 }
454
455 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
456
457 const unsigned char* p = syms;
458 for (size_t i = 0; i < count; ++i, p += sym_size)
459 {
460 elfcpp::Sym<size, big_endian> sym(p);
461 elfcpp::Sym<size, big_endian>* psym = &sym;
462
463 unsigned int st_name = psym->get_st_name();
464 if (st_name >= sym_name_size)
465 {
466 fprintf(stderr,
467 _("%s: %s: bad global symbol name offset %u at %lu\n"),
468 program_name, relobj->name().c_str(), st_name,
469 static_cast<unsigned long>(i));
470 gold_exit(false);
471 }
472
473 const char* name = sym_names + st_name;
474
475 // A symbol defined in a section which we are not including must
476 // be treated as an undefined symbol.
477 unsigned char symbuf[sym_size];
478 elfcpp::Sym<size, big_endian> sym2(symbuf);
479 unsigned int st_shndx = psym->get_st_shndx();
480 if (st_shndx != elfcpp::SHN_UNDEF
481 && st_shndx < elfcpp::SHN_LORESERVE
482 && !relobj->is_section_included(st_shndx))
483 {
484 memcpy(symbuf, p, sym_size);
485 elfcpp::Sym_write<size, big_endian> sw(symbuf);
486 sw.put_st_shndx(elfcpp::SHN_UNDEF);
487 psym = &sym2;
488 }
489
490 // In an object file, an '@' in the name separates the symbol
491 // name from the version name. If there are two '@' characters,
492 // this is the default version.
493 const char* ver = strchr(name, '@');
494
495 Symbol* res;
496 if (ver == NULL)
497 {
498 Stringpool::Key name_key;
499 name = this->namepool_.add(name, &name_key);
500 res = this->add_from_object(relobj, name, name_key, NULL, 0,
501 false, *psym);
502 }
503 else
504 {
505 Stringpool::Key name_key;
506 name = this->namepool_.add(name, ver - name, &name_key);
507
508 bool def = false;
509 ++ver;
510 if (*ver == '@')
511 {
512 def = true;
513 ++ver;
514 }
515
516 Stringpool::Key ver_key;
517 ver = this->namepool_.add(ver, &ver_key);
518
519 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
520 def, *psym);
521 }
522
523 *sympointers++ = res;
524 }
525 }
526
527 // Add all the symbols in a dynamic object to the hash table.
528
529 template<int size, bool big_endian>
530 void
531 Symbol_table::add_from_dynobj(
532 Sized_dynobj<size, big_endian>* dynobj,
533 const unsigned char* syms,
534 size_t count,
535 const char* sym_names,
536 size_t sym_name_size,
537 const unsigned char* versym,
538 size_t versym_size,
539 const std::vector<const char*>* version_map)
540 {
541 // We take the size from the first object we see.
542 if (this->get_size() == 0)
543 this->set_size(size);
544
545 if (size != this->get_size() || size != dynobj->target()->get_size())
546 {
547 fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
548 program_name, dynobj->name().c_str());
549 gold_exit(false);
550 }
551
552 if (versym != NULL && versym_size / 2 < count)
553 {
554 fprintf(stderr, _("%s: %s: too few symbol versions\n"),
555 program_name, dynobj->name().c_str());
556 gold_exit(false);
557 }
558
559 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
560
561 const unsigned char* p = syms;
562 const unsigned char* vs = versym;
563 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
564 {
565 elfcpp::Sym<size, big_endian> sym(p);
566
567 // Ignore symbols with local binding.
568 if (sym.get_st_bind() == elfcpp::STB_LOCAL)
569 continue;
570
571 unsigned int st_name = sym.get_st_name();
572 if (st_name >= sym_name_size)
573 {
574 fprintf(stderr, _("%s: %s: bad symbol name offset %u at %lu\n"),
575 program_name, dynobj->name().c_str(), st_name,
576 static_cast<unsigned long>(i));
577 gold_exit(false);
578 }
579
580 const char* name = sym_names + st_name;
581
582 if (versym == NULL)
583 {
584 Stringpool::Key name_key;
585 name = this->namepool_.add(name, &name_key);
586 this->add_from_object(dynobj, name, name_key, NULL, 0,
587 false, sym);
588 continue;
589 }
590
591 // Read the version information.
592
593 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
594
595 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
596 v &= elfcpp::VERSYM_VERSION;
597
598 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL))
599 {
600 // This symbol should not be visible outside the object.
