* symtab.cc (Symbol_table::do_define_as_constant): Don't force a
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "object.h"
34 #include "dwarf_reader.h"
35 #include "dynobj.h"
36 #include "output.h"
37 #include "target.h"
38 #include "workqueue.h"
39 #include "symtab.h"
40
41 namespace gold
42 {
43
44 // Class Symbol.
45
46 // Initialize fields in Symbol. This initializes everything except u_
47 // and source_.
48
49 void
50 Symbol::init_fields(const char* name, const char* version,
51 elfcpp::STT type, elfcpp::STB binding,
52 elfcpp::STV visibility, unsigned char nonvis)
53 {
54 this->name_ = name;
55 this->version_ = version;
56 this->symtab_index_ = 0;
57 this->dynsym_index_ = 0;
58 this->got_offsets_.init();
59 this->plt_offset_ = 0;
60 this->type_ = type;
61 this->binding_ = binding;
62 this->visibility_ = visibility;
63 this->nonvis_ = nonvis;
64 this->is_target_special_ = false;
65 this->is_def_ = false;
66 this->is_forwarder_ = false;
67 this->has_alias_ = false;
68 this->needs_dynsym_entry_ = false;
69 this->in_reg_ = false;
70 this->in_dyn_ = false;
71 this->has_plt_offset_ = false;
72 this->has_warning_ = false;
73 this->is_copied_from_dynobj_ = false;
74 this->is_forced_local_ = false;
75 }
76
77 // Return the demangled version of the symbol's name, but only
78 // if the --demangle flag was set.
79
80 static std::string
81 demangle(const char* name)
82 {
83 if (!parameters->options().do_demangle())
84 return name;
85
86 // cplus_demangle allocates memory for the result it returns,
87 // and returns NULL if the name is already demangled.
88 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
89 if (demangled_name == NULL)
90 return name;
91
92 std::string retval(demangled_name);
93 free(demangled_name);
94 return retval;
95 }
96
97 std::string
98 Symbol::demangled_name() const
99 {
100 return demangle(this->name());
101 }
102
103 // Initialize the fields in the base class Symbol for SYM in OBJECT.
104
105 template<int size, bool big_endian>
106 void
107 Symbol::init_base(const char* name, const char* version, Object* object,
108 const elfcpp::Sym<size, big_endian>& sym)
109 {
110 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
111 sym.get_st_visibility(), sym.get_st_nonvis());
112 this->u_.from_object.object = object;
113 // FIXME: Handle SHN_XINDEX.
114 this->u_.from_object.shndx = sym.get_st_shndx();
115 this->source_ = FROM_OBJECT;
116 this->in_reg_ = !object->is_dynamic();
117 this->in_dyn_ = object->is_dynamic();
118 }
119
120 // Initialize the fields in the base class Symbol for a symbol defined
121 // in an Output_data.
122
123 void
124 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
125 elfcpp::STB binding, elfcpp::STV visibility,
126 unsigned char nonvis, bool offset_is_from_end)
127 {
128 this->init_fields(name, NULL, type, binding, visibility, nonvis);
129 this->u_.in_output_data.output_data = od;
130 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
131 this->source_ = IN_OUTPUT_DATA;
132 this->in_reg_ = true;
133 }
134
135 // Initialize the fields in the base class Symbol for a symbol defined
136 // in an Output_segment.
137
138 void
139 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
140 elfcpp::STB binding, elfcpp::STV visibility,
141 unsigned char nonvis, Segment_offset_base offset_base)
142 {
143 this->init_fields(name, NULL, type, binding, visibility, nonvis);
144 this->u_.in_output_segment.output_segment = os;
145 this->u_.in_output_segment.offset_base = offset_base;
146 this->source_ = IN_OUTPUT_SEGMENT;
147 this->in_reg_ = true;
148 }
149
150 // Initialize the fields in the base class Symbol for a symbol defined
151 // as a constant.
152
153 void
154 Symbol::init_base(const char* name, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis)
157 {
158 this->init_fields(name, NULL, type, binding, visibility, nonvis);
159 this->source_ = CONSTANT;
160 this->in_reg_ = true;
161 }
162
163 // Allocate a common symbol in the base.
164
165 void
166 Symbol::allocate_base_common(Output_data* od)
167 {
168 gold_assert(this->is_common());
169 this->source_ = IN_OUTPUT_DATA;
170 this->u_.in_output_data.output_data = od;
171 this->u_.in_output_data.offset_is_from_end = false;
172 }
173
174 // Initialize the fields in Sized_symbol for SYM in OBJECT.
175
176 template<int size>
177 template<bool big_endian>
178 void
179 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
180 const elfcpp::Sym<size, big_endian>& sym)
181 {
182 this->init_base(name, version, object, sym);
183 this->value_ = sym.get_st_value();
184 this->symsize_ = sym.get_st_size();
185 }
186
187 // Initialize the fields in Sized_symbol for a symbol defined in an
188 // Output_data.
189
190 template<int size>
191 void
192 Sized_symbol<size>::init(const char* name, Output_data* od,
193 Value_type value, Size_type symsize,
194 elfcpp::STT type, elfcpp::STB binding,
195 elfcpp::STV visibility, unsigned char nonvis,
196 bool offset_is_from_end)
197 {
198 this->init_base(name, od, type, binding, visibility, nonvis,
199 offset_is_from_end);
200 this->value_ = value;
201 this->symsize_ = symsize;
202 }
203
204 // Initialize the fields in Sized_symbol for a symbol defined in an
205 // Output_segment.
206
207 template<int size>
208 void
209 Sized_symbol<size>::init(const char* name, Output_segment* os,
210 Value_type value, Size_type symsize,
211 elfcpp::STT type, elfcpp::STB binding,
212 elfcpp::STV visibility, unsigned char nonvis,
213 Segment_offset_base offset_base)
214 {
215 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
216 this->value_ = value;
217 this->symsize_ = symsize;
218 }
219
220 // Initialize the fields in Sized_symbol for a symbol defined as a
221 // constant.
222
223 template<int size>
224 void
225 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
226 elfcpp::STT type, elfcpp::STB binding,
227 elfcpp::STV visibility, unsigned char nonvis)
228 {
229 this->init_base(name, type, binding, visibility, nonvis);
230 this->value_ = value;
231 this->symsize_ = symsize;
232 }
233
234 // Allocate a common symbol.
235
236 template<int size>
237 void
238 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
239 {
240 this->allocate_base_common(od);
241 this->value_ = value;
242 }
243
244 // Return true if this symbol should be added to the dynamic symbol
245 // table.
246
247 inline bool
248 Symbol::should_add_dynsym_entry() const
249 {
250 // If the symbol is used by a dynamic relocation, we need to add it.
251 if (this->needs_dynsym_entry())
252 return true;
253
254 // If the symbol was forced local in a version script, do not add it.
255 if (this->is_forced_local())
256 return false;
257
258 // If exporting all symbols or building a shared library,
259 // and the symbol is defined in a regular object and is
260 // externally visible, we need to add it.
261 if ((parameters->options().export_dynamic() || parameters->options().shared())
262 && !this->is_from_dynobj()
263 && this->is_externally_visible())
264 return true;
265
266 return false;
267 }
268
269 // Return true if the final value of this symbol is known at link
270 // time.
271
272 bool
273 Symbol::final_value_is_known() const
274 {
275 // If we are not generating an executable, then no final values are
276 // known, since they will change at runtime.
277 if (parameters->options().shared() || parameters->options().relocatable())
278 return false;
279
280 // If the symbol is not from an object file, then it is defined, and
281 // known.
282 if (this->source_ != FROM_OBJECT)
283 return true;
284
285 // If the symbol is from a dynamic object, then the final value is
286 // not known.
287 if (this->object()->is_dynamic())
288 return false;
289
290 // If the symbol is not undefined (it is defined or common), then
291 // the final value is known.
292 if (!this->is_undefined())
293 return true;
294
295 // If the symbol is undefined, then whether the final value is known
296 // depends on whether we are doing a static link. If we are doing a
297 // dynamic link, then the final value could be filled in at runtime.
298 // This could reasonably be the case for a weak undefined symbol.
299 return parameters->doing_static_link();
300 }
301
302 // Return the output section where this symbol is defined.
303
304 Output_section*
305 Symbol::output_section() const
306 {
307 switch (this->source_)
308 {
309 case FROM_OBJECT:
310 {
311 unsigned int shndx = this->u_.from_object.shndx;
312 if (shndx != elfcpp::SHN_UNDEF && shndx < elfcpp::SHN_LORESERVE)
313 {
314 gold_assert(!this->u_.from_object.object->is_dynamic());
315 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
316 section_offset_type dummy;
317 return relobj->output_section(shndx, &dummy);
318 }
319 return NULL;
320 }
321
322 case IN_OUTPUT_DATA:
323 return this->u_.in_output_data.output_data->output_section();
324
325 case IN_OUTPUT_SEGMENT:
326 case CONSTANT:
327 return NULL;
328
329 default:
330 gold_unreachable();
331 }
332 }
333
334 // Set the symbol's output section. This is used for symbols defined
335 // in scripts. This should only be called after the symbol table has
336 // been finalized.
