[ARC] BFD fixes.
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 Value_type value, elfcpp::STT type,
289 elfcpp::STB binding, elfcpp::STV visibility,
290 unsigned char nonvis)
291 {
292 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
293 this->value_ = value;
294 this->symsize_ = 0;
295 }
296
297 // Return an allocated string holding the symbol's name as
298 // name@version. This is used for relocatable links.
299
300 std::string
301 Symbol::versioned_name() const
302 {
303 gold_assert(this->version_ != NULL);
304 std::string ret = this->name_;
305 ret.push_back('@');
306 if (this->is_def_)
307 ret.push_back('@');
308 ret += this->version_;
309 return ret;
310 }
311
312 // Return true if SHNDX represents a common symbol.
313
314 bool
315 Symbol::is_common_shndx(unsigned int shndx)
316 {
317 return (shndx == elfcpp::SHN_COMMON
318 || shndx == parameters->target().small_common_shndx()
319 || shndx == parameters->target().large_common_shndx());
320 }
321
322 // Allocate a common symbol.
323
324 template<int size>
325 void
326 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
327 {
328 this->allocate_base_common(od);
329 this->value_ = value;
330 }
331
332 // The ""'s around str ensure str is a string literal, so sizeof works.
333 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
334
335 // Return true if this symbol should be added to the dynamic symbol
336 // table.
337
338 bool
339 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
340 {
341 // If the symbol is only present on plugin files, the plugin decided we
342 // don't need it.
343 if (!this->in_real_elf())
344 return false;
345
346 // If the symbol is used by a dynamic relocation, we need to add it.
347 if (this->needs_dynsym_entry())
348 return true;
349
350 // If this symbol's section is not added, the symbol need not be added.
351 // The section may have been GCed. Note that export_dynamic is being
352 // overridden here. This should not be done for shared objects.
353 if (parameters->options().gc_sections()
354 && !parameters->options().shared()
355 && this->source() == Symbol::FROM_OBJECT
356 && !this->object()->is_dynamic())
357 {
358 Relobj* relobj = static_cast<Relobj*>(this->object());
359 bool is_ordinary;
360 unsigned int shndx = this->shndx(&is_ordinary);
361 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
362 && !relobj->is_section_included(shndx)
363 && !symtab->is_section_folded(relobj, shndx))
364 return false;
365 }
366
367 // If the symbol was forced dynamic in a --dynamic-list file
368 // or an --export-dynamic-symbol option, add it.
369 if (!this->is_from_dynobj()
370 && (parameters->options().in_dynamic_list(this->name())
371 || parameters->options().is_export_dynamic_symbol(this->name())))
372 {
373 if (!this->is_forced_local())
374 return true;
375 gold_warning(_("Cannot export local symbol '%s'"),
376 this->demangled_name().c_str());
377 return false;
378 }
379
380 // If the symbol was forced local in a version script, do not add it.
381 if (this->is_forced_local())
382 return false;
383
384 // If dynamic-list-data was specified, add any STT_OBJECT.
385 if (parameters->options().dynamic_list_data()
386 && !this->is_from_dynobj()
387 && this->type() == elfcpp::STT_OBJECT)
388 return true;
389
390 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
391 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
392 if ((parameters->options().dynamic_list_cpp_new()
393 || parameters->options().dynamic_list_cpp_typeinfo())
394 && !this->is_from_dynobj())
395 {
396 // TODO(csilvers): We could probably figure out if we're an operator
397 // new/delete or typeinfo without the need to demangle.
398 char* demangled_name = cplus_demangle(this->name(),
399 DMGL_ANSI | DMGL_PARAMS);
400 if (demangled_name == NULL)
401 {
402 // Not a C++ symbol, so it can't satisfy these flags
403 }
404 else if (parameters->options().dynamic_list_cpp_new()
405 && (strprefix(demangled_name, "operator new")
406 || strprefix(demangled_name, "operator delete")))
407 {
408 free(demangled_name);
409 return true;
410 }
411 else if (parameters->options().dynamic_list_cpp_typeinfo()
412 && (strprefix(demangled_name, "typeinfo name for")
413 || strprefix(demangled_name, "typeinfo for")))
414 {
415 free(demangled_name);
416 return true;
417 }
418 else
419 free(demangled_name);
420 }
421
422 // If exporting all symbols or building a shared library,
423 // or the symbol should be globally unique (GNU_UNIQUE),
424 // and the symbol is defined in a regular object and is
425 // externally visible, we need to add it.
426 if ((parameters->options().export_dynamic()
427 || parameters->options().shared()
428 || (parameters->options().gnu_unique()
429 && this->binding() == elfcpp::STB_GNU_UNIQUE))
430 && !this->is_from_dynobj()
431 && !this->is_undefined()
432 && this->is_externally_visible())
433 return true;
434
435 return false;
436 }
437
438 // Return true if the final value of this symbol is known at link
439 // time.
440
441 bool
442 Symbol::final_value_is_known() const
443 {
444 // If we are not generating an executable, then no final values are
445 // known, since they will change at runtime, with the exception of
446 // TLS symbols in a position-independent executable.
447 if ((parameters->options().output_is_position_independent()
448 || parameters->options().relocatable())
449 && !(this->type() == elfcpp::STT_TLS
450 && parameters->options().pie()))
451 return false;
452
453 // If the symbol is not from an object file, and is not undefined,
454 // then it is defined, and known.
455 if (this->source_ != FROM_OBJECT)
456 {
457 if (this->source_ != IS_UNDEFINED)
458 return true;
459 }
460 else
461 {
462 // If the symbol is from a dynamic object, then the final value
463 // is not known.
464 if (this->object()->is_dynamic())
465 return false;
466
467 // If the symbol is not undefined (it is defined or common),
468 // then the final value is known.
469 if (!this->is_undefined())
470 return true;
471 }
472
473 // If the symbol is undefined, then whether the final value is known
474 // depends on whether we are doing a static link. If we are doing a
475 // dynamic link, then the final value could be filled in at runtime.
476 // This could reasonably be the case for a weak undefined symbol.
477 return parameters->doing_static_link();
478 }
479
480 // Return the output section where this symbol is defined.
481
482 Output_section*
483 Symbol::output_section() const
484 {
485 switch (this->source_)
486 {
487 case FROM_OBJECT:
488 {
489 unsigned int shndx = this->u_.from_object.shndx;
490 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
491 {
492 gold_assert(!this->u_.from_object.object->is_dynamic());
493 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
494 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
495 return relobj->output_section(shndx);
496 }
497 return NULL;
498 }
499
500 case IN_OUTPUT_DATA:
501 return this->u_.in_output_data.output_data->output_section();
502
503 case IN_OUTPUT_SEGMENT:
504 case IS_CONSTANT:
505 case IS_UNDEFINED:
506 return NULL;
507
508 default:
509 gold_unreachable();
510 }
511 }
512
513 // Set the symbol's output section. This is used for symbols defined
514 // in scripts. This should only be called after the symbol table has
515 // been finalized.
516
517 void
518 Symbol::set_output_section(Output_section* os)
519 {
520 switch (this->source_)
521 {
522 case FROM_OBJECT:
523 case IN_OUTPUT_DATA:
524 gold_assert(this->output_section() == os);
525 break;
526 case IS_CONSTANT:
527 this->source_ = IN_OUTPUT_DATA;
528 this->u_.in_output_data.output_data = os;
529 this->u_.in_output_data.offset_is_from_end = false;
530 break;
531 case IN_OUTPUT_SEGMENT:
532 case IS_UNDEFINED:
533 default:
534 gold_unreachable();
535 }
536 }
537
538 // Set the symbol's output segment. This is used for pre-defined
539 // symbols whose segments aren't known until after layout is done
540 // (e.g., __ehdr_start).
541
542 void
543 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
544 {
545 gold_assert(this->is_predefined_);
546 this->source_ = IN_OUTPUT_SEGMENT;
547 this->u_.in_output_segment.output_segment = os;
548 this->u_.in_output_segment.offset_base = base;
549 }
550
551 // Set the symbol to undefined. This is used for pre-defined
552 // symbols whose segments aren't known until after layout is done
553 // (e.g., __ehdr_start).
554
555 void
556 Symbol::set_undefined()
557 {
558 this->source_ = IS_UNDEFINED;
559 this->is_predefined_ = false;
560 }
561
562 // Class Symbol_table.
563
564 Symbol_table::Symbol_table(unsigned int count,
565 const Version_script_info& version_script)
566 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
567 forwarders_(), commons_(), tls_commons_(), small_commons_(),
568 large_commons_(), forced_locals_(), warnings_(),
569 version_script_(version_script), gc_(NULL), icf_(NULL),
570 target_symbols_()
571 {
572 namepool_.reserve(count);
573 }
574
575 Symbol_table::~Symbol_table()
576 {
577 }
578
579 // The symbol table key equality function. This is called with
580 // Stringpool keys.
581
582 inline bool
583 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
584 const Symbol_table_key& k2) const
585 {
586 return k1.first == k2.first && k1.second == k2.second;
587 }
588
589 bool
590 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
591 {
592 return (parameters->options().icf_enabled()
593 && this->icf_->is_section_folded(obj, shndx));
594 }
595
596 // For symbols that have been listed with a -u or --export-dynamic-symbol
597 // option, add them to the work list to avoid gc'ing them.
598
599 void
600 Symbol_table::gc_mark_undef_symbols(Layout* layout)
601 {
602 for (options::String_set::const_iterator p =
603 parameters->options().undefined_begin();
604 p != parameters->options().undefined_end();
605 ++p)
606 {
607 const char* name = p->c_str();
608 Symbol* sym = this->lookup(name);
609 gold_assert(sym != NULL);
610 if (sym->source() == Symbol::FROM_OBJECT
611 && !sym->object()->is_dynamic())
612 {
613 this->gc_mark_symbol(sym);
614 }
615 }
616
617 for (options::String_set::const_iterator p =
618 parameters->options().export_dynamic_symbol_begin();
619 p != parameters->options().export_dynamic_symbol_end();
620 ++p)
621 {
622 const char* name = p->c_str();
623 Symbol* sym = this->lookup(name);
624 // It's not an error if a symbol named by --export-dynamic-symbol
625 // is undefined.
626 if (sym != NULL
627 && sym->source() == Symbol::FROM_OBJECT
628 && !sym->object()->is_dynamic())
629 {
630 this->gc_mark_symbol(sym);
631 }
632 }
633
634 for (Script_options::referenced_const_iterator p =
635 layout->script_options()->referenced_begin();
636 p != layout->script_options()->referenced_end();
637 ++p)
638 {
639 Symbol* sym = this->lookup(p->c_str());
640 gold_assert(sym != NULL);
641 if (sym->source() == Symbol::FROM_OBJECT
642 && !sym->object()->is_dynamic())
643 {
644 this->gc_mark_symbol(sym);
645 }
646 }
647 }
648
649 void
650 Symbol_table::gc_mark_symbol(Symbol* sym)
651 {
652 // Add the object and section to the work list.
653 bool is_ordinary;
654 unsigned int shndx = sym->shndx(&is_ordinary);
655 if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
656 {
657 gold_assert(this->gc_!= NULL);
658 Relobj* relobj = static_cast<Relobj*>(sym->object());
659 this->gc_->worklist().push_back(Section_id(relobj, shndx));
660 }
661 parameters->target().gc_mark_symbol(this, sym);
662 }
663
664 // When doing garbage collection, keep symbols that have been seen in
665 // dynamic objects.
666 inline void
667 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
668 {
669 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
670 && !sym->object()->is_dynamic())
671 this->gc_mark_symbol(sym);
672 }
673
674 // Make TO a symbol which forwards to FROM.
675
676 void
677 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
678 {
679 gold_assert(from != to);
680 gold_assert(!from->is_forwarder() && !to->is_forwarder());
681 this->forwarders_[from] = to;
682 from->set_forwarder();
683 }
684
685 // Resolve the forwards from FROM, returning the real symbol.
686
687 Symbol*
688 Symbol_table::resolve_forwards(const Symbol* from) const
689 {
690 gold_assert(from->is_forwarder());
691 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
692 this->forwarders_.find(from);
693 gold_assert(p != this->forwarders_.end());
694 return p->second;
695 }
696
697 // Look up a symbol by name.
698
699 Symbol*
700 Symbol_table::lookup(const char* name, const char* version) const
701 {
702 Stringpool::Key name_key;
703 name = this->namepool_.find(name, &name_key);
704 if (name == NULL)
705 return NULL;
706
707 Stringpool::Key version_key = 0;
708 if (version != NULL)
709 {
710 version = this->namepool_.find(version, &version_key);
711 if (version == NULL)
712 return NULL;
713 }
714
715 Symbol_table_key key(name_key, version_key);
716 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
717 if (p == this->table_.end())
718 return NULL;
719 return p->second;
720 }
721
722 // Resolve a Symbol with another Symbol. This is only used in the
723 // unusual case where there are references to both an unversioned
724 // symbol and a symbol with a version, and we then discover that that
725 // version is the default version. Because this is unusual, we do
726 // this the slow way, by converting back to an ELF symbol.
727
728 template<int size, bool big_endian>
729 void
730 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
731 {
732 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
733 elfcpp::Sym_write<size, big_endian> esym(buf);
734 // We don't bother to set the st_name or the st_shndx field.
735 esym.put_st_value(from->value());
736 esym.put_st_size(from->symsize());
737 esym.put_st_info(from->binding(), from->type());
738 esym.put_st_other(from->visibility(), from->nonvis());
739 bool is_ordinary;
740 unsigned int shndx = from->shndx(&is_ordinary);
741 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
742 from->version(), true);
743 if (from->in_reg())
744 to->set_in_reg();
745 if (from->in_dyn())
746 to->set_in_dyn();
747 if (parameters->options().gc_sections())
748 this->gc_mark_dyn_syms(to);
749 }
750
751 // Record that a symbol is forced to be local by a version script or
752 // by visibility.
753
754 void
755 Symbol_table::force_local(Symbol* sym)
756 {
757 if (!sym->is_defined() && !sym->is_common())
758 return;
759 if (sym->is_forced_local())
760 {
761 // We already got this one.
