daily update
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <stdint.h>
26 #include <set>
27 #include <string>
28 #include <utility>
29 #include "demangle.h"
30
31 #include "object.h"
32 #include "dwarf_reader.h"
33 #include "dynobj.h"
34 #include "output.h"
35 #include "target.h"
36 #include "workqueue.h"
37 #include "symtab.h"
38
39 namespace gold
40 {
41
42 // Class Symbol.
43
44 // Initialize fields in Symbol. This initializes everything except u_
45 // and source_.
46
47 void
48 Symbol::init_fields(const char* name, const char* version,
49 elfcpp::STT type, elfcpp::STB binding,
50 elfcpp::STV visibility, unsigned char nonvis)
51 {
52 this->name_ = name;
53 this->version_ = version;
54 this->symtab_index_ = 0;
55 this->dynsym_index_ = 0;
56 this->got_offset_ = 0;
57 this->plt_offset_ = 0;
58 this->type_ = type;
59 this->binding_ = binding;
60 this->visibility_ = visibility;
61 this->nonvis_ = nonvis;
62 this->is_target_special_ = false;
63 this->is_def_ = false;
64 this->is_forwarder_ = false;
65 this->has_alias_ = false;
66 this->needs_dynsym_entry_ = false;
67 this->in_reg_ = false;
68 this->in_dyn_ = false;
69 this->has_got_offset_ = false;
70 this->has_plt_offset_ = false;
71 this->has_warning_ = false;
72 this->is_copied_from_dynobj_ = false;
73 }
74
75 // Return the demangled version of the symbol's name, but only
76 // if the --demangle flag was set.
77
78 static std::string
79 demangle(const char* name)
80 {
81 if (!parameters->demangle())
82 return name;
83
84 // cplus_demangle allocates memory for the result it returns,
85 // and returns NULL if the name is already demangled.
86 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
87 if (demangled_name == NULL)
88 return name;
89
90 std::string retval(demangled_name);
91 free(demangled_name);
92 return retval;
93 }
94
95 std::string
96 Symbol::demangled_name() const
97 {
98 return demangle(this->name());
99 }
100
101 // Initialize the fields in the base class Symbol for SYM in OBJECT.
102
103 template<int size, bool big_endian>
104 void
105 Symbol::init_base(const char* name, const char* version, Object* object,
106 const elfcpp::Sym<size, big_endian>& sym)
107 {
108 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
109 sym.get_st_visibility(), sym.get_st_nonvis());
110 this->u_.from_object.object = object;
111 // FIXME: Handle SHN_XINDEX.
112 this->u_.from_object.shndx = sym.get_st_shndx();
113 this->source_ = FROM_OBJECT;
114 this->in_reg_ = !object->is_dynamic();
115 this->in_dyn_ = object->is_dynamic();
116 }
117
118 // Initialize the fields in the base class Symbol for a symbol defined
119 // in an Output_data.
120
121 void
122 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
123 elfcpp::STB binding, elfcpp::STV visibility,
124 unsigned char nonvis, bool offset_is_from_end)
125 {
126 this->init_fields(name, NULL, type, binding, visibility, nonvis);
127 this->u_.in_output_data.output_data = od;
128 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
129 this->source_ = IN_OUTPUT_DATA;
130 this->in_reg_ = true;
131 }
132
133 // Initialize the fields in the base class Symbol for a symbol defined
134 // in an Output_segment.
135
136 void
137 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
138 elfcpp::STB binding, elfcpp::STV visibility,
139 unsigned char nonvis, Segment_offset_base offset_base)
140 {
141 this->init_fields(name, NULL, type, binding, visibility, nonvis);
142 this->u_.in_output_segment.output_segment = os;
143 this->u_.in_output_segment.offset_base = offset_base;
144 this->source_ = IN_OUTPUT_SEGMENT;
145 this->in_reg_ = true;
146 }
147
148 // Initialize the fields in the base class Symbol for a symbol defined
149 // as a constant.
150
151 void
152 Symbol::init_base(const char* name, elfcpp::STT type,
153 elfcpp::STB binding, elfcpp::STV visibility,
154 unsigned char nonvis)
155 {
156 this->init_fields(name, NULL, type, binding, visibility, nonvis);
157 this->source_ = CONSTANT;
158 this->in_reg_ = true;
159 }
160
161 // Allocate a common symbol in the base.
162
163 void
164 Symbol::allocate_base_common(Output_data* od)
165 {
166 gold_assert(this->is_common());
167 this->source_ = IN_OUTPUT_DATA;
168 this->u_.in_output_data.output_data = od;
169 this->u_.in_output_data.offset_is_from_end = false;
170 }
171
172 // Initialize the fields in Sized_symbol for SYM in OBJECT.
173
174 template<int size>
175 template<bool big_endian>
176 void
177 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
178 const elfcpp::Sym<size, big_endian>& sym)
179 {
180 this->init_base(name, version, object, sym);
181 this->value_ = sym.get_st_value();
182 this->symsize_ = sym.get_st_size();
183 }
184
185 // Initialize the fields in Sized_symbol for a symbol defined in an
186 // Output_data.
187
188 template<int size>
189 void
190 Sized_symbol<size>::init(const char* name, Output_data* od,
191 Value_type value, Size_type symsize,
192 elfcpp::STT type, elfcpp::STB binding,
193 elfcpp::STV visibility, unsigned char nonvis,
194 bool offset_is_from_end)
195 {
196 this->init_base(name, od, type, binding, visibility, nonvis,
197 offset_is_from_end);
198 this->value_ = value;
199 this->symsize_ = symsize;
200 }
201
202 // Initialize the fields in Sized_symbol for a symbol defined in an
203 // Output_segment.
204
205 template<int size>
206 void
207 Sized_symbol<size>::init(const char* name, Output_segment* os,
208 Value_type value, Size_type symsize,
209 elfcpp::STT type, elfcpp::STB binding,
210 elfcpp::STV visibility, unsigned char nonvis,
211 Segment_offset_base offset_base)
212 {
213 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
214 this->value_ = value;
215 this->symsize_ = symsize;
216 }
217
218 // Initialize the fields in Sized_symbol for a symbol defined as a
219 // constant.
220
221 template<int size>
222 void
223 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
224 elfcpp::STT type, elfcpp::STB binding,
225 elfcpp::STV visibility, unsigned char nonvis)
226 {
227 this->init_base(name, type, binding, visibility, nonvis);
228 this->value_ = value;
229 this->symsize_ = symsize;
230 }
231
232 // Allocate a common symbol.
233
234 template<int size>
235 void
236 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
237 {
238 this->allocate_base_common(od);
239 this->value_ = value;
240 }
241
242 // Return true if this symbol should be added to the dynamic symbol
243 // table.
244
245 inline bool
246 Symbol::should_add_dynsym_entry() const
247 {
248 // If the symbol is used by a dynamic relocation, we need to add it.
249 if (this->needs_dynsym_entry())
250 return true;
251
252 // If exporting all symbols or building a shared library,
253 // and the symbol is defined in a regular object and is
254 // externally visible, we need to add it.
255 if ((parameters->export_dynamic() || parameters->output_is_shared())
256 && !this->is_from_dynobj()
257 && this->is_externally_visible())
258 return true;
259
260 return false;
261 }
262
263 // Return true if the final value of this symbol is known at link
264 // time.
265
266 bool
267 Symbol::final_value_is_known() const
268 {
269 // If we are not generating an executable, then no final values are
270 // known, since they will change at runtime.
271 if (!parameters->output_is_executable())
272 return false;
273
274 // If the symbol is not from an object file, then it is defined, and
275 // known.
276 if (this->source_ != FROM_OBJECT)
277 return true;
278
279 // If the symbol is from a dynamic object, then the final value is
280 // not known.
281 if (this->object()->is_dynamic())
282 return false;
283
284 // If the symbol is not undefined (it is defined or common), then
285 // the final value is known.
286 if (!this->is_undefined())
287 return true;
288
289 // If the symbol is undefined, then whether the final value is known
290 // depends on whether we are doing a static link. If we are doing a
291 // dynamic link, then the final value could be filled in at runtime.
292 // This could reasonably be the case for a weak undefined symbol.
293 return parameters->doing_static_link();
294 }
295
296 // Class Symbol_table.
297
298 Symbol_table::Symbol_table(unsigned int count)
299 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
300 forwarders_(), commons_(), warnings_()
301 {
302 namepool_.reserve(count);
303 }
304
305 Symbol_table::~Symbol_table()
306 {
307 }
308
309 // The hash function. The key values are Stringpool keys.
