Prevent a possible seg-fault in the section merging code, by always creating a paddin...
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except
51 // u1_, u2_ and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 this->is_protected_ = false;
84 this->non_zero_localentry_ = false;
85 }
86
87 // Return the demangled version of the symbol's name, but only
88 // if the --demangle flag was set.
89
90 static std::string
91 demangle(const char* name)
92 {
93 if (!parameters->options().do_demangle())
94 return name;
95
96 // cplus_demangle allocates memory for the result it returns,
97 // and returns NULL if the name is already demangled.
98 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
99 if (demangled_name == NULL)
100 return name;
101
102 std::string retval(demangled_name);
103 free(demangled_name);
104 return retval;
105 }
106
107 std::string
108 Symbol::demangled_name() const
109 {
110 return demangle(this->name());
111 }
112
113 // Initialize the fields in the base class Symbol for SYM in OBJECT.
114
115 template<int size, bool big_endian>
116 void
117 Symbol::init_base_object(const char* name, const char* version, Object* object,
118 const elfcpp::Sym<size, big_endian>& sym,
119 unsigned int st_shndx, bool is_ordinary)
120 {
121 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
122 sym.get_st_visibility(), sym.get_st_nonvis());
123 this->u1_.object = object;
124 this->u2_.shndx = st_shndx;
125 this->is_ordinary_shndx_ = is_ordinary;
126 this->source_ = FROM_OBJECT;
127 this->in_reg_ = !object->is_dynamic();
128 this->in_dyn_ = object->is_dynamic();
129 this->in_real_elf_ = object->pluginobj() == NULL;
130 }
131
132 // Initialize the fields in the base class Symbol for a symbol defined
133 // in an Output_data.
134
135 void
136 Symbol::init_base_output_data(const char* name, const char* version,
137 Output_data* od, elfcpp::STT type,
138 elfcpp::STB binding, elfcpp::STV visibility,
139 unsigned char nonvis, bool offset_is_from_end,
140 bool is_predefined)
141 {
142 this->init_fields(name, version, type, binding, visibility, nonvis);
143 this->u1_.output_data = od;
144 this->u2_.offset_is_from_end = offset_is_from_end;
145 this->source_ = IN_OUTPUT_DATA;
146 this->in_reg_ = true;
147 this->in_real_elf_ = true;
148 this->is_predefined_ = is_predefined;
149 }
150
151 // Initialize the fields in the base class Symbol for a symbol defined
152 // in an Output_segment.
153
154 void
155 Symbol::init_base_output_segment(const char* name, const char* version,
156 Output_segment* os, elfcpp::STT type,
157 elfcpp::STB binding, elfcpp::STV visibility,
158 unsigned char nonvis,
159 Segment_offset_base offset_base,
160 bool is_predefined)
161 {
162 this->init_fields(name, version, type, binding, visibility, nonvis);
163 this->u1_.output_segment = os;
164 this->u2_.offset_base = offset_base;
165 this->source_ = IN_OUTPUT_SEGMENT;
166 this->in_reg_ = true;
167 this->in_real_elf_ = true;
168 this->is_predefined_ = is_predefined;
169 }
170
171 // Initialize the fields in the base class Symbol for a symbol defined
172 // as a constant.
173
174 void
175 Symbol::init_base_constant(const char* name, const char* version,
176 elfcpp::STT type, elfcpp::STB binding,
177 elfcpp::STV visibility, unsigned char nonvis,
178 bool is_predefined)
179 {
180 this->init_fields(name, version, type, binding, visibility, nonvis);
181 this->source_ = IS_CONSTANT;
182 this->in_reg_ = true;
183 this->in_real_elf_ = true;
184 this->is_predefined_ = is_predefined;
185 }
186
187 // Initialize the fields in the base class Symbol for an undefined
188 // symbol.
189
190 void
191 Symbol::init_base_undefined(const char* name, const char* version,
192 elfcpp::STT type, elfcpp::STB binding,
193 elfcpp::STV visibility, unsigned char nonvis)
194 {
195 this->init_fields(name, version, type, binding, visibility, nonvis);
196 this->dynsym_index_ = -1U;
197 this->source_ = IS_UNDEFINED;
198 this->in_reg_ = true;
199 this->in_real_elf_ = true;
200 }
201
202 // Allocate a common symbol in the base.
203
204 void
205 Symbol::allocate_base_common(Output_data* od)
206 {
207 gold_assert(this->is_common());
208 this->source_ = IN_OUTPUT_DATA;
209 this->u1_.output_data = od;
210 this->u2_.offset_is_from_end = false;
211 }
212
213 // Initialize the fields in Sized_symbol for SYM in OBJECT.
214
215 template<int size>
216 template<bool big_endian>
217 void
218 Sized_symbol<size>::init_object(const char* name, const char* version,
219 Object* object,
220 const elfcpp::Sym<size, big_endian>& sym,
221 unsigned int st_shndx, bool is_ordinary)
222 {
223 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
224 this->value_ = sym.get_st_value();
225 this->symsize_ = sym.get_st_size();
226 }
227
228 // Initialize the fields in Sized_symbol for a symbol defined in an
229 // Output_data.
230
231 template<int size>
232 void
233 Sized_symbol<size>::init_output_data(const char* name, const char* version,
234 Output_data* od, Value_type value,
235 Size_type symsize, elfcpp::STT type,
236 elfcpp::STB binding,
237 elfcpp::STV visibility,
238 unsigned char nonvis,
239 bool offset_is_from_end,
240 bool is_predefined)
241 {
242 this->init_base_output_data(name, version, od, type, binding, visibility,
243 nonvis, offset_is_from_end, is_predefined);
244 this->value_ = value;
245 this->symsize_ = symsize;
246 }
247
248 // Initialize the fields in Sized_symbol for a symbol defined in an
249 // Output_segment.
250
251 template<int size>
252 void
253 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
254 Output_segment* os, Value_type value,
255 Size_type symsize, elfcpp::STT type,
256 elfcpp::STB binding,
257 elfcpp::STV visibility,
258 unsigned char nonvis,
259 Segment_offset_base offset_base,
260 bool is_predefined)
261 {
262 this->init_base_output_segment(name, version, os, type, binding, visibility,
263 nonvis, offset_base, is_predefined);
264 this->value_ = value;
265 this->symsize_ = symsize;
266 }
267
268 // Initialize the fields in Sized_symbol for a symbol defined as a
269 // constant.
270
271 template<int size>
272 void
273 Sized_symbol<size>::init_constant(const char* name, const char* version,
274 Value_type value, Size_type symsize,
275 elfcpp::STT type, elfcpp::STB binding,
276 elfcpp::STV visibility, unsigned char nonvis,
277 bool is_predefined)
278 {
279 this->init_base_constant(name, version, type, binding, visibility, nonvis,
280 is_predefined);
281 this->value_ = value;
282 this->symsize_ = symsize;
283 }
284
285 // Initialize the fields in Sized_symbol for an undefined symbol.
286
287 template<int size>
288 void
289 Sized_symbol<size>::init_undefined(const char* name, const char* version,
290 Value_type value, elfcpp::STT type,
291 elfcpp::STB binding, elfcpp::STV visibility,
292 unsigned char nonvis)
293 {
294 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
295 this->value_ = value;
296 this->symsize_ = 0;
297 }
298
299 // Return an allocated string holding the symbol's name as
300 // name@version. This is used for relocatable links.
301
302 std::string
303 Symbol::versioned_name() const
304 {
305 gold_assert(this->version_ != NULL);
306 std::string ret = this->name_;
307 ret.push_back('@');
308 if (this->is_def_)
309 ret.push_back('@');
310 ret += this->version_;
311 return ret;
312 }
313
314 // Return true if SHNDX represents a common symbol.
315
316 bool
317 Symbol::is_common_shndx(unsigned int shndx)
318 {
319 return (shndx == elfcpp::SHN_COMMON
320 || shndx == parameters->target().small_common_shndx()
321 || shndx == parameters->target().large_common_shndx());
322 }
323
324 // Allocate a common symbol.
325
326 template<int size>
327 void
328 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
329 {
330 this->allocate_base_common(od);
331 this->value_ = value;
332 }
333
334 // The ""'s around str ensure str is a string literal, so sizeof works.
335 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
336
337 // Return true if this symbol should be added to the dynamic symbol
338 // table.
339
340 bool
341 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
342 {
343 // If the symbol is only present on plugin files, the plugin decided we
344 // don't need it.
345 if (!this->in_real_elf())
346 return false;
347
348 // If the symbol is used by a dynamic relocation, we need to add it.
349 if (this->needs_dynsym_entry())
350 return true;
351
352 // If this symbol's section is not added, the symbol need not be added.
353 // The section may have been GCed. Note that export_dynamic is being
354 // overridden here. This should not be done for shared objects.
355 if (parameters->options().gc_sections()
356 && !parameters->options().shared()
357 && this->source() == Symbol::FROM_OBJECT
358 && !this->object()->is_dynamic())
359 {
360 Relobj* relobj = static_cast<Relobj*>(this->object());
361 bool is_ordinary;
362 unsigned int shndx = this->shndx(&is_ordinary);
363 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
364 && !relobj->is_section_included(shndx)
365 && !symtab->is_section_folded(relobj, shndx))
366 return false;
367 }
368
369 // If the symbol was forced dynamic in a --dynamic-list file
370 // or an --export-dynamic-symbol option, add it.
371 if (!this->is_from_dynobj()
372 && (parameters->options().in_dynamic_list(this->name())
373 || parameters->options().is_export_dynamic_symbol(this->name())))
374 {
375 if (!this->is_forced_local())
376 return true;
377 gold_warning(_("Cannot export local symbol '%s'"),
378 this->demangled_name().c_str());
379 return false;
380 }
381
382 // If the symbol was forced local in a version script, do not add it.
383 if (this->is_forced_local())
384 return false;
385
386 // If dynamic-list-data was specified, add any STT_OBJECT.
387 if (parameters->options().dynamic_list_data()
388 && !this->is_from_dynobj()
389 && this->type() == elfcpp::STT_OBJECT)
390 return true;
391
392 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
393 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
394 if ((parameters->options().dynamic_list_cpp_new()
395 || parameters->options().dynamic_list_cpp_typeinfo())
396 && !this->is_from_dynobj())
397 {
398 // TODO(csilvers): We could probably figure out if we're an operator
399 // new/delete or typeinfo without the need to demangle.
400 char* demangled_name = cplus_demangle(this->name(),
401 DMGL_ANSI | DMGL_PARAMS);
402 if (demangled_name == NULL)
403 {
404 // Not a C++ symbol, so it can't satisfy these flags
405 }
406 else if (parameters->options().dynamic_list_cpp_new()
407 && (strprefix(demangled_name, "operator new")
408 || strprefix(demangled_name, "operator delete")))
409 {
410 free(demangled_name);
411 return true;
412 }
413 else if (parameters->options().dynamic_list_cpp_typeinfo()
414 && (strprefix(demangled_name, "typeinfo name for")
415 || strprefix(demangled_name, "typeinfo for")))
416 {
417 free(demangled_name);
418 return true;
419 }
420 else
421 free(demangled_name);
422 }
423
424 // If exporting all symbols or building a shared library,
425 // or the symbol should be globally unique (GNU_UNIQUE),
426 // and the symbol is defined in a regular object and is
427 // externally visible, we need to add it.
428 if ((parameters->options().export_dynamic()
429 || parameters->options().shared()
430 || (parameters->options().gnu_unique()
431 && this->binding() == elfcpp::STB_GNU_UNIQUE))
432 && !this->is_from_dynobj()
433 && !this->is_undefined()
434 && this->is_externally_visible())
435 return true;
436
437 return false;
438 }
439
440 // Return true if the final value of this symbol is known at link
441 // time.
442
443 bool
444 Symbol::final_value_is_known() const
445 {
446 // If we are not generating an executable, then no final values are
447 // known, since they will change at runtime, with the exception of
448 // TLS symbols in a position-independent executable.
449 if ((parameters->options().output_is_position_independent()
450 || parameters->options().relocatable())
451 && !(this->type() == elfcpp::STT_TLS
452 && parameters->options().pie()))
453 return false;
454
455 // If the symbol is not from an object file, and is not undefined,
456 // then it is defined, and known.
457 if (this->source_ != FROM_OBJECT)
458 {
459 if (this->source_ != IS_UNDEFINED)
460 return true;
461 }
462 else
463 {
464 // If the symbol is from a dynamic object, then the final value
465 // is not known.
466 if (this->object()->is_dynamic())
467 return false;
468
469 // If the symbol is not undefined (it is defined or common),
470 // then the final value is known.
471 if (!this->is_undefined())
472 return true;
473 }
474
475 // If the symbol is undefined, then whether the final value is known
476 // depends on whether we are doing a static link. If we are doing a
477 // dynamic link, then the final value could be filled in at runtime.
478 // This could reasonably be the case for a weak undefined symbol.
479 return parameters->doing_static_link();
480 }
481
482 // Return the output section where this symbol is defined.
483
484 Output_section*
485 Symbol::output_section() const
486 {
487 switch (this->source_)
488 {
489 case FROM_OBJECT:
490 {
491 unsigned int shndx = this->u2_.shndx;
492 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
493 {
494 gold_assert(!this->u1_.object->is_dynamic());
495 gold_assert(this->u1_.object->pluginobj() == NULL);
496 Relobj* relobj = static_cast<Relobj*>(this->u1_.object);
497 return relobj->output_section(shndx);
498 }
499 return NULL;
500 }
501
502 case IN_OUTPUT_DATA:
503 return this->u1_.output_data->output_section();
504
505 case IN_OUTPUT_SEGMENT:
506 case IS_CONSTANT:
507 case IS_UNDEFINED:
508 return NULL;
509
510 default:
511 gold_unreachable();
512 }
513 }
514
515 // Set the symbol's output section. This is used for symbols defined
516 // in scripts. This should only be called after the symbol table has
517 // been finalized.
518
519 void
520 Symbol::set_output_section(Output_section* os)
521 {
522 switch (this->source_)
523 {
524 case FROM_OBJECT:
525 case IN_OUTPUT_DATA:
526 gold_assert(this->output_section() == os);
527 break;
528 case IS_CONSTANT:
529 this->source_ = IN_OUTPUT_DATA;
530 this->u1_.output_data = os;
531 this->u2_.offset_is_from_end = false;
532 break;
533 case IN_OUTPUT_SEGMENT:
534 case IS_UNDEFINED:
535 default:
536 gold_unreachable();
537 }
538 }
539
540 // Set the symbol's output segment. This is used for pre-defined
541 // symbols whose segments aren't known until after layout is done
542 // (e.g., __ehdr_start).
543
544 void
545 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
546 {
547 gold_assert(this->is_predefined_);
548 this->source_ = IN_OUTPUT_SEGMENT;
549 this->u1_.output_segment = os;
550 this->u2_.offset_base = base;
551 }
552
553 // Set the symbol to undefined. This is used for pre-defined
554 // symbols whose segments aren't known until after layout is done
555 // (e.g., __ehdr_start).
556
557 void
558 Symbol::set_undefined()
559 {
560 this->source_ = IS_UNDEFINED;
561 this->is_predefined_ = false;
562 }
563
564 // Class Symbol_table.