762 return;
763 }
764 sym->set_is_forced_local();
765 this->forced_locals_.push_back(sym);
766 }
767
768 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
769 // is only called for undefined symbols, when at least one --wrap
770 // option was used.
771
772 const char*
773 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
774 {
775 // For some targets, we need to ignore a specific character when
776 // wrapping, and add it back later.
777 char prefix = '\0';
778 if (name[0] == parameters->target().wrap_char())
779 {
780 prefix = name[0];
781 ++name;
782 }
783
784 if (parameters->options().is_wrap(name))
785 {
786 // Turn NAME into __wrap_NAME.
787 std::string s;
788 if (prefix != '\0')
789 s += prefix;
790 s += "__wrap_";
791 s += name;
792
793 // This will give us both the old and new name in NAMEPOOL_, but
794 // that is OK. Only the versions we need will wind up in the
795 // real string table in the output file.
796 return this->namepool_.add(s.c_str(), true, name_key);
797 }
798
799 const char* const real_prefix = "__real_";
800 const size_t real_prefix_length = strlen(real_prefix);
801 if (strncmp(name, real_prefix, real_prefix_length) == 0
802 && parameters->options().is_wrap(name + real_prefix_length))
803 {
804 // Turn __real_NAME into NAME.
805 std::string s;
806 if (prefix != '\0')
807 s += prefix;
808 s += name + real_prefix_length;
809 return this->namepool_.add(s.c_str(), true, name_key);
810 }
811
812 return name;
813 }
814
815 // This is called when we see a symbol NAME/VERSION, and the symbol
816 // already exists in the symbol table, and VERSION is marked as being
817 // the default version. SYM is the NAME/VERSION symbol we just added.
818 // DEFAULT_IS_NEW is true if this is the first time we have seen the
819 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
820
821 template<int size, bool big_endian>
822 void
823 Symbol_table::define_default_version(Sized_symbol<size>* sym,
824 bool default_is_new,
825 Symbol_table_type::iterator pdef)
826 {
827 if (default_is_new)
828 {
829 // This is the first time we have seen NAME/NULL. Make
830 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
831 // version.
832 pdef->second = sym;
833 sym->set_is_default();
834 }
835 else if (pdef->second == sym)
836 {
837 // NAME/NULL already points to NAME/VERSION. Don't mark the
838 // symbol as the default if it is not already the default.
839 }
840 else
841 {
842 // This is the unfortunate case where we already have entries
843 // for both NAME/VERSION and NAME/NULL. We now see a symbol
844 // NAME/VERSION where VERSION is the default version. We have
845 // already resolved this new symbol with the existing
846 // NAME/VERSION symbol.
847
848 // It's possible that NAME/NULL and NAME/VERSION are both
849 // defined in regular objects. This can only happen if one
850 // object file defines foo and another defines foo@@ver. This
851 // is somewhat obscure, but we call it a multiple definition
852 // error.
853
854 // It's possible that NAME/NULL actually has a version, in which
855 // case it won't be the same as VERSION. This happens with
856 // ver_test_7.so in the testsuite for the symbol t2_2. We see
857 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
858 // then see an unadorned t2_2 in an object file and give it
859 // version VER1 from the version script. This looks like a
860 // default definition for VER1, so it looks like we should merge
861 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
862 // not obvious that this is an error, either. So we just punt.
863
864 // If one of the symbols has non-default visibility, and the
865 // other is defined in a shared object, then they are different
866 // symbols.
867
868 // If the two symbols are from different shared objects,
869 // they are different symbols.
870
871 // Otherwise, we just resolve the symbols as though they were
872 // the same.
873
874 if (pdef->second->version() != NULL)
875 gold_assert(pdef->second->version() != sym->version());
876 else if (sym->visibility() != elfcpp::STV_DEFAULT
877 && pdef->second->is_from_dynobj())
878 ;
879 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
880 && sym->is_from_dynobj())
881 ;
882 else if (pdef->second->is_from_dynobj()
883 && sym->is_from_dynobj()
884 && pdef->second->object() != sym->object())
885 ;
886 else
887 {
888 const Sized_symbol<size>* symdef;
889 symdef = this->get_sized_symbol<size>(pdef->second);
890 Symbol_table::resolve<size, big_endian>(sym, symdef);
891 this->make_forwarder(pdef->second, sym);
892 pdef->second = sym;
893 sym->set_is_default();
894 }
895 }
896 }
897
898 // Add one symbol from OBJECT to the symbol table. NAME is symbol
899 // name and VERSION is the version; both are canonicalized. DEF is
900 // whether this is the default version. ST_SHNDX is the symbol's
901 // section index; IS_ORDINARY is whether this is a normal section
902 // rather than a special code.
903
904 // If IS_DEFAULT_VERSION is true, then this is the definition of a
905 // default version of a symbol. That means that any lookup of
906 // NAME/NULL and any lookup of NAME/VERSION should always return the
907 // same symbol. This is obvious for references, but in particular we
908 // want to do this for definitions: overriding NAME/NULL should also
909 // override NAME/VERSION. If we don't do that, it would be very hard
910 // to override functions in a shared library which uses versioning.
911
912 // We implement this by simply making both entries in the hash table
913 // point to the same Symbol structure. That is easy enough if this is
914 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
915 // that we have seen both already, in which case they will both have
916 // independent entries in the symbol table. We can't simply change
917 // the symbol table entry, because we have pointers to the entries
918 // attached to the object files. So we mark the entry attached to the
919 // object file as a forwarder, and record it in the forwarders_ map.
920 // Note that entries in the hash table will never be marked as
921 // forwarders.
922 //
923 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
924 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
925 // for a special section code. ST_SHNDX may be modified if the symbol
926 // is defined in a section being discarded.
927
928 template<int size, bool big_endian>
929 Sized_symbol<size>*
930 Symbol_table::add_from_object(Object* object,
931 const char* name,
932 Stringpool::Key name_key,
933 const char* version,
934 Stringpool::Key version_key,
935 bool is_default_version,
936 const elfcpp::Sym<size, big_endian>& sym,
937 unsigned int st_shndx,
938 bool is_ordinary,
939 unsigned int orig_st_shndx)
940 {
941 // Print a message if this symbol is being traced.
942 if (parameters->options().is_trace_symbol(name))
943 {
944 if (orig_st_shndx == elfcpp::SHN_UNDEF)
945 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
946 else
947 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
948 }
949
950 // For an undefined symbol, we may need to adjust the name using
951 // --wrap.
952 if (orig_st_shndx == elfcpp::SHN_UNDEF
953 && parameters->options().any_wrap())
954 {
955 const char* wrap_name = this->wrap_symbol(name, &name_key);
956 if (wrap_name != name)
957 {
958 // If we see a reference to malloc with version GLIBC_2.0,
959 // and we turn it into a reference to __wrap_malloc, then we
960 // discard the version number. Otherwise the user would be
961 // required to specify the correct version for
962 // __wrap_malloc.
963 version = NULL;
964 version_key = 0;
965 name = wrap_name;
966 }
967 }
968
969 Symbol* const snull = NULL;
970 std::pair<typename Symbol_table_type::iterator, bool> ins =
971 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
972 snull));
973
974 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
975 std::make_pair(this->table_.end(), false);
976 if (is_default_version)
977 {
978 const Stringpool::Key vnull_key = 0;
979 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
980 vnull_key),
981 snull));
982 }
983
984 // ins.first: an iterator, which is a pointer to a pair.
985 // ins.first->first: the key (a pair of name and version).
986 // ins.first->second: the value (Symbol*).
987 // ins.second: true if new entry was inserted, false if not.
988
989 Sized_symbol<size>* ret;
990 bool was_undefined;
991 bool was_common;
992 if (!ins.second)
993 {
994 // We already have an entry for NAME/VERSION.
995 ret = this->get_sized_symbol<size>(ins.first->second);
996 gold_assert(ret != NULL);
997
998 was_undefined = ret->is_undefined();
999 // Commons from plugins are just placeholders.
1000 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1001
1002 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1003 version, is_default_version);
1004 if (parameters->options().gc_sections())
1005 this->gc_mark_dyn_syms(ret);
1006
1007 if (is_default_version)
1008 this->define_default_version<size, big_endian>(ret, insdefault.second,
1009 insdefault.first);
1010 else
1011 {
1012 bool dummy;
1013 if (version != NULL
1014 && ret->source() == Symbol::FROM_OBJECT
1015 && ret->object() == object
1016 && is_ordinary
1017 && ret->shndx(&dummy) == st_shndx
1018 && ret->is_default())
1019 {
1020 // We have seen NAME/VERSION already, and marked it as the
1021 // default version, but now we see a definition for
1022 // NAME/VERSION that is not the default version. This can
1023 // happen when the assembler generates two symbols for
1024 // a symbol as a result of a ".symver foo,foo@VER"
1025 // directive. We see the first unversioned symbol and
1026 // we may mark it as the default version (from a
1027 // version script); then we see the second versioned
1028 // symbol and we need to override the first.
1029 // In any other case, the two symbols should have generated
1030 // a multiple definition error.
1031 // (See PR gold/18703.)
1032 ret->set_is_not_default();
1033 const Stringpool::Key vnull_key = 0;
1034 this->table_.erase(std::make_pair(name_key, vnull_key));
1035 }
1036 }
1037 }
1038 else
1039 {
1040 // This is the first time we have seen NAME/VERSION.
1041 gold_assert(ins.first->second == NULL);
1042
1043 if (is_default_version && !insdefault.second)
1044 {
1045 // We already have an entry for NAME/NULL. If we override
1046 // it, then change it to NAME/VERSION.
1047 ret = this->get_sized_symbol<size>(insdefault.first->second);
1048
1049 was_undefined = ret->is_undefined();
1050 // Commons from plugins are just placeholders.
1051 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1052
1053 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1054 version, is_default_version);
1055 if (parameters->options().gc_sections())
1056 this->gc_mark_dyn_syms(ret);
1057 ins.first->second = ret;
1058 }
1059 else
1060 {
1061 was_undefined = false;
1062 was_common = false;
1063
1064 Sized_target<size, big_endian>* target =
1065 parameters->sized_target<size, big_endian>();
1066 if (!target->has_make_symbol())
1067 ret = new Sized_symbol<size>();
1068 else
1069 {
1070 ret = target->make_symbol(name, sym.get_st_type(), object,
1071 st_shndx, sym.get_st_value());
1072 if (ret == NULL)
1073 {
1074 // This means that we don't want a symbol table
1075 // entry after all.
1076 if (!is_default_version)
1077 this->table_.erase(ins.first);
1078 else
1079 {
1080 this->table_.erase(insdefault.first);
1081 // Inserting INSDEFAULT invalidated INS.
1082 this->table_.erase(std::make_pair(name_key,
1083 version_key));
1084 }
1085 return NULL;
1086 }
1087 }
1088
1089 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1090
1091 ins.first->second = ret;
1092 if (is_default_version)
1093 {
1094 // This is the first time we have seen NAME/NULL. Point
1095 // it at the new entry for NAME/VERSION.
1096 gold_assert(insdefault.second);
1097 insdefault.first->second = ret;
1098 }
1099 }
1100
1101 if (is_default_version)
1102 ret->set_is_default();
1103 }
1104
1105 // Record every time we see a new undefined symbol, to speed up
1106 // archive groups.
1107 if (!was_undefined && ret->is_undefined())
1108 {
1109 ++this->saw_undefined_;
1110 if (parameters->options().has_plugins())
1111 parameters->options().plugins()->new_undefined_symbol(ret);
1112 }
1113
1114 // Keep track of common symbols, to speed up common symbol
1115 // allocation. Don't record commons from plugin objects;
1116 // we need to wait until we see the real symbol in the
1117 // replacement file.
1118 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1119 {
1120 if (ret->type() == elfcpp::STT_TLS)
1121 this->tls_commons_.push_back(ret);
1122 else if (!is_ordinary
1123 && st_shndx == parameters->target().small_common_shndx())
1124 this->small_commons_.push_back(ret);
1125 else if (!is_ordinary
1126 && st_shndx == parameters->target().large_common_shndx())
1127 this->large_commons_.push_back(ret);
1128 else
1129 this->commons_.push_back(ret);
1130 }
1131
1132 // If we're not doing a relocatable link, then any symbol with
1133 // hidden or internal visibility is local.
1134 if ((ret->visibility() == elfcpp::STV_HIDDEN
1135 || ret->visibility() == elfcpp::STV_INTERNAL)
1136 && (ret->binding() == elfcpp::STB_GLOBAL
1137 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1138 || ret->binding() == elfcpp::STB_WEAK)
1139 && !parameters->options().relocatable())
1140 this->force_local(ret);
1141
1142 return ret;
1143 }
1144
1145 // Add all the symbols in a relocatable object to the hash table.
1146
1147 template<int size, bool big_endian>
1148 void
1149 Symbol_table::add_from_relobj(
1150 Sized_relobj_file<size, big_endian>* relobj,
1151 const unsigned char* syms,
1152 size_t count,
1153 size_t symndx_offset,
1154 const char* sym_names,
1155 size_t sym_name_size,
1156 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1157 size_t* defined)
1158 {
1159 *defined = 0;
1160
1161 gold_assert(size == parameters->target().get_size());
1162
1163 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1164
1165 const bool just_symbols = relobj->just_symbols();
1166
1167 const unsigned char* p = syms;
1168 for (size_t i = 0; i < count; ++i, p += sym_size)
1169 {
1170 (*sympointers)[i] = NULL;
1171
1172 elfcpp::Sym<size, big_endian> sym(p);
1173
1174 unsigned int st_name = sym.get_st_name();
1175 if (st_name >= sym_name_size)
1176 {
1177 relobj->error(_("bad global symbol name offset %u at %zu"),
1178 st_name, i);
1179 continue;
1180 }
1181
1182 const char* name = sym_names + st_name;
1183
1184 if (!parameters->options().relocatable()
1185 && strcmp (name, "__gnu_lto_slim") == 0)
1186 gold_info(_("%s: plugin needed to handle lto object"),
1187 relobj->name().c_str());
1188
1189 bool is_ordinary;
1190 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1191 sym.get_st_shndx(),
1192 &is_ordinary);
1193 unsigned int orig_st_shndx = st_shndx;
1194 if (!is_ordinary)
1195 orig_st_shndx = elfcpp::SHN_UNDEF;
1196
1197 if (st_shndx != elfcpp::SHN_UNDEF)
1198 ++*defined;
1199
1200 // A symbol defined in a section which we are not including must
1201 // be treated as an undefined symbol.