310
311 inline size_t
312 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
313 {
314 return key.first ^ key.second;
315 }
316
317 // The symbol table key equality function. This is called with
318 // Stringpool keys.
319
320 inline bool
321 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
322 const Symbol_table_key& k2) const
323 {
324 return k1.first == k2.first && k1.second == k2.second;
325 }
326
327 // Make TO a symbol which forwards to FROM.
328
329 void
330 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
331 {
332 gold_assert(from != to);
333 gold_assert(!from->is_forwarder() && !to->is_forwarder());
334 this->forwarders_[from] = to;
335 from->set_forwarder();
336 }
337
338 // Resolve the forwards from FROM, returning the real symbol.
339
340 Symbol*
341 Symbol_table::resolve_forwards(const Symbol* from) const
342 {
343 gold_assert(from->is_forwarder());
344 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
345 this->forwarders_.find(from);
346 gold_assert(p != this->forwarders_.end());
347 return p->second;
348 }
349
350 // Look up a symbol by name.
351
352 Symbol*
353 Symbol_table::lookup(const char* name, const char* version) const
354 {
355 Stringpool::Key name_key;
356 name = this->namepool_.find(name, &name_key);
357 if (name == NULL)
358 return NULL;
359
360 Stringpool::Key version_key = 0;
361 if (version != NULL)
362 {
363 version = this->namepool_.find(version, &version_key);
364 if (version == NULL)
365 return NULL;
366 }
367
368 Symbol_table_key key(name_key, version_key);
369 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
370 if (p == this->table_.end())
371 return NULL;
372 return p->second;
373 }
374
375 // Resolve a Symbol with another Symbol. This is only used in the
376 // unusual case where there are references to both an unversioned
377 // symbol and a symbol with a version, and we then discover that that
378 // version is the default version. Because this is unusual, we do
379 // this the slow way, by converting back to an ELF symbol.
380
381 template<int size, bool big_endian>
382 void
383 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
384 const char* version ACCEPT_SIZE_ENDIAN)
385 {
386 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
387 elfcpp::Sym_write<size, big_endian> esym(buf);
388 // We don't bother to set the st_name field.
389 esym.put_st_value(from->value());
390 esym.put_st_size(from->symsize());
391 esym.put_st_info(from->binding(), from->type());
392 esym.put_st_other(from->visibility(), from->nonvis());
393 esym.put_st_shndx(from->shndx());
394 this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
395 if (from->in_reg())
396 to->set_in_reg();
397 if (from->in_dyn())
398 to->set_in_dyn();
399 }
400
401 // Add one symbol from OBJECT to the symbol table. NAME is symbol
402 // name and VERSION is the version; both are canonicalized. DEF is
403 // whether this is the default version.
404
405 // If DEF is true, then this is the definition of a default version of
406 // a symbol. That means that any lookup of NAME/NULL and any lookup
407 // of NAME/VERSION should always return the same symbol. This is
408 // obvious for references, but in particular we want to do this for
409 // definitions: overriding NAME/NULL should also override
410 // NAME/VERSION. If we don't do that, it would be very hard to
411 // override functions in a shared library which uses versioning.
412
413 // We implement this by simply making both entries in the hash table
414 // point to the same Symbol structure. That is easy enough if this is
415 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
416 // that we have seen both already, in which case they will both have
417 // independent entries in the symbol table. We can't simply change
418 // the symbol table entry, because we have pointers to the entries
419 // attached to the object files. So we mark the entry attached to the
420 // object file as a forwarder, and record it in the forwarders_ map.
421 // Note that entries in the hash table will never be marked as
422 // forwarders.
423 //
424 // SYM and ORIG_SYM are almost always the same. ORIG_SYM is the
425 // symbol exactly as it existed in the input file. SYM is usually
426 // that as well, but can be modified, for instance if we determine
427 // it's in a to-be-discarded section.
428
429 template<int size, bool big_endian>
430 Sized_symbol<size>*
431 Symbol_table::add_from_object(Object* object,
432 const char *name,
433 Stringpool::Key name_key,
434 const char *version,
435 Stringpool::Key version_key,
436 bool def,
437 const elfcpp::Sym<size, big_endian>& sym,
438 const elfcpp::Sym<size, big_endian>& orig_sym)
439 {
440 Symbol* const snull = NULL;
441 std::pair<typename Symbol_table_type::iterator, bool> ins =
442 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
443 snull));
444
445 std::pair<typename Symbol_table_type::iterator, bool> insdef =
446 std::make_pair(this->table_.end(), false);
447 if (def)
448 {
449 const Stringpool::Key vnull_key = 0;
450 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
451 vnull_key),
452 snull));
453 }
454
455 // ins.first: an iterator, which is a pointer to a pair.
456 // ins.first->first: the key (a pair of name and version).
457 // ins.first->second: the value (Symbol*).
458 // ins.second: true if new entry was inserted, false if not.
459
460 Sized_symbol<size>* ret;
461 bool was_undefined;
462 bool was_common;
463 if (!ins.second)
464 {
465 // We already have an entry for NAME/VERSION.
466 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
467 SELECT_SIZE(size));
468 gold_assert(ret != NULL);
469
470 was_undefined = ret->is_undefined();
471 was_common = ret->is_common();
472
473 this->resolve(ret, sym, orig_sym, object, version);
474
475 if (def)
476 {
477 if (insdef.second)
478 {
479 // This is the first time we have seen NAME/NULL. Make
480 // NAME/NULL point to NAME/VERSION.
481 insdef.first->second = ret;
482 }
483 else if (insdef.first->second != ret
484 && insdef.first->second->is_undefined())
485 {
486 // This is the unfortunate case where we already have
487 // entries for both NAME/VERSION and NAME/NULL. Note
488 // that we don't want to combine them if the existing
489 // symbol is going to override the new one. FIXME: We
490 // currently just test is_undefined, but this may not do
491 // the right thing if the existing symbol is from a
492 // shared library and the new one is from a regular
493 // object.
494
495 const Sized_symbol<size>* sym2;
496 sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
497 insdef.first->second
498 SELECT_SIZE(size));
499 Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
500 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
501 this->make_forwarder(insdef.first->second, ret);
502 insdef.first->second = ret;
503 }
504 }
505 }
506 else
507 {
508 // This is the first time we have seen NAME/VERSION.
509 gold_assert(ins.first->second == NULL);
510
511 was_undefined = false;
512 was_common = false;
513
514 if (def && !insdef.second)
515 {
516 // We already have an entry for NAME/NULL. If we override
517 // it, then change it to NAME/VERSION.
518 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
519 insdef.first->second
520 SELECT_SIZE(size));
521 this->resolve(ret, sym, orig_sym, object, version);
522 ins.first->second = ret;
523 }
524 else
525 {
526 Sized_target<size, big_endian>* target =
527 object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
528 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
529 if (!target->has_make_symbol())
530 ret = new Sized_symbol<size>();
531 else
532 {
533 ret = target->make_symbol();
534 if (ret == NULL)
535 {
536 // This means that we don't want a symbol table
537 // entry after all.
538 if (!def)
539 this->table_.erase(ins.first);
540 else
541 {
542 this->table_.erase(insdef.first);
543 // Inserting insdef invalidated ins.
544 this->table_.erase(std::make_pair(name_key,
545 version_key));
546 }
547 return NULL;
548 }
549 }
550
551 ret->init(name, version, object, sym);
552
553 ins.first->second = ret;
554 if (def)
555 {
556 // This is the first time we have seen NAME/NULL. Point
557 // it at the new entry for NAME/VERSION.
558 gold_assert(insdef.second);
559 insdef.first->second = ret;
560 }
561 }
562 }
563
564 // Record every time we see a new undefined symbol, to speed up
565 // archive groups.
566 if (!was_undefined && ret->is_undefined())
567 ++this->saw_undefined_;
568
569 // Keep track of common symbols, to speed up common symbol
570 // allocation.
571 if (!was_common && ret->is_common())
572 this->commons_.push_back(ret);
573
574 return ret;
575 }
576
577 // Add all the symbols in a relocatable object to the hash table.