337
338 void
339 Symbol::set_output_section(Output_section* os)
340 {
341 switch (this->source_)
342 {
343 case FROM_OBJECT:
344 case IN_OUTPUT_DATA:
345 gold_assert(this->output_section() == os);
346 break;
347 case CONSTANT:
348 this->source_ = IN_OUTPUT_DATA;
349 this->u_.in_output_data.output_data = os;
350 this->u_.in_output_data.offset_is_from_end = false;
351 break;
352 case IN_OUTPUT_SEGMENT:
353 default:
354 gold_unreachable();
355 }
356 }
357
358 // Class Symbol_table.
359
360 Symbol_table::Symbol_table(unsigned int count,
361 const Version_script_info& version_script)
362 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
363 forwarders_(), commons_(), forced_locals_(), warnings_(),
364 version_script_(version_script)
365 {
366 namepool_.reserve(count);
367 }
368
369 Symbol_table::~Symbol_table()
370 {
371 }
372
373 // The hash function. The key values are Stringpool keys.
374
375 inline size_t
376 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
377 {
378 return key.first ^ key.second;
379 }
380
381 // The symbol table key equality function. This is called with
382 // Stringpool keys.
383
384 inline bool
385 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
386 const Symbol_table_key& k2) const
387 {
388 return k1.first == k2.first && k1.second == k2.second;
389 }
390
391 // Make TO a symbol which forwards to FROM.
392
393 void
394 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
395 {
396 gold_assert(from != to);
397 gold_assert(!from->is_forwarder() && !to->is_forwarder());
398 this->forwarders_[from] = to;
399 from->set_forwarder();
400 }
401
402 // Resolve the forwards from FROM, returning the real symbol.
403
404 Symbol*
405 Symbol_table::resolve_forwards(const Symbol* from) const
406 {
407 gold_assert(from->is_forwarder());
408 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
409 this->forwarders_.find(from);
410 gold_assert(p != this->forwarders_.end());
411 return p->second;
412 }
413
414 // Look up a symbol by name.
415
416 Symbol*
417 Symbol_table::lookup(const char* name, const char* version) const
418 {
419 Stringpool::Key name_key;
420 name = this->namepool_.find(name, &name_key);
421 if (name == NULL)
422 return NULL;
423
424 Stringpool::Key version_key = 0;
425 if (version != NULL)
426 {
427 version = this->namepool_.find(version, &version_key);
428 if (version == NULL)
429 return NULL;
430 }
431
432 Symbol_table_key key(name_key, version_key);
433 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
434 if (p == this->table_.end())
435 return NULL;
436 return p->second;
437 }
438
439 // Resolve a Symbol with another Symbol. This is only used in the
440 // unusual case where there are references to both an unversioned
441 // symbol and a symbol with a version, and we then discover that that
442 // version is the default version. Because this is unusual, we do
443 // this the slow way, by converting back to an ELF symbol.
444
445 template<int size, bool big_endian>
446 void
447 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
448 const char* version)
449 {
450 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
451 elfcpp::Sym_write<size, big_endian> esym(buf);
452 // We don't bother to set the st_name field.
453 esym.put_st_value(from->value());
454 esym.put_st_size(from->symsize());
455 esym.put_st_info(from->binding(), from->type());
456 esym.put_st_other(from->visibility(), from->nonvis());
457 esym.put_st_shndx(from->shndx());
458 this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
459 if (from->in_reg())
460 to->set_in_reg();
461 if (from->in_dyn())
462 to->set_in_dyn();
463 }
464
465 // Record that a symbol is forced to be local by a version script.
466
467 void
468 Symbol_table::force_local(Symbol* sym)
469 {
470 if (!sym->is_defined() && !sym->is_common())
471 return;
472 if (sym->is_forced_local())
473 {
474 // We already got this one.
475 return;
476 }
477 sym->set_is_forced_local();
478 this->forced_locals_.push_back(sym);
479 }
480
481 // Add one symbol from OBJECT to the symbol table. NAME is symbol
482 // name and VERSION is the version; both are canonicalized. DEF is
483 // whether this is the default version.
484
485 // If DEF is true, then this is the definition of a default version of
486 // a symbol. That means that any lookup of NAME/NULL and any lookup
487 // of NAME/VERSION should always return the same symbol. This is
488 // obvious for references, but in particular we want to do this for
489 // definitions: overriding NAME/NULL should also override
490 // NAME/VERSION. If we don't do that, it would be very hard to
491 // override functions in a shared library which uses versioning.
492
493 // We implement this by simply making both entries in the hash table
494 // point to the same Symbol structure. That is easy enough if this is
495 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
496 // that we have seen both already, in which case they will both have
497 // independent entries in the symbol table. We can't simply change
498 // the symbol table entry, because we have pointers to the entries
499 // attached to the object files. So we mark the entry attached to the
500 // object file as a forwarder, and record it in the forwarders_ map.
501 // Note that entries in the hash table will never be marked as
502 // forwarders.
503 //
504 // SYM and ORIG_SYM are almost always the same. ORIG_SYM is the
505 // symbol exactly as it existed in the input file. SYM is usually
506 // that as well, but can be modified, for instance if we determine
507 // it's in a to-be-discarded section.
508
509 template<int size, bool big_endian>
510 Sized_symbol<size>*
511 Symbol_table::add_from_object(Object* object,
512 const char *name,
513 Stringpool::Key name_key,
514 const char *version,
515 Stringpool::Key version_key,
516 bool def,
517 const elfcpp::Sym<size, big_endian>& sym,
518 const elfcpp::Sym<size, big_endian>& orig_sym)
519 {
520 Symbol* const snull = NULL;
521 std::pair<typename Symbol_table_type::iterator, bool> ins =
522 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
523 snull));
524
525 std::pair<typename Symbol_table_type::iterator, bool> insdef =
526 std::make_pair(this->table_.end(), false);
527 if (def)
528 {
529 const Stringpool::Key vnull_key = 0;
530 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
531 vnull_key),
532 snull));
533 }
534
535 // ins.first: an iterator, which is a pointer to a pair.
536 // ins.first->first: the key (a pair of name and version).
537 // ins.first->second: the value (Symbol*).
538 // ins.second: true if new entry was inserted, false if not.
539
540 Sized_symbol<size>* ret;
541 bool was_undefined;
542 bool was_common;
543 if (!ins.second)
544 {
545 // We already have an entry for NAME/VERSION.
546 ret = this->get_sized_symbol<size>(ins.first->second);
547 gold_assert(ret != NULL);
548
549 was_undefined = ret->is_undefined();
550 was_common = ret->is_common();
551
552 this->resolve(ret, sym, orig_sym, object, version);
553
554 if (def)
555 {
556 if (insdef.second)
557 {
558 // This is the first time we have seen NAME/NULL. Make
559 // NAME/NULL point to NAME/VERSION.
560 insdef.first->second = ret;
561 }
562 else if (insdef.first->second != ret
563 && insdef.first->second->is_undefined())
564 {
565 // This is the unfortunate case where we already have
566 // entries for both NAME/VERSION and NAME/NULL. Note
567 // that we don't want to combine them if the existing
568 // symbol is going to override the new one. FIXME: We
569 // currently just test is_undefined, but this may not do
570 // the right thing if the existing symbol is from a
571 // shared library and the new one is from a regular
572 // object.
573
574 const Sized_symbol<size>* sym2;
575 sym2 = this->get_sized_symbol<size>(insdef.first->second);
576 Symbol_table::resolve<size, big_endian>(ret, sym2, version);
577 this->make_forwarder(insdef.first->second, ret);
578 insdef.first->second = ret;
579 }
580 else
581 def = false;
582 }
583 }
584 else
585 {
586 // This is the first time we have seen NAME/VERSION.
587 gold_assert(ins.first->second == NULL);
588
589 if (def && !insdef.second)
590 {
591 // We already have an entry for NAME/NULL. If we override
592 // it, then change it to NAME/VERSION.
593 ret = this->get_sized_symbol<size>(insdef.first->second);
594
595 was_undefined = ret->is_undefined();
596 was_common = ret->is_common();
597
598 this->resolve(ret, sym, orig_sym, object, version);
599 ins.first->second = ret;
600 }
601 else
602 {
603 was_undefined = false;
604 was_common = false;
605
606 Sized_target<size, big_endian>* target =
607 object->sized_target<size, big_endian>();
608 if (!target->has_make_symbol())
609 ret = new Sized_symbol<size>();
610 else
611 {
612 ret = target->make_symbol();
613 if (ret == NULL)
614 {
615 // This means that we don't want a symbol table
616 // entry after all.
617 if (!def)
618 this->table_.erase(ins.first);
619 else
620 {
621 this->table_.erase(insdef.first);
622 // Inserting insdef invalidated ins.
623 this->table_.erase(std::make_pair(name_key,
624 version_key));
625 }
626 return NULL;
627 }
628 }
629
630 ret->init(name, version, object, sym);
631
632 ins.first->second = ret;
633 if (def)
634 {
635 // This is the first time we have seen NAME/NULL. Point
636 // it at the new entry for NAME/VERSION.
637 gold_assert(insdef.second);
638 insdef.first->second = ret;
639 }
640 }
641 }
642
643 // Record every time we see a new undefined symbol, to speed up
644 // archive groups.
