* symtab.cc (Symbol_table::add_from_dynobj): Only look for weak
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "object.h"
34 #include "dwarf_reader.h"
35 #include "dynobj.h"
36 #include "output.h"
37 #include "target.h"
38 #include "workqueue.h"
39 #include "symtab.h"
40
41 namespace gold
42 {
43
44 // Class Symbol.
45
46 // Initialize fields in Symbol. This initializes everything except u_
47 // and source_.
48
49 void
50 Symbol::init_fields(const char* name, const char* version,
51 elfcpp::STT type, elfcpp::STB binding,
52 elfcpp::STV visibility, unsigned char nonvis)
53 {
54 this->name_ = name;
55 this->version_ = version;
56 this->symtab_index_ = 0;
57 this->dynsym_index_ = 0;
58 this->got_offsets_.init();
59 this->plt_offset_ = 0;
60 this->type_ = type;
61 this->binding_ = binding;
62 this->visibility_ = visibility;
63 this->nonvis_ = nonvis;
64 this->is_target_special_ = false;
65 this->is_def_ = false;
66 this->is_forwarder_ = false;
67 this->has_alias_ = false;
68 this->needs_dynsym_entry_ = false;
69 this->in_reg_ = false;
70 this->in_dyn_ = false;
71 this->has_plt_offset_ = false;
72 this->has_warning_ = false;
73 this->is_copied_from_dynobj_ = false;
74 this->is_forced_local_ = false;
75 }
76
77 // Return the demangled version of the symbol's name, but only
78 // if the --demangle flag was set.
79
80 static std::string
81 demangle(const char* name)
82 {
83 if (!parameters->options().do_demangle())
84 return name;
85
86 // cplus_demangle allocates memory for the result it returns,
87 // and returns NULL if the name is already demangled.
88 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
89 if (demangled_name == NULL)
90 return name;
91
92 std::string retval(demangled_name);
93 free(demangled_name);
94 return retval;
95 }
96
97 std::string
98 Symbol::demangled_name() const
99 {
100 return demangle(this->name());
101 }
102
103 // Initialize the fields in the base class Symbol for SYM in OBJECT.
104
105 template<int size, bool big_endian>
106 void
107 Symbol::init_base(const char* name, const char* version, Object* object,
108 const elfcpp::Sym<size, big_endian>& sym)
109 {
110 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
111 sym.get_st_visibility(), sym.get_st_nonvis());
112 this->u_.from_object.object = object;
113 // FIXME: Handle SHN_XINDEX.
114 this->u_.from_object.shndx = sym.get_st_shndx();
115 this->source_ = FROM_OBJECT;
116 this->in_reg_ = !object->is_dynamic();
117 this->in_dyn_ = object->is_dynamic();
118 }
119
120 // Initialize the fields in the base class Symbol for a symbol defined
121 // in an Output_data.
122
123 void
124 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
125 elfcpp::STB binding, elfcpp::STV visibility,
126 unsigned char nonvis, bool offset_is_from_end)
127 {
128 this->init_fields(name, NULL, type, binding, visibility, nonvis);
129 this->u_.in_output_data.output_data = od;
130 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
131 this->source_ = IN_OUTPUT_DATA;
132 this->in_reg_ = true;
133 }
134
135 // Initialize the fields in the base class Symbol for a symbol defined
136 // in an Output_segment.
137
138 void
139 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
140 elfcpp::STB binding, elfcpp::STV visibility,
141 unsigned char nonvis, Segment_offset_base offset_base)
142 {
143 this->init_fields(name, NULL, type, binding, visibility, nonvis);
144 this->u_.in_output_segment.output_segment = os;
145 this->u_.in_output_segment.offset_base = offset_base;
146 this->source_ = IN_OUTPUT_SEGMENT;
147 this->in_reg_ = true;
148 }
149
150 // Initialize the fields in the base class Symbol for a symbol defined
151 // as a constant.
152
153 void
154 Symbol::init_base(const char* name, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis)
157 {
158 this->init_fields(name, NULL, type, binding, visibility, nonvis);
159 this->source_ = CONSTANT;
160 this->in_reg_ = true;
161 }
162
163 // Allocate a common symbol in the base.
164
165 void
166 Symbol::allocate_base_common(Output_data* od)
167 {
168 gold_assert(this->is_common());
169 this->source_ = IN_OUTPUT_DATA;
170 this->u_.in_output_data.output_data = od;
171 this->u_.in_output_data.offset_is_from_end = false;
172 }
173
174 // Initialize the fields in Sized_symbol for SYM in OBJECT.
175
176 template<int size>
177 template<bool big_endian>
178 void
179 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
180 const elfcpp::Sym<size, big_endian>& sym)
181 {
182 this->init_base(name, version, object, sym);
183 this->value_ = sym.get_st_value();
184 this->symsize_ = sym.get_st_size();
185 }
186
187 // Initialize the fields in Sized_symbol for a symbol defined in an
188 // Output_data.
189
190 template<int size>
191 void
192 Sized_symbol<size>::init(const char* name, Output_data* od,
193 Value_type value, Size_type symsize,
194 elfcpp::STT type, elfcpp::STB binding,
195 elfcpp::STV visibility, unsigned char nonvis,
196 bool offset_is_from_end)
197 {
198 this->init_base(name, od, type, binding, visibility, nonvis,
199 offset_is_from_end);
200 this->value_ = value;
201 this->symsize_ = symsize;
202 }
203
204 // Initialize the fields in Sized_symbol for a symbol defined in an
205 // Output_segment.
206
207 template<int size>
208 void
209 Sized_symbol<size>::init(const char* name, Output_segment* os,
210 Value_type value, Size_type symsize,
211 elfcpp::STT type, elfcpp::STB binding,
212 elfcpp::STV visibility, unsigned char nonvis,
213 Segment_offset_base offset_base)
214 {
215 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
216 this->value_ = value;
217 this->symsize_ = symsize;
218 }
219
220 // Initialize the fields in Sized_symbol for a symbol defined as a
221 // constant.
222
223 template<int size>
224 void
225 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
226 elfcpp::STT type, elfcpp::STB binding,
227 elfcpp::STV visibility, unsigned char nonvis)
228 {
229 this->init_base(name, type, binding, visibility, nonvis);
230 this->value_ = value;
231 this->symsize_ = symsize;
232 }
233
234 // Allocate a common symbol.
235
236 template<int size>
237 void
238 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
239 {
240 this->allocate_base_common(od);
241 this->value_ = value;
242 }
243
244 // Return true if this symbol should be added to the dynamic symbol
245 // table.
246
247 inline bool
248 Symbol::should_add_dynsym_entry() const
249 {
250 // If the symbol is used by a dynamic relocation, we need to add it.
251 if (this->needs_dynsym_entry())
252 return true;
253
254 // If the symbol was forced local in a version script, do not add it.
255 if (this->is_forced_local())
256 return false;
257
258 // If exporting all symbols or building a shared library,
259 // and the symbol is defined in a regular object and is
260 // externally visible, we need to add it.
261 if ((parameters->options().export_dynamic() || parameters->options().shared())
262 && !this->is_from_dynobj()
263 && this->is_externally_visible())
264 return true;
265
266 return false;
267 }
268
269 // Return true if the final value of this symbol is known at link
270 // time.
271
272 bool
273 Symbol::final_value_is_known() const
274 {
275 // If we are not generating an executable, then no final values are
276 // known, since they will change at runtime.
277 if (parameters->options().shared() || parameters->options().relocatable())
278 return false;
279
280 // If the symbol is not from an object file, then it is defined, and
281 // known.
282 if (this->source_ != FROM_OBJECT)
283 return true;
284
285 // If the symbol is from a dynamic object, then the final value is
286 // not known.
287 if (this->object()->is_dynamic())
288 return false;
289
290 // If the symbol is not undefined (it is defined or common), then
291 // the final value is known.
292 if (!this->is_undefined())
293 return true;
294
295 // If the symbol is undefined, then whether the final value is known
296 // depends on whether we are doing a static link. If we are doing a
297 // dynamic link, then the final value could be filled in at runtime.
298 // This could reasonably be the case for a weak undefined symbol.
299 return parameters->doing_static_link();
300 }
301
302 // Return the output section where this symbol is defined.
303
304 Output_section*
305 Symbol::output_section() const
306 {
307 switch (this->source_)
308 {
309 case FROM_OBJECT:
310 {
311 unsigned int shndx = this->u_.from_object.shndx;
312 if (shndx != elfcpp::SHN_UNDEF && shndx < elfcpp::SHN_LORESERVE)
313 {
314 gold_assert(!this->u_.from_object.object->is_dynamic());
315 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
316 section_offset_type dummy;
317 return relobj->output_section(shndx, &dummy);
318 }
319 return NULL;
320 }
321
322 case IN_OUTPUT_DATA:
323 return this->u_.in_output_data.output_data->output_section();
324
325 case IN_OUTPUT_SEGMENT:
326 case CONSTANT:
327 return NULL;
328
329 default:
330 gold_unreachable();
331 }
332 }
333
334 // Set the symbol's output section. This is used for symbols defined
335 // in scripts. This should only be called after the symbol table has
336 // been finalized.
337
338 void
339 Symbol::set_output_section(Output_section* os)
340 {
341 switch (this->source_)
342 {
343 case FROM_OBJECT:
344 case IN_OUTPUT_DATA:
345 gold_assert(this->output_section() == os);
346 break;
347 case CONSTANT:
348 this->source_ = IN_OUTPUT_DATA;
349 this->u_.in_output_data.output_data = os;
350 this->u_.in_output_data.offset_is_from_end = false;
351 break;
352 case IN_OUTPUT_SEGMENT:
353 default:
354 gold_unreachable();
355 }
356 }
357
358 // Class Symbol_table.
