2008-07-23 Simon Baldwin <simonb@google.com>
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "object.h"
34 #include "dwarf_reader.h"
35 #include "dynobj.h"
36 #include "output.h"
37 #include "target.h"
38 #include "workqueue.h"
39 #include "symtab.h"
40
41 namespace gold
42 {
43
44 // Class Symbol.
45
46 // Initialize fields in Symbol. This initializes everything except u_
47 // and source_.
48
49 void
50 Symbol::init_fields(const char* name, const char* version,
51 elfcpp::STT type, elfcpp::STB binding,
52 elfcpp::STV visibility, unsigned char nonvis)
53 {
54 this->name_ = name;
55 this->version_ = version;
56 this->symtab_index_ = 0;
57 this->dynsym_index_ = 0;
58 this->got_offsets_.init();
59 this->plt_offset_ = 0;
60 this->type_ = type;
61 this->binding_ = binding;
62 this->visibility_ = visibility;
63 this->nonvis_ = nonvis;
64 this->is_target_special_ = false;
65 this->is_def_ = false;
66 this->is_forwarder_ = false;
67 this->has_alias_ = false;
68 this->needs_dynsym_entry_ = false;
69 this->in_reg_ = false;
70 this->in_dyn_ = false;
71 this->has_plt_offset_ = false;
72 this->has_warning_ = false;
73 this->is_copied_from_dynobj_ = false;
74 this->is_forced_local_ = false;
75 this->is_ordinary_shndx_ = false;
76 }
77
78 // Return the demangled version of the symbol's name, but only
79 // if the --demangle flag was set.
80
81 static std::string
82 demangle(const char* name)
83 {
84 if (!parameters->options().do_demangle())
85 return name;
86
87 // cplus_demangle allocates memory for the result it returns,
88 // and returns NULL if the name is already demangled.
89 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
90 if (demangled_name == NULL)
91 return name;
92
93 std::string retval(demangled_name);
94 free(demangled_name);
95 return retval;
96 }
97
98 std::string
99 Symbol::demangled_name() const
100 {
101 return demangle(this->name());
102 }
103
104 // Initialize the fields in the base class Symbol for SYM in OBJECT.
105
106 template<int size, bool big_endian>
107 void
108 Symbol::init_base_object(const char* name, const char* version, Object* object,
109 const elfcpp::Sym<size, big_endian>& sym,
110 unsigned int st_shndx, bool is_ordinary)
111 {
112 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
113 sym.get_st_visibility(), sym.get_st_nonvis());
114 this->u_.from_object.object = object;
115 this->u_.from_object.shndx = st_shndx;
116 this->is_ordinary_shndx_ = is_ordinary;
117 this->source_ = FROM_OBJECT;
118 this->in_reg_ = !object->is_dynamic();
119 this->in_dyn_ = object->is_dynamic();
120 }
121
122 // Initialize the fields in the base class Symbol for a symbol defined
123 // in an Output_data.
124
125 void
126 Symbol::init_base_output_data(const char* name, const char* version,
127 Output_data* od, elfcpp::STT type,
128 elfcpp::STB binding, elfcpp::STV visibility,
129 unsigned char nonvis, bool offset_is_from_end)
130 {
131 this->init_fields(name, version, type, binding, visibility, nonvis);
132 this->u_.in_output_data.output_data = od;
133 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
134 this->source_ = IN_OUTPUT_DATA;
135 this->in_reg_ = true;
136 }
137
138 // Initialize the fields in the base class Symbol for a symbol defined
139 // in an Output_segment.
140
141 void
142 Symbol::init_base_output_segment(const char* name, const char* version,
143 Output_segment* os, elfcpp::STT type,
144 elfcpp::STB binding, elfcpp::STV visibility,
145 unsigned char nonvis,
146 Segment_offset_base offset_base)
147 {
148 this->init_fields(name, version, type, binding, visibility, nonvis);
149 this->u_.in_output_segment.output_segment = os;
150 this->u_.in_output_segment.offset_base = offset_base;
151 this->source_ = IN_OUTPUT_SEGMENT;
152 this->in_reg_ = true;
153 }
154
155 // Initialize the fields in the base class Symbol for a symbol defined
156 // as a constant.
157
158 void
159 Symbol::init_base_constant(const char* name, const char* version,
160 elfcpp::STT type, elfcpp::STB binding,
161 elfcpp::STV visibility, unsigned char nonvis)
162 {
163 this->init_fields(name, version, type, binding, visibility, nonvis);
164 this->source_ = IS_CONSTANT;
165 this->in_reg_ = true;
166 }
167
168 // Initialize the fields in the base class Symbol for an undefined
169 // symbol.
170
171 void
172 Symbol::init_base_undefined(const char* name, const char* version,
173 elfcpp::STT type, elfcpp::STB binding,
174 elfcpp::STV visibility, unsigned char nonvis)
175 {
176 this->init_fields(name, version, type, binding, visibility, nonvis);
177 this->source_ = IS_UNDEFINED;
178 this->in_reg_ = true;
179 }
180
181 // Allocate a common symbol in the base.
182
183 void
184 Symbol::allocate_base_common(Output_data* od)
185 {
186 gold_assert(this->is_common());
187 this->source_ = IN_OUTPUT_DATA;
188 this->u_.in_output_data.output_data = od;
189 this->u_.in_output_data.offset_is_from_end = false;
190 }
191
192 // Initialize the fields in Sized_symbol for SYM in OBJECT.
193
194 template<int size>
195 template<bool big_endian>
196 void
197 Sized_symbol<size>::init_object(const char* name, const char* version,
198 Object* object,
199 const elfcpp::Sym<size, big_endian>& sym,
200 unsigned int st_shndx, bool is_ordinary)
201 {
202 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
203 this->value_ = sym.get_st_value();
204 this->symsize_ = sym.get_st_size();
205 }
206
207 // Initialize the fields in Sized_symbol for a symbol defined in an
208 // Output_data.
209
210 template<int size>
211 void
212 Sized_symbol<size>::init_output_data(const char* name, const char* version,
213 Output_data* od, Value_type value,
214 Size_type symsize, elfcpp::STT type,
215 elfcpp::STB binding,
216 elfcpp::STV visibility,
217 unsigned char nonvis,
218 bool offset_is_from_end)
219 {
220 this->init_base_output_data(name, version, od, type, binding, visibility,
221 nonvis, offset_is_from_end);
222 this->value_ = value;
223 this->symsize_ = symsize;
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_segment.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
232 Output_segment* os, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 Segment_offset_base offset_base)
238 {
239 this->init_base_output_segment(name, version, os, type, binding, visibility,
240 nonvis, offset_base);
241 this->value_ = value;
242 this->symsize_ = symsize;
243 }
244
245 // Initialize the fields in Sized_symbol for a symbol defined as a
246 // constant.
247
248 template<int size>
249 void
250 Sized_symbol<size>::init_constant(const char* name, const char* version,
251 Value_type value, Size_type symsize,
252 elfcpp::STT type, elfcpp::STB binding,
253 elfcpp::STV visibility, unsigned char nonvis)
254 {
255 this->init_base_constant(name, version, type, binding, visibility, nonvis);
256 this->value_ = value;
257 this->symsize_ = symsize;
258 }
259
260 // Initialize the fields in Sized_symbol for an undefined symbol.
261
262 template<int size>
263 void
264 Sized_symbol<size>::init_undefined(const char* name, const char* version,
265 elfcpp::STT type, elfcpp::STB binding,
266 elfcpp::STV visibility, unsigned char nonvis)
267 {
268 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
269 this->value_ = 0;
270 this->symsize_ = 0;
271 }
272
273 // Allocate a common symbol.
274
275 template<int size>
276 void
277 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
278 {
279 this->allocate_base_common(od);
280 this->value_ = value;
281 }
282
283 // Return true if this symbol should be added to the dynamic symbol
284 // table.
285
286 inline bool
287 Symbol::should_add_dynsym_entry() const
288 {
289 // If the symbol is used by a dynamic relocation, we need to add it.
290 if (this->needs_dynsym_entry())
291 return true;
292
293 // If the symbol was forced local in a version script, do not add it.
294 if (this->is_forced_local())
295 return false;
296
297 // If exporting all symbols or building a shared library,
298 // and the symbol is defined in a regular object and is
299 // externally visible, we need to add it.
300 if ((parameters->options().export_dynamic() || parameters->options().shared())
301 && !this->is_from_dynobj()
302 && this->is_externally_visible())
303 return true;
304
305 return false;
306 }
307
308 // Return true if the final value of this symbol is known at link
309 // time.
310
311 bool
312 Symbol::final_value_is_known() const
313 {
314 // If we are not generating an executable, then no final values are
315 // known, since they will change at runtime.
316 if (parameters->options().shared() || parameters->options().relocatable())
317 return false;
318
319 // If the symbol is not from an object file, and is not undefined,
320 // then it is defined, and known.
321 if (this->source_ != FROM_OBJECT)
322 {
323 if (this->source_ != IS_UNDEFINED)
324 return true;
325 }
326 else
327 {
328 // If the symbol is from a dynamic object, then the final value
329 // is not known.
330 if (this->object()->is_dynamic())
331 return false;
332
333 // If the symbol is not undefined (it is defined or common),
334 // then the final value is known.
335 if (!this->is_undefined())
336 return true;
337 }
338
339 // If the symbol is undefined, then whether the final value is known
340 // depends on whether we are doing a static link. If we are doing a
341 // dynamic link, then the final value could be filled in at runtime.
342 // This could reasonably be the case for a weak undefined symbol.
343 return parameters->doing_static_link();
344 }
345
346 // Return the output section where this symbol is defined.
347
348 Output_section*
349 Symbol::output_section() const
350 {
351 switch (this->source_)
352 {
353 case FROM_OBJECT:
354 {
355 unsigned int shndx = this->u_.from_object.shndx;
356 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
357 {
358 gold_assert(!this->u_.from_object.object->is_dynamic());
359 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
360 return relobj->output_section(shndx);
361 }
362 return NULL;
363 }
364
365 case IN_OUTPUT_DATA:
366 return this->u_.in_output_data.output_data->output_section();
367
368 case IN_OUTPUT_SEGMENT:
369 case IS_CONSTANT:
370 case IS_UNDEFINED:
371 return NULL;
372
373 default:
374 gold_unreachable();
375 }
376 }
377
378 // Set the symbol's output section. This is used for symbols defined
379 // in scripts. This should only be called after the symbol table has
380 // been finalized.
381
382 void
383 Symbol::set_output_section(Output_section* os)
384 {
385 switch (this->source_)
386 {
387 case FROM_OBJECT:
388 case IN_OUTPUT_DATA:
389 gold_assert(this->output_section() == os);
390 break;
391 case IS_CONSTANT:
392 this->source_ = IN_OUTPUT_DATA;
393 this->u_.in_output_data.output_data = os;
394 this->u_.in_output_data.offset_is_from_end = false;
395 break;
396 case IN_OUTPUT_SEGMENT:
397 case IS_UNDEFINED:
398 default:
399 gold_unreachable();
400 }
401 }
402
403 // Class Symbol_table.