565
566 Symbol_table::Symbol_table(unsigned int count,
567 const Version_script_info& version_script)
568 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
569 forwarders_(), commons_(), tls_commons_(), small_commons_(),
570 large_commons_(), forced_locals_(), warnings_(),
571 version_script_(version_script), gc_(NULL), icf_(NULL),
572 target_symbols_()
573 {
574 namepool_.reserve(count);
575 }
576
577 Symbol_table::~Symbol_table()
578 {
579 }
580
581 // The symbol table key equality function. This is called with
582 // Stringpool keys.
583
584 inline bool
585 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
586 const Symbol_table_key& k2) const
587 {
588 return k1.first == k2.first && k1.second == k2.second;
589 }
590
591 bool
592 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
593 {
594 return (parameters->options().icf_enabled()
595 && this->icf_->is_section_folded(obj, shndx));
596 }
597
598 // For symbols that have been listed with a -u or --export-dynamic-symbol
599 // option, add them to the work list to avoid gc'ing them.
600
601 void
602 Symbol_table::gc_mark_undef_symbols(Layout* layout)
603 {
604 for (options::String_set::const_iterator p =
605 parameters->options().undefined_begin();
606 p != parameters->options().undefined_end();
607 ++p)
608 {
609 const char* name = p->c_str();
610 Symbol* sym = this->lookup(name);
611 gold_assert(sym != NULL);
612 if (sym->source() == Symbol::FROM_OBJECT
613 && !sym->object()->is_dynamic())
614 {
615 this->gc_mark_symbol(sym);
616 }
617 }
618
619 for (options::String_set::const_iterator p =
620 parameters->options().export_dynamic_symbol_begin();
621 p != parameters->options().export_dynamic_symbol_end();
622 ++p)
623 {
624 const char* name = p->c_str();
625 Symbol* sym = this->lookup(name);
626 // It's not an error if a symbol named by --export-dynamic-symbol
627 // is undefined.
628 if (sym != NULL
629 && sym->source() == Symbol::FROM_OBJECT
630 && !sym->object()->is_dynamic())
631 {
632 this->gc_mark_symbol(sym);
633 }
634 }
635
636 for (Script_options::referenced_const_iterator p =
637 layout->script_options()->referenced_begin();
638 p != layout->script_options()->referenced_end();
639 ++p)
640 {
641 Symbol* sym = this->lookup(p->c_str());
642 gold_assert(sym != NULL);
643 if (sym->source() == Symbol::FROM_OBJECT
644 && !sym->object()->is_dynamic())
645 {
646 this->gc_mark_symbol(sym);
647 }
648 }
649 }
650
651 void
652 Symbol_table::gc_mark_symbol(Symbol* sym)
653 {
654 // Add the object and section to the work list.
655 bool is_ordinary;
656 unsigned int shndx = sym->shndx(&is_ordinary);
657 if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
658 {
659 gold_assert(this->gc_!= NULL);
660 Relobj* relobj = static_cast<Relobj*>(sym->object());
661 this->gc_->worklist().push_back(Section_id(relobj, shndx));
662 }
663 parameters->target().gc_mark_symbol(this, sym);
664 }
665
666 // When doing garbage collection, keep symbols that have been seen in
667 // dynamic objects.
668 inline void
669 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
670 {
671 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
672 && !sym->object()->is_dynamic())
673 this->gc_mark_symbol(sym);
674 }
675
676 // Make TO a symbol which forwards to FROM.
677
678 void
679 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
680 {
681 gold_assert(from != to);
682 gold_assert(!from->is_forwarder() && !to->is_forwarder());
683 this->forwarders_[from] = to;
684 from->set_forwarder();
685 }
686
687 // Resolve the forwards from FROM, returning the real symbol.
688
689 Symbol*
690 Symbol_table::resolve_forwards(const Symbol* from) const
691 {
692 gold_assert(from->is_forwarder());
693 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
694 this->forwarders_.find(from);
695 gold_assert(p != this->forwarders_.end());
696 return p->second;
697 }
698
699 // Look up a symbol by name.
700
701 Symbol*
702 Symbol_table::lookup(const char* name, const char* version) const
703 {
704 Stringpool::Key name_key;
705 name = this->namepool_.find(name, &name_key);
706 if (name == NULL)
707 return NULL;
708
709 Stringpool::Key version_key = 0;
710 if (version != NULL)
711 {
712 version = this->namepool_.find(version, &version_key);
713 if (version == NULL)
714 return NULL;
715 }
716
717 Symbol_table_key key(name_key, version_key);
718 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
719 if (p == this->table_.end())
720 return NULL;
721 return p->second;
722 }
723
724 // Resolve a Symbol with another Symbol. This is only used in the
725 // unusual case where there are references to both an unversioned
726 // symbol and a symbol with a version, and we then discover that that
727 // version is the default version. Because this is unusual, we do
728 // this the slow way, by converting back to an ELF symbol.
729
730 template<int size, bool big_endian>
731 void
732 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
733 {
734 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
735 elfcpp::Sym_write<size, big_endian> esym(buf);
736 // We don't bother to set the st_name or the st_shndx field.
737 esym.put_st_value(from->value());
738 esym.put_st_size(from->symsize());
739 esym.put_st_info(from->binding(), from->type());
740 esym.put_st_other(from->visibility(), from->nonvis());
741 bool is_ordinary;
742 unsigned int shndx = from->shndx(&is_ordinary);
743 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
744 from->version(), true);
745 if (from->in_reg())
746 to->set_in_reg();
747 if (from->in_dyn())
748 to->set_in_dyn();
749 if (parameters->options().gc_sections())
750 this->gc_mark_dyn_syms(to);
751 }
752
753 // Record that a symbol is forced to be local by a version script or
754 // by visibility.
755
756 void
757 Symbol_table::force_local(Symbol* sym)
758 {
759 if (!sym->is_defined() && !sym->is_common())
760 return;
761 if (sym->is_forced_local())
762 {
763 // We already got this one.
764 return;
765 }
766 sym->set_is_forced_local();
767 this->forced_locals_.push_back(sym);
768 }
769
770 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
771 // is only called for undefined symbols, when at least one --wrap
772 // option was used.
773
774 const char*
775 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
776 {
777 // For some targets, we need to ignore a specific character when
778 // wrapping, and add it back later.
779 char prefix = '\0';
780 if (name[0] == parameters->target().wrap_char())
781 {
782 prefix = name[0];
783 ++name;
784 }
785
786 if (parameters->options().is_wrap(name))
787 {
788 // Turn NAME into __wrap_NAME.
789 std::string s;
790 if (prefix != '\0')
791 s += prefix;
792 s += "__wrap_";
793 s += name;
794
795 // This will give us both the old and new name in NAMEPOOL_, but
796 // that is OK. Only the versions we need will wind up in the
797 // real string table in the output file.
798 return this->namepool_.add(s.c_str(), true, name_key);
799 }
800
801 const char* const real_prefix = "__real_";
802 const size_t real_prefix_length = strlen(real_prefix);
803 if (strncmp(name, real_prefix, real_prefix_length) == 0
804 && parameters->options().is_wrap(name + real_prefix_length))
805 {
806 // Turn __real_NAME into NAME.
807 std::string s;
808 if (prefix != '\0')
809 s += prefix;
810 s += name + real_prefix_length;
811 return this->namepool_.add(s.c_str(), true, name_key);
812 }
813
814 return name;
815 }
816
817 // This is called when we see a symbol NAME/VERSION, and the symbol
818 // already exists in the symbol table, and VERSION is marked as being
819 // the default version. SYM is the NAME/VERSION symbol we just added.
820 // DEFAULT_IS_NEW is true if this is the first time we have seen the
821 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
822
823 template<int size, bool big_endian>
824 void
825 Symbol_table::define_default_version(Sized_symbol<size>* sym,
826 bool default_is_new,
827 Symbol_table_type::iterator pdef)
828 {
829 if (default_is_new)
830 {
831 // This is the first time we have seen NAME/NULL. Make
832 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
833 // version.
834 pdef->second = sym;
835 sym->set_is_default();
836 }
837 else if (pdef->second == sym)
838 {
839 // NAME/NULL already points to NAME/VERSION. Don't mark the
840 // symbol as the default if it is not already the default.
841 }
842 else
843 {
844 // This is the unfortunate case where we already have entries
845 // for both NAME/VERSION and NAME/NULL. We now see a symbol
846 // NAME/VERSION where VERSION is the default version. We have
847 // already resolved this new symbol with the existing
848 // NAME/VERSION symbol.
849
850 // It's possible that NAME/NULL and NAME/VERSION are both
851 // defined in regular objects. This can only happen if one
852 // object file defines foo and another defines foo@@ver. This
853 // is somewhat obscure, but we call it a multiple definition
854 // error.
855
856 // It's possible that NAME/NULL actually has a version, in which
857 // case it won't be the same as VERSION. This happens with
858 // ver_test_7.so in the testsuite for the symbol t2_2. We see
859 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
860 // then see an unadorned t2_2 in an object file and give it
861 // version VER1 from the version script. This looks like a
862 // default definition for VER1, so it looks like we should merge
863 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
864 // not obvious that this is an error, either. So we just punt.
865
866 // If one of the symbols has non-default visibility, and the
867 // other is defined in a shared object, then they are different
868 // symbols.
869
870 // If the two symbols are from different shared objects,
871 // they are different symbols.
872
873 // Otherwise, we just resolve the symbols as though they were
874 // the same.
875
876 if (pdef->second->version() != NULL)
877 gold_assert(pdef->second->version() != sym->version());
878 else if (sym->visibility() != elfcpp::STV_DEFAULT
879 && pdef->second->is_from_dynobj())
880 ;
881 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
882 && sym->is_from_dynobj())
883 ;
884 else if (pdef->second->is_from_dynobj()
885 && sym->is_from_dynobj()
886 && pdef->second->is_defined()
887 && pdef->second->object() != sym->object())
888 ;
889 else
890 {
891 const Sized_symbol<size>* symdef;
892 symdef = this->get_sized_symbol<size>(pdef->second);
893 Symbol_table::resolve<size, big_endian>(sym, symdef);
894 this->make_forwarder(pdef->second, sym);
895 pdef->second = sym;
896 sym->set_is_default();
897 }
898 }
899 }
900
901 // Add one symbol from OBJECT to the symbol table. NAME is symbol
902 // name and VERSION is the version; both are canonicalized. DEF is
903 // whether this is the default version. ST_SHNDX is the symbol's
904 // section index; IS_ORDINARY is whether this is a normal section
905 // rather than a special code.
906
907 // If IS_DEFAULT_VERSION is true, then this is the definition of a
908 // default version of a symbol. That means that any lookup of
909 // NAME/NULL and any lookup of NAME/VERSION should always return the
910 // same symbol. This is obvious for references, but in particular we
911 // want to do this for definitions: overriding NAME/NULL should also
912 // override NAME/VERSION. If we don't do that, it would be very hard
913 // to override functions in a shared library which uses versioning.
914
915 // We implement this by simply making both entries in the hash table
916 // point to the same Symbol structure. That is easy enough if this is
917 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
918 // that we have seen both already, in which case they will both have
919 // independent entries in the symbol table. We can't simply change
920 // the symbol table entry, because we have pointers to the entries
921 // attached to the object files. So we mark the entry attached to the
922 // object file as a forwarder, and record it in the forwarders_ map.
923 // Note that entries in the hash table will never be marked as
924 // forwarders.
925 //
926 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
927 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
928 // for a special section code. ST_SHNDX may be modified if the symbol
929 // is defined in a section being discarded.
930
931 template<int size, bool big_endian>
932 Sized_symbol<size>*
933 Symbol_table::add_from_object(Object* object,
934 const char* name,
935 Stringpool::Key name_key,
936 const char* version,
937 Stringpool::Key version_key,
938 bool is_default_version,
939 const elfcpp::Sym<size, big_endian>& sym,
940 unsigned int st_shndx,
941 bool is_ordinary,
942 unsigned int orig_st_shndx)
943 {
944 // Print a message if this symbol is being traced.
945 if (parameters->options().is_trace_symbol(name))
946 {
947 if (orig_st_shndx == elfcpp::SHN_UNDEF)
948 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
949 else
950 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
951 }
952
953 // For an undefined symbol, we may need to adjust the name using
954 // --wrap.
955 if (orig_st_shndx == elfcpp::SHN_UNDEF
956 && parameters->options().any_wrap())
957 {
958 const char* wrap_name = this->wrap_symbol(name, &name_key);
959 if (wrap_name != name)
960 {
961 // If we see a reference to malloc with version GLIBC_2.0,
962 // and we turn it into a reference to __wrap_malloc, then we
963 // discard the version number. Otherwise the user would be
964 // required to specify the correct version for
965 // __wrap_malloc.
966 version = NULL;
967 version_key = 0;
968 name = wrap_name;
969 }
970 }
971
972 Symbol* const snull = NULL;
973 std::pair<typename Symbol_table_type::iterator, bool> ins =
974 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
975 snull));
976
977 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
978 std::make_pair(this->table_.end(), false);
979 if (is_default_version)
980 {
981 const Stringpool::Key vnull_key = 0;
982 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
983 vnull_key),
984 snull));
985 }
986
987 // ins.first: an iterator, which is a pointer to a pair.
988 // ins.first->first: the key (a pair of name and version).
989 // ins.first->second: the value (Symbol*).
990 // ins.second: true if new entry was inserted, false if not.
991
992 Sized_symbol<size>* ret;
993 bool was_undefined;
994 bool was_common;
995 if (!ins.second)
996 {
997 // We already have an entry for NAME/VERSION.
998 ret = this->get_sized_symbol<size>(ins.first->second);
999 gold_assert(ret != NULL);
1000
1001 was_undefined = ret->is_undefined();
1002 // Commons from plugins are just placeholders.
1003 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1004
1005 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1006 version, is_default_version);
1007 if (parameters->options().gc_sections())
1008 this->gc_mark_dyn_syms(ret);
1009
1010 if (is_default_version)
1011 this->define_default_version<size, big_endian>(ret, insdefault.second,
1012 insdefault.first);
1013 else
1014 {
1015 bool dummy;
1016 if (version != NULL
1017 && ret->source() == Symbol::FROM_OBJECT
1018 && ret->object() == object
1019 && is_ordinary
1020 && ret->shndx(&dummy) == st_shndx
1021 && ret->is_default())
1022 {
1023 // We have seen NAME/VERSION already, and marked it as the
1024 // default version, but now we see a definition for
1025 // NAME/VERSION that is not the default version. This can
1026 // happen when the assembler generates two symbols for
1027 // a symbol as a result of a ".symver foo,foo@VER"
1028 // directive. We see the first unversioned symbol and
1029 // we may mark it as the default version (from a
1030 // version script); then we see the second versioned
1031 // symbol and we need to override the first.
1032 // In any other case, the two symbols should have generated
1033 // a multiple definition error.
1034 // (See PR gold/18703.)
1035 ret->set_is_not_default();
1036 const Stringpool::Key vnull_key = 0;
1037 this->table_.erase(std::make_pair(name_key, vnull_key));
1038 }
1039 }
1040 }
1041 else
1042 {
1043 // This is the first time we have seen NAME/VERSION.
1044 gold_assert(ins.first->second == NULL);
1045
1046 if (is_default_version && !insdefault.second)
1047 {
1048 // We already have an entry for NAME/NULL. If we override
1049 // it, then change it to NAME/VERSION.