578
579 template<int size, bool big_endian>
580 void
581 Symbol_table::add_from_relobj(
582 Sized_relobj<size, big_endian>* relobj,
583 const unsigned char* syms,
584 size_t count,
585 const char* sym_names,
586 size_t sym_name_size,
587 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
588 {
589 gold_assert(size == relobj->target()->get_size());
590 gold_assert(size == parameters->get_size());
591
592 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
593
594 const unsigned char* p = syms;
595 for (size_t i = 0; i < count; ++i, p += sym_size)
596 {
597 elfcpp::Sym<size, big_endian> sym(p);
598 elfcpp::Sym<size, big_endian>* psym = &sym;
599
600 unsigned int st_name = psym->get_st_name();
601 if (st_name >= sym_name_size)
602 {
603 relobj->error(_("bad global symbol name offset %u at %zu"),
604 st_name, i);
605 continue;
606 }
607
608 const char* name = sym_names + st_name;
609
610 // A symbol defined in a section which we are not including must
611 // be treated as an undefined symbol.
612 unsigned char symbuf[sym_size];
613 elfcpp::Sym<size, big_endian> sym2(symbuf);
614 unsigned int st_shndx = psym->get_st_shndx();
615 if (st_shndx != elfcpp::SHN_UNDEF
616 && st_shndx < elfcpp::SHN_LORESERVE
617 && !relobj->is_section_included(st_shndx))
618 {
619 memcpy(symbuf, p, sym_size);
620 elfcpp::Sym_write<size, big_endian> sw(symbuf);
621 sw.put_st_shndx(elfcpp::SHN_UNDEF);
622 psym = &sym2;
623 }
624
625 // In an object file, an '@' in the name separates the symbol
626 // name from the version name. If there are two '@' characters,
627 // this is the default version.
628 const char* ver = strchr(name, '@');
629
630 Sized_symbol<size>* res;
631 if (ver == NULL)
632 {
633 Stringpool::Key name_key;
634 name = this->namepool_.add(name, true, &name_key);
635 res = this->add_from_object(relobj, name, name_key, NULL, 0,
636 false, *psym, sym);
637 }
638 else
639 {
640 Stringpool::Key name_key;
641 name = this->namepool_.add_with_length(name, ver - name, true,
642 &name_key);
643
644 bool def = false;
645 ++ver;
646 if (*ver == '@')
647 {
648 def = true;
649 ++ver;
650 }
651
652 Stringpool::Key ver_key;
653 ver = this->namepool_.add(ver, true, &ver_key);
654
655 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
656 def, *psym, sym);
657 }
658
659 (*sympointers)[i] = res;
660 }
661 }
662
663 // Add all the symbols in a dynamic object to the hash table.
664
665 template<int size, bool big_endian>
666 void
667 Symbol_table::add_from_dynobj(
668 Sized_dynobj<size, big_endian>* dynobj,
669 const unsigned char* syms,
670 size_t count,
671 const char* sym_names,
672 size_t sym_name_size,
673 const unsigned char* versym,
674 size_t versym_size,
675 const std::vector<const char*>* version_map)
676 {
677 gold_assert(size == dynobj->target()->get_size());
678 gold_assert(size == parameters->get_size());
679
680 if (versym != NULL && versym_size / 2 < count)
681 {
682 dynobj->error(_("too few symbol versions"));
683 return;
684 }
685
686 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
687
688 // We keep a list of all STT_OBJECT symbols, so that we can resolve
689 // weak aliases. This is necessary because if the dynamic object
690 // provides the same variable under two names, one of which is a
691 // weak definition, and the regular object refers to the weak
692 // definition, we have to put both the weak definition and the
693 // strong definition into the dynamic symbol table. Given a weak
694 // definition, the only way that we can find the corresponding
695 // strong definition, if any, is to search the symbol table.
696 std::vector<Sized_symbol<size>*> object_symbols;
697
698 const unsigned char* p = syms;
699 const unsigned char* vs = versym;
700 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
701 {
702 elfcpp::Sym<size, big_endian> sym(p);
703
704 // Ignore symbols with local binding.
705 if (sym.get_st_bind() == elfcpp::STB_LOCAL)
706 continue;
707
708 unsigned int st_name = sym.get_st_name();
709 if (st_name >= sym_name_size)
710 {
711 dynobj->error(_("bad symbol name offset %u at %zu"),
712 st_name, i);
713 continue;
714 }
715
716 const char* name = sym_names + st_name;
717
718 Sized_symbol<size>* res;
719
720 if (versym == NULL)
721 {
722 Stringpool::Key name_key;
723 name = this->namepool_.add(name, true, &name_key);
724 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
725 false, sym, sym);
726 }
727 else
728 {
729 // Read the version information.
730
731 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
732
733 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
734 v &= elfcpp::VERSYM_VERSION;
735
736 // The Sun documentation says that V can be VER_NDX_LOCAL,
737 // or VER_NDX_GLOBAL, or a version index. The meaning of
738 // VER_NDX_LOCAL is defined as "Symbol has local scope."
739 // The old GNU linker will happily generate VER_NDX_LOCAL
740 // for an undefined symbol. I don't know what the Sun
741 // linker will generate.
742
743 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
744 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
745 {
746 // This symbol should not be visible outside the object.
747 continue;
748 }
749
750 // At this point we are definitely going to add this symbol.
751 Stringpool::Key name_key;
752 name = this->namepool_.add(name, true, &name_key);
753
754 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
755 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
756 {
757 // This symbol does not have a version.
758 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
759 false, sym, sym);
760 }
761 else
762 {
763 if (v >= version_map->size())
764 {
765 dynobj->error(_("versym for symbol %zu out of range: %u"),
766 i, v);
767 continue;
768 }
769
770 const char* version = (*version_map)[v];
771 if (version == NULL)
772 {
773 dynobj->error(_("versym for symbol %zu has no name: %u"),
774 i, v);
775 continue;
776 }
777
778 Stringpool::Key version_key;
779 version = this->namepool_.add(version, true, &version_key);
780
781 // If this is an absolute symbol, and the version name
782 // and symbol name are the same, then this is the
783 // version definition symbol. These symbols exist to
784 // support using -u to pull in particular versions. We
785 // do not want to record a version for them.
786 if (sym.get_st_shndx() == elfcpp::SHN_ABS
787 && name_key == version_key)
788 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
789 false, sym, sym);
790 else
791 {
792 const bool def = (!hidden
793 && (sym.get_st_shndx()
794 != elfcpp::SHN_UNDEF));
795 res = this->add_from_object(dynobj, name, name_key, version,
796 version_key, def, sym, sym);
797 }
798 }
799 }
800
801 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
802 && sym.get_st_type() == elfcpp::STT_OBJECT)
803 object_symbols.push_back(res);
804 }
805
806 this->record_weak_aliases(&object_symbols);
807 }
808
809 // This is used to sort weak aliases. We sort them first by section
810 // index, then by offset, then by weak ahead of strong.
811
812 template<int size>
813 class Weak_alias_sorter
814 {
815 public:
816 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
817 };
818
819 template<int size>
820 bool
821 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
822 const Sized_symbol<size>* s2) const
823 {
824 if (s1->shndx() != s2->shndx())
825 return s1->shndx() < s2->shndx();
826 if (s1->value() != s2->value())
827 return s1->value() < s2->value();
828 if (s1->binding() != s2->binding())
829 {
830 if (s1->binding() == elfcpp::STB_WEAK)
831 return true;
832 if (s2->binding() == elfcpp::STB_WEAK)
833 return false;
834 }
835 return std::string(s1->name()) < std::string(s2->name());
836 }
837
838 // SYMBOLS is a list of object symbols from a dynamic object. Look
839 // for any weak aliases, and record them so that if we add the weak
840 // alias to the dynamic symbol table, we also add the corresponding
841 // strong symbol.
842
843 template<int size>
844 void
845 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
846 {
847 // Sort the vector by section index, then by offset, then by weak
848 // ahead of strong.
849 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
850
851 // Walk through the vector. For each weak definition, record
852 // aliases.
853 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
854 symbols->begin();
855 p != symbols->end();
856 ++p)
857 {
858 if ((*p)->binding() != elfcpp::STB_WEAK)
859 continue;
860
861 // Build a circular list of weak aliases. Each symbol points to
862 // the next one in the circular list.
863
864 Sized_symbol<size>* from_sym = *p;
865 typename std::vector<Sized_symbol<size>*>::const_iterator q;
866 for (q = p + 1; q != symbols->end(); ++q)
867 {
868 if ((*q)->shndx() != from_sym->shndx()
869 || (*q)->value() != from_sym->value())
870 break;
871
872 this->weak_aliases_[from_sym] = *q;
873 from_sym->set_has_alias();
874 from_sym = *q;
875 }
876
877 if (from_sym != *p)
878 {
879 this->weak_aliases_[from_sym] = *p;
880 from_sym->set_has_alias();
881 }
882
883 p = q - 1;
884 }
885 }
886
887 // Create and return a specially defined symbol. If ONLY_IF_REF is
888 // true, then only create the symbol if there is a reference to it.