404
405 Symbol_table::Symbol_table(unsigned int count,
406 const Version_script_info& version_script)
407 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
408 forwarders_(), commons_(), tls_commons_(), forced_locals_(), warnings_(),
409 version_script_(version_script)
410 {
411 namepool_.reserve(count);
412 }
413
414 Symbol_table::~Symbol_table()
415 {
416 }
417
418 // The hash function. The key values are Stringpool keys.
419
420 inline size_t
421 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
422 {
423 return key.first ^ key.second;
424 }
425
426 // The symbol table key equality function. This is called with
427 // Stringpool keys.
428
429 inline bool
430 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
431 const Symbol_table_key& k2) const
432 {
433 return k1.first == k2.first && k1.second == k2.second;
434 }
435
436 // Make TO a symbol which forwards to FROM.
437
438 void
439 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
440 {
441 gold_assert(from != to);
442 gold_assert(!from->is_forwarder() && !to->is_forwarder());
443 this->forwarders_[from] = to;
444 from->set_forwarder();
445 }
446
447 // Resolve the forwards from FROM, returning the real symbol.
448
449 Symbol*
450 Symbol_table::resolve_forwards(const Symbol* from) const
451 {
452 gold_assert(from->is_forwarder());
453 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
454 this->forwarders_.find(from);
455 gold_assert(p != this->forwarders_.end());
456 return p->second;
457 }
458
459 // Look up a symbol by name.
460
461 Symbol*
462 Symbol_table::lookup(const char* name, const char* version) const
463 {
464 Stringpool::Key name_key;
465 name = this->namepool_.find(name, &name_key);
466 if (name == NULL)
467 return NULL;
468
469 Stringpool::Key version_key = 0;
470 if (version != NULL)
471 {
472 version = this->namepool_.find(version, &version_key);
473 if (version == NULL)
474 return NULL;
475 }
476
477 Symbol_table_key key(name_key, version_key);
478 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
479 if (p == this->table_.end())
480 return NULL;
481 return p->second;
482 }
483
484 // Resolve a Symbol with another Symbol. This is only used in the
485 // unusual case where there are references to both an unversioned
486 // symbol and a symbol with a version, and we then discover that that
487 // version is the default version. Because this is unusual, we do
488 // this the slow way, by converting back to an ELF symbol.
489
490 template<int size, bool big_endian>
491 void
492 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
493 {
494 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
495 elfcpp::Sym_write<size, big_endian> esym(buf);
496 // We don't bother to set the st_name or the st_shndx field.
497 esym.put_st_value(from->value());
498 esym.put_st_size(from->symsize());
499 esym.put_st_info(from->binding(), from->type());
500 esym.put_st_other(from->visibility(), from->nonvis());
501 bool is_ordinary;
502 unsigned int shndx = from->shndx(&is_ordinary);
503 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
504 from->version());
505 if (from->in_reg())
506 to->set_in_reg();
507 if (from->in_dyn())
508 to->set_in_dyn();
509 }
510
511 // Record that a symbol is forced to be local by a version script.
512
513 void
514 Symbol_table::force_local(Symbol* sym)
515 {
516 if (!sym->is_defined() && !sym->is_common())
517 return;
518 if (sym->is_forced_local())
519 {
520 // We already got this one.
521 return;
522 }
523 sym->set_is_forced_local();
524 this->forced_locals_.push_back(sym);
525 }
526
527 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
528 // is only called for undefined symbols, when at least one --wrap
529 // option was used.
530
531 const char*
532 Symbol_table::wrap_symbol(Object* object, const char* name,
533 Stringpool::Key* name_key)
534 {
535 // For some targets, we need to ignore a specific character when
536 // wrapping, and add it back later.
537 char prefix = '\0';
538 if (name[0] == object->target()->wrap_char())
539 {
540 prefix = name[0];
541 ++name;
542 }
543
544 if (parameters->options().is_wrap(name))
545 {
546 // Turn NAME into __wrap_NAME.
547 std::string s;
548 if (prefix != '\0')
549 s += prefix;
550 s += "__wrap_";
551 s += name;
552
553 // This will give us both the old and new name in NAMEPOOL_, but
554 // that is OK. Only the versions we need will wind up in the
555 // real string table in the output file.
556 return this->namepool_.add(s.c_str(), true, name_key);
557 }
558
559 const char* const real_prefix = "__real_";
560 const size_t real_prefix_length = strlen(real_prefix);
561 if (strncmp(name, real_prefix, real_prefix_length) == 0
562 && parameters->options().is_wrap(name + real_prefix_length))
563 {
564 // Turn __real_NAME into NAME.
565 std::string s;
566 if (prefix != '\0')
567 s += prefix;
568 s += name + real_prefix_length;
569 return this->namepool_.add(s.c_str(), true, name_key);
570 }
571
572 return name;
573 }
574
575 // Add one symbol from OBJECT to the symbol table. NAME is symbol
576 // name and VERSION is the version; both are canonicalized. DEF is
577 // whether this is the default version. ST_SHNDX is the symbol's
578 // section index; IS_ORDINARY is whether this is a normal section
579 // rather than a special code.
580
581 // If DEF is true, then this is the definition of a default version of
582 // a symbol. That means that any lookup of NAME/NULL and any lookup
583 // of NAME/VERSION should always return the same symbol. This is
584 // obvious for references, but in particular we want to do this for
585 // definitions: overriding NAME/NULL should also override
586 // NAME/VERSION. If we don't do that, it would be very hard to
587 // override functions in a shared library which uses versioning.
588
589 // We implement this by simply making both entries in the hash table
590 // point to the same Symbol structure. That is easy enough if this is
591 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
592 // that we have seen both already, in which case they will both have
593 // independent entries in the symbol table. We can't simply change
594 // the symbol table entry, because we have pointers to the entries
595 // attached to the object files. So we mark the entry attached to the
596 // object file as a forwarder, and record it in the forwarders_ map.
597 // Note that entries in the hash table will never be marked as
598 // forwarders.
599 //
600 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
601 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
602 // for a special section code. ST_SHNDX may be modified if the symbol
603 // is defined in a section being discarded.
604
605 template<int size, bool big_endian>
606 Sized_symbol<size>*
607 Symbol_table::add_from_object(Object* object,
608 const char *name,
609 Stringpool::Key name_key,
610 const char *version,
611 Stringpool::Key version_key,
612 bool def,
613 const elfcpp::Sym<size, big_endian>& sym,
614 unsigned int st_shndx,
615 bool is_ordinary,
616 unsigned int orig_st_shndx)
617 {
618 // Print a message if this symbol is being traced.
619 if (parameters->options().is_trace_symbol(name))
620 {
621 if (orig_st_shndx == elfcpp::SHN_UNDEF)
622 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
623 else
624 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
625 }
626
627 // For an undefined symbol, we may need to adjust the name using
628 // --wrap.
629 if (orig_st_shndx == elfcpp::SHN_UNDEF
630 && parameters->options().any_wrap())
631 {
632 const char* wrap_name = this->wrap_symbol(object, name, &name_key);
633 if (wrap_name != name)
634 {
635 // If we see a reference to malloc with version GLIBC_2.0,
636 // and we turn it into a reference to __wrap_malloc, then we
637 // discard the version number. Otherwise the user would be
638 // required to specify the correct version for
639 // __wrap_malloc.
640 version = NULL;
641 version_key = 0;
642 name = wrap_name;
643 }
644 }
645
646 Symbol* const snull = NULL;
647 std::pair<typename Symbol_table_type::iterator, bool> ins =
648 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
649 snull));
650
651 std::pair<typename Symbol_table_type::iterator, bool> insdef =
652 std::make_pair(this->table_.end(), false);
653 if (def)
654 {
655 const Stringpool::Key vnull_key = 0;
656 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
657 vnull_key),
658 snull));
659 }
660
661 // ins.first: an iterator, which is a pointer to a pair.
662 // ins.first->first: the key (a pair of name and version).
663 // ins.first->second: the value (Symbol*).
664 // ins.second: true if new entry was inserted, false if not.
665
666 Sized_symbol<size>* ret;
667 bool was_undefined;
668 bool was_common;
669 if (!ins.second)
670 {
671 // We already have an entry for NAME/VERSION.
672 ret = this->get_sized_symbol<size>(ins.first->second);
673 gold_assert(ret != NULL);
674
675 was_undefined = ret->is_undefined();
676 was_common = ret->is_common();
677
678 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
679 version);
680
681 if (def)
682 {
683 if (insdef.second)
684 {
685 // This is the first time we have seen NAME/NULL. Make
686 // NAME/NULL point to NAME/VERSION.
687 insdef.first->second = ret;
688 }
689 else if (insdef.first->second != ret)
690 {
691 // This is the unfortunate case where we already have
692 // entries for both NAME/VERSION and NAME/NULL. We now
693 // see a symbol NAME/VERSION where VERSION is the
694 // default version. We have already resolved this new
695 // symbol with the existing NAME/VERSION symbol.
696
697 // It's possible that NAME/NULL and NAME/VERSION are
698 // both defined in regular objects. This can only
699 // happen if one object file defines foo and another
700 // defines foo@@ver. This is somewhat obscure, but we
701 // call it a multiple definition error.
702
703 // It's possible that NAME/NULL actually has a version,
704 // in which case it won't be the same as VERSION. This
705 // happens with ver_test_7.so in the testsuite for the
706 // symbol t2_2. We see t2_2@@VER2, so we define both
707 // t2_2/VER2 and t2_2/NULL. We then see an unadorned
708 // t2_2 in an object file and give it version VER1 from
709 // the version script. This looks like a default
710 // definition for VER1, so it looks like we should merge
711 // t2_2/NULL with t2_2/VER1. That doesn't make sense,
712 // but it's not obvious that this is an error, either.
713 // So we just punt.
714
715 // If one of the symbols has non-default visibility, and
716 // the other is defined in a shared object, then they
717 // are different symbols.
718
719 // Otherwise, we just resolve the symbols as though they
720 // were the same.
721
722 if (insdef.first->second->version() != NULL)
723 {
724 gold_assert(insdef.first->second->version() != version);
725 def = false;
726 }
727 else if (ret->visibility() != elfcpp::STV_DEFAULT
728 && insdef.first->second->is_from_dynobj())
729 def = false;
730 else if (insdef.first->second->visibility() != elfcpp::STV_DEFAULT
731 && ret->is_from_dynobj())
732 def = false;
733 else
734 {
735 const Sized_symbol<size>* sym2;
736 sym2 = this->get_sized_symbol<size>(insdef.first->second);
737 Symbol_table::resolve<size, big_endian>(ret, sym2);
738 this->make_forwarder(insdef.first->second, ret);
739 insdef.first->second = ret;
740 }
741 }
742 else
743 def = false;
744 }
745 }
746 else
747 {
748 // This is the first time we have seen NAME/VERSION.