1202 bool is_defined_in_discarded_section = false;
1203 if (st_shndx != elfcpp::SHN_UNDEF
1204 && is_ordinary
1205 && !relobj->is_section_included(st_shndx)
1206 && !this->is_section_folded(relobj, st_shndx))
1207 {
1208 st_shndx = elfcpp::SHN_UNDEF;
1209 is_defined_in_discarded_section = true;
1210 }
1211
1212 // In an object file, an '@' in the name separates the symbol
1213 // name from the version name. If there are two '@' characters,
1214 // this is the default version.
1215 const char* ver = strchr(name, '@');
1216 Stringpool::Key ver_key = 0;
1217 int namelen = 0;
1218 // IS_DEFAULT_VERSION: is the version default?
1219 // IS_FORCED_LOCAL: is the symbol forced local?
1220 bool is_default_version = false;
1221 bool is_forced_local = false;
1222
1223 // FIXME: For incremental links, we don't store version information,
1224 // so we need to ignore version symbols for now.
1225 if (parameters->incremental_update() && ver != NULL)
1226 {
1227 namelen = ver - name;
1228 ver = NULL;
1229 }
1230
1231 if (ver != NULL)
1232 {
1233 // The symbol name is of the form foo@VERSION or foo@@VERSION
1234 namelen = ver - name;
1235 ++ver;
1236 if (*ver == '@')
1237 {
1238 is_default_version = true;
1239 ++ver;
1240 }
1241 ver = this->namepool_.add(ver, true, &ver_key);
1242 }
1243 // We don't want to assign a version to an undefined symbol,
1244 // even if it is listed in the version script. FIXME: What
1245 // about a common symbol?
1246 else
1247 {
1248 namelen = strlen(name);
1249 if (!this->version_script_.empty()
1250 && st_shndx != elfcpp::SHN_UNDEF)
1251 {
1252 // The symbol name did not have a version, but the
1253 // version script may assign a version anyway.
1254 std::string version;
1255 bool is_global;
1256 if (this->version_script_.get_symbol_version(name, &version,
1257 &is_global))
1258 {
1259 if (!is_global)
1260 is_forced_local = true;
1261 else if (!version.empty())
1262 {
1263 ver = this->namepool_.add_with_length(version.c_str(),
1264 version.length(),
1265 true,
1266 &ver_key);
1267 is_default_version = true;
1268 }
1269 }
1270 }
1271 }
1272
1273 elfcpp::Sym<size, big_endian>* psym = &sym;
1274 unsigned char symbuf[sym_size];
1275 elfcpp::Sym<size, big_endian> sym2(symbuf);
1276 if (just_symbols)
1277 {
1278 memcpy(symbuf, p, sym_size);
1279 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1280 if (orig_st_shndx != elfcpp::SHN_UNDEF
1281 && is_ordinary
1282 && relobj->e_type() == elfcpp::ET_REL)
1283 {
1284 // Symbol values in relocatable object files are section
1285 // relative. This is normally what we want, but since here
1286 // we are converting the symbol to absolute we need to add
1287 // the section address. The section address in an object
1288 // file is normally zero, but people can use a linker
1289 // script to change it.
1290 sw.put_st_value(sym.get_st_value()
1291 + relobj->section_address(orig_st_shndx));
1292 }
1293 st_shndx = elfcpp::SHN_ABS;
1294 is_ordinary = false;
1295 psym = &sym2;
1296 }
1297
1298 // Fix up visibility if object has no-export set.
1299 if (relobj->no_export()
1300 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1301 {
1302 // We may have copied symbol already above.
1303 if (psym != &sym2)
1304 {
1305 memcpy(symbuf, p, sym_size);
1306 psym = &sym2;
1307 }
1308
1309 elfcpp::STV visibility = sym2.get_st_visibility();
1310 if (visibility == elfcpp::STV_DEFAULT
1311 || visibility == elfcpp::STV_PROTECTED)
1312 {
1313 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1314 unsigned char nonvis = sym2.get_st_nonvis();
1315 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1316 }
1317 }
1318
1319 Stringpool::Key name_key;
1320 name = this->namepool_.add_with_length(name, namelen, true,
1321 &name_key);
1322
1323 Sized_symbol<size>* res;
1324 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1325 is_default_version, *psym, st_shndx,
1326 is_ordinary, orig_st_shndx);
1327
1328 if (is_forced_local)
1329 this->force_local(res);
1330
1331 // Do not treat this symbol as garbage if this symbol will be
1332 // exported to the dynamic symbol table. This is true when
1333 // building a shared library or using --export-dynamic and
1334 // the symbol is externally visible.
1335 if (parameters->options().gc_sections()
1336 && res->is_externally_visible()
1337 && !res->is_from_dynobj()
1338 && (parameters->options().shared()
1339 || parameters->options().export_dynamic()
1340 || parameters->options().in_dynamic_list(res->name())))
1341 this->gc_mark_symbol(res);
1342
1343 if (is_defined_in_discarded_section)
1344 res->set_is_defined_in_discarded_section();
1345
1346 (*sympointers)[i] = res;
1347 }
1348 }
1349
1350 // Add a symbol from a plugin-claimed file.
1351
1352 template<int size, bool big_endian>
1353 Symbol*
1354 Symbol_table::add_from_pluginobj(
1355 Sized_pluginobj<size, big_endian>* obj,
1356 const char* name,
1357 const char* ver,
1358 elfcpp::Sym<size, big_endian>* sym)
1359 {
1360 unsigned int st_shndx = sym->get_st_shndx();
1361 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1362
1363 Stringpool::Key ver_key = 0;
1364 bool is_default_version = false;
1365 bool is_forced_local = false;
1366
1367 if (ver != NULL)
1368 {
1369 ver = this->namepool_.add(ver, true, &ver_key);
1370 }
1371 // We don't want to assign a version to an undefined symbol,
1372 // even if it is listed in the version script. FIXME: What
1373 // about a common symbol?
1374 else
1375 {
1376 if (!this->version_script_.empty()
1377 && st_shndx != elfcpp::SHN_UNDEF)
1378 {
1379 // The symbol name did not have a version, but the
1380 // version script may assign a version anyway.
1381 std::string version;
1382 bool is_global;
1383 if (this->version_script_.get_symbol_version(name, &version,
1384 &is_global))
1385 {
1386 if (!is_global)
1387 is_forced_local = true;
1388 else if (!version.empty())
1389 {
1390 ver = this->namepool_.add_with_length(version.c_str(),
1391 version.length(),
1392 true,
1393 &ver_key);
1394 is_default_version = true;
1395 }
1396 }
1397 }
1398 }
1399
1400 Stringpool::Key name_key;
1401 name = this->namepool_.add(name, true, &name_key);
1402
1403 Sized_symbol<size>* res;
1404 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1405 is_default_version, *sym, st_shndx,
1406 is_ordinary, st_shndx);
1407
1408 if (is_forced_local)
1409 this->force_local(res);
1410
1411 return res;
1412 }
1413
1414 // Add all the symbols in a dynamic object to the hash table.
1415
1416 template<int size, bool big_endian>
1417 void
1418 Symbol_table::add_from_dynobj(
1419 Sized_dynobj<size, big_endian>* dynobj,
1420 const unsigned char* syms,
1421 size_t count,
1422 const char* sym_names,
1423 size_t sym_name_size,
1424 const unsigned char* versym,
1425 size_t versym_size,
1426 const std::vector<const char*>* version_map,
1427 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1428 size_t* defined)
1429 {
1430 *defined = 0;
1431
1432 gold_assert(size == parameters->target().get_size());
1433
1434 if (dynobj->just_symbols())
1435 {
1436 gold_error(_("--just-symbols does not make sense with a shared object"));
1437 return;
1438 }
1439
1440 // FIXME: For incremental links, we don't store version information,
1441 // so we need to ignore version symbols for now.
1442 if (parameters->incremental_update())
1443 versym = NULL;
1444
1445 if (versym != NULL && versym_size / 2 < count)
1446 {
1447 dynobj->error(_("too few symbol versions"));
1448 return;
1449 }
1450
1451 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1452
1453 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1454 // weak aliases. This is necessary because if the dynamic object
1455 // provides the same variable under two names, one of which is a
1456 // weak definition, and the regular object refers to the weak
1457 // definition, we have to put both the weak definition and the
1458 // strong definition into the dynamic symbol table. Given a weak
1459 // definition, the only way that we can find the corresponding
1460 // strong definition, if any, is to search the symbol table.
1461 std::vector<Sized_symbol<size>*> object_symbols;
1462
1463 const unsigned char* p = syms;
1464 const unsigned char* vs = versym;
1465 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1466 {
1467 elfcpp::Sym<size, big_endian> sym(p);
1468
1469 if (sympointers != NULL)
1470 (*sympointers)[i] = NULL;
1471
1472 // Ignore symbols with local binding or that have
1473 // internal or hidden visibility.
1474 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1475 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1476 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1477 continue;
1478
1479 // A protected symbol in a shared library must be treated as a
1480 // normal symbol when viewed from outside the shared library.
1481 // Implement this by overriding the visibility here.
1482 // Likewise, an IFUNC symbol in a shared library must be treated
1483 // as a normal FUNC symbol.
1484 elfcpp::Sym<size, big_endian>* psym = &sym;
1485 unsigned char symbuf[sym_size];
1486 elfcpp::Sym<size, big_endian> sym2(symbuf);
1487 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1488 || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1489 {
1490 memcpy(symbuf, p, sym_size);
1491 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1492 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1493 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1494 if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1495 sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1496 psym = &sym2;
1497 }
1498
1499 unsigned int st_name = psym->get_st_name();
1500 if (st_name >= sym_name_size)
1501 {
1502 dynobj->error(_("bad symbol name offset %u at %zu"),
1503 st_name, i);
1504 continue;
1505 }
1506
1507 const char* name = sym_names + st_name;
1508
1509 bool is_ordinary;
1510 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1511 &is_ordinary);
1512
1513 if (st_shndx != elfcpp::SHN_UNDEF)
1514 ++*defined;
1515
1516 Sized_symbol<size>* res;
1517
1518 if (versym == NULL)
1519 {
1520 Stringpool::Key name_key;
1521 name = this->namepool_.add(name, true, &name_key);
1522 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1523 false, *psym, st_shndx, is_ordinary,
1524 st_shndx);
1525 }
1526 else
1527 {
1528 // Read the version information.
1529
1530 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1531
1532 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1533 v &= elfcpp::VERSYM_VERSION;
1534
1535 // The Sun documentation says that V can be VER_NDX_LOCAL,
1536 // or VER_NDX_GLOBAL, or a version index. The meaning of
1537 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1538 // The old GNU linker will happily generate VER_NDX_LOCAL
1539 // for an undefined symbol. I don't know what the Sun
1540 // linker will generate.
1541
1542 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1543 && st_shndx != elfcpp::SHN_UNDEF)
1544 {
1545 // This symbol should not be visible outside the object.
1546 continue;
1547 }
1548
1549 // At this point we are definitely going to add this symbol.
1550 Stringpool::Key name_key;
1551 name = this->namepool_.add(name, true, &name_key);
1552
1553 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1554 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1555 {
1556 // This symbol does not have a version.
1557 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1558 false, *psym, st_shndx, is_ordinary,
1559 st_shndx);
1560 }
1561 else
1562 {
1563 if (v >= version_map->size())
1564 {
1565 dynobj->error(_("versym for symbol %zu out of range: %u"),
1566 i, v);
1567 continue;
1568 }
1569
1570 const char* version = (*version_map)[v];
1571 if (version == NULL)
1572 {
1573 dynobj->error(_("versym for symbol %zu has no name: %u"),
1574 i, v);
1575 continue;
1576 }
1577
1578 Stringpool::Key version_key;
1579 version = this->namepool_.add(version, true, &version_key);
1580
1581 // If this is an absolute symbol, and the version name
1582 // and symbol name are the same, then this is the
1583 // version definition symbol. These symbols exist to
1584 // support using -u to pull in particular versions. We
1585 // do not want to record a version for them.
1586 if (st_shndx == elfcpp::SHN_ABS
1587 && !is_ordinary
1588 && name_key == version_key)
1589 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1590 false, *psym, st_shndx, is_ordinary,
1591 st_shndx);
1592 else
1593 {
1594 const bool is_default_version =
1595 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1596 res = this->add_from_object(dynobj, name, name_key, version,
1597 version_key, is_default_version,
1598 *psym, st_shndx,
1599 is_ordinary, st_shndx);
1600 }
1601 }
1602 }
1603
1604 // Note that it is possible that RES was overridden by an
1605 // earlier object, in which case it can't be aliased here.
1606 if (st_shndx != elfcpp::SHN_UNDEF
1607 && is_ordinary
1608 && psym->get_st_type() == elfcpp::STT_OBJECT
1609 && res->source() == Symbol::FROM_OBJECT
1610 && res->object() == dynobj)
1611 object_symbols.push_back(res);
1612
1613 if (sympointers != NULL)
1614 (*sympointers)[i] = res;
1615 }
1616
1617 this->record_weak_aliases(&object_symbols);
1618 }
1619
1620 // Add a symbol from a incremental object file.