889 // If this does not return NULL, it sets *POLDSYM to the existing
890 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
891
892 template<int size, bool big_endian>
893 Sized_symbol<size>*
894 Symbol_table::define_special_symbol(const Target* target, const char** pname,
895 const char** pversion, bool only_if_ref,
896 Sized_symbol<size>** poldsym
897 ACCEPT_SIZE_ENDIAN)
898 {
899 Symbol* oldsym;
900 Sized_symbol<size>* sym;
901 bool add_to_table = false;
902 typename Symbol_table_type::iterator add_loc = this->table_.end();
903
904 if (only_if_ref)
905 {
906 oldsym = this->lookup(*pname, *pversion);
907 if (oldsym == NULL || !oldsym->is_undefined())
908 return NULL;
909
910 *pname = oldsym->name();
911 *pversion = oldsym->version();
912 }
913 else
914 {
915 // Canonicalize NAME and VERSION.
916 Stringpool::Key name_key;
917 *pname = this->namepool_.add(*pname, true, &name_key);
918
919 Stringpool::Key version_key = 0;
920 if (*pversion != NULL)
921 *pversion = this->namepool_.add(*pversion, true, &version_key);
922
923 Symbol* const snull = NULL;
924 std::pair<typename Symbol_table_type::iterator, bool> ins =
925 this->table_.insert(std::make_pair(std::make_pair(name_key,
926 version_key),
927 snull));
928
929 if (!ins.second)
930 {
931 // We already have a symbol table entry for NAME/VERSION.
932 oldsym = ins.first->second;
933 gold_assert(oldsym != NULL);
934 }
935 else
936 {
937 // We haven't seen this symbol before.
938 gold_assert(ins.first->second == NULL);
939 add_to_table = true;
940 add_loc = ins.first;
941 oldsym = NULL;
942 }
943 }
944
945 if (!target->has_make_symbol())
946 sym = new Sized_symbol<size>();
947 else
948 {
949 gold_assert(target->get_size() == size);
950 gold_assert(target->is_big_endian() ? big_endian : !big_endian);
951 typedef Sized_target<size, big_endian> My_target;
952 const My_target* sized_target =
953 static_cast<const My_target*>(target);
954 sym = sized_target->make_symbol();
955 if (sym == NULL)
956 return NULL;
957 }
958
959 if (add_to_table)
960 add_loc->second = sym;
961 else
962 gold_assert(oldsym != NULL);
963
964 *poldsym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
965 SELECT_SIZE(size));
966
967 return sym;
968 }
969
970 // Define a symbol based on an Output_data.
971
972 Symbol*
973 Symbol_table::define_in_output_data(const Target* target, const char* name,
974 const char* version, Output_data* od,
975 uint64_t value, uint64_t symsize,
976 elfcpp::STT type, elfcpp::STB binding,
977 elfcpp::STV visibility,
978 unsigned char nonvis,
979 bool offset_is_from_end,
980 bool only_if_ref)
981 {
982 if (parameters->get_size() == 32)
983 {
984 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
985 return this->do_define_in_output_data<32>(target, name, version, od,
986 value, symsize, type, binding,
987 visibility, nonvis,
988 offset_is_from_end,
989 only_if_ref);
990 #else
991 gold_unreachable();
992 #endif
993 }
994 else if (parameters->get_size() == 64)
995 {
996 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
997 return this->do_define_in_output_data<64>(target, name, version, od,
998 value, symsize, type, binding,
999 visibility, nonvis,
1000 offset_is_from_end,
1001 only_if_ref);
1002 #else
1003 gold_unreachable();
1004 #endif
1005 }
1006 else
1007 gold_unreachable();
1008 }
1009
1010 // Define a symbol in an Output_data, sized version.
1011
1012 template<int size>
1013 Sized_symbol<size>*
1014 Symbol_table::do_define_in_output_data(
1015 const Target* target,
1016 const char* name,
1017 const char* version,
1018 Output_data* od,
1019 typename elfcpp::Elf_types<size>::Elf_Addr value,
1020 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1021 elfcpp::STT type,
1022 elfcpp::STB binding,
1023 elfcpp::STV visibility,
1024 unsigned char nonvis,
1025 bool offset_is_from_end,
1026 bool only_if_ref)
1027 {
1028 Sized_symbol<size>* sym;
1029 Sized_symbol<size>* oldsym;
1030
1031 if (parameters->is_big_endian())
1032 {
1033 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1034 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1035 target, &name, &version, only_if_ref, &oldsym
1036 SELECT_SIZE_ENDIAN(size, true));
1037 #else
1038 gold_unreachable();
1039 #endif
1040 }
1041 else
1042 {
1043 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1044 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1045 target, &name, &version, only_if_ref, &oldsym
1046 SELECT_SIZE_ENDIAN(size, false));
1047 #else
1048 gold_unreachable();
1049 #endif
1050 }
1051
1052 if (sym == NULL)
1053 return NULL;
1054
1055 gold_assert(version == NULL || oldsym != NULL);
1056 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1057 offset_is_from_end);
1058
1059 if (oldsym == NULL)
1060 return sym;
1061
1062 if (Symbol_table::should_override_with_special(oldsym))
1063 this->override_with_special(oldsym, sym);
1064 delete sym;
1065 return oldsym;
1066 }
1067
1068 // Define a symbol based on an Output_segment.
1069
1070 Symbol*
1071 Symbol_table::define_in_output_segment(const Target* target, const char* name,
1072 const char* version, Output_segment* os,
1073 uint64_t value, uint64_t symsize,
1074 elfcpp::STT type, elfcpp::STB binding,
1075 elfcpp::STV visibility,
1076 unsigned char nonvis,
1077 Symbol::Segment_offset_base offset_base,
1078 bool only_if_ref)
1079 {
1080 if (parameters->get_size() == 32)
1081 {
1082 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1083 return this->do_define_in_output_segment<32>(target, name, version, os,
1084 value, symsize, type,
1085 binding, visibility, nonvis,
1086 offset_base, only_if_ref);
1087 #else
1088 gold_unreachable();
1089 #endif
1090 }
1091 else if (parameters->get_size() == 64)
1092 {
1093 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1094 return this->do_define_in_output_segment<64>(target, name, version, os,
1095 value, symsize, type,
1096 binding, visibility, nonvis,
1097 offset_base, only_if_ref);
1098 #else
1099 gold_unreachable();
1100 #endif
1101 }
1102 else
1103 gold_unreachable();
1104 }
1105
1106 // Define a symbol in an Output_segment, sized version.
1107
1108 template<int size>
1109 Sized_symbol<size>*
1110 Symbol_table::do_define_in_output_segment(
1111 const Target* target,
1112 const char* name,
1113 const char* version,
1114 Output_segment* os,
1115 typename elfcpp::Elf_types<size>::Elf_Addr value,
1116 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1117 elfcpp::STT type,
1118 elfcpp::STB binding,
1119 elfcpp::STV visibility,
1120 unsigned char nonvis,
1121 Symbol::Segment_offset_base offset_base,
1122 bool only_if_ref)
1123 {
1124 Sized_symbol<size>* sym;
1125 Sized_symbol<size>* oldsym;
1126
1127 if (parameters->is_big_endian())
1128 {
1129 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1130 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1131 target, &name, &version, only_if_ref, &oldsym
1132 SELECT_SIZE_ENDIAN(size, true));
1133 #else
1134 gold_unreachable();
1135 #endif
1136 }
1137 else
1138 {
1139 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1140 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1141 target, &name, &version, only_if_ref, &oldsym
1142 SELECT_SIZE_ENDIAN(size, false));
1143 #else
1144 gold_unreachable();
1145 #endif
1146 }
1147
1148 if (sym == NULL)
1149 return NULL;
1150
1151 gold_assert(version == NULL || oldsym != NULL);
1152 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1153 offset_base);
1154
1155 if (oldsym == NULL)
1156 return sym;
1157
1158 if (Symbol_table::should_override_with_special(oldsym))
1159 this->override_with_special(oldsym, sym);
1160 delete sym;
1161 return oldsym;
1162 }
1163
1164 // Define a special symbol with a constant value. It is a multiple
1165 // definition error if this symbol is already defined.