601 continue;
602 }
603
604 // At this point we are definitely going to add this symbol.
605 Stringpool::Key name_key;
606 name = this->namepool_.add(name, &name_key);
607
608 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
609 {
610 // This symbol does not have a version.
611 this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym);
612 continue;
613 }
614
615 if (v >= version_map->size())
616 {
617 fprintf(stderr,
618 _("%s: %s: versym for symbol %zu out of range: %u\n"),
619 program_name, dynobj->name().c_str(), i, v);
620 gold_exit(false);
621 }
622
623 const char* version = (*version_map)[v];
624 if (version == NULL)
625 {
626 fprintf(stderr, _("%s: %s: versym for symbol %zu has no name: %u\n"),
627 program_name, dynobj->name().c_str(), i, v);
628 gold_exit(false);
629 }
630
631 Stringpool::Key version_key;
632 version = this->namepool_.add(version, &version_key);
633
634 // If this is an absolute symbol, and the version name and
635 // symbol name are the same, then this is the version definition
636 // symbol. These symbols exist to support using -u to pull in
637 // particular versions. We do not want to record a version for
638 // them.
639 if (sym.get_st_shndx() == elfcpp::SHN_ABS && name_key == version_key)
640 {
641 this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym);
642 continue;
643 }
644
645 const bool def = !hidden && sym.get_st_shndx() != elfcpp::SHN_UNDEF;
646
647 this->add_from_object(dynobj, name, name_key, version, version_key,
648 def, sym);
649 }
650 }
651
652 // Create and return a specially defined symbol. If ONLY_IF_REF is
653 // true, then only create the symbol if there is a reference to it.
654
655 template<int size, bool big_endian>
656 Sized_symbol<size>*
657 Symbol_table::define_special_symbol(const Target* target, const char* name,
658 const char* version, bool only_if_ref
659 ACCEPT_SIZE_ENDIAN)
660 {
661 gold_assert(this->size_ == size);
662
663 Symbol* oldsym;
664 Sized_symbol<size>* sym;
665
666 if (only_if_ref)
667 {
668 oldsym = this->lookup(name, version);
669 if (oldsym == NULL || !oldsym->is_undefined())
670 return NULL;
671 sym = NULL;
672
673 // Canonicalize NAME and VERSION.
674 name = oldsym->name();
675 version = oldsym->version();
676 }
677 else
678 {
679 // Canonicalize NAME and VERSION.
680 Stringpool::Key name_key;
681 name = this->namepool_.add(name, &name_key);
682
683 Stringpool::Key version_key = 0;
684 if (version != NULL)
685 version = this->namepool_.add(version, &version_key);
686
687 Symbol* const snull = NULL;
688 std::pair<typename Symbol_table_type::iterator, bool> ins =
689 this->table_.insert(std::make_pair(std::make_pair(name_key,
690 version_key),
691 snull));
692
693 if (!ins.second)
694 {
695 // We already have a symbol table entry for NAME/VERSION.
696 oldsym = ins.first->second;
697 gold_assert(oldsym != NULL);
698 sym = NULL;
699 }
700 else
701 {
702 // We haven't seen this symbol before.
703 gold_assert(ins.first->second == NULL);
704
705 if (!target->has_make_symbol())
706 sym = new Sized_symbol<size>();
707 else
708 {
709 gold_assert(target->get_size() == size);
710 gold_assert(target->is_big_endian() ? big_endian : !big_endian);
711 typedef Sized_target<size, big_endian> My_target;
712 const My_target* sized_target =
713 static_cast<const My_target*>(target);
714 sym = sized_target->make_symbol();
715 if (sym == NULL)
716 return NULL;
717 }
718
719 ins.first->second = sym;
720 oldsym = NULL;
721 }
722 }
723
724 if (oldsym != NULL)
725 {
726 gold_assert(sym == NULL);
727
728 sym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
729 SELECT_SIZE(size));
730 gold_assert(sym->source() == Symbol::FROM_OBJECT);
731 const int old_shndx = sym->shndx();
732 if (old_shndx != elfcpp::SHN_UNDEF
733 && old_shndx != elfcpp::SHN_COMMON
734 && !sym->object()->is_dynamic())
735 {
736 fprintf(stderr, "%s: linker defined: multiple definition of %s\n",
737 program_name, name);
738 // FIXME: Report old location. Record that we have seen an
739 // error.