1621
1622 template<int size, bool big_endian>
1623 Sized_symbol<size>*
1624 Symbol_table::add_from_incrobj(
1625 Object* obj,
1626 const char* name,
1627 const char* ver,
1628 elfcpp::Sym<size, big_endian>* sym)
1629 {
1630 unsigned int st_shndx = sym->get_st_shndx();
1631 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1632
1633 Stringpool::Key ver_key = 0;
1634 bool is_default_version = false;
1635 bool is_forced_local = false;
1636
1637 Stringpool::Key name_key;
1638 name = this->namepool_.add(name, true, &name_key);
1639
1640 Sized_symbol<size>* res;
1641 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1642 is_default_version, *sym, st_shndx,
1643 is_ordinary, st_shndx);
1644
1645 if (is_forced_local)
1646 this->force_local(res);
1647
1648 return res;
1649 }
1650
1651 // This is used to sort weak aliases. We sort them first by section
1652 // index, then by offset, then by weak ahead of strong.
1653
1654 template<int size>
1655 class Weak_alias_sorter
1656 {
1657 public:
1658 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1659 };
1660
1661 template<int size>
1662 bool
1663 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1664 const Sized_symbol<size>* s2) const
1665 {
1666 bool is_ordinary;
1667 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1668 gold_assert(is_ordinary);
1669 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1670 gold_assert(is_ordinary);
1671 if (s1_shndx != s2_shndx)
1672 return s1_shndx < s2_shndx;
1673
1674 if (s1->value() != s2->value())
1675 return s1->value() < s2->value();
1676 if (s1->binding() != s2->binding())
1677 {
1678 if (s1->binding() == elfcpp::STB_WEAK)
1679 return true;
1680 if (s2->binding() == elfcpp::STB_WEAK)
1681 return false;
1682 }
1683 return std::string(s1->name()) < std::string(s2->name());
1684 }
1685
1686 // SYMBOLS is a list of object symbols from a dynamic object. Look
1687 // for any weak aliases, and record them so that if we add the weak
1688 // alias to the dynamic symbol table, we also add the corresponding
1689 // strong symbol.
1690
1691 template<int size>
1692 void
1693 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1694 {
1695 // Sort the vector by section index, then by offset, then by weak
1696 // ahead of strong.
1697 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1698
1699 // Walk through the vector. For each weak definition, record
1700 // aliases.
1701 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1702 symbols->begin();
1703 p != symbols->end();
1704 ++p)
1705 {
1706 if ((*p)->binding() != elfcpp::STB_WEAK)
1707 continue;
1708
1709 // Build a circular list of weak aliases. Each symbol points to
1710 // the next one in the circular list.
1711
1712 Sized_symbol<size>* from_sym = *p;
1713 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1714 for (q = p + 1; q != symbols->end(); ++q)
1715 {
1716 bool dummy;
1717 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1718 || (*q)->value() != from_sym->value())
1719 break;
1720
1721 this->weak_aliases_[from_sym] = *q;
1722 from_sym->set_has_alias();
1723 from_sym = *q;
1724 }
1725
1726 if (from_sym != *p)
1727 {
1728 this->weak_aliases_[from_sym] = *p;
1729 from_sym->set_has_alias();
1730 }
1731
1732 p = q - 1;
1733 }
1734 }
1735
1736 // Create and return a specially defined symbol. If ONLY_IF_REF is
1737 // true, then only create the symbol if there is a reference to it.
1738 // If this does not return NULL, it sets *POLDSYM to the existing
1739 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1740 // resolve the newly created symbol to the old one. This
1741 // canonicalizes *PNAME and *PVERSION.
1742
1743 template<int size, bool big_endian>
1744 Sized_symbol<size>*
1745 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1746 bool only_if_ref,
1747 Sized_symbol<size>** poldsym,
1748 bool* resolve_oldsym)
1749 {
1750 *resolve_oldsym = false;
1751 *poldsym = NULL;
1752
1753 // If the caller didn't give us a version, see if we get one from
1754 // the version script.
1755 std::string v;
1756 bool is_default_version = false;
1757 if (*pversion == NULL)
1758 {
1759 bool is_global;
1760 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1761 {
1762 if (is_global && !v.empty())
1763 {
1764 *pversion = v.c_str();
1765 // If we get the version from a version script, then we
1766 // are also the default version.
1767 is_default_version = true;
1768 }
1769 }
1770 }
1771
1772 Symbol* oldsym;
1773 Sized_symbol<size>* sym;
1774
1775 bool add_to_table = false;
1776 typename Symbol_table_type::iterator add_loc = this->table_.end();
1777 bool add_def_to_table = false;
1778 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1779
1780 if (only_if_ref)
1781 {
1782 oldsym = this->lookup(*pname, *pversion);
1783 if (oldsym == NULL && is_default_version)
1784 oldsym = this->lookup(*pname, NULL);
1785 if (oldsym == NULL || !oldsym->is_undefined())
1786 return NULL;
1787
1788 *pname = oldsym->name();
1789 if (is_default_version)
1790 *pversion = this->namepool_.add(*pversion, true, NULL);
1791 else
1792 *pversion = oldsym->version();
1793 }
1794 else
1795 {
1796 // Canonicalize NAME and VERSION.
1797 Stringpool::Key name_key;
1798 *pname = this->namepool_.add(*pname, true, &name_key);
1799
1800 Stringpool::Key version_key = 0;
1801 if (*pversion != NULL)
1802 *pversion = this->namepool_.add(*pversion, true, &version_key);
1803
1804 Symbol* const snull = NULL;
1805 std::pair<typename Symbol_table_type::iterator, bool> ins =
1806 this->table_.insert(std::make_pair(std::make_pair(name_key,
1807 version_key),
1808 snull));
1809
1810 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1811 std::make_pair(this->table_.end(), false);
1812 if (is_default_version)
1813 {
1814 const Stringpool::Key vnull = 0;
1815 insdefault =
1816 this->table_.insert(std::make_pair(std::make_pair(name_key,
1817 vnull),
1818 snull));
1819 }
1820
1821 if (!ins.second)
1822 {
1823 // We already have a symbol table entry for NAME/VERSION.
1824 oldsym = ins.first->second;
1825 gold_assert(oldsym != NULL);
1826
1827 if (is_default_version)
1828 {
1829 Sized_symbol<size>* soldsym =
1830 this->get_sized_symbol<size>(oldsym);
1831 this->define_default_version<size, big_endian>(soldsym,
1832 insdefault.second,
1833 insdefault.first);
1834 }
1835 }
1836 else
1837 {
1838 // We haven't seen this symbol before.
1839 gold_assert(ins.first->second == NULL);
1840
1841 add_to_table = true;
1842 add_loc = ins.first;
1843
1844 if (is_default_version && !insdefault.second)
1845 {
1846 // We are adding NAME/VERSION, and it is the default
1847 // version. We already have an entry for NAME/NULL.
1848 oldsym = insdefault.first->second;
1849 *resolve_oldsym = true;
1850 }
1851 else
1852 {
1853 oldsym = NULL;
1854
1855 if (is_default_version)
1856 {
1857 add_def_to_table = true;
1858 add_def_loc = insdefault.first;
1859 }
1860 }
1861 }
1862 }
1863
1864 const Target& target = parameters->target();
1865 if (!target.has_make_symbol())
1866 sym = new Sized_symbol<size>();
1867 else
1868 {
1869 Sized_target<size, big_endian>* sized_target =
1870 parameters->sized_target<size, big_endian>();
1871 sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1872 NULL, elfcpp::SHN_UNDEF, 0);
1873 if (sym == NULL)
1874 return NULL;
1875 }
1876
1877 if (add_to_table)
1878 add_loc->second = sym;
1879 else
1880 gold_assert(oldsym != NULL);
1881
1882 if (add_def_to_table)
1883 add_def_loc->second = sym;
1884
1885 *poldsym = this->get_sized_symbol<size>(oldsym);
1886
1887 return sym;
1888 }
1889
1890 // Define a symbol based on an Output_data.
1891
1892 Symbol*
1893 Symbol_table::define_in_output_data(const char* name,
1894 const char* version,
1895 Defined defined,
1896 Output_data* od,
1897 uint64_t value,
1898 uint64_t symsize,
1899 elfcpp::STT type,
1900 elfcpp::STB binding,
1901 elfcpp::STV visibility,
1902 unsigned char nonvis,
1903 bool offset_is_from_end,
1904 bool only_if_ref)
1905 {
1906 if (parameters->target().get_size() == 32)
1907 {
1908 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1909 return this->do_define_in_output_data<32>(name, version, defined, od,
1910 value, symsize, type, binding,
1911 visibility, nonvis,
1912 offset_is_from_end,
1913 only_if_ref);
1914 #else
1915 gold_unreachable();
1916 #endif
1917 }
1918 else if (parameters->target().get_size() == 64)
1919 {
1920 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1921 return this->do_define_in_output_data<64>(name, version, defined, od,
1922 value, symsize, type, binding,
1923 visibility, nonvis,
1924 offset_is_from_end,
1925 only_if_ref);
1926 #else
1927 gold_unreachable();
1928 #endif
1929 }
1930 else
1931 gold_unreachable();
1932 }
1933
1934 // Define a symbol in an Output_data, sized version.
1935
1936 template<int size>
1937 Sized_symbol<size>*
1938 Symbol_table::do_define_in_output_data(
1939 const char* name,
1940 const char* version,
1941 Defined defined,
1942 Output_data* od,
1943 typename elfcpp::Elf_types<size>::Elf_Addr value,
1944 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1945 elfcpp::STT type,
1946 elfcpp::STB binding,
1947 elfcpp::STV visibility,
1948 unsigned char nonvis,
1949 bool offset_is_from_end,
1950 bool only_if_ref)
1951 {
1952 Sized_symbol<size>* sym;
1953 Sized_symbol<size>* oldsym;
1954 bool resolve_oldsym;
1955
1956 if (parameters->target().is_big_endian())
1957 {
1958 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1959 sym = this->define_special_symbol<size, true>(&name, &version,
1960 only_if_ref, &oldsym,
1961 &resolve_oldsym);
1962 #else
1963 gold_unreachable();
1964 #endif
1965 }
1966 else
1967 {
1968 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1969 sym = this->define_special_symbol<size, false>(&name, &version,
1970 only_if_ref, &oldsym,
1971 &resolve_oldsym);
1972 #else
1973 gold_unreachable();
1974 #endif
1975 }
1976
1977 if (sym == NULL)
1978 return NULL;
1979
1980 sym->init_output_data(name, version, od, value, symsize, type, binding,
1981 visibility, nonvis, offset_is_from_end,
1982 defined == PREDEFINED);
1983
1984 if (oldsym == NULL)
1985 {
1986 if (binding == elfcpp::STB_LOCAL
1987 || this->version_script_.symbol_is_local(name))
1988 this->force_local(sym);
1989 else if (version != NULL)
1990 sym->set_is_default();
1991 return sym;
1992 }
1993
1994 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1995 this->override_with_special(oldsym, sym);
1996
1997 if (resolve_oldsym)
1998 return sym;
1999 else
2000 {
2001 if (defined == PREDEFINED
2002 && (binding == elfcpp::STB_LOCAL
2003 || this->version_script_.symbol_is_local(name)))
2004 this->force_local(oldsym);
2005 delete sym;
2006 return oldsym;
2007 }
2008 }
2009
2010 // Define a symbol based on an Output_segment.
2011
2012 Symbol*
2013 Symbol_table::define_in_output_segment(const char* name,
2014 const char* version,
2015 Defined defined,
2016 Output_segment* os,
2017 uint64_t value,
2018 uint64_t symsize,
2019 elfcpp::STT type,
2020 elfcpp::STB binding,
2021 elfcpp::STV visibility,
2022 unsigned char nonvis,
2023 Symbol::Segment_offset_base offset_base,
2024 bool only_if_ref)
2025 {
2026 if (parameters->target().get_size() == 32)
2027 {
2028 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2029 return this->do_define_in_output_segment<32>(name, version, defined, os,
2030 value, symsize, type,
2031 binding, visibility, nonvis,
2032 offset_base, only_if_ref);
2033 #else
2034 gold_unreachable();
2035 #endif
2036 }
2037 else if (parameters->target().get_size() == 64)
2038 {
2039 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2040 return this->do_define_in_output_segment<64>(name, version, defined, os,
2041 value, symsize, type,
2042 binding, visibility, nonvis,
2043 offset_base, only_if_ref);
2044 #else
2045 gold_unreachable();
2046 #endif
2047 }
2048 else
2049 gold_unreachable();
2050 }
2051
2052 // Define a symbol in an Output_segment, sized version.
2053
2054 template<int size>
2055 Sized_symbol<size>*
2056 Symbol_table::do_define_in_output_segment(
2057 const char* name,
2058 const char* version,
2059 Defined defined,
2060 Output_segment* os,
2061 typename elfcpp::Elf_types<size>::Elf_Addr value,
2062 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2063 elfcpp::STT type,
2064 elfcpp::STB binding,
2065 elfcpp::STV visibility,
2066 unsigned char nonvis,
2067 Symbol::Segment_offset_base offset_base,
2068 bool only_if_ref)
2069 {
2070 Sized_symbol<size>* sym;
2071 Sized_symbol<size>* oldsym;
2072 bool resolve_oldsym;
2073
2074 if (parameters->target().is_big_endian())
2075 {
2076 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2077 sym = this->define_special_symbol<size, true>(&name, &version,
2078 only_if_ref, &oldsym,
2079 &resolve_oldsym);
2080 #else
2081 gold_unreachable();
2082 #endif
2083 }
2084 else
2085 {
2086 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2087 sym = this->define_special_symbol<size, false>(&name, &version,
2088 only_if_ref, &oldsym,
2089 &resolve_oldsym);
2090 #else
2091 gold_unreachable();
2092 #endif
2093 }
2094
2095 if (sym == NULL)
2096 return NULL;
2097
2098 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2099 visibility, nonvis, offset_base,
2100 defined == PREDEFINED);
2101
2102 if (oldsym == NULL)
2103 {
2104 if (binding == elfcpp::STB_LOCAL
2105 || this->version_script_.symbol_is_local(name))
2106 this->force_local(sym);
2107 else if (version != NULL)
2108 sym->set_is_default();
2109 return sym;
2110 }
2111
2112 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2113 this->override_with_special(oldsym, sym);
2114
2115 if (resolve_oldsym)
2116 return sym;
2117 else
2118 {
2119 if (binding == elfcpp::STB_LOCAL
2120 || this->version_script_.symbol_is_local(name))
2121 this->force_local(oldsym);
2122 delete sym;
2123 return oldsym;
2124 }
2125 }
2126
2127 // Define a special symbol with a constant value. It is a multiple
2128 // definition error if this symbol is already defined.