1166
1167 Symbol*
1168 Symbol_table::define_as_constant(const Target* target, const char* name,
1169 const char* version, uint64_t value,
1170 uint64_t symsize, elfcpp::STT type,
1171 elfcpp::STB binding, elfcpp::STV visibility,
1172 unsigned char nonvis, bool only_if_ref)
1173 {
1174 if (parameters->get_size() == 32)
1175 {
1176 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1177 return this->do_define_as_constant<32>(target, name, version, value,
1178 symsize, type, binding,
1179 visibility, nonvis, only_if_ref);
1180 #else
1181 gold_unreachable();
1182 #endif
1183 }
1184 else if (parameters->get_size() == 64)
1185 {
1186 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1187 return this->do_define_as_constant<64>(target, name, version, value,
1188 symsize, type, binding,
1189 visibility, nonvis, only_if_ref);
1190 #else
1191 gold_unreachable();
1192 #endif
1193 }
1194 else
1195 gold_unreachable();
1196 }
1197
1198 // Define a symbol as a constant, sized version.
1199
1200 template<int size>
1201 Sized_symbol<size>*
1202 Symbol_table::do_define_as_constant(
1203 const Target* target,
1204 const char* name,
1205 const char* version,
1206 typename elfcpp::Elf_types<size>::Elf_Addr value,
1207 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1208 elfcpp::STT type,
1209 elfcpp::STB binding,
1210 elfcpp::STV visibility,
1211 unsigned char nonvis,
1212 bool only_if_ref)
1213 {
1214 Sized_symbol<size>* sym;
1215 Sized_symbol<size>* oldsym;
1216
1217 if (parameters->is_big_endian())
1218 {
1219 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1220 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1221 target, &name, &version, only_if_ref, &oldsym
1222 SELECT_SIZE_ENDIAN(size, true));
1223 #else
1224 gold_unreachable();
1225 #endif
1226 }
1227 else
1228 {
1229 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1230 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1231 target, &name, &version, only_if_ref, &oldsym
1232 SELECT_SIZE_ENDIAN(size, false));
1233 #else
1234 gold_unreachable();
1235 #endif
1236 }
1237
1238 if (sym == NULL)
1239 return NULL;
1240
1241 gold_assert(version == NULL || oldsym != NULL);
1242 sym->init(name, value, symsize, type, binding, visibility, nonvis);
1243
1244 if (oldsym == NULL)
1245 return sym;
1246
1247 if (Symbol_table::should_override_with_special(oldsym))
1248 this->override_with_special(oldsym, sym);
1249 delete sym;
1250 return oldsym;
1251 }
1252
1253 // Define a set of symbols in output sections.
1254
1255 void
1256 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1257 int count, const Define_symbol_in_section* p)
1258 {
1259 for (int i = 0; i < count; ++i, ++p)
1260 {
1261 Output_section* os = layout->find_output_section(p->output_section);
1262 if (os != NULL)
1263 this->define_in_output_data(target, p->name, NULL, os, p->value,
1264 p->size, p->type, p->binding,
1265 p->visibility, p->nonvis,
1266 p->offset_is_from_end, p->only_if_ref);
1267 else
1268 this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1269 p->binding, p->visibility, p->nonvis,
1270 p->only_if_ref);
1271 }
1272 }
1273
1274 // Define a set of symbols in output segments.
1275
1276 void
1277 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1278 int count, const Define_symbol_in_segment* p)
1279 {
1280 for (int i = 0; i < count; ++i, ++p)
1281 {
1282 Output_segment* os = layout->find_output_segment(p->segment_type,
1283 p->segment_flags_set,
1284 p->segment_flags_clear);
1285 if (os != NULL)
1286 this->define_in_output_segment(target, p->name, NULL, os, p->value,
1287 p->size, p->type, p->binding,
1288 p->visibility, p->nonvis,
1289 p->offset_base, p->only_if_ref);
1290 else
1291 this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1292 p->binding, p->visibility, p->nonvis,
1293 p->only_if_ref);
1294 }
1295 }
1296
1297 // Define CSYM using a COPY reloc. POSD is the Output_data where the
1298 // symbol should be defined--typically a .dyn.bss section. VALUE is
1299 // the offset within POSD.
1300
1301 template<int size>
1302 void
1303 Symbol_table::define_with_copy_reloc(
1304 const Target* target,
1305 Sized_symbol<size>* csym,
1306 Output_data* posd,
1307 typename elfcpp::Elf_types<size>::Elf_Addr value)
1308 {
1309 gold_assert(csym->is_from_dynobj());
1310 gold_assert(!csym->is_copied_from_dynobj());
1311 Object* object = csym->object();
1312 gold_assert(object->is_dynamic());
1313 Dynobj* dynobj = static_cast<Dynobj*>(object);
1314
1315 // Our copied variable has to override any variable in a shared
1316 // library.
1317 elfcpp::STB binding = csym->binding();
1318 if (binding == elfcpp::STB_WEAK)
1319 binding = elfcpp::STB_GLOBAL;
1320
1321 this->define_in_output_data(target, csym->name(), csym->version(),
1322 posd, value, csym->symsize(),
1323 csym->type(), binding,
1324 csym->visibility(), csym->nonvis(),
1325 false, false);
1326
1327 csym->set_is_copied_from_dynobj();
1328 csym->set_needs_dynsym_entry();
1329
1330 this->copied_symbol_dynobjs_[csym] = dynobj;
1331
1332 // We have now defined all aliases, but we have not entered them all
1333 // in the copied_symbol_dynobjs_ map.
1334 if (csym->has_alias())
1335 {
1336 Symbol* sym = csym;
1337 while (true)
1338 {
1339 sym = this->weak_aliases_[sym];
1340 if (sym == csym)
1341 break;
1342 gold_assert(sym->output_data() == posd);
1343
1344 sym->set_is_copied_from_dynobj();
1345 this->copied_symbol_dynobjs_[sym] = dynobj;
1346 }
1347 }
1348 }
1349
1350 // SYM is defined using a COPY reloc. Return the dynamic object where
1351 // the original definition was found.
1352
1353 Dynobj*
1354 Symbol_table::get_copy_source(const Symbol* sym) const
1355 {
1356 gold_assert(sym->is_copied_from_dynobj());
1357 Copied_symbol_dynobjs::const_iterator p =
1358 this->copied_symbol_dynobjs_.find(sym);
1359 gold_assert(p != this->copied_symbol_dynobjs_.end());
1360 return p->second;
1361 }
1362
1363 // Set the dynamic symbol indexes. INDEX is the index of the first
1364 // global dynamic symbol. Pointers to the symbols are stored into the
1365 // vector SYMS. The names are added to DYNPOOL. This returns an
1366 // updated dynamic symbol index.
1367
1368 unsigned int
1369 Symbol_table::set_dynsym_indexes(const Target* target,
1370 unsigned int index,
1371 std::vector<Symbol*>* syms,
1372 Stringpool* dynpool,
1373 Versions* versions)
1374 {
1375 for (Symbol_table_type::iterator p = this->table_.begin();
1376 p != this->table_.end();
1377 ++p)
1378 {
1379 Symbol* sym = p->second;
1380
1381 // Note that SYM may already have a dynamic symbol index, since
1382 // some symbols appear more than once in the symbol table, with
1383 // and without a version.
1384
1385 if (!sym->should_add_dynsym_entry())
1386 sym->set_dynsym_index(-1U);
1387 else if (!sym->has_dynsym_index())
1388 {
1389 sym->set_dynsym_index(index);
1390 ++index;
1391 syms->push_back(sym);
1392 dynpool->add(sym->name(), false, NULL);
1393
1394 // Record any version information.
1395 if (sym->version() != NULL)
1396 versions->record_version(this, dynpool, sym);
1397 }
1398 }
1399
1400 // Finish up the versions. In some cases this may add new dynamic
1401 // symbols.
1402 index = versions->finalize(target, this, index, syms);
1403
1404 return index;
1405 }
1406
1407 // Set the final values for all the symbols. The index of the first
1408 // global symbol in the output file is INDEX. Record the file offset
1409 // OFF. Add their names to POOL. Return the new file offset.
