From Craig Silverstein: First cut at detecting ODR violations.
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <stdint.h>
26 #include <set>
27 #include <string>
28 #include <utility>
29
30 #include "object.h"
31 #include "dwarf_reader.h"
32 #include "dynobj.h"
33 #include "output.h"
34 #include "target.h"
35 #include "workqueue.h"
36 #include "symtab.h"
37
38 namespace gold
39 {
40
41 // Class Symbol.
42
43 // Initialize fields in Symbol. This initializes everything except u_
44 // and source_.
45
46 void
47 Symbol::init_fields(const char* name, const char* version,
48 elfcpp::STT type, elfcpp::STB binding,
49 elfcpp::STV visibility, unsigned char nonvis)
50 {
51 this->name_ = name;
52 this->version_ = version;
53 this->symtab_index_ = 0;
54 this->dynsym_index_ = 0;
55 this->got_offset_ = 0;
56 this->plt_offset_ = 0;
57 this->type_ = type;
58 this->binding_ = binding;
59 this->visibility_ = visibility;
60 this->nonvis_ = nonvis;
61 this->is_target_special_ = false;
62 this->is_def_ = false;
63 this->is_forwarder_ = false;
64 this->has_alias_ = false;
65 this->needs_dynsym_entry_ = false;
66 this->in_reg_ = false;
67 this->in_dyn_ = false;
68 this->has_got_offset_ = false;
69 this->has_plt_offset_ = false;
70 this->has_warning_ = false;
71 this->is_copied_from_dynobj_ = false;
72 this->needs_value_in_got_ = false;
73 }
74
75 // Initialize the fields in the base class Symbol for SYM in OBJECT.
76
77 template<int size, bool big_endian>
78 void
79 Symbol::init_base(const char* name, const char* version, Object* object,
80 const elfcpp::Sym<size, big_endian>& sym)
81 {
82 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
83 sym.get_st_visibility(), sym.get_st_nonvis());
84 this->u_.from_object.object = object;
85 // FIXME: Handle SHN_XINDEX.
86 this->u_.from_object.shndx = sym.get_st_shndx();
87 this->source_ = FROM_OBJECT;
88 this->in_reg_ = !object->is_dynamic();
89 this->in_dyn_ = object->is_dynamic();
90 }
91
92 // Initialize the fields in the base class Symbol for a symbol defined
93 // in an Output_data.
94
95 void
96 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
97 elfcpp::STB binding, elfcpp::STV visibility,
98 unsigned char nonvis, bool offset_is_from_end)
99 {
100 this->init_fields(name, NULL, type, binding, visibility, nonvis);
101 this->u_.in_output_data.output_data = od;
102 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
103 this->source_ = IN_OUTPUT_DATA;
104 this->in_reg_ = true;
105 }
106
107 // Initialize the fields in the base class Symbol for a symbol defined
108 // in an Output_segment.
109
110 void
111 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
112 elfcpp::STB binding, elfcpp::STV visibility,
113 unsigned char nonvis, Segment_offset_base offset_base)
114 {
115 this->init_fields(name, NULL, type, binding, visibility, nonvis);
116 this->u_.in_output_segment.output_segment = os;
117 this->u_.in_output_segment.offset_base = offset_base;
118 this->source_ = IN_OUTPUT_SEGMENT;
119 this->in_reg_ = true;
120 }
121
122 // Initialize the fields in the base class Symbol for a symbol defined
123 // as a constant.
124
125 void
126 Symbol::init_base(const char* name, elfcpp::STT type,
127 elfcpp::STB binding, elfcpp::STV visibility,
128 unsigned char nonvis)
129 {
130 this->init_fields(name, NULL, type, binding, visibility, nonvis);
131 this->source_ = CONSTANT;
132 this->in_reg_ = true;
133 }
134
135 // Initialize the fields in Sized_symbol for SYM in OBJECT.
136
137 template<int size>
138 template<bool big_endian>
139 void
140 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
141 const elfcpp::Sym<size, big_endian>& sym)
142 {
143 this->init_base(name, version, object, sym);
144 this->value_ = sym.get_st_value();
145 this->symsize_ = sym.get_st_size();
146 }
147
148 // Initialize the fields in Sized_symbol for a symbol defined in an
149 // Output_data.
150
151 template<int size>
152 void
153 Sized_symbol<size>::init(const char* name, Output_data* od,
154 Value_type value, Size_type symsize,
155 elfcpp::STT type, elfcpp::STB binding,
156 elfcpp::STV visibility, unsigned char nonvis,
157 bool offset_is_from_end)
158 {
159 this->init_base(name, od, type, binding, visibility, nonvis,
160 offset_is_from_end);
161 this->value_ = value;
162 this->symsize_ = symsize;
163 }
164
165 // Initialize the fields in Sized_symbol for a symbol defined in an
166 // Output_segment.
167
168 template<int size>
169 void
170 Sized_symbol<size>::init(const char* name, Output_segment* os,
171 Value_type value, Size_type symsize,
172 elfcpp::STT type, elfcpp::STB binding,
173 elfcpp::STV visibility, unsigned char nonvis,
174 Segment_offset_base offset_base)
175 {
176 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
177 this->value_ = value;
178 this->symsize_ = symsize;
179 }
180
181 // Initialize the fields in Sized_symbol for a symbol defined as a
182 // constant.
183
184 template<int size>
185 void
186 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
187 elfcpp::STT type, elfcpp::STB binding,
188 elfcpp::STV visibility, unsigned char nonvis)
189 {
190 this->init_base(name, type, binding, visibility, nonvis);
191 this->value_ = value;
192 this->symsize_ = symsize;
193 }
194
195 // Return true if this symbol should be added to the dynamic symbol
196 // table.
197
198 inline bool
199 Symbol::should_add_dynsym_entry() const
200 {
201 // If the symbol is used by a dynamic relocation, we need to add it.
202 if (this->needs_dynsym_entry())
203 return true;
204
205 // If exporting all symbols or building a shared library,
206 // and the symbol is defined in a regular object and is
207 // externally visible, we need to add it.
208 if ((parameters->export_dynamic() || parameters->output_is_shared())
209 && !this->is_from_dynobj()
210 && this->is_externally_visible())
211 return true;
212
213 return false;
214 }
215
216 // Return true if the final value of this symbol is known at link
217 // time.
218
219 bool
220 Symbol::final_value_is_known() const
221 {
222 // If we are not generating an executable, then no final values are
223 // known, since they will change at runtime.
224 if (!parameters->output_is_executable())
225 return false;
226
227 // If the symbol is not from an object file, then it is defined, and
228 // known.
229 if (this->source_ != FROM_OBJECT)
230 return true;
231
232 // If the symbol is from a dynamic object, then the final value is
233 // not known.
234 if (this->object()->is_dynamic())
235 return false;
236
237 // If the symbol is not undefined (it is defined or common), then
238 // the final value is known.
239 if (!this->is_undefined())
240 return true;
241
242 // If the symbol is undefined, then whether the final value is known
243 // depends on whether we are doing a static link. If we are doing a
244 // dynamic link, then the final value could be filled in at runtime.
245 // This could reasonably be the case for a weak undefined symbol.
246 return parameters->doing_static_link();
247 }
248
249 // Class Symbol_table.
250
251 Symbol_table::Symbol_table()
252 : saw_undefined_(0), offset_(0), table_(), namepool_(),
253 forwarders_(), commons_(), warnings_()
254 {
255 }
256
257 Symbol_table::~Symbol_table()
258 {
259 }
260
261 // The hash function. The key is always canonicalized, so we use a
262 // simple combination of the pointers.
263
264 size_t
265 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
266 {
267 return key.first ^ key.second;
268 }
269
270 // The symbol table key equality function. This is only called with
271 // canonicalized name and version strings, so we can use pointer
272 // comparison.
273
274 bool
275 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
276 const Symbol_table_key& k2) const
277 {
278 return k1.first == k2.first && k1.second == k2.second;
279 }
280
281 // Make TO a symbol which forwards to FROM.