749 gold_assert(ins.first->second == NULL);
750
751 if (def && !insdef.second)
752 {
753 // We already have an entry for NAME/NULL. If we override
754 // it, then change it to NAME/VERSION.
755 ret = this->get_sized_symbol<size>(insdef.first->second);
756
757 was_undefined = ret->is_undefined();
758 was_common = ret->is_common();
759
760 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
761 version);
762 ins.first->second = ret;
763 }
764 else
765 {
766 was_undefined = false;
767 was_common = false;
768
769 Sized_target<size, big_endian>* target =
770 object->sized_target<size, big_endian>();
771 if (!target->has_make_symbol())
772 ret = new Sized_symbol<size>();
773 else
774 {
775 ret = target->make_symbol();
776 if (ret == NULL)
777 {
778 // This means that we don't want a symbol table
779 // entry after all.
780 if (!def)
781 this->table_.erase(ins.first);
782 else
783 {
784 this->table_.erase(insdef.first);
785 // Inserting insdef invalidated ins.
786 this->table_.erase(std::make_pair(name_key,
787 version_key));
788 }
789 return NULL;
790 }
791 }
792
793 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
794
795 ins.first->second = ret;
796 if (def)
797 {
798 // This is the first time we have seen NAME/NULL. Point
799 // it at the new entry for NAME/VERSION.
800 gold_assert(insdef.second);
801 insdef.first->second = ret;
802 }
803 }
804 }
805
806 // Record every time we see a new undefined symbol, to speed up
807 // archive groups.
808 if (!was_undefined && ret->is_undefined())
809 ++this->saw_undefined_;
810
811 // Keep track of common symbols, to speed up common symbol
812 // allocation.
813 if (!was_common && ret->is_common())
814 {
815 if (ret->type() != elfcpp::STT_TLS)
816 this->commons_.push_back(ret);
817 else
818 this->tls_commons_.push_back(ret);
819 }
820
821 if (def)
822 ret->set_is_default();
823 return ret;
824 }
825
826 // Add all the symbols in a relocatable object to the hash table.
827
828 template<int size, bool big_endian>
829 void
830 Symbol_table::add_from_relobj(
831 Sized_relobj<size, big_endian>* relobj,
832 const unsigned char* syms,
833 size_t count,
834 size_t symndx_offset,
835 const char* sym_names,
836 size_t sym_name_size,
837 typename Sized_relobj<size, big_endian>::Symbols* sympointers,
838 size_t *defined)
839 {
840 *defined = 0;
841
842 gold_assert(size == relobj->target()->get_size());
843 gold_assert(size == parameters->target().get_size());
844
845 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
846
847 const bool just_symbols = relobj->just_symbols();
848
849 const unsigned char* p = syms;
850 for (size_t i = 0; i < count; ++i, p += sym_size)
851 {
852 (*sympointers)[i] = NULL;
853
854 elfcpp::Sym<size, big_endian> sym(p);
855
856 unsigned int st_name = sym.get_st_name();
857 if (st_name >= sym_name_size)
858 {
859 relobj->error(_("bad global symbol name offset %u at %zu"),
860 st_name, i);
861 continue;
862 }
863
864 const char* name = sym_names + st_name;
865
866 bool is_ordinary;
867 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
868 sym.get_st_shndx(),
869 &is_ordinary);
870 unsigned int orig_st_shndx = st_shndx;
871 if (!is_ordinary)
872 orig_st_shndx = elfcpp::SHN_UNDEF;
873
874 if (st_shndx != elfcpp::SHN_UNDEF)
875 ++*defined;
876
877 // A symbol defined in a section which we are not including must
878 // be treated as an undefined symbol.
879 if (st_shndx != elfcpp::SHN_UNDEF
880 && is_ordinary
881 && !relobj->is_section_included(st_shndx))
882 st_shndx = elfcpp::SHN_UNDEF;
883
884 // In an object file, an '@' in the name separates the symbol
885 // name from the version name. If there are two '@' characters,
886 // this is the default version.
887 const char* ver = strchr(name, '@');
888 int namelen = 0;
889 // DEF: is the version default? LOCAL: is the symbol forced local?
890 bool def = false;
891 bool local = false;
892
893 if (ver != NULL)
894 {
895 // The symbol name is of the form foo@VERSION or foo@@VERSION
896 namelen = ver - name;
897 ++ver;
898 if (*ver == '@')
899 {
900 def = true;
901 ++ver;
902 }
903 }
904 // We don't want to assign a version to an undefined symbol,
905 // even if it is listed in the version script. FIXME: What
906 // about a common symbol?
907 else if (!version_script_.empty()
908 && st_shndx != elfcpp::SHN_UNDEF)
909 {
910 // The symbol name did not have a version, but
911 // the version script may assign a version anyway.
912 namelen = strlen(name);
913 def = true;
914 // Check the global: entries from the version script.
915 const std::string& version =
916 version_script_.get_symbol_version(name);
917 if (!version.empty())
918 ver = version.c_str();
919 // Check the local: entries from the version script
920 if (version_script_.symbol_is_local(name))
921 local = true;
922 }
923
924 elfcpp::Sym<size, big_endian>* psym = &sym;
925 unsigned char symbuf[sym_size];
926 elfcpp::Sym<size, big_endian> sym2(symbuf);
927 if (just_symbols)
928 {
929 memcpy(symbuf, p, sym_size);
930 elfcpp::Sym_write<size, big_endian> sw(symbuf);
931 if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
932 {
933 // Symbol values in object files are section relative.
934 // This is normally what we want, but since here we are
935 // converting the symbol to absolute we need to add the
936 // section address. The section address in an object
937 // file is normally zero, but people can use a linker
938 // script to change it.
939 sw.put_st_value(sym.get_st_value()
940 + relobj->section_address(orig_st_shndx));
941 }
942 st_shndx = elfcpp::SHN_ABS;
943 is_ordinary = false;
944 psym = &sym2;
945 }
946
947 Sized_symbol<size>* res;
948 if (ver == NULL)
949 {
950 Stringpool::Key name_key;
951 name = this->namepool_.add(name, true, &name_key);
952 res = this->add_from_object(relobj, name, name_key, NULL, 0,
953 false, *psym, st_shndx, is_ordinary,
954 orig_st_shndx);
955 if (local)
956 this->force_local(res);
957 }
958 else
959 {
960 Stringpool::Key name_key;
961 name = this->namepool_.add_with_length(name, namelen, true,
962 &name_key);
963 Stringpool::Key ver_key;
964 ver = this->namepool_.add(ver, true, &ver_key);
965
966 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
967 def, *psym, st_shndx, is_ordinary,
968 orig_st_shndx);
969 }
970
971 (*sympointers)[i] = res;
972 }
973 }
974
975 // Add all the symbols in a dynamic object to the hash table.
976
977 template<int size, bool big_endian>
978 void
979 Symbol_table::add_from_dynobj(
980 Sized_dynobj<size, big_endian>* dynobj,
981 const unsigned char* syms,
982 size_t count,
983 const char* sym_names,
984 size_t sym_name_size,
985 const unsigned char* versym,
986 size_t versym_size,
987 const std::vector<const char*>* version_map,
988 typename Sized_relobj<size, big_endian>::Symbols* sympointers,
989 size_t* defined)
990 {
991 *defined = 0;
992
993 gold_assert(size == dynobj->target()->get_size());
994 gold_assert(size == parameters->target().get_size());
995
996 if (dynobj->just_symbols())
997 {
998 gold_error(_("--just-symbols does not make sense with a shared object"));
999 return;
1000 }
1001
1002 if (versym != NULL && versym_size / 2 < count)
1003 {
1004 dynobj->error(_("too few symbol versions"));
1005 return;
1006 }
1007
1008 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1009
1010 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1011 // weak aliases. This is necessary because if the dynamic object
1012 // provides the same variable under two names, one of which is a
1013 // weak definition, and the regular object refers to the weak
1014 // definition, we have to put both the weak definition and the
1015 // strong definition into the dynamic symbol table. Given a weak
1016 // definition, the only way that we can find the corresponding
1017 // strong definition, if any, is to search the symbol table.
1018 std::vector<Sized_symbol<size>*> object_symbols;
1019
1020 const unsigned char* p = syms;
1021 const unsigned char* vs = versym;
1022 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1023 {
1024 elfcpp::Sym<size, big_endian> sym(p);
1025
1026 if (sympointers != NULL)
1027 (*sympointers)[i] = NULL;
1028
1029 // Ignore symbols with local binding or that have
1030 // internal or hidden visibility.
1031 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1032 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1033 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1034 continue;
1035
1036 // A protected symbol in a shared library must be treated as a
1037 // normal symbol when viewed from outside the shared library.
1038 // Implement this by overriding the visibility here.
1039 elfcpp::Sym<size, big_endian>* psym = &sym;
1040 unsigned char symbuf[sym_size];
1041 elfcpp::Sym<size, big_endian> sym2(symbuf);
1042 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1043 {
1044 memcpy(symbuf, p, sym_size);
1045 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1046 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1047 psym = &sym2;
1048 }
1049
1050 unsigned int st_name = psym->get_st_name();
1051 if (st_name >= sym_name_size)
1052 {
1053 dynobj->error(_("bad symbol name offset %u at %zu"),
1054 st_name, i);
1055 continue;
1056 }
1057
1058 const char* name = sym_names + st_name;
1059
1060 bool is_ordinary;
1061 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1062 &is_ordinary);
1063
1064 if (st_shndx != elfcpp::SHN_UNDEF)
1065 ++*defined;
1066
1067 Sized_symbol<size>* res;
1068
1069 if (versym == NULL)
1070 {
1071 Stringpool::Key name_key;
1072 name = this->namepool_.add(name, true, &name_key);
1073 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1074 false, *psym, st_shndx, is_ordinary,
1075 st_shndx);
1076 }
1077 else
1078 {
1079 // Read the version information.
1080
1081 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1082
1083 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1084 v &= elfcpp::VERSYM_VERSION;
1085
1086 // The Sun documentation says that V can be VER_NDX_LOCAL,
1087 // or VER_NDX_GLOBAL, or a version index. The meaning of
1088 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1089 // The old GNU linker will happily generate VER_NDX_LOCAL
1090 // for an undefined symbol. I don't know what the Sun
1091 // linker will generate.
1092
1093 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1094 && st_shndx != elfcpp::SHN_UNDEF)
1095 {
1096 // This symbol should not be visible outside the object.
1097 continue;
1098 }
1099
1100 // At this point we are definitely going to add this symbol.