740 return NULL;
741 }
742
743 // Our new definition is going to override the old reference.
744 }
745
746 return sym;
747 }
748
749 // Define a symbol based on an Output_data.
750
751 Symbol*
752 Symbol_table::define_in_output_data(const Target* target, const char* name,
753 const char* version, Output_data* od,
754 uint64_t value, uint64_t symsize,
755 elfcpp::STT type, elfcpp::STB binding,
756 elfcpp::STV visibility,
757 unsigned char nonvis,
758 bool offset_is_from_end,
759 bool only_if_ref)
760 {
761 gold_assert(target->get_size() == this->size_);
762 if (this->size_ == 32)
763 return this->do_define_in_output_data<32>(target, name, version, od, value,
764 symsize, type, binding,
765 visibility, nonvis,
766 offset_is_from_end, only_if_ref);
767 else if (this->size_ == 64)
768 return this->do_define_in_output_data<64>(target, name, version, od, value,
769 symsize, type, binding,
770 visibility, nonvis,
771 offset_is_from_end, only_if_ref);
772 else
773 gold_unreachable();
774 }
775
776 // Define a symbol in an Output_data, sized version.
777
778 template<int size>
779 Sized_symbol<size>*
780 Symbol_table::do_define_in_output_data(
781 const Target* target,
782 const char* name,
783 const char* version,
784 Output_data* od,
785 typename elfcpp::Elf_types<size>::Elf_Addr value,
786 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
787 elfcpp::STT type,
788 elfcpp::STB binding,
789 elfcpp::STV visibility,
790 unsigned char nonvis,
791 bool offset_is_from_end,
792 bool only_if_ref)
793 {
794 Sized_symbol<size>* sym;
795
796 if (target->is_big_endian())
797 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
798 target, name, version, only_if_ref
799 SELECT_SIZE_ENDIAN(size, true));
800 else
801 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
802 target, name, version, only_if_ref
803 SELECT_SIZE_ENDIAN(size, false));
804
805 if (sym == NULL)
806 return NULL;
807
808 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
809 offset_is_from_end);
810
811 return sym;
812 }
813
814 // Define a symbol based on an Output_segment.
815
816 Symbol*
817 Symbol_table::define_in_output_segment(const Target* target, const char* name,
818 const char* version, Output_segment* os,
819 uint64_t value, uint64_t symsize,
820 elfcpp::STT type, elfcpp::STB binding,
821 elfcpp::STV visibility,
822 unsigned char nonvis,
823 Symbol::Segment_offset_base offset_base,
824 bool only_if_ref)
825 {
826 gold_assert(target->get_size() == this->size_);
827 if (this->size_ == 32)
828 return this->do_define_in_output_segment<32>(target, name, version, os,
829 value, symsize, type, binding,
830 visibility, nonvis,
831 offset_base, only_if_ref);
832 else if (this->size_ == 64)
833 return this->do_define_in_output_segment<64>(target, name, version, os,
834 value, symsize, type, binding,
835 visibility, nonvis,
836 offset_base, only_if_ref);
837 else
838 gold_unreachable();
839 }
840
841 // Define a symbol in an Output_segment, sized version.
842
843 template<int size>
844 Sized_symbol<size>*
845 Symbol_table::do_define_in_output_segment(
846 const Target* target,
847 const char* name,
848 const char* version,
849 Output_segment* os,
850 typename elfcpp::Elf_types<size>::Elf_Addr value,
851 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
852 elfcpp::STT type,
853 elfcpp::STB binding,
854 elfcpp::STV visibility,
855 unsigned char nonvis,
856 Symbol::Segment_offset_base offset_base,
857 bool only_if_ref)
858 {
859 Sized_symbol<size>* sym;
860
861 if (target->is_big_endian())
862 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
863 target, name, version, only_if_ref
864 SELECT_SIZE_ENDIAN(size, true));
865 else
866 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
867 target, name, version, only_if_ref
868 SELECT_SIZE_ENDIAN(size, false));
869
870 if (sym == NULL)
871 return NULL;
872
873 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
874 offset_base);
875
876 return sym;
877 }
878
879 // Define a special symbol with a constant value. It is a multiple
880 // definition error if this symbol is already defined.