645 if (!was_undefined && ret->is_undefined())
646 ++this->saw_undefined_;
647
648 // Keep track of common symbols, to speed up common symbol
649 // allocation.
650 if (!was_common && ret->is_common())
651 this->commons_.push_back(ret);
652
653 if (def)
654 ret->set_is_default();
655 return ret;
656 }
657
658 // Add all the symbols in a relocatable object to the hash table.
659
660 template<int size, bool big_endian>
661 void
662 Symbol_table::add_from_relobj(
663 Sized_relobj<size, big_endian>* relobj,
664 const unsigned char* syms,
665 size_t count,
666 const char* sym_names,
667 size_t sym_name_size,
668 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
669 {
670 gold_assert(size == relobj->target()->get_size());
671 gold_assert(size == parameters->target().get_size());
672
673 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
674
675 const bool just_symbols = relobj->just_symbols();
676
677 const unsigned char* p = syms;
678 for (size_t i = 0; i < count; ++i, p += sym_size)
679 {
680 elfcpp::Sym<size, big_endian> sym(p);
681 elfcpp::Sym<size, big_endian>* psym = &sym;
682
683 unsigned int st_name = psym->get_st_name();
684 if (st_name >= sym_name_size)
685 {
686 relobj->error(_("bad global symbol name offset %u at %zu"),
687 st_name, i);
688 continue;
689 }
690
691 const char* name = sym_names + st_name;
692
693 // A symbol defined in a section which we are not including must
694 // be treated as an undefined symbol.
695 unsigned char symbuf[sym_size];
696 elfcpp::Sym<size, big_endian> sym2(symbuf);
697 unsigned int st_shndx = psym->get_st_shndx();
698 if (st_shndx != elfcpp::SHN_UNDEF
699 && st_shndx < elfcpp::SHN_LORESERVE
700 && !relobj->is_section_included(st_shndx))
701 {
702 memcpy(symbuf, p, sym_size);
703 elfcpp::Sym_write<size, big_endian> sw(symbuf);
704 sw.put_st_shndx(elfcpp::SHN_UNDEF);
705 psym = &sym2;
706 }
707
708 // In an object file, an '@' in the name separates the symbol
709 // name from the version name. If there are two '@' characters,
710 // this is the default version.
711 const char* ver = strchr(name, '@');
712 int namelen = 0;
713 // DEF: is the version default? LOCAL: is the symbol forced local?
714 bool def = false;
715 bool local = false;
716
717 if (ver != NULL)
718 {
719 // The symbol name is of the form foo@VERSION or foo@@VERSION
720 namelen = ver - name;
721 ++ver;
722 if (*ver == '@')
723 {
724 def = true;
725 ++ver;
726 }
727 }
728 // We don't want to assign a version to an undefined symbol,
729 // even if it is listed in the version script. FIXME: What
730 // about a common symbol?
731 else if (!version_script_.empty()
732 && psym->get_st_shndx() != elfcpp::SHN_UNDEF)
733 {
734 // The symbol name did not have a version, but
735 // the version script may assign a version anyway.
736 namelen = strlen(name);
737 def = true;
738 // Check the global: entries from the version script.
739 const std::string& version =
740 version_script_.get_symbol_version(name);
741 if (!version.empty())
742 ver = version.c_str();
743 // Check the local: entries from the version script
744 if (version_script_.symbol_is_local(name))
745 local = true;
746 }
747
748 if (just_symbols)
749 {
750 if (psym != &sym2)
751 memcpy(symbuf, p, sym_size);
752 elfcpp::Sym_write<size, big_endian> sw(symbuf);
753 sw.put_st_shndx(elfcpp::SHN_ABS);
754 if (st_shndx != elfcpp::SHN_UNDEF
755 && st_shndx < elfcpp::SHN_LORESERVE)
756 {
757 // Symbol values in object files are section relative.
758 // This is normally what we want, but since here we are
759 // converting the symbol to absolute we need to add the
760 // section address. The section address in an object
761 // file is normally zero, but people can use a linker
762 // script to change it.
763 sw.put_st_value(sym2.get_st_value()
764 + relobj->section_address(st_shndx));
765 }
766 psym = &sym2;
767 }
768
769 Sized_symbol<size>* res;
770 if (ver == NULL)
771 {
772 Stringpool::Key name_key;
773 name = this->namepool_.add(name, true, &name_key);
774 res = this->add_from_object(relobj, name, name_key, NULL, 0,
775 false, *psym, sym);
776 if (local)
777 this->force_local(res);
778 }
779 else
780 {
781 Stringpool::Key name_key;
782 name = this->namepool_.add_with_length(name, namelen, true,
783 &name_key);
784 Stringpool::Key ver_key;
785 ver = this->namepool_.add(ver, true, &ver_key);
786
787 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
788 def, *psym, sym);
789 }
790
791 (*sympointers)[i] = res;
792 }
793 }
794
795 // Add all the symbols in a dynamic object to the hash table.
796
797 template<int size, bool big_endian>
798 void
799 Symbol_table::add_from_dynobj(
800 Sized_dynobj<size, big_endian>* dynobj,
801 const unsigned char* syms,
802 size_t count,
803 const char* sym_names,
804 size_t sym_name_size,
805 const unsigned char* versym,
806 size_t versym_size,
807 const std::vector<const char*>* version_map)
808 {
809 gold_assert(size == dynobj->target()->get_size());
810 gold_assert(size == parameters->target().get_size());
811
812 if (dynobj->just_symbols())
813 {
814 gold_error(_("--just-symbols does not make sense with a shared object"));
815 return;
816 }
817
818 if (versym != NULL && versym_size / 2 < count)
819 {
820 dynobj->error(_("too few symbol versions"));
821 return;
822 }
823
824 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
825
826 // We keep a list of all STT_OBJECT symbols, so that we can resolve
827 // weak aliases. This is necessary because if the dynamic object
828 // provides the same variable under two names, one of which is a
829 // weak definition, and the regular object refers to the weak
830 // definition, we have to put both the weak definition and the
831 // strong definition into the dynamic symbol table. Given a weak
832 // definition, the only way that we can find the corresponding
833 // strong definition, if any, is to search the symbol table.
834 std::vector<Sized_symbol<size>*> object_symbols;
835
836 const unsigned char* p = syms;
837 const unsigned char* vs = versym;
838 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
839 {
840 elfcpp::Sym<size, big_endian> sym(p);
841
842 // Ignore symbols with local binding or that have
843 // internal or hidden visibility.
844 if (sym.get_st_bind() == elfcpp::STB_LOCAL
845 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
846 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
847 continue;
848
849 unsigned int st_name = sym.get_st_name();
850 if (st_name >= sym_name_size)
851 {
852 dynobj->error(_("bad symbol name offset %u at %zu"),
853 st_name, i);
854 continue;
855 }
856
857 const char* name = sym_names + st_name;
858
859 Sized_symbol<size>* res;
860
861 if (versym == NULL)
862 {
863 Stringpool::Key name_key;
864 name = this->namepool_.add(name, true, &name_key);
865 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
866 false, sym, sym);
867 }
868 else
869 {
870 // Read the version information.
871
872 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
873
874 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
875 v &= elfcpp::VERSYM_VERSION;
876
877 // The Sun documentation says that V can be VER_NDX_LOCAL,
878 // or VER_NDX_GLOBAL, or a version index. The meaning of
879 // VER_NDX_LOCAL is defined as "Symbol has local scope."
880 // The old GNU linker will happily generate VER_NDX_LOCAL
881 // for an undefined symbol. I don't know what the Sun
882 // linker will generate.
883
884 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
885 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
886 {
887 // This symbol should not be visible outside the object.
888 continue;
889 }
890
891 // At this point we are definitely going to add this symbol.
892 Stringpool::Key name_key;
893 name = this->namepool_.add(name, true, &name_key);
894
895 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
896 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
897 {
898 // This symbol does not have a version.
899 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
900 false, sym, sym);
901 }
902 else
903 {
904 if (v >= version_map->size())
905 {
906 dynobj->error(_("versym for symbol %zu out of range: %u"),
907 i, v);
908 continue;
909 }
910
911 const char* version = (*version_map)[v];
912 if (version == NULL)
913 {
914 dynobj->error(_("versym for symbol %zu has no name: %u"),
915 i, v);
916 continue;
917 }
918
919 Stringpool::Key version_key;
920 version = this->namepool_.add(version, true, &version_key);
921
922 // If this is an absolute symbol, and the version name
923 // and symbol name are the same, then this is the
924 // version definition symbol. These symbols exist to
925 // support using -u to pull in particular versions. We
926 // do not want to record a version for them.
927 if (sym.get_st_shndx() == elfcpp::SHN_ABS
928 && name_key == version_key)
929 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
930 false, sym, sym);
931 else
932 {
933 const bool def = (!hidden
934 && (sym.get_st_shndx()
935 != elfcpp::SHN_UNDEF));
936 res = this->add_from_object(dynobj, name, name_key, version,
937 version_key, def, sym, sym);
938 }
939 }
940 }
941
942 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
943 && sym.get_st_type() == elfcpp::STT_OBJECT)
944 object_symbols.push_back(res);
945 }
946
947 this->record_weak_aliases(&object_symbols);
948 }
949
950 // This is used to sort weak aliases. We sort them first by section
951 // index, then by offset, then by weak ahead of strong.