359
360 Symbol_table::Symbol_table(unsigned int count,
361 const Version_script_info& version_script)
362 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
363 forwarders_(), commons_(), forced_locals_(), warnings_(),
364 version_script_(version_script)
365 {
366 namepool_.reserve(count);
367 }
368
369 Symbol_table::~Symbol_table()
370 {
371 }
372
373 // The hash function. The key values are Stringpool keys.
374
375 inline size_t
376 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
377 {
378 return key.first ^ key.second;
379 }
380
381 // The symbol table key equality function. This is called with
382 // Stringpool keys.
383
384 inline bool
385 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
386 const Symbol_table_key& k2) const
387 {
388 return k1.first == k2.first && k1.second == k2.second;
389 }
390
391 // Make TO a symbol which forwards to FROM.
392
393 void
394 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
395 {
396 gold_assert(from != to);
397 gold_assert(!from->is_forwarder() && !to->is_forwarder());
398 this->forwarders_[from] = to;
399 from->set_forwarder();
400 }
401
402 // Resolve the forwards from FROM, returning the real symbol.
403
404 Symbol*
405 Symbol_table::resolve_forwards(const Symbol* from) const
406 {
407 gold_assert(from->is_forwarder());
408 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
409 this->forwarders_.find(from);
410 gold_assert(p != this->forwarders_.end());
411 return p->second;
412 }
413
414 // Look up a symbol by name.
415
416 Symbol*
417 Symbol_table::lookup(const char* name, const char* version) const
418 {
419 Stringpool::Key name_key;
420 name = this->namepool_.find(name, &name_key);
421 if (name == NULL)
422 return NULL;
423
424 Stringpool::Key version_key = 0;
425 if (version != NULL)
426 {
427 version = this->namepool_.find(version, &version_key);
428 if (version == NULL)
429 return NULL;
430 }
431
432 Symbol_table_key key(name_key, version_key);
433 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
434 if (p == this->table_.end())
435 return NULL;
436 return p->second;
437 }
438
439 // Resolve a Symbol with another Symbol. This is only used in the
440 // unusual case where there are references to both an unversioned
441 // symbol and a symbol with a version, and we then discover that that
442 // version is the default version. Because this is unusual, we do
443 // this the slow way, by converting back to an ELF symbol.
444
445 template<int size, bool big_endian>
446 void
447 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
448 const char* version)
449 {
450 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
451 elfcpp::Sym_write<size, big_endian> esym(buf);
452 // We don't bother to set the st_name field.
453 esym.put_st_value(from->value());
454 esym.put_st_size(from->symsize());
455 esym.put_st_info(from->binding(), from->type());
456 esym.put_st_other(from->visibility(), from->nonvis());
457 esym.put_st_shndx(from->shndx());
458 this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
459 if (from->in_reg())
460 to->set_in_reg();
461 if (from->in_dyn())
462 to->set_in_dyn();
463 }
464
465 // Record that a symbol is forced to be local by a version script.
466
467 void
468 Symbol_table::force_local(Symbol* sym)
469 {
470 if (!sym->is_defined() && !sym->is_common())
471 return;
472 if (sym->is_forced_local())
473 {
474 // We already got this one.
475 return;
476 }
477 sym->set_is_forced_local();
478 this->forced_locals_.push_back(sym);
479 }
480
481 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
482 // is only called for undefined symbols, when at least one --wrap
483 // option was used.
484
485 const char*
486 Symbol_table::wrap_symbol(Object* object, const char* name,
487 Stringpool::Key* name_key)
488 {
489 // For some targets, we need to ignore a specific character when
490 // wrapping, and add it back later.
491 char prefix = '\0';
492 if (name[0] == object->target()->wrap_char())
493 {
494 prefix = name[0];
495 ++name;
496 }
497
498 if (parameters->options().is_wrap_symbol(name))
499 {
500 // Turn NAME into __wrap_NAME.
501 std::string s;
502 if (prefix != '\0')
503 s += prefix;
504 s += "__wrap_";
505 s += name;
506
507 // This will give us both the old and new name in NAMEPOOL_, but
508 // that is OK. Only the versions we need will wind up in the
509 // real string table in the output file.
510 return this->namepool_.add(s.c_str(), true, name_key);
511 }
512
513 const char* const real_prefix = "__real_";
514 const size_t real_prefix_length = strlen(real_prefix);
515 if (strncmp(name, real_prefix, real_prefix_length) == 0
516 && parameters->options().is_wrap_symbol(name + real_prefix_length))
517 {
518 // Turn __real_NAME into NAME.
519 std::string s;
520 if (prefix != '\0')
521 s += prefix;
522 s += name + real_prefix_length;
523 return this->namepool_.add(s.c_str(), true, name_key);
524 }
525
526 return name;
527 }
528
529 // Add one symbol from OBJECT to the symbol table. NAME is symbol
530 // name and VERSION is the version; both are canonicalized. DEF is
531 // whether this is the default version.
532
533 // If DEF is true, then this is the definition of a default version of
534 // a symbol. That means that any lookup of NAME/NULL and any lookup
535 // of NAME/VERSION should always return the same symbol. This is
536 // obvious for references, but in particular we want to do this for
537 // definitions: overriding NAME/NULL should also override
538 // NAME/VERSION. If we don't do that, it would be very hard to
539 // override functions in a shared library which uses versioning.
540
541 // We implement this by simply making both entries in the hash table
542 // point to the same Symbol structure. That is easy enough if this is
543 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
544 // that we have seen both already, in which case they will both have
545 // independent entries in the symbol table. We can't simply change
546 // the symbol table entry, because we have pointers to the entries
547 // attached to the object files. So we mark the entry attached to the
548 // object file as a forwarder, and record it in the forwarders_ map.
549 // Note that entries in the hash table will never be marked as
550 // forwarders.
551 //
552 // SYM and ORIG_SYM are almost always the same. ORIG_SYM is the
553 // symbol exactly as it existed in the input file. SYM is usually
554 // that as well, but can be modified, for instance if we determine
555 // it's in a to-be-discarded section.
556
557 template<int size, bool big_endian>
558 Sized_symbol<size>*
559 Symbol_table::add_from_object(Object* object,
560 const char *name,
561 Stringpool::Key name_key,
562 const char *version,
563 Stringpool::Key version_key,
564 bool def,
565 const elfcpp::Sym<size, big_endian>& sym,
566 const elfcpp::Sym<size, big_endian>& orig_sym)
567 {
568 // For an undefined symbol, we may need to adjust the name using
569 // --wrap.
570 if (orig_sym.get_st_shndx() == elfcpp::SHN_UNDEF
571 && parameters->options().any_wrap_symbols())
572 {
573 const char* wrap_name = this->wrap_symbol(object, name, &name_key);
574 if (wrap_name != name)
575 {
576 // If we see a reference to malloc with version GLIBC_2.0,
577 // and we turn it into a reference to __wrap_malloc, then we
578 // discard the version number. Otherwise the user would be
579 // required to specify the correct version for
580 // __wrap_malloc.
581 version = NULL;
582 version_key = 0;
583 name = wrap_name;
584 }
585 }
586
587 Symbol* const snull = NULL;
588 std::pair<typename Symbol_table_type::iterator, bool> ins =
589 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
590 snull));
591
592 std::pair<typename Symbol_table_type::iterator, bool> insdef =
593 std::make_pair(this->table_.end(), false);
594 if (def)
595 {
596 const Stringpool::Key vnull_key = 0;
597 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
598 vnull_key),
599 snull));
600 }
601
602 // ins.first: an iterator, which is a pointer to a pair.
603 // ins.first->first: the key (a pair of name and version).
604 // ins.first->second: the value (Symbol*).
605 // ins.second: true if new entry was inserted, false if not.
606
607 Sized_symbol<size>* ret;
608 bool was_undefined;
609 bool was_common;
610 if (!ins.second)
611 {
612 // We already have an entry for NAME/VERSION.
613 ret = this->get_sized_symbol<size>(ins.first->second);
614 gold_assert(ret != NULL);
615
616 was_undefined = ret->is_undefined();
617 was_common = ret->is_common();
618
619 this->resolve(ret, sym, orig_sym, object, version);
620
621 if (def)
622 {
623 if (insdef.second)
624 {
625 // This is the first time we have seen NAME/NULL. Make
626 // NAME/NULL point to NAME/VERSION.
627 insdef.first->second = ret;
628 }
629 else if (insdef.first->second != ret
630 && insdef.first->second->is_undefined())
631 {
632 // This is the unfortunate case where we already have
633 // entries for both NAME/VERSION and NAME/NULL. Note
634 // that we don't want to combine them if the existing
635 // symbol is going to override the new one. FIXME: We
636 // currently just test is_undefined, but this may not do
637 // the right thing if the existing symbol is from a
638 // shared library and the new one is from a regular
639 // object.
640
641 const Sized_symbol<size>* sym2;
642 sym2 = this->get_sized_symbol<size>(insdef.first->second);
643 Symbol_table::resolve<size, big_endian>(ret, sym2, version);
644 this->make_forwarder(insdef.first->second, ret);
645 insdef.first->second = ret;
646 }
647 else
648 def = false;
649 }
650 }
651 else
652 {
653 // This is the first time we have seen NAME/VERSION.