881
882 Symbol*
883 Symbol_table::define_as_constant(const Target* target, const char* name,
884 const char* version, uint64_t value,
885 uint64_t symsize, elfcpp::STT type,
886 elfcpp::STB binding, elfcpp::STV visibility,
887 unsigned char nonvis, bool only_if_ref)
888 {
889 gold_assert(target->get_size() == this->size_);
890 if (this->size_ == 32)
891 return this->do_define_as_constant<32>(target, name, version, value,
892 symsize, type, binding, visibility,
893 nonvis, only_if_ref);
894 else if (this->size_ == 64)
895 return this->do_define_as_constant<64>(target, name, version, value,
896 symsize, type, binding, visibility,
897 nonvis, only_if_ref);
898 else
899 gold_unreachable();
900 }
901
902 // Define a symbol as a constant, sized version.
903
904 template<int size>
905 Sized_symbol<size>*
906 Symbol_table::do_define_as_constant(
907 const Target* target,
908 const char* name,
909 const char* version,
910 typename elfcpp::Elf_types<size>::Elf_Addr value,
911 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
912 elfcpp::STT type,
913 elfcpp::STB binding,
914 elfcpp::STV visibility,
915 unsigned char nonvis,
916 bool only_if_ref)
917 {
918 Sized_symbol<size>* sym;
919
920 if (target->is_big_endian())
921 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
922 target, name, version, only_if_ref
923 SELECT_SIZE_ENDIAN(size, true));
924 else
925 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
926 target, name, version, only_if_ref
927 SELECT_SIZE_ENDIAN(size, false));
928
929 if (sym == NULL)
930 return NULL;
931
932 sym->init(name, value, symsize, type, binding, visibility, nonvis);
933
934 return sym;
935 }
936
937 // Define a set of symbols in output sections.
938
939 void
940 Symbol_table::define_symbols(const Layout* layout, const Target* target,
941 int count, const Define_symbol_in_section* p)
942 {
943 for (int i = 0; i < count; ++i, ++p)
944 {
945 Output_section* os = layout->find_output_section(p->output_section);
946 if (os != NULL)
947 this->define_in_output_data(target, p->name, NULL, os, p->value,
948 p->size, p->type, p->binding,
949 p->visibility, p->nonvis,
950 p->offset_is_from_end, p->only_if_ref);
951 else
952 this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
953 p->binding, p->visibility, p->nonvis,
954 p->only_if_ref);
955 }
956 }
957
958 // Define a set of symbols in output segments.
959
960 void
961 Symbol_table::define_symbols(const Layout* layout, const Target* target,
962 int count, const Define_symbol_in_segment* p)
963 {
964 for (int i = 0; i < count; ++i, ++p)
965 {
966 Output_segment* os = layout->find_output_segment(p->segment_type,
967 p->segment_flags_set,
968 p->segment_flags_clear);
969 if (os != NULL)
970 this->define_in_output_segment(target, p->name, NULL, os, p->value,
971 p->size, p->type, p->binding,
972 p->visibility, p->nonvis,
973 p->offset_base, p->only_if_ref);
974 else
975 this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
976 p->binding, p->visibility, p->nonvis,
977 p->only_if_ref);
978 }
979 }
980
981 // Set the dynamic symbol indexes. INDEX is the index of the first
982 // global dynamic symbol. Pointers to the symbols are stored into the
983 // vector SYMS. The names are added to DYNPOOL. This returns an
984 // updated dynamic symbol index.
985
986 unsigned int
987 Symbol_table::set_dynsym_indexes(const General_options* options,
988 const Target* target,
989 unsigned int index,
990 std::vector<Symbol*>* syms,
991 Stringpool* dynpool,
992 Versions* versions)
993 {
994 for (Symbol_table_type::iterator p = this->table_.begin();
995 p != this->table_.end();
996 ++p)
997 {
998 Symbol* sym = p->second;
999
1000 // Note that SYM may already have a dynamic symbol index, since
1001 // some symbols appear more than once in the symbol table, with
1002 // and without a version.
1003
1004 if (!sym->needs_dynsym_entry()
1005 && (!options->export_dynamic()
1006 || !sym->in_reg()
1007 || !sym->is_externally_visible()))
1008 sym->set_dynsym_index(-1U);
1009 else if (!sym->has_dynsym_index())
1010 {
1011 sym->set_dynsym_index(index);
1012 ++index;
1013 syms->push_back(sym);
1014 dynpool->add(sym->name(), NULL);
1015
1016 // Record any version information.