1050 ret = this->get_sized_symbol<size>(insdefault.first->second);
1051
1052 was_undefined = ret->is_undefined();
1053 // Commons from plugins are just placeholders.
1054 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1055
1056 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1057 version, is_default_version);
1058 if (parameters->options().gc_sections())
1059 this->gc_mark_dyn_syms(ret);
1060 ins.first->second = ret;
1061 }
1062 else
1063 {
1064 was_undefined = false;
1065 was_common = false;
1066
1067 Sized_target<size, big_endian>* target =
1068 parameters->sized_target<size, big_endian>();
1069 if (!target->has_make_symbol())
1070 ret = new Sized_symbol<size>();
1071 else
1072 {
1073 ret = target->make_symbol(name, sym.get_st_type(), object,
1074 st_shndx, sym.get_st_value());
1075 if (ret == NULL)
1076 {
1077 // This means that we don't want a symbol table
1078 // entry after all.
1079 if (!is_default_version)
1080 this->table_.erase(ins.first);
1081 else
1082 {
1083 this->table_.erase(insdefault.first);
1084 // Inserting INSDEFAULT invalidated INS.
1085 this->table_.erase(std::make_pair(name_key,
1086 version_key));
1087 }
1088 return NULL;
1089 }
1090 }
1091
1092 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1093
1094 ins.first->second = ret;
1095 if (is_default_version)
1096 {
1097 // This is the first time we have seen NAME/NULL. Point
1098 // it at the new entry for NAME/VERSION.
1099 gold_assert(insdefault.second);
1100 insdefault.first->second = ret;
1101 }
1102 }
1103
1104 if (is_default_version)
1105 ret->set_is_default();
1106 }
1107
1108 // Record every time we see a new undefined symbol, to speed up
1109 // archive groups.
1110 if (!was_undefined && ret->is_undefined())
1111 {
1112 ++this->saw_undefined_;
1113 if (parameters->options().has_plugins())
1114 parameters->options().plugins()->new_undefined_symbol(ret);
1115 }
1116
1117 // Keep track of common symbols, to speed up common symbol
1118 // allocation. Don't record commons from plugin objects;
1119 // we need to wait until we see the real symbol in the
1120 // replacement file.
1121 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1122 {
1123 if (ret->type() == elfcpp::STT_TLS)
1124 this->tls_commons_.push_back(ret);
1125 else if (!is_ordinary
1126 && st_shndx == parameters->target().small_common_shndx())
1127 this->small_commons_.push_back(ret);
1128 else if (!is_ordinary
1129 && st_shndx == parameters->target().large_common_shndx())
1130 this->large_commons_.push_back(ret);
1131 else
1132 this->commons_.push_back(ret);
1133 }
1134
1135 // If we're not doing a relocatable link, then any symbol with
1136 // hidden or internal visibility is local.
1137 if ((ret->visibility() == elfcpp::STV_HIDDEN
1138 || ret->visibility() == elfcpp::STV_INTERNAL)
1139 && (ret->binding() == elfcpp::STB_GLOBAL
1140 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1141 || ret->binding() == elfcpp::STB_WEAK)
1142 && !parameters->options().relocatable())
1143 this->force_local(ret);
1144
1145 return ret;
1146 }
1147
1148 // Add all the symbols in a relocatable object to the hash table.
1149
1150 template<int size, bool big_endian>
1151 void
1152 Symbol_table::add_from_relobj(
1153 Sized_relobj_file<size, big_endian>* relobj,
1154 const unsigned char* syms,
1155 size_t count,
1156 size_t symndx_offset,
1157 const char* sym_names,
1158 size_t sym_name_size,
1159 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1160 size_t* defined)
1161 {
1162 *defined = 0;
1163
1164 gold_assert(size == parameters->target().get_size());
1165
1166 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1167
1168 const bool just_symbols = relobj->just_symbols();
1169
1170 const unsigned char* p = syms;
1171 for (size_t i = 0; i < count; ++i, p += sym_size)
1172 {
1173 (*sympointers)[i] = NULL;
1174
1175 elfcpp::Sym<size, big_endian> sym(p);
1176
1177 unsigned int st_name = sym.get_st_name();
1178 if (st_name >= sym_name_size)
1179 {
1180 relobj->error(_("bad global symbol name offset %u at %zu"),
1181 st_name, i);
1182 continue;
1183 }
1184
1185 const char* name = sym_names + st_name;
1186
1187 if (!parameters->options().relocatable()
1188 && name[0] == '_'
1189 && name[1] == '_'
1190 && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
1191 gold_info(_("%s: plugin needed to handle lto object"),
1192 relobj->name().c_str());
1193
1194 bool is_ordinary;
1195 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1196 sym.get_st_shndx(),
1197 &is_ordinary);
1198 unsigned int orig_st_shndx = st_shndx;
1199 if (!is_ordinary)
1200 orig_st_shndx = elfcpp::SHN_UNDEF;
1201
1202 if (st_shndx != elfcpp::SHN_UNDEF)
1203 ++*defined;
1204
1205 // A symbol defined in a section which we are not including must
1206 // be treated as an undefined symbol.
1207 bool is_defined_in_discarded_section = false;
1208 if (st_shndx != elfcpp::SHN_UNDEF
1209 && is_ordinary
1210 && !relobj->is_section_included(st_shndx)
1211 && !this->is_section_folded(relobj, st_shndx))
1212 {
1213 st_shndx = elfcpp::SHN_UNDEF;
1214 is_defined_in_discarded_section = true;
1215 }
1216
1217 // In an object file, an '@' in the name separates the symbol
1218 // name from the version name. If there are two '@' characters,
1219 // this is the default version.
1220 const char* ver = strchr(name, '@');
1221 Stringpool::Key ver_key = 0;
1222 int namelen = 0;
1223 // IS_DEFAULT_VERSION: is the version default?
1224 // IS_FORCED_LOCAL: is the symbol forced local?
1225 bool is_default_version = false;
1226 bool is_forced_local = false;
1227
1228 // FIXME: For incremental links, we don't store version information,
1229 // so we need to ignore version symbols for now.
1230 if (parameters->incremental_update() && ver != NULL)
1231 {
1232 namelen = ver - name;
1233 ver = NULL;
1234 }
1235
1236 if (ver != NULL)
1237 {
1238 // The symbol name is of the form foo@VERSION or foo@@VERSION
1239 namelen = ver - name;
1240 ++ver;
1241 if (*ver == '@')
1242 {
1243 is_default_version = true;
1244 ++ver;
1245 }
1246 ver = this->namepool_.add(ver, true, &ver_key);
1247 }
1248 // We don't want to assign a version to an undefined symbol,
1249 // even if it is listed in the version script. FIXME: What
1250 // about a common symbol?
1251 else
1252 {
1253 namelen = strlen(name);
1254 if (!this->version_script_.empty()
1255 && st_shndx != elfcpp::SHN_UNDEF)
1256 {
1257 // The symbol name did not have a version, but the
1258 // version script may assign a version anyway.
1259 std::string version;
1260 bool is_global;
1261 if (this->version_script_.get_symbol_version(name, &version,
1262 &is_global))
1263 {
1264 if (!is_global)
1265 is_forced_local = true;
1266 else if (!version.empty())
1267 {
1268 ver = this->namepool_.add_with_length(version.c_str(),
1269 version.length(),
1270 true,
1271 &ver_key);
1272 is_default_version = true;
1273 }
1274 }
1275 }
1276 }
1277
1278 elfcpp::Sym<size, big_endian>* psym = &sym;
1279 unsigned char symbuf[sym_size];
1280 elfcpp::Sym<size, big_endian> sym2(symbuf);
1281 if (just_symbols)
1282 {
1283 memcpy(symbuf, p, sym_size);
1284 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1285 if (orig_st_shndx != elfcpp::SHN_UNDEF
1286 && is_ordinary
1287 && relobj->e_type() == elfcpp::ET_REL)
1288 {
1289 // Symbol values in relocatable object files are section
1290 // relative. This is normally what we want, but since here
1291 // we are converting the symbol to absolute we need to add
1292 // the section address. The section address in an object
1293 // file is normally zero, but people can use a linker
1294 // script to change it.
1295 sw.put_st_value(sym.get_st_value()
1296 + relobj->section_address(orig_st_shndx));
1297 }
1298 st_shndx = elfcpp::SHN_ABS;
1299 is_ordinary = false;
1300 psym = &sym2;
1301 }
1302
1303 // Fix up visibility if object has no-export set.
1304 if (relobj->no_export()
1305 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1306 {
1307 // We may have copied symbol already above.
1308 if (psym != &sym2)
1309 {
1310 memcpy(symbuf, p, sym_size);
1311 psym = &sym2;
1312 }
1313
1314 elfcpp::STV visibility = sym2.get_st_visibility();
1315 if (visibility == elfcpp::STV_DEFAULT
1316 || visibility == elfcpp::STV_PROTECTED)
1317 {
1318 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1319 unsigned char nonvis = sym2.get_st_nonvis();
1320 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1321 }
1322 }
1323
1324 Stringpool::Key name_key;
1325 name = this->namepool_.add_with_length(name, namelen, true,
1326 &name_key);
1327
1328 Sized_symbol<size>* res;
1329 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1330 is_default_version, *psym, st_shndx,
1331 is_ordinary, orig_st_shndx);
1332
1333 if (res == NULL)
1334 continue;
1335
1336 if (is_forced_local)
1337 this->force_local(res);
1338
1339 // Do not treat this symbol as garbage if this symbol will be
1340 // exported to the dynamic symbol table. This is true when
1341 // building a shared library or using --export-dynamic and
1342 // the symbol is externally visible.
1343 if (parameters->options().gc_sections()
1344 && res->is_externally_visible()
1345 && !res->is_from_dynobj()
1346 && (parameters->options().shared()
1347 || parameters->options().export_dynamic()
1348 || parameters->options().in_dynamic_list(res->name())))
1349 this->gc_mark_symbol(res);
1350
1351 if (is_defined_in_discarded_section)
1352 res->set_is_defined_in_discarded_section();
1353
1354 (*sympointers)[i] = res;
1355 }
1356 }
1357
1358 // Add a symbol from a plugin-claimed file.
1359
1360 template<int size, bool big_endian>
1361 Symbol*
1362 Symbol_table::add_from_pluginobj(
1363 Sized_pluginobj<size, big_endian>* obj,
1364 const char* name,
1365 const char* ver,
1366 elfcpp::Sym<size, big_endian>* sym)
1367 {
1368 unsigned int st_shndx = sym->get_st_shndx();
1369 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1370
1371 Stringpool::Key ver_key = 0;
1372 bool is_default_version = false;
1373 bool is_forced_local = false;
1374
1375 if (ver != NULL)
1376 {
1377 ver = this->namepool_.add(ver, true, &ver_key);
1378 }
1379 // We don't want to assign a version to an undefined symbol,
1380 // even if it is listed in the version script. FIXME: What
1381 // about a common symbol?
1382 else
1383 {
1384 if (!this->version_script_.empty()
1385 && st_shndx != elfcpp::SHN_UNDEF)
1386 {
1387 // The symbol name did not have a version, but the
1388 // version script may assign a version anyway.
1389 std::string version;
1390 bool is_global;
1391 if (this->version_script_.get_symbol_version(name, &version,
1392 &is_global))
1393 {
1394 if (!is_global)
1395 is_forced_local = true;
1396 else if (!version.empty())
1397 {
1398 ver = this->namepool_.add_with_length(version.c_str(),
1399 version.length(),
1400 true,
1401 &ver_key);
1402 is_default_version = true;
1403 }
1404 }
1405 }
1406 }
1407
1408 Stringpool::Key name_key;
1409 name = this->namepool_.add(name, true, &name_key);
1410
1411 Sized_symbol<size>* res;
1412 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1413 is_default_version, *sym, st_shndx,
1414 is_ordinary, st_shndx);
1415
1416 if (res == NULL)
1417 return NULL;
1418
1419 if (is_forced_local)
1420 this->force_local(res);
1421
1422 return res;
1423 }
1424
1425 // Add all the symbols in a dynamic object to the hash table.
1426
1427 template<int size, bool big_endian>
1428 void
1429 Symbol_table::add_from_dynobj(
1430 Sized_dynobj<size, big_endian>* dynobj,
1431 const unsigned char* syms,
1432 size_t count,
1433 const char* sym_names,
1434 size_t sym_name_size,
1435 const unsigned char* versym,
1436 size_t versym_size,
1437 const std::vector<const char*>* version_map,
1438 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1439 size_t* defined)
1440 {
1441 *defined = 0;
1442
1443 gold_assert(size == parameters->target().get_size());
1444
1445 if (dynobj->just_symbols())
1446 {
1447 gold_error(_("--just-symbols does not make sense with a shared object"));
1448 return;
1449 }
1450
1451 // FIXME: For incremental links, we don't store version information,
1452 // so we need to ignore version symbols for now.
1453 if (parameters->incremental_update())
1454 versym = NULL;
1455
1456 if (versym != NULL && versym_size / 2 < count)
1457 {
1458 dynobj->error(_("too few symbol versions"));
1459 return;
1460 }
1461
1462 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1463
1464 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1465 // weak aliases. This is necessary because if the dynamic object
1466 // provides the same variable under two names, one of which is a
1467 // weak definition, and the regular object refers to the weak
1468 // definition, we have to put both the weak definition and the
1469 // strong definition into the dynamic symbol table. Given a weak
1470 // definition, the only way that we can find the corresponding
1471 // strong definition, if any, is to search the symbol table.
1472 std::vector<Sized_symbol<size>*> object_symbols;
1473
1474 const unsigned char* p = syms;
1475 const unsigned char* vs = versym;
1476 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1477 {
1478 elfcpp::Sym<size, big_endian> sym(p);
1479
1480 if (sympointers != NULL)
1481 (*sympointers)[i] = NULL;
1482
1483 // Ignore symbols with local binding or that have
1484 // internal or hidden visibility.
1485 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1486 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1487 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1488 continue;
1489
1490 // A protected symbol in a shared library must be treated as a
1491 // normal symbol when viewed from outside the shared library.
1492 // Implement this by overriding the visibility here.
1493 // Likewise, an IFUNC symbol in a shared library must be treated
1494 // as a normal FUNC symbol.
1495 elfcpp::Sym<size, big_endian>* psym = &sym;
1496 unsigned char symbuf[sym_size];
1497 elfcpp::Sym<size, big_endian> sym2(symbuf);
1498 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1499 || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1500 {
1501 memcpy(symbuf, p, sym_size);
1502 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1503 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1504 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1505 if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1506 sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1507 psym = &sym2;
1508 }
1509
1510 unsigned int st_name = psym->get_st_name();
1511 if (st_name >= sym_name_size)
1512 {
1513 dynobj->error(_("bad symbol name offset %u at %zu"),
1514 st_name, i);
1515 continue;
1516 }
1517
1518 const char* name = sym_names + st_name;
1519
1520 bool is_ordinary;
1521 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1522 &is_ordinary);
1523
1524 if (st_shndx != elfcpp::SHN_UNDEF)
1525 ++*defined;
1526
1527 Sized_symbol<size>* res;
1528
1529 if (versym == NULL)
1530 {
1531 Stringpool::Key name_key;
1532 name = this->namepool_.add(name, true, &name_key);
1533 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1534 false, *psym, st_shndx, is_ordinary,
1535 st_shndx);
1536 }
1537 else
1538 {
1539 // Read the version information.