1410
1411 off_t
1412 Symbol_table::finalize(unsigned int index, off_t off, off_t dynoff,
1413 size_t dyn_global_index, size_t dyncount,
1414 Stringpool* pool)
1415 {
1416 off_t ret;
1417
1418 gold_assert(index != 0);
1419 this->first_global_index_ = index;
1420
1421 this->dynamic_offset_ = dynoff;
1422 this->first_dynamic_global_index_ = dyn_global_index;
1423 this->dynamic_count_ = dyncount;
1424
1425 if (parameters->get_size() == 32)
1426 {
1427 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1428 ret = this->sized_finalize<32>(index, off, pool);
1429 #else
1430 gold_unreachable();
1431 #endif
1432 }
1433 else if (parameters->get_size() == 64)
1434 {
1435 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1436 ret = this->sized_finalize<64>(index, off, pool);
1437 #else
1438 gold_unreachable();
1439 #endif
1440 }
1441 else
1442 gold_unreachable();
1443
1444 // Now that we have the final symbol table, we can reliably note
1445 // which symbols should get warnings.
1446 this->warnings_.note_warnings(this);
1447
1448 return ret;
1449 }
1450
1451 // Set the final value for all the symbols. This is called after
1452 // Layout::finalize, so all the output sections have their final
1453 // address.
1454
1455 template<int size>
1456 off_t
1457 Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool)
1458 {
1459 off = align_address(off, size >> 3);
1460 this->offset_ = off;
1461
1462 size_t orig_index = index;
1463
1464 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1465 for (Symbol_table_type::iterator p = this->table_.begin();
1466 p != this->table_.end();
1467 ++p)
1468 {
1469 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1470
1471 // FIXME: Here we need to decide which symbols should go into
1472 // the output file, based on --strip.
1473
1474 // The default version of a symbol may appear twice in the
1475 // symbol table. We only need to finalize it once.
1476 if (sym->has_symtab_index())
1477 continue;
1478
1479 if (!sym->in_reg())
1480 {
1481 gold_assert(!sym->has_symtab_index());
1482 sym->set_symtab_index(-1U);
1483 gold_assert(sym->dynsym_index() == -1U);
1484 continue;
1485 }
1486
1487 typename Sized_symbol<size>::Value_type value;
1488
1489 switch (sym->source())
1490 {
1491 case Symbol::FROM_OBJECT:
1492 {
1493 unsigned int shndx = sym->shndx();
1494
1495 // FIXME: We need some target specific support here.
1496 if (shndx >= elfcpp::SHN_LORESERVE
1497 && shndx != elfcpp::SHN_ABS)
1498 {
1499 gold_error(_("%s: unsupported symbol section 0x%x"),
1500 sym->demangled_name().c_str(), shndx);
1501 shndx = elfcpp::SHN_UNDEF;
1502 }
1503
1504 Object* symobj = sym->object();
1505 if (symobj->is_dynamic())
1506 {
1507 value = 0;
1508 shndx = elfcpp::SHN_UNDEF;
1509 }
1510 else if (shndx == elfcpp::SHN_UNDEF)
1511 value = 0;
1512 else if (shndx == elfcpp::SHN_ABS)
1513 value = sym->value();
1514 else
1515 {
1516 Relobj* relobj = static_cast<Relobj*>(symobj);
1517 section_offset_type secoff;
1518 Output_section* os = relobj->output_section(shndx, &secoff);
1519
1520 if (os == NULL)
1521 {
1522 sym->set_symtab_index(-1U);
1523 gold_assert(sym->dynsym_index() == -1U);
1524 continue;
1525 }
1526
1527 if (sym->type() == elfcpp::STT_TLS)
1528 value = sym->value() + os->tls_offset() + secoff;
1529 else
1530 value = sym->value() + os->address() + secoff;
1531 }
1532 }
1533 break;
1534
1535 case Symbol::IN_OUTPUT_DATA:
1536 {
1537 Output_data* od = sym->output_data();
1538 value = sym->value() + od->address();
1539 if (sym->offset_is_from_end())
1540 value += od->data_size();
1541 }
1542 break;
1543
1544 case Symbol::IN_OUTPUT_SEGMENT:
1545 {
1546 Output_segment* os = sym->output_segment();
1547 value = sym->value() + os->vaddr();
1548 switch (sym->offset_base())
1549 {
1550 case Symbol::SEGMENT_START:
1551 break;
1552 case Symbol::SEGMENT_END:
1553 value += os->memsz();
1554 break;
1555 case Symbol::SEGMENT_BSS:
1556 value += os->filesz();
1557 break;
1558 default:
1559 gold_unreachable();
1560 }
1561 }
1562 break;
1563
1564 case Symbol::CONSTANT:
1565 value = sym->value();
1566 break;
1567
1568 default:
1569 gold_unreachable();
1570 }
1571
1572 sym->set_value(value);
1573
1574 if (parameters->strip_all())
1575 sym->set_symtab_index(-1U);
1576 else
1577 {
1578 sym->set_symtab_index(index);
1579 pool->add(sym->name(), false, NULL);
1580 ++index;
1581 off += sym_size;
1582 }
1583 }
1584
1585 this->output_count_ = index - orig_index;
1586
1587 return off;
1588 }
1589
1590 // Write out the global symbols.
1591
1592 void
1593 Symbol_table::write_globals(const Input_objects* input_objects,
1594 const Stringpool* sympool,
1595 const Stringpool* dynpool, Output_file* of) const
1596 {
1597 if (parameters->get_size() == 32)
1598 {
1599 if (parameters->is_big_endian())
1600 {
1601 #ifdef HAVE_TARGET_32_BIG
1602 this->sized_write_globals<32, true>(input_objects, sympool,
1603 dynpool, of);
1604 #else
1605 gold_unreachable();
1606 #endif
1607 }
1608 else
1609 {
1610 #ifdef HAVE_TARGET_32_LITTLE
1611 this->sized_write_globals<32, false>(input_objects, sympool,
1612 dynpool, of);
1613 #else
1614 gold_unreachable();
1615 #endif
1616 }
1617 }
1618 else if (parameters->get_size() == 64)
1619 {
1620 if (parameters->is_big_endian())
1621 {
1622 #ifdef HAVE_TARGET_64_BIG
1623 this->sized_write_globals<64, true>(input_objects, sympool,
1624 dynpool, of);
1625 #else
1626 gold_unreachable();
1627 #endif
1628 }
1629 else
1630 {
1631 #ifdef HAVE_TARGET_64_LITTLE
1632 this->sized_write_globals<64, false>(input_objects, sympool,
1633 dynpool, of);
1634 #else
1635 gold_unreachable();
1636 #endif
1637 }
1638 }
1639 else
1640 gold_unreachable();
1641 }
1642
1643 // Write out the global symbols.
1644
1645 template<int size, bool big_endian>
1646 void
1647 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1648 const Stringpool* sympool,
1649 const Stringpool* dynpool,
1650 Output_file* of) const
1651 {
1652 const Target* const target = input_objects->target();
1653
1654 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1655 unsigned int index = this->first_global_index_;
1656 const off_t oview_size = this->output_count_ * sym_size;
1657 unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1658
1659 unsigned int dynamic_count = this->dynamic_count_;
1660 off_t dynamic_size = dynamic_count * sym_size;
1661 unsigned int first_dynamic_global_index = this->first_dynamic_global_index_;
1662 unsigned char* dynamic_view;
1663 if (this->dynamic_offset_ == 0)
1664 dynamic_view = NULL;
1665 else
1666 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1667
1668 unsigned char* ps = psyms;
1669 for (Symbol_table_type::const_iterator p = this->table_.begin();
1670 p != this->table_.end();
1671 ++p)
1672 {
1673 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1674
1675 // Possibly warn about unresolved symbols in shared libraries.
1676 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1677
1678 unsigned int sym_index = sym->symtab_index();
1679 unsigned int dynsym_index;
1680 if (dynamic_view == NULL)
1681 dynsym_index = -1U;
1682 else
1683 dynsym_index = sym->dynsym_index();
1684
1685 if (sym_index == -1U && dynsym_index == -1U)
1686 {
1687 // This symbol is not included in the output file.
1688 continue;
1689 }
1690
1691 if (sym_index == index)
1692 ++index;
1693 else if (sym_index != -1U)
1694 {
1695 // We have already seen this symbol, because it has a
1696 // default version.
1697 gold_assert(sym_index < index);
1698 if (dynsym_index == -1U)
1699 continue;
1700 sym_index = -1U;
1701 }
1702
1703 unsigned int shndx;
1704 typename elfcpp::Elf_types<32>::Elf_Addr value = sym->value();
1705 switch (sym->source())
1706 {
1707 case Symbol::FROM_OBJECT:
1708 {
1709 unsigned int in_shndx = sym->shndx();
1710
1711 // FIXME: We need some target specific support here.