654 gold_assert(ins.first->second == NULL);
655
656 if (def && !insdef.second)
657 {
658 // We already have an entry for NAME/NULL. If we override
659 // it, then change it to NAME/VERSION.
660 ret = this->get_sized_symbol<size>(insdef.first->second);
661
662 was_undefined = ret->is_undefined();
663 was_common = ret->is_common();
664
665 this->resolve(ret, sym, orig_sym, object, version);
666 ins.first->second = ret;
667 }
668 else
669 {
670 was_undefined = false;
671 was_common = false;
672
673 Sized_target<size, big_endian>* target =
674 object->sized_target<size, big_endian>();
675 if (!target->has_make_symbol())
676 ret = new Sized_symbol<size>();
677 else
678 {
679 ret = target->make_symbol();
680 if (ret == NULL)
681 {
682 // This means that we don't want a symbol table
683 // entry after all.
684 if (!def)
685 this->table_.erase(ins.first);
686 else
687 {
688 this->table_.erase(insdef.first);
689 // Inserting insdef invalidated ins.
690 this->table_.erase(std::make_pair(name_key,
691 version_key));
692 }
693 return NULL;
694 }
695 }
696
697 ret->init(name, version, object, sym);
698
699 ins.first->second = ret;
700 if (def)
701 {
702 // This is the first time we have seen NAME/NULL. Point
703 // it at the new entry for NAME/VERSION.
704 gold_assert(insdef.second);
705 insdef.first->second = ret;
706 }
707 }
708 }
709
710 // Record every time we see a new undefined symbol, to speed up
711 // archive groups.
712 if (!was_undefined && ret->is_undefined())
713 ++this->saw_undefined_;
714
715 // Keep track of common symbols, to speed up common symbol
716 // allocation.
717 if (!was_common && ret->is_common())
718 this->commons_.push_back(ret);
719
720 if (def)
721 ret->set_is_default();
722 return ret;
723 }
724
725 // Add all the symbols in a relocatable object to the hash table.
726
727 template<int size, bool big_endian>
728 void
729 Symbol_table::add_from_relobj(
730 Sized_relobj<size, big_endian>* relobj,
731 const unsigned char* syms,
732 size_t count,
733 const char* sym_names,
734 size_t sym_name_size,
735 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
736 {
737 gold_assert(size == relobj->target()->get_size());
738 gold_assert(size == parameters->target().get_size());
739
740 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
741
742 const bool just_symbols = relobj->just_symbols();
743
744 const unsigned char* p = syms;
745 for (size_t i = 0; i < count; ++i, p += sym_size)
746 {
747 elfcpp::Sym<size, big_endian> sym(p);
748 elfcpp::Sym<size, big_endian>* psym = &sym;
749
750 unsigned int st_name = psym->get_st_name();
751 if (st_name >= sym_name_size)
752 {
753 relobj->error(_("bad global symbol name offset %u at %zu"),
754 st_name, i);
755 continue;
756 }
757
758 const char* name = sym_names + st_name;
759
760 // A symbol defined in a section which we are not including must
761 // be treated as an undefined symbol.
762 unsigned char symbuf[sym_size];
763 elfcpp::Sym<size, big_endian> sym2(symbuf);
764 unsigned int st_shndx = psym->get_st_shndx();
765 if (st_shndx != elfcpp::SHN_UNDEF
766 && st_shndx < elfcpp::SHN_LORESERVE
767 && !relobj->is_section_included(st_shndx))
768 {
769 memcpy(symbuf, p, sym_size);
770 elfcpp::Sym_write<size, big_endian> sw(symbuf);
771 sw.put_st_shndx(elfcpp::SHN_UNDEF);
772 psym = &sym2;
773 }
774
775 // In an object file, an '@' in the name separates the symbol
776 // name from the version name. If there are two '@' characters,
777 // this is the default version.
778 const char* ver = strchr(name, '@');
779 int namelen = 0;
780 // DEF: is the version default? LOCAL: is the symbol forced local?
781 bool def = false;
782 bool local = false;
783
784 if (ver != NULL)
785 {
786 // The symbol name is of the form foo@VERSION or foo@@VERSION
787 namelen = ver - name;
788 ++ver;
789 if (*ver == '@')
790 {
791 def = true;
792 ++ver;
793 }
794 }
795 // We don't want to assign a version to an undefined symbol,
796 // even if it is listed in the version script. FIXME: What
797 // about a common symbol?
798 else if (!version_script_.empty()
799 && psym->get_st_shndx() != elfcpp::SHN_UNDEF)
800 {
801 // The symbol name did not have a version, but
802 // the version script may assign a version anyway.
803 namelen = strlen(name);
804 def = true;
805 // Check the global: entries from the version script.
806 const std::string& version =
807 version_script_.get_symbol_version(name);
808 if (!version.empty())
809 ver = version.c_str();
810 // Check the local: entries from the version script
811 if (version_script_.symbol_is_local(name))
812 local = true;
813 }
814
815 if (just_symbols)
816 {
817 if (psym != &sym2)
818 memcpy(symbuf, p, sym_size);
819 elfcpp::Sym_write<size, big_endian> sw(symbuf);
820 sw.put_st_shndx(elfcpp::SHN_ABS);
821 if (st_shndx != elfcpp::SHN_UNDEF
822 && st_shndx < elfcpp::SHN_LORESERVE)
823 {
824 // Symbol values in object files are section relative.
825 // This is normally what we want, but since here we are
826 // converting the symbol to absolute we need to add the
827 // section address. The section address in an object
828 // file is normally zero, but people can use a linker
829 // script to change it.
830 sw.put_st_value(sym2.get_st_value()
831 + relobj->section_address(st_shndx));
832 }
833 psym = &sym2;
834 }
835
836 Sized_symbol<size>* res;
837 if (ver == NULL)
838 {
839 Stringpool::Key name_key;
840 name = this->namepool_.add(name, true, &name_key);
841 res = this->add_from_object(relobj, name, name_key, NULL, 0,
842 false, *psym, sym);
843 if (local)
844 this->force_local(res);
845 }
846 else
847 {
848 Stringpool::Key name_key;
849 name = this->namepool_.add_with_length(name, namelen, true,
850 &name_key);
851 Stringpool::Key ver_key;
852 ver = this->namepool_.add(ver, true, &ver_key);
853
854 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
855 def, *psym, sym);
856 }
857
858 (*sympointers)[i] = res;
859 }
860 }
861
862 // Add all the symbols in a dynamic object to the hash table.
863
864 template<int size, bool big_endian>
865 void
866 Symbol_table::add_from_dynobj(
867 Sized_dynobj<size, big_endian>* dynobj,
868 const unsigned char* syms,
869 size_t count,
870 const char* sym_names,
871 size_t sym_name_size,
872 const unsigned char* versym,
873 size_t versym_size,
874 const std::vector<const char*>* version_map)
875 {
876 gold_assert(size == dynobj->target()->get_size());
877 gold_assert(size == parameters->target().get_size());
878
879 if (dynobj->just_symbols())
880 {
881 gold_error(_("--just-symbols does not make sense with a shared object"));
882 return;
883 }
884
885 if (versym != NULL && versym_size / 2 < count)
886 {
887 dynobj->error(_("too few symbol versions"));
888 return;
889 }
890
891 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
892
893 // We keep a list of all STT_OBJECT symbols, so that we can resolve
894 // weak aliases. This is necessary because if the dynamic object
895 // provides the same variable under two names, one of which is a
896 // weak definition, and the regular object refers to the weak
897 // definition, we have to put both the weak definition and the
898 // strong definition into the dynamic symbol table. Given a weak
899 // definition, the only way that we can find the corresponding
900 // strong definition, if any, is to search the symbol table.
901 std::vector<Sized_symbol<size>*> object_symbols;
902
903 const unsigned char* p = syms;
904 const unsigned char* vs = versym;
905 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
906 {
907 elfcpp::Sym<size, big_endian> sym(p);
908
909 // Ignore symbols with local binding or that have
910 // internal or hidden visibility.
911 if (sym.get_st_bind() == elfcpp::STB_LOCAL
912 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
913 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
914 continue;
915
916 unsigned int st_name = sym.get_st_name();
917 if (st_name >= sym_name_size)
918 {
919 dynobj->error(_("bad symbol name offset %u at %zu"),
920 st_name, i);
921 continue;
922 }
923
924 const char* name = sym_names + st_name;
925
926 Sized_symbol<size>* res;
927
928 if (versym == NULL)
929 {
930 Stringpool::Key name_key;
931 name = this->namepool_.add(name, true, &name_key);
932 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
933 false, sym, sym);
934 }
935 else
936 {
937 // Read the version information.
938
939 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
940
941 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
942 v &= elfcpp::VERSYM_VERSION;
943
944 // The Sun documentation says that V can be VER_NDX_LOCAL,
945 // or VER_NDX_GLOBAL, or a version index. The meaning of
946 // VER_NDX_LOCAL is defined as "Symbol has local scope."
947 // The old GNU linker will happily generate VER_NDX_LOCAL
948 // for an undefined symbol. I don't know what the Sun
949 // linker will generate.
950
951 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
952 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
953 {
954 // This symbol should not be visible outside the object.
955 continue;
956 }
957
958 // At this point we are definitely going to add this symbol.
959 Stringpool::Key name_key;
960 name = this->namepool_.add(name, true, &name_key);
961
962 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
963 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
964 {
965 // This symbol does not have a version.