1101 Stringpool::Key name_key;
1102 name = this->namepool_.add(name, true, &name_key);
1103
1104 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1105 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1106 {
1107 // This symbol does not have a version.
1108 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1109 false, *psym, st_shndx, is_ordinary,
1110 st_shndx);
1111 }
1112 else
1113 {
1114 if (v >= version_map->size())
1115 {
1116 dynobj->error(_("versym for symbol %zu out of range: %u"),
1117 i, v);
1118 continue;
1119 }
1120
1121 const char* version = (*version_map)[v];
1122 if (version == NULL)
1123 {
1124 dynobj->error(_("versym for symbol %zu has no name: %u"),
1125 i, v);
1126 continue;
1127 }
1128
1129 Stringpool::Key version_key;
1130 version = this->namepool_.add(version, true, &version_key);
1131
1132 // If this is an absolute symbol, and the version name
1133 // and symbol name are the same, then this is the
1134 // version definition symbol. These symbols exist to
1135 // support using -u to pull in particular versions. We
1136 // do not want to record a version for them.
1137 if (st_shndx == elfcpp::SHN_ABS
1138 && !is_ordinary
1139 && name_key == version_key)
1140 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1141 false, *psym, st_shndx, is_ordinary,
1142 st_shndx);
1143 else
1144 {
1145 const bool def = (!hidden
1146 && st_shndx != elfcpp::SHN_UNDEF);
1147 res = this->add_from_object(dynobj, name, name_key, version,
1148 version_key, def, *psym, st_shndx,
1149 is_ordinary, st_shndx);
1150 }
1151 }
1152 }
1153
1154 // Note that it is possible that RES was overridden by an
1155 // earlier object, in which case it can't be aliased here.
1156 if (st_shndx != elfcpp::SHN_UNDEF
1157 && is_ordinary
1158 && psym->get_st_type() == elfcpp::STT_OBJECT
1159 && res->source() == Symbol::FROM_OBJECT
1160 && res->object() == dynobj)
1161 object_symbols.push_back(res);
1162
1163 if (sympointers != NULL)
1164 (*sympointers)[i] = res;
1165 }
1166
1167 this->record_weak_aliases(&object_symbols);
1168 }
1169
1170 // This is used to sort weak aliases. We sort them first by section
1171 // index, then by offset, then by weak ahead of strong.
1172
1173 template<int size>
1174 class Weak_alias_sorter
1175 {
1176 public:
1177 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1178 };
1179
1180 template<int size>
1181 bool
1182 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1183 const Sized_symbol<size>* s2) const
1184 {
1185 bool is_ordinary;
1186 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1187 gold_assert(is_ordinary);
1188 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1189 gold_assert(is_ordinary);
1190 if (s1_shndx != s2_shndx)
1191 return s1_shndx < s2_shndx;
1192
1193 if (s1->value() != s2->value())
1194 return s1->value() < s2->value();
1195 if (s1->binding() != s2->binding())
1196 {
1197 if (s1->binding() == elfcpp::STB_WEAK)
1198 return true;
1199 if (s2->binding() == elfcpp::STB_WEAK)
1200 return false;
1201 }
1202 return std::string(s1->name()) < std::string(s2->name());
1203 }
1204
1205 // SYMBOLS is a list of object symbols from a dynamic object. Look
1206 // for any weak aliases, and record them so that if we add the weak
1207 // alias to the dynamic symbol table, we also add the corresponding
1208 // strong symbol.
1209
1210 template<int size>
1211 void
1212 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1213 {
1214 // Sort the vector by section index, then by offset, then by weak
1215 // ahead of strong.
1216 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1217
1218 // Walk through the vector. For each weak definition, record
1219 // aliases.
1220 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1221 symbols->begin();
1222 p != symbols->end();
1223 ++p)
1224 {
1225 if ((*p)->binding() != elfcpp::STB_WEAK)
1226 continue;
1227
1228 // Build a circular list of weak aliases. Each symbol points to
1229 // the next one in the circular list.
1230
1231 Sized_symbol<size>* from_sym = *p;
1232 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1233 for (q = p + 1; q != symbols->end(); ++q)
1234 {
1235 bool dummy;
1236 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1237 || (*q)->value() != from_sym->value())
1238 break;
1239
1240 this->weak_aliases_[from_sym] = *q;
1241 from_sym->set_has_alias();
1242 from_sym = *q;
1243 }
1244
1245 if (from_sym != *p)
1246 {
1247 this->weak_aliases_[from_sym] = *p;
1248 from_sym->set_has_alias();
1249 }
1250
1251 p = q - 1;
1252 }
1253 }
1254
1255 // Create and return a specially defined symbol. If ONLY_IF_REF is
1256 // true, then only create the symbol if there is a reference to it.
1257 // If this does not return NULL, it sets *POLDSYM to the existing
1258 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
1259
1260 template<int size, bool big_endian>
1261 Sized_symbol<size>*
1262 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1263 bool only_if_ref,
1264 Sized_symbol<size>** poldsym)
1265 {
1266 Symbol* oldsym;
1267 Sized_symbol<size>* sym;
1268 bool add_to_table = false;
1269 typename Symbol_table_type::iterator add_loc = this->table_.end();
1270
1271 // If the caller didn't give us a version, see if we get one from
1272 // the version script.
1273 if (*pversion == NULL)
1274 {
1275 const std::string& v(this->version_script_.get_symbol_version(*pname));
1276 if (!v.empty())
1277 *pversion = v.c_str();
1278 }
1279
1280 if (only_if_ref)
1281 {
1282 oldsym = this->lookup(*pname, *pversion);
1283 if (oldsym == NULL || !oldsym->is_undefined())
1284 return NULL;
1285
1286 *pname = oldsym->name();
1287 *pversion = oldsym->version();
1288 }
1289 else
1290 {
1291 // Canonicalize NAME and VERSION.
1292 Stringpool::Key name_key;
1293 *pname = this->namepool_.add(*pname, true, &name_key);
1294
1295 Stringpool::Key version_key = 0;
1296 if (*pversion != NULL)
1297 *pversion = this->namepool_.add(*pversion, true, &version_key);
1298
1299 Symbol* const snull = NULL;
1300 std::pair<typename Symbol_table_type::iterator, bool> ins =
1301 this->table_.insert(std::make_pair(std::make_pair(name_key,
1302 version_key),
1303 snull));
1304
1305 if (!ins.second)
1306 {
1307 // We already have a symbol table entry for NAME/VERSION.
1308 oldsym = ins.first->second;
1309 gold_assert(oldsym != NULL);
1310 }
1311 else
1312 {
1313 // We haven't seen this symbol before.
1314 gold_assert(ins.first->second == NULL);
1315 add_to_table = true;
1316 add_loc = ins.first;
1317 oldsym = NULL;
1318 }
1319 }
1320
1321 const Target& target = parameters->target();
1322 if (!target.has_make_symbol())
1323 sym = new Sized_symbol<size>();
1324 else
1325 {
1326 gold_assert(target.get_size() == size);
1327 gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1328 typedef Sized_target<size, big_endian> My_target;
1329 const My_target* sized_target =
1330 static_cast<const My_target*>(&target);
1331 sym = sized_target->make_symbol();
1332 if (sym == NULL)
1333 return NULL;
1334 }
1335
1336 if (add_to_table)
1337 add_loc->second = sym;
1338 else
1339 gold_assert(oldsym != NULL);
1340
1341 *poldsym = this->get_sized_symbol<size>(oldsym);
1342
1343 return sym;
1344 }
1345
1346 // Define a symbol based on an Output_data.
1347
1348 Symbol*
1349 Symbol_table::define_in_output_data(const char* name,
1350 const char* version,
1351 Output_data* od,
1352 uint64_t value,
1353 uint64_t symsize,
1354 elfcpp::STT type,
1355 elfcpp::STB binding,
1356 elfcpp::STV visibility,
1357 unsigned char nonvis,
1358 bool offset_is_from_end,
1359 bool only_if_ref)
1360 {
1361 if (parameters->target().get_size() == 32)
1362 {
1363 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1364 return this->do_define_in_output_data<32>(name, version, od,
1365 value, symsize, type, binding,
1366 visibility, nonvis,
1367 offset_is_from_end,
1368 only_if_ref);
1369 #else
1370 gold_unreachable();
1371 #endif
1372 }
1373 else if (parameters->target().get_size() == 64)
1374 {
1375 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1376 return this->do_define_in_output_data<64>(name, version, od,
1377 value, symsize, type, binding,
1378 visibility, nonvis,
1379 offset_is_from_end,
1380 only_if_ref);
1381 #else
1382 gold_unreachable();
1383 #endif
1384 }
1385 else
1386 gold_unreachable();
1387 }
1388
1389 // Define a symbol in an Output_data, sized version.
1390
1391 template<int size>
1392 Sized_symbol<size>*
1393 Symbol_table::do_define_in_output_data(
1394 const char* name,
1395 const char* version,
1396 Output_data* od,
1397 typename elfcpp::Elf_types<size>::Elf_Addr value,
1398 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1399 elfcpp::STT type,
1400 elfcpp::STB binding,
1401 elfcpp::STV visibility,
1402 unsigned char nonvis,
1403 bool offset_is_from_end,
1404 bool only_if_ref)
1405 {
1406 Sized_symbol<size>* sym;
1407 Sized_symbol<size>* oldsym;
1408
1409 if (parameters->target().is_big_endian())
1410 {
1411 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1412 sym = this->define_special_symbol<size, true>(&name, &version,
1413 only_if_ref, &oldsym);
1414 #else
1415 gold_unreachable();
1416 #endif
1417 }
1418 else
1419 {
1420 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1421 sym = this->define_special_symbol<size, false>(&name, &version,
1422 only_if_ref, &oldsym);
1423 #else
1424 gold_unreachable();
1425 #endif
1426 }
1427
1428 if (sym == NULL)
1429 return NULL;
1430
1431 sym->init_output_data(name, version, od, value, symsize, type, binding,
1432 visibility, nonvis, offset_is_from_end);
1433
1434 if (oldsym == NULL)
1435 {
1436 if (binding == elfcpp::STB_LOCAL
1437 || this->version_script_.symbol_is_local(name))
1438 this->force_local(sym);
1439 else if (version != NULL)
1440 sym->set_is_default();
1441 return sym;
1442 }
1443
1444 if (Symbol_table::should_override_with_special(oldsym))
1445 this->override_with_special(oldsym, sym);
1446 delete sym;
1447 return oldsym;
1448 }
1449
1450 // Define a symbol based on an Output_segment.