1540
1541 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1542
1543 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1544 v &= elfcpp::VERSYM_VERSION;
1545
1546 // The Sun documentation says that V can be VER_NDX_LOCAL,
1547 // or VER_NDX_GLOBAL, or a version index. The meaning of
1548 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1549 // The old GNU linker will happily generate VER_NDX_LOCAL
1550 // for an undefined symbol. I don't know what the Sun
1551 // linker will generate.
1552
1553 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1554 && st_shndx != elfcpp::SHN_UNDEF)
1555 {
1556 // This symbol should not be visible outside the object.
1557 continue;
1558 }
1559
1560 // At this point we are definitely going to add this symbol.
1561 Stringpool::Key name_key;
1562 name = this->namepool_.add(name, true, &name_key);
1563
1564 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1565 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1566 {
1567 // This symbol does not have a version.
1568 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1569 false, *psym, st_shndx, is_ordinary,
1570 st_shndx);
1571 }
1572 else
1573 {
1574 if (v >= version_map->size())
1575 {
1576 dynobj->error(_("versym for symbol %zu out of range: %u"),
1577 i, v);
1578 continue;
1579 }
1580
1581 const char* version = (*version_map)[v];
1582 if (version == NULL)
1583 {
1584 dynobj->error(_("versym for symbol %zu has no name: %u"),
1585 i, v);
1586 continue;
1587 }
1588
1589 Stringpool::Key version_key;
1590 version = this->namepool_.add(version, true, &version_key);
1591
1592 // If this is an absolute symbol, and the version name
1593 // and symbol name are the same, then this is the
1594 // version definition symbol. These symbols exist to
1595 // support using -u to pull in particular versions. We
1596 // do not want to record a version for them.
1597 if (st_shndx == elfcpp::SHN_ABS
1598 && !is_ordinary
1599 && name_key == version_key)
1600 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1601 false, *psym, st_shndx, is_ordinary,
1602 st_shndx);
1603 else
1604 {
1605 const bool is_default_version =
1606 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1607 res = this->add_from_object(dynobj, name, name_key, version,
1608 version_key, is_default_version,
1609 *psym, st_shndx,
1610 is_ordinary, st_shndx);
1611 }
1612 }
1613 }
1614
1615 if (res == NULL)
1616 continue;
1617
1618 // Note that it is possible that RES was overridden by an
1619 // earlier object, in which case it can't be aliased here.
1620 if (st_shndx != elfcpp::SHN_UNDEF
1621 && is_ordinary
1622 && psym->get_st_type() == elfcpp::STT_OBJECT
1623 && res->source() == Symbol::FROM_OBJECT
1624 && res->object() == dynobj)
1625 object_symbols.push_back(res);
1626
1627 // If the symbol has protected visibility in the dynobj,
1628 // mark it as such if it was not overridden.
1629 if (res->source() == Symbol::FROM_OBJECT
1630 && res->object() == dynobj
1631 && sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1632 res->set_is_protected();
1633
1634 if (sympointers != NULL)
1635 (*sympointers)[i] = res;
1636 }
1637
1638 this->record_weak_aliases(&object_symbols);
1639 }
1640
1641 // Add a symbol from a incremental object file.
1642
1643 template<int size, bool big_endian>
1644 Sized_symbol<size>*
1645 Symbol_table::add_from_incrobj(
1646 Object* obj,
1647 const char* name,
1648 const char* ver,
1649 elfcpp::Sym<size, big_endian>* sym)
1650 {
1651 unsigned int st_shndx = sym->get_st_shndx();
1652 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1653
1654 Stringpool::Key ver_key = 0;
1655 bool is_default_version = false;
1656
1657 Stringpool::Key name_key;
1658 name = this->namepool_.add(name, true, &name_key);
1659
1660 Sized_symbol<size>* res;
1661 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1662 is_default_version, *sym, st_shndx,
1663 is_ordinary, st_shndx);
1664
1665 return res;
1666 }
1667
1668 // This is used to sort weak aliases. We sort them first by section
1669 // index, then by offset, then by weak ahead of strong.
1670
1671 template<int size>
1672 class Weak_alias_sorter
1673 {
1674 public:
1675 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1676 };
1677
1678 template<int size>
1679 bool
1680 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1681 const Sized_symbol<size>* s2) const
1682 {
1683 bool is_ordinary;
1684 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1685 gold_assert(is_ordinary);
1686 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1687 gold_assert(is_ordinary);
1688 if (s1_shndx != s2_shndx)
1689 return s1_shndx < s2_shndx;
1690
1691 if (s1->value() != s2->value())
1692 return s1->value() < s2->value();
1693 if (s1->binding() != s2->binding())
1694 {
1695 if (s1->binding() == elfcpp::STB_WEAK)
1696 return true;
1697 if (s2->binding() == elfcpp::STB_WEAK)
1698 return false;
1699 }
1700 return std::string(s1->name()) < std::string(s2->name());
1701 }
1702
1703 // SYMBOLS is a list of object symbols from a dynamic object. Look
1704 // for any weak aliases, and record them so that if we add the weak
1705 // alias to the dynamic symbol table, we also add the corresponding
1706 // strong symbol.
1707
1708 template<int size>
1709 void
1710 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1711 {
1712 // Sort the vector by section index, then by offset, then by weak
1713 // ahead of strong.
1714 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1715
1716 // Walk through the vector. For each weak definition, record
1717 // aliases.
1718 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1719 symbols->begin();
1720 p != symbols->end();
1721 ++p)
1722 {
1723 if ((*p)->binding() != elfcpp::STB_WEAK)
1724 continue;
1725
1726 // Build a circular list of weak aliases. Each symbol points to
1727 // the next one in the circular list.
1728
1729 Sized_symbol<size>* from_sym = *p;
1730 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1731 for (q = p + 1; q != symbols->end(); ++q)
1732 {
1733 bool dummy;
1734 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1735 || (*q)->value() != from_sym->value())
1736 break;
1737
1738 this->weak_aliases_[from_sym] = *q;
1739 from_sym->set_has_alias();
1740 from_sym = *q;
1741 }
1742
1743 if (from_sym != *p)
1744 {
1745 this->weak_aliases_[from_sym] = *p;
1746 from_sym->set_has_alias();
1747 }
1748
1749 p = q - 1;
1750 }
1751 }
1752
1753 // Create and return a specially defined symbol. If ONLY_IF_REF is
1754 // true, then only create the symbol if there is a reference to it.
1755 // If this does not return NULL, it sets *POLDSYM to the existing
1756 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1757 // resolve the newly created symbol to the old one. This
1758 // canonicalizes *PNAME and *PVERSION.
1759
1760 template<int size, bool big_endian>
1761 Sized_symbol<size>*
1762 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1763 bool only_if_ref,
1764 elfcpp::STV visibility,
1765 Sized_symbol<size>** poldsym,
1766 bool* resolve_oldsym, bool is_forced_local)
1767 {
1768 *resolve_oldsym = false;
1769 *poldsym = NULL;
1770
1771 // If the caller didn't give us a version, see if we get one from
1772 // the version script.
1773 std::string v;
1774 bool is_default_version = false;
1775 if (!is_forced_local && *pversion == NULL)
1776 {
1777 bool is_global;
1778 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1779 {
1780 if (is_global && !v.empty())
1781 {
1782 *pversion = v.c_str();
1783 // If we get the version from a version script, then we
1784 // are also the default version.
1785 is_default_version = true;
1786 }
1787 }
1788 }
1789
1790 Symbol* oldsym;
1791 Sized_symbol<size>* sym;
1792
1793 bool add_to_table = false;
1794 typename Symbol_table_type::iterator add_loc = this->table_.end();
1795 bool add_def_to_table = false;
1796 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1797
1798 if (only_if_ref)
1799 {
1800 oldsym = this->lookup(*pname, *pversion);
1801 if (oldsym == NULL && is_default_version)
1802 oldsym = this->lookup(*pname, NULL);
1803 if (oldsym == NULL)
1804 return NULL;
1805 if (!oldsym->is_undefined())
1806 {
1807 // Skip if the old definition is from a regular object.
1808 if (!oldsym->is_from_dynobj())
1809 return NULL;
1810
1811 // If the symbol has hidden or internal visibility, ignore
1812 // definition and reference from a dynamic object.
1813 if ((visibility == elfcpp::STV_HIDDEN
1814 || visibility == elfcpp::STV_INTERNAL)
1815 && !oldsym->in_reg())
1816 return NULL;
1817 }
1818
1819 *pname = oldsym->name();
1820 if (is_default_version)
1821 *pversion = this->namepool_.add(*pversion, true, NULL);
1822 else
1823 *pversion = oldsym->version();
1824 }
1825 else
1826 {
1827 // Canonicalize NAME and VERSION.
1828 Stringpool::Key name_key;
1829 *pname = this->namepool_.add(*pname, true, &name_key);
1830
1831 Stringpool::Key version_key = 0;
1832 if (*pversion != NULL)
1833 *pversion = this->namepool_.add(*pversion, true, &version_key);
1834
1835 Symbol* const snull = NULL;
1836 std::pair<typename Symbol_table_type::iterator, bool> ins =
1837 this->table_.insert(std::make_pair(std::make_pair(name_key,
1838 version_key),
1839 snull));
1840
1841 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1842 std::make_pair(this->table_.end(), false);
1843 if (is_default_version)
1844 {
1845 const Stringpool::Key vnull = 0;
1846 insdefault =
1847 this->table_.insert(std::make_pair(std::make_pair(name_key,
1848 vnull),
1849 snull));
1850 }
1851
1852 if (!ins.second)
1853 {
1854 // We already have a symbol table entry for NAME/VERSION.
1855 oldsym = ins.first->second;
1856 gold_assert(oldsym != NULL);
1857
1858 if (is_default_version)
1859 {
1860 Sized_symbol<size>* soldsym =
1861 this->get_sized_symbol<size>(oldsym);
1862 this->define_default_version<size, big_endian>(soldsym,
1863 insdefault.second,
1864 insdefault.first);
1865 }
1866 }
1867 else
1868 {
1869 // We haven't seen this symbol before.
1870 gold_assert(ins.first->second == NULL);
1871
1872 add_to_table = true;
1873 add_loc = ins.first;
1874
1875 if (is_default_version && !insdefault.second)
1876 {
1877 // We are adding NAME/VERSION, and it is the default
1878 // version. We already have an entry for NAME/NULL.
1879 oldsym = insdefault.first->second;
1880 *resolve_oldsym = true;
1881 }
1882 else
1883 {
1884 oldsym = NULL;
1885
1886 if (is_default_version)
1887 {
1888 add_def_to_table = true;
1889 add_def_loc = insdefault.first;
1890 }
1891 }
1892 }
1893 }
1894
1895 const Target& target = parameters->target();
1896 if (!target.has_make_symbol())
1897 sym = new Sized_symbol<size>();
1898 else
1899 {
1900 Sized_target<size, big_endian>* sized_target =
1901 parameters->sized_target<size, big_endian>();
1902 sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1903 NULL, elfcpp::SHN_UNDEF, 0);
1904 if (sym == NULL)
1905 return NULL;
1906 }
1907
1908 if (add_to_table)
1909 add_loc->second = sym;
1910 else
1911 gold_assert(oldsym != NULL);
1912
1913 if (add_def_to_table)
1914 add_def_loc->second = sym;
1915
1916 *poldsym = this->get_sized_symbol<size>(oldsym);
1917
1918 return sym;
1919 }
1920
1921 // Define a symbol based on an Output_data.
1922
1923 Symbol*
1924 Symbol_table::define_in_output_data(const char* name,
1925 const char* version,
1926 Defined defined,
1927 Output_data* od,
1928 uint64_t value,
1929 uint64_t symsize,
1930 elfcpp::STT type,
1931 elfcpp::STB binding,
1932 elfcpp::STV visibility,
1933 unsigned char nonvis,
1934 bool offset_is_from_end,
1935 bool only_if_ref)
1936 {
1937 if (parameters->target().get_size() == 32)
1938 {
1939 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1940 return this->do_define_in_output_data<32>(name, version, defined, od,
1941 value, symsize, type, binding,
1942 visibility, nonvis,
1943 offset_is_from_end,
1944 only_if_ref);
1945 #else
1946 gold_unreachable();
1947 #endif
1948 }
1949 else if (parameters->target().get_size() == 64)
1950 {
1951 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1952 return this->do_define_in_output_data<64>(name, version, defined, od,
1953 value, symsize, type, binding,
1954 visibility, nonvis,
1955 offset_is_from_end,
1956 only_if_ref);
1957 #else
1958 gold_unreachable();
1959 #endif
1960 }
1961 else
1962 gold_unreachable();
1963 }
1964
1965 // Define a symbol in an Output_data, sized version.
1966
1967 template<int size>
1968 Sized_symbol<size>*
1969 Symbol_table::do_define_in_output_data(
1970 const char* name,
1971 const char* version,
1972 Defined defined,
1973 Output_data* od,
1974 typename elfcpp::Elf_types<size>::Elf_Addr value,
1975 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1976 elfcpp::STT type,
1977 elfcpp::STB binding,
1978 elfcpp::STV visibility,
1979 unsigned char nonvis,
1980 bool offset_is_from_end,
1981 bool only_if_ref)
1982 {
1983 Sized_symbol<size>* sym;
1984 Sized_symbol<size>* oldsym;
1985 bool resolve_oldsym;
1986 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
1987
1988 if (parameters->target().is_big_endian())
1989 {
1990 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1991 sym = this->define_special_symbol<size, true>(&name, &version,
1992 only_if_ref,
1993 visibility,
1994 &oldsym,
1995 &resolve_oldsym,
1996 is_forced_local);
1997 #else
1998 gold_unreachable();
1999 #endif
2000 }
2001 else
2002 {
2003 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2004 sym = this->define_special_symbol<size, false>(&name, &version,
2005 only_if_ref,
2006 visibility,
2007 &oldsym,
2008 &resolve_oldsym,
2009 is_forced_local);
2010 #else
2011 gold_unreachable();
2012 #endif
2013 }
2014
2015 if (sym == NULL)
2016 return NULL;
2017
2018 sym->init_output_data(name, version, od, value, symsize, type, binding,
2019 visibility, nonvis, offset_is_from_end,
2020 defined == PREDEFINED);
2021
2022 if (oldsym == NULL)
2023 {
2024 if (is_forced_local || this->version_script_.symbol_is_local(name))
2025 this->force_local(sym);
2026 else if (version != NULL)
2027 sym->set_is_default();
2028 return sym;
2029 }
2030
2031 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2032 this->override_with_special(oldsym, sym);
2033
2034 if (resolve_oldsym)
2035 return sym;
2036 else
2037 {
2038 if (defined == PREDEFINED
2039 && (is_forced_local || this->version_script_.symbol_is_local(name)))
2040 this->force_local(oldsym);
2041 delete sym;
2042 return oldsym;
2043 }
2044 }
2045
2046 // Define a symbol based on an Output_segment.