282
283 void
284 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
285 {
286 gold_assert(from != to);
287 gold_assert(!from->is_forwarder() && !to->is_forwarder());
288 this->forwarders_[from] = to;
289 from->set_forwarder();
290 }
291
292 // Resolve the forwards from FROM, returning the real symbol.
293
294 Symbol*
295 Symbol_table::resolve_forwards(const Symbol* from) const
296 {
297 gold_assert(from->is_forwarder());
298 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
299 this->forwarders_.find(from);
300 gold_assert(p != this->forwarders_.end());
301 return p->second;
302 }
303
304 // Look up a symbol by name.
305
306 Symbol*
307 Symbol_table::lookup(const char* name, const char* version) const
308 {
309 Stringpool::Key name_key;
310 name = this->namepool_.find(name, &name_key);
311 if (name == NULL)
312 return NULL;
313
314 Stringpool::Key version_key = 0;
315 if (version != NULL)
316 {
317 version = this->namepool_.find(version, &version_key);
318 if (version == NULL)
319 return NULL;
320 }
321
322 Symbol_table_key key(name_key, version_key);
323 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
324 if (p == this->table_.end())
325 return NULL;
326 return p->second;
327 }
328
329 // Resolve a Symbol with another Symbol. This is only used in the
330 // unusual case where there are references to both an unversioned
331 // symbol and a symbol with a version, and we then discover that that
332 // version is the default version. Because this is unusual, we do
333 // this the slow way, by converting back to an ELF symbol.
334
335 template<int size, bool big_endian>
336 void
337 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
338 const char* version ACCEPT_SIZE_ENDIAN)
339 {
340 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
341 elfcpp::Sym_write<size, big_endian> esym(buf);
342 // We don't bother to set the st_name field.
343 esym.put_st_value(from->value());
344 esym.put_st_size(from->symsize());
345 esym.put_st_info(from->binding(), from->type());
346 esym.put_st_other(from->visibility(), from->nonvis());
347 esym.put_st_shndx(from->shndx());
348 this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
349 if (from->in_reg())
350 to->set_in_reg();
351 if (from->in_dyn())
352 to->set_in_dyn();
353 }
354
355 // Add one symbol from OBJECT to the symbol table. NAME is symbol
356 // name and VERSION is the version; both are canonicalized. DEF is
357 // whether this is the default version.
358
359 // If DEF is true, then this is the definition of a default version of
360 // a symbol. That means that any lookup of NAME/NULL and any lookup
361 // of NAME/VERSION should always return the same symbol. This is
362 // obvious for references, but in particular we want to do this for
363 // definitions: overriding NAME/NULL should also override
364 // NAME/VERSION. If we don't do that, it would be very hard to
365 // override functions in a shared library which uses versioning.
366
367 // We implement this by simply making both entries in the hash table
368 // point to the same Symbol structure. That is easy enough if this is
369 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
370 // that we have seen both already, in which case they will both have
371 // independent entries in the symbol table. We can't simply change
372 // the symbol table entry, because we have pointers to the entries
373 // attached to the object files. So we mark the entry attached to the
374 // object file as a forwarder, and record it in the forwarders_ map.
375 // Note that entries in the hash table will never be marked as
376 // forwarders.
377 //
378 // SYM and ORIG_SYM are almost always the same. ORIG_SYM is the
379 // symbol exactly as it existed in the input file. SYM is usually
380 // that as well, but can be modified, for instance if we determine
381 // it's in a to-be-discarded section.
382
383 template<int size, bool big_endian>
384 Sized_symbol<size>*
385 Symbol_table::add_from_object(Object* object,
386 const char *name,
387 Stringpool::Key name_key,
388 const char *version,
389 Stringpool::Key version_key,
390 bool def,
391 const elfcpp::Sym<size, big_endian>& sym,
392 const elfcpp::Sym<size, big_endian>& orig_sym)
393 {
394 Symbol* const snull = NULL;
395 std::pair<typename Symbol_table_type::iterator, bool> ins =
396 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
397 snull));
398
399 std::pair<typename Symbol_table_type::iterator, bool> insdef =
400 std::make_pair(this->table_.end(), false);
401 if (def)
402 {
403 const Stringpool::Key vnull_key = 0;
404 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
405 vnull_key),
406 snull));
407 }
408
409 // ins.first: an iterator, which is a pointer to a pair.
410 // ins.first->first: the key (a pair of name and version).
411 // ins.first->second: the value (Symbol*).
412 // ins.second: true if new entry was inserted, false if not.
413
414 Sized_symbol<size>* ret;
415 bool was_undefined;
416 bool was_common;
417 if (!ins.second)
418 {
419 // We already have an entry for NAME/VERSION.
420 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
421 SELECT_SIZE(size));
422 gold_assert(ret != NULL);
423
424 was_undefined = ret->is_undefined();
425 was_common = ret->is_common();
426
427 this->resolve(ret, sym, orig_sym, object, version);
428
429 if (def)
430 {
431 if (insdef.second)
432 {
433 // This is the first time we have seen NAME/NULL. Make
434 // NAME/NULL point to NAME/VERSION.
435 insdef.first->second = ret;
436 }
437 else if (insdef.first->second != ret)
438 {
439 // This is the unfortunate case where we already have
440 // entries for both NAME/VERSION and NAME/NULL.
441 const Sized_symbol<size>* sym2;
442 sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
443 insdef.first->second
444 SELECT_SIZE(size));
445 Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
446 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
447 this->make_forwarder(insdef.first->second, ret);
448 insdef.first->second = ret;
449 }
450 }
451 }
452 else
453 {
454 // This is the first time we have seen NAME/VERSION.
455 gold_assert(ins.first->second == NULL);
456
457 was_undefined = false;
458 was_common = false;
459
460 if (def && !insdef.second)
461 {
462 // We already have an entry for NAME/NULL. If we override
463 // it, then change it to NAME/VERSION.
464 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
465 insdef.first->second
466 SELECT_SIZE(size));
467 this->resolve(ret, sym, orig_sym, object, version);
468 ins.first->second = ret;
469 }
470 else
471 {
472 Sized_target<size, big_endian>* target =
473 object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
474 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
475 if (!target->has_make_symbol())
476 ret = new Sized_symbol<size>();
477 else
478 {
479 ret = target->make_symbol();
480 if (ret == NULL)
481 {
482 // This means that we don't want a symbol table
483 // entry after all.
484 if (!def)
485 this->table_.erase(ins.first);
486 else
487 {
488 this->table_.erase(insdef.first);
489 // Inserting insdef invalidated ins.
490 this->table_.erase(std::make_pair(name_key,
491 version_key));
492 }
493 return NULL;
494 }
495 }
496
497 ret->init(name, version, object, sym);
498
499 ins.first->second = ret;
500 if (def)
501 {
502 // This is the first time we have seen NAME/NULL. Point
503 // it at the new entry for NAME/VERSION.
504 gold_assert(insdef.second);
505 insdef.first->second = ret;
506 }
507 }
508 }
509
510 // Record every time we see a new undefined symbol, to speed up
511 // archive groups.
512 if (!was_undefined && ret->is_undefined())
513 ++this->saw_undefined_;
514
515 // Keep track of common symbols, to speed up common symbol
516 // allocation.
517 if (!was_common && ret->is_common())
518 this->commons_.push_back(ret);
519
520 return ret;
521 }
522
523 // Add all the symbols in a relocatable object to the hash table.
524
525 template<int size, bool big_endian>
526 void
527 Symbol_table::add_from_relobj(
528 Sized_relobj<size, big_endian>* relobj,
529 const unsigned char* syms,
530 size_t count,
531 const char* sym_names,
532 size_t sym_name_size,
533 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
534 {
535 gold_assert(size == relobj->target()->get_size());
536 gold_assert(size == parameters->get_size());
537
538 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
539
540 const unsigned char* p = syms;
541 for (size_t i = 0; i < count; ++i, p += sym_size)
542 {
543 elfcpp::Sym<size, big_endian> sym(p);
544 elfcpp::Sym<size, big_endian>* psym = &sym;
545
546 unsigned int st_name = psym->get_st_name();
547 if (st_name >= sym_name_size)
548 {
549 relobj->error(_("bad global symbol name offset %u at %zu"),
550 st_name, i);
551 continue;
552 }
553
554 const char* name = sym_names + st_name;
555
556 // A symbol defined in a section which we are not including must
557 // be treated as an undefined symbol.