1451
1452 Symbol*
1453 Symbol_table::define_in_output_segment(const char* name,
1454 const char* version, Output_segment* os,
1455 uint64_t value,
1456 uint64_t symsize,
1457 elfcpp::STT type,
1458 elfcpp::STB binding,
1459 elfcpp::STV visibility,
1460 unsigned char nonvis,
1461 Symbol::Segment_offset_base offset_base,
1462 bool only_if_ref)
1463 {
1464 if (parameters->target().get_size() == 32)
1465 {
1466 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1467 return this->do_define_in_output_segment<32>(name, version, os,
1468 value, symsize, type,
1469 binding, visibility, nonvis,
1470 offset_base, only_if_ref);
1471 #else
1472 gold_unreachable();
1473 #endif
1474 }
1475 else if (parameters->target().get_size() == 64)
1476 {
1477 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1478 return this->do_define_in_output_segment<64>(name, version, os,
1479 value, symsize, type,
1480 binding, visibility, nonvis,
1481 offset_base, only_if_ref);
1482 #else
1483 gold_unreachable();
1484 #endif
1485 }
1486 else
1487 gold_unreachable();
1488 }
1489
1490 // Define a symbol in an Output_segment, sized version.
1491
1492 template<int size>
1493 Sized_symbol<size>*
1494 Symbol_table::do_define_in_output_segment(
1495 const char* name,
1496 const char* version,
1497 Output_segment* os,
1498 typename elfcpp::Elf_types<size>::Elf_Addr value,
1499 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1500 elfcpp::STT type,
1501 elfcpp::STB binding,
1502 elfcpp::STV visibility,
1503 unsigned char nonvis,
1504 Symbol::Segment_offset_base offset_base,
1505 bool only_if_ref)
1506 {
1507 Sized_symbol<size>* sym;
1508 Sized_symbol<size>* oldsym;
1509
1510 if (parameters->target().is_big_endian())
1511 {
1512 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1513 sym = this->define_special_symbol<size, true>(&name, &version,
1514 only_if_ref, &oldsym);
1515 #else
1516 gold_unreachable();
1517 #endif
1518 }
1519 else
1520 {
1521 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1522 sym = this->define_special_symbol<size, false>(&name, &version,
1523 only_if_ref, &oldsym);
1524 #else
1525 gold_unreachable();
1526 #endif
1527 }
1528
1529 if (sym == NULL)
1530 return NULL;
1531
1532 sym->init_output_segment(name, version, os, value, symsize, type, binding,
1533 visibility, nonvis, offset_base);
1534
1535 if (oldsym == NULL)
1536 {
1537 if (binding == elfcpp::STB_LOCAL
1538 || this->version_script_.symbol_is_local(name))
1539 this->force_local(sym);
1540 else if (version != NULL)
1541 sym->set_is_default();
1542 return sym;
1543 }
1544
1545 if (Symbol_table::should_override_with_special(oldsym))
1546 this->override_with_special(oldsym, sym);
1547 delete sym;
1548 return oldsym;
1549 }
1550
1551 // Define a special symbol with a constant value. It is a multiple
1552 // definition error if this symbol is already defined.
1553
1554 Symbol*
1555 Symbol_table::define_as_constant(const char* name,
1556 const char* version,
1557 uint64_t value,
1558 uint64_t symsize,
1559 elfcpp::STT type,
1560 elfcpp::STB binding,
1561 elfcpp::STV visibility,
1562 unsigned char nonvis,
1563 bool only_if_ref,
1564 bool force_override)
1565 {
1566 if (parameters->target().get_size() == 32)
1567 {
1568 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1569 return this->do_define_as_constant<32>(name, version, value,
1570 symsize, type, binding,
1571 visibility, nonvis, only_if_ref,
1572 force_override);
1573 #else
1574 gold_unreachable();
1575 #endif
1576 }
1577 else if (parameters->target().get_size() == 64)
1578 {
1579 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1580 return this->do_define_as_constant<64>(name, version, value,
1581 symsize, type, binding,
1582 visibility, nonvis, only_if_ref,
1583 force_override);
1584 #else
1585 gold_unreachable();
1586 #endif
1587 }
1588 else
1589 gold_unreachable();
1590 }
1591
1592 // Define a symbol as a constant, sized version.
1593
1594 template<int size>
1595 Sized_symbol<size>*
1596 Symbol_table::do_define_as_constant(
1597 const char* name,
1598 const char* version,
1599 typename elfcpp::Elf_types<size>::Elf_Addr value,
1600 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1601 elfcpp::STT type,
1602 elfcpp::STB binding,
1603 elfcpp::STV visibility,
1604 unsigned char nonvis,
1605 bool only_if_ref,
1606 bool force_override)
1607 {
1608 Sized_symbol<size>* sym;
1609 Sized_symbol<size>* oldsym;
1610
1611 if (parameters->target().is_big_endian())
1612 {
1613 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1614 sym = this->define_special_symbol<size, true>(&name, &version,
1615 only_if_ref, &oldsym);
1616 #else
1617 gold_unreachable();
1618 #endif
1619 }
1620 else
1621 {
1622 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1623 sym = this->define_special_symbol<size, false>(&name, &version,
1624 only_if_ref, &oldsym);
1625 #else
1626 gold_unreachable();
1627 #endif
1628 }
1629
1630 if (sym == NULL)
1631 return NULL;
1632
1633 sym->init_constant(name, version, value, symsize, type, binding, visibility,
1634 nonvis);
1635
1636 if (oldsym == NULL)
1637 {
1638 // Version symbols are absolute symbols with name == version.
1639 // We don't want to force them to be local.
1640 if ((version == NULL
1641 || name != version
1642 || value != 0)
1643 && (binding == elfcpp::STB_LOCAL
1644 || this->version_script_.symbol_is_local(name)))
1645 this->force_local(sym);
1646 else if (version != NULL
1647 && (name != version || value != 0))
1648 sym->set_is_default();
1649 return sym;
1650 }
1651
1652 if (force_override || Symbol_table::should_override_with_special(oldsym))
1653 this->override_with_special(oldsym, sym);
1654 delete sym;
1655 return oldsym;
1656 }
1657
1658 // Define a set of symbols in output sections.
1659
1660 void
1661 Symbol_table::define_symbols(const Layout* layout, int count,
1662 const Define_symbol_in_section* p,
1663 bool only_if_ref)
1664 {
1665 for (int i = 0; i < count; ++i, ++p)
1666 {
1667 Output_section* os = layout->find_output_section(p->output_section);
1668 if (os != NULL)
1669 this->define_in_output_data(p->name, NULL, os, p->value,
1670 p->size, p->type, p->binding,
1671 p->visibility, p->nonvis,
1672 p->offset_is_from_end,
1673 only_if_ref || p->only_if_ref);
1674 else
1675 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1676 p->binding, p->visibility, p->nonvis,
1677 only_if_ref || p->only_if_ref,
1678 false);
1679 }
1680 }
1681
1682 // Define a set of symbols in output segments.
1683
1684 void
1685 Symbol_table::define_symbols(const Layout* layout, int count,
1686 const Define_symbol_in_segment* p,
1687 bool only_if_ref)
1688 {
1689 for (int i = 0; i < count; ++i, ++p)
1690 {
1691 Output_segment* os = layout->find_output_segment(p->segment_type,
1692 p->segment_flags_set,
1693 p->segment_flags_clear);
1694 if (os != NULL)
1695 this->define_in_output_segment(p->name, NULL, os, p->value,
1696 p->size, p->type, p->binding,
1697 p->visibility, p->nonvis,
1698 p->offset_base,
1699 only_if_ref || p->only_if_ref);
1700 else
1701 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1702 p->binding, p->visibility, p->nonvis,
1703 only_if_ref || p->only_if_ref,
1704 false);
1705 }
1706 }
1707
1708 // Define CSYM using a COPY reloc. POSD is the Output_data where the
1709 // symbol should be defined--typically a .dyn.bss section. VALUE is
1710 // the offset within POSD.
1711
1712 template<int size>
1713 void
1714 Symbol_table::define_with_copy_reloc(
1715 Sized_symbol<size>* csym,
1716 Output_data* posd,
1717 typename elfcpp::Elf_types<size>::Elf_Addr value)
1718 {
1719 gold_assert(csym->is_from_dynobj());
1720 gold_assert(!csym->is_copied_from_dynobj());
1721 Object* object = csym->object();
1722 gold_assert(object->is_dynamic());
1723 Dynobj* dynobj = static_cast<Dynobj*>(object);
1724
1725 // Our copied variable has to override any variable in a shared
1726 // library.
1727 elfcpp::STB binding = csym->binding();
1728 if (binding == elfcpp::STB_WEAK)
1729 binding = elfcpp::STB_GLOBAL;
1730
1731 this->define_in_output_data(csym->name(), csym->version(),
1732 posd, value, csym->symsize(),
1733 csym->type(), binding,
1734 csym->visibility(), csym->nonvis(),
1735 false, false);
1736
1737 csym->set_is_copied_from_dynobj();
1738 csym->set_needs_dynsym_entry();
1739
1740 this->copied_symbol_dynobjs_[csym] = dynobj;
1741
1742 // We have now defined all aliases, but we have not entered them all
1743 // in the copied_symbol_dynobjs_ map.
1744 if (csym->has_alias())
1745 {
1746 Symbol* sym = csym;
1747 while (true)
1748 {
1749 sym = this->weak_aliases_[sym];
1750 if (sym == csym)
1751 break;
1752 gold_assert(sym->output_data() == posd);
1753
1754 sym->set_is_copied_from_dynobj();
1755 this->copied_symbol_dynobjs_[sym] = dynobj;
1756 }
1757 }
1758 }
1759
1760 // SYM is defined using a COPY reloc. Return the dynamic object where
1761 // the original definition was found.
1762
1763 Dynobj*
1764 Symbol_table::get_copy_source(const Symbol* sym) const
1765 {
1766 gold_assert(sym->is_copied_from_dynobj());
1767 Copied_symbol_dynobjs::const_iterator p =
1768 this->copied_symbol_dynobjs_.find(sym);
1769 gold_assert(p != this->copied_symbol_dynobjs_.end());
1770 return p->second;
1771 }
1772
1773 // Add any undefined symbols named on the command line.