1017 if (sym->version() != NULL)
1018 versions->record_version(options, dynpool, sym);
1019 }
1020 }
1021
1022 // Finish up the versions. In some cases this may add new dynamic
1023 // symbols.
1024 index = versions->finalize(target, this, index, syms);
1025
1026 return index;
1027 }
1028
1029 // Set the final values for all the symbols. The index of the first
1030 // global symbol in the output file is INDEX. Record the file offset
1031 // OFF. Add their names to POOL. Return the new file offset.
1032
1033 off_t
1034 Symbol_table::finalize(unsigned int index, off_t off, off_t dynoff,
1035 size_t dyn_global_index, size_t dyncount,
1036 Stringpool* pool)
1037 {
1038 off_t ret;
1039
1040 gold_assert(index != 0);
1041 this->first_global_index_ = index;
1042
1043 this->dynamic_offset_ = dynoff;
1044 this->first_dynamic_global_index_ = dyn_global_index;
1045 this->dynamic_count_ = dyncount;
1046
1047 if (this->size_ == 32)
1048 ret = this->sized_finalize<32>(index, off, pool);
1049 else if (this->size_ == 64)
1050 ret = this->sized_finalize<64>(index, off, pool);
1051 else
1052 gold_unreachable();
1053
1054 // Now that we have the final symbol table, we can reliably note
1055 // which symbols should get warnings.
1056 this->warnings_.note_warnings(this);
1057
1058 return ret;
1059 }
1060
1061 // Set the final value for all the symbols. This is called after
1062 // Layout::finalize, so all the output sections have their final
1063 // address.
1064
1065 template<int size>
1066 off_t
1067 Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool)
1068 {
1069 off = align_address(off, size >> 3);
1070 this->offset_ = off;
1071
1072 size_t orig_index = index;
1073
1074 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1075 for (Symbol_table_type::iterator p = this->table_.begin();
1076 p != this->table_.end();
1077 ++p)
1078 {
1079 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1080
1081 // FIXME: Here we need to decide which symbols should go into
1082 // the output file, based on --strip.
1083
1084 // The default version of a symbol may appear twice in the
1085 // symbol table. We only need to finalize it once.
1086 if (sym->has_symtab_index())
1087 continue;
1088
1089 if (!sym->in_reg())
1090 {
1091 gold_assert(!sym->has_symtab_index());
1092 sym->set_symtab_index(-1U);
1093 gold_assert(sym->dynsym_index() == -1U);
1094 continue;
1095 }
1096
1097 typename Sized_symbol<size>::Value_type value;
1098
1099 switch (sym->source())
1100 {
1101 case Symbol::FROM_OBJECT:
1102 {
1103 unsigned int shndx = sym->shndx();
1104
1105 // FIXME: We need some target specific support here.
1106 if (shndx >= elfcpp::SHN_LORESERVE
1107 && shndx != elfcpp::SHN_ABS)
1108 {
1109 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
1110 program_name, sym->name(), shndx);
1111 gold_exit(false);
1112 }
1113
1114 Object* symobj = sym->object();
1115 if (symobj->is_dynamic())
1116 {
1117 value = 0;
1118 shndx = elfcpp::SHN_UNDEF;
1119 }
1120 else if (shndx == elfcpp::SHN_UNDEF)
1121 value = 0;
1122 else if (shndx == elfcpp::SHN_ABS)
1123 value = sym->value();
1124 else
1125 {
1126 Relobj* relobj = static_cast<Relobj*>(symobj);
1127 off_t secoff;
1128 Output_section* os = relobj->output_section(shndx, &secoff);
1129
1130 if (os == NULL)
1131 {
1132 sym->set_symtab_index(-1U);
1133 gold_assert(sym->dynsym_index() == -1U);
1134 continue;
1135 }
1136
1137 value = sym->value() + os->address() + secoff;
1138 }
1139 }
1140 break;
1141
1142 case Symbol::IN_OUTPUT_DATA:
1143 {
1144 Output_data* od = sym->output_data();
1145 value = sym->value() + od->address();
1146 if (sym->offset_is_from_end())
1147 value += od->data_size();
1148 }
1149 break;
1150
1151 case Symbol::IN_OUTPUT_SEGMENT:
1152 {
1153 Output_segment* os = sym->output_segment();
1154 value = sym->value() + os->vaddr();
1155 switch (sym->offset_base())
1156 {
1157 case Symbol::SEGMENT_START:
1158 break;
1159 case Symbol::SEGMENT_END:
1160 value += os->memsz();
1161 break;
1162 case Symbol::SEGMENT_BSS:
1163 value += os->filesz();
1164 break;
1165 default:
1166 gold_unreachable();
1167 }
1168 }
1169 break;
1170
1171 case Symbol::CONSTANT:
1172 value = sym->value();
1173 break;
1174
1175 default:
1176 gold_unreachable();
1177 }
1178
1179 sym->set_value(value);
1180 sym->set_symtab_index(index);
1181 pool->add(sym->name(), NULL);
1182 ++index;
1183 off += sym_size;
1184 }
1185
1186 this->output_count_ = index - orig_index;
1187
1188 return off;
1189 }
1190
1191 // Write out the global symbols.