558 unsigned char symbuf[sym_size];
559 elfcpp::Sym<size, big_endian> sym2(symbuf);
560 unsigned int st_shndx = psym->get_st_shndx();
561 if (st_shndx != elfcpp::SHN_UNDEF
562 && st_shndx < elfcpp::SHN_LORESERVE
563 && !relobj->is_section_included(st_shndx))
564 {
565 memcpy(symbuf, p, sym_size);
566 elfcpp::Sym_write<size, big_endian> sw(symbuf);
567 sw.put_st_shndx(elfcpp::SHN_UNDEF);
568 psym = &sym2;
569 }
570
571 // In an object file, an '@' in the name separates the symbol
572 // name from the version name. If there are two '@' characters,
573 // this is the default version.
574 const char* ver = strchr(name, '@');
575
576 Sized_symbol<size>* res;
577 if (ver == NULL)
578 {
579 Stringpool::Key name_key;
580 name = this->namepool_.add(name, true, &name_key);
581 res = this->add_from_object(relobj, name, name_key, NULL, 0,
582 false, *psym, sym);
583 }
584 else
585 {
586 Stringpool::Key name_key;
587 name = this->namepool_.add_prefix(name, ver - name, &name_key);
588
589 bool def = false;
590 ++ver;
591 if (*ver == '@')
592 {
593 def = true;
594 ++ver;
595 }
596
597 Stringpool::Key ver_key;
598 ver = this->namepool_.add(ver, true, &ver_key);
599
600 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
601 def, *psym, sym);
602 }
603
604 (*sympointers)[i] = res;
605 }
606 }
607
608 // Add all the symbols in a dynamic object to the hash table.
609
610 template<int size, bool big_endian>
611 void
612 Symbol_table::add_from_dynobj(
613 Sized_dynobj<size, big_endian>* dynobj,
614 const unsigned char* syms,
615 size_t count,
616 const char* sym_names,
617 size_t sym_name_size,
618 const unsigned char* versym,
619 size_t versym_size,
620 const std::vector<const char*>* version_map)
621 {
622 gold_assert(size == dynobj->target()->get_size());
623 gold_assert(size == parameters->get_size());
624
625 if (versym != NULL && versym_size / 2 < count)
626 {
627 dynobj->error(_("too few symbol versions"));
628 return;
629 }
630
631 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
632
633 // We keep a list of all STT_OBJECT symbols, so that we can resolve
634 // weak aliases. This is necessary because if the dynamic object
635 // provides the same variable under two names, one of which is a
636 // weak definition, and the regular object refers to the weak
637 // definition, we have to put both the weak definition and the
638 // strong definition into the dynamic symbol table. Given a weak
639 // definition, the only way that we can find the corresponding
640 // strong definition, if any, is to search the symbol table.
641 std::vector<Sized_symbol<size>*> object_symbols;
642
643 const unsigned char* p = syms;
644 const unsigned char* vs = versym;
645 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
646 {
647 elfcpp::Sym<size, big_endian> sym(p);
648
649 // Ignore symbols with local binding.
650 if (sym.get_st_bind() == elfcpp::STB_LOCAL)
651 continue;
652
653 unsigned int st_name = sym.get_st_name();
654 if (st_name >= sym_name_size)
655 {
656 dynobj->error(_("bad symbol name offset %u at %zu"),
657 st_name, i);
658 continue;
659 }
660
661 const char* name = sym_names + st_name;
662
663 Sized_symbol<size>* res;
664
665 if (versym == NULL)
666 {
667 Stringpool::Key name_key;
668 name = this->namepool_.add(name, true, &name_key);
669 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
670 false, sym, sym);
671 }
672 else
673 {
674 // Read the version information.
675
676 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
677
678 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
679 v &= elfcpp::VERSYM_VERSION;
680
681 // The Sun documentation says that V can be VER_NDX_LOCAL,
682 // or VER_NDX_GLOBAL, or a version index. The meaning of
683 // VER_NDX_LOCAL is defined as "Symbol has local scope."
684 // The old GNU linker will happily generate VER_NDX_LOCAL
685 // for an undefined symbol. I don't know what the Sun
686 // linker will generate.
687
688 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
689 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
690 {
691 // This symbol should not be visible outside the object.
692 continue;
693 }
694
695 // At this point we are definitely going to add this symbol.
696 Stringpool::Key name_key;
697 name = this->namepool_.add(name, true, &name_key);
698
699 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
700 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
701 {
702 // This symbol does not have a version.
703 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
704 false, sym, sym);
705 }
706 else
707 {
708 if (v >= version_map->size())
709 {
710 dynobj->error(_("versym for symbol %zu out of range: %u"),
711 i, v);
712 continue;
713 }
714
715 const char* version = (*version_map)[v];
716 if (version == NULL)
717 {
718 dynobj->error(_("versym for symbol %zu has no name: %u"),
719 i, v);
720 continue;
721 }
722
723 Stringpool::Key version_key;
724 version = this->namepool_.add(version, true, &version_key);
725
726 // If this is an absolute symbol, and the version name
727 // and symbol name are the same, then this is the
728 // version definition symbol. These symbols exist to
729 // support using -u to pull in particular versions. We
730 // do not want to record a version for them.
731 if (sym.get_st_shndx() == elfcpp::SHN_ABS
732 && name_key == version_key)
733 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
734 false, sym, sym);
735 else
736 {
737 const bool def = (!hidden
738 && (sym.get_st_shndx()
739 != elfcpp::SHN_UNDEF));
740 res = this->add_from_object(dynobj, name, name_key, version,
741 version_key, def, sym, sym);
742 }
743 }
744 }
745
746 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
747 && sym.get_st_type() == elfcpp::STT_OBJECT)
748 object_symbols.push_back(res);
749 }
750
751 this->record_weak_aliases(&object_symbols);
752 }
753
754 // This is used to sort weak aliases. We sort them first by section
755 // index, then by offset, then by weak ahead of strong.
756
757 template<int size>
758 class Weak_alias_sorter
759 {
760 public:
761 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
762 };
763
764 template<int size>
765 bool
766 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
767 const Sized_symbol<size>* s2) const
768 {
769 if (s1->shndx() != s2->shndx())
770 return s1->shndx() < s2->shndx();
771 if (s1->value() != s2->value())
772 return s1->value() < s2->value();
773 if (s1->binding() != s2->binding())
774 {
775 if (s1->binding() == elfcpp::STB_WEAK)
776 return true;
777 if (s2->binding() == elfcpp::STB_WEAK)
778 return false;
779 }
780 return std::string(s1->name()) < std::string(s2->name());
781 }
782
783 // SYMBOLS is a list of object symbols from a dynamic object. Look
784 // for any weak aliases, and record them so that if we add the weak
785 // alias to the dynamic symbol table, we also add the corresponding
786 // strong symbol.
787
788 template<int size>
789 void
790 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
791 {
792 // Sort the vector by section index, then by offset, then by weak
793 // ahead of strong.
794 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
795
796 // Walk through the vector. For each weak definition, record
797 // aliases.
798 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
799 symbols->begin();
800 p != symbols->end();
801 ++p)
802 {
803 if ((*p)->binding() != elfcpp::STB_WEAK)
804 continue;
805
806 // Build a circular list of weak aliases. Each symbol points to
807 // the next one in the circular list.
808
809 Sized_symbol<size>* from_sym = *p;
810 typename std::vector<Sized_symbol<size>*>::const_iterator q;
811 for (q = p + 1; q != symbols->end(); ++q)
812 {
813 if ((*q)->shndx() != from_sym->shndx()
814 || (*q)->value() != from_sym->value())
815 break;
816
817 this->weak_aliases_[from_sym] = *q;
818 from_sym->set_has_alias();
819 from_sym = *q;
820 }
821
822 if (from_sym != *p)
823 {
824 this->weak_aliases_[from_sym] = *p;
825 from_sym->set_has_alias();
826 }
827
828 p = q - 1;
829 }
830 }
831
832 // Create and return a specially defined symbol. If ONLY_IF_REF is
833 // true, then only create the symbol if there is a reference to it.