966 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
967 false, sym, sym);
968 }
969 else
970 {
971 if (v >= version_map->size())
972 {
973 dynobj->error(_("versym for symbol %zu out of range: %u"),
974 i, v);
975 continue;
976 }
977
978 const char* version = (*version_map)[v];
979 if (version == NULL)
980 {
981 dynobj->error(_("versym for symbol %zu has no name: %u"),
982 i, v);
983 continue;
984 }
985
986 Stringpool::Key version_key;
987 version = this->namepool_.add(version, true, &version_key);
988
989 // If this is an absolute symbol, and the version name
990 // and symbol name are the same, then this is the
991 // version definition symbol. These symbols exist to
992 // support using -u to pull in particular versions. We
993 // do not want to record a version for them.
994 if (sym.get_st_shndx() == elfcpp::SHN_ABS
995 && name_key == version_key)
996 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
997 false, sym, sym);
998 else
999 {
1000 const bool def = (!hidden
1001 && (sym.get_st_shndx()
1002 != elfcpp::SHN_UNDEF));
1003 res = this->add_from_object(dynobj, name, name_key, version,
1004 version_key, def, sym, sym);
1005 }
1006 }
1007 }
1008
1009 // Note that it is possible that RES was overridden by an
1010 // earlier object, in which case it can be aliased here.
1011 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
1012 && sym.get_st_type() == elfcpp::STT_OBJECT
1013 && res->source() == Symbol::FROM_OBJECT
1014 && res->object() == dynobj)
1015 object_symbols.push_back(res);
1016 }
1017
1018 this->record_weak_aliases(&object_symbols);
1019 }
1020
1021 // This is used to sort weak aliases. We sort them first by section
1022 // index, then by offset, then by weak ahead of strong.
1023
1024 template<int size>
1025 class Weak_alias_sorter
1026 {
1027 public:
1028 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1029 };
1030
1031 template<int size>
1032 bool
1033 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1034 const Sized_symbol<size>* s2) const
1035 {
1036 if (s1->shndx() != s2->shndx())
1037 return s1->shndx() < s2->shndx();
1038 if (s1->value() != s2->value())
1039 return s1->value() < s2->value();
1040 if (s1->binding() != s2->binding())
1041 {
1042 if (s1->binding() == elfcpp::STB_WEAK)
1043 return true;
1044 if (s2->binding() == elfcpp::STB_WEAK)
1045 return false;
1046 }
1047 return std::string(s1->name()) < std::string(s2->name());
1048 }
1049
1050 // SYMBOLS is a list of object symbols from a dynamic object. Look
1051 // for any weak aliases, and record them so that if we add the weak
1052 // alias to the dynamic symbol table, we also add the corresponding
1053 // strong symbol.
1054
1055 template<int size>
1056 void
1057 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1058 {
1059 // Sort the vector by section index, then by offset, then by weak
1060 // ahead of strong.
1061 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1062
1063 // Walk through the vector. For each weak definition, record
1064 // aliases.
1065 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1066 symbols->begin();
1067 p != symbols->end();
1068 ++p)
1069 {
1070 if ((*p)->binding() != elfcpp::STB_WEAK)
1071 continue;
1072
1073 // Build a circular list of weak aliases. Each symbol points to
1074 // the next one in the circular list.
1075
1076 Sized_symbol<size>* from_sym = *p;
1077 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1078 for (q = p + 1; q != symbols->end(); ++q)
1079 {
1080 if ((*q)->shndx() != from_sym->shndx()
1081 || (*q)->value() != from_sym->value())
1082 break;
1083
1084 this->weak_aliases_[from_sym] = *q;
1085 from_sym->set_has_alias();
1086 from_sym = *q;
1087 }
1088
1089 if (from_sym != *p)
1090 {
1091 this->weak_aliases_[from_sym] = *p;
1092 from_sym->set_has_alias();
1093 }
1094
1095 p = q - 1;
1096 }
1097 }
1098
1099 // Create and return a specially defined symbol. If ONLY_IF_REF is
1100 // true, then only create the symbol if there is a reference to it.
1101 // If this does not return NULL, it sets *POLDSYM to the existing
1102 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
1103
1104 template<int size, bool big_endian>
1105 Sized_symbol<size>*
1106 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1107 bool only_if_ref,
1108 Sized_symbol<size>** poldsym)
1109 {
1110 Symbol* oldsym;
1111 Sized_symbol<size>* sym;
1112 bool add_to_table = false;
1113 typename Symbol_table_type::iterator add_loc = this->table_.end();
1114
1115 // If the caller didn't give us a version, see if we get one from
1116 // the version script.
1117 if (*pversion == NULL)
1118 {
1119 const std::string& v(this->version_script_.get_symbol_version(*pname));
1120 if (!v.empty())
1121 *pversion = v.c_str();
1122 }
1123
1124 if (only_if_ref)
1125 {
1126 oldsym = this->lookup(*pname, *pversion);
1127 if (oldsym == NULL || !oldsym->is_undefined())
1128 return NULL;
1129
1130 *pname = oldsym->name();
1131 *pversion = oldsym->version();
1132 }
1133 else
1134 {
1135 // Canonicalize NAME and VERSION.
1136 Stringpool::Key name_key;
1137 *pname = this->namepool_.add(*pname, true, &name_key);
1138
1139 Stringpool::Key version_key = 0;
1140 if (*pversion != NULL)
1141 *pversion = this->namepool_.add(*pversion, true, &version_key);
1142
1143 Symbol* const snull = NULL;
1144 std::pair<typename Symbol_table_type::iterator, bool> ins =
1145 this->table_.insert(std::make_pair(std::make_pair(name_key,
1146 version_key),
1147 snull));
1148
1149 if (!ins.second)
1150 {
1151 // We already have a symbol table entry for NAME/VERSION.
1152 oldsym = ins.first->second;
1153 gold_assert(oldsym != NULL);
1154 }
1155 else
1156 {
1157 // We haven't seen this symbol before.
1158 gold_assert(ins.first->second == NULL);
1159 add_to_table = true;
1160 add_loc = ins.first;
1161 oldsym = NULL;
1162 }
1163 }
1164
1165 const Target& target = parameters->target();
1166 if (!target.has_make_symbol())
1167 sym = new Sized_symbol<size>();
1168 else
1169 {
1170 gold_assert(target.get_size() == size);
1171 gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1172 typedef Sized_target<size, big_endian> My_target;
1173 const My_target* sized_target =
1174 static_cast<const My_target*>(&target);
1175 sym = sized_target->make_symbol();
1176 if (sym == NULL)
1177 return NULL;
1178 }
1179
1180 if (add_to_table)
1181 add_loc->second = sym;
1182 else
1183 gold_assert(oldsym != NULL);
1184
1185 *poldsym = this->get_sized_symbol<size>(oldsym);
1186
1187 return sym;
1188 }
1189
1190 // Define a symbol based on an Output_data.
1191
1192 Symbol*
1193 Symbol_table::define_in_output_data(const char* name,
1194 const char* version,
1195 Output_data* od,
1196 uint64_t value,
1197 uint64_t symsize,
1198 elfcpp::STT type,
1199 elfcpp::STB binding,
1200 elfcpp::STV visibility,
1201 unsigned char nonvis,
1202 bool offset_is_from_end,
1203 bool only_if_ref)
1204 {
1205 if (parameters->target().get_size() == 32)
1206 {
1207 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1208 return this->do_define_in_output_data<32>(name, version, od,
1209 value, symsize, type, binding,
1210 visibility, nonvis,
1211 offset_is_from_end,
1212 only_if_ref);
1213 #else
1214 gold_unreachable();
1215 #endif
1216 }
1217 else if (parameters->target().get_size() == 64)
1218 {
1219 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1220 return this->do_define_in_output_data<64>(name, version, od,
1221 value, symsize, type, binding,
1222 visibility, nonvis,
1223 offset_is_from_end,
1224 only_if_ref);
1225 #else
1226 gold_unreachable();
1227 #endif
1228 }
1229 else
1230 gold_unreachable();
1231 }
1232
1233 // Define a symbol in an Output_data, sized version.
1234
1235 template<int size>
1236 Sized_symbol<size>*
1237 Symbol_table::do_define_in_output_data(
1238 const char* name,
1239 const char* version,
1240 Output_data* od,
1241 typename elfcpp::Elf_types<size>::Elf_Addr value,
1242 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1243 elfcpp::STT type,
1244 elfcpp::STB binding,
1245 elfcpp::STV visibility,
1246 unsigned char nonvis,
1247 bool offset_is_from_end,
1248 bool only_if_ref)
1249 {
1250 Sized_symbol<size>* sym;
1251 Sized_symbol<size>* oldsym;
1252
1253 if (parameters->target().is_big_endian())
1254 {
1255 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1256 sym = this->define_special_symbol<size, true>(&name, &version,
1257 only_if_ref, &oldsym);
1258 #else
1259 gold_unreachable();
1260 #endif
1261 }
1262 else
1263 {
1264 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1265 sym = this->define_special_symbol<size, false>(&name, &version,
1266 only_if_ref, &oldsym);
1267 #else
1268 gold_unreachable();
1269 #endif
1270 }
1271
1272 if (sym == NULL)
1273 return NULL;
1274
1275 gold_assert(version == NULL || oldsym != NULL);
1276 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1277 offset_is_from_end);
1278
1279 if (oldsym == NULL)
1280 {
1281 if (binding == elfcpp::STB_LOCAL
1282 || this->version_script_.symbol_is_local(name))
1283 this->force_local(sym);
1284 return sym;
1285 }
1286
1287 if (Symbol_table::should_override_with_special(oldsym))
1288 this->override_with_special(oldsym, sym);
1289 delete sym;
1290 return oldsym;
1291 }
1292
1293 // Define a symbol based on an Output_segment.