1712 if (in_shndx >= elfcpp::SHN_LORESERVE
1713 && in_shndx != elfcpp::SHN_ABS)
1714 {
1715 gold_error(_("%s: unsupported symbol section 0x%x"),
1716 sym->demangled_name().c_str(), in_shndx);
1717 shndx = in_shndx;
1718 }
1719 else
1720 {
1721 Object* symobj = sym->object();
1722 if (symobj->is_dynamic())
1723 {
1724 if (sym->needs_dynsym_value())
1725 value = target->dynsym_value(sym);
1726 shndx = elfcpp::SHN_UNDEF;
1727 }
1728 else if (in_shndx == elfcpp::SHN_UNDEF
1729 || in_shndx == elfcpp::SHN_ABS)
1730 shndx = in_shndx;
1731 else
1732 {
1733 Relobj* relobj = static_cast<Relobj*>(symobj);
1734 section_offset_type secoff;
1735 Output_section* os = relobj->output_section(in_shndx,
1736 &secoff);
1737 gold_assert(os != NULL);
1738 shndx = os->out_shndx();
1739 }
1740 }
1741 }
1742 break;
1743
1744 case Symbol::IN_OUTPUT_DATA:
1745 shndx = sym->output_data()->out_shndx();
1746 break;
1747
1748 case Symbol::IN_OUTPUT_SEGMENT:
1749 shndx = elfcpp::SHN_ABS;
1750 break;
1751
1752 case Symbol::CONSTANT:
1753 shndx = elfcpp::SHN_ABS;
1754 break;
1755
1756 default:
1757 gold_unreachable();
1758 }
1759
1760 if (sym_index != -1U)
1761 {
1762 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1763 sym, sym->value(), shndx, sympool, ps
1764 SELECT_SIZE_ENDIAN(size, big_endian));
1765 ps += sym_size;
1766 }
1767
1768 if (dynsym_index != -1U)
1769 {
1770 dynsym_index -= first_dynamic_global_index;
1771 gold_assert(dynsym_index < dynamic_count);
1772 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1773 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1774 sym, value, shndx, dynpool, pd
1775 SELECT_SIZE_ENDIAN(size, big_endian));
1776 }
1777 }
1778
1779 gold_assert(ps - psyms == oview_size);
1780
1781 of->write_output_view(this->offset_, oview_size, psyms);
1782 if (dynamic_view != NULL)
1783 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1784 }
1785
1786 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
1787 // strtab holding the name.
1788
1789 template<int size, bool big_endian>
1790 void
1791 Symbol_table::sized_write_symbol(
1792 Sized_symbol<size>* sym,
1793 typename elfcpp::Elf_types<size>::Elf_Addr value,
1794 unsigned int shndx,
1795 const Stringpool* pool,
1796 unsigned char* p
1797 ACCEPT_SIZE_ENDIAN) const
1798 {
1799 elfcpp::Sym_write<size, big_endian> osym(p);
1800 osym.put_st_name(pool->get_offset(sym->name()));
1801 osym.put_st_value(value);
1802 osym.put_st_size(sym->symsize());
1803 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1804 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1805 osym.put_st_shndx(shndx);
1806 }
1807
1808 // Check for unresolved symbols in shared libraries. This is
1809 // controlled by the --allow-shlib-undefined option.
1810
1811 // We only warn about libraries for which we have seen all the
1812 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
1813 // which were not seen in this link. If we didn't see a DT_NEEDED
1814 // entry, we aren't going to be able to reliably report whether the
1815 // symbol is undefined.
1816
1817 // We also don't warn about libraries found in the system library
1818 // directory (the directory were we find libc.so); we assume that
1819 // those libraries are OK. This heuristic avoids problems in
1820 // GNU/Linux, in which -ldl can have undefined references satisfied by
1821 // ld-linux.so.
1822
1823 inline void
1824 Symbol_table::warn_about_undefined_dynobj_symbol(
1825 const Input_objects* input_objects,
1826 Symbol* sym) const
1827 {
1828 if (sym->source() == Symbol::FROM_OBJECT
1829 && sym->object()->is_dynamic()
1830 && sym->shndx() == elfcpp::SHN_UNDEF
1831 && sym->binding() != elfcpp::STB_WEAK
1832 && !parameters->allow_shlib_undefined()
1833 && !input_objects->target()->is_defined_by_abi(sym)
1834 && !input_objects->found_in_system_library_directory(sym->object()))
1835 {
1836 // A very ugly cast.
1837 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
1838 if (!dynobj->has_unknown_needed_entries())
1839 gold_error(_("%s: undefined reference to '%s'"),
1840 sym->object()->name().c_str(),
1841 sym->demangled_name().c_str());
1842 }
1843 }
1844
1845 // Write out a section symbol. Return the update offset.
1846
1847 void
1848 Symbol_table::write_section_symbol(const Output_section *os,
1849 Output_file* of,
1850 off_t offset) const
1851 {
1852 if (parameters->get_size() == 32)
1853 {
1854 if (parameters->is_big_endian())
1855 {
1856 #ifdef HAVE_TARGET_32_BIG
1857 this->sized_write_section_symbol<32, true>(os, of, offset);
1858 #else
1859 gold_unreachable();
1860 #endif
1861 }
1862 else
1863 {
1864 #ifdef HAVE_TARGET_32_LITTLE
1865 this->sized_write_section_symbol<32, false>(os, of, offset);
1866 #else
1867 gold_unreachable();
1868 #endif
1869 }
1870 }
1871 else if (parameters->get_size() == 64)
1872 {
1873 if (parameters->is_big_endian())
1874 {
1875 #ifdef HAVE_TARGET_64_BIG
1876 this->sized_write_section_symbol<64, true>(os, of, offset);
1877 #else
1878 gold_unreachable();
1879 #endif
1880 }
1881 else
1882 {
1883 #ifdef HAVE_TARGET_64_LITTLE
1884 this->sized_write_section_symbol<64, false>(os, of, offset);
1885 #else
1886 gold_unreachable();
1887 #endif
1888 }
1889 }
1890 else
1891 gold_unreachable();
1892 }
1893
1894 // Write out a section symbol, specialized for size and endianness.
1895
1896 template<int size, bool big_endian>
1897 void
1898 Symbol_table::sized_write_section_symbol(const Output_section* os,
1899 Output_file* of,
1900 off_t offset) const
1901 {
1902 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1903
1904 unsigned char* pov = of->get_output_view(offset, sym_size);
1905
1906 elfcpp::Sym_write<size, big_endian> osym(pov);
1907 osym.put_st_name(0);
1908 osym.put_st_value(os->address());
1909 osym.put_st_size(0);
1910 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
1911 elfcpp::STT_SECTION));
1912 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
1913 osym.put_st_shndx(os->out_shndx());
1914
1915 of->write_output_view(offset, sym_size, pov);
1916 }
1917
1918 // Print statistical information to stderr. This is used for --stats.
1919
1920 void
1921 Symbol_table::print_stats() const
1922 {
1923 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
1924 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
1925 program_name, this->table_.size(), this->table_.bucket_count());
1926 #else
1927 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
1928 program_name, this->table_.size());
1929 #endif
1930 this->namepool_.print_stats("symbol table stringpool");
1931 }
1932
1933 // We check for ODR violations by looking for symbols with the same
1934 // name for which the debugging information reports that they were
1935 // defined in different source locations. When comparing the source
1936 // location, we consider instances with the same base filename and
1937 // line number to be the same. This is because different object
1938 // files/shared libraries can include the same header file using
1939 // different paths, and we don't want to report an ODR violation in
1940 // that case.
1941
1942 // This struct is used to compare line information, as returned by
1943 // Dwarf_line_info::one_addr2line. It implements a < comparison
1944 // operator used with std::set.
1945
1946 struct Odr_violation_compare
1947 {
1948 bool
1949 operator()(const std::string& s1, const std::string& s2) const
1950 {
1951 std::string::size_type pos1 = s1.rfind('/');
1952 std::string::size_type pos2 = s2.rfind('/');
1953 if (pos1 == std::string::npos
1954 || pos2 == std::string::npos)
1955 return s1 < s2;
1956 return s1.compare(pos1, std::string::npos,
1957 s2, pos2, std::string::npos) < 0;
1958 }
1959 };
1960
1961 // Check candidate_odr_violations_ to find symbols with the same name
1962 // but apparently different definitions (different source-file/line-no).