834 // If this does not return NULL, it sets *POLDSYM to the existing
835 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
836
837 template<int size, bool big_endian>
838 Sized_symbol<size>*
839 Symbol_table::define_special_symbol(const Target* target, const char** pname,
840 const char** pversion, bool only_if_ref,
841 Sized_symbol<size>** poldsym
842 ACCEPT_SIZE_ENDIAN)
843 {
844 Symbol* oldsym;
845 Sized_symbol<size>* sym;
846 bool add_to_table = false;
847 typename Symbol_table_type::iterator add_loc = this->table_.end();
848
849 if (only_if_ref)
850 {
851 oldsym = this->lookup(*pname, *pversion);
852 if (oldsym == NULL || !oldsym->is_undefined())
853 return NULL;
854
855 *pname = oldsym->name();
856 *pversion = oldsym->version();
857 }
858 else
859 {
860 // Canonicalize NAME and VERSION.
861 Stringpool::Key name_key;
862 *pname = this->namepool_.add(*pname, true, &name_key);
863
864 Stringpool::Key version_key = 0;
865 if (*pversion != NULL)
866 *pversion = this->namepool_.add(*pversion, true, &version_key);
867
868 Symbol* const snull = NULL;
869 std::pair<typename Symbol_table_type::iterator, bool> ins =
870 this->table_.insert(std::make_pair(std::make_pair(name_key,
871 version_key),
872 snull));
873
874 if (!ins.second)
875 {
876 // We already have a symbol table entry for NAME/VERSION.
877 oldsym = ins.first->second;
878 gold_assert(oldsym != NULL);
879 }
880 else
881 {
882 // We haven't seen this symbol before.
883 gold_assert(ins.first->second == NULL);
884 add_to_table = true;
885 add_loc = ins.first;
886 oldsym = NULL;
887 }
888 }
889
890 if (!target->has_make_symbol())
891 sym = new Sized_symbol<size>();
892 else
893 {
894 gold_assert(target->get_size() == size);
895 gold_assert(target->is_big_endian() ? big_endian : !big_endian);
896 typedef Sized_target<size, big_endian> My_target;
897 const My_target* sized_target =
898 static_cast<const My_target*>(target);
899 sym = sized_target->make_symbol();
900 if (sym == NULL)
901 return NULL;
902 }
903
904 if (add_to_table)
905 add_loc->second = sym;
906 else
907 gold_assert(oldsym != NULL);
908
909 *poldsym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
910 SELECT_SIZE(size));
911
912 return sym;
913 }
914
915 // Define a symbol based on an Output_data.
916
917 Symbol*
918 Symbol_table::define_in_output_data(const Target* target, const char* name,
919 const char* version, Output_data* od,
920 uint64_t value, uint64_t symsize,
921 elfcpp::STT type, elfcpp::STB binding,
922 elfcpp::STV visibility,
923 unsigned char nonvis,
924 bool offset_is_from_end,
925 bool only_if_ref)
926 {
927 if (parameters->get_size() == 32)
928 {
929 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
930 return this->do_define_in_output_data<32>(target, name, version, od,
931 value, symsize, type, binding,
932 visibility, nonvis,
933 offset_is_from_end,
934 only_if_ref);
935 #else
936 gold_unreachable();
937 #endif
938 }
939 else if (parameters->get_size() == 64)
940 {
941 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
942 return this->do_define_in_output_data<64>(target, name, version, od,
943 value, symsize, type, binding,
944 visibility, nonvis,
945 offset_is_from_end,
946 only_if_ref);
947 #else
948 gold_unreachable();
949 #endif
950 }
951 else
952 gold_unreachable();
953 }
954
955 // Define a symbol in an Output_data, sized version.
956
957 template<int size>
958 Sized_symbol<size>*
959 Symbol_table::do_define_in_output_data(
960 const Target* target,
961 const char* name,
962 const char* version,
963 Output_data* od,
964 typename elfcpp::Elf_types<size>::Elf_Addr value,
965 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
966 elfcpp::STT type,
967 elfcpp::STB binding,
968 elfcpp::STV visibility,
969 unsigned char nonvis,
970 bool offset_is_from_end,
971 bool only_if_ref)
972 {
973 Sized_symbol<size>* sym;
974 Sized_symbol<size>* oldsym;
975
976 if (parameters->is_big_endian())
977 {
978 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
979 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
980 target, &name, &version, only_if_ref, &oldsym
981 SELECT_SIZE_ENDIAN(size, true));
982 #else
983 gold_unreachable();
984 #endif
985 }
986 else
987 {
988 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
989 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
990 target, &name, &version, only_if_ref, &oldsym
991 SELECT_SIZE_ENDIAN(size, false));
992 #else
993 gold_unreachable();
994 #endif
995 }
996
997 if (sym == NULL)
998 return NULL;
999
1000 gold_assert(version == NULL || oldsym != NULL);
1001 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1002 offset_is_from_end);
1003
1004 if (oldsym != NULL
1005 && Symbol_table::should_override_with_special(oldsym))
1006 this->override_with_special(oldsym, sym);
1007
1008 return sym;
1009 }
1010
1011 // Define a symbol based on an Output_segment.
1012
1013 Symbol*
1014 Symbol_table::define_in_output_segment(const Target* target, const char* name,
1015 const char* version, Output_segment* os,
1016 uint64_t value, uint64_t symsize,
1017 elfcpp::STT type, elfcpp::STB binding,
1018 elfcpp::STV visibility,
1019 unsigned char nonvis,
1020 Symbol::Segment_offset_base offset_base,
1021 bool only_if_ref)
1022 {
1023 if (parameters->get_size() == 32)
1024 {
1025 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1026 return this->do_define_in_output_segment<32>(target, name, version, os,
1027 value, symsize, type,
1028 binding, visibility, nonvis,
1029 offset_base, only_if_ref);
1030 #else
1031 gold_unreachable();
1032 #endif
1033 }
1034 else if (parameters->get_size() == 64)
1035 {
1036 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1037 return this->do_define_in_output_segment<64>(target, name, version, os,
1038 value, symsize, type,
1039 binding, visibility, nonvis,
1040 offset_base, only_if_ref);
1041 #else
1042 gold_unreachable();
1043 #endif
1044 }
1045 else
1046 gold_unreachable();
1047 }
1048
1049 // Define a symbol in an Output_segment, sized version.
1050
1051 template<int size>
1052 Sized_symbol<size>*
1053 Symbol_table::do_define_in_output_segment(
1054 const Target* target,
1055 const char* name,
1056 const char* version,
1057 Output_segment* os,
1058 typename elfcpp::Elf_types<size>::Elf_Addr value,
1059 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1060 elfcpp::STT type,
1061 elfcpp::STB binding,
1062 elfcpp::STV visibility,
1063 unsigned char nonvis,
1064 Symbol::Segment_offset_base offset_base,
1065 bool only_if_ref)
1066 {
1067 Sized_symbol<size>* sym;
1068 Sized_symbol<size>* oldsym;
1069
1070 if (parameters->is_big_endian())
1071 {
1072 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1073 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1074 target, &name, &version, only_if_ref, &oldsym
1075 SELECT_SIZE_ENDIAN(size, true));
1076 #else
1077 gold_unreachable();
1078 #endif
1079 }
1080 else
1081 {
1082 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1083 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1084 target, &name, &version, only_if_ref, &oldsym
1085 SELECT_SIZE_ENDIAN(size, false));
1086 #else
1087 gold_unreachable();
1088 #endif
1089 }
1090
1091 if (sym == NULL)
1092 return NULL;
1093
1094 gold_assert(version == NULL || oldsym != NULL);
1095 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1096 offset_base);
1097
1098 if (oldsym != NULL
1099 && Symbol_table::should_override_with_special(oldsym))
1100 this->override_with_special(oldsym, sym);
1101
1102 return sym;
1103 }
1104
1105 // Define a special symbol with a constant value. It is a multiple
1106 // definition error if this symbol is already defined.