1294
1295 Symbol*
1296 Symbol_table::define_in_output_segment(const char* name,
1297 const char* version, Output_segment* os,
1298 uint64_t value,
1299 uint64_t symsize,
1300 elfcpp::STT type,
1301 elfcpp::STB binding,
1302 elfcpp::STV visibility,
1303 unsigned char nonvis,
1304 Symbol::Segment_offset_base offset_base,
1305 bool only_if_ref)
1306 {
1307 if (parameters->target().get_size() == 32)
1308 {
1309 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1310 return this->do_define_in_output_segment<32>(name, version, os,
1311 value, symsize, type,
1312 binding, visibility, nonvis,
1313 offset_base, only_if_ref);
1314 #else
1315 gold_unreachable();
1316 #endif
1317 }
1318 else if (parameters->target().get_size() == 64)
1319 {
1320 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1321 return this->do_define_in_output_segment<64>(name, version, os,
1322 value, symsize, type,
1323 binding, visibility, nonvis,
1324 offset_base, only_if_ref);
1325 #else
1326 gold_unreachable();
1327 #endif
1328 }
1329 else
1330 gold_unreachable();
1331 }
1332
1333 // Define a symbol in an Output_segment, sized version.
1334
1335 template<int size>
1336 Sized_symbol<size>*
1337 Symbol_table::do_define_in_output_segment(
1338 const char* name,
1339 const char* version,
1340 Output_segment* os,
1341 typename elfcpp::Elf_types<size>::Elf_Addr value,
1342 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1343 elfcpp::STT type,
1344 elfcpp::STB binding,
1345 elfcpp::STV visibility,
1346 unsigned char nonvis,
1347 Symbol::Segment_offset_base offset_base,
1348 bool only_if_ref)
1349 {
1350 Sized_symbol<size>* sym;
1351 Sized_symbol<size>* oldsym;
1352
1353 if (parameters->target().is_big_endian())
1354 {
1355 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1356 sym = this->define_special_symbol<size, true>(&name, &version,
1357 only_if_ref, &oldsym);
1358 #else
1359 gold_unreachable();
1360 #endif
1361 }
1362 else
1363 {
1364 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1365 sym = this->define_special_symbol<size, false>(&name, &version,
1366 only_if_ref, &oldsym);
1367 #else
1368 gold_unreachable();
1369 #endif
1370 }
1371
1372 if (sym == NULL)
1373 return NULL;
1374
1375 gold_assert(version == NULL || oldsym != NULL);
1376 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1377 offset_base);
1378
1379 if (oldsym == NULL)
1380 {
1381 if (binding == elfcpp::STB_LOCAL
1382 || this->version_script_.symbol_is_local(name))
1383 this->force_local(sym);
1384 return sym;
1385 }
1386
1387 if (Symbol_table::should_override_with_special(oldsym))
1388 this->override_with_special(oldsym, sym);
1389 delete sym;
1390 return oldsym;
1391 }
1392
1393 // Define a special symbol with a constant value. It is a multiple
1394 // definition error if this symbol is already defined.
1395
1396 Symbol*
1397 Symbol_table::define_as_constant(const char* name,
1398 const char* version,
1399 uint64_t value,
1400 uint64_t symsize,
1401 elfcpp::STT type,
1402 elfcpp::STB binding,
1403 elfcpp::STV visibility,
1404 unsigned char nonvis,
1405 bool only_if_ref,
1406 bool force_override)
1407 {
1408 if (parameters->target().get_size() == 32)
1409 {
1410 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1411 return this->do_define_as_constant<32>(name, version, value,
1412 symsize, type, binding,
1413 visibility, nonvis, only_if_ref,
1414 force_override);
1415 #else
1416 gold_unreachable();
1417 #endif
1418 }
1419 else if (parameters->target().get_size() == 64)
1420 {
1421 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1422 return this->do_define_as_constant<64>(name, version, value,
1423 symsize, type, binding,
1424 visibility, nonvis, only_if_ref,
1425 force_override);
1426 #else
1427 gold_unreachable();
1428 #endif
1429 }
1430 else
1431 gold_unreachable();
1432 }
1433
1434 // Define a symbol as a constant, sized version.
1435
1436 template<int size>
1437 Sized_symbol<size>*
1438 Symbol_table::do_define_as_constant(
1439 const char* name,
1440 const char* version,
1441 typename elfcpp::Elf_types<size>::Elf_Addr value,
1442 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1443 elfcpp::STT type,
1444 elfcpp::STB binding,
1445 elfcpp::STV visibility,
1446 unsigned char nonvis,
1447 bool only_if_ref,
1448 bool force_override)
1449 {
1450 Sized_symbol<size>* sym;
1451 Sized_symbol<size>* oldsym;
1452
1453 if (parameters->target().is_big_endian())
1454 {
1455 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1456 sym = this->define_special_symbol<size, true>(&name, &version,
1457 only_if_ref, &oldsym);
1458 #else
1459 gold_unreachable();
1460 #endif
1461 }
1462 else
1463 {
1464 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1465 sym = this->define_special_symbol<size, false>(&name, &version,
1466 only_if_ref, &oldsym);
1467 #else
1468 gold_unreachable();
1469 #endif
1470 }
1471
1472 if (sym == NULL)
1473 return NULL;
1474
1475 gold_assert(version == NULL || version == name || oldsym != NULL);
1476 sym->init(name, value, symsize, type, binding, visibility, nonvis);
1477
1478 if (oldsym == NULL)
1479 {
1480 // Version symbols are absolute symbols with name == version.
1481 // We don't want to force them to be local.
1482 if ((version == NULL
1483 || name != version
1484 || value != 0)
1485 && (binding == elfcpp::STB_LOCAL
1486 || this->version_script_.symbol_is_local(name)))
1487 this->force_local(sym);
1488 return sym;
1489 }
1490
1491 if (force_override || Symbol_table::should_override_with_special(oldsym))
1492 this->override_with_special(oldsym, sym);
1493 delete sym;
1494 return oldsym;
1495 }
1496
1497 // Define a set of symbols in output sections.
1498
1499 void
1500 Symbol_table::define_symbols(const Layout* layout, int count,
1501 const Define_symbol_in_section* p,
1502 bool only_if_ref)
1503 {
1504 for (int i = 0; i < count; ++i, ++p)
1505 {
1506 Output_section* os = layout->find_output_section(p->output_section);
1507 if (os != NULL)
1508 this->define_in_output_data(p->name, NULL, os, p->value,
1509 p->size, p->type, p->binding,
1510 p->visibility, p->nonvis,
1511 p->offset_is_from_end,
1512 only_if_ref || p->only_if_ref);
1513 else
1514 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1515 p->binding, p->visibility, p->nonvis,
1516 only_if_ref || p->only_if_ref,
1517 false);
1518 }
1519 }
1520
1521 // Define a set of symbols in output segments.
1522
1523 void
1524 Symbol_table::define_symbols(const Layout* layout, int count,
1525 const Define_symbol_in_segment* p,
1526 bool only_if_ref)
1527 {
1528 for (int i = 0; i < count; ++i, ++p)
1529 {
1530 Output_segment* os = layout->find_output_segment(p->segment_type,
1531 p->segment_flags_set,
1532 p->segment_flags_clear);
1533 if (os != NULL)
1534 this->define_in_output_segment(p->name, NULL, os, p->value,
1535 p->size, p->type, p->binding,
1536 p->visibility, p->nonvis,
1537 p->offset_base,
1538 only_if_ref || p->only_if_ref);
1539 else
1540 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1541 p->binding, p->visibility, p->nonvis,
1542 only_if_ref || p->only_if_ref,
1543 false);
1544 }
1545 }
1546
1547 // Define CSYM using a COPY reloc. POSD is the Output_data where the
1548 // symbol should be defined--typically a .dyn.bss section. VALUE is
1549 // the offset within POSD.
1550
1551 template<int size>
1552 void
1553 Symbol_table::define_with_copy_reloc(
1554 Sized_symbol<size>* csym,
1555 Output_data* posd,
1556 typename elfcpp::Elf_types<size>::Elf_Addr value)
1557 {
1558 gold_assert(csym->is_from_dynobj());
1559 gold_assert(!csym->is_copied_from_dynobj());
1560 Object* object = csym->object();
1561 gold_assert(object->is_dynamic());
1562 Dynobj* dynobj = static_cast<Dynobj*>(object);
1563
1564 // Our copied variable has to override any variable in a shared
1565 // library.
1566 elfcpp::STB binding = csym->binding();
1567 if (binding == elfcpp::STB_WEAK)
1568 binding = elfcpp::STB_GLOBAL;
1569
1570 this->define_in_output_data(csym->name(), csym->version(),
1571 posd, value, csym->symsize(),
1572 csym->type(), binding,
1573 csym->visibility(), csym->nonvis(),
1574 false, false);
1575
1576 csym->set_is_copied_from_dynobj();
1577 csym->set_needs_dynsym_entry();
1578
1579 this->copied_symbol_dynobjs_[csym] = dynobj;
1580
1581 // We have now defined all aliases, but we have not entered them all
1582 // in the copied_symbol_dynobjs_ map.
1583 if (csym->has_alias())
1584 {
1585 Symbol* sym = csym;
1586 while (true)
1587 {
1588 sym = this->weak_aliases_[sym];
1589 if (sym == csym)
1590 break;
1591 gold_assert(sym->output_data() == posd);
1592
1593 sym->set_is_copied_from_dynobj();
1594 this->copied_symbol_dynobjs_[sym] = dynobj;
1595 }
1596 }
1597 }
1598
1599 // SYM is defined using a COPY reloc. Return the dynamic object where
1600 // the original definition was found.