2129
2130 Symbol*
2131 Symbol_table::define_as_constant(const char* name,
2132 const char* version,
2133 Defined defined,
2134 uint64_t value,
2135 uint64_t symsize,
2136 elfcpp::STT type,
2137 elfcpp::STB binding,
2138 elfcpp::STV visibility,
2139 unsigned char nonvis,
2140 bool only_if_ref,
2141 bool force_override)
2142 {
2143 if (parameters->target().get_size() == 32)
2144 {
2145 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2146 return this->do_define_as_constant<32>(name, version, defined, value,
2147 symsize, type, binding,
2148 visibility, nonvis, only_if_ref,
2149 force_override);
2150 #else
2151 gold_unreachable();
2152 #endif
2153 }
2154 else if (parameters->target().get_size() == 64)
2155 {
2156 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2157 return this->do_define_as_constant<64>(name, version, defined, value,
2158 symsize, type, binding,
2159 visibility, nonvis, only_if_ref,
2160 force_override);
2161 #else
2162 gold_unreachable();
2163 #endif
2164 }
2165 else
2166 gold_unreachable();
2167 }
2168
2169 // Define a symbol as a constant, sized version.
2170
2171 template<int size>
2172 Sized_symbol<size>*
2173 Symbol_table::do_define_as_constant(
2174 const char* name,
2175 const char* version,
2176 Defined defined,
2177 typename elfcpp::Elf_types<size>::Elf_Addr value,
2178 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2179 elfcpp::STT type,
2180 elfcpp::STB binding,
2181 elfcpp::STV visibility,
2182 unsigned char nonvis,
2183 bool only_if_ref,
2184 bool force_override)
2185 {
2186 Sized_symbol<size>* sym;
2187 Sized_symbol<size>* oldsym;
2188 bool resolve_oldsym;
2189
2190 if (parameters->target().is_big_endian())
2191 {
2192 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2193 sym = this->define_special_symbol<size, true>(&name, &version,
2194 only_if_ref, &oldsym,
2195 &resolve_oldsym);
2196 #else
2197 gold_unreachable();
2198 #endif
2199 }
2200 else
2201 {
2202 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2203 sym = this->define_special_symbol<size, false>(&name, &version,
2204 only_if_ref, &oldsym,
2205 &resolve_oldsym);
2206 #else
2207 gold_unreachable();
2208 #endif
2209 }
2210
2211 if (sym == NULL)
2212 return NULL;
2213
2214 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2215 nonvis, defined == PREDEFINED);
2216
2217 if (oldsym == NULL)
2218 {
2219 // Version symbols are absolute symbols with name == version.
2220 // We don't want to force them to be local.
2221 if ((version == NULL
2222 || name != version
2223 || value != 0)
2224 && (binding == elfcpp::STB_LOCAL
2225 || this->version_script_.symbol_is_local(name)))
2226 this->force_local(sym);
2227 else if (version != NULL
2228 && (name != version || value != 0))
2229 sym->set_is_default();
2230 return sym;
2231 }
2232
2233 if (force_override
2234 || Symbol_table::should_override_with_special(oldsym, type, defined))
2235 this->override_with_special(oldsym, sym);
2236
2237 if (resolve_oldsym)
2238 return sym;
2239 else
2240 {
2241 if (binding == elfcpp::STB_LOCAL
2242 || this->version_script_.symbol_is_local(name))
2243 this->force_local(oldsym);
2244 delete sym;
2245 return oldsym;
2246 }
2247 }
2248
2249 // Define a set of symbols in output sections.
2250
2251 void
2252 Symbol_table::define_symbols(const Layout* layout, int count,
2253 const Define_symbol_in_section* p,
2254 bool only_if_ref)
2255 {
2256 for (int i = 0; i < count; ++i, ++p)
2257 {
2258 Output_section* os = layout->find_output_section(p->output_section);
2259 if (os != NULL)
2260 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2261 p->size, p->type, p->binding,
2262 p->visibility, p->nonvis,
2263 p->offset_is_from_end,
2264 only_if_ref || p->only_if_ref);
2265 else
2266 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2267 p->type, p->binding, p->visibility, p->nonvis,
2268 only_if_ref || p->only_if_ref,
2269 false);
2270 }
2271 }
2272
2273 // Define a set of symbols in output segments.
2274
2275 void
2276 Symbol_table::define_symbols(const Layout* layout, int count,
2277 const Define_symbol_in_segment* p,
2278 bool only_if_ref)
2279 {
2280 for (int i = 0; i < count; ++i, ++p)
2281 {
2282 Output_segment* os = layout->find_output_segment(p->segment_type,
2283 p->segment_flags_set,
2284 p->segment_flags_clear);
2285 if (os != NULL)
2286 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2287 p->size, p->type, p->binding,
2288 p->visibility, p->nonvis,
2289 p->offset_base,
2290 only_if_ref || p->only_if_ref);
2291 else
2292 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2293 p->type, p->binding, p->visibility, p->nonvis,
2294 only_if_ref || p->only_if_ref,
2295 false);
2296 }
2297 }
2298
2299 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2300 // symbol should be defined--typically a .dyn.bss section. VALUE is
2301 // the offset within POSD.
2302
2303 template<int size>
2304 void
2305 Symbol_table::define_with_copy_reloc(
2306 Sized_symbol<size>* csym,
2307 Output_data* posd,
2308 typename elfcpp::Elf_types<size>::Elf_Addr value)
2309 {
2310 gold_assert(csym->is_from_dynobj());
2311 gold_assert(!csym->is_copied_from_dynobj());
2312 Object* object = csym->object();
2313 gold_assert(object->is_dynamic());
2314 Dynobj* dynobj = static_cast<Dynobj*>(object);
2315
2316 // Our copied variable has to override any variable in a shared
2317 // library.
2318 elfcpp::STB binding = csym->binding();
2319 if (binding == elfcpp::STB_WEAK)
2320 binding = elfcpp::STB_GLOBAL;
2321
2322 this->define_in_output_data(csym->name(), csym->version(), COPY,
2323 posd, value, csym->symsize(),
2324 csym->type(), binding,
2325 csym->visibility(), csym->nonvis(),
2326 false, false);
2327
2328 csym->set_is_copied_from_dynobj();
2329 csym->set_needs_dynsym_entry();
2330
2331 this->copied_symbol_dynobjs_[csym] = dynobj;
2332
2333 // We have now defined all aliases, but we have not entered them all
2334 // in the copied_symbol_dynobjs_ map.
2335 if (csym->has_alias())
2336 {
2337 Symbol* sym = csym;
2338 while (true)
2339 {
2340 sym = this->weak_aliases_[sym];
2341 if (sym == csym)
2342 break;
2343 gold_assert(sym->output_data() == posd);
2344
2345 sym->set_is_copied_from_dynobj();
2346 this->copied_symbol_dynobjs_[sym] = dynobj;
2347 }
2348 }
2349 }
2350
2351 // SYM is defined using a COPY reloc. Return the dynamic object where
2352 // the original definition was found.
2353
2354 Dynobj*
2355 Symbol_table::get_copy_source(const Symbol* sym) const
2356 {
2357 gold_assert(sym->is_copied_from_dynobj());
2358 Copied_symbol_dynobjs::const_iterator p =
2359 this->copied_symbol_dynobjs_.find(sym);
2360 gold_assert(p != this->copied_symbol_dynobjs_.end());
2361 return p->second;
2362 }
2363
2364 // Add any undefined symbols named on the command line.
2365
2366 void
2367 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2368 {
2369 if (parameters->options().any_undefined()
2370 || layout->script_options()->any_unreferenced())
2371 {
2372 if (parameters->target().get_size() == 32)
2373 {
2374 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2375 this->do_add_undefined_symbols_from_command_line<32>(layout);
2376 #else
2377 gold_unreachable();
2378 #endif
2379 }
2380 else if (parameters->target().get_size() == 64)
2381 {
2382 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2383 this->do_add_undefined_symbols_from_command_line<64>(layout);
2384 #else
2385 gold_unreachable();
2386 #endif
2387 }
2388 else
2389 gold_unreachable();
2390 }
2391 }
2392
2393 template<int size>
2394 void
2395 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2396 {
2397 for (options::String_set::const_iterator p =
2398 parameters->options().undefined_begin();
2399 p != parameters->options().undefined_end();
2400 ++p)
2401 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2402
2403 for (options::String_set::const_iterator p =
2404 parameters->options().export_dynamic_symbol_begin();
2405 p != parameters->options().export_dynamic_symbol_end();
2406 ++p)
2407 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2408
2409 for (Script_options::referenced_const_iterator p =
2410 layout->script_options()->referenced_begin();
2411 p != layout->script_options()->referenced_end();
2412 ++p)
2413 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2414 }
2415
2416 template<int size>
2417 void
2418 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2419 {
2420 if (this->lookup(name) != NULL)
2421 return;
2422
2423 const char* version = NULL;
2424
2425 Sized_symbol<size>* sym;
2426 Sized_symbol<size>* oldsym;
2427 bool resolve_oldsym;
2428 if (parameters->target().is_big_endian())
2429 {
2430 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2431 sym = this->define_special_symbol<size, true>(&name, &version,
2432 false, &oldsym,
2433 &resolve_oldsym);
2434 #else
2435 gold_unreachable();
2436 #endif
2437 }
2438 else
2439 {
2440 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2441 sym = this->define_special_symbol<size, false>(&name, &version,
2442 false, &oldsym,
2443 &resolve_oldsym);
2444 #else
2445 gold_unreachable();
2446 #endif
2447 }
2448
2449 gold_assert(oldsym == NULL);
2450
2451 sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2452 elfcpp::STV_DEFAULT, 0);
2453 ++this->saw_undefined_;
2454 }
2455
2456 // Set the dynamic symbol indexes. INDEX is the index of the first
2457 // global dynamic symbol. Pointers to the symbols are stored into the
2458 // vector SYMS. The names are added to DYNPOOL. This returns an
2459 // updated dynamic symbol index.
2460
2461 unsigned int
2462 Symbol_table::set_dynsym_indexes(unsigned int index,
2463 std::vector<Symbol*>* syms,
2464 Stringpool* dynpool,
2465 Versions* versions)
2466 {
2467 std::vector<Symbol*> as_needed_sym;
2468
2469 // Allow a target to set dynsym indexes.
2470 if (parameters->target().has_custom_set_dynsym_indexes())
2471 {
2472 std::vector<Symbol*> dyn_symbols;
2473 for (Symbol_table_type::iterator p = this->table_.begin();
2474 p != this->table_.end();
2475 ++p)
2476 {
2477 Symbol* sym = p->second;
2478 if (!sym->should_add_dynsym_entry(this))
2479 sym->set_dynsym_index(-1U);
2480 else
2481 dyn_symbols.push_back(sym);
2482 }
2483
2484 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2485 dynpool, versions, this);
2486 }
2487
2488 for (Symbol_table_type::iterator p = this->table_.begin();
2489 p != this->table_.end();
2490 ++p)
2491 {
2492 Symbol* sym = p->second;
2493
2494 // Note that SYM may already have a dynamic symbol index, since
2495 // some symbols appear more than once in the symbol table, with
2496 // and without a version.
2497
2498 if (!sym->should_add_dynsym_entry(this))
2499 sym->set_dynsym_index(-1U);
2500 else if (!sym->has_dynsym_index())
2501 {
2502 sym->set_dynsym_index(index);
2503 ++index;
2504 syms->push_back(sym);
2505 dynpool->add(sym->name(), false, NULL);
2506
2507 // If the symbol is defined in a dynamic object and is
2508 // referenced strongly in a regular object, then mark the
2509 // dynamic object as needed. This is used to implement
2510 // --as-needed.
2511 if (sym->is_from_dynobj()
2512 && sym->in_reg()
2513 && !sym->is_undef_binding_weak())
2514 sym->object()->set_is_needed();
2515
2516 // Record any version information, except those from
2517 // as-needed libraries not seen to be needed. Note that the
2518 // is_needed state for such libraries can change in this loop.
2519 if (sym->version() != NULL)
2520 {
2521 if (!sym->is_from_dynobj()
2522 || !sym->object()->as_needed()
2523 || sym->object()->is_needed())
2524 versions->record_version(this, dynpool, sym);
2525 else
2526 as_needed_sym.push_back(sym);
2527 }
2528 }
2529 }
2530
2531 // Process version information for symbols from as-needed libraries.
2532 for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2533 p != as_needed_sym.end();
2534 ++p)
2535 {
2536 Symbol* sym = *p;
2537
2538 if (sym->object()->is_needed())
2539 versions->record_version(this, dynpool, sym);
2540 else
2541 sym->clear_version();
2542 }
2543
2544 // Finish up the versions. In some cases this may add new dynamic
2545 // symbols.
2546 index = versions->finalize(this, index, syms);
2547
2548 // Process target-specific symbols.
2549 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2550 p != this->target_symbols_.end();
2551 ++p)
2552 {
2553 (*p)->set_dynsym_index(index);
2554 ++index;
2555 syms->push_back(*p);
2556 dynpool->add((*p)->name(), false, NULL);
2557 }
2558
2559 return index;
2560 }
2561
2562 // Set the final values for all the symbols. The index of the first
2563 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2564 // file offset OFF. Add their names to POOL. Return the new file
2565 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2566
2567 off_t
2568 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2569 size_t dyncount, Stringpool* pool,
2570 unsigned int* plocal_symcount)
2571 {
2572 off_t ret;
2573
2574 gold_assert(*plocal_symcount != 0);
2575 this->first_global_index_ = *plocal_symcount;
2576
2577 this->dynamic_offset_ = dynoff;
2578 this->first_dynamic_global_index_ = dyn_global_index;
2579 this->dynamic_count_ = dyncount;
2580
2581 if (parameters->target().get_size() == 32)
2582 {
2583 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2584 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2585 #else
2586 gold_unreachable();
2587 #endif
2588 }
2589 else if (parameters->target().get_size() == 64)
2590 {
2591 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2592 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2593 #else
2594 gold_unreachable();
2595 #endif
2596 }
2597 else
2598 gold_unreachable();
2599
2600 // Now that we have the final symbol table, we can reliably note
2601 // which symbols should get warnings.