952
953 template<int size>
954 class Weak_alias_sorter
955 {
956 public:
957 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
958 };
959
960 template<int size>
961 bool
962 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
963 const Sized_symbol<size>* s2) const
964 {
965 if (s1->shndx() != s2->shndx())
966 return s1->shndx() < s2->shndx();
967 if (s1->value() != s2->value())
968 return s1->value() < s2->value();
969 if (s1->binding() != s2->binding())
970 {
971 if (s1->binding() == elfcpp::STB_WEAK)
972 return true;
973 if (s2->binding() == elfcpp::STB_WEAK)
974 return false;
975 }
976 return std::string(s1->name()) < std::string(s2->name());
977 }
978
979 // SYMBOLS is a list of object symbols from a dynamic object. Look
980 // for any weak aliases, and record them so that if we add the weak
981 // alias to the dynamic symbol table, we also add the corresponding
982 // strong symbol.
983
984 template<int size>
985 void
986 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
987 {
988 // Sort the vector by section index, then by offset, then by weak
989 // ahead of strong.
990 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
991
992 // Walk through the vector. For each weak definition, record
993 // aliases.
994 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
995 symbols->begin();
996 p != symbols->end();
997 ++p)
998 {
999 if ((*p)->binding() != elfcpp::STB_WEAK)
1000 continue;
1001
1002 // Build a circular list of weak aliases. Each symbol points to
1003 // the next one in the circular list.
1004
1005 Sized_symbol<size>* from_sym = *p;
1006 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1007 for (q = p + 1; q != symbols->end(); ++q)
1008 {
1009 if ((*q)->shndx() != from_sym->shndx()
1010 || (*q)->value() != from_sym->value())
1011 break;
1012
1013 this->weak_aliases_[from_sym] = *q;
1014 from_sym->set_has_alias();
1015 from_sym = *q;
1016 }
1017
1018 if (from_sym != *p)
1019 {
1020 this->weak_aliases_[from_sym] = *p;
1021 from_sym->set_has_alias();
1022 }
1023
1024 p = q - 1;
1025 }
1026 }
1027
1028 // Create and return a specially defined symbol. If ONLY_IF_REF is
1029 // true, then only create the symbol if there is a reference to it.
1030 // If this does not return NULL, it sets *POLDSYM to the existing
1031 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
1032
1033 template<int size, bool big_endian>
1034 Sized_symbol<size>*
1035 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1036 bool only_if_ref,
1037 Sized_symbol<size>** poldsym)
1038 {
1039 Symbol* oldsym;
1040 Sized_symbol<size>* sym;
1041 bool add_to_table = false;
1042 typename Symbol_table_type::iterator add_loc = this->table_.end();
1043
1044 // If the caller didn't give us a version, see if we get one from
1045 // the version script.
1046 if (*pversion == NULL)
1047 {
1048 const std::string& v(this->version_script_.get_symbol_version(*pname));
1049 if (!v.empty())
1050 *pversion = v.c_str();
1051 }
1052
1053 if (only_if_ref)
1054 {
1055 oldsym = this->lookup(*pname, *pversion);
1056 if (oldsym == NULL || !oldsym->is_undefined())
1057 return NULL;
1058
1059 *pname = oldsym->name();
1060 *pversion = oldsym->version();
1061 }
1062 else
1063 {
1064 // Canonicalize NAME and VERSION.
1065 Stringpool::Key name_key;
1066 *pname = this->namepool_.add(*pname, true, &name_key);
1067
1068 Stringpool::Key version_key = 0;
1069 if (*pversion != NULL)
1070 *pversion = this->namepool_.add(*pversion, true, &version_key);
1071
1072 Symbol* const snull = NULL;
1073 std::pair<typename Symbol_table_type::iterator, bool> ins =
1074 this->table_.insert(std::make_pair(std::make_pair(name_key,
1075 version_key),
1076 snull));
1077
1078 if (!ins.second)
1079 {
1080 // We already have a symbol table entry for NAME/VERSION.
1081 oldsym = ins.first->second;
1082 gold_assert(oldsym != NULL);
1083 }
1084 else
1085 {
1086 // We haven't seen this symbol before.
1087 gold_assert(ins.first->second == NULL);
1088 add_to_table = true;
1089 add_loc = ins.first;
1090 oldsym = NULL;
1091 }
1092 }
1093
1094 const Target& target = parameters->target();
1095 if (!target.has_make_symbol())
1096 sym = new Sized_symbol<size>();
1097 else
1098 {
1099 gold_assert(target.get_size() == size);
1100 gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1101 typedef Sized_target<size, big_endian> My_target;
1102 const My_target* sized_target =
1103 static_cast<const My_target*>(&target);
1104 sym = sized_target->make_symbol();
1105 if (sym == NULL)
1106 return NULL;
1107 }
1108
1109 if (add_to_table)
1110 add_loc->second = sym;
1111 else
1112 gold_assert(oldsym != NULL);
1113
1114 *poldsym = this->get_sized_symbol<size>(oldsym);
1115
1116 return sym;
1117 }
1118
1119 // Define a symbol based on an Output_data.
1120
1121 Symbol*
1122 Symbol_table::define_in_output_data(const char* name,
1123 const char* version,
1124 Output_data* od,
1125 uint64_t value,
1126 uint64_t symsize,
1127 elfcpp::STT type,
1128 elfcpp::STB binding,
1129 elfcpp::STV visibility,
1130 unsigned char nonvis,
1131 bool offset_is_from_end,
1132 bool only_if_ref)
1133 {
1134 if (parameters->target().get_size() == 32)
1135 {
1136 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1137 return this->do_define_in_output_data<32>(name, version, od,
1138 value, symsize, type, binding,
1139 visibility, nonvis,
1140 offset_is_from_end,
1141 only_if_ref);
1142 #else
1143 gold_unreachable();
1144 #endif
1145 }
1146 else if (parameters->target().get_size() == 64)
1147 {
1148 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1149 return this->do_define_in_output_data<64>(name, version, od,
1150 value, symsize, type, binding,
1151 visibility, nonvis,
1152 offset_is_from_end,
1153 only_if_ref);
1154 #else
1155 gold_unreachable();
1156 #endif
1157 }
1158 else
1159 gold_unreachable();
1160 }
1161
1162 // Define a symbol in an Output_data, sized version.
1163
1164 template<int size>
1165 Sized_symbol<size>*
1166 Symbol_table::do_define_in_output_data(
1167 const char* name,
1168 const char* version,
1169 Output_data* od,
1170 typename elfcpp::Elf_types<size>::Elf_Addr value,
1171 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1172 elfcpp::STT type,
1173 elfcpp::STB binding,
1174 elfcpp::STV visibility,
1175 unsigned char nonvis,
1176 bool offset_is_from_end,
1177 bool only_if_ref)
1178 {
1179 Sized_symbol<size>* sym;
1180 Sized_symbol<size>* oldsym;
1181
1182 if (parameters->target().is_big_endian())
1183 {
1184 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1185 sym = this->define_special_symbol<size, true>(&name, &version,
1186 only_if_ref, &oldsym);
1187 #else
1188 gold_unreachable();
1189 #endif
1190 }
1191 else
1192 {
1193 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1194 sym = this->define_special_symbol<size, false>(&name, &version,
1195 only_if_ref, &oldsym);
1196 #else
1197 gold_unreachable();
1198 #endif
1199 }
1200
1201 if (sym == NULL)
1202 return NULL;
1203
1204 gold_assert(version == NULL || oldsym != NULL);
1205 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1206 offset_is_from_end);
1207
1208 if (oldsym == NULL)
1209 {
1210 if (binding == elfcpp::STB_LOCAL
1211 || this->version_script_.symbol_is_local(name))
1212 this->force_local(sym);
1213 return sym;
1214 }
1215
1216 if (Symbol_table::should_override_with_special(oldsym))
1217 this->override_with_special(oldsym, sym);
1218 delete sym;
1219 return oldsym;
1220 }
1221
1222 // Define a symbol based on an Output_segment.
1223
1224 Symbol*
1225 Symbol_table::define_in_output_segment(const char* name,
1226 const char* version, Output_segment* os,
1227 uint64_t value,
1228 uint64_t symsize,
1229 elfcpp::STT type,
1230 elfcpp::STB binding,
1231 elfcpp::STV visibility,
1232 unsigned char nonvis,
1233 Symbol::Segment_offset_base offset_base,
1234 bool only_if_ref)
1235 {
1236 if (parameters->target().get_size() == 32)
1237 {
1238 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1239 return this->do_define_in_output_segment<32>(name, version, os,
1240 value, symsize, type,
1241 binding, visibility, nonvis,
1242 offset_base, only_if_ref);
1243 #else
1244 gold_unreachable();
1245 #endif
1246 }
1247 else if (parameters->target().get_size() == 64)
1248 {
1249 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1250 return this->do_define_in_output_segment<64>(name, version, os,
1251 value, symsize, type,
1252 binding, visibility, nonvis,
1253 offset_base, only_if_ref);
1254 #else
1255 gold_unreachable();
1256 #endif
1257 }
1258 else
1259 gold_unreachable();
1260 }
1261
1262 // Define a symbol in an Output_segment, sized version.