1774
1775 void
1776 Symbol_table::add_undefined_symbols_from_command_line()
1777 {
1778 if (parameters->options().any_undefined())
1779 {
1780 if (parameters->target().get_size() == 32)
1781 {
1782 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1783 this->do_add_undefined_symbols_from_command_line<32>();
1784 #else
1785 gold_unreachable();
1786 #endif
1787 }
1788 else if (parameters->target().get_size() == 64)
1789 {
1790 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1791 this->do_add_undefined_symbols_from_command_line<64>();
1792 #else
1793 gold_unreachable();
1794 #endif
1795 }
1796 else
1797 gold_unreachable();
1798 }
1799 }
1800
1801 template<int size>
1802 void
1803 Symbol_table::do_add_undefined_symbols_from_command_line()
1804 {
1805 for (options::String_set::const_iterator p =
1806 parameters->options().undefined_begin();
1807 p != parameters->options().undefined_end();
1808 ++p)
1809 {
1810 const char* name = p->c_str();
1811
1812 if (this->lookup(name) != NULL)
1813 continue;
1814
1815 const char* version = NULL;
1816
1817 Sized_symbol<size>* sym;
1818 Sized_symbol<size>* oldsym;
1819 if (parameters->target().is_big_endian())
1820 {
1821 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1822 sym = this->define_special_symbol<size, true>(&name, &version,
1823 false, &oldsym);
1824 #else
1825 gold_unreachable();
1826 #endif
1827 }
1828 else
1829 {
1830 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1831 sym = this->define_special_symbol<size, false>(&name, &version,
1832 false, &oldsym);
1833 #else
1834 gold_unreachable();
1835 #endif
1836 }
1837
1838 gold_assert(oldsym == NULL);
1839
1840 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1841 elfcpp::STV_DEFAULT, 0);
1842 ++this->saw_undefined_;
1843 }
1844 }
1845
1846 // Set the dynamic symbol indexes. INDEX is the index of the first
1847 // global dynamic symbol. Pointers to the symbols are stored into the
1848 // vector SYMS. The names are added to DYNPOOL. This returns an
1849 // updated dynamic symbol index.
1850
1851 unsigned int
1852 Symbol_table::set_dynsym_indexes(unsigned int index,
1853 std::vector<Symbol*>* syms,
1854 Stringpool* dynpool,
1855 Versions* versions)
1856 {
1857 for (Symbol_table_type::iterator p = this->table_.begin();
1858 p != this->table_.end();
1859 ++p)
1860 {
1861 Symbol* sym = p->second;
1862
1863 // Note that SYM may already have a dynamic symbol index, since
1864 // some symbols appear more than once in the symbol table, with
1865 // and without a version.
1866
1867 if (!sym->should_add_dynsym_entry())
1868 sym->set_dynsym_index(-1U);
1869 else if (!sym->has_dynsym_index())
1870 {
1871 sym->set_dynsym_index(index);
1872 ++index;
1873 syms->push_back(sym);
1874 dynpool->add(sym->name(), false, NULL);
1875
1876 // Record any version information.
1877 if (sym->version() != NULL)
1878 versions->record_version(this, dynpool, sym);
1879 }
1880 }
1881
1882 // Finish up the versions. In some cases this may add new dynamic
1883 // symbols.
1884 index = versions->finalize(this, index, syms);
1885
1886 return index;
1887 }
1888
1889 // Set the final values for all the symbols. The index of the first
1890 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1891 // file offset OFF. Add their names to POOL. Return the new file
1892 // offset. Update *PLOCAL_SYMCOUNT if necessary.
1893
1894 off_t
1895 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1896 size_t dyncount, Stringpool* pool,
1897 unsigned int *plocal_symcount)
1898 {
1899 off_t ret;
1900
1901 gold_assert(*plocal_symcount != 0);
1902 this->first_global_index_ = *plocal_symcount;
1903
1904 this->dynamic_offset_ = dynoff;
1905 this->first_dynamic_global_index_ = dyn_global_index;
1906 this->dynamic_count_ = dyncount;
1907
1908 if (parameters->target().get_size() == 32)
1909 {
1910 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1911 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1912 #else
1913 gold_unreachable();
1914 #endif
1915 }
1916 else if (parameters->target().get_size() == 64)
1917 {
1918 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1919 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1920 #else
1921 gold_unreachable();
1922 #endif
1923 }
1924 else
1925 gold_unreachable();
1926
1927 // Now that we have the final symbol table, we can reliably note
1928 // which symbols should get warnings.
1929 this->warnings_.note_warnings(this);
1930
1931 return ret;
1932 }
1933
1934 // SYM is going into the symbol table at *PINDEX. Add the name to
1935 // POOL, update *PINDEX and *POFF.
1936
1937 template<int size>
1938 void
1939 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1940 unsigned int* pindex, off_t* poff)
1941 {
1942 sym->set_symtab_index(*pindex);
1943 pool->add(sym->name(), false, NULL);
1944 ++*pindex;
1945 *poff += elfcpp::Elf_sizes<size>::sym_size;
1946 }
1947
1948 // Set the final value for all the symbols. This is called after
1949 // Layout::finalize, so all the output sections have their final
1950 // address.
1951
1952 template<int size>
1953 off_t
1954 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1955 unsigned int* plocal_symcount)
1956 {
1957 off = align_address(off, size >> 3);
1958 this->offset_ = off;
1959
1960 unsigned int index = *plocal_symcount;
1961 const unsigned int orig_index = index;
1962
1963 // First do all the symbols which have been forced to be local, as
1964 // they must appear before all global symbols.
1965 for (Forced_locals::iterator p = this->forced_locals_.begin();
1966 p != this->forced_locals_.end();
1967 ++p)
1968 {
1969 Symbol* sym = *p;
1970 gold_assert(sym->is_forced_local());
1971 if (this->sized_finalize_symbol<size>(sym))
1972 {
1973 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1974 ++*plocal_symcount;
1975 }
1976 }
1977
1978 // Now do all the remaining symbols.
1979 for (Symbol_table_type::iterator p = this->table_.begin();
1980 p != this->table_.end();
1981 ++p)
1982 {
1983 Symbol* sym = p->second;
1984 if (this->sized_finalize_symbol<size>(sym))
1985 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1986 }
1987
1988 this->output_count_ = index - orig_index;
1989
1990 return off;
1991 }
1992
1993 // Finalize the symbol SYM. This returns true if the symbol should be
1994 // added to the symbol table, false otherwise.
1995
1996 template<int size>
1997 bool
1998 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1999 {
2000 typedef typename Sized_symbol<size>::Value_type Value_type;
2001
2002 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2003
2004 // The default version of a symbol may appear twice in the symbol
2005 // table. We only need to finalize it once.
2006 if (sym->has_symtab_index())
2007 return false;
2008
2009 if (!sym->in_reg())
2010 {
2011 gold_assert(!sym->has_symtab_index());
2012 sym->set_symtab_index(-1U);
2013 gold_assert(sym->dynsym_index() == -1U);
2014 return false;
2015 }
2016
2017 Value_type value;
2018
2019 switch (sym->source())
2020 {
2021 case Symbol::FROM_OBJECT:
2022 {
2023 bool is_ordinary;
2024 unsigned int shndx = sym->shndx(&is_ordinary);
2025
2026 // FIXME: We need some target specific support here.
2027 if (!is_ordinary
2028 && shndx != elfcpp::SHN_ABS
2029 && shndx != elfcpp::SHN_COMMON)
2030 {
2031 gold_error(_("%s: unsupported symbol section 0x%x"),
2032 sym->demangled_name().c_str(), shndx);
2033 shndx = elfcpp::SHN_UNDEF;
2034 }
2035
2036 Object* symobj = sym->object();
2037 if (symobj->is_dynamic())
2038 {
2039 value = 0;
2040 shndx = elfcpp::SHN_UNDEF;
2041 }
2042 else if (shndx == elfcpp::SHN_UNDEF)
2043 value = 0;
2044 else if (!is_ordinary
2045 && (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON))
2046 value = sym->value();
2047 else
2048 {
2049 Relobj* relobj = static_cast<Relobj*>(symobj);
2050 Output_section* os = relobj->output_section(shndx);
2051
2052 if (os == NULL)
2053 {
2054 sym->set_symtab_index(-1U);
2055 gold_assert(sym->dynsym_index() == -1U);
2056 return false;
2057 }
2058
2059 uint64_t secoff64 = relobj->output_section_offset(shndx);
2060 Value_type secoff = convert_types<Value_type, uint64_t>(secoff64);
2061 if (sym->type() == elfcpp::STT_TLS)
2062 value = sym->value() + os->tls_offset() + secoff;
2063 else
2064 value = sym->value() + os->address() + secoff;
2065 }
2066 }
2067 break;
2068
2069 case Symbol::IN_OUTPUT_DATA:
2070 {
2071 Output_data* od = sym->output_data();
2072 value = sym->value();
2073 if (sym->type() != elfcpp::STT_TLS)
2074 value += od->address();
2075 else
2076 {
2077 Output_section* os = od->output_section();
2078 gold_assert(os != NULL);
2079 value += os->tls_offset() + (od->address() - os->address());
2080 }
2081 if (sym->offset_is_from_end())
2082 value += od->data_size();
2083 }
2084 break;
2085
2086 case Symbol::IN_OUTPUT_SEGMENT:
2087 {
2088 Output_segment* os = sym->output_segment();
2089 value = sym->value();
2090 if (sym->type() != elfcpp::STT_TLS)
2091 value += os->vaddr();
2092 switch (sym->offset_base())
2093 {
2094 case Symbol::SEGMENT_START:
2095 break;
2096 case Symbol::SEGMENT_END:
2097 value += os->memsz();
2098 break;
2099 case Symbol::SEGMENT_BSS:
2100 value += os->filesz();
2101 break;
2102 default:
2103 gold_unreachable();
2104 }
2105 }
2106 break;
2107
2108 case Symbol::IS_CONSTANT:
2109 value = sym->value();
2110 break;
2111
2112 case Symbol::IS_UNDEFINED:
2113 value = 0;
2114 break;
2115
2116 default:
2117 gold_unreachable();
2118 }
2119
2120 sym->set_value(value);
2121
2122 if (parameters->options().strip_all())
2123 {
2124 sym->set_symtab_index(-1U);
2125 return false;
2126 }
2127
2128 return true;
2129 }
2130
2131 // Write out the global symbols.
2132
2133 void
2134 Symbol_table::write_globals(const Input_objects* input_objects,
2135 const Stringpool* sympool,
2136 const Stringpool* dynpool,
2137 Output_symtab_xindex* symtab_xindex,
2138 Output_symtab_xindex* dynsym_xindex,
2139 Output_file* of) const
2140 {
2141 switch (parameters->size_and_endianness())
2142 {
2143 #ifdef HAVE_TARGET_32_LITTLE
2144 case Parameters::TARGET_32_LITTLE:
2145 this->sized_write_globals<32, false>(input_objects, sympool,
2146 dynpool, symtab_xindex,
2147 dynsym_xindex, of);
2148 break;
2149 #endif
2150 #ifdef HAVE_TARGET_32_BIG
2151 case Parameters::TARGET_32_BIG:
2152 this->sized_write_globals<32, true>(input_objects, sympool,
2153 dynpool, symtab_xindex,
2154 dynsym_xindex, of);
2155 break;
2156 #endif
2157 #ifdef HAVE_TARGET_64_LITTLE
2158 case Parameters::TARGET_64_LITTLE:
2159 this->sized_write_globals<64, false>(input_objects, sympool,
2160 dynpool, symtab_xindex,
2161 dynsym_xindex, of);
2162 break;
2163 #endif
2164 #ifdef HAVE_TARGET_64_BIG
2165 case Parameters::TARGET_64_BIG:
2166 this->sized_write_globals<64, true>(input_objects, sympool,
2167 dynpool, symtab_xindex,
2168 dynsym_xindex, of);
2169 break;
2170 #endif
2171 default:
2172 gold_unreachable();
2173 }
2174 }
2175
2176 // Write out the global symbols.