2602 this->warnings_.note_warnings(this);
2603
2604 return ret;
2605 }
2606
2607 // SYM is going into the symbol table at *PINDEX. Add the name to
2608 // POOL, update *PINDEX and *POFF.
2609
2610 template<int size>
2611 void
2612 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2613 unsigned int* pindex, off_t* poff)
2614 {
2615 sym->set_symtab_index(*pindex);
2616 if (sym->version() == NULL || !parameters->options().relocatable())
2617 pool->add(sym->name(), false, NULL);
2618 else
2619 pool->add(sym->versioned_name(), true, NULL);
2620 ++*pindex;
2621 *poff += elfcpp::Elf_sizes<size>::sym_size;
2622 }
2623
2624 // Set the final value for all the symbols. This is called after
2625 // Layout::finalize, so all the output sections have their final
2626 // address.
2627
2628 template<int size>
2629 off_t
2630 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2631 unsigned int* plocal_symcount)
2632 {
2633 off = align_address(off, size >> 3);
2634 this->offset_ = off;
2635
2636 unsigned int index = *plocal_symcount;
2637 const unsigned int orig_index = index;
2638
2639 // First do all the symbols which have been forced to be local, as
2640 // they must appear before all global symbols.
2641 for (Forced_locals::iterator p = this->forced_locals_.begin();
2642 p != this->forced_locals_.end();
2643 ++p)
2644 {
2645 Symbol* sym = *p;
2646 gold_assert(sym->is_forced_local());
2647 if (this->sized_finalize_symbol<size>(sym))
2648 {
2649 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2650 ++*plocal_symcount;
2651 }
2652 }
2653
2654 // Now do all the remaining symbols.
2655 for (Symbol_table_type::iterator p = this->table_.begin();
2656 p != this->table_.end();
2657 ++p)
2658 {
2659 Symbol* sym = p->second;
2660 if (this->sized_finalize_symbol<size>(sym))
2661 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2662 }
2663
2664 // Now do target-specific symbols.
2665 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2666 p != this->target_symbols_.end();
2667 ++p)
2668 {
2669 this->add_to_final_symtab<size>(*p, pool, &index, &off);
2670 }
2671
2672 this->output_count_ = index - orig_index;
2673
2674 return off;
2675 }
2676
2677 // Compute the final value of SYM and store status in location PSTATUS.
2678 // During relaxation, this may be called multiple times for a symbol to
2679 // compute its would-be final value in each relaxation pass.
2680
2681 template<int size>
2682 typename Sized_symbol<size>::Value_type
2683 Symbol_table::compute_final_value(
2684 const Sized_symbol<size>* sym,
2685 Compute_final_value_status* pstatus) const
2686 {
2687 typedef typename Sized_symbol<size>::Value_type Value_type;
2688 Value_type value;
2689
2690 switch (sym->source())
2691 {
2692 case Symbol::FROM_OBJECT:
2693 {
2694 bool is_ordinary;
2695 unsigned int shndx = sym->shndx(&is_ordinary);
2696
2697 if (!is_ordinary
2698 && shndx != elfcpp::SHN_ABS
2699 && !Symbol::is_common_shndx(shndx))
2700 {
2701 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2702 return 0;
2703 }
2704
2705 Object* symobj = sym->object();
2706 if (symobj->is_dynamic())
2707 {
2708 value = 0;
2709 shndx = elfcpp::SHN_UNDEF;
2710 }
2711 else if (symobj->pluginobj() != NULL)
2712 {
2713 value = 0;
2714 shndx = elfcpp::SHN_UNDEF;
2715 }
2716 else if (shndx == elfcpp::SHN_UNDEF)
2717 value = 0;
2718 else if (!is_ordinary
2719 && (shndx == elfcpp::SHN_ABS
2720 || Symbol::is_common_shndx(shndx)))
2721 value = sym->value();
2722 else
2723 {
2724 Relobj* relobj = static_cast<Relobj*>(symobj);
2725 Output_section* os = relobj->output_section(shndx);
2726
2727 if (this->is_section_folded(relobj, shndx))
2728 {
2729 gold_assert(os == NULL);
2730 // Get the os of the section it is folded onto.
2731 Section_id folded = this->icf_->get_folded_section(relobj,
2732 shndx);
2733 gold_assert(folded.first != NULL);
2734 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2735 unsigned folded_shndx = folded.second;
2736
2737 os = folded_obj->output_section(folded_shndx);
2738 gold_assert(os != NULL);
2739
2740 // Replace (relobj, shndx) with canonical ICF input section.
2741 shndx = folded_shndx;
2742 relobj = folded_obj;
2743 }
2744
2745 uint64_t secoff64 = relobj->output_section_offset(shndx);
2746 if (os == NULL)
2747 {
2748 bool static_or_reloc = (parameters->doing_static_link() ||
2749 parameters->options().relocatable());
2750 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2751
2752 *pstatus = CFVS_NO_OUTPUT_SECTION;
2753 return 0;
2754 }
2755
2756 if (secoff64 == -1ULL)
2757 {
2758 // The section needs special handling (e.g., a merge section).
2759
2760 value = os->output_address(relobj, shndx, sym->value());
2761 }
2762 else
2763 {
2764 Value_type secoff =
2765 convert_types<Value_type, uint64_t>(secoff64);
2766 if (sym->type() == elfcpp::STT_TLS)
2767 value = sym->value() + os->tls_offset() + secoff;
2768 else
2769 value = sym->value() + os->address() + secoff;
2770 }
2771 }
2772 }
2773 break;
2774
2775 case Symbol::IN_OUTPUT_DATA:
2776 {
2777 Output_data* od = sym->output_data();
2778 value = sym->value();
2779 if (sym->type() != elfcpp::STT_TLS)
2780 value += od->address();
2781 else
2782 {
2783 Output_section* os = od->output_section();
2784 gold_assert(os != NULL);
2785 value += os->tls_offset() + (od->address() - os->address());
2786 }
2787 if (sym->offset_is_from_end())
2788 value += od->data_size();
2789 }
2790 break;
2791
2792 case Symbol::IN_OUTPUT_SEGMENT:
2793 {
2794 Output_segment* os = sym->output_segment();
2795 value = sym->value();
2796 if (sym->type() != elfcpp::STT_TLS)
2797 value += os->vaddr();
2798 switch (sym->offset_base())
2799 {
2800 case Symbol::SEGMENT_START:
2801 break;
2802 case Symbol::SEGMENT_END:
2803 value += os->memsz();
2804 break;
2805 case Symbol::SEGMENT_BSS:
2806 value += os->filesz();
2807 break;
2808 default:
2809 gold_unreachable();
2810 }
2811 }
2812 break;
2813
2814 case Symbol::IS_CONSTANT:
2815 value = sym->value();
2816 break;
2817
2818 case Symbol::IS_UNDEFINED:
2819 value = 0;
2820 break;
2821
2822 default:
2823 gold_unreachable();
2824 }
2825
2826 *pstatus = CFVS_OK;
2827 return value;
2828 }
2829
2830 // Finalize the symbol SYM. This returns true if the symbol should be
2831 // added to the symbol table, false otherwise.
2832
2833 template<int size>
2834 bool
2835 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2836 {
2837 typedef typename Sized_symbol<size>::Value_type Value_type;
2838
2839 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2840
2841 // The default version of a symbol may appear twice in the symbol
2842 // table. We only need to finalize it once.
2843 if (sym->has_symtab_index())
2844 return false;
2845
2846 if (!sym->in_reg())
2847 {
2848 gold_assert(!sym->has_symtab_index());
2849 sym->set_symtab_index(-1U);
2850 gold_assert(sym->dynsym_index() == -1U);
2851 return false;
2852 }
2853
2854 // If the symbol is only present on plugin files, the plugin decided we
2855 // don't need it.
2856 if (!sym->in_real_elf())
2857 {
2858 gold_assert(!sym->has_symtab_index());
2859 sym->set_symtab_index(-1U);
2860 return false;
2861 }
2862
2863 // Compute final symbol value.
2864 Compute_final_value_status status;
2865 Value_type value = this->compute_final_value(sym, &status);
2866
2867 switch (status)
2868 {
2869 case CFVS_OK:
2870 break;
2871 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2872 {
2873 bool is_ordinary;
2874 unsigned int shndx = sym->shndx(&is_ordinary);
2875 gold_error(_("%s: unsupported symbol section 0x%x"),
2876 sym->demangled_name().c_str(), shndx);
2877 }
2878 break;
2879 case CFVS_NO_OUTPUT_SECTION:
2880 sym->set_symtab_index(-1U);
2881 return false;
2882 default:
2883 gold_unreachable();
2884 }
2885
2886 sym->set_value(value);
2887
2888 if (parameters->options().strip_all()
2889 || !parameters->options().should_retain_symbol(sym->name()))
2890 {
2891 sym->set_symtab_index(-1U);
2892 return false;
2893 }
2894
2895 return true;
2896 }
2897
2898 // Write out the global symbols.
2899
2900 void
2901 Symbol_table::write_globals(const Stringpool* sympool,
2902 const Stringpool* dynpool,
2903 Output_symtab_xindex* symtab_xindex,
2904 Output_symtab_xindex* dynsym_xindex,
2905 Output_file* of) const
2906 {
2907 switch (parameters->size_and_endianness())
2908 {
2909 #ifdef HAVE_TARGET_32_LITTLE
2910 case Parameters::TARGET_32_LITTLE:
2911 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2912 dynsym_xindex, of);
2913 break;
2914 #endif
2915 #ifdef HAVE_TARGET_32_BIG
2916 case Parameters::TARGET_32_BIG:
2917 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2918 dynsym_xindex, of);
2919 break;
2920 #endif
2921 #ifdef HAVE_TARGET_64_LITTLE
2922 case Parameters::TARGET_64_LITTLE:
2923 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2924 dynsym_xindex, of);
2925 break;
2926 #endif
2927 #ifdef HAVE_TARGET_64_BIG
2928 case Parameters::TARGET_64_BIG:
2929 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2930 dynsym_xindex, of);
2931 break;
2932 #endif
2933 default:
2934 gold_unreachable();
2935 }
2936 }
2937
2938 // Write out the global symbols.
2939
2940 template<int size, bool big_endian>
2941 void
2942 Symbol_table::sized_write_globals(const Stringpool* sympool,
2943 const Stringpool* dynpool,
2944 Output_symtab_xindex* symtab_xindex,
2945 Output_symtab_xindex* dynsym_xindex,
2946 Output_file* of) const
2947 {
2948 const Target& target = parameters->target();
2949
2950 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2951
2952 const unsigned int output_count = this->output_count_;
2953 const section_size_type oview_size = output_count * sym_size;
2954 const unsigned int first_global_index = this->first_global_index_;
2955 unsigned char* psyms;
2956 if (this->offset_ == 0 || output_count == 0)
2957 psyms = NULL;
2958 else
2959 psyms = of->get_output_view(this->offset_, oview_size);
2960
2961 const unsigned int dynamic_count = this->dynamic_count_;
2962 const section_size_type dynamic_size = dynamic_count * sym_size;
2963 const unsigned int first_dynamic_global_index =
2964 this->first_dynamic_global_index_;
2965 unsigned char* dynamic_view;
2966 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2967 dynamic_view = NULL;
2968 else
2969 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2970
2971 for (Symbol_table_type::const_iterator p = this->table_.begin();
2972 p != this->table_.end();
2973 ++p)
2974 {
2975 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2976
2977 // Possibly warn about unresolved symbols in shared libraries.
2978 this->warn_about_undefined_dynobj_symbol(sym);
2979
2980 unsigned int sym_index = sym->symtab_index();
2981 unsigned int dynsym_index;
2982 if (dynamic_view == NULL)
2983 dynsym_index = -1U;
2984 else
2985 dynsym_index = sym->dynsym_index();
2986
2987 if (sym_index == -1U && dynsym_index == -1U)
2988 {
2989 // This symbol is not included in the output file.
2990 continue;
2991 }
2992
2993 unsigned int shndx;
2994 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2995 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2996 elfcpp::STB binding = sym->binding();
2997
2998 // If --weak-unresolved-symbols is set, change binding of unresolved
2999 // global symbols to STB_WEAK.
3000 if (parameters->options().weak_unresolved_symbols()
3001 && binding == elfcpp::STB_GLOBAL
3002 && sym->is_undefined())
3003 binding = elfcpp::STB_WEAK;
3004
3005 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3006 if (binding == elfcpp::STB_GNU_UNIQUE
3007 && !parameters->options().gnu_unique())
3008 binding = elfcpp::STB_GLOBAL;
3009
3010 switch (sym->source())
3011 {
3012 case Symbol::FROM_OBJECT:
3013 {
3014 bool is_ordinary;
3015 unsigned int in_shndx = sym->shndx(&is_ordinary);
3016
3017 if (!is_ordinary
3018 && in_shndx != elfcpp::SHN_ABS
3019 && !Symbol::is_common_shndx(in_shndx))
3020 {
3021 gold_error(_("%s: unsupported symbol section 0x%x"),
3022 sym->demangled_name().c_str(), in_shndx);
3023 shndx = in_shndx;
3024 }
3025 else
3026 {
3027 Object* symobj = sym->object();
3028 if (symobj->is_dynamic())
3029 {
3030 if (sym->needs_dynsym_value())
3031 dynsym_value = target.dynsym_value(sym);
3032 shndx = elfcpp::SHN_UNDEF;
3033 if (sym->is_undef_binding_weak())
3034 binding = elfcpp::STB_WEAK;
3035 else
3036 binding = elfcpp::STB_GLOBAL;
3037 }
3038 else if (symobj->pluginobj() != NULL)
3039 shndx = elfcpp::SHN_UNDEF;
3040 else if (in_shndx == elfcpp::SHN_UNDEF
3041 || (!is_ordinary
3042 && (in_shndx == elfcpp::SHN_ABS
3043 || Symbol::is_common_shndx(in_shndx))))
3044 shndx = in_shndx;
3045 else
3046 {
3047 Relobj* relobj = static_cast<Relobj*>(symobj);
3048 Output_section* os = relobj->output_section(in_shndx);
3049 if (this->is_section_folded(relobj, in_shndx))
3050 {
3051 // This global symbol must be written out even though
3052 // it is folded.