1263
1264 template<int size>
1265 Sized_symbol<size>*
1266 Symbol_table::do_define_in_output_segment(
1267 const char* name,
1268 const char* version,
1269 Output_segment* os,
1270 typename elfcpp::Elf_types<size>::Elf_Addr value,
1271 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1272 elfcpp::STT type,
1273 elfcpp::STB binding,
1274 elfcpp::STV visibility,
1275 unsigned char nonvis,
1276 Symbol::Segment_offset_base offset_base,
1277 bool only_if_ref)
1278 {
1279 Sized_symbol<size>* sym;
1280 Sized_symbol<size>* oldsym;
1281
1282 if (parameters->target().is_big_endian())
1283 {
1284 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1285 sym = this->define_special_symbol<size, true>(&name, &version,
1286 only_if_ref, &oldsym);
1287 #else
1288 gold_unreachable();
1289 #endif
1290 }
1291 else
1292 {
1293 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1294 sym = this->define_special_symbol<size, false>(&name, &version,
1295 only_if_ref, &oldsym);
1296 #else
1297 gold_unreachable();
1298 #endif
1299 }
1300
1301 if (sym == NULL)
1302 return NULL;
1303
1304 gold_assert(version == NULL || oldsym != NULL);
1305 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1306 offset_base);
1307
1308 if (oldsym == NULL)
1309 {
1310 if (binding == elfcpp::STB_LOCAL
1311 || this->version_script_.symbol_is_local(name))
1312 this->force_local(sym);
1313 return sym;
1314 }
1315
1316 if (Symbol_table::should_override_with_special(oldsym))
1317 this->override_with_special(oldsym, sym);
1318 delete sym;
1319 return oldsym;
1320 }
1321
1322 // Define a special symbol with a constant value. It is a multiple
1323 // definition error if this symbol is already defined.
1324
1325 Symbol*
1326 Symbol_table::define_as_constant(const char* name,
1327 const char* version,
1328 uint64_t value,
1329 uint64_t symsize,
1330 elfcpp::STT type,
1331 elfcpp::STB binding,
1332 elfcpp::STV visibility,
1333 unsigned char nonvis,
1334 bool only_if_ref,
1335 bool force_override)
1336 {
1337 if (parameters->target().get_size() == 32)
1338 {
1339 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1340 return this->do_define_as_constant<32>(name, version, value,
1341 symsize, type, binding,
1342 visibility, nonvis, only_if_ref,
1343 force_override);
1344 #else
1345 gold_unreachable();
1346 #endif
1347 }
1348 else if (parameters->target().get_size() == 64)
1349 {
1350 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1351 return this->do_define_as_constant<64>(name, version, value,
1352 symsize, type, binding,
1353 visibility, nonvis, only_if_ref,
1354 force_override);
1355 #else
1356 gold_unreachable();
1357 #endif
1358 }
1359 else
1360 gold_unreachable();
1361 }
1362
1363 // Define a symbol as a constant, sized version.
1364
1365 template<int size>
1366 Sized_symbol<size>*
1367 Symbol_table::do_define_as_constant(
1368 const char* name,
1369 const char* version,
1370 typename elfcpp::Elf_types<size>::Elf_Addr value,
1371 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1372 elfcpp::STT type,
1373 elfcpp::STB binding,
1374 elfcpp::STV visibility,
1375 unsigned char nonvis,
1376 bool only_if_ref,
1377 bool force_override)
1378 {
1379 Sized_symbol<size>* sym;
1380 Sized_symbol<size>* oldsym;
1381
1382 if (parameters->target().is_big_endian())
1383 {
1384 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1385 sym = this->define_special_symbol<size, true>(&name, &version,
1386 only_if_ref, &oldsym);
1387 #else
1388 gold_unreachable();
1389 #endif
1390 }
1391 else
1392 {
1393 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1394 sym = this->define_special_symbol<size, false>(&name, &version,
1395 only_if_ref, &oldsym);
1396 #else
1397 gold_unreachable();
1398 #endif
1399 }
1400
1401 if (sym == NULL)
1402 return NULL;
1403
1404 gold_assert(version == NULL || version == name || oldsym != NULL);
1405 sym->init(name, value, symsize, type, binding, visibility, nonvis);
1406
1407 if (oldsym == NULL)
1408 {
1409 // Version symbols are absolute symbols with name == version.
1410 // We don't want to force them to be local.
1411 if ((version == NULL
1412 || name != version
1413 || value != 0)
1414 && (binding == elfcpp::STB_LOCAL
1415 || this->version_script_.symbol_is_local(name)))
1416 this->force_local(sym);
1417 return sym;
1418 }
1419
1420 if (force_override || Symbol_table::should_override_with_special(oldsym))
1421 this->override_with_special(oldsym, sym);
1422 delete sym;
1423 return oldsym;
1424 }
1425
1426 // Define a set of symbols in output sections.
1427
1428 void
1429 Symbol_table::define_symbols(const Layout* layout, int count,
1430 const Define_symbol_in_section* p,
1431 bool only_if_ref)
1432 {
1433 for (int i = 0; i < count; ++i, ++p)
1434 {
1435 Output_section* os = layout->find_output_section(p->output_section);
1436 if (os != NULL)
1437 this->define_in_output_data(p->name, NULL, os, p->value,
1438 p->size, p->type, p->binding,
1439 p->visibility, p->nonvis,
1440 p->offset_is_from_end,
1441 only_if_ref || p->only_if_ref);
1442 else
1443 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1444 p->binding, p->visibility, p->nonvis,
1445 only_if_ref || p->only_if_ref,
1446 false);
1447 }
1448 }
1449
1450 // Define a set of symbols in output segments.
1451
1452 void
1453 Symbol_table::define_symbols(const Layout* layout, int count,
1454 const Define_symbol_in_segment* p,
1455 bool only_if_ref)
1456 {
1457 for (int i = 0; i < count; ++i, ++p)
1458 {
1459 Output_segment* os = layout->find_output_segment(p->segment_type,
1460 p->segment_flags_set,
1461 p->segment_flags_clear);
1462 if (os != NULL)
1463 this->define_in_output_segment(p->name, NULL, os, p->value,
1464 p->size, p->type, p->binding,
1465 p->visibility, p->nonvis,
1466 p->offset_base,
1467 only_if_ref || p->only_if_ref);
1468 else
1469 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1470 p->binding, p->visibility, p->nonvis,
1471 only_if_ref || p->only_if_ref,
1472 false);
1473 }
1474 }
1475
1476 // Define CSYM using a COPY reloc. POSD is the Output_data where the
1477 // symbol should be defined--typically a .dyn.bss section. VALUE is
1478 // the offset within POSD.
1479
1480 template<int size>
1481 void
1482 Symbol_table::define_with_copy_reloc(
1483 Sized_symbol<size>* csym,
1484 Output_data* posd,
1485 typename elfcpp::Elf_types<size>::Elf_Addr value)
1486 {
1487 gold_assert(csym->is_from_dynobj());
1488 gold_assert(!csym->is_copied_from_dynobj());
1489 Object* object = csym->object();
1490 gold_assert(object->is_dynamic());
1491 Dynobj* dynobj = static_cast<Dynobj*>(object);
1492
1493 // Our copied variable has to override any variable in a shared
1494 // library.
1495 elfcpp::STB binding = csym->binding();
1496 if (binding == elfcpp::STB_WEAK)
1497 binding = elfcpp::STB_GLOBAL;
1498
1499 this->define_in_output_data(csym->name(), csym->version(),
1500 posd, value, csym->symsize(),
1501 csym->type(), binding,
1502 csym->visibility(), csym->nonvis(),
1503 false, false);
1504
1505 csym->set_is_copied_from_dynobj();
1506 csym->set_needs_dynsym_entry();
1507
1508 this->copied_symbol_dynobjs_[csym] = dynobj;
1509
1510 // We have now defined all aliases, but we have not entered them all
1511 // in the copied_symbol_dynobjs_ map.
1512 if (csym->has_alias())
1513 {
1514 Symbol* sym = csym;
1515 while (true)
1516 {
1517 sym = this->weak_aliases_[sym];
1518 if (sym == csym)
1519 break;
1520 gold_assert(sym->output_data() == posd);
1521
1522 sym->set_is_copied_from_dynobj();
1523 this->copied_symbol_dynobjs_[sym] = dynobj;
1524 }
1525 }
1526 }
1527
1528 // SYM is defined using a COPY reloc. Return the dynamic object where
1529 // the original definition was found.
1530
1531 Dynobj*
1532 Symbol_table::get_copy_source(const Symbol* sym) const
1533 {
1534 gold_assert(sym->is_copied_from_dynobj());
1535 Copied_symbol_dynobjs::const_iterator p =
1536 this->copied_symbol_dynobjs_.find(sym);
1537 gold_assert(p != this->copied_symbol_dynobjs_.end());
1538 return p->second;
1539 }
1540
1541 // Set the dynamic symbol indexes. INDEX is the index of the first
1542 // global dynamic symbol. Pointers to the symbols are stored into the
1543 // vector SYMS. The names are added to DYNPOOL. This returns an
1544 // updated dynamic symbol index.
