Don't pass around the target in order to define symbols; get it from
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <stdint.h>
26 #include <set>
27 #include <string>
28 #include <utility>
29 #include "demangle.h"
30
31 #include "object.h"
32 #include "dwarf_reader.h"
33 #include "dynobj.h"
34 #include "output.h"
35 #include "target.h"
36 #include "workqueue.h"
37 #include "symtab.h"
38
39 namespace gold
40 {
41
42 // Class Symbol.
43
44 // Initialize fields in Symbol. This initializes everything except u_
45 // and source_.
46
47 void
48 Symbol::init_fields(const char* name, const char* version,
49 elfcpp::STT type, elfcpp::STB binding,
50 elfcpp::STV visibility, unsigned char nonvis)
51 {
52 this->name_ = name;
53 this->version_ = version;
54 this->symtab_index_ = 0;
55 this->dynsym_index_ = 0;
56 this->got_offset_ = 0;
57 this->plt_offset_ = 0;
58 this->type_ = type;
59 this->binding_ = binding;
60 this->visibility_ = visibility;
61 this->nonvis_ = nonvis;
62 this->is_target_special_ = false;
63 this->is_def_ = false;
64 this->is_forwarder_ = false;
65 this->has_alias_ = false;
66 this->needs_dynsym_entry_ = false;
67 this->in_reg_ = false;
68 this->in_dyn_ = false;
69 this->has_got_offset_ = false;
70 this->has_plt_offset_ = false;
71 this->has_warning_ = false;
72 this->is_copied_from_dynobj_ = false;
73 this->is_forced_local_ = false;
74 }
75
76 // Return the demangled version of the symbol's name, but only
77 // if the --demangle flag was set.
78
79 static std::string
80 demangle(const char* name)
81 {
82 if (!parameters->demangle())
83 return name;
84
85 // cplus_demangle allocates memory for the result it returns,
86 // and returns NULL if the name is already demangled.
87 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
88 if (demangled_name == NULL)
89 return name;
90
91 std::string retval(demangled_name);
92 free(demangled_name);
93 return retval;
94 }
95
96 std::string
97 Symbol::demangled_name() const
98 {
99 return demangle(this->name());
100 }
101
102 // Initialize the fields in the base class Symbol for SYM in OBJECT.
103
104 template<int size, bool big_endian>
105 void
106 Symbol::init_base(const char* name, const char* version, Object* object,
107 const elfcpp::Sym<size, big_endian>& sym)
108 {
109 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
110 sym.get_st_visibility(), sym.get_st_nonvis());
111 this->u_.from_object.object = object;
112 // FIXME: Handle SHN_XINDEX.
113 this->u_.from_object.shndx = sym.get_st_shndx();
114 this->source_ = FROM_OBJECT;
115 this->in_reg_ = !object->is_dynamic();
116 this->in_dyn_ = object->is_dynamic();
117 }
118
119 // Initialize the fields in the base class Symbol for a symbol defined
120 // in an Output_data.
121
122 void
123 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
124 elfcpp::STB binding, elfcpp::STV visibility,
125 unsigned char nonvis, bool offset_is_from_end)
126 {
127 this->init_fields(name, NULL, type, binding, visibility, nonvis);
128 this->u_.in_output_data.output_data = od;
129 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
130 this->source_ = IN_OUTPUT_DATA;
131 this->in_reg_ = true;
132 }
133
134 // Initialize the fields in the base class Symbol for a symbol defined
135 // in an Output_segment.
136
137 void
138 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
139 elfcpp::STB binding, elfcpp::STV visibility,
140 unsigned char nonvis, Segment_offset_base offset_base)
141 {
142 this->init_fields(name, NULL, type, binding, visibility, nonvis);
143 this->u_.in_output_segment.output_segment = os;
144 this->u_.in_output_segment.offset_base = offset_base;
145 this->source_ = IN_OUTPUT_SEGMENT;
146 this->in_reg_ = true;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // as a constant.