1601
1602 Dynobj*
1603 Symbol_table::get_copy_source(const Symbol* sym) const
1604 {
1605 gold_assert(sym->is_copied_from_dynobj());
1606 Copied_symbol_dynobjs::const_iterator p =
1607 this->copied_symbol_dynobjs_.find(sym);
1608 gold_assert(p != this->copied_symbol_dynobjs_.end());
1609 return p->second;
1610 }
1611
1612 // Set the dynamic symbol indexes. INDEX is the index of the first
1613 // global dynamic symbol. Pointers to the symbols are stored into the
1614 // vector SYMS. The names are added to DYNPOOL. This returns an
1615 // updated dynamic symbol index.
1616
1617 unsigned int
1618 Symbol_table::set_dynsym_indexes(unsigned int index,
1619 std::vector<Symbol*>* syms,
1620 Stringpool* dynpool,
1621 Versions* versions)
1622 {
1623 for (Symbol_table_type::iterator p = this->table_.begin();
1624 p != this->table_.end();
1625 ++p)
1626 {
1627 Symbol* sym = p->second;
1628
1629 // Note that SYM may already have a dynamic symbol index, since
1630 // some symbols appear more than once in the symbol table, with
1631 // and without a version.
1632
1633 if (!sym->should_add_dynsym_entry())
1634 sym->set_dynsym_index(-1U);
1635 else if (!sym->has_dynsym_index())
1636 {
1637 sym->set_dynsym_index(index);
1638 ++index;
1639 syms->push_back(sym);
1640 dynpool->add(sym->name(), false, NULL);
1641
1642 // Record any version information.
1643 if (sym->version() != NULL)
1644 versions->record_version(this, dynpool, sym);
1645 }
1646 }
1647
1648 // Finish up the versions. In some cases this may add new dynamic
1649 // symbols.
1650 index = versions->finalize(this, index, syms);
1651
1652 return index;
1653 }
1654
1655 // Set the final values for all the symbols. The index of the first
1656 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1657 // file offset OFF. Add their names to POOL. Return the new file
1658 // offset. Update *PLOCAL_SYMCOUNT if necessary.
1659
1660 off_t
1661 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1662 size_t dyncount, Stringpool* pool,
1663 unsigned int *plocal_symcount)
1664 {
1665 off_t ret;
1666
1667 gold_assert(*plocal_symcount != 0);
1668 this->first_global_index_ = *plocal_symcount;
1669
1670 this->dynamic_offset_ = dynoff;
1671 this->first_dynamic_global_index_ = dyn_global_index;
1672 this->dynamic_count_ = dyncount;
1673
1674 if (parameters->target().get_size() == 32)
1675 {
1676 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1677 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1678 #else
1679 gold_unreachable();
1680 #endif
1681 }
1682 else if (parameters->target().get_size() == 64)
1683 {
1684 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1685 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1686 #else
1687 gold_unreachable();
1688 #endif
1689 }
1690 else
1691 gold_unreachable();
1692
1693 // Now that we have the final symbol table, we can reliably note
1694 // which symbols should get warnings.
1695 this->warnings_.note_warnings(this);
1696
1697 return ret;
1698 }
1699
1700 // SYM is going into the symbol table at *PINDEX. Add the name to
1701 // POOL, update *PINDEX and *POFF.
1702
1703 template<int size>
1704 void
1705 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1706 unsigned int* pindex, off_t* poff)
1707 {
1708 sym->set_symtab_index(*pindex);
1709 pool->add(sym->name(), false, NULL);
1710 ++*pindex;
1711 *poff += elfcpp::Elf_sizes<size>::sym_size;
1712 }
1713
1714 // Set the final value for all the symbols. This is called after
1715 // Layout::finalize, so all the output sections have their final
1716 // address.
1717
1718 template<int size>
1719 off_t
1720 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1721 unsigned int* plocal_symcount)
1722 {
1723 off = align_address(off, size >> 3);
1724 this->offset_ = off;
1725
1726 unsigned int index = *plocal_symcount;
1727 const unsigned int orig_index = index;
1728
1729 // First do all the symbols which have been forced to be local, as
1730 // they must appear before all global symbols.
1731 for (Forced_locals::iterator p = this->forced_locals_.begin();
1732 p != this->forced_locals_.end();
1733 ++p)
1734 {
1735 Symbol* sym = *p;
1736 gold_assert(sym->is_forced_local());
1737 if (this->sized_finalize_symbol<size>(sym))
1738 {
1739 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1740 ++*plocal_symcount;
1741 }
1742 }
1743
1744 // Now do all the remaining symbols.
1745 for (Symbol_table_type::iterator p = this->table_.begin();
1746 p != this->table_.end();
1747 ++p)
1748 {
1749 Symbol* sym = p->second;
1750 if (this->sized_finalize_symbol<size>(sym))
1751 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1752 }
1753
1754 this->output_count_ = index - orig_index;
1755
1756 return off;
1757 }
1758
1759 // Finalize the symbol SYM. This returns true if the symbol should be
1760 // added to the symbol table, false otherwise.
1761
1762 template<int size>
1763 bool
1764 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1765 {
1766 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
1767
1768 // The default version of a symbol may appear twice in the symbol
1769 // table. We only need to finalize it once.
1770 if (sym->has_symtab_index())
1771 return false;
1772
1773 if (!sym->in_reg())
1774 {
1775 gold_assert(!sym->has_symtab_index());
1776 sym->set_symtab_index(-1U);
1777 gold_assert(sym->dynsym_index() == -1U);
1778 return false;
1779 }
1780
1781 typename Sized_symbol<size>::Value_type value;
1782
1783 switch (sym->source())
1784 {
1785 case Symbol::FROM_OBJECT:
1786 {
1787 unsigned int shndx = sym->shndx();
1788
1789 // FIXME: We need some target specific support here.
1790 if (shndx >= elfcpp::SHN_LORESERVE
1791 && shndx != elfcpp::SHN_ABS
1792 && shndx != elfcpp::SHN_COMMON)
1793 {
1794 gold_error(_("%s: unsupported symbol section 0x%x"),
1795 sym->demangled_name().c_str(), shndx);
1796 shndx = elfcpp::SHN_UNDEF;
1797 }
1798
1799 Object* symobj = sym->object();
1800 if (symobj->is_dynamic())
1801 {
1802 value = 0;
1803 shndx = elfcpp::SHN_UNDEF;
1804 }
1805 else if (shndx == elfcpp::SHN_UNDEF)
1806 value = 0;
1807 else if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
1808 value = sym->value();
1809 else
1810 {
1811 Relobj* relobj = static_cast<Relobj*>(symobj);
1812 section_offset_type secoff;
1813 Output_section* os = relobj->output_section(shndx, &secoff);
1814
1815 if (os == NULL)
1816 {
1817 sym->set_symtab_index(-1U);
1818 gold_assert(sym->dynsym_index() == -1U);
1819 return false;
1820 }
1821
1822 if (sym->type() == elfcpp::STT_TLS)
1823 value = sym->value() + os->tls_offset() + secoff;
1824 else
1825 value = sym->value() + os->address() + secoff;
1826 }
1827 }
1828 break;
1829
1830 case Symbol::IN_OUTPUT_DATA:
1831 {
1832 Output_data* od = sym->output_data();
1833 value = sym->value() + od->address();
1834 if (sym->offset_is_from_end())
1835 value += od->data_size();
1836 }
1837 break;
1838
1839 case Symbol::IN_OUTPUT_SEGMENT:
1840 {
1841 Output_segment* os = sym->output_segment();
1842 value = sym->value() + os->vaddr();
1843 switch (sym->offset_base())
1844 {
1845 case Symbol::SEGMENT_START:
1846 break;
1847 case Symbol::SEGMENT_END:
1848 value += os->memsz();
1849 break;
1850 case Symbol::SEGMENT_BSS:
1851 value += os->filesz();
1852 break;
1853 default:
1854 gold_unreachable();
1855 }
1856 }
1857 break;
1858
1859 case Symbol::CONSTANT:
1860 value = sym->value();
1861 break;
1862
1863 default:
1864 gold_unreachable();
1865 }
1866
1867 sym->set_value(value);
1868
1869 if (parameters->options().strip_all())
1870 {
1871 sym->set_symtab_index(-1U);
1872 return false;
1873 }
1874
1875 return true;
1876 }
1877
1878 // Write out the global symbols.
1879
1880 void
1881 Symbol_table::write_globals(const Input_objects* input_objects,
1882 const Stringpool* sympool,
1883 const Stringpool* dynpool, Output_file* of) const
1884 {
1885 switch (parameters->size_and_endianness())
1886 {
1887 #ifdef HAVE_TARGET_32_LITTLE
1888 case Parameters::TARGET_32_LITTLE:
1889 this->sized_write_globals<32, false>(input_objects, sympool,
1890 dynpool, of);
1891 break;
1892 #endif
1893 #ifdef HAVE_TARGET_32_BIG
1894 case Parameters::TARGET_32_BIG:
1895 this->sized_write_globals<32, true>(input_objects, sympool,
1896 dynpool, of);
1897 break;
1898 #endif
1899 #ifdef HAVE_TARGET_64_LITTLE
1900 case Parameters::TARGET_64_LITTLE:
1901 this->sized_write_globals<64, false>(input_objects, sympool,
1902 dynpool, of);
1903 break;
1904 #endif
1905 #ifdef HAVE_TARGET_64_BIG
1906 case Parameters::TARGET_64_BIG:
1907 this->sized_write_globals<64, true>(input_objects, sympool,
1908 dynpool, of);
1909 break;
1910 #endif
1911 default:
1912 gold_unreachable();
1913 }
1914 }
1915
1916 // Write out the global symbols.