1545
1546 unsigned int
1547 Symbol_table::set_dynsym_indexes(unsigned int index,
1548 std::vector<Symbol*>* syms,
1549 Stringpool* dynpool,
1550 Versions* versions)
1551 {
1552 for (Symbol_table_type::iterator p = this->table_.begin();
1553 p != this->table_.end();
1554 ++p)
1555 {
1556 Symbol* sym = p->second;
1557
1558 // Note that SYM may already have a dynamic symbol index, since
1559 // some symbols appear more than once in the symbol table, with
1560 // and without a version.
1561
1562 if (!sym->should_add_dynsym_entry())
1563 sym->set_dynsym_index(-1U);
1564 else if (!sym->has_dynsym_index())
1565 {
1566 sym->set_dynsym_index(index);
1567 ++index;
1568 syms->push_back(sym);
1569 dynpool->add(sym->name(), false, NULL);
1570
1571 // Record any version information.
1572 if (sym->version() != NULL)
1573 versions->record_version(this, dynpool, sym);
1574 }
1575 }
1576
1577 // Finish up the versions. In some cases this may add new dynamic
1578 // symbols.
1579 index = versions->finalize(this, index, syms);
1580
1581 return index;
1582 }
1583
1584 // Set the final values for all the symbols. The index of the first
1585 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1586 // file offset OFF. Add their names to POOL. Return the new file
1587 // offset. Update *PLOCAL_SYMCOUNT if necessary.
1588
1589 off_t
1590 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1591 size_t dyncount, Stringpool* pool,
1592 unsigned int *plocal_symcount)
1593 {
1594 off_t ret;
1595
1596 gold_assert(*plocal_symcount != 0);
1597 this->first_global_index_ = *plocal_symcount;
1598
1599 this->dynamic_offset_ = dynoff;
1600 this->first_dynamic_global_index_ = dyn_global_index;
1601 this->dynamic_count_ = dyncount;
1602
1603 if (parameters->target().get_size() == 32)
1604 {
1605 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1606 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1607 #else
1608 gold_unreachable();
1609 #endif
1610 }
1611 else if (parameters->target().get_size() == 64)
1612 {
1613 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1614 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1615 #else
1616 gold_unreachable();
1617 #endif
1618 }
1619 else
1620 gold_unreachable();
1621
1622 // Now that we have the final symbol table, we can reliably note
1623 // which symbols should get warnings.
1624 this->warnings_.note_warnings(this);
1625
1626 return ret;
1627 }
1628
1629 // SYM is going into the symbol table at *PINDEX. Add the name to
1630 // POOL, update *PINDEX and *POFF.
1631
1632 template<int size>
1633 void
1634 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1635 unsigned int* pindex, off_t* poff)
1636 {
1637 sym->set_symtab_index(*pindex);
1638 pool->add(sym->name(), false, NULL);
1639 ++*pindex;
1640 *poff += elfcpp::Elf_sizes<size>::sym_size;
1641 }
1642
1643 // Set the final value for all the symbols. This is called after
1644 // Layout::finalize, so all the output sections have their final
1645 // address.
1646
1647 template<int size>
1648 off_t
1649 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1650 unsigned int* plocal_symcount)
1651 {
1652 off = align_address(off, size >> 3);
1653 this->offset_ = off;
1654
1655 unsigned int index = *plocal_symcount;
1656 const unsigned int orig_index = index;
1657
1658 // First do all the symbols which have been forced to be local, as
1659 // they must appear before all global symbols.
1660 for (Forced_locals::iterator p = this->forced_locals_.begin();
1661 p != this->forced_locals_.end();
1662 ++p)
1663 {
1664 Symbol* sym = *p;
1665 gold_assert(sym->is_forced_local());
1666 if (this->sized_finalize_symbol<size>(sym))
1667 {
1668 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1669 ++*plocal_symcount;
1670 }
1671 }
1672
1673 // Now do all the remaining symbols.
1674 for (Symbol_table_type::iterator p = this->table_.begin();
1675 p != this->table_.end();
1676 ++p)
1677 {
1678 Symbol* sym = p->second;
1679 if (this->sized_finalize_symbol<size>(sym))
1680 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1681 }
1682
1683 this->output_count_ = index - orig_index;
1684
1685 return off;
1686 }
1687
1688 // Finalize the symbol SYM. This returns true if the symbol should be
1689 // added to the symbol table, false otherwise.
1690
1691 template<int size>
1692 bool
1693 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1694 {
1695 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
1696
1697 // The default version of a symbol may appear twice in the symbol
1698 // table. We only need to finalize it once.
1699 if (sym->has_symtab_index())
1700 return false;
1701
1702 if (!sym->in_reg())
1703 {
1704 gold_assert(!sym->has_symtab_index());
1705 sym->set_symtab_index(-1U);
1706 gold_assert(sym->dynsym_index() == -1U);
1707 return false;
1708 }
1709
1710 typename Sized_symbol<size>::Value_type value;
1711
1712 switch (sym->source())
1713 {
1714 case Symbol::FROM_OBJECT:
1715 {
1716 unsigned int shndx = sym->shndx();
1717
1718 // FIXME: We need some target specific support here.
1719 if (shndx >= elfcpp::SHN_LORESERVE
1720 && shndx != elfcpp::SHN_ABS
1721 && shndx != elfcpp::SHN_COMMON)
1722 {
1723 gold_error(_("%s: unsupported symbol section 0x%x"),
1724 sym->demangled_name().c_str(), shndx);
1725 shndx = elfcpp::SHN_UNDEF;
1726 }
1727
1728 Object* symobj = sym->object();
1729 if (symobj->is_dynamic())
1730 {
1731 value = 0;
1732 shndx = elfcpp::SHN_UNDEF;
1733 }
1734 else if (shndx == elfcpp::SHN_UNDEF)
1735 value = 0;
1736 else if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
1737 value = sym->value();
1738 else
1739 {
1740 Relobj* relobj = static_cast<Relobj*>(symobj);
1741 section_offset_type secoff;
1742 Output_section* os = relobj->output_section(shndx, &secoff);
1743
1744 if (os == NULL)
1745 {
1746 sym->set_symtab_index(-1U);
1747 gold_assert(sym->dynsym_index() == -1U);
1748 return false;
1749 }
1750
1751 if (sym->type() == elfcpp::STT_TLS)
1752 value = sym->value() + os->tls_offset() + secoff;
1753 else
1754 value = sym->value() + os->address() + secoff;
1755 }
1756 }
1757 break;
1758
1759 case Symbol::IN_OUTPUT_DATA:
1760 {
1761 Output_data* od = sym->output_data();
1762 value = sym->value() + od->address();
1763 if (sym->offset_is_from_end())
1764 value += od->data_size();
1765 }
1766 break;
1767
1768 case Symbol::IN_OUTPUT_SEGMENT:
1769 {
1770 Output_segment* os = sym->output_segment();
1771 value = sym->value() + os->vaddr();
1772 switch (sym->offset_base())
1773 {
1774 case Symbol::SEGMENT_START:
1775 break;
1776 case Symbol::SEGMENT_END:
1777 value += os->memsz();
1778 break;
1779 case Symbol::SEGMENT_BSS:
1780 value += os->filesz();
1781 break;
1782 default:
1783 gold_unreachable();
1784 }
1785 }
1786 break;
1787
1788 case Symbol::CONSTANT:
1789 value = sym->value();
1790 break;
1791
1792 default:
1793 gold_unreachable();
1794 }
1795
1796 sym->set_value(value);
1797
1798 if (parameters->options().strip_all())
1799 {
1800 sym->set_symtab_index(-1U);
1801 return false;
1802 }
1803
1804 return true;
1805 }
1806
1807 // Write out the global symbols.
1808
1809 void
1810 Symbol_table::write_globals(const Input_objects* input_objects,
1811 const Stringpool* sympool,
1812 const Stringpool* dynpool, Output_file* of) const
1813 {
1814 switch (parameters->size_and_endianness())
1815 {
1816 #ifdef HAVE_TARGET_32_LITTLE
1817 case Parameters::TARGET_32_LITTLE:
1818 this->sized_write_globals<32, false>(input_objects, sympool,
1819 dynpool, of);
1820 break;
1821 #endif
1822 #ifdef HAVE_TARGET_32_BIG
1823 case Parameters::TARGET_32_BIG:
1824 this->sized_write_globals<32, true>(input_objects, sympool,
1825 dynpool, of);
1826 break;
1827 #endif
1828 #ifdef HAVE_TARGET_64_LITTLE
1829 case Parameters::TARGET_64_LITTLE:
1830 this->sized_write_globals<64, false>(input_objects, sympool,
1831 dynpool, of);
1832 break;
1833 #endif
1834 #ifdef HAVE_TARGET_64_BIG
1835 case Parameters::TARGET_64_BIG:
1836 this->sized_write_globals<64, true>(input_objects, sympool,
1837 dynpool, of);
1838 break;
1839 #endif
1840 default:
1841 gold_unreachable();
1842 }
1843 }
1844
1845 // Write out the global symbols.