1192
1193 void
1194 Symbol_table::write_globals(const Target* target, const Stringpool* sympool,
1195 const Stringpool* dynpool, Output_file* of) const
1196 {
1197 if (this->size_ == 32)
1198 {
1199 if (target->is_big_endian())
1200 this->sized_write_globals<32, true>(target, sympool, dynpool, of);
1201 else
1202 this->sized_write_globals<32, false>(target, sympool, dynpool, of);
1203 }
1204 else if (this->size_ == 64)
1205 {
1206 if (target->is_big_endian())
1207 this->sized_write_globals<64, true>(target, sympool, dynpool, of);
1208 else
1209 this->sized_write_globals<64, false>(target, sympool, dynpool, of);
1210 }
1211 else
1212 gold_unreachable();
1213 }
1214
1215 // Write out the global symbols.
1216
1217 template<int size, bool big_endian>
1218 void
1219 Symbol_table::sized_write_globals(const Target*,
1220 const Stringpool* sympool,
1221 const Stringpool* dynpool,
1222 Output_file* of) const
1223 {
1224 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1225 unsigned int index = this->first_global_index_;
1226 const off_t oview_size = this->output_count_ * sym_size;
1227 unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1228
1229 unsigned int dynamic_count = this->dynamic_count_;
1230 off_t dynamic_size = dynamic_count * sym_size;
1231 unsigned int first_dynamic_global_index = this->first_dynamic_global_index_;
1232 unsigned char* dynamic_view;
1233 if (this->dynamic_offset_ == 0)
1234 dynamic_view = NULL;
1235 else
1236 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1237
1238 unsigned char* ps = psyms;
1239 for (Symbol_table_type::const_iterator p = this->table_.begin();
1240 p != this->table_.end();
1241 ++p)
1242 {
1243 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1244
1245 unsigned int sym_index = sym->symtab_index();
1246 unsigned int dynsym_index;
1247 if (dynamic_view == NULL)
1248 dynsym_index = -1U;
1249 else
1250 dynsym_index = sym->dynsym_index();
1251
1252 if (sym_index == -1U && dynsym_index == -1U)
1253 {
1254 // This symbol is not included in the output file.
1255 continue;
1256 }
1257
1258 if (sym_index == index)
1259 ++index;
1260 else if (sym_index != -1U)
1261 {
1262 // We have already seen this symbol, because it has a
1263 // default version.
1264 gold_assert(sym_index < index);
1265 if (dynsym_index == -1U)
1266 continue;
1267 sym_index = -1U;
1268 }
1269
1270 unsigned int shndx;
1271 switch (sym->source())
1272 {
1273 case Symbol::FROM_OBJECT:
1274 {
1275 unsigned int in_shndx = sym->shndx();
1276
1277 // FIXME: We need some target specific support here.
1278 if (in_shndx >= elfcpp::SHN_LORESERVE
1279 && in_shndx != elfcpp::SHN_ABS)
1280 {
1281 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
1282 program_name, sym->name(), in_shndx);
1283 gold_exit(false);
1284 }
1285
1286 Object* symobj = sym->object();
1287 if (symobj->is_dynamic())
1288 {
1289 // FIXME.