2047
2048 Symbol*
2049 Symbol_table::define_in_output_segment(const char* name,
2050 const char* version,
2051 Defined defined,
2052 Output_segment* os,
2053 uint64_t value,
2054 uint64_t symsize,
2055 elfcpp::STT type,
2056 elfcpp::STB binding,
2057 elfcpp::STV visibility,
2058 unsigned char nonvis,
2059 Symbol::Segment_offset_base offset_base,
2060 bool only_if_ref)
2061 {
2062 if (parameters->target().get_size() == 32)
2063 {
2064 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2065 return this->do_define_in_output_segment<32>(name, version, defined, os,
2066 value, symsize, type,
2067 binding, visibility, nonvis,
2068 offset_base, only_if_ref);
2069 #else
2070 gold_unreachable();
2071 #endif
2072 }
2073 else if (parameters->target().get_size() == 64)
2074 {
2075 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2076 return this->do_define_in_output_segment<64>(name, version, defined, os,
2077 value, symsize, type,
2078 binding, visibility, nonvis,
2079 offset_base, only_if_ref);
2080 #else
2081 gold_unreachable();
2082 #endif
2083 }
2084 else
2085 gold_unreachable();
2086 }
2087
2088 // Define a symbol in an Output_segment, sized version.
2089
2090 template<int size>
2091 Sized_symbol<size>*
2092 Symbol_table::do_define_in_output_segment(
2093 const char* name,
2094 const char* version,
2095 Defined defined,
2096 Output_segment* os,
2097 typename elfcpp::Elf_types<size>::Elf_Addr value,
2098 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2099 elfcpp::STT type,
2100 elfcpp::STB binding,
2101 elfcpp::STV visibility,
2102 unsigned char nonvis,
2103 Symbol::Segment_offset_base offset_base,
2104 bool only_if_ref)
2105 {
2106 Sized_symbol<size>* sym;
2107 Sized_symbol<size>* oldsym;
2108 bool resolve_oldsym;
2109 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2110
2111 if (parameters->target().is_big_endian())
2112 {
2113 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2114 sym = this->define_special_symbol<size, true>(&name, &version,
2115 only_if_ref,
2116 visibility,
2117 &oldsym,
2118 &resolve_oldsym,
2119 is_forced_local);
2120 #else
2121 gold_unreachable();
2122 #endif
2123 }
2124 else
2125 {
2126 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2127 sym = this->define_special_symbol<size, false>(&name, &version,
2128 only_if_ref,
2129 visibility,
2130 &oldsym,
2131 &resolve_oldsym,
2132 is_forced_local);
2133 #else
2134 gold_unreachable();
2135 #endif
2136 }
2137
2138 if (sym == NULL)
2139 return NULL;
2140
2141 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2142 visibility, nonvis, offset_base,
2143 defined == PREDEFINED);
2144
2145 if (oldsym == NULL)
2146 {
2147 if (is_forced_local || this->version_script_.symbol_is_local(name))
2148 this->force_local(sym);
2149 else if (version != NULL)
2150 sym->set_is_default();
2151 return sym;
2152 }
2153
2154 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2155 this->override_with_special(oldsym, sym);
2156
2157 if (resolve_oldsym)
2158 return sym;
2159 else
2160 {
2161 if (is_forced_local || this->version_script_.symbol_is_local(name))
2162 this->force_local(oldsym);
2163 delete sym;
2164 return oldsym;
2165 }
2166 }
2167
2168 // Define a special symbol with a constant value. It is a multiple
2169 // definition error if this symbol is already defined.
2170
2171 Symbol*
2172 Symbol_table::define_as_constant(const char* name,
2173 const char* version,
2174 Defined defined,
2175 uint64_t value,
2176 uint64_t symsize,
2177 elfcpp::STT type,
2178 elfcpp::STB binding,
2179 elfcpp::STV visibility,
2180 unsigned char nonvis,
2181 bool only_if_ref,
2182 bool force_override)
2183 {
2184 if (parameters->target().get_size() == 32)
2185 {
2186 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2187 return this->do_define_as_constant<32>(name, version, defined, value,
2188 symsize, type, binding,
2189 visibility, nonvis, only_if_ref,
2190 force_override);
2191 #else
2192 gold_unreachable();
2193 #endif
2194 }
2195 else if (parameters->target().get_size() == 64)
2196 {
2197 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2198 return this->do_define_as_constant<64>(name, version, defined, value,
2199 symsize, type, binding,
2200 visibility, nonvis, only_if_ref,
2201 force_override);
2202 #else
2203 gold_unreachable();
2204 #endif
2205 }
2206 else
2207 gold_unreachable();
2208 }
2209
2210 // Define a symbol as a constant, sized version.
2211
2212 template<int size>
2213 Sized_symbol<size>*
2214 Symbol_table::do_define_as_constant(
2215 const char* name,
2216 const char* version,
2217 Defined defined,
2218 typename elfcpp::Elf_types<size>::Elf_Addr value,
2219 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2220 elfcpp::STT type,
2221 elfcpp::STB binding,
2222 elfcpp::STV visibility,
2223 unsigned char nonvis,
2224 bool only_if_ref,
2225 bool force_override)
2226 {
2227 Sized_symbol<size>* sym;
2228 Sized_symbol<size>* oldsym;
2229 bool resolve_oldsym;
2230 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2231
2232 if (parameters->target().is_big_endian())
2233 {
2234 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2235 sym = this->define_special_symbol<size, true>(&name, &version,
2236 only_if_ref,
2237 visibility,
2238 &oldsym,
2239 &resolve_oldsym,
2240 is_forced_local);
2241 #else
2242 gold_unreachable();
2243 #endif
2244 }
2245 else
2246 {
2247 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2248 sym = this->define_special_symbol<size, false>(&name, &version,
2249 only_if_ref,
2250 visibility,
2251 &oldsym,
2252 &resolve_oldsym,
2253 is_forced_local);
2254 #else
2255 gold_unreachable();
2256 #endif
2257 }
2258
2259 if (sym == NULL)
2260 return NULL;
2261
2262 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2263 nonvis, defined == PREDEFINED);
2264
2265 if (oldsym == NULL)
2266 {
2267 // Version symbols are absolute symbols with name == version.
2268 // We don't want to force them to be local.
2269 if ((version == NULL
2270 || name != version
2271 || value != 0)
2272 && (is_forced_local || this->version_script_.symbol_is_local(name)))
2273 this->force_local(sym);
2274 else if (version != NULL
2275 && (name != version || value != 0))
2276 sym->set_is_default();
2277 return sym;
2278 }
2279
2280 if (force_override
2281 || Symbol_table::should_override_with_special(oldsym, type, defined))
2282 this->override_with_special(oldsym, sym);
2283
2284 if (resolve_oldsym)
2285 return sym;
2286 else
2287 {
2288 if (is_forced_local || this->version_script_.symbol_is_local(name))
2289 this->force_local(oldsym);
2290 delete sym;
2291 return oldsym;
2292 }
2293 }
2294
2295 // Define a set of symbols in output sections.
2296
2297 void
2298 Symbol_table::define_symbols(const Layout* layout, int count,
2299 const Define_symbol_in_section* p,
2300 bool only_if_ref)
2301 {
2302 for (int i = 0; i < count; ++i, ++p)
2303 {
2304 Output_section* os = layout->find_output_section(p->output_section);
2305 if (os != NULL)
2306 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2307 p->size, p->type, p->binding,
2308 p->visibility, p->nonvis,
2309 p->offset_is_from_end,
2310 only_if_ref || p->only_if_ref);
2311 else
2312 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2313 p->type, p->binding, p->visibility, p->nonvis,
2314 only_if_ref || p->only_if_ref,
2315 false);
2316 }
2317 }
2318
2319 // Define a set of symbols in output segments.
2320
2321 void
2322 Symbol_table::define_symbols(const Layout* layout, int count,
2323 const Define_symbol_in_segment* p,
2324 bool only_if_ref)
2325 {
2326 for (int i = 0; i < count; ++i, ++p)
2327 {
2328 Output_segment* os = layout->find_output_segment(p->segment_type,
2329 p->segment_flags_set,
2330 p->segment_flags_clear);
2331 if (os != NULL)
2332 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2333 p->size, p->type, p->binding,
2334 p->visibility, p->nonvis,
2335 p->offset_base,
2336 only_if_ref || p->only_if_ref);
2337 else
2338 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2339 p->type, p->binding, p->visibility, p->nonvis,
2340 only_if_ref || p->only_if_ref,
2341 false);
2342 }
2343 }
2344
2345 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2346 // symbol should be defined--typically a .dyn.bss section. VALUE is
2347 // the offset within POSD.
2348
2349 template<int size>
2350 void
2351 Symbol_table::define_with_copy_reloc(
2352 Sized_symbol<size>* csym,
2353 Output_data* posd,
2354 typename elfcpp::Elf_types<size>::Elf_Addr value)
2355 {
2356 gold_assert(csym->is_from_dynobj());
2357 gold_assert(!csym->is_copied_from_dynobj());
2358 Object* object = csym->object();
2359 gold_assert(object->is_dynamic());
2360 Dynobj* dynobj = static_cast<Dynobj*>(object);
2361
2362 // Our copied variable has to override any variable in a shared
2363 // library.
2364 elfcpp::STB binding = csym->binding();
2365 if (binding == elfcpp::STB_WEAK)
2366 binding = elfcpp::STB_GLOBAL;
2367
2368 this->define_in_output_data(csym->name(), csym->version(), COPY,
2369 posd, value, csym->symsize(),
2370 csym->type(), binding,
2371 csym->visibility(), csym->nonvis(),
2372 false, false);
2373
2374 csym->set_is_copied_from_dynobj();
2375 csym->set_needs_dynsym_entry();
2376
2377 this->copied_symbol_dynobjs_[csym] = dynobj;
2378
2379 // We have now defined all aliases, but we have not entered them all
2380 // in the copied_symbol_dynobjs_ map.
2381 if (csym->has_alias())
2382 {
2383 Symbol* sym = csym;
2384 while (true)
2385 {
2386 sym = this->weak_aliases_[sym];
2387 if (sym == csym)
2388 break;
2389 gold_assert(sym->output_data() == posd);
2390
2391 sym->set_is_copied_from_dynobj();
2392 this->copied_symbol_dynobjs_[sym] = dynobj;
2393 }
2394 }
2395 }
2396
2397 // SYM is defined using a COPY reloc. Return the dynamic object where
2398 // the original definition was found.
2399
2400 Dynobj*
2401 Symbol_table::get_copy_source(const Symbol* sym) const
2402 {
2403 gold_assert(sym->is_copied_from_dynobj());
2404 Copied_symbol_dynobjs::const_iterator p =
2405 this->copied_symbol_dynobjs_.find(sym);
2406 gold_assert(p != this->copied_symbol_dynobjs_.end());
2407 return p->second;
2408 }
2409
2410 // Add any undefined symbols named on the command line.
2411
2412 void
2413 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2414 {
2415 if (parameters->options().any_undefined()
2416 || layout->script_options()->any_unreferenced())
2417 {
2418 if (parameters->target().get_size() == 32)
2419 {
2420 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2421 this->do_add_undefined_symbols_from_command_line<32>(layout);
2422 #else
2423 gold_unreachable();
2424 #endif
2425 }
2426 else if (parameters->target().get_size() == 64)
2427 {
2428 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2429 this->do_add_undefined_symbols_from_command_line<64>(layout);
2430 #else
2431 gold_unreachable();
2432 #endif
2433 }
2434 else
2435 gold_unreachable();
2436 }
2437 }
2438
2439 template<int size>
2440 void
2441 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2442 {
2443 for (options::String_set::const_iterator p =
2444 parameters->options().undefined_begin();
2445 p != parameters->options().undefined_end();
2446 ++p)
2447 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2448
2449 for (options::String_set::const_iterator p =
2450 parameters->options().export_dynamic_symbol_begin();
2451 p != parameters->options().export_dynamic_symbol_end();
2452 ++p)
2453 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2454
2455 for (Script_options::referenced_const_iterator p =
2456 layout->script_options()->referenced_begin();
2457 p != layout->script_options()->referenced_end();
2458 ++p)
2459 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2460 }
2461
2462 template<int size>
2463 void
2464 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2465 {
2466 if (this->lookup(name) != NULL)
2467 return;
2468
2469 const char* version = NULL;
2470
2471 Sized_symbol<size>* sym;
2472 Sized_symbol<size>* oldsym;
2473 bool resolve_oldsym;
2474 if (parameters->target().is_big_endian())
2475 {
2476 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2477 sym = this->define_special_symbol<size, true>(&name, &version,
2478 false,
2479 elfcpp::STV_DEFAULT,
2480 &oldsym,
2481 &resolve_oldsym,
2482 false);
2483 #else
2484 gold_unreachable();
2485 #endif
2486 }
2487 else
2488 {
2489 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2490 sym = this->define_special_symbol<size, false>(&name, &version,
2491 false,
2492 elfcpp::STV_DEFAULT,
2493 &oldsym,
2494 &resolve_oldsym,
2495 false);
2496 #else
2497 gold_unreachable();
2498 #endif
2499 }
2500
2501 gold_assert(oldsym == NULL);
2502
2503 sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2504 elfcpp::STV_DEFAULT, 0);
2505 ++this->saw_undefined_;
2506 }
2507
2508 // Set the dynamic symbol indexes. INDEX is the index of the first
2509 // global dynamic symbol. Pointers to the global symbols are stored
2510 // into the vector SYMS. The names are added to DYNPOOL.
2511 // This returns an updated dynamic symbol index.
2512
2513 unsigned int
2514 Symbol_table::set_dynsym_indexes(unsigned int index,
2515 unsigned int* pforced_local_count,
2516 std::vector<Symbol*>* syms,
2517 Stringpool* dynpool,
2518 Versions* versions)
2519 {
2520 std::vector<Symbol*> as_needed_sym;
2521
2522 // First process all the symbols which have been forced to be local,
2523 // as they must appear before all global symbols.
2524 unsigned int forced_local_count = 0;
2525 for (Forced_locals::iterator p = this->forced_locals_.begin();
2526 p != this->forced_locals_.end();
2527 ++p)
2528 {
2529 Symbol* sym = *p;
2530 gold_assert(sym->is_forced_local());
2531 if (sym->has_dynsym_index())
2532 continue;
2533 if (!sym->should_add_dynsym_entry(this))
2534 sym->set_dynsym_index(-1U);
2535 else
2536 {
2537 sym->set_dynsym_index(index);
2538 ++index;
2539 ++forced_local_count;
2540 dynpool->add(sym->name(), false, NULL);
2541 }
2542 }
2543 *pforced_local_count = forced_local_count;
2544
2545 // Allow a target to set dynsym indexes.
2546 if (parameters->target().has_custom_set_dynsym_indexes())
2547 {
2548 std::vector<Symbol*> dyn_symbols;
2549 for (Symbol_table_type::iterator p = this->table_.begin();
2550 p != this->table_.end();
2551 ++p)
2552 {
2553 Symbol* sym = p->second;
2554 if (sym->is_forced_local())
2555 continue;
2556 if (!sym->should_add_dynsym_entry(this))
2557 sym->set_dynsym_index(-1U);
2558 else
2559 dyn_symbols.push_back(sym);
2560 }
2561
2562 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2563 dynpool, versions, this);
2564 }
2565
2566 for (Symbol_table_type::iterator p = this->table_.begin();
2567 p != this->table_.end();
2568 ++p)
2569 {
2570 Symbol* sym = p->second;
2571
2572 if (sym->is_forced_local())
2573 continue;
2574
2575 // Note that SYM may already have a dynamic symbol index, since
2576 // some symbols appear more than once in the symbol table, with
2577 // and without a version.