1107
1108 Symbol*
1109 Symbol_table::define_as_constant(const Target* target, const char* name,
1110 const char* version, uint64_t value,
1111 uint64_t symsize, elfcpp::STT type,
1112 elfcpp::STB binding, elfcpp::STV visibility,
1113 unsigned char nonvis, bool only_if_ref)
1114 {
1115 if (parameters->get_size() == 32)
1116 {
1117 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1118 return this->do_define_as_constant<32>(target, name, version, value,
1119 symsize, type, binding,
1120 visibility, nonvis, only_if_ref);
1121 #else
1122 gold_unreachable();
1123 #endif
1124 }
1125 else if (parameters->get_size() == 64)
1126 {
1127 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1128 return this->do_define_as_constant<64>(target, name, version, value,
1129 symsize, type, binding,
1130 visibility, nonvis, only_if_ref);
1131 #else
1132 gold_unreachable();
1133 #endif
1134 }
1135 else
1136 gold_unreachable();
1137 }
1138
1139 // Define a symbol as a constant, sized version.
1140
1141 template<int size>
1142 Sized_symbol<size>*
1143 Symbol_table::do_define_as_constant(
1144 const Target* target,
1145 const char* name,
1146 const char* version,
1147 typename elfcpp::Elf_types<size>::Elf_Addr value,
1148 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1149 elfcpp::STT type,
1150 elfcpp::STB binding,
1151 elfcpp::STV visibility,
1152 unsigned char nonvis,
1153 bool only_if_ref)
1154 {
1155 Sized_symbol<size>* sym;
1156 Sized_symbol<size>* oldsym;
1157
1158 if (parameters->is_big_endian())
1159 {
1160 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1161 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1162 target, &name, &version, only_if_ref, &oldsym
1163 SELECT_SIZE_ENDIAN(size, true));
1164 #else
1165 gold_unreachable();
1166 #endif
1167 }
1168 else
1169 {
1170 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1171 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1172 target, &name, &version, only_if_ref, &oldsym
1173 SELECT_SIZE_ENDIAN(size, false));
1174 #else
1175 gold_unreachable();
1176 #endif
1177 }
1178
1179 if (sym == NULL)
1180 return NULL;
1181
1182 gold_assert(version == NULL || oldsym != NULL);
1183 sym->init(name, value, symsize, type, binding, visibility, nonvis);
1184
1185 if (oldsym != NULL
1186 && Symbol_table::should_override_with_special(oldsym))
1187 this->override_with_special(oldsym, sym);
1188
1189 return sym;
1190 }
1191
1192 // Define a set of symbols in output sections.
1193
1194 void
1195 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1196 int count, const Define_symbol_in_section* p)
1197 {
1198 for (int i = 0; i < count; ++i, ++p)
1199 {
1200 Output_section* os = layout->find_output_section(p->output_section);
1201 if (os != NULL)
1202 this->define_in_output_data(target, p->name, NULL, os, p->value,
1203 p->size, p->type, p->binding,
1204 p->visibility, p->nonvis,
1205 p->offset_is_from_end, p->only_if_ref);
1206 else
1207 this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1208 p->binding, p->visibility, p->nonvis,
1209 p->only_if_ref);
1210 }
1211 }
1212
1213 // Define a set of symbols in output segments.
1214
1215 void
1216 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1217 int count, const Define_symbol_in_segment* p)
1218 {
1219 for (int i = 0; i < count; ++i, ++p)
1220 {
1221 Output_segment* os = layout->find_output_segment(p->segment_type,
1222 p->segment_flags_set,
1223 p->segment_flags_clear);
1224 if (os != NULL)
1225 this->define_in_output_segment(target, p->name, NULL, os, p->value,
1226 p->size, p->type, p->binding,
1227 p->visibility, p->nonvis,
1228 p->offset_base, p->only_if_ref);
1229 else
1230 this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1231 p->binding, p->visibility, p->nonvis,
1232 p->only_if_ref);
1233 }
1234 }
1235
1236 // Define CSYM using a COPY reloc. POSD is the Output_data where the
1237 // symbol should be defined--typically a .dyn.bss section. VALUE is
1238 // the offset within POSD.
1239
1240 template<int size>
1241 void
1242 Symbol_table::define_with_copy_reloc(const Target* target,
1243 Sized_symbol<size>* csym,
1244 Output_data* posd, uint64_t value)
1245 {
1246 gold_assert(csym->is_from_dynobj());
1247 gold_assert(!csym->is_copied_from_dynobj());
1248 Object* object = csym->object();
1249 gold_assert(object->is_dynamic());
1250 Dynobj* dynobj = static_cast<Dynobj*>(object);
1251
1252 // Our copied variable has to override any variable in a shared
1253 // library.
1254 elfcpp::STB binding = csym->binding();
1255 if (binding == elfcpp::STB_WEAK)
1256 binding = elfcpp::STB_GLOBAL;
1257
1258 this->define_in_output_data(target, csym->name(), csym->version(),
1259 posd, value, csym->symsize(),
1260 csym->type(), binding,
1261 csym->visibility(), csym->nonvis(),
1262 false, false);
1263
1264 csym->set_is_copied_from_dynobj();
1265 csym->set_needs_dynsym_entry();
1266
1267 this->copied_symbol_dynobjs_[csym] = dynobj;
1268
1269 // We have now defined all aliases, but we have not entered them all
1270 // in the copied_symbol_dynobjs_ map.
1271 if (csym->has_alias())
1272 {
1273 Symbol* sym = csym;
1274 while (true)
1275 {
1276 sym = this->weak_aliases_[sym];
1277 if (sym == csym)
1278 break;
1279 gold_assert(sym->output_data() == posd);
1280
1281 sym->set_is_copied_from_dynobj();
1282 this->copied_symbol_dynobjs_[sym] = dynobj;
1283 }
1284 }
1285 }
1286
1287 // SYM is defined using a COPY reloc. Return the dynamic object where
1288 // the original definition was found.
1289
1290 Dynobj*
1291 Symbol_table::get_copy_source(const Symbol* sym) const
1292 {
1293 gold_assert(sym->is_copied_from_dynobj());
1294 Copied_symbol_dynobjs::const_iterator p =
1295 this->copied_symbol_dynobjs_.find(sym);
1296 gold_assert(p != this->copied_symbol_dynobjs_.end());
1297 return p->second;
1298 }
1299
1300 // Set the dynamic symbol indexes. INDEX is the index of the first
1301 // global dynamic symbol. Pointers to the symbols are stored into the
1302 // vector SYMS. The names are added to DYNPOOL. This returns an
1303 // updated dynamic symbol index.
1304
1305 unsigned int
1306 Symbol_table::set_dynsym_indexes(const Target* target,
1307 unsigned int index,
1308 std::vector<Symbol*>* syms,
1309 Stringpool* dynpool,
1310 Versions* versions)
1311 {
1312 for (Symbol_table_type::iterator p = this->table_.begin();
1313 p != this->table_.end();
1314 ++p)
1315 {
1316 Symbol* sym = p->second;
1317
1318 // Note that SYM may already have a dynamic symbol index, since
1319 // some symbols appear more than once in the symbol table, with
1320 // and without a version.
1321
1322 if (!sym->should_add_dynsym_entry())
1323 sym->set_dynsym_index(-1U);
1324 else if (!sym->has_dynsym_index())
1325 {
1326 sym->set_dynsym_index(index);
1327 ++index;
1328 syms->push_back(sym);
1329 dynpool->add(sym->name(), false, NULL);
1330
1331 // Record any version information.
1332 if (sym->version() != NULL)
1333 versions->record_version(this, dynpool, sym);
1334 }
1335 }
1336
1337 // Finish up the versions. In some cases this may add new dynamic
1338 // symbols.
1339 index = versions->finalize(target, this, index, syms);
1340
1341 return index;
1342 }
1343
1344 // Set the final values for all the symbols. The index of the first
1345 // global symbol in the output file is INDEX. Record the file offset
1346 // OFF. Add their names to POOL. Return the new file offset.