1290 shndx = elfcpp::SHN_UNDEF;
1291 }
1292 else if (in_shndx == elfcpp::SHN_UNDEF
1293 || in_shndx == elfcpp::SHN_ABS)
1294 shndx = in_shndx;
1295 else
1296 {
1297 Relobj* relobj = static_cast<Relobj*>(symobj);
1298 off_t secoff;
1299 Output_section* os = relobj->output_section(in_shndx, &secoff);
1300 gold_assert(os != NULL);
1301 shndx = os->out_shndx();
1302 }
1303 }
1304 break;
1305
1306 case Symbol::IN_OUTPUT_DATA:
1307 shndx = sym->output_data()->out_shndx();
1308 break;
1309
1310 case Symbol::IN_OUTPUT_SEGMENT:
1311 shndx = elfcpp::SHN_ABS;
1312 break;
1313
1314 case Symbol::CONSTANT:
1315 shndx = elfcpp::SHN_ABS;
1316 break;
1317
1318 default:
1319 gold_unreachable();
1320 }
1321
1322 if (sym_index != -1U)
1323 {
1324 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1325 sym, shndx, sympool, ps
1326 SELECT_SIZE_ENDIAN(size, big_endian));
1327 ps += sym_size;
1328 }
1329
1330 if (dynsym_index != -1U)
1331 {
1332 dynsym_index -= first_dynamic_global_index;
1333 gold_assert(dynsym_index < dynamic_count);
1334 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1335 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1336 sym, shndx, dynpool, pd
1337 SELECT_SIZE_ENDIAN(size, big_endian));
1338 }
1339 }
1340
1341 gold_assert(ps - psyms == oview_size);
1342
1343 of->write_output_view(this->offset_, oview_size, psyms);
1344 if (dynamic_view != NULL)
1345 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1346 }
1347
1348 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
1349 // strtab holding the name.
1350
1351 template<int size, bool big_endian>
1352 void
1353 Symbol_table::sized_write_symbol(Sized_symbol<size>* sym,
1354 unsigned int shndx,
1355 const Stringpool* pool,
1356 unsigned char* p
1357 ACCEPT_SIZE_ENDIAN) const
1358 {
1359 elfcpp::Sym_write<size, big_endian> osym(p);
1360 osym.put_st_name(pool->get_offset(sym->name()));
1361 osym.put_st_value(sym->value());
1362 osym.put_st_size(sym->symsize());
1363 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1364 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1365 osym.put_st_shndx(shndx);
1366 }
1367
1368 // Write out a section symbol. Return the update offset.
1369
1370 void
1371 Symbol_table::write_section_symbol(const Target* target,
1372 const Output_section *os,
1373 Output_file* of,
1374 off_t offset) const
1375 {
1376 if (this->size_ == 32)
1377 {
1378 if (target->is_big_endian())
1379 this->sized_write_section_symbol<32, true>(os, of, offset);
1380 else
1381 this->sized_write_section_symbol<32, false>(os, of, offset);
1382 }
1383 else if (this->size_ == 64)
1384 {
1385 if (target->is_big_endian())
1386 this->sized_write_section_symbol<64, true>(os, of, offset);
1387 else
1388 this->sized_write_section_symbol<64, false>(os, of, offset);
1389 }
1390 else
1391 gold_unreachable();
1392 }
1393
1394 // Write out a section symbol, specialized for size and endianness.
1395
1396 template<int size, bool big_endian>
1397 void
1398 Symbol_table::sized_write_section_symbol(const Output_section* os,
1399 Output_file* of,
1400 off_t offset) const
1401 {
1402 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1403
1404 unsigned char* pov = of->get_output_view(offset, sym_size);
1405
1406 elfcpp::Sym_write<size, big_endian> osym(pov);
1407 osym.put_st_name(0);
1408 osym.put_st_value(os->address());
1409 osym.put_st_size(0);
1410 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
1411 elfcpp::STT_SECTION));
1412 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
1413 osym.put_st_shndx(os->out_shndx());
1414
1415 of->write_output_view(offset, sym_size, pov);
1416 }
1417
1418 // Warnings functions.
1419
1420 // Add a new warning.
1421
1422 void
1423 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
1424 unsigned int shndx)
1425 {
1426 name = symtab->canonicalize_name(name);
1427 this->warnings_[name].set(obj, shndx);
1428 }
1429
1430 // Look through the warnings and mark the symbols for which we should
1431 // warn. This is called during Layout::finalize when we know the
1432 // sources for all the symbols.