2578
2579 if (!sym->should_add_dynsym_entry(this))
2580 sym->set_dynsym_index(-1U);
2581 else if (!sym->has_dynsym_index())
2582 {
2583 sym->set_dynsym_index(index);
2584 ++index;
2585 syms->push_back(sym);
2586 dynpool->add(sym->name(), false, NULL);
2587
2588 // If the symbol is defined in a dynamic object and is
2589 // referenced strongly in a regular object, then mark the
2590 // dynamic object as needed. This is used to implement
2591 // --as-needed.
2592 if (sym->is_from_dynobj()
2593 && sym->in_reg()
2594 && !sym->is_undef_binding_weak())
2595 sym->object()->set_is_needed();
2596
2597 // Record any version information, except those from
2598 // as-needed libraries not seen to be needed. Note that the
2599 // is_needed state for such libraries can change in this loop.
2600 if (sym->version() != NULL)
2601 {
2602 if (!sym->is_from_dynobj()
2603 || !sym->object()->as_needed()
2604 || sym->object()->is_needed())
2605 versions->record_version(this, dynpool, sym);
2606 else
2607 as_needed_sym.push_back(sym);
2608 }
2609 }
2610 }
2611
2612 // Process version information for symbols from as-needed libraries.
2613 for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2614 p != as_needed_sym.end();
2615 ++p)
2616 {
2617 Symbol* sym = *p;
2618
2619 if (sym->object()->is_needed())
2620 versions->record_version(this, dynpool, sym);
2621 else
2622 sym->clear_version();
2623 }
2624
2625 // Finish up the versions. In some cases this may add new dynamic
2626 // symbols.
2627 index = versions->finalize(this, index, syms);
2628
2629 // Process target-specific symbols.
2630 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2631 p != this->target_symbols_.end();
2632 ++p)
2633 {
2634 (*p)->set_dynsym_index(index);
2635 ++index;
2636 syms->push_back(*p);
2637 dynpool->add((*p)->name(), false, NULL);
2638 }
2639
2640 return index;
2641 }
2642
2643 // Set the final values for all the symbols. The index of the first
2644 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2645 // file offset OFF. Add their names to POOL. Return the new file
2646 // offset. Update *PLOCAL_SYMCOUNT if necessary. DYNOFF and
2647 // DYN_GLOBAL_INDEX refer to the start of the symbols that will be
2648 // written from the global symbol table in Symtab::write_globals(),
2649 // which will include forced-local symbols. DYN_GLOBAL_INDEX is
2650 // not necessarily the same as the sh_info field for the .dynsym
2651 // section, which will point to the first real global symbol.
2652
2653 off_t
2654 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2655 size_t dyncount, Stringpool* pool,
2656 unsigned int* plocal_symcount)
2657 {
2658 off_t ret;
2659
2660 gold_assert(*plocal_symcount != 0);
2661 this->first_global_index_ = *plocal_symcount;
2662
2663 this->dynamic_offset_ = dynoff;
2664 this->first_dynamic_global_index_ = dyn_global_index;
2665 this->dynamic_count_ = dyncount;
2666
2667 if (parameters->target().get_size() == 32)
2668 {
2669 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2670 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2671 #else
2672 gold_unreachable();
2673 #endif
2674 }
2675 else if (parameters->target().get_size() == 64)
2676 {
2677 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2678 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2679 #else
2680 gold_unreachable();
2681 #endif
2682 }
2683 else
2684 gold_unreachable();
2685
2686 // Now that we have the final symbol table, we can reliably note
2687 // which symbols should get warnings.
2688 this->warnings_.note_warnings(this);
2689
2690 return ret;
2691 }
2692
2693 // SYM is going into the symbol table at *PINDEX. Add the name to
2694 // POOL, update *PINDEX and *POFF.
2695
2696 template<int size>
2697 void
2698 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2699 unsigned int* pindex, off_t* poff)
2700 {
2701 sym->set_symtab_index(*pindex);
2702 if (sym->version() == NULL || !parameters->options().relocatable())
2703 pool->add(sym->name(), false, NULL);
2704 else
2705 pool->add(sym->versioned_name(), true, NULL);
2706 ++*pindex;
2707 *poff += elfcpp::Elf_sizes<size>::sym_size;
2708 }
2709
2710 // Set the final value for all the symbols. This is called after
2711 // Layout::finalize, so all the output sections have their final
2712 // address.
2713
2714 template<int size>
2715 off_t
2716 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2717 unsigned int* plocal_symcount)
2718 {
2719 off = align_address(off, size >> 3);
2720 this->offset_ = off;
2721
2722 unsigned int index = *plocal_symcount;
2723 const unsigned int orig_index = index;
2724
2725 // First do all the symbols which have been forced to be local, as
2726 // they must appear before all global symbols.
2727 for (Forced_locals::iterator p = this->forced_locals_.begin();
2728 p != this->forced_locals_.end();
2729 ++p)
2730 {
2731 Symbol* sym = *p;
2732 gold_assert(sym->is_forced_local());
2733 if (this->sized_finalize_symbol<size>(sym))
2734 {
2735 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2736 ++*plocal_symcount;
2737 }
2738 }
2739
2740 // Now do all the remaining symbols.
2741 for (Symbol_table_type::iterator p = this->table_.begin();
2742 p != this->table_.end();
2743 ++p)
2744 {
2745 Symbol* sym = p->second;
2746 if (this->sized_finalize_symbol<size>(sym))
2747 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2748 }
2749
2750 // Now do target-specific symbols.
2751 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2752 p != this->target_symbols_.end();
2753 ++p)
2754 {
2755 this->add_to_final_symtab<size>(*p, pool, &index, &off);
2756 }
2757
2758 this->output_count_ = index - orig_index;
2759
2760 return off;
2761 }
2762
2763 // Compute the final value of SYM and store status in location PSTATUS.
2764 // During relaxation, this may be called multiple times for a symbol to
2765 // compute its would-be final value in each relaxation pass.
2766
2767 template<int size>
2768 typename Sized_symbol<size>::Value_type
2769 Symbol_table::compute_final_value(
2770 const Sized_symbol<size>* sym,
2771 Compute_final_value_status* pstatus) const
2772 {
2773 typedef typename Sized_symbol<size>::Value_type Value_type;
2774 Value_type value;
2775
2776 switch (sym->source())
2777 {
2778 case Symbol::FROM_OBJECT:
2779 {
2780 bool is_ordinary;
2781 unsigned int shndx = sym->shndx(&is_ordinary);
2782
2783 if (!is_ordinary
2784 && shndx != elfcpp::SHN_ABS
2785 && !Symbol::is_common_shndx(shndx))
2786 {
2787 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2788 return 0;
2789 }
2790
2791 Object* symobj = sym->object();
2792 if (symobj->is_dynamic())
2793 {
2794 value = 0;
2795 shndx = elfcpp::SHN_UNDEF;
2796 }
2797 else if (symobj->pluginobj() != NULL)
2798 {
2799 value = 0;
2800 shndx = elfcpp::SHN_UNDEF;
2801 }
2802 else if (shndx == elfcpp::SHN_UNDEF)
2803 value = 0;
2804 else if (!is_ordinary
2805 && (shndx == elfcpp::SHN_ABS
2806 || Symbol::is_common_shndx(shndx)))
2807 value = sym->value();
2808 else
2809 {
2810 Relobj* relobj = static_cast<Relobj*>(symobj);
2811 Output_section* os = relobj->output_section(shndx);
2812
2813 if (this->is_section_folded(relobj, shndx))
2814 {
2815 gold_assert(os == NULL);
2816 // Get the os of the section it is folded onto.
2817 Section_id folded = this->icf_->get_folded_section(relobj,
2818 shndx);
2819 gold_assert(folded.first != NULL);
2820 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2821 unsigned folded_shndx = folded.second;
2822
2823 os = folded_obj->output_section(folded_shndx);
2824 gold_assert(os != NULL);
2825
2826 // Replace (relobj, shndx) with canonical ICF input section.
2827 shndx = folded_shndx;
2828 relobj = folded_obj;
2829 }
2830
2831 uint64_t secoff64 = relobj->output_section_offset(shndx);
2832 if (os == NULL)
2833 {
2834 bool static_or_reloc = (parameters->doing_static_link() ||
2835 parameters->options().relocatable());
2836 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2837
2838 *pstatus = CFVS_NO_OUTPUT_SECTION;
2839 return 0;
2840 }
2841
2842 if (secoff64 == -1ULL)
2843 {
2844 // The section needs special handling (e.g., a merge section).
2845
2846 value = os->output_address(relobj, shndx, sym->value());
2847 }
2848 else
2849 {
2850 Value_type secoff =
2851 convert_types<Value_type, uint64_t>(secoff64);
2852 if (sym->type() == elfcpp::STT_TLS)
2853 value = sym->value() + os->tls_offset() + secoff;
2854 else
2855 value = sym->value() + os->address() + secoff;
2856 }
2857 }
2858 }
2859 break;
2860
2861 case Symbol::IN_OUTPUT_DATA:
2862 {
2863 Output_data* od = sym->output_data();
2864 value = sym->value();
2865 if (sym->type() != elfcpp::STT_TLS)
2866 value += od->address();
2867 else
2868 {
2869 Output_section* os = od->output_section();
2870 gold_assert(os != NULL);
2871 value += os->tls_offset() + (od->address() - os->address());
2872 }
2873 if (sym->offset_is_from_end())
2874 value += od->data_size();
2875 }
2876 break;
2877
2878 case Symbol::IN_OUTPUT_SEGMENT:
2879 {
2880 Output_segment* os = sym->output_segment();
2881 value = sym->value();
2882 if (sym->type() != elfcpp::STT_TLS)
2883 value += os->vaddr();
2884 switch (sym->offset_base())
2885 {
2886 case Symbol::SEGMENT_START:
2887 break;
2888 case Symbol::SEGMENT_END:
2889 value += os->memsz();
2890 break;
2891 case Symbol::SEGMENT_BSS:
2892 value += os->filesz();
2893 break;
2894 default:
2895 gold_unreachable();
2896 }
2897 }
2898 break;
2899
2900 case Symbol::IS_CONSTANT:
2901 value = sym->value();
2902 break;
2903
2904 case Symbol::IS_UNDEFINED:
2905 value = 0;
2906 break;
2907
2908 default:
2909 gold_unreachable();
2910 }
2911
2912 *pstatus = CFVS_OK;
2913 return value;
2914 }
2915
2916 // Finalize the symbol SYM. This returns true if the symbol should be
2917 // added to the symbol table, false otherwise.
2918
2919 template<int size>
2920 bool
2921 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2922 {
2923 typedef typename Sized_symbol<size>::Value_type Value_type;
2924
2925 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2926
2927 // The default version of a symbol may appear twice in the symbol
2928 // table. We only need to finalize it once.
2929 if (sym->has_symtab_index())
2930 return false;
2931
2932 if (!sym->in_reg())
2933 {
2934 gold_assert(!sym->has_symtab_index());
2935 sym->set_symtab_index(-1U);
2936 gold_assert(sym->dynsym_index() == -1U);
2937 return false;
2938 }
2939
2940 // If the symbol is only present on plugin files, the plugin decided we
2941 // don't need it.
2942 if (!sym->in_real_elf())
2943 {
2944 gold_assert(!sym->has_symtab_index());
2945 sym->set_symtab_index(-1U);
2946 return false;
2947 }
2948
2949 // Compute final symbol value.
2950 Compute_final_value_status status;
2951 Value_type value = this->compute_final_value(sym, &status);
2952
2953 switch (status)
2954 {
2955 case CFVS_OK:
2956 break;
2957 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2958 {
2959 bool is_ordinary;
2960 unsigned int shndx = sym->shndx(&is_ordinary);
2961 gold_error(_("%s: unsupported symbol section 0x%x"),
2962 sym->demangled_name().c_str(), shndx);
2963 }
2964 break;
2965 case CFVS_NO_OUTPUT_SECTION:
2966 sym->set_symtab_index(-1U);
2967 return false;
2968 default:
2969 gold_unreachable();
2970 }
2971
2972 sym->set_value(value);
2973
2974 if (parameters->options().strip_all()
2975 || !parameters->options().should_retain_symbol(sym->name()))
2976 {
2977 sym->set_symtab_index(-1U);
2978 return false;
2979 }
2980
2981 return true;
2982 }
2983
2984 // Write out the global symbols.
2985
2986 void
2987 Symbol_table::write_globals(const Stringpool* sympool,
2988 const Stringpool* dynpool,
2989 Output_symtab_xindex* symtab_xindex,
2990 Output_symtab_xindex* dynsym_xindex,
2991 Output_file* of) const
2992 {
2993 switch (parameters->size_and_endianness())
2994 {
2995 #ifdef HAVE_TARGET_32_LITTLE
2996 case Parameters::TARGET_32_LITTLE:
2997 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2998 dynsym_xindex, of);
2999 break;
3000 #endif
3001 #ifdef HAVE_TARGET_32_BIG
3002 case Parameters::TARGET_32_BIG:
3003 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
3004 dynsym_xindex, of);
3005 break;
3006 #endif
3007 #ifdef HAVE_TARGET_64_LITTLE
3008 case Parameters::TARGET_64_LITTLE:
3009 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
3010 dynsym_xindex, of);
3011 break;
3012 #endif
3013 #ifdef HAVE_TARGET_64_BIG
3014 case Parameters::TARGET_64_BIG:
3015 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
3016 dynsym_xindex, of);
3017 break;
3018 #endif
3019 default:
3020 gold_unreachable();
3021 }
3022 }
3023
3024 // Write out the global symbols.
3025
3026 template<int size, bool big_endian>
3027 void
3028 Symbol_table::sized_write_globals(const Stringpool* sympool,
3029 const Stringpool* dynpool,
3030 Output_symtab_xindex* symtab_xindex,
3031 Output_symtab_xindex* dynsym_xindex,
3032 Output_file* of) const
3033 {
3034 const Target& target = parameters->target();
3035
3036 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3037
3038 const unsigned int output_count = this->output_count_;
3039 const section_size_type oview_size = output_count * sym_size;
3040 const unsigned int first_global_index = this->first_global_index_;
3041 unsigned char* psyms;
3042 if (this->offset_ == 0 || output_count == 0)
3043 psyms = NULL;
3044 else
3045 psyms = of->get_output_view(this->offset_, oview_size);
3046
3047 const unsigned int dynamic_count = this->dynamic_count_;
3048 const section_size_type dynamic_size = dynamic_count * sym_size;
3049 const unsigned int first_dynamic_global_index =
3050 this->first_dynamic_global_index_;
3051 unsigned char* dynamic_view;
3052 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
3053 dynamic_view = NULL;
3054 else
3055 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
3056
3057 for (Symbol_table_type::const_iterator p = this->table_.begin();
3058 p != this->table_.end();
3059 ++p)
3060 {
3061 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
3062
3063 // Possibly warn about unresolved symbols in shared libraries.