1347
1348 off_t
1349 Symbol_table::finalize(unsigned int index, off_t off, off_t dynoff,
1350 size_t dyn_global_index, size_t dyncount,
1351 Stringpool* pool)
1352 {
1353 off_t ret;
1354
1355 gold_assert(index != 0);
1356 this->first_global_index_ = index;
1357
1358 this->dynamic_offset_ = dynoff;
1359 this->first_dynamic_global_index_ = dyn_global_index;
1360 this->dynamic_count_ = dyncount;
1361
1362 if (parameters->get_size() == 32)
1363 {
1364 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1365 ret = this->sized_finalize<32>(index, off, pool);
1366 #else
1367 gold_unreachable();
1368 #endif
1369 }
1370 else if (parameters->get_size() == 64)
1371 {
1372 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1373 ret = this->sized_finalize<64>(index, off, pool);
1374 #else
1375 gold_unreachable();
1376 #endif
1377 }
1378 else
1379 gold_unreachable();
1380
1381 // Now that we have the final symbol table, we can reliably note
1382 // which symbols should get warnings.
1383 this->warnings_.note_warnings(this);
1384
1385 return ret;
1386 }
1387
1388 // Set the final value for all the symbols. This is called after
1389 // Layout::finalize, so all the output sections have their final
1390 // address.
1391
1392 template<int size>
1393 off_t
1394 Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool)
1395 {
1396 off = align_address(off, size >> 3);
1397 this->offset_ = off;
1398
1399 size_t orig_index = index;
1400
1401 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1402 for (Symbol_table_type::iterator p = this->table_.begin();
1403 p != this->table_.end();
1404 ++p)
1405 {
1406 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1407
1408 // FIXME: Here we need to decide which symbols should go into
1409 // the output file, based on --strip.
1410
1411 // The default version of a symbol may appear twice in the
1412 // symbol table. We only need to finalize it once.
1413 if (sym->has_symtab_index())
1414 continue;
1415
1416 if (!sym->in_reg())
1417 {
1418 gold_assert(!sym->has_symtab_index());
1419 sym->set_symtab_index(-1U);
1420 gold_assert(sym->dynsym_index() == -1U);
1421 continue;
1422 }
1423
1424 typename Sized_symbol<size>::Value_type value;
1425
1426 switch (sym->source())
1427 {
1428 case Symbol::FROM_OBJECT:
1429 {
1430 unsigned int shndx = sym->shndx();
1431
1432 // FIXME: We need some target specific support here.
1433 if (shndx >= elfcpp::SHN_LORESERVE
1434 && shndx != elfcpp::SHN_ABS)
1435 {
1436 gold_error(_("%s: unsupported symbol section 0x%x"),
1437 sym->name(), shndx);
1438 shndx = elfcpp::SHN_UNDEF;
1439 }
1440
1441 Object* symobj = sym->object();
1442 if (symobj->is_dynamic())
1443 {
1444 value = 0;
1445 shndx = elfcpp::SHN_UNDEF;
1446 }
1447 else if (shndx == elfcpp::SHN_UNDEF)
1448 value = 0;
1449 else if (shndx == elfcpp::SHN_ABS)
1450 value = sym->value();
1451 else
1452 {
1453 Relobj* relobj = static_cast<Relobj*>(symobj);
1454 off_t secoff;
1455 Output_section* os = relobj->output_section(shndx, &secoff);
1456
1457 if (os == NULL)
1458 {
1459 sym->set_symtab_index(-1U);
1460 gold_assert(sym->dynsym_index() == -1U);
1461 continue;
1462 }
1463
1464 value = sym->value() + os->address() + secoff;
1465 }
1466 }
1467 break;
1468
1469 case Symbol::IN_OUTPUT_DATA:
1470 {
1471 Output_data* od = sym->output_data();
1472 value = sym->value() + od->address();
1473 if (sym->offset_is_from_end())
1474 value += od->data_size();
1475 }
1476 break;
1477
1478 case Symbol::IN_OUTPUT_SEGMENT:
1479 {
1480 Output_segment* os = sym->output_segment();
1481 value = sym->value() + os->vaddr();
1482 switch (sym->offset_base())
1483 {
1484 case Symbol::SEGMENT_START:
1485 break;
1486 case Symbol::SEGMENT_END:
1487 value += os->memsz();
1488 break;
1489 case Symbol::SEGMENT_BSS:
1490 value += os->filesz();
1491 break;
1492 default:
1493 gold_unreachable();
1494 }
1495 }
1496 break;
1497
1498 case Symbol::CONSTANT:
1499 value = sym->value();
1500 break;
1501
1502 default:
1503 gold_unreachable();
1504 }
1505
1506 sym->set_value(value);
1507
1508 if (parameters->strip_all())
1509 sym->set_symtab_index(-1U);
1510 else
1511 {
1512 sym->set_symtab_index(index);
1513 pool->add(sym->name(), false, NULL);
1514 ++index;
1515 off += sym_size;
1516 }
1517 }
1518
1519 this->output_count_ = index - orig_index;
1520
1521 return off;
1522 }
1523
1524 // Write out the global symbols.
1525
1526 void
1527 Symbol_table::write_globals(const Target* target, const Stringpool* sympool,
1528 const Stringpool* dynpool, Output_file* of) const
1529 {
1530 if (parameters->get_size() == 32)
1531 {
1532 if (parameters->is_big_endian())
1533 {
1534 #ifdef HAVE_TARGET_32_BIG
1535 this->sized_write_globals<32, true>(target, sympool, dynpool, of);
1536 #else
1537 gold_unreachable();
1538 #endif
1539 }
1540 else
1541 {
1542 #ifdef HAVE_TARGET_32_LITTLE
1543 this->sized_write_globals<32, false>(target, sympool, dynpool, of);
1544 #else
1545 gold_unreachable();
1546 #endif
1547 }
1548 }
1549 else if (parameters->get_size() == 64)
1550 {
1551 if (parameters->is_big_endian())
1552 {
1553 #ifdef HAVE_TARGET_64_BIG
1554 this->sized_write_globals<64, true>(target, sympool, dynpool, of);
1555 #else
1556 gold_unreachable();
1557 #endif
1558 }
1559 else
1560 {
1561 #ifdef HAVE_TARGET_64_LITTLE
1562 this->sized_write_globals<64, false>(target, sympool, dynpool, of);
1563 #else
1564 gold_unreachable();
1565 #endif
1566 }
1567 }
1568 else
1569 gold_unreachable();
1570 }
1571
1572 // Write out the global symbols.
1573
1574 template<int size, bool big_endian>
1575 void
1576 Symbol_table::sized_write_globals(const Target* target,
1577 const Stringpool* sympool,
1578 const Stringpool* dynpool,
1579 Output_file* of) const
1580 {
1581 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1582 unsigned int index = this->first_global_index_;
1583 const off_t oview_size = this->output_count_ * sym_size;
1584 unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1585
1586 unsigned int dynamic_count = this->dynamic_count_;
1587 off_t dynamic_size = dynamic_count * sym_size;
1588 unsigned int first_dynamic_global_index = this->first_dynamic_global_index_;
1589 unsigned char* dynamic_view;
1590 if (this->dynamic_offset_ == 0)
1591 dynamic_view = NULL;
1592 else
1593 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1594
1595 unsigned char* ps = psyms;
1596 for (Symbol_table_type::const_iterator p = this->table_.begin();
1597 p != this->table_.end();
1598 ++p)
1599 {
1600 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1601
1602 unsigned int sym_index = sym->symtab_index();
1603 unsigned int dynsym_index;
1604 if (dynamic_view == NULL)
1605 dynsym_index = -1U;
1606 else
1607 dynsym_index = sym->dynsym_index();
1608
1609 if (sym_index == -1U && dynsym_index == -1U)
1610 {
1611 // This symbol is not included in the output file.
1612 continue;
1613 }
1614
1615 if (sym_index == index)
1616 ++index;
1617 else if (sym_index != -1U)
1618 {
1619 // We have already seen this symbol, because it has a
1620 // default version.