3053 // Get the os of the section it is folded onto.
3054 Section_id folded =
3055 this->icf_->get_folded_section(relobj, in_shndx);
3056 gold_assert(folded.first !=NULL);
3057 Relobj* folded_obj =
3058 reinterpret_cast<Relobj*>(folded.first);
3059 os = folded_obj->output_section(folded.second);
3060 gold_assert(os != NULL);
3061 }
3062 gold_assert(os != NULL);
3063 shndx = os->out_shndx();
3064
3065 if (shndx >= elfcpp::SHN_LORESERVE)
3066 {
3067 if (sym_index != -1U)
3068 symtab_xindex->add(sym_index, shndx);
3069 if (dynsym_index != -1U)
3070 dynsym_xindex->add(dynsym_index, shndx);
3071 shndx = elfcpp::SHN_XINDEX;
3072 }
3073
3074 // In object files symbol values are section
3075 // relative.
3076 if (parameters->options().relocatable())
3077 sym_value -= os->address();
3078 }
3079 }
3080 }
3081 break;
3082
3083 case Symbol::IN_OUTPUT_DATA:
3084 {
3085 Output_data* od = sym->output_data();
3086
3087 shndx = od->out_shndx();
3088 if (shndx >= elfcpp::SHN_LORESERVE)
3089 {
3090 if (sym_index != -1U)
3091 symtab_xindex->add(sym_index, shndx);
3092 if (dynsym_index != -1U)
3093 dynsym_xindex->add(dynsym_index, shndx);
3094 shndx = elfcpp::SHN_XINDEX;
3095 }
3096
3097 // In object files symbol values are section
3098 // relative.
3099 if (parameters->options().relocatable())
3100 sym_value -= od->address();
3101 }
3102 break;
3103
3104 case Symbol::IN_OUTPUT_SEGMENT:
3105 shndx = elfcpp::SHN_ABS;
3106 break;
3107
3108 case Symbol::IS_CONSTANT:
3109 shndx = elfcpp::SHN_ABS;
3110 break;
3111
3112 case Symbol::IS_UNDEFINED:
3113 shndx = elfcpp::SHN_UNDEF;
3114 break;
3115
3116 default:
3117 gold_unreachable();
3118 }
3119
3120 if (sym_index != -1U)
3121 {
3122 sym_index -= first_global_index;
3123 gold_assert(sym_index < output_count);
3124 unsigned char* ps = psyms + (sym_index * sym_size);
3125 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3126 binding, sympool, ps);
3127 }
3128
3129 if (dynsym_index != -1U)
3130 {
3131 dynsym_index -= first_dynamic_global_index;
3132 gold_assert(dynsym_index < dynamic_count);
3133 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3134 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3135 binding, dynpool, pd);
3136 // Allow a target to adjust dynamic symbol value.
3137 parameters->target().adjust_dyn_symbol(sym, pd);
3138 }
3139 }
3140
3141 // Write the target-specific symbols.
3142 for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3143 p != this->target_symbols_.end();
3144 ++p)
3145 {
3146 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3147
3148 unsigned int sym_index = sym->symtab_index();
3149 unsigned int dynsym_index;
3150 if (dynamic_view == NULL)
3151 dynsym_index = -1U;
3152 else
3153 dynsym_index = sym->dynsym_index();
3154
3155 unsigned int shndx;
3156 switch (sym->source())
3157 {
3158 case Symbol::IS_CONSTANT:
3159 shndx = elfcpp::SHN_ABS;
3160 break;
3161 case Symbol::IS_UNDEFINED:
3162 shndx = elfcpp::SHN_UNDEF;
3163 break;
3164 default:
3165 gold_unreachable();
3166 }
3167
3168 if (sym_index != -1U)
3169 {
3170 sym_index -= first_global_index;
3171 gold_assert(sym_index < output_count);
3172 unsigned char* ps = psyms + (sym_index * sym_size);
3173 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3174 sym->binding(), sympool,
3175 ps);
3176 }
3177
3178 if (dynsym_index != -1U)
3179 {
3180 dynsym_index -= first_dynamic_global_index;
3181 gold_assert(dynsym_index < dynamic_count);
3182 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3183 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3184 sym->binding(), dynpool,
3185 pd);
3186 }
3187 }
3188
3189 of->write_output_view(this->offset_, oview_size, psyms);
3190 if (dynamic_view != NULL)
3191 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3192 }
3193
3194 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3195 // strtab holding the name.
3196
3197 template<int size, bool big_endian>
3198 void
3199 Symbol_table::sized_write_symbol(
3200 Sized_symbol<size>* sym,
3201 typename elfcpp::Elf_types<size>::Elf_Addr value,
3202 unsigned int shndx,
3203 elfcpp::STB binding,
3204 const Stringpool* pool,
3205 unsigned char* p) const
3206 {
3207 elfcpp::Sym_write<size, big_endian> osym(p);
3208 if (sym->version() == NULL || !parameters->options().relocatable())
3209 osym.put_st_name(pool->get_offset(sym->name()));
3210 else
3211 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3212 osym.put_st_value(value);
3213 // Use a symbol size of zero for undefined symbols from shared libraries.
3214 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3215 osym.put_st_size(0);
3216 else
3217 osym.put_st_size(sym->symsize());
3218 elfcpp::STT type = sym->type();
3219 gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3220 // A version script may have overridden the default binding.
3221 if (sym->is_forced_local())
3222 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3223 else
3224 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3225 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3226 osym.put_st_shndx(shndx);
3227 }
3228
3229 // Check for unresolved symbols in shared libraries. This is
3230 // controlled by the --allow-shlib-undefined option.
3231
3232 // We only warn about libraries for which we have seen all the
3233 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3234 // which were not seen in this link. If we didn't see a DT_NEEDED
3235 // entry, we aren't going to be able to reliably report whether the
3236 // symbol is undefined.
3237
3238 // We also don't warn about libraries found in a system library
3239 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3240 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3241 // can have undefined references satisfied by ld-linux.so.
3242
3243 inline void
3244 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3245 {
3246 bool dummy;
3247 if (sym->source() == Symbol::FROM_OBJECT
3248 && sym->object()->is_dynamic()
3249 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3250 && sym->binding() != elfcpp::STB_WEAK
3251 && !parameters->options().allow_shlib_undefined()
3252 && !parameters->target().is_defined_by_abi(sym)
3253 && !sym->object()->is_in_system_directory())
3254 {
3255 // A very ugly cast.
3256 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3257 if (!dynobj->has_unknown_needed_entries())
3258 gold_undefined_symbol(sym);
3259 }
3260 }
3261
3262 // Write out a section symbol. Return the update offset.
3263
3264 void
3265 Symbol_table::write_section_symbol(const Output_section* os,
3266 Output_symtab_xindex* symtab_xindex,
3267 Output_file* of,
3268 off_t offset) const
3269 {
3270 switch (parameters->size_and_endianness())
3271 {
3272 #ifdef HAVE_TARGET_32_LITTLE
3273 case Parameters::TARGET_32_LITTLE:
3274 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3275 offset);
3276 break;
3277 #endif
3278 #ifdef HAVE_TARGET_32_BIG
3279 case Parameters::TARGET_32_BIG:
3280 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3281 offset);
3282 break;
3283 #endif
3284 #ifdef HAVE_TARGET_64_LITTLE
3285 case Parameters::TARGET_64_LITTLE:
3286 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3287 offset);
3288 break;
3289 #endif
3290 #ifdef HAVE_TARGET_64_BIG
3291 case Parameters::TARGET_64_BIG:
3292 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3293 offset);
3294 break;
3295 #endif
3296 default:
3297 gold_unreachable();
3298 }
3299 }
3300
3301 // Write out a section symbol, specialized for size and endianness.
3302
3303 template<int size, bool big_endian>
3304 void
3305 Symbol_table::sized_write_section_symbol(const Output_section* os,
3306 Output_symtab_xindex* symtab_xindex,
3307 Output_file* of,
3308 off_t offset) const
3309 {
3310 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3311
3312 unsigned char* pov = of->get_output_view(offset, sym_size);
3313
3314 elfcpp::Sym_write<size, big_endian> osym(pov);
3315 osym.put_st_name(0);
3316 if (parameters->options().relocatable())
3317 osym.put_st_value(0);
3318 else
3319 osym.put_st_value(os->address());
3320 osym.put_st_size(0);
3321 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3322 elfcpp::STT_SECTION));
3323 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3324
3325 unsigned int shndx = os->out_shndx();
3326 if (shndx >= elfcpp::SHN_LORESERVE)
3327 {
3328 symtab_xindex->add(os->symtab_index(), shndx);
3329 shndx = elfcpp::SHN_XINDEX;
3330 }
3331 osym.put_st_shndx(shndx);
3332
3333 of->write_output_view(offset, sym_size, pov);
3334 }
3335
3336 // Print statistical information to stderr. This is used for --stats.
3337
3338 void
3339 Symbol_table::print_stats() const
3340 {
3341 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3342 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3343 program_name, this->table_.size(), this->table_.bucket_count());
3344 #else
3345 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3346 program_name, this->table_.size());
3347 #endif
3348 this->namepool_.print_stats("symbol table stringpool");
3349 }
3350
3351 // We check for ODR violations by looking for symbols with the same
3352 // name for which the debugging information reports that they were
3353 // defined in disjoint source locations. When comparing the source
3354 // location, we consider instances with the same base filename to be
3355 // the same. This is because different object files/shared libraries
3356 // can include the same header file using different paths, and
3357 // different optimization settings can make the line number appear to
3358 // be a couple lines off, and we don't want to report an ODR violation
3359 // in those cases.
3360
3361 // This struct is used to compare line information, as returned by
3362 // Dwarf_line_info::one_addr2line. It implements a < comparison
3363 // operator used with std::sort.
3364
3365 struct Odr_violation_compare
3366 {
3367 bool
3368 operator()(const std::string& s1, const std::string& s2) const
3369 {
3370 // Inputs should be of the form "dirname/filename:linenum" where
3371 // "dirname/" is optional. We want to compare just the filename:linenum.
3372
3373 // Find the last '/' in each string.
3374 std::string::size_type s1begin = s1.rfind('/');
3375 std::string::size_type s2begin = s2.rfind('/');
3376 // If there was no '/' in a string, start at the beginning.
3377 if (s1begin == std::string::npos)
3378 s1begin = 0;
3379 if (s2begin == std::string::npos)
3380 s2begin = 0;
3381 return s1.compare(s1begin, std::string::npos,
3382 s2, s2begin, std::string::npos) < 0;
3383 }
3384 };
3385
3386 // Returns all of the lines attached to LOC, not just the one the
3387 // instruction actually came from.
3388 std::vector<std::string>
3389 Symbol_table::linenos_from_loc(const Task* task,
3390 const Symbol_location& loc)
3391 {
3392 // We need to lock the object in order to read it. This
3393 // means that we have to run in a singleton Task. If we
3394 // want to run this in a general Task for better
3395 // performance, we will need one Task for object, plus
3396 // appropriate locking to ensure that we don't conflict with
3397 // other uses of the object. Also note, one_addr2line is not
3398 // currently thread-safe.
3399 Task_lock_obj<Object> tl(task, loc.object);
3400
3401 std::vector<std::string> result;
3402 Symbol_location code_loc = loc;
3403 parameters->target().function_location(&code_loc);
3404 // 16 is the size of the object-cache that one_addr2line should use.
3405 std::string canonical_result = Dwarf_line_info::one_addr2line(
3406 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3407 if (!canonical_result.empty())
3408 result.push_back(canonical_result);
3409 return result;
3410 }
3411
3412 // OutputIterator that records if it was ever assigned to. This
3413 // allows it to be used with std::set_intersection() to check for
3414 // intersection rather than computing the intersection.
3415 struct Check_intersection
3416 {
3417 Check_intersection()
3418 : value_(false)
3419 {}
3420
3421 bool had_intersection() const
3422 { return this->value_; }
3423
3424 Check_intersection& operator++()
3425 { return *this; }
3426
3427 Check_intersection& operator*()
3428 { return *this; }
3429
3430 template<typename T>
3431 Check_intersection& operator=(const T&)
3432 {
3433 this->value_ = true;
3434 return *this;
3435 }
3436
3437 private:
3438 bool value_;
3439 };
3440
3441 // Check candidate_odr_violations_ to find symbols with the same name
3442 // but apparently different definitions (different source-file/line-no
3443 // for each line assigned to the first instruction).
3444
3445 void
3446 Symbol_table::detect_odr_violations(const Task* task,
3447 const char* output_file_name) const
3448 {
3449 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3450 it != candidate_odr_violations_.end();
3451 ++it)
3452 {
3453 const char* const symbol_name = it->first;
3454
3455 std::string first_object_name;
3456 std::vector<std::string> first_object_linenos;
3457
3458 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3459 locs = it->second.begin();
3460 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3461 locs_end = it->second.end();
3462 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3463 {
3464 // Save the line numbers from the first definition to
3465 // compare to the other definitions. Ideally, we'd compare
3466 // every definition to every other, but we don't want to
3467 // take O(N^2) time to do this. This shortcut may cause
3468 // false negatives that appear or disappear depending on the
3469 // link order, but it won't cause false positives.
3470 first_object_name = locs->object->name();
3471 first_object_linenos = this->linenos_from_loc(task, *locs);
3472 }
3473 if (first_object_linenos.empty())
3474 continue;
3475
3476 // Sort by Odr_violation_compare to make std::set_intersection work.