1846
1847 template<int size, bool big_endian>
1848 void
1849 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1850 const Stringpool* sympool,
1851 const Stringpool* dynpool,
1852 Output_file* of) const
1853 {
1854 const Target& target = parameters->target();
1855
1856 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1857
1858 const unsigned int output_count = this->output_count_;
1859 const section_size_type oview_size = output_count * sym_size;
1860 const unsigned int first_global_index = this->first_global_index_;
1861 unsigned char* psyms;
1862 if (this->offset_ == 0 || output_count == 0)
1863 psyms = NULL;
1864 else
1865 psyms = of->get_output_view(this->offset_, oview_size);
1866
1867 const unsigned int dynamic_count = this->dynamic_count_;
1868 const section_size_type dynamic_size = dynamic_count * sym_size;
1869 const unsigned int first_dynamic_global_index =
1870 this->first_dynamic_global_index_;
1871 unsigned char* dynamic_view;
1872 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
1873 dynamic_view = NULL;
1874 else
1875 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1876
1877 for (Symbol_table_type::const_iterator p = this->table_.begin();
1878 p != this->table_.end();
1879 ++p)
1880 {
1881 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1882
1883 // Possibly warn about unresolved symbols in shared libraries.
1884 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1885
1886 unsigned int sym_index = sym->symtab_index();
1887 unsigned int dynsym_index;
1888 if (dynamic_view == NULL)
1889 dynsym_index = -1U;
1890 else
1891 dynsym_index = sym->dynsym_index();
1892
1893 if (sym_index == -1U && dynsym_index == -1U)
1894 {
1895 // This symbol is not included in the output file.
1896 continue;
1897 }
1898
1899 unsigned int shndx;
1900 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
1901 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
1902 switch (sym->source())
1903 {
1904 case Symbol::FROM_OBJECT:
1905 {
1906 unsigned int in_shndx = sym->shndx();
1907
1908 // FIXME: We need some target specific support here.
1909 if (in_shndx >= elfcpp::SHN_LORESERVE
1910 && in_shndx != elfcpp::SHN_ABS
1911 && in_shndx != elfcpp::SHN_COMMON)
1912 {
1913 gold_error(_("%s: unsupported symbol section 0x%x"),
1914 sym->demangled_name().c_str(), in_shndx);
1915 shndx = in_shndx;
1916 }
1917 else
1918 {
1919 Object* symobj = sym->object();
1920 if (symobj->is_dynamic())
1921 {
1922 if (sym->needs_dynsym_value())
1923 dynsym_value = target.dynsym_value(sym);
1924 shndx = elfcpp::SHN_UNDEF;
1925 }
1926 else if (in_shndx == elfcpp::SHN_UNDEF
1927 || in_shndx == elfcpp::SHN_ABS
1928 || in_shndx == elfcpp::SHN_COMMON)
1929 shndx = in_shndx;
1930 else
1931 {
1932 Relobj* relobj = static_cast<Relobj*>(symobj);
1933 section_offset_type secoff;
1934 Output_section* os = relobj->output_section(in_shndx,
1935 &secoff);
1936 gold_assert(os != NULL);
1937 shndx = os->out_shndx();
1938
1939 // In object files symbol values are section
1940 // relative.
1941 if (parameters->options().relocatable())
1942 sym_value -= os->address();
1943 }
1944 }
1945 }
1946 break;
1947
1948 case Symbol::IN_OUTPUT_DATA:
1949 shndx = sym->output_data()->out_shndx();
1950 break;
1951
1952 case Symbol::IN_OUTPUT_SEGMENT:
1953 shndx = elfcpp::SHN_ABS;
1954 break;
1955
1956 case Symbol::CONSTANT:
1957 shndx = elfcpp::SHN_ABS;
1958 break;
1959
1960 default:
1961 gold_unreachable();
1962 }
1963
1964 if (sym_index != -1U)
1965 {
1966 sym_index -= first_global_index;
1967 gold_assert(sym_index < output_count);
1968 unsigned char* ps = psyms + (sym_index * sym_size);
1969 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
1970 sympool, ps);
1971 }
1972
1973 if (dynsym_index != -1U)
1974 {
1975 dynsym_index -= first_dynamic_global_index;
1976 gold_assert(dynsym_index < dynamic_count);
1977 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1978 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
1979 dynpool, pd);
1980 }
1981 }
1982
1983 of->write_output_view(this->offset_, oview_size, psyms);
1984 if (dynamic_view != NULL)
1985 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1986 }
1987
1988 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
1989 // strtab holding the name.
1990
1991 template<int size, bool big_endian>
1992 void
1993 Symbol_table::sized_write_symbol(
1994 Sized_symbol<size>* sym,
1995 typename elfcpp::Elf_types<size>::Elf_Addr value,
1996 unsigned int shndx,
1997 const Stringpool* pool,
1998 unsigned char* p) const
1999 {
2000 elfcpp::Sym_write<size, big_endian> osym(p);
2001 osym.put_st_name(pool->get_offset(sym->name()));
2002 osym.put_st_value(value);
2003 osym.put_st_size(sym->symsize());
2004 // A version script may have overridden the default binding.
2005 if (sym->is_forced_local())
2006 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2007 else
2008 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2009 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2010 osym.put_st_shndx(shndx);
2011 }
2012
2013 // Check for unresolved symbols in shared libraries. This is
2014 // controlled by the --allow-shlib-undefined option.
2015
2016 // We only warn about libraries for which we have seen all the
2017 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2018 // which were not seen in this link. If we didn't see a DT_NEEDED
2019 // entry, we aren't going to be able to reliably report whether the
2020 // symbol is undefined.
2021
2022 // We also don't warn about libraries found in the system library
2023 // directory (the directory were we find libc.so); we assume that
2024 // those libraries are OK. This heuristic avoids problems in
2025 // GNU/Linux, in which -ldl can have undefined references satisfied by
2026 // ld-linux.so.
2027
2028 inline void
2029 Symbol_table::warn_about_undefined_dynobj_symbol(
2030 const Input_objects* input_objects,
2031 Symbol* sym) const
2032 {
2033 if (sym->source() == Symbol::FROM_OBJECT
2034 && sym->object()->is_dynamic()
2035 && sym->shndx() == elfcpp::SHN_UNDEF
2036 && sym->binding() != elfcpp::STB_WEAK
2037 && !parameters->options().allow_shlib_undefined()
2038 && !parameters->target().is_defined_by_abi(sym)
2039 && !input_objects->found_in_system_library_directory(sym->object()))
2040 {
2041 // A very ugly cast.
2042 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2043 if (!dynobj->has_unknown_needed_entries())
2044 gold_error(_("%s: undefined reference to '%s'"),
2045 sym->object()->name().c_str(),
2046 sym->demangled_name().c_str());
2047 }
2048 }
2049
2050 // Write out a section symbol. Return the update offset.
2051
2052 void
2053 Symbol_table::write_section_symbol(const Output_section *os,
2054 Output_file* of,
2055 off_t offset) const
2056 {
2057 switch (parameters->size_and_endianness())
2058 {
2059 #ifdef HAVE_TARGET_32_LITTLE
2060 case Parameters::TARGET_32_LITTLE:
2061 this->sized_write_section_symbol<32, false>(os, of, offset);
2062 break;
2063 #endif
2064 #ifdef HAVE_TARGET_32_BIG
2065 case Parameters::TARGET_32_BIG:
2066 this->sized_write_section_symbol<32, true>(os, of, offset);
2067 break;
2068 #endif
2069 #ifdef HAVE_TARGET_64_LITTLE
2070 case Parameters::TARGET_64_LITTLE:
2071 this->sized_write_section_symbol<64, false>(os, of, offset);
2072 break;
2073 #endif
2074 #ifdef HAVE_TARGET_64_BIG
2075 case Parameters::TARGET_64_BIG:
2076 this->sized_write_section_symbol<64, true>(os, of, offset);
2077 break;
2078 #endif
2079 default:
2080 gold_unreachable();
2081 }
2082 }
2083
2084 // Write out a section symbol, specialized for size and endianness.
2085
2086 template<int size, bool big_endian>
2087 void
2088 Symbol_table::sized_write_section_symbol(const Output_section* os,
2089 Output_file* of,
2090 off_t offset) const
2091 {
2092 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2093
2094 unsigned char* pov = of->get_output_view(offset, sym_size);
2095
2096 elfcpp::Sym_write<size, big_endian> osym(pov);
2097 osym.put_st_name(0);
2098 osym.put_st_value(os->address());
2099 osym.put_st_size(0);
2100 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2101 elfcpp::STT_SECTION));
2102 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2103 osym.put_st_shndx(os->out_shndx());
2104
2105 of->write_output_view(offset, sym_size, pov);
2106 }
2107
2108 // Print statistical information to stderr. This is used for --stats.
2109
2110 void
2111 Symbol_table::print_stats() const
2112 {
2113 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2114 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2115 program_name, this->table_.size(), this->table_.bucket_count());
2116 #else
2117 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2118 program_name, this->table_.size());
2119 #endif
2120 this->namepool_.print_stats("symbol table stringpool");
2121 }
2122
2123 // We check for ODR violations by looking for symbols with the same
2124 // name for which the debugging information reports that they were
2125 // defined in different source locations. When comparing the source
2126 // location, we consider instances with the same base filename and
2127 // line number to be the same. This is because different object
2128 // files/shared libraries can include the same header file using
2129 // different paths, and we don't want to report an ODR violation in
2130 // that case.