1621 gold_assert(sym_index < index);
1622 if (dynsym_index == -1U)
1623 continue;
1624 sym_index = -1U;
1625 }
1626
1627 unsigned int shndx;
1628 typename elfcpp::Elf_types<32>::Elf_Addr value = sym->value();
1629 switch (sym->source())
1630 {
1631 case Symbol::FROM_OBJECT:
1632 {
1633 unsigned int in_shndx = sym->shndx();
1634
1635 // FIXME: We need some target specific support here.
1636 if (in_shndx >= elfcpp::SHN_LORESERVE
1637 && in_shndx != elfcpp::SHN_ABS)
1638 {
1639 gold_error(_("%s: unsupported symbol section 0x%x"),
1640 sym->name(), in_shndx);
1641 shndx = in_shndx;
1642 }
1643 else
1644 {
1645 Object* symobj = sym->object();
1646 if (symobj->is_dynamic())
1647 {
1648 if (sym->needs_dynsym_value())
1649 value = target->dynsym_value(sym);
1650 shndx = elfcpp::SHN_UNDEF;
1651 }
1652 else if (in_shndx == elfcpp::SHN_UNDEF
1653 || in_shndx == elfcpp::SHN_ABS)
1654 shndx = in_shndx;
1655 else
1656 {
1657 Relobj* relobj = static_cast<Relobj*>(symobj);
1658 off_t secoff;
1659 Output_section* os = relobj->output_section(in_shndx,
1660 &secoff);
1661 gold_assert(os != NULL);
1662 shndx = os->out_shndx();
1663 }
1664 }
1665 }
1666 break;
1667
1668 case Symbol::IN_OUTPUT_DATA:
1669 shndx = sym->output_data()->out_shndx();
1670 break;
1671
1672 case Symbol::IN_OUTPUT_SEGMENT:
1673 shndx = elfcpp::SHN_ABS;
1674 break;
1675
1676 case Symbol::CONSTANT:
1677 shndx = elfcpp::SHN_ABS;
1678 break;
1679
1680 default:
1681 gold_unreachable();
1682 }
1683
1684 if (sym_index != -1U)
1685 {
1686 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1687 sym, sym->value(), shndx, sympool, ps
1688 SELECT_SIZE_ENDIAN(size, big_endian));
1689 ps += sym_size;
1690 }
1691
1692 if (dynsym_index != -1U)
1693 {
1694 dynsym_index -= first_dynamic_global_index;
1695 gold_assert(dynsym_index < dynamic_count);
1696 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1697 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1698 sym, value, shndx, dynpool, pd
1699 SELECT_SIZE_ENDIAN(size, big_endian));
1700 }
1701 }
1702
1703 gold_assert(ps - psyms == oview_size);
1704
1705 of->write_output_view(this->offset_, oview_size, psyms);
1706 if (dynamic_view != NULL)
1707 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1708 }
1709
1710 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
1711 // strtab holding the name.
1712
1713 template<int size, bool big_endian>
1714 void
1715 Symbol_table::sized_write_symbol(
1716 Sized_symbol<size>* sym,
1717 typename elfcpp::Elf_types<size>::Elf_Addr value,
1718 unsigned int shndx,
1719 const Stringpool* pool,
1720 unsigned char* p
1721 ACCEPT_SIZE_ENDIAN) const
1722 {
1723 elfcpp::Sym_write<size, big_endian> osym(p);
1724 osym.put_st_name(pool->get_offset(sym->name()));
1725 osym.put_st_value(value);
1726 osym.put_st_size(sym->symsize());
1727 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1728 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1729 osym.put_st_shndx(shndx);
1730 }
1731
1732 // Write out a section symbol. Return the update offset.
1733
1734 void
1735 Symbol_table::write_section_symbol(const Output_section *os,
1736 Output_file* of,
1737 off_t offset) const
1738 {
1739 if (parameters->get_size() == 32)
1740 {
1741 if (parameters->is_big_endian())
1742 {
1743 #ifdef HAVE_TARGET_32_BIG
1744 this->sized_write_section_symbol<32, true>(os, of, offset);
1745 #else
1746 gold_unreachable();
1747 #endif
1748 }
1749 else
1750 {
1751 #ifdef HAVE_TARGET_32_LITTLE
1752 this->sized_write_section_symbol<32, false>(os, of, offset);
1753 #else
1754 gold_unreachable();
1755 #endif
1756 }
1757 }
1758 else if (parameters->get_size() == 64)
1759 {
1760 if (parameters->is_big_endian())
1761 {
1762 #ifdef HAVE_TARGET_64_BIG
1763 this->sized_write_section_symbol<64, true>(os, of, offset);
1764 #else
1765 gold_unreachable();
1766 #endif
1767 }
1768 else
1769 {
1770 #ifdef HAVE_TARGET_64_LITTLE
1771 this->sized_write_section_symbol<64, false>(os, of, offset);
1772 #else
1773 gold_unreachable();
1774 #endif
1775 }
1776 }
1777 else
1778 gold_unreachable();
1779 }
1780
1781 // Write out a section symbol, specialized for size and endianness.
1782
1783 template<int size, bool big_endian>
1784 void
1785 Symbol_table::sized_write_section_symbol(const Output_section* os,
1786 Output_file* of,
1787 off_t offset) const
1788 {
1789 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1790
1791 unsigned char* pov = of->get_output_view(offset, sym_size);
1792
1793 elfcpp::Sym_write<size, big_endian> osym(pov);
1794 osym.put_st_name(0);
1795 osym.put_st_value(os->address());
1796 osym.put_st_size(0);
1797 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
1798 elfcpp::STT_SECTION));
1799 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
1800 osym.put_st_shndx(os->out_shndx());
1801
1802 of->write_output_view(offset, sym_size, pov);
1803 }
1804
1805 // Check candidate_odr_violations_ to find symbols with the same name
1806 // but apparently different definitions (different source-file/line-no).
1807
1808 void
1809 Symbol_table::detect_odr_violations() const
1810 {
1811 if (parameters->get_size() == 32)
1812 {
1813 if (!parameters->is_big_endian())
1814 {
1815 #ifdef HAVE_TARGET_32_LITTLE
1816 this->sized_detect_odr_violations<32, false>();
1817 #else
1818 gold_unreachable();
1819 #endif
1820 }
1821 else
1822 {
1823 #ifdef HAVE_TARGET_32_BIG
1824 this->sized_detect_odr_violations<32, true>();
1825 #else
1826 gold_unreachable();
1827 #endif
1828 }
1829 }
1830 else if (parameters->get_size() == 64)
1831 {
1832 if (!parameters->is_big_endian())
1833 {
1834 #ifdef HAVE_TARGET_64_LITTLE
1835 this->sized_detect_odr_violations<64, false>();
1836 #else
1837 gold_unreachable();
1838 #endif
1839 }
1840 else
1841 {
1842 #ifdef HAVE_TARGET_64_BIG
1843 this->sized_detect_odr_violations<64, true>();
1844 #else
1845 gold_unreachable();
1846 #endif
1847 }
1848 }
1849 else
1850 gold_unreachable();
1851 }
1852
1853 // Implement detect_odr_violations.
1854
1855 template<int size, bool big_endian>
1856 void
1857 Symbol_table::sized_detect_odr_violations() const
1858 {
1859 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
1860 it != candidate_odr_violations_.end();
1861 ++it)
1862 {
1863 const char* symbol_name = it->first;
1864 // We use a sorted set so the output is deterministic.
1865 std::set<std::string> line_nums;
1866
1867 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
1868 locs;
1869 for (locs = it->second.begin(); locs != it->second.end(); ++locs)
1870 {
1871 // We need to lock the object in order to read it. This
1872 // means that we can not run inside a Task. If we want to
1873 // run this in a Task for better performance, we will need
1874 // one Task for object, plus appropriate locking to ensure
1875 // that we don't conflict with other uses of the object.