2177
2178 template<int size, bool big_endian>
2179 void
2180 Symbol_table::sized_write_globals(const Input_objects* input_objects,
2181 const Stringpool* sympool,
2182 const Stringpool* dynpool,
2183 Output_symtab_xindex* symtab_xindex,
2184 Output_symtab_xindex* dynsym_xindex,
2185 Output_file* of) const
2186 {
2187 const Target& target = parameters->target();
2188
2189 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2190
2191 const unsigned int output_count = this->output_count_;
2192 const section_size_type oview_size = output_count * sym_size;
2193 const unsigned int first_global_index = this->first_global_index_;
2194 unsigned char* psyms;
2195 if (this->offset_ == 0 || output_count == 0)
2196 psyms = NULL;
2197 else
2198 psyms = of->get_output_view(this->offset_, oview_size);
2199
2200 const unsigned int dynamic_count = this->dynamic_count_;
2201 const section_size_type dynamic_size = dynamic_count * sym_size;
2202 const unsigned int first_dynamic_global_index =
2203 this->first_dynamic_global_index_;
2204 unsigned char* dynamic_view;
2205 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2206 dynamic_view = NULL;
2207 else
2208 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2209
2210 for (Symbol_table_type::const_iterator p = this->table_.begin();
2211 p != this->table_.end();
2212 ++p)
2213 {
2214 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2215
2216 // Possibly warn about unresolved symbols in shared libraries.
2217 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
2218
2219 unsigned int sym_index = sym->symtab_index();
2220 unsigned int dynsym_index;
2221 if (dynamic_view == NULL)
2222 dynsym_index = -1U;
2223 else
2224 dynsym_index = sym->dynsym_index();
2225
2226 if (sym_index == -1U && dynsym_index == -1U)
2227 {
2228 // This symbol is not included in the output file.
2229 continue;
2230 }
2231
2232 unsigned int shndx;
2233 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2234 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2235 switch (sym->source())
2236 {
2237 case Symbol::FROM_OBJECT:
2238 {
2239 bool is_ordinary;
2240 unsigned int in_shndx = sym->shndx(&is_ordinary);
2241
2242 // FIXME: We need some target specific support here.
2243 if (!is_ordinary
2244 && in_shndx != elfcpp::SHN_ABS
2245 && in_shndx != elfcpp::SHN_COMMON)
2246 {
2247 gold_error(_("%s: unsupported symbol section 0x%x"),
2248 sym->demangled_name().c_str(), in_shndx);
2249 shndx = in_shndx;
2250 }
2251 else
2252 {
2253 Object* symobj = sym->object();
2254 if (symobj->is_dynamic())
2255 {
2256 if (sym->needs_dynsym_value())
2257 dynsym_value = target.dynsym_value(sym);
2258 shndx = elfcpp::SHN_UNDEF;
2259 }
2260 else if (in_shndx == elfcpp::SHN_UNDEF
2261 || (!is_ordinary
2262 && (in_shndx == elfcpp::SHN_ABS
2263 || in_shndx == elfcpp::SHN_COMMON)))
2264 shndx = in_shndx;
2265 else
2266 {
2267 Relobj* relobj = static_cast<Relobj*>(symobj);
2268 Output_section* os = relobj->output_section(in_shndx);
2269 gold_assert(os != NULL);
2270 shndx = os->out_shndx();
2271
2272 if (shndx >= elfcpp::SHN_LORESERVE)
2273 {
2274 if (sym_index != -1U)
2275 symtab_xindex->add(sym_index, shndx);
2276 if (dynsym_index != -1U)
2277 dynsym_xindex->add(dynsym_index, shndx);
2278 shndx = elfcpp::SHN_XINDEX;
2279 }
2280
2281 // In object files symbol values are section
2282 // relative.
2283 if (parameters->options().relocatable())
2284 sym_value -= os->address();
2285 }
2286 }
2287 }
2288 break;
2289
2290 case Symbol::IN_OUTPUT_DATA:
2291 shndx = sym->output_data()->out_shndx();
2292 if (shndx >= elfcpp::SHN_LORESERVE)
2293 {
2294 if (sym_index != -1U)
2295 symtab_xindex->add(sym_index, shndx);
2296 if (dynsym_index != -1U)
2297 dynsym_xindex->add(dynsym_index, shndx);
2298 shndx = elfcpp::SHN_XINDEX;
2299 }
2300 break;
2301
2302 case Symbol::IN_OUTPUT_SEGMENT:
2303 shndx = elfcpp::SHN_ABS;
2304 break;
2305
2306 case Symbol::IS_CONSTANT:
2307 shndx = elfcpp::SHN_ABS;
2308 break;
2309
2310 case Symbol::IS_UNDEFINED:
2311 shndx = elfcpp::SHN_UNDEF;
2312 break;
2313
2314 default:
2315 gold_unreachable();
2316 }
2317
2318 if (sym_index != -1U)
2319 {
2320 sym_index -= first_global_index;
2321 gold_assert(sym_index < output_count);
2322 unsigned char* ps = psyms + (sym_index * sym_size);
2323 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2324 sympool, ps);
2325 }
2326
2327 if (dynsym_index != -1U)
2328 {
2329 dynsym_index -= first_dynamic_global_index;
2330 gold_assert(dynsym_index < dynamic_count);
2331 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2332 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2333 dynpool, pd);
2334 }
2335 }
2336
2337 of->write_output_view(this->offset_, oview_size, psyms);
2338 if (dynamic_view != NULL)
2339 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2340 }
2341
2342 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2343 // strtab holding the name.
2344
2345 template<int size, bool big_endian>
2346 void
2347 Symbol_table::sized_write_symbol(
2348 Sized_symbol<size>* sym,
2349 typename elfcpp::Elf_types<size>::Elf_Addr value,
2350 unsigned int shndx,
2351 const Stringpool* pool,
2352 unsigned char* p) const
2353 {
2354 elfcpp::Sym_write<size, big_endian> osym(p);
2355 osym.put_st_name(pool->get_offset(sym->name()));
2356 osym.put_st_value(value);
2357 // Use a symbol size of zero for undefined symbols from shared libraries.
2358 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2359 osym.put_st_size(0);
2360 else
2361 osym.put_st_size(sym->symsize());
2362 // A version script may have overridden the default binding.
2363 if (sym->is_forced_local())
2364 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2365 else
2366 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2367 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2368 osym.put_st_shndx(shndx);
2369 }
2370
2371 // Check for unresolved symbols in shared libraries. This is
2372 // controlled by the --allow-shlib-undefined option.
2373
2374 // We only warn about libraries for which we have seen all the
2375 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2376 // which were not seen in this link. If we didn't see a DT_NEEDED
2377 // entry, we aren't going to be able to reliably report whether the
2378 // symbol is undefined.
2379
2380 // We also don't warn about libraries found in the system library
2381 // directory (the directory were we find libc.so); we assume that
2382 // those libraries are OK. This heuristic avoids problems in
2383 // GNU/Linux, in which -ldl can have undefined references satisfied by
2384 // ld-linux.so.
2385
2386 inline void
2387 Symbol_table::warn_about_undefined_dynobj_symbol(
2388 const Input_objects* input_objects,
2389 Symbol* sym) const
2390 {
2391 bool dummy;
2392 if (sym->source() == Symbol::FROM_OBJECT
2393 && sym->object()->is_dynamic()
2394 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2395 && sym->binding() != elfcpp::STB_WEAK
2396 && !parameters->options().allow_shlib_undefined()
2397 && !parameters->target().is_defined_by_abi(sym)
2398 && !input_objects->found_in_system_library_directory(sym->object()))
2399 {
2400 // A very ugly cast.
2401 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2402 if (!dynobj->has_unknown_needed_entries())
2403 {
2404 if (sym->version())
2405 gold_error(_("%s: undefined reference to '%s', version '%s'"),
2406 sym->object()->name().c_str(),
2407 sym->demangled_name().c_str(),
2408 sym->version());
2409 else
2410 gold_error(_("%s: undefined reference to '%s'"),
2411 sym->object()->name().c_str(),
2412 sym->demangled_name().c_str());
2413 }
2414 }
2415 }
2416
2417 // Write out a section symbol. Return the update offset.
2418
2419 void
2420 Symbol_table::write_section_symbol(const Output_section *os,
2421 Output_symtab_xindex* symtab_xindex,
2422 Output_file* of,
2423 off_t offset) const
2424 {
2425 switch (parameters->size_and_endianness())
2426 {
2427 #ifdef HAVE_TARGET_32_LITTLE
2428 case Parameters::TARGET_32_LITTLE:
2429 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2430 offset);
2431 break;
2432 #endif
2433 #ifdef HAVE_TARGET_32_BIG
2434 case Parameters::TARGET_32_BIG:
2435 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
2436 offset);
2437 break;
2438 #endif
2439 #ifdef HAVE_TARGET_64_LITTLE
2440 case Parameters::TARGET_64_LITTLE:
2441 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
2442 offset);
2443 break;
2444 #endif
2445 #ifdef HAVE_TARGET_64_BIG
2446 case Parameters::TARGET_64_BIG:
2447 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
2448 offset);
2449 break;
2450 #endif
2451 default:
2452 gold_unreachable();
2453 }
2454 }
2455
2456 // Write out a section symbol, specialized for size and endianness.
2457
2458 template<int size, bool big_endian>
2459 void
2460 Symbol_table::sized_write_section_symbol(const Output_section* os,
2461 Output_symtab_xindex* symtab_xindex,
2462 Output_file* of,
2463 off_t offset) const
2464 {
2465 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2466
2467 unsigned char* pov = of->get_output_view(offset, sym_size);
2468
2469 elfcpp::Sym_write<size, big_endian> osym(pov);
2470 osym.put_st_name(0);
2471 osym.put_st_value(os->address());
2472 osym.put_st_size(0);
2473 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2474 elfcpp::STT_SECTION));
2475 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2476
2477 unsigned int shndx = os->out_shndx();
2478 if (shndx >= elfcpp::SHN_LORESERVE)
2479 {
2480 symtab_xindex->add(os->symtab_index(), shndx);
2481 shndx = elfcpp::SHN_XINDEX;
2482 }
2483 osym.put_st_shndx(shndx);
2484
2485 of->write_output_view(offset, sym_size, pov);
2486 }
2487
2488 // Print statistical information to stderr. This is used for --stats.