3064 this->warn_about_undefined_dynobj_symbol(sym);
3065
3066 unsigned int sym_index = sym->symtab_index();
3067 unsigned int dynsym_index;
3068 if (dynamic_view == NULL)
3069 dynsym_index = -1U;
3070 else
3071 dynsym_index = sym->dynsym_index();
3072
3073 if (sym_index == -1U && dynsym_index == -1U)
3074 {
3075 // This symbol is not included in the output file.
3076 continue;
3077 }
3078
3079 unsigned int shndx;
3080 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
3081 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
3082 elfcpp::STB binding = sym->binding();
3083
3084 // If --weak-unresolved-symbols is set, change binding of unresolved
3085 // global symbols to STB_WEAK.
3086 if (parameters->options().weak_unresolved_symbols()
3087 && binding == elfcpp::STB_GLOBAL
3088 && sym->is_undefined())
3089 binding = elfcpp::STB_WEAK;
3090
3091 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3092 if (binding == elfcpp::STB_GNU_UNIQUE
3093 && !parameters->options().gnu_unique())
3094 binding = elfcpp::STB_GLOBAL;
3095
3096 switch (sym->source())
3097 {
3098 case Symbol::FROM_OBJECT:
3099 {
3100 bool is_ordinary;
3101 unsigned int in_shndx = sym->shndx(&is_ordinary);
3102
3103 if (!is_ordinary
3104 && in_shndx != elfcpp::SHN_ABS
3105 && !Symbol::is_common_shndx(in_shndx))
3106 {
3107 gold_error(_("%s: unsupported symbol section 0x%x"),
3108 sym->demangled_name().c_str(), in_shndx);
3109 shndx = in_shndx;
3110 }
3111 else
3112 {
3113 Object* symobj = sym->object();
3114 if (symobj->is_dynamic())
3115 {
3116 if (sym->needs_dynsym_value())
3117 dynsym_value = target.dynsym_value(sym);
3118 shndx = elfcpp::SHN_UNDEF;
3119 if (sym->is_undef_binding_weak())
3120 binding = elfcpp::STB_WEAK;
3121 else
3122 binding = elfcpp::STB_GLOBAL;
3123 }
3124 else if (symobj->pluginobj() != NULL)
3125 shndx = elfcpp::SHN_UNDEF;
3126 else if (in_shndx == elfcpp::SHN_UNDEF
3127 || (!is_ordinary
3128 && (in_shndx == elfcpp::SHN_ABS
3129 || Symbol::is_common_shndx(in_shndx))))
3130 shndx = in_shndx;
3131 else
3132 {
3133 Relobj* relobj = static_cast<Relobj*>(symobj);
3134 Output_section* os = relobj->output_section(in_shndx);
3135 if (this->is_section_folded(relobj, in_shndx))
3136 {
3137 // This global symbol must be written out even though
3138 // it is folded.
3139 // Get the os of the section it is folded onto.
3140 Section_id folded =
3141 this->icf_->get_folded_section(relobj, in_shndx);
3142 gold_assert(folded.first !=NULL);
3143 Relobj* folded_obj =
3144 reinterpret_cast<Relobj*>(folded.first);
3145 os = folded_obj->output_section(folded.second);
3146 gold_assert(os != NULL);
3147 }
3148 gold_assert(os != NULL);
3149 shndx = os->out_shndx();
3150
3151 if (shndx >= elfcpp::SHN_LORESERVE)
3152 {
3153 if (sym_index != -1U)
3154 symtab_xindex->add(sym_index, shndx);
3155 if (dynsym_index != -1U)
3156 dynsym_xindex->add(dynsym_index, shndx);
3157 shndx = elfcpp::SHN_XINDEX;
3158 }
3159
3160 // In object files symbol values are section
3161 // relative.
3162 if (parameters->options().relocatable())
3163 sym_value -= os->address();
3164 }
3165 }
3166 }
3167 break;
3168
3169 case Symbol::IN_OUTPUT_DATA:
3170 {
3171 Output_data* od = sym->output_data();
3172
3173 shndx = od->out_shndx();
3174 if (shndx >= elfcpp::SHN_LORESERVE)
3175 {
3176 if (sym_index != -1U)
3177 symtab_xindex->add(sym_index, shndx);
3178 if (dynsym_index != -1U)
3179 dynsym_xindex->add(dynsym_index, shndx);
3180 shndx = elfcpp::SHN_XINDEX;
3181 }
3182
3183 // In object files symbol values are section
3184 // relative.
3185 if (parameters->options().relocatable())
3186 {
3187 Output_section* os = od->output_section();
3188 gold_assert(os != NULL);
3189 sym_value -= os->address();
3190 }
3191 }
3192 break;
3193
3194 case Symbol::IN_OUTPUT_SEGMENT:
3195 {
3196 Output_segment* oseg = sym->output_segment();
3197 Output_section* osect = oseg->first_section();
3198 if (osect == NULL)
3199 shndx = elfcpp::SHN_ABS;
3200 else
3201 shndx = osect->out_shndx();
3202 }
3203 break;
3204
3205 case Symbol::IS_CONSTANT:
3206 shndx = elfcpp::SHN_ABS;
3207 break;
3208
3209 case Symbol::IS_UNDEFINED:
3210 shndx = elfcpp::SHN_UNDEF;
3211 break;
3212
3213 default:
3214 gold_unreachable();
3215 }
3216
3217 if (sym_index != -1U)
3218 {
3219 sym_index -= first_global_index;
3220 gold_assert(sym_index < output_count);
3221 unsigned char* ps = psyms + (sym_index * sym_size);
3222 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3223 binding, sympool, ps);
3224 }
3225
3226 if (dynsym_index != -1U)
3227 {
3228 dynsym_index -= first_dynamic_global_index;
3229 gold_assert(dynsym_index < dynamic_count);
3230 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3231 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3232 binding, dynpool, pd);
3233 // Allow a target to adjust dynamic symbol value.
3234 parameters->target().adjust_dyn_symbol(sym, pd);
3235 }
3236 }
3237
3238 // Write the target-specific symbols.
3239 for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3240 p != this->target_symbols_.end();
3241 ++p)
3242 {
3243 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3244
3245 unsigned int sym_index = sym->symtab_index();
3246 unsigned int dynsym_index;
3247 if (dynamic_view == NULL)
3248 dynsym_index = -1U;
3249 else
3250 dynsym_index = sym->dynsym_index();
3251
3252 unsigned int shndx;
3253 switch (sym->source())
3254 {
3255 case Symbol::IS_CONSTANT:
3256 shndx = elfcpp::SHN_ABS;
3257 break;
3258 case Symbol::IS_UNDEFINED:
3259 shndx = elfcpp::SHN_UNDEF;
3260 break;
3261 default:
3262 gold_unreachable();
3263 }
3264
3265 if (sym_index != -1U)
3266 {
3267 sym_index -= first_global_index;
3268 gold_assert(sym_index < output_count);
3269 unsigned char* ps = psyms + (sym_index * sym_size);
3270 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3271 sym->binding(), sympool,
3272 ps);
3273 }
3274
3275 if (dynsym_index != -1U)
3276 {
3277 dynsym_index -= first_dynamic_global_index;
3278 gold_assert(dynsym_index < dynamic_count);
3279 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3280 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3281 sym->binding(), dynpool,
3282 pd);
3283 }
3284 }
3285
3286 of->write_output_view(this->offset_, oview_size, psyms);
3287 if (dynamic_view != NULL)
3288 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3289 }
3290
3291 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3292 // strtab holding the name.
3293
3294 template<int size, bool big_endian>
3295 void
3296 Symbol_table::sized_write_symbol(
3297 Sized_symbol<size>* sym,
3298 typename elfcpp::Elf_types<size>::Elf_Addr value,
3299 unsigned int shndx,
3300 elfcpp::STB binding,
3301 const Stringpool* pool,
3302 unsigned char* p) const
3303 {
3304 elfcpp::Sym_write<size, big_endian> osym(p);
3305 if (sym->version() == NULL || !parameters->options().relocatable())
3306 osym.put_st_name(pool->get_offset(sym->name()));
3307 else
3308 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3309 osym.put_st_value(value);
3310 // Use a symbol size of zero for undefined symbols from shared libraries.
3311 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3312 osym.put_st_size(0);
3313 else
3314 osym.put_st_size(sym->symsize());
3315 elfcpp::STT type = sym->type();
3316 gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3317 // A version script may have overridden the default binding.
3318 if (sym->is_forced_local())
3319 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3320 else
3321 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3322 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3323 osym.put_st_shndx(shndx);
3324 }
3325
3326 // Check for unresolved symbols in shared libraries. This is
3327 // controlled by the --allow-shlib-undefined option.
3328
3329 // We only warn about libraries for which we have seen all the
3330 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3331 // which were not seen in this link. If we didn't see a DT_NEEDED
3332 // entry, we aren't going to be able to reliably report whether the
3333 // symbol is undefined.
3334
3335 // We also don't warn about libraries found in a system library
3336 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3337 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3338 // can have undefined references satisfied by ld-linux.so.
3339
3340 inline void
3341 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3342 {
3343 bool dummy;
3344 if (sym->source() == Symbol::FROM_OBJECT
3345 && sym->object()->is_dynamic()
3346 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3347 && sym->binding() != elfcpp::STB_WEAK
3348 && !parameters->options().allow_shlib_undefined()
3349 && !parameters->target().is_defined_by_abi(sym)
3350 && !sym->object()->is_in_system_directory())
3351 {
3352 // A very ugly cast.
3353 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3354 if (!dynobj->has_unknown_needed_entries())
3355 gold_undefined_symbol(sym);
3356 }
3357 }
3358
3359 // Write out a section symbol. Return the update offset.
3360
3361 void
3362 Symbol_table::write_section_symbol(const Output_section* os,
3363 Output_symtab_xindex* symtab_xindex,
3364 Output_file* of,
3365 off_t offset) const
3366 {
3367 switch (parameters->size_and_endianness())
3368 {
3369 #ifdef HAVE_TARGET_32_LITTLE
3370 case Parameters::TARGET_32_LITTLE:
3371 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3372 offset);
3373 break;
3374 #endif
3375 #ifdef HAVE_TARGET_32_BIG
3376 case Parameters::TARGET_32_BIG:
3377 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3378 offset);
3379 break;
3380 #endif
3381 #ifdef HAVE_TARGET_64_LITTLE
3382 case Parameters::TARGET_64_LITTLE:
3383 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3384 offset);
3385 break;
3386 #endif
3387 #ifdef HAVE_TARGET_64_BIG
3388 case Parameters::TARGET_64_BIG:
3389 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3390 offset);
3391 break;
3392 #endif
3393 default:
3394 gold_unreachable();
3395 }
3396 }
3397
3398 // Write out a section symbol, specialized for size and endianness.
3399
3400 template<int size, bool big_endian>
3401 void
3402 Symbol_table::sized_write_section_symbol(const Output_section* os,
3403 Output_symtab_xindex* symtab_xindex,
3404 Output_file* of,
3405 off_t offset) const
3406 {
3407 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3408
3409 unsigned char* pov = of->get_output_view(offset, sym_size);
3410
3411 elfcpp::Sym_write<size, big_endian> osym(pov);
3412 osym.put_st_name(0);
3413 if (parameters->options().relocatable())
3414 osym.put_st_value(0);
3415 else
3416 osym.put_st_value(os->address());
3417 osym.put_st_size(0);
3418 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3419 elfcpp::STT_SECTION));
3420 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3421
3422 unsigned int shndx = os->out_shndx();
3423 if (shndx >= elfcpp::SHN_LORESERVE)
3424 {
3425 symtab_xindex->add(os->symtab_index(), shndx);
3426 shndx = elfcpp::SHN_XINDEX;
3427 }
3428 osym.put_st_shndx(shndx);
3429
3430 of->write_output_view(offset, sym_size, pov);
3431 }
3432
3433 // Print statistical information to stderr. This is used for --stats.
3434
3435 void
3436 Symbol_table::print_stats() const
3437 {
3438 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3439 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3440 program_name, this->table_.size(), this->table_.bucket_count());
3441 #else
3442 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3443 program_name, this->table_.size());
3444 #endif
3445 this->namepool_.print_stats("symbol table stringpool");
3446 }
3447
3448 // We check for ODR violations by looking for symbols with the same
3449 // name for which the debugging information reports that they were
3450 // defined in disjoint source locations. When comparing the source
3451 // location, we consider instances with the same base filename to be
3452 // the same. This is because different object files/shared libraries
3453 // can include the same header file using different paths, and
3454 // different optimization settings can make the line number appear to
3455 // be a couple lines off, and we don't want to report an ODR violation
3456 // in those cases.
3457
3458 // This struct is used to compare line information, as returned by
3459 // Dwarf_line_info::one_addr2line. It implements a < comparison
3460 // operator used with std::sort.
3461
3462 struct Odr_violation_compare
3463 {
3464 bool
3465 operator()(const std::string& s1, const std::string& s2) const
3466 {
3467 // Inputs should be of the form "dirname/filename:linenum" where
3468 // "dirname/" is optional. We want to compare just the filename:linenum.
3469
3470 // Find the last '/' in each string.
3471 std::string::size_type s1begin = s1.rfind('/');
3472 std::string::size_type s2begin = s2.rfind('/');
3473 // If there was no '/' in a string, start at the beginning.
3474 if (s1begin == std::string::npos)
3475 s1begin = 0;
3476 if (s2begin == std::string::npos)
3477 s2begin = 0;
3478 return s1.compare(s1begin, std::string::npos,
3479 s2, s2begin, std::string::npos) < 0;
3480 }
3481 };
3482
3483 // Returns all of the lines attached to LOC, not just the one the
3484 // instruction actually came from.
3485 std::vector<std::string>
3486 Symbol_table::linenos_from_loc(const Task* task,
3487 const Symbol_location& loc)
3488 {
3489 // We need to lock the object in order to read it. This
3490 // means that we have to run in a singleton Task. If we
3491 // want to run this in a general Task for better
3492 // performance, we will need one Task for object, plus
3493 // appropriate locking to ensure that we don't conflict with
3494 // other uses of the object. Also note, one_addr2line is not
3495 // currently thread-safe.
3496 Task_lock_obj<Object> tl(task, loc.object);
3497
3498 std::vector<std::string> result;
3499 Symbol_location code_loc = loc;
3500 parameters->target().function_location(&code_loc);
3501 // 16 is the size of the object-cache that one_addr2line should use.
3502 std::string canonical_result = Dwarf_line_info::one_addr2line(
3503 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3504 if (!canonical_result.empty())
3505 result.push_back(canonical_result);
3506 return result;
3507 }
3508
3509 // OutputIterator that records if it was ever assigned to. This
3510 // allows it to be used with std::set_intersection() to check for
3511 // intersection rather than computing the intersection.
3512 struct Check_intersection
3513 {
3514 Check_intersection()
3515 : value_(false)
3516 {}
3517
3518 bool had_intersection() const
3519 { return this->value_; }
3520
3521 Check_intersection& operator++()
3522 { return *this; }
3523
3524 Check_intersection& operator*()
3525 { return *this; }
3526
3527 template<typename T>
3528 Check_intersection& operator=(const T&)
3529 {
3530 this->value_ = true;
3531 return *this;
3532 }
3533
3534 private:
3535 bool value_;
3536 };
3537
3538 // Check candidate_odr_violations_ to find symbols with the same name
3539 // but apparently different definitions (different source-file/line-no
3540 // for each line assigned to the first instruction).