1876 locs->object->lock();
1877 Dwarf_line_info<size, big_endian> line_info(locs->object);
1878 locs->object->unlock();
1879 std::string lineno = line_info.addr2line(locs->shndx, locs->offset);
1880 if (!lineno.empty())
1881 line_nums.insert(lineno);
1882 }
1883
1884 if (line_nums.size() > 1)
1885 {
1886 gold_warning(_("symbol %s defined in multiple places "
1887 "(possible ODR violation):"), symbol_name);
1888 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
1889 it2 != line_nums.end();
1890 ++it2)
1891 fprintf(stderr, " %s\n", it2->c_str());
1892 }
1893 }
1894 }
1895
1896 // Warnings functions.
1897
1898 // Add a new warning.
1899
1900 void
1901 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
1902 unsigned int shndx)
1903 {
1904 name = symtab->canonicalize_name(name);
1905 this->warnings_[name].set(obj, shndx);
1906 }
1907
1908 // Look through the warnings and mark the symbols for which we should
1909 // warn. This is called during Layout::finalize when we know the
1910 // sources for all the symbols.
1911
1912 void
1913 Warnings::note_warnings(Symbol_table* symtab)
1914 {
1915 for (Warning_table::iterator p = this->warnings_.begin();
1916 p != this->warnings_.end();
1917 ++p)
1918 {
1919 Symbol* sym = symtab->lookup(p->first, NULL);
1920 if (sym != NULL
1921 && sym->source() == Symbol::FROM_OBJECT
1922 && sym->object() == p->second.object)
1923 {
1924 sym->set_has_warning();
1925
1926 // Read the section contents to get the warning text. It
1927 // would be nicer if we only did this if we have to actually
1928 // issue a warning. Unfortunately, warnings are issued as
1929 // we relocate sections. That means that we can not lock
1930 // the object then, as we might try to issue the same
1931 // warning multiple times simultaneously.
1932 {
1933 Task_locker_obj<Object> tl(*p->second.object);
1934 const unsigned char* c;
1935 off_t len;
1936 c = p->second.object->section_contents(p->second.shndx, &len,
1937 false);
1938 p->second.set_text(reinterpret_cast<const char*>(c), len);
1939 }
1940 }
1941 }
1942 }
1943
1944 // Issue a warning. This is called when we see a relocation against a
1945 // symbol for which has a warning.
1946
1947 template<int size, bool big_endian>
1948 void
1949 Warnings::issue_warning(const Symbol* sym,
1950 const Relocate_info<size, big_endian>* relinfo,
1951 size_t relnum, off_t reloffset) const
1952 {
1953 gold_assert(sym->has_warning());
1954 Warning_table::const_iterator p = this->warnings_.find(sym->name());
1955 gold_assert(p != this->warnings_.end());
1956 gold_warning_at_location(relinfo, relnum, reloffset,
1957 "%s", p->second.text.c_str());
1958 }
1959
1960 // Instantiate the templates we need. We could use the configure
1961 // script to restrict this to only the ones needed for implemented
1962 // targets.
1963
1964 #ifdef HAVE_TARGET_32_LITTLE
1965 template
1966 void
1967 Symbol_table::add_from_relobj<32, false>(
1968 Sized_relobj<32, false>* relobj,
1969 const unsigned char* syms,
1970 size_t count,
1971 const char* sym_names,
1972 size_t sym_name_size,
1973 Sized_relobj<32, true>::Symbols* sympointers);
1974 #endif
1975
1976 #ifdef HAVE_TARGET_32_BIG
1977 template
1978 void
1979 Symbol_table::add_from_relobj<32, true>(
1980 Sized_relobj<32, true>* relobj,
1981 const unsigned char* syms,
1982 size_t count,
1983 const char* sym_names,
1984 size_t sym_name_size,
1985 Sized_relobj<32, false>::Symbols* sympointers);
1986 #endif
1987
1988 #ifdef HAVE_TARGET_64_LITTLE
1989 template
1990 void
1991 Symbol_table::add_from_relobj<64, false>(
1992 Sized_relobj<64, false>* relobj,
1993 const unsigned char* syms,
1994 size_t count,
1995 const char* sym_names,
1996 size_t sym_name_size,
1997 Sized_relobj<64, true>::Symbols* sympointers);
1998 #endif
1999
2000 #ifdef HAVE_TARGET_64_BIG
2001 template
2002 void
2003 Symbol_table::add_from_relobj<64, true>(
2004 Sized_relobj<64, true>* relobj,
2005 const unsigned char* syms,
2006 size_t count,
2007 const char* sym_names,
2008 size_t sym_name_size,
2009 Sized_relobj<64, false>::Symbols* sympointers);
2010 #endif
2011
2012 #ifdef HAVE_TARGET_32_LITTLE
2013 template
2014 void
2015 Symbol_table::add_from_dynobj<32, false>(
2016 Sized_dynobj<32, false>* dynobj,
2017 const unsigned char* syms,
2018 size_t count,
2019 const char* sym_names,
2020 size_t sym_name_size,
2021 const unsigned char* versym,
2022 size_t versym_size,
2023 const std::vector<const char*>* version_map);
2024 #endif
2025
2026 #ifdef HAVE_TARGET_32_BIG
2027 template
2028 void
2029 Symbol_table::add_from_dynobj<32, true>(
2030 Sized_dynobj<32, true>* dynobj,
2031 const unsigned char* syms,
2032 size_t count,
2033 const char* sym_names,
2034 size_t sym_name_size,
2035 const unsigned char* versym,
2036 size_t versym_size,
2037 const std::vector<const char*>* version_map);
2038 #endif
2039
2040 #ifdef HAVE_TARGET_64_LITTLE
2041 template
2042 void
2043 Symbol_table::add_from_dynobj<64, false>(
2044 Sized_dynobj<64, false>* dynobj,
2045 const unsigned char* syms,
2046 size_t count,
2047 const char* sym_names,
2048 size_t sym_name_size,
2049 const unsigned char* versym,
2050 size_t versym_size,
2051 const std::vector<const char*>* version_map);
2052 #endif
2053
2054 #ifdef HAVE_TARGET_64_BIG
2055 template
2056 void
2057 Symbol_table::add_from_dynobj<64, true>(
2058 Sized_dynobj<64, true>* dynobj,
2059 const unsigned char* syms,
2060 size_t count,
2061 const char* sym_names,
2062 size_t sym_name_size,
2063 const unsigned char* versym,
2064 size_t versym_size,
2065 const std::vector<const char*>* version_map);
2066 #endif
2067
2068 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2069 template
2070 void
2071 Symbol_table::define_with_copy_reloc<32>(const Target* target,
2072 Sized_symbol<32>* sym,
2073 Output_data* posd, uint64_t value);
2074 #endif
2075
2076 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2077 template
2078 void
2079 Symbol_table::define_with_copy_reloc<64>(const Target* target,
2080 Sized_symbol<64>* sym,
2081 Output_data* posd, uint64_t value);
2082 #endif
2083
2084 #ifdef HAVE_TARGET_32_LITTLE
2085 template
2086 void
2087 Warnings::issue_warning<32, false>(const Symbol* sym,
2088 const Relocate_info<32, false>* relinfo,
2089 size_t relnum, off_t reloffset) const;
2090 #endif
2091
2092 #ifdef HAVE_TARGET_32_BIG
2093 template
2094 void
2095 Warnings::issue_warning<32, true>(const Symbol* sym,
2096 const Relocate_info<32, true>* relinfo,
2097 size_t relnum, off_t reloffset) const;
2098 #endif
2099
2100 #ifdef HAVE_TARGET_64_LITTLE
2101 template
2102 void
2103 Warnings::issue_warning<64, false>(const Symbol* sym,
2104 const Relocate_info<64, false>* relinfo,
2105 size_t relnum, off_t reloffset) const;
2106 #endif
2107
2108 #ifdef HAVE_TARGET_64_BIG
2109 template
2110 void
2111 Warnings::issue_warning<64, true>(const Symbol* sym,
2112 const Relocate_info<64, true>* relinfo,
2113 size_t relnum, off_t reloffset) const;
2114 #endif
2115
2116 } // End namespace gold.
This page took 0.078923 seconds and 5 git commands to generate.