3477 std::string first_object_canonical_result = first_object_linenos.back();
3478 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3479 Odr_violation_compare());
3480
3481 for (; locs != locs_end; ++locs)
3482 {
3483 std::vector<std::string> linenos =
3484 this->linenos_from_loc(task, *locs);
3485 // linenos will be empty if we couldn't parse the debug info.
3486 if (linenos.empty())
3487 continue;
3488 // Sort by Odr_violation_compare to make std::set_intersection work.
3489 gold_assert(!linenos.empty());
3490 std::string second_object_canonical_result = linenos.back();
3491 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3492
3493 Check_intersection intersection_result =
3494 std::set_intersection(first_object_linenos.begin(),
3495 first_object_linenos.end(),
3496 linenos.begin(),
3497 linenos.end(),
3498 Check_intersection(),
3499 Odr_violation_compare());
3500 if (!intersection_result.had_intersection())
3501 {
3502 gold_warning(_("while linking %s: symbol '%s' defined in "
3503 "multiple places (possible ODR violation):"),
3504 output_file_name, demangle(symbol_name).c_str());
3505 // This only prints one location from each definition,
3506 // which may not be the location we expect to intersect
3507 // with another definition. We could print the whole
3508 // set of locations, but that seems too verbose.
3509 fprintf(stderr, _(" %s from %s\n"),
3510 first_object_canonical_result.c_str(),
3511 first_object_name.c_str());
3512 fprintf(stderr, _(" %s from %s\n"),
3513 second_object_canonical_result.c_str(),
3514 locs->object->name().c_str());
3515 // Only print one broken pair, to avoid needing to
3516 // compare against a list of the disjoint definition
3517 // locations we've found so far. (If we kept comparing
3518 // against just the first one, we'd get a lot of
3519 // redundant complaints about the second definition
3520 // location.)
3521 break;
3522 }
3523 }
3524 }
3525 // We only call one_addr2line() in this function, so we can clear its cache.
3526 Dwarf_line_info::clear_addr2line_cache();
3527 }
3528
3529 // Warnings functions.
3530
3531 // Add a new warning.
3532
3533 void
3534 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3535 const std::string& warning)
3536 {
3537 name = symtab->canonicalize_name(name);
3538 this->warnings_[name].set(obj, warning);
3539 }
3540
3541 // Look through the warnings and mark the symbols for which we should
3542 // warn. This is called during Layout::finalize when we know the
3543 // sources for all the symbols.
3544
3545 void
3546 Warnings::note_warnings(Symbol_table* symtab)
3547 {
3548 for (Warning_table::iterator p = this->warnings_.begin();
3549 p != this->warnings_.end();
3550 ++p)
3551 {
3552 Symbol* sym = symtab->lookup(p->first, NULL);
3553 if (sym != NULL
3554 && sym->source() == Symbol::FROM_OBJECT
3555 && sym->object() == p->second.object)
3556 sym->set_has_warning();
3557 }
3558 }
3559
3560 // Issue a warning. This is called when we see a relocation against a
3561 // symbol for which has a warning.
3562
3563 template<int size, bool big_endian>
3564 void
3565 Warnings::issue_warning(const Symbol* sym,
3566 const Relocate_info<size, big_endian>* relinfo,
3567 size_t relnum, off_t reloffset) const
3568 {
3569 gold_assert(sym->has_warning());
3570
3571 // We don't want to issue a warning for a relocation against the
3572 // symbol in the same object file in which the symbol is defined.
3573 if (sym->object() == relinfo->object)
3574 return;
3575
3576 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3577 gold_assert(p != this->warnings_.end());
3578 gold_warning_at_location(relinfo, relnum, reloffset,
3579 "%s", p->second.text.c_str());
3580 }
3581
3582 // Instantiate the templates we need. We could use the configure
3583 // script to restrict this to only the ones needed for implemented
3584 // targets.
3585
3586 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3587 template
3588 void
3589 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3590 #endif
3591
3592 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3593 template
3594 void
3595 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3596 #endif
3597
3598 #ifdef HAVE_TARGET_32_LITTLE
3599 template
3600 void
3601 Symbol_table::add_from_relobj<32, false>(
3602 Sized_relobj_file<32, false>* relobj,
3603 const unsigned char* syms,
3604 size_t count,
3605 size_t symndx_offset,
3606 const char* sym_names,
3607 size_t sym_name_size,
3608 Sized_relobj_file<32, false>::Symbols* sympointers,
3609 size_t* defined);
3610 #endif
3611
3612 #ifdef HAVE_TARGET_32_BIG
3613 template
3614 void
3615 Symbol_table::add_from_relobj<32, true>(
3616 Sized_relobj_file<32, true>* relobj,
3617 const unsigned char* syms,
3618 size_t count,
3619 size_t symndx_offset,
3620 const char* sym_names,
3621 size_t sym_name_size,
3622 Sized_relobj_file<32, true>::Symbols* sympointers,
3623 size_t* defined);
3624 #endif
3625
3626 #ifdef HAVE_TARGET_64_LITTLE
3627 template
3628 void
3629 Symbol_table::add_from_relobj<64, false>(
3630 Sized_relobj_file<64, false>* relobj,
3631 const unsigned char* syms,
3632 size_t count,
3633 size_t symndx_offset,
3634 const char* sym_names,
3635 size_t sym_name_size,
3636 Sized_relobj_file<64, false>::Symbols* sympointers,
3637 size_t* defined);
3638 #endif
3639
3640 #ifdef HAVE_TARGET_64_BIG
3641 template
3642 void
3643 Symbol_table::add_from_relobj<64, true>(
3644 Sized_relobj_file<64, true>* relobj,
3645 const unsigned char* syms,
3646 size_t count,
3647 size_t symndx_offset,
3648 const char* sym_names,
3649 size_t sym_name_size,
3650 Sized_relobj_file<64, true>::Symbols* sympointers,
3651 size_t* defined);
3652 #endif
3653
3654 #ifdef HAVE_TARGET_32_LITTLE
3655 template
3656 Symbol*
3657 Symbol_table::add_from_pluginobj<32, false>(
3658 Sized_pluginobj<32, false>* obj,
3659 const char* name,
3660 const char* ver,
3661 elfcpp::Sym<32, false>* sym);
3662 #endif
3663
3664 #ifdef HAVE_TARGET_32_BIG
3665 template
3666 Symbol*
3667 Symbol_table::add_from_pluginobj<32, true>(
3668 Sized_pluginobj<32, true>* obj,
3669 const char* name,
3670 const char* ver,
3671 elfcpp::Sym<32, true>* sym);
3672 #endif
3673
3674 #ifdef HAVE_TARGET_64_LITTLE
3675 template
3676 Symbol*
3677 Symbol_table::add_from_pluginobj<64, false>(
3678 Sized_pluginobj<64, false>* obj,
3679 const char* name,
3680 const char* ver,
3681 elfcpp::Sym<64, false>* sym);
3682 #endif
3683
3684 #ifdef HAVE_TARGET_64_BIG
3685 template
3686 Symbol*
3687 Symbol_table::add_from_pluginobj<64, true>(
3688 Sized_pluginobj<64, true>* obj,
3689 const char* name,
3690 const char* ver,
3691 elfcpp::Sym<64, true>* sym);
3692 #endif
3693
3694 #ifdef HAVE_TARGET_32_LITTLE
3695 template
3696 void
3697 Symbol_table::add_from_dynobj<32, false>(
3698 Sized_dynobj<32, false>* dynobj,
3699 const unsigned char* syms,
3700 size_t count,
3701 const char* sym_names,
3702 size_t sym_name_size,
3703 const unsigned char* versym,
3704 size_t versym_size,
3705 const std::vector<const char*>* version_map,
3706 Sized_relobj_file<32, false>::Symbols* sympointers,
3707 size_t* defined);
3708 #endif
3709
3710 #ifdef HAVE_TARGET_32_BIG
3711 template
3712 void
3713 Symbol_table::add_from_dynobj<32, true>(
3714 Sized_dynobj<32, true>* dynobj,
3715 const unsigned char* syms,
3716 size_t count,
3717 const char* sym_names,
3718 size_t sym_name_size,
3719 const unsigned char* versym,
3720 size_t versym_size,
3721 const std::vector<const char*>* version_map,
3722 Sized_relobj_file<32, true>::Symbols* sympointers,
3723 size_t* defined);
3724 #endif
3725
3726 #ifdef HAVE_TARGET_64_LITTLE
3727 template
3728 void
3729 Symbol_table::add_from_dynobj<64, false>(
3730 Sized_dynobj<64, false>* dynobj,
3731 const unsigned char* syms,
3732 size_t count,
3733 const char* sym_names,
3734 size_t sym_name_size,
3735 const unsigned char* versym,
3736 size_t versym_size,
3737 const std::vector<const char*>* version_map,
3738 Sized_relobj_file<64, false>::Symbols* sympointers,
3739 size_t* defined);
3740 #endif
3741
3742 #ifdef HAVE_TARGET_64_BIG
3743 template
3744 void
3745 Symbol_table::add_from_dynobj<64, true>(
3746 Sized_dynobj<64, true>* dynobj,
3747 const unsigned char* syms,
3748 size_t count,
3749 const char* sym_names,
3750 size_t sym_name_size,
3751 const unsigned char* versym,
3752 size_t versym_size,
3753 const std::vector<const char*>* version_map,
3754 Sized_relobj_file<64, true>::Symbols* sympointers,
3755 size_t* defined);
3756 #endif
3757
3758 #ifdef HAVE_TARGET_32_LITTLE
3759 template
3760 Sized_symbol<32>*
3761 Symbol_table::add_from_incrobj(
3762 Object* obj,
3763 const char* name,
3764 const char* ver,
3765 elfcpp::Sym<32, false>* sym);
3766 #endif
3767
3768 #ifdef HAVE_TARGET_32_BIG
3769 template
3770 Sized_symbol<32>*
3771 Symbol_table::add_from_incrobj(
3772 Object* obj,
3773 const char* name,
3774 const char* ver,
3775 elfcpp::Sym<32, true>* sym);
3776 #endif
3777
3778 #ifdef HAVE_TARGET_64_LITTLE
3779 template
3780 Sized_symbol<64>*
3781 Symbol_table::add_from_incrobj(
3782 Object* obj,
3783 const char* name,
3784 const char* ver,
3785 elfcpp::Sym<64, false>* sym);
3786 #endif
3787
3788 #ifdef HAVE_TARGET_64_BIG
3789 template
3790 Sized_symbol<64>*
3791 Symbol_table::add_from_incrobj(
3792 Object* obj,
3793 const char* name,
3794 const char* ver,
3795 elfcpp::Sym<64, true>* sym);
3796 #endif
3797
3798 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3799 template
3800 void
3801 Symbol_table::define_with_copy_reloc<32>(
3802 Sized_symbol<32>* sym,
3803 Output_data* posd,
3804 elfcpp::Elf_types<32>::Elf_Addr value);
3805 #endif
3806
3807 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3808 template
3809 void
3810 Symbol_table::define_with_copy_reloc<64>(
3811 Sized_symbol<64>* sym,
3812 Output_data* posd,
3813 elfcpp::Elf_types<64>::Elf_Addr value);
3814 #endif
3815
3816 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3817 template
3818 void
3819 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3820 Output_data* od, Value_type value,
3821 Size_type symsize, elfcpp::STT type,
3822 elfcpp::STB binding,
3823 elfcpp::STV visibility,
3824 unsigned char nonvis,
3825 bool offset_is_from_end,
3826 bool is_predefined);
3827
3828 template
3829 void
3830 Sized_symbol<32>::init_constant(const char* name, const char* version,
3831 Value_type value, Size_type symsize,
3832 elfcpp::STT type, elfcpp::STB binding,
3833 elfcpp::STV visibility, unsigned char nonvis,
3834 bool is_predefined);
3835
3836 template
3837 void
3838 Sized_symbol<32>::init_undefined(const char* name, const char* version,
3839 Value_type value, elfcpp::STT type,
3840 elfcpp::STB binding, elfcpp::STV visibility,
3841 unsigned char nonvis);
3842 #endif
3843
3844 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3845 template
3846 void
3847 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3848 Output_data* od, Value_type value,
3849 Size_type symsize, elfcpp::STT type,
3850 elfcpp::STB binding,
3851 elfcpp::STV visibility,
3852 unsigned char nonvis,
3853 bool offset_is_from_end,
3854 bool is_predefined);
3855
3856 template
3857 void
3858 Sized_symbol<64>::init_constant(const char* name, const char* version,
3859 Value_type value, Size_type symsize,
3860 elfcpp::STT type, elfcpp::STB binding,
3861 elfcpp::STV visibility, unsigned char nonvis,
3862 bool is_predefined);
3863
3864 template
3865 void
3866 Sized_symbol<64>::init_undefined(const char* name, const char* version,
3867 Value_type value, elfcpp::STT type,
3868 elfcpp::STB binding, elfcpp::STV visibility,
3869 unsigned char nonvis);
3870 #endif
3871
3872 #ifdef HAVE_TARGET_32_LITTLE
3873 template
3874 void
3875 Warnings::issue_warning<32, false>(const Symbol* sym,
3876 const Relocate_info<32, false>* relinfo,
3877 size_t relnum, off_t reloffset) const;
3878 #endif
3879
3880 #ifdef HAVE_TARGET_32_BIG
3881 template
3882 void
3883 Warnings::issue_warning<32, true>(const Symbol* sym,
3884 const Relocate_info<32, true>* relinfo,
3885 size_t relnum, off_t reloffset) const;
3886 #endif
3887
3888 #ifdef HAVE_TARGET_64_LITTLE
3889 template
3890 void
3891 Warnings::issue_warning<64, false>(const Symbol* sym,
3892 const Relocate_info<64, false>* relinfo,
3893 size_t relnum, off_t reloffset) const;
3894 #endif
3895
3896 #ifdef HAVE_TARGET_64_BIG
3897 template
3898 void
3899 Warnings::issue_warning<64, true>(const Symbol* sym,
3900 const Relocate_info<64, true>* relinfo,
3901 size_t relnum, off_t reloffset) const;
3902 #endif
3903
3904 } // End namespace gold.
This page took 0.108717 seconds and 4 git commands to generate.