3541
3542 void
3543 Symbol_table::detect_odr_violations(const Task* task,
3544 const char* output_file_name) const
3545 {
3546 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3547 it != candidate_odr_violations_.end();
3548 ++it)
3549 {
3550 const char* const symbol_name = it->first;
3551
3552 std::string first_object_name;
3553 std::vector<std::string> first_object_linenos;
3554
3555 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3556 locs = it->second.begin();
3557 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3558 locs_end = it->second.end();
3559 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3560 {
3561 // Save the line numbers from the first definition to
3562 // compare to the other definitions. Ideally, we'd compare
3563 // every definition to every other, but we don't want to
3564 // take O(N^2) time to do this. This shortcut may cause
3565 // false negatives that appear or disappear depending on the
3566 // link order, but it won't cause false positives.
3567 first_object_name = locs->object->name();
3568 first_object_linenos = this->linenos_from_loc(task, *locs);
3569 }
3570 if (first_object_linenos.empty())
3571 continue;
3572
3573 // Sort by Odr_violation_compare to make std::set_intersection work.
3574 std::string first_object_canonical_result = first_object_linenos.back();
3575 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3576 Odr_violation_compare());
3577
3578 for (; locs != locs_end; ++locs)
3579 {
3580 std::vector<std::string> linenos =
3581 this->linenos_from_loc(task, *locs);
3582 // linenos will be empty if we couldn't parse the debug info.
3583 if (linenos.empty())
3584 continue;
3585 // Sort by Odr_violation_compare to make std::set_intersection work.
3586 gold_assert(!linenos.empty());
3587 std::string second_object_canonical_result = linenos.back();
3588 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3589
3590 Check_intersection intersection_result =
3591 std::set_intersection(first_object_linenos.begin(),
3592 first_object_linenos.end(),
3593 linenos.begin(),
3594 linenos.end(),
3595 Check_intersection(),
3596 Odr_violation_compare());
3597 if (!intersection_result.had_intersection())
3598 {
3599 gold_warning(_("while linking %s: symbol '%s' defined in "
3600 "multiple places (possible ODR violation):"),
3601 output_file_name, demangle(symbol_name).c_str());
3602 // This only prints one location from each definition,
3603 // which may not be the location we expect to intersect
3604 // with another definition. We could print the whole
3605 // set of locations, but that seems too verbose.
3606 fprintf(stderr, _(" %s from %s\n"),
3607 first_object_canonical_result.c_str(),
3608 first_object_name.c_str());
3609 fprintf(stderr, _(" %s from %s\n"),
3610 second_object_canonical_result.c_str(),
3611 locs->object->name().c_str());
3612 // Only print one broken pair, to avoid needing to
3613 // compare against a list of the disjoint definition
3614 // locations we've found so far. (If we kept comparing
3615 // against just the first one, we'd get a lot of
3616 // redundant complaints about the second definition
3617 // location.)
3618 break;
3619 }
3620 }
3621 }
3622 // We only call one_addr2line() in this function, so we can clear its cache.
3623 Dwarf_line_info::clear_addr2line_cache();
3624 }
3625
3626 // Warnings functions.
3627
3628 // Add a new warning.
3629
3630 void
3631 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3632 const std::string& warning)
3633 {
3634 name = symtab->canonicalize_name(name);
3635 this->warnings_[name].set(obj, warning);
3636 }
3637
3638 // Look through the warnings and mark the symbols for which we should
3639 // warn. This is called during Layout::finalize when we know the
3640 // sources for all the symbols.
3641
3642 void
3643 Warnings::note_warnings(Symbol_table* symtab)
3644 {
3645 for (Warning_table::iterator p = this->warnings_.begin();
3646 p != this->warnings_.end();
3647 ++p)
3648 {
3649 Symbol* sym = symtab->lookup(p->first, NULL);
3650 if (sym != NULL
3651 && sym->source() == Symbol::FROM_OBJECT
3652 && sym->object() == p->second.object)
3653 sym->set_has_warning();
3654 }
3655 }
3656
3657 // Issue a warning. This is called when we see a relocation against a
3658 // symbol for which has a warning.
3659
3660 template<int size, bool big_endian>
3661 void
3662 Warnings::issue_warning(const Symbol* sym,
3663 const Relocate_info<size, big_endian>* relinfo,
3664 size_t relnum, off_t reloffset) const
3665 {
3666 gold_assert(sym->has_warning());
3667
3668 // We don't want to issue a warning for a relocation against the
3669 // symbol in the same object file in which the symbol is defined.
3670 if (sym->object() == relinfo->object)
3671 return;
3672
3673 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3674 gold_assert(p != this->warnings_.end());
3675 gold_warning_at_location(relinfo, relnum, reloffset,
3676 "%s", p->second.text.c_str());
3677 }
3678
3679 // Instantiate the templates we need. We could use the configure
3680 // script to restrict this to only the ones needed for implemented
3681 // targets.
3682
3683 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3684 template
3685 void
3686 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3687 #endif
3688
3689 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3690 template
3691 void
3692 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3693 #endif
3694
3695 #ifdef HAVE_TARGET_32_LITTLE
3696 template
3697 void
3698 Symbol_table::add_from_relobj<32, false>(
3699 Sized_relobj_file<32, false>* relobj,
3700 const unsigned char* syms,
3701 size_t count,
3702 size_t symndx_offset,
3703 const char* sym_names,
3704 size_t sym_name_size,
3705 Sized_relobj_file<32, false>::Symbols* sympointers,
3706 size_t* defined);
3707 #endif
3708
3709 #ifdef HAVE_TARGET_32_BIG
3710 template
3711 void
3712 Symbol_table::add_from_relobj<32, true>(
3713 Sized_relobj_file<32, true>* relobj,
3714 const unsigned char* syms,
3715 size_t count,
3716 size_t symndx_offset,
3717 const char* sym_names,
3718 size_t sym_name_size,
3719 Sized_relobj_file<32, true>::Symbols* sympointers,
3720 size_t* defined);
3721 #endif
3722
3723 #ifdef HAVE_TARGET_64_LITTLE
3724 template
3725 void
3726 Symbol_table::add_from_relobj<64, false>(
3727 Sized_relobj_file<64, false>* relobj,
3728 const unsigned char* syms,
3729 size_t count,
3730 size_t symndx_offset,
3731 const char* sym_names,
3732 size_t sym_name_size,
3733 Sized_relobj_file<64, false>::Symbols* sympointers,
3734 size_t* defined);
3735 #endif
3736
3737 #ifdef HAVE_TARGET_64_BIG
3738 template
3739 void
3740 Symbol_table::add_from_relobj<64, true>(
3741 Sized_relobj_file<64, true>* relobj,
3742 const unsigned char* syms,
3743 size_t count,
3744 size_t symndx_offset,
3745 const char* sym_names,
3746 size_t sym_name_size,
3747 Sized_relobj_file<64, true>::Symbols* sympointers,
3748 size_t* defined);
3749 #endif
3750
3751 #ifdef HAVE_TARGET_32_LITTLE
3752 template
3753 Symbol*
3754 Symbol_table::add_from_pluginobj<32, false>(
3755 Sized_pluginobj<32, false>* obj,
3756 const char* name,
3757 const char* ver,
3758 elfcpp::Sym<32, false>* sym);
3759 #endif
3760
3761 #ifdef HAVE_TARGET_32_BIG
3762 template
3763 Symbol*
3764 Symbol_table::add_from_pluginobj<32, true>(
3765 Sized_pluginobj<32, true>* obj,
3766 const char* name,
3767 const char* ver,
3768 elfcpp::Sym<32, true>* sym);
3769 #endif
3770
3771 #ifdef HAVE_TARGET_64_LITTLE
3772 template
3773 Symbol*
3774 Symbol_table::add_from_pluginobj<64, false>(
3775 Sized_pluginobj<64, false>* obj,
3776 const char* name,
3777 const char* ver,
3778 elfcpp::Sym<64, false>* sym);
3779 #endif
3780
3781 #ifdef HAVE_TARGET_64_BIG
3782 template
3783 Symbol*
3784 Symbol_table::add_from_pluginobj<64, true>(
3785 Sized_pluginobj<64, true>* obj,
3786 const char* name,
3787 const char* ver,
3788 elfcpp::Sym<64, true>* sym);
3789 #endif
3790
3791 #ifdef HAVE_TARGET_32_LITTLE
3792 template
3793 void
3794 Symbol_table::add_from_dynobj<32, false>(
3795 Sized_dynobj<32, false>* dynobj,
3796 const unsigned char* syms,
3797 size_t count,
3798 const char* sym_names,
3799 size_t sym_name_size,
3800 const unsigned char* versym,
3801 size_t versym_size,
3802 const std::vector<const char*>* version_map,
3803 Sized_relobj_file<32, false>::Symbols* sympointers,
3804 size_t* defined);
3805 #endif
3806
3807 #ifdef HAVE_TARGET_32_BIG
3808 template
3809 void
3810 Symbol_table::add_from_dynobj<32, true>(
3811 Sized_dynobj<32, true>* dynobj,
3812 const unsigned char* syms,
3813 size_t count,
3814 const char* sym_names,
3815 size_t sym_name_size,
3816 const unsigned char* versym,
3817 size_t versym_size,
3818 const std::vector<const char*>* version_map,
3819 Sized_relobj_file<32, true>::Symbols* sympointers,
3820 size_t* defined);
3821 #endif
3822
3823 #ifdef HAVE_TARGET_64_LITTLE
3824 template
3825 void
3826 Symbol_table::add_from_dynobj<64, false>(
3827 Sized_dynobj<64, false>* dynobj,
3828 const unsigned char* syms,
3829 size_t count,
3830 const char* sym_names,
3831 size_t sym_name_size,
3832 const unsigned char* versym,
3833 size_t versym_size,
3834 const std::vector<const char*>* version_map,
3835 Sized_relobj_file<64, false>::Symbols* sympointers,
3836 size_t* defined);
3837 #endif
3838
3839 #ifdef HAVE_TARGET_64_BIG
3840 template
3841 void
3842 Symbol_table::add_from_dynobj<64, true>(
3843 Sized_dynobj<64, true>* dynobj,
3844 const unsigned char* syms,
3845 size_t count,
3846 const char* sym_names,
3847 size_t sym_name_size,
3848 const unsigned char* versym,
3849 size_t versym_size,
3850 const std::vector<const char*>* version_map,
3851 Sized_relobj_file<64, true>::Symbols* sympointers,
3852 size_t* defined);
3853 #endif
3854
3855 #ifdef HAVE_TARGET_32_LITTLE
3856 template
3857 Sized_symbol<32>*
3858 Symbol_table::add_from_incrobj(
3859 Object* obj,
3860 const char* name,
3861 const char* ver,
3862 elfcpp::Sym<32, false>* sym);
3863 #endif
3864
3865 #ifdef HAVE_TARGET_32_BIG
3866 template
3867 Sized_symbol<32>*
3868 Symbol_table::add_from_incrobj(
3869 Object* obj,
3870 const char* name,
3871 const char* ver,
3872 elfcpp::Sym<32, true>* sym);
3873 #endif
3874
3875 #ifdef HAVE_TARGET_64_LITTLE
3876 template
3877 Sized_symbol<64>*
3878 Symbol_table::add_from_incrobj(
3879 Object* obj,
3880 const char* name,
3881 const char* ver,
3882 elfcpp::Sym<64, false>* sym);
3883 #endif
3884
3885 #ifdef HAVE_TARGET_64_BIG
3886 template
3887 Sized_symbol<64>*
3888 Symbol_table::add_from_incrobj(
3889 Object* obj,
3890 const char* name,
3891 const char* ver,
3892 elfcpp::Sym<64, true>* sym);
3893 #endif
3894
3895 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3896 template
3897 void
3898 Symbol_table::define_with_copy_reloc<32>(
3899 Sized_symbol<32>* sym,
3900 Output_data* posd,
3901 elfcpp::Elf_types<32>::Elf_Addr value);
3902 #endif
3903
3904 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3905 template
3906 void
3907 Symbol_table::define_with_copy_reloc<64>(
3908 Sized_symbol<64>* sym,
3909 Output_data* posd,
3910 elfcpp::Elf_types<64>::Elf_Addr value);
3911 #endif
3912
3913 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3914 template
3915 void
3916 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3917 Output_data* od, Value_type value,
3918 Size_type symsize, elfcpp::STT type,
3919 elfcpp::STB binding,
3920 elfcpp::STV visibility,
3921 unsigned char nonvis,
3922 bool offset_is_from_end,
3923 bool is_predefined);
3924
3925 template
3926 void
3927 Sized_symbol<32>::init_constant(const char* name, const char* version,
3928 Value_type value, Size_type symsize,
3929 elfcpp::STT type, elfcpp::STB binding,
3930 elfcpp::STV visibility, unsigned char nonvis,
3931 bool is_predefined);
3932
3933 template
3934 void
3935 Sized_symbol<32>::init_undefined(const char* name, const char* version,
3936 Value_type value, elfcpp::STT type,
3937 elfcpp::STB binding, elfcpp::STV visibility,
3938 unsigned char nonvis);
3939 #endif
3940
3941 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3942 template
3943 void
3944 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3945 Output_data* od, Value_type value,
3946 Size_type symsize, elfcpp::STT type,
3947 elfcpp::STB binding,
3948 elfcpp::STV visibility,
3949 unsigned char nonvis,
3950 bool offset_is_from_end,
3951 bool is_predefined);
3952
3953 template
3954 void
3955 Sized_symbol<64>::init_constant(const char* name, const char* version,
3956 Value_type value, Size_type symsize,
3957 elfcpp::STT type, elfcpp::STB binding,
3958 elfcpp::STV visibility, unsigned char nonvis,
3959 bool is_predefined);
3960
3961 template
3962 void
3963 Sized_symbol<64>::init_undefined(const char* name, const char* version,
3964 Value_type value, elfcpp::STT type,
3965 elfcpp::STB binding, elfcpp::STV visibility,
3966 unsigned char nonvis);
3967 #endif
3968
3969 #ifdef HAVE_TARGET_32_LITTLE
3970 template
3971 void
3972 Warnings::issue_warning<32, false>(const Symbol* sym,
3973 const Relocate_info<32, false>* relinfo,
3974 size_t relnum, off_t reloffset) const;
3975 #endif
3976
3977 #ifdef HAVE_TARGET_32_BIG
3978 template
3979 void
3980 Warnings::issue_warning<32, true>(const Symbol* sym,
3981 const Relocate_info<32, true>* relinfo,
3982 size_t relnum, off_t reloffset) const;
3983 #endif
3984
3985 #ifdef HAVE_TARGET_64_LITTLE
3986 template
3987 void
3988 Warnings::issue_warning<64, false>(const Symbol* sym,
3989 const Relocate_info<64, false>* relinfo,
3990 size_t relnum, off_t reloffset) const;
3991 #endif
3992
3993 #ifdef HAVE_TARGET_64_BIG
3994 template
3995 void
3996 Warnings::issue_warning<64, true>(const Symbol* sym,
3997 const Relocate_info<64, true>* relinfo,
3998 size_t relnum, off_t reloffset) const;
3999 #endif
4000
4001 } // End namespace gold.
This page took 0.124909 seconds and 4 git commands to generate.