1433
1434 void
1435 Warnings::note_warnings(Symbol_table* symtab)
1436 {
1437 for (Warning_table::iterator p = this->warnings_.begin();
1438 p != this->warnings_.end();
1439 ++p)
1440 {
1441 Symbol* sym = symtab->lookup(p->first, NULL);
1442 if (sym != NULL
1443 && sym->source() == Symbol::FROM_OBJECT
1444 && sym->object() == p->second.object)
1445 {
1446 sym->set_has_warning();
1447
1448 // Read the section contents to get the warning text. It
1449 // would be nicer if we only did this if we have to actually
1450 // issue a warning. Unfortunately, warnings are issued as
1451 // we relocate sections. That means that we can not lock
1452 // the object then, as we might try to issue the same
1453 // warning multiple times simultaneously.
1454 {
1455 Task_locker_obj<Object> tl(*p->second.object);
1456 const unsigned char* c;
1457 off_t len;
1458 c = p->second.object->section_contents(p->second.shndx, &len);
1459 p->second.set_text(reinterpret_cast<const char*>(c), len);
1460 }
1461 }
1462 }
1463 }
1464
1465 // Issue a warning. This is called when we see a relocation against a
1466 // symbol for which has a warning.
1467
1468 void
1469 Warnings::issue_warning(const Symbol* sym, const std::string& location) const
1470 {
1471 gold_assert(sym->has_warning());
1472 Warning_table::const_iterator p = this->warnings_.find(sym->name());
1473 gold_assert(p != this->warnings_.end());
1474 fprintf(stderr, _("%s: %s: warning: %s\n"), program_name, location.c_str(),
1475 p->second.text.c_str());
1476 }
1477
1478 // Instantiate the templates we need. We could use the configure
1479 // script to restrict this to only the ones needed for implemented
1480 // targets.
1481
1482 template
1483 void
1484 Symbol_table::add_from_relobj<32, true>(
1485 Sized_relobj<32, true>* relobj,
1486 const unsigned char* syms,
1487 size_t count,
1488 const char* sym_names,
1489 size_t sym_name_size,
1490 Symbol** sympointers);
1491
1492 template
1493 void
1494 Symbol_table::add_from_relobj<32, false>(
1495 Sized_relobj<32, false>* relobj,
1496 const unsigned char* syms,
1497 size_t count,
1498 const char* sym_names,
1499 size_t sym_name_size,
1500 Symbol** sympointers);
1501
1502 template
1503 void
1504 Symbol_table::add_from_relobj<64, true>(
1505 Sized_relobj<64, true>* relobj,
1506 const unsigned char* syms,
1507 size_t count,
1508 const char* sym_names,
1509 size_t sym_name_size,
1510 Symbol** sympointers);
1511
1512 template
1513 void
1514 Symbol_table::add_from_relobj<64, false>(
1515 Sized_relobj<64, false>* relobj,
1516 const unsigned char* syms,
1517 size_t count,
1518 const char* sym_names,
1519 size_t sym_name_size,
1520 Symbol** sympointers);
1521
1522 template
1523 void
1524 Symbol_table::add_from_dynobj<32, true>(
1525 Sized_dynobj<32, true>* dynobj,
1526 const unsigned char* syms,
1527 size_t count,
1528 const char* sym_names,
1529 size_t sym_name_size,
1530 const unsigned char* versym,
1531 size_t versym_size,
1532 const std::vector<const char*>* version_map);
1533
1534 template
1535 void
1536 Symbol_table::add_from_dynobj<32, false>(
1537 Sized_dynobj<32, false>* dynobj,
1538 const unsigned char* syms,
1539 size_t count,
1540 const char* sym_names,
1541 size_t sym_name_size,
1542 const unsigned char* versym,
1543 size_t versym_size,
1544 const std::vector<const char*>* version_map);
1545
1546 template
1547 void
1548 Symbol_table::add_from_dynobj<64, true>(
1549 Sized_dynobj<64, true>* dynobj,
1550 const unsigned char* syms,
1551 size_t count,
1552 const char* sym_names,
1553 size_t sym_name_size,
1554 const unsigned char* versym,
1555 size_t versym_size,
1556 const std::vector<const char*>* version_map);
1557
1558 template
1559 void
1560 Symbol_table::add_from_dynobj<64, false>(
1561 Sized_dynobj<64, false>* dynobj,
1562 const unsigned char* syms,
1563 size_t count,
1564 const char* sym_names,
1565 size_t sym_name_size,
1566 const unsigned char* versym,
1567 size_t versym_size,
1568 const std::vector<const char*>* version_map);
1569
1570 } // End namespace gold.
This page took 0.069775 seconds and 4 git commands to generate.