1963
1964 void
1965 Symbol_table::detect_odr_violations(const Task* task,
1966 const char* output_file_name) const
1967 {
1968 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
1969 it != candidate_odr_violations_.end();
1970 ++it)
1971 {
1972 const char* symbol_name = it->first;
1973 // We use a sorted set so the output is deterministic.
1974 std::set<std::string, Odr_violation_compare> line_nums;
1975
1976 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
1977 locs = it->second.begin();
1978 locs != it->second.end();
1979 ++locs)
1980 {
1981 // We need to lock the object in order to read it. This
1982 // means that we have to run in a singleton Task. If we
1983 // want to run this in a general Task for better
1984 // performance, we will need one Task for object, plus
1985 // appropriate locking to ensure that we don't conflict with
1986 // other uses of the object.
1987 Task_lock_obj<Object> tl(task, locs->object);
1988 std::string lineno = Dwarf_line_info::one_addr2line(
1989 locs->object, locs->shndx, locs->offset);
1990 if (!lineno.empty())
1991 line_nums.insert(lineno);
1992 }
1993
1994 if (line_nums.size() > 1)
1995 {
1996 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
1997 "places (possible ODR violation):"),
1998 output_file_name, demangle(symbol_name).c_str());
1999 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2000 it2 != line_nums.end();
2001 ++it2)
2002 fprintf(stderr, " %s\n", it2->c_str());
2003 }
2004 }
2005 }
2006
2007 // Warnings functions.
2008
2009 // Add a new warning.
2010
2011 void
2012 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2013 const std::string& warning)
2014 {
2015 name = symtab->canonicalize_name(name);
2016 this->warnings_[name].set(obj, warning);
2017 }
2018
2019 // Look through the warnings and mark the symbols for which we should
2020 // warn. This is called during Layout::finalize when we know the
2021 // sources for all the symbols.
2022
2023 void
2024 Warnings::note_warnings(Symbol_table* symtab)
2025 {
2026 for (Warning_table::iterator p = this->warnings_.begin();
2027 p != this->warnings_.end();
2028 ++p)
2029 {
2030 Symbol* sym = symtab->lookup(p->first, NULL);
2031 if (sym != NULL
2032 && sym->source() == Symbol::FROM_OBJECT
2033 && sym->object() == p->second.object)
2034 sym->set_has_warning();
2035 }
2036 }
2037
2038 // Issue a warning. This is called when we see a relocation against a
2039 // symbol for which has a warning.
2040
2041 template<int size, bool big_endian>
2042 void
2043 Warnings::issue_warning(const Symbol* sym,
2044 const Relocate_info<size, big_endian>* relinfo,
2045 size_t relnum, off_t reloffset) const
2046 {
2047 gold_assert(sym->has_warning());
2048 Warning_table::const_iterator p = this->warnings_.find(sym->name());
2049 gold_assert(p != this->warnings_.end());
2050 gold_warning_at_location(relinfo, relnum, reloffset,
2051 "%s", p->second.text.c_str());
2052 }
2053
2054 // Instantiate the templates we need. We could use the configure
2055 // script to restrict this to only the ones needed for implemented
2056 // targets.
2057
2058 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2059 template
2060 void
2061 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2062 #endif
2063
2064 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2065 template
2066 void
2067 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2068 #endif
2069
2070 #ifdef HAVE_TARGET_32_LITTLE
2071 template
2072 void
2073 Symbol_table::add_from_relobj<32, false>(
2074 Sized_relobj<32, false>* relobj,
2075 const unsigned char* syms,
2076 size_t count,
2077 const char* sym_names,
2078 size_t sym_name_size,
2079 Sized_relobj<32, true>::Symbols* sympointers);
2080 #endif
2081
2082 #ifdef HAVE_TARGET_32_BIG
2083 template
2084 void
2085 Symbol_table::add_from_relobj<32, true>(
2086 Sized_relobj<32, true>* relobj,
2087 const unsigned char* syms,
2088 size_t count,
2089 const char* sym_names,
2090 size_t sym_name_size,
2091 Sized_relobj<32, false>::Symbols* sympointers);
2092 #endif
2093
2094 #ifdef HAVE_TARGET_64_LITTLE
2095 template
2096 void
2097 Symbol_table::add_from_relobj<64, false>(
2098 Sized_relobj<64, false>* relobj,
2099 const unsigned char* syms,
2100 size_t count,
2101 const char* sym_names,
2102 size_t sym_name_size,
2103 Sized_relobj<64, true>::Symbols* sympointers);
2104 #endif
2105
2106 #ifdef HAVE_TARGET_64_BIG
2107 template
2108 void
2109 Symbol_table::add_from_relobj<64, true>(
2110 Sized_relobj<64, true>* relobj,
2111 const unsigned char* syms,
2112 size_t count,
2113 const char* sym_names,
2114 size_t sym_name_size,
2115 Sized_relobj<64, false>::Symbols* sympointers);
2116 #endif
2117
2118 #ifdef HAVE_TARGET_32_LITTLE
2119 template
2120 void
2121 Symbol_table::add_from_dynobj<32, false>(
2122 Sized_dynobj<32, false>* dynobj,
2123 const unsigned char* syms,
2124 size_t count,
2125 const char* sym_names,
2126 size_t sym_name_size,
2127 const unsigned char* versym,
2128 size_t versym_size,
2129 const std::vector<const char*>* version_map);
2130 #endif
2131
2132 #ifdef HAVE_TARGET_32_BIG
2133 template
2134 void
2135 Symbol_table::add_from_dynobj<32, true>(
2136 Sized_dynobj<32, true>* dynobj,
2137 const unsigned char* syms,
2138 size_t count,
2139 const char* sym_names,
2140 size_t sym_name_size,
2141 const unsigned char* versym,
2142 size_t versym_size,
2143 const std::vector<const char*>* version_map);
2144 #endif
2145
2146 #ifdef HAVE_TARGET_64_LITTLE
2147 template
2148 void
2149 Symbol_table::add_from_dynobj<64, false>(
2150 Sized_dynobj<64, false>* dynobj,
2151 const unsigned char* syms,
2152 size_t count,
2153 const char* sym_names,
2154 size_t sym_name_size,
2155 const unsigned char* versym,
2156 size_t versym_size,
2157 const std::vector<const char*>* version_map);
2158 #endif
2159
2160 #ifdef HAVE_TARGET_64_BIG
2161 template
2162 void
2163 Symbol_table::add_from_dynobj<64, true>(
2164 Sized_dynobj<64, true>* dynobj,
2165 const unsigned char* syms,
2166 size_t count,
2167 const char* sym_names,
2168 size_t sym_name_size,
2169 const unsigned char* versym,
2170 size_t versym_size,
2171 const std::vector<const char*>* version_map);
2172 #endif
2173
2174 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2175 template
2176 void
2177 Symbol_table::define_with_copy_reloc<32>(
2178 const Target* target,
2179 Sized_symbol<32>* sym,
2180 Output_data* posd,
2181 elfcpp::Elf_types<32>::Elf_Addr value);
2182 #endif
2183
2184 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2185 template
2186 void
2187 Symbol_table::define_with_copy_reloc<64>(
2188 const Target* target,
2189 Sized_symbol<64>* sym,
2190 Output_data* posd,
2191 elfcpp::Elf_types<64>::Elf_Addr value);
2192 #endif
2193
2194 #ifdef HAVE_TARGET_32_LITTLE
2195 template
2196 void
2197 Warnings::issue_warning<32, false>(const Symbol* sym,
2198 const Relocate_info<32, false>* relinfo,
2199 size_t relnum, off_t reloffset) const;
2200 #endif
2201
2202 #ifdef HAVE_TARGET_32_BIG
2203 template
2204 void
2205 Warnings::issue_warning<32, true>(const Symbol* sym,
2206 const Relocate_info<32, true>* relinfo,
2207 size_t relnum, off_t reloffset) const;
2208 #endif
2209
2210 #ifdef HAVE_TARGET_64_LITTLE
2211 template
2212 void
2213 Warnings::issue_warning<64, false>(const Symbol* sym,
2214 const Relocate_info<64, false>* relinfo,
2215 size_t relnum, off_t reloffset) const;
2216 #endif
2217
2218 #ifdef HAVE_TARGET_64_BIG
2219 template
2220 void
2221 Warnings::issue_warning<64, true>(const Symbol* sym,
2222 const Relocate_info<64, true>* relinfo,
2223 size_t relnum, off_t reloffset) const;
2224 #endif
2225
2226 } // End namespace gold.
This page took 0.076099 seconds and 4 git commands to generate.