1917
1918 template<int size, bool big_endian>
1919 void
1920 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1921 const Stringpool* sympool,
1922 const Stringpool* dynpool,
1923 Output_file* of) const
1924 {
1925 const Target& target = parameters->target();
1926
1927 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1928
1929 const unsigned int output_count = this->output_count_;
1930 const section_size_type oview_size = output_count * sym_size;
1931 const unsigned int first_global_index = this->first_global_index_;
1932 unsigned char* psyms;
1933 if (this->offset_ == 0 || output_count == 0)
1934 psyms = NULL;
1935 else
1936 psyms = of->get_output_view(this->offset_, oview_size);
1937
1938 const unsigned int dynamic_count = this->dynamic_count_;
1939 const section_size_type dynamic_size = dynamic_count * sym_size;
1940 const unsigned int first_dynamic_global_index =
1941 this->first_dynamic_global_index_;
1942 unsigned char* dynamic_view;
1943 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
1944 dynamic_view = NULL;
1945 else
1946 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1947
1948 for (Symbol_table_type::const_iterator p = this->table_.begin();
1949 p != this->table_.end();
1950 ++p)
1951 {
1952 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1953
1954 // Possibly warn about unresolved symbols in shared libraries.
1955 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1956
1957 unsigned int sym_index = sym->symtab_index();
1958 unsigned int dynsym_index;
1959 if (dynamic_view == NULL)
1960 dynsym_index = -1U;
1961 else
1962 dynsym_index = sym->dynsym_index();
1963
1964 if (sym_index == -1U && dynsym_index == -1U)
1965 {
1966 // This symbol is not included in the output file.
1967 continue;
1968 }
1969
1970 unsigned int shndx;
1971 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
1972 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
1973 switch (sym->source())
1974 {
1975 case Symbol::FROM_OBJECT:
1976 {
1977 unsigned int in_shndx = sym->shndx();
1978
1979 // FIXME: We need some target specific support here.
1980 if (in_shndx >= elfcpp::SHN_LORESERVE
1981 && in_shndx != elfcpp::SHN_ABS
1982 && in_shndx != elfcpp::SHN_COMMON)
1983 {
1984 gold_error(_("%s: unsupported symbol section 0x%x"),
1985 sym->demangled_name().c_str(), in_shndx);
1986 shndx = in_shndx;
1987 }
1988 else
1989 {
1990 Object* symobj = sym->object();
1991 if (symobj->is_dynamic())
1992 {
1993 if (sym->needs_dynsym_value())
1994 dynsym_value = target.dynsym_value(sym);
1995 shndx = elfcpp::SHN_UNDEF;
1996 }
1997 else if (in_shndx == elfcpp::SHN_UNDEF
1998 || in_shndx == elfcpp::SHN_ABS
1999 || in_shndx == elfcpp::SHN_COMMON)
2000 shndx = in_shndx;
2001 else
2002 {
2003 Relobj* relobj = static_cast<Relobj*>(symobj);
2004 section_offset_type secoff;
2005 Output_section* os = relobj->output_section(in_shndx,
2006 &secoff);
2007 gold_assert(os != NULL);
2008 shndx = os->out_shndx();
2009
2010 // In object files symbol values are section
2011 // relative.
2012 if (parameters->options().relocatable())
2013 sym_value -= os->address();
2014 }
2015 }
2016 }
2017 break;
2018
2019 case Symbol::IN_OUTPUT_DATA:
2020 shndx = sym->output_data()->out_shndx();
2021 break;
2022
2023 case Symbol::IN_OUTPUT_SEGMENT:
2024 shndx = elfcpp::SHN_ABS;
2025 break;
2026
2027 case Symbol::CONSTANT:
2028 shndx = elfcpp::SHN_ABS;
2029 break;
2030
2031 default:
2032 gold_unreachable();
2033 }
2034
2035 if (sym_index != -1U)
2036 {
2037 sym_index -= first_global_index;
2038 gold_assert(sym_index < output_count);
2039 unsigned char* ps = psyms + (sym_index * sym_size);
2040 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2041 sympool, ps);
2042 }
2043
2044 if (dynsym_index != -1U)
2045 {
2046 dynsym_index -= first_dynamic_global_index;
2047 gold_assert(dynsym_index < dynamic_count);
2048 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2049 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2050 dynpool, pd);
2051 }
2052 }
2053
2054 of->write_output_view(this->offset_, oview_size, psyms);
2055 if (dynamic_view != NULL)
2056 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2057 }
2058
2059 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2060 // strtab holding the name.
2061
2062 template<int size, bool big_endian>
2063 void
2064 Symbol_table::sized_write_symbol(
2065 Sized_symbol<size>* sym,
2066 typename elfcpp::Elf_types<size>::Elf_Addr value,
2067 unsigned int shndx,
2068 const Stringpool* pool,
2069 unsigned char* p) const
2070 {
2071 elfcpp::Sym_write<size, big_endian> osym(p);
2072 osym.put_st_name(pool->get_offset(sym->name()));
2073 osym.put_st_value(value);
2074 osym.put_st_size(sym->symsize());
2075 // A version script may have overridden the default binding.
2076 if (sym->is_forced_local())
2077 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2078 else
2079 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2080 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2081 osym.put_st_shndx(shndx);
2082 }
2083
2084 // Check for unresolved symbols in shared libraries. This is
2085 // controlled by the --allow-shlib-undefined option.
2086
2087 // We only warn about libraries for which we have seen all the
2088 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2089 // which were not seen in this link. If we didn't see a DT_NEEDED
2090 // entry, we aren't going to be able to reliably report whether the
2091 // symbol is undefined.
2092
2093 // We also don't warn about libraries found in the system library
2094 // directory (the directory were we find libc.so); we assume that
2095 // those libraries are OK. This heuristic avoids problems in
2096 // GNU/Linux, in which -ldl can have undefined references satisfied by
2097 // ld-linux.so.
2098
2099 inline void
2100 Symbol_table::warn_about_undefined_dynobj_symbol(
2101 const Input_objects* input_objects,
2102 Symbol* sym) const
2103 {
2104 if (sym->source() == Symbol::FROM_OBJECT
2105 && sym->object()->is_dynamic()
2106 && sym->shndx() == elfcpp::SHN_UNDEF
2107 && sym->binding() != elfcpp::STB_WEAK
2108 && !parameters->options().allow_shlib_undefined()
2109 && !parameters->target().is_defined_by_abi(sym)
2110 && !input_objects->found_in_system_library_directory(sym->object()))
2111 {
2112 // A very ugly cast.
2113 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2114 if (!dynobj->has_unknown_needed_entries())
2115 gold_error(_("%s: undefined reference to '%s'"),
2116 sym->object()->name().c_str(),
2117 sym->demangled_name().c_str());
2118 }
2119 }
2120
2121 // Write out a section symbol. Return the update offset.
2122
2123 void
2124 Symbol_table::write_section_symbol(const Output_section *os,
2125 Output_file* of,
2126 off_t offset) const
2127 {
2128 switch (parameters->size_and_endianness())
2129 {
2130 #ifdef HAVE_TARGET_32_LITTLE
2131 case Parameters::TARGET_32_LITTLE:
2132 this->sized_write_section_symbol<32, false>(os, of, offset);
2133 break;
2134 #endif
2135 #ifdef HAVE_TARGET_32_BIG
2136 case Parameters::TARGET_32_BIG:
2137 this->sized_write_section_symbol<32, true>(os, of, offset);
2138 break;
2139 #endif
2140 #ifdef HAVE_TARGET_64_LITTLE
2141 case Parameters::TARGET_64_LITTLE:
2142 this->sized_write_section_symbol<64, false>(os, of, offset);
2143 break;
2144 #endif
2145 #ifdef HAVE_TARGET_64_BIG
2146 case Parameters::TARGET_64_BIG:
2147 this->sized_write_section_symbol<64, true>(os, of, offset);
2148 break;
2149 #endif
2150 default:
2151 gold_unreachable();
2152 }
2153 }
2154
2155 // Write out a section symbol, specialized for size and endianness.
2156
2157 template<int size, bool big_endian>
2158 void
2159 Symbol_table::sized_write_section_symbol(const Output_section* os,
2160 Output_file* of,
2161 off_t offset) const
2162 {
2163 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2164
2165 unsigned char* pov = of->get_output_view(offset, sym_size);
2166
2167 elfcpp::Sym_write<size, big_endian> osym(pov);
2168 osym.put_st_name(0);
2169 osym.put_st_value(os->address());
2170 osym.put_st_size(0);
2171 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2172 elfcpp::STT_SECTION));
2173 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2174 osym.put_st_shndx(os->out_shndx());
2175
2176 of->write_output_view(offset, sym_size, pov);
2177 }
2178
2179 // Print statistical information to stderr. This is used for --stats.
2180
2181 void
2182 Symbol_table::print_stats() const
2183 {
2184 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2185 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2186 program_name, this->table_.size(), this->table_.bucket_count());
2187 #else
2188 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2189 program_name, this->table_.size());
2190 #endif
2191 this->namepool_.print_stats("symbol table stringpool");
2192 }
2193
2194 // We check for ODR violations by looking for symbols with the same
2195 // name for which the debugging information reports that they were
2196 // defined in different source locations. When comparing the source
2197 // location, we consider instances with the same base filename and
2198 // line number to be the same. This is because different object
2199 // files/shared libraries can include the same header file using
2200 // different paths, and we don't want to report an ODR violation in
2201 // that case.