2489
2490 void
2491 Symbol_table::print_stats() const
2492 {
2493 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2494 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2495 program_name, this->table_.size(), this->table_.bucket_count());
2496 #else
2497 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2498 program_name, this->table_.size());
2499 #endif
2500 this->namepool_.print_stats("symbol table stringpool");
2501 }
2502
2503 // We check for ODR violations by looking for symbols with the same
2504 // name for which the debugging information reports that they were
2505 // defined in different source locations. When comparing the source
2506 // location, we consider instances with the same base filename and
2507 // line number to be the same. This is because different object
2508 // files/shared libraries can include the same header file using
2509 // different paths, and we don't want to report an ODR violation in
2510 // that case.
2511
2512 // This struct is used to compare line information, as returned by
2513 // Dwarf_line_info::one_addr2line. It implements a < comparison
2514 // operator used with std::set.
2515
2516 struct Odr_violation_compare
2517 {
2518 bool
2519 operator()(const std::string& s1, const std::string& s2) const
2520 {
2521 std::string::size_type pos1 = s1.rfind('/');
2522 std::string::size_type pos2 = s2.rfind('/');
2523 if (pos1 == std::string::npos
2524 || pos2 == std::string::npos)
2525 return s1 < s2;
2526 return s1.compare(pos1, std::string::npos,
2527 s2, pos2, std::string::npos) < 0;
2528 }
2529 };
2530
2531 // Check candidate_odr_violations_ to find symbols with the same name
2532 // but apparently different definitions (different source-file/line-no).
2533
2534 void
2535 Symbol_table::detect_odr_violations(const Task* task,
2536 const char* output_file_name) const
2537 {
2538 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2539 it != candidate_odr_violations_.end();
2540 ++it)
2541 {
2542 const char* symbol_name = it->first;
2543 // We use a sorted set so the output is deterministic.
2544 std::set<std::string, Odr_violation_compare> line_nums;
2545
2546 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2547 locs = it->second.begin();
2548 locs != it->second.end();
2549 ++locs)
2550 {
2551 // We need to lock the object in order to read it. This
2552 // means that we have to run in a singleton Task. If we
2553 // want to run this in a general Task for better
2554 // performance, we will need one Task for object, plus
2555 // appropriate locking to ensure that we don't conflict with
2556 // other uses of the object. Also note, one_addr2line is not
2557 // currently thread-safe.
2558 Task_lock_obj<Object> tl(task, locs->object);
2559 // 16 is the size of the object-cache that one_addr2line should use.
2560 std::string lineno = Dwarf_line_info::one_addr2line(
2561 locs->object, locs->shndx, locs->offset, 16);
2562 if (!lineno.empty())
2563 line_nums.insert(lineno);
2564 }
2565
2566 if (line_nums.size() > 1)
2567 {
2568 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2569 "places (possible ODR violation):"),
2570 output_file_name, demangle(symbol_name).c_str());
2571 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2572 it2 != line_nums.end();
2573 ++it2)
2574 fprintf(stderr, " %s\n", it2->c_str());
2575 }
2576 }
2577 // We only call one_addr2line() in this function, so we can clear its cache.
2578 Dwarf_line_info::clear_addr2line_cache();
2579 }
2580
2581 // Warnings functions.
2582
2583 // Add a new warning.
2584
2585 void
2586 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2587 const std::string& warning)
2588 {
2589 name = symtab->canonicalize_name(name);
2590 this->warnings_[name].set(obj, warning);
2591 }
2592
2593 // Look through the warnings and mark the symbols for which we should
2594 // warn. This is called during Layout::finalize when we know the
2595 // sources for all the symbols.
2596
2597 void
2598 Warnings::note_warnings(Symbol_table* symtab)
2599 {
2600 for (Warning_table::iterator p = this->warnings_.begin();
2601 p != this->warnings_.end();
2602 ++p)
2603 {
2604 Symbol* sym = symtab->lookup(p->first, NULL);
2605 if (sym != NULL
2606 && sym->source() == Symbol::FROM_OBJECT
2607 && sym->object() == p->second.object)
2608 sym->set_has_warning();
2609 }
2610 }
2611
2612 // Issue a warning. This is called when we see a relocation against a
2613 // symbol for which has a warning.
2614
2615 template<int size, bool big_endian>
2616 void
2617 Warnings::issue_warning(const Symbol* sym,
2618 const Relocate_info<size, big_endian>* relinfo,
2619 size_t relnum, off_t reloffset) const
2620 {
2621 gold_assert(sym->has_warning());
2622 Warning_table::const_iterator p = this->warnings_.find(sym->name());
2623 gold_assert(p != this->warnings_.end());
2624 gold_warning_at_location(relinfo, relnum, reloffset,
2625 "%s", p->second.text.c_str());
2626 }
2627
2628 // Instantiate the templates we need. We could use the configure
2629 // script to restrict this to only the ones needed for implemented
2630 // targets.
2631
2632 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2633 template
2634 void
2635 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2636 #endif
2637
2638 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2639 template
2640 void
2641 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2642 #endif
2643
2644 #ifdef HAVE_TARGET_32_LITTLE
2645 template
2646 void
2647 Symbol_table::add_from_relobj<32, false>(
2648 Sized_relobj<32, false>* relobj,
2649 const unsigned char* syms,
2650 size_t count,
2651 size_t symndx_offset,
2652 const char* sym_names,
2653 size_t sym_name_size,
2654 Sized_relobj<32, true>::Symbols* sympointers,
2655 size_t* defined);
2656 #endif
2657
2658 #ifdef HAVE_TARGET_32_BIG
2659 template
2660 void
2661 Symbol_table::add_from_relobj<32, true>(
2662 Sized_relobj<32, true>* relobj,
2663 const unsigned char* syms,
2664 size_t count,
2665 size_t symndx_offset,
2666 const char* sym_names,
2667 size_t sym_name_size,
2668 Sized_relobj<32, false>::Symbols* sympointers,
2669 size_t* defined);
2670 #endif
2671
2672 #ifdef HAVE_TARGET_64_LITTLE
2673 template
2674 void
2675 Symbol_table::add_from_relobj<64, false>(
2676 Sized_relobj<64, false>* relobj,
2677 const unsigned char* syms,
2678 size_t count,
2679 size_t symndx_offset,
2680 const char* sym_names,
2681 size_t sym_name_size,
2682 Sized_relobj<64, true>::Symbols* sympointers,
2683 size_t* defined);
2684 #endif
2685
2686 #ifdef HAVE_TARGET_64_BIG
2687 template
2688 void
2689 Symbol_table::add_from_relobj<64, true>(
2690 Sized_relobj<64, true>* relobj,
2691 const unsigned char* syms,
2692 size_t count,
2693 size_t symndx_offset,
2694 const char* sym_names,
2695 size_t sym_name_size,
2696 Sized_relobj<64, false>::Symbols* sympointers,
2697 size_t* defined);
2698 #endif
2699
2700 #ifdef HAVE_TARGET_32_LITTLE
2701 template
2702 void
2703 Symbol_table::add_from_dynobj<32, false>(
2704 Sized_dynobj<32, false>* dynobj,
2705 const unsigned char* syms,
2706 size_t count,
2707 const char* sym_names,
2708 size_t sym_name_size,
2709 const unsigned char* versym,
2710 size_t versym_size,
2711 const std::vector<const char*>* version_map,
2712 Sized_relobj<32, false>::Symbols* sympointers,
2713 size_t* defined);
2714 #endif
2715
2716 #ifdef HAVE_TARGET_32_BIG
2717 template
2718 void
2719 Symbol_table::add_from_dynobj<32, true>(
2720 Sized_dynobj<32, true>* dynobj,
2721 const unsigned char* syms,
2722 size_t count,
2723 const char* sym_names,
2724 size_t sym_name_size,
2725 const unsigned char* versym,
2726 size_t versym_size,
2727 const std::vector<const char*>* version_map,
2728 Sized_relobj<32, true>::Symbols* sympointers,
2729 size_t* defined);
2730 #endif
2731
2732 #ifdef HAVE_TARGET_64_LITTLE
2733 template
2734 void
2735 Symbol_table::add_from_dynobj<64, false>(
2736 Sized_dynobj<64, false>* dynobj,
2737 const unsigned char* syms,
2738 size_t count,
2739 const char* sym_names,
2740 size_t sym_name_size,
2741 const unsigned char* versym,
2742 size_t versym_size,
2743 const std::vector<const char*>* version_map,
2744 Sized_relobj<64, false>::Symbols* sympointers,
2745 size_t* defined);
2746 #endif
2747
2748 #ifdef HAVE_TARGET_64_BIG
2749 template
2750 void
2751 Symbol_table::add_from_dynobj<64, true>(
2752 Sized_dynobj<64, true>* dynobj,
2753 const unsigned char* syms,
2754 size_t count,
2755 const char* sym_names,
2756 size_t sym_name_size,
2757 const unsigned char* versym,
2758 size_t versym_size,
2759 const std::vector<const char*>* version_map,
2760 Sized_relobj<64, true>::Symbols* sympointers,
2761 size_t* defined);
2762 #endif
2763
2764 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2765 template
2766 void
2767 Symbol_table::define_with_copy_reloc<32>(
2768 Sized_symbol<32>* sym,
2769 Output_data* posd,
2770 elfcpp::Elf_types<32>::Elf_Addr value);
2771 #endif
2772
2773 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2774 template
2775 void
2776 Symbol_table::define_with_copy_reloc<64>(
2777 Sized_symbol<64>* sym,
2778 Output_data* posd,
2779 elfcpp::Elf_types<64>::Elf_Addr value);
2780 #endif
2781
2782 #ifdef HAVE_TARGET_32_LITTLE
2783 template
2784 void
2785 Warnings::issue_warning<32, false>(const Symbol* sym,
2786 const Relocate_info<32, false>* relinfo,
2787 size_t relnum, off_t reloffset) const;
2788 #endif
2789
2790 #ifdef HAVE_TARGET_32_BIG
2791 template
2792 void
2793 Warnings::issue_warning<32, true>(const Symbol* sym,
2794 const Relocate_info<32, true>* relinfo,
2795 size_t relnum, off_t reloffset) const;
2796 #endif
2797
2798 #ifdef HAVE_TARGET_64_LITTLE
2799 template
2800 void
2801 Warnings::issue_warning<64, false>(const Symbol* sym,
2802 const Relocate_info<64, false>* relinfo,
2803 size_t relnum, off_t reloffset) const;
2804 #endif
2805
2806 #ifdef HAVE_TARGET_64_BIG
2807 template
2808 void
2809 Warnings::issue_warning<64, true>(const Symbol* sym,
2810 const Relocate_info<64, true>* relinfo,
2811 size_t relnum, off_t reloffset) const;
2812 #endif
2813
2814 } // End namespace gold.
This page took 0.124096 seconds and 5 git commands to generate.