2131
2132 // This struct is used to compare line information, as returned by
2133 // Dwarf_line_info::one_addr2line. It implements a < comparison
2134 // operator used with std::set.
2135
2136 struct Odr_violation_compare
2137 {
2138 bool
2139 operator()(const std::string& s1, const std::string& s2) const
2140 {
2141 std::string::size_type pos1 = s1.rfind('/');
2142 std::string::size_type pos2 = s2.rfind('/');
2143 if (pos1 == std::string::npos
2144 || pos2 == std::string::npos)
2145 return s1 < s2;
2146 return s1.compare(pos1, std::string::npos,
2147 s2, pos2, std::string::npos) < 0;
2148 }
2149 };
2150
2151 // Check candidate_odr_violations_ to find symbols with the same name
2152 // but apparently different definitions (different source-file/line-no).
2153
2154 void
2155 Symbol_table::detect_odr_violations(const Task* task,
2156 const char* output_file_name) const
2157 {
2158 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2159 it != candidate_odr_violations_.end();
2160 ++it)
2161 {
2162 const char* symbol_name = it->first;
2163 // We use a sorted set so the output is deterministic.
2164 std::set<std::string, Odr_violation_compare> line_nums;
2165
2166 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2167 locs = it->second.begin();
2168 locs != it->second.end();
2169 ++locs)
2170 {
2171 // We need to lock the object in order to read it. This
2172 // means that we have to run in a singleton Task. If we
2173 // want to run this in a general Task for better
2174 // performance, we will need one Task for object, plus
2175 // appropriate locking to ensure that we don't conflict with
2176 // other uses of the object.
2177 Task_lock_obj<Object> tl(task, locs->object);
2178 std::string lineno = Dwarf_line_info::one_addr2line(
2179 locs->object, locs->shndx, locs->offset);
2180 if (!lineno.empty())
2181 line_nums.insert(lineno);
2182 }
2183
2184 if (line_nums.size() > 1)
2185 {
2186 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2187 "places (possible ODR violation):"),
2188 output_file_name, demangle(symbol_name).c_str());
2189 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2190 it2 != line_nums.end();
2191 ++it2)
2192 fprintf(stderr, " %s\n", it2->c_str());
2193 }
2194 }
2195 }
2196
2197 // Warnings functions.
2198
2199 // Add a new warning.
2200
2201 void
2202 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2203 const std::string& warning)
2204 {
2205 name = symtab->canonicalize_name(name);
2206 this->warnings_[name].set(obj, warning);
2207 }
2208
2209 // Look through the warnings and mark the symbols for which we should
2210 // warn. This is called during Layout::finalize when we know the
2211 // sources for all the symbols.
2212
2213 void
2214 Warnings::note_warnings(Symbol_table* symtab)
2215 {
2216 for (Warning_table::iterator p = this->warnings_.begin();
2217 p != this->warnings_.end();
2218 ++p)
2219 {
2220 Symbol* sym = symtab->lookup(p->first, NULL);
2221 if (sym != NULL
2222 && sym->source() == Symbol::FROM_OBJECT
2223 && sym->object() == p->second.object)
2224 sym->set_has_warning();
2225 }
2226 }
2227
2228 // Issue a warning. This is called when we see a relocation against a
2229 // symbol for which has a warning.
2230
2231 template<int size, bool big_endian>
2232 void
2233 Warnings::issue_warning(const Symbol* sym,
2234 const Relocate_info<size, big_endian>* relinfo,
2235 size_t relnum, off_t reloffset) const
2236 {
2237 gold_assert(sym->has_warning());
2238 Warning_table::const_iterator p = this->warnings_.find(sym->name());
2239 gold_assert(p != this->warnings_.end());
2240 gold_warning_at_location(relinfo, relnum, reloffset,
2241 "%s", p->second.text.c_str());
2242 }
2243
2244 // Instantiate the templates we need. We could use the configure
2245 // script to restrict this to only the ones needed for implemented
2246 // targets.
2247
2248 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2249 template
2250 void
2251 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2252 #endif
2253
2254 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2255 template
2256 void
2257 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2258 #endif
2259
2260 #ifdef HAVE_TARGET_32_LITTLE
2261 template
2262 void
2263 Symbol_table::add_from_relobj<32, false>(
2264 Sized_relobj<32, false>* relobj,
2265 const unsigned char* syms,
2266 size_t count,
2267 const char* sym_names,
2268 size_t sym_name_size,
2269 Sized_relobj<32, true>::Symbols* sympointers);
2270 #endif
2271
2272 #ifdef HAVE_TARGET_32_BIG
2273 template
2274 void
2275 Symbol_table::add_from_relobj<32, true>(
2276 Sized_relobj<32, true>* relobj,
2277 const unsigned char* syms,
2278 size_t count,
2279 const char* sym_names,
2280 size_t sym_name_size,
2281 Sized_relobj<32, false>::Symbols* sympointers);
2282 #endif
2283
2284 #ifdef HAVE_TARGET_64_LITTLE
2285 template
2286 void
2287 Symbol_table::add_from_relobj<64, false>(
2288 Sized_relobj<64, false>* relobj,
2289 const unsigned char* syms,
2290 size_t count,
2291 const char* sym_names,
2292 size_t sym_name_size,
2293 Sized_relobj<64, true>::Symbols* sympointers);
2294 #endif
2295
2296 #ifdef HAVE_TARGET_64_BIG
2297 template
2298 void
2299 Symbol_table::add_from_relobj<64, true>(
2300 Sized_relobj<64, true>* relobj,
2301 const unsigned char* syms,
2302 size_t count,
2303 const char* sym_names,
2304 size_t sym_name_size,
2305 Sized_relobj<64, false>::Symbols* sympointers);
2306 #endif
2307
2308 #ifdef HAVE_TARGET_32_LITTLE
2309 template
2310 void
2311 Symbol_table::add_from_dynobj<32, false>(
2312 Sized_dynobj<32, false>* dynobj,
2313 const unsigned char* syms,
2314 size_t count,
2315 const char* sym_names,
2316 size_t sym_name_size,
2317 const unsigned char* versym,
2318 size_t versym_size,
2319 const std::vector<const char*>* version_map);
2320 #endif
2321
2322 #ifdef HAVE_TARGET_32_BIG
2323 template
2324 void
2325 Symbol_table::add_from_dynobj<32, true>(
2326 Sized_dynobj<32, true>* dynobj,
2327 const unsigned char* syms,
2328 size_t count,
2329 const char* sym_names,
2330 size_t sym_name_size,
2331 const unsigned char* versym,
2332 size_t versym_size,
2333 const std::vector<const char*>* version_map);
2334 #endif
2335
2336 #ifdef HAVE_TARGET_64_LITTLE
2337 template
2338 void
2339 Symbol_table::add_from_dynobj<64, false>(
2340 Sized_dynobj<64, false>* dynobj,
2341 const unsigned char* syms,
2342 size_t count,
2343 const char* sym_names,
2344 size_t sym_name_size,
2345 const unsigned char* versym,
2346 size_t versym_size,
2347 const std::vector<const char*>* version_map);
2348 #endif
2349
2350 #ifdef HAVE_TARGET_64_BIG
2351 template
2352 void
2353 Symbol_table::add_from_dynobj<64, true>(
2354 Sized_dynobj<64, true>* dynobj,
2355 const unsigned char* syms,
2356 size_t count,
2357 const char* sym_names,
2358 size_t sym_name_size,
2359 const unsigned char* versym,
2360 size_t versym_size,
2361 const std::vector<const char*>* version_map);
2362 #endif
2363
2364 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2365 template
2366 void
2367 Symbol_table::define_with_copy_reloc<32>(
2368 Sized_symbol<32>* sym,
2369 Output_data* posd,
2370 elfcpp::Elf_types<32>::Elf_Addr value);
2371 #endif
2372
2373 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2374 template
2375 void
2376 Symbol_table::define_with_copy_reloc<64>(
2377 Sized_symbol<64>* sym,
2378 Output_data* posd,
2379 elfcpp::Elf_types<64>::Elf_Addr value);
2380 #endif
2381
2382 #ifdef HAVE_TARGET_32_LITTLE
2383 template
2384 void
2385 Warnings::issue_warning<32, false>(const Symbol* sym,
2386 const Relocate_info<32, false>* relinfo,
2387 size_t relnum, off_t reloffset) const;
2388 #endif
2389
2390 #ifdef HAVE_TARGET_32_BIG
2391 template
2392 void
2393 Warnings::issue_warning<32, true>(const Symbol* sym,
2394 const Relocate_info<32, true>* relinfo,
2395 size_t relnum, off_t reloffset) const;
2396 #endif
2397
2398 #ifdef HAVE_TARGET_64_LITTLE
2399 template
2400 void
2401 Warnings::issue_warning<64, false>(const Symbol* sym,
2402 const Relocate_info<64, false>* relinfo,
2403 size_t relnum, off_t reloffset) const;
2404 #endif
2405
2406 #ifdef HAVE_TARGET_64_BIG
2407 template
2408 void
2409 Warnings::issue_warning<64, true>(const Symbol* sym,
2410 const Relocate_info<64, true>* relinfo,
2411 size_t relnum, off_t reloffset) const;
2412 #endif
2413
2414 } // End namespace gold.
This page took 0.097097 seconds and 5 git commands to generate.