2202
2203 // This struct is used to compare line information, as returned by
2204 // Dwarf_line_info::one_addr2line. It implements a < comparison
2205 // operator used with std::set.
2206
2207 struct Odr_violation_compare
2208 {
2209 bool
2210 operator()(const std::string& s1, const std::string& s2) const
2211 {
2212 std::string::size_type pos1 = s1.rfind('/');
2213 std::string::size_type pos2 = s2.rfind('/');
2214 if (pos1 == std::string::npos
2215 || pos2 == std::string::npos)
2216 return s1 < s2;
2217 return s1.compare(pos1, std::string::npos,
2218 s2, pos2, std::string::npos) < 0;
2219 }
2220 };
2221
2222 // Check candidate_odr_violations_ to find symbols with the same name
2223 // but apparently different definitions (different source-file/line-no).
2224
2225 void
2226 Symbol_table::detect_odr_violations(const Task* task,
2227 const char* output_file_name) const
2228 {
2229 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2230 it != candidate_odr_violations_.end();
2231 ++it)
2232 {
2233 const char* symbol_name = it->first;
2234 // We use a sorted set so the output is deterministic.
2235 std::set<std::string, Odr_violation_compare> line_nums;
2236
2237 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2238 locs = it->second.begin();
2239 locs != it->second.end();
2240 ++locs)
2241 {
2242 // We need to lock the object in order to read it. This
2243 // means that we have to run in a singleton Task. If we
2244 // want to run this in a general Task for better
2245 // performance, we will need one Task for object, plus
2246 // appropriate locking to ensure that we don't conflict with
2247 // other uses of the object.
2248 Task_lock_obj<Object> tl(task, locs->object);
2249 std::string lineno = Dwarf_line_info::one_addr2line(
2250 locs->object, locs->shndx, locs->offset);
2251 if (!lineno.empty())
2252 line_nums.insert(lineno);
2253 }
2254
2255 if (line_nums.size() > 1)
2256 {
2257 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2258 "places (possible ODR violation):"),
2259 output_file_name, demangle(symbol_name).c_str());
2260 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2261 it2 != line_nums.end();
2262 ++it2)
2263 fprintf(stderr, " %s\n", it2->c_str());
2264 }
2265 }
2266 }
2267
2268 // Warnings functions.
2269
2270 // Add a new warning.
2271
2272 void
2273 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2274 const std::string& warning)
2275 {
2276 name = symtab->canonicalize_name(name);
2277 this->warnings_[name].set(obj, warning);
2278 }
2279
2280 // Look through the warnings and mark the symbols for which we should
2281 // warn. This is called during Layout::finalize when we know the
2282 // sources for all the symbols.
2283
2284 void
2285 Warnings::note_warnings(Symbol_table* symtab)
2286 {
2287 for (Warning_table::iterator p = this->warnings_.begin();
2288 p != this->warnings_.end();
2289 ++p)
2290 {
2291 Symbol* sym = symtab->lookup(p->first, NULL);
2292 if (sym != NULL
2293 && sym->source() == Symbol::FROM_OBJECT
2294 && sym->object() == p->second.object)
2295 sym->set_has_warning();
2296 }
2297 }
2298
2299 // Issue a warning. This is called when we see a relocation against a
2300 // symbol for which has a warning.
2301
2302 template<int size, bool big_endian>
2303 void
2304 Warnings::issue_warning(const Symbol* sym,
2305 const Relocate_info<size, big_endian>* relinfo,
2306 size_t relnum, off_t reloffset) const
2307 {
2308 gold_assert(sym->has_warning());
2309 Warning_table::const_iterator p = this->warnings_.find(sym->name());
2310 gold_assert(p != this->warnings_.end());
2311 gold_warning_at_location(relinfo, relnum, reloffset,
2312 "%s", p->second.text.c_str());
2313 }
2314
2315 // Instantiate the templates we need. We could use the configure
2316 // script to restrict this to only the ones needed for implemented
2317 // targets.
2318
2319 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2320 template
2321 void
2322 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2323 #endif
2324
2325 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2326 template
2327 void
2328 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2329 #endif
2330
2331 #ifdef HAVE_TARGET_32_LITTLE
2332 template
2333 void
2334 Symbol_table::add_from_relobj<32, false>(
2335 Sized_relobj<32, false>* relobj,
2336 const unsigned char* syms,
2337 size_t count,
2338 const char* sym_names,
2339 size_t sym_name_size,
2340 Sized_relobj<32, true>::Symbols* sympointers);
2341 #endif
2342
2343 #ifdef HAVE_TARGET_32_BIG
2344 template
2345 void
2346 Symbol_table::add_from_relobj<32, true>(
2347 Sized_relobj<32, true>* relobj,
2348 const unsigned char* syms,
2349 size_t count,
2350 const char* sym_names,
2351 size_t sym_name_size,
2352 Sized_relobj<32, false>::Symbols* sympointers);
2353 #endif
2354
2355 #ifdef HAVE_TARGET_64_LITTLE
2356 template
2357 void
2358 Symbol_table::add_from_relobj<64, false>(
2359 Sized_relobj<64, false>* relobj,
2360 const unsigned char* syms,
2361 size_t count,
2362 const char* sym_names,
2363 size_t sym_name_size,
2364 Sized_relobj<64, true>::Symbols* sympointers);
2365 #endif
2366
2367 #ifdef HAVE_TARGET_64_BIG
2368 template
2369 void
2370 Symbol_table::add_from_relobj<64, true>(
2371 Sized_relobj<64, true>* relobj,
2372 const unsigned char* syms,
2373 size_t count,
2374 const char* sym_names,
2375 size_t sym_name_size,
2376 Sized_relobj<64, false>::Symbols* sympointers);
2377 #endif
2378
2379 #ifdef HAVE_TARGET_32_LITTLE
2380 template
2381 void
2382 Symbol_table::add_from_dynobj<32, false>(
2383 Sized_dynobj<32, false>* dynobj,
2384 const unsigned char* syms,
2385 size_t count,
2386 const char* sym_names,
2387 size_t sym_name_size,
2388 const unsigned char* versym,
2389 size_t versym_size,
2390 const std::vector<const char*>* version_map);
2391 #endif
2392
2393 #ifdef HAVE_TARGET_32_BIG
2394 template
2395 void
2396 Symbol_table::add_from_dynobj<32, true>(
2397 Sized_dynobj<32, true>* dynobj,
2398 const unsigned char* syms,
2399 size_t count,
2400 const char* sym_names,
2401 size_t sym_name_size,
2402 const unsigned char* versym,
2403 size_t versym_size,
2404 const std::vector<const char*>* version_map);
2405 #endif
2406
2407 #ifdef HAVE_TARGET_64_LITTLE
2408 template
2409 void
2410 Symbol_table::add_from_dynobj<64, false>(
2411 Sized_dynobj<64, false>* dynobj,
2412 const unsigned char* syms,
2413 size_t count,
2414 const char* sym_names,
2415 size_t sym_name_size,
2416 const unsigned char* versym,
2417 size_t versym_size,
2418 const std::vector<const char*>* version_map);
2419 #endif
2420
2421 #ifdef HAVE_TARGET_64_BIG
2422 template
2423 void
2424 Symbol_table::add_from_dynobj<64, true>(
2425 Sized_dynobj<64, true>* dynobj,
2426 const unsigned char* syms,
2427 size_t count,
2428 const char* sym_names,
2429 size_t sym_name_size,
2430 const unsigned char* versym,
2431 size_t versym_size,
2432 const std::vector<const char*>* version_map);
2433 #endif
2434
2435 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2436 template
2437 void
2438 Symbol_table::define_with_copy_reloc<32>(
2439 Sized_symbol<32>* sym,
2440 Output_data* posd,
2441 elfcpp::Elf_types<32>::Elf_Addr value);
2442 #endif
2443
2444 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2445 template
2446 void
2447 Symbol_table::define_with_copy_reloc<64>(
2448 Sized_symbol<64>* sym,
2449 Output_data* posd,
2450 elfcpp::Elf_types<64>::Elf_Addr value);
2451 #endif
2452
2453 #ifdef HAVE_TARGET_32_LITTLE
2454 template
2455 void
2456 Warnings::issue_warning<32, false>(const Symbol* sym,
2457 const Relocate_info<32, false>* relinfo,
2458 size_t relnum, off_t reloffset) const;
2459 #endif
2460
2461 #ifdef HAVE_TARGET_32_BIG
2462 template
2463 void
2464 Warnings::issue_warning<32, true>(const Symbol* sym,
2465 const Relocate_info<32, true>* relinfo,
2466 size_t relnum, off_t reloffset) const;
2467 #endif
2468
2469 #ifdef HAVE_TARGET_64_LITTLE
2470 template
2471 void
2472 Warnings::issue_warning<64, false>(const Symbol* sym,
2473 const Relocate_info<64, false>* relinfo,
2474 size_t relnum, off_t reloffset) const;
2475 #endif
2476
2477 #ifdef HAVE_TARGET_64_BIG
2478 template
2479 void
2480 Warnings::issue_warning<64, true>(const Symbol* sym,
2481 const Relocate_info<64, true>* relinfo,
2482 size_t relnum, off_t reloffset) const;
2483 #endif
2484
2485 } // End namespace gold.
This page took 0.085362 seconds and 5 git commands to generate.