151
152 void
153 Symbol::init_base(const char* name, elfcpp::STT type,
154 elfcpp::STB binding, elfcpp::STV visibility,
155 unsigned char nonvis)
156 {
157 this->init_fields(name, NULL, type, binding, visibility, nonvis);
158 this->source_ = CONSTANT;
159 this->in_reg_ = true;
160 }
161
162 // Allocate a common symbol in the base.
163
164 void
165 Symbol::allocate_base_common(Output_data* od)
166 {
167 gold_assert(this->is_common());
168 this->source_ = IN_OUTPUT_DATA;
169 this->u_.in_output_data.output_data = od;
170 this->u_.in_output_data.offset_is_from_end = false;
171 }
172
173 // Initialize the fields in Sized_symbol for SYM in OBJECT.
174
175 template<int size>
176 template<bool big_endian>
177 void
178 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
179 const elfcpp::Sym<size, big_endian>& sym)
180 {
181 this->init_base(name, version, object, sym);
182 this->value_ = sym.get_st_value();
183 this->symsize_ = sym.get_st_size();
184 }
185
186 // Initialize the fields in Sized_symbol for a symbol defined in an
187 // Output_data.
188
189 template<int size>
190 void
191 Sized_symbol<size>::init(const char* name, Output_data* od,
192 Value_type value, Size_type symsize,
193 elfcpp::STT type, elfcpp::STB binding,
194 elfcpp::STV visibility, unsigned char nonvis,
195 bool offset_is_from_end)
196 {
197 this->init_base(name, od, type, binding, visibility, nonvis,
198 offset_is_from_end);
199 this->value_ = value;
200 this->symsize_ = symsize;
201 }
202
203 // Initialize the fields in Sized_symbol for a symbol defined in an
204 // Output_segment.
205
206 template<int size>
207 void
208 Sized_symbol<size>::init(const char* name, Output_segment* os,
209 Value_type value, Size_type symsize,
210 elfcpp::STT type, elfcpp::STB binding,
211 elfcpp::STV visibility, unsigned char nonvis,
212 Segment_offset_base offset_base)
213 {
214 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
215 this->value_ = value;
216 this->symsize_ = symsize;
217 }
218
219 // Initialize the fields in Sized_symbol for a symbol defined as a
220 // constant.
221
222 template<int size>
223 void
224 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
225 elfcpp::STT type, elfcpp::STB binding,
226 elfcpp::STV visibility, unsigned char nonvis)
227 {
228 this->init_base(name, type, binding, visibility, nonvis);
229 this->value_ = value;
230 this->symsize_ = symsize;
231 }
232
233 // Allocate a common symbol.
234
235 template<int size>
236 void
237 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
238 {
239 this->allocate_base_common(od);
240 this->value_ = value;
241 }
242
243 // Return true if this symbol should be added to the dynamic symbol
244 // table.
245
246 inline bool
247 Symbol::should_add_dynsym_entry() const
248 {
249 // If the symbol is used by a dynamic relocation, we need to add it.
250 if (this->needs_dynsym_entry())
251 return true;
252
253 // If the symbol was forced local in a version script, do not add it.
254 if (this->is_forced_local())
255 return false;
256
257 // If exporting all symbols or building a shared library,
258 // and the symbol is defined in a regular object and is
259 // externally visible, we need to add it.
260 if ((parameters->export_dynamic() || parameters->output_is_shared())
261 && !this->is_from_dynobj()
262 && this->is_externally_visible())
263 return true;
264
265 return false;
266 }
267
268 // Return true if the final value of this symbol is known at link
269 // time.
270
271 bool
272 Symbol::final_value_is_known() const
273 {
274 // If we are not generating an executable, then no final values are
275 // known, since they will change at runtime.
276 if (!parameters->output_is_executable())
277 return false;
278
279 // If the symbol is not from an object file, then it is defined, and
280 // known.
281 if (this->source_ != FROM_OBJECT)
282 return true;
283
284 // If the symbol is from a dynamic object, then the final value is
285 // not known.
286 if (this->object()->is_dynamic())
287 return false;
288
289 // If the symbol is not undefined (it is defined or common), then
290 // the final value is known.
291 if (!this->is_undefined())
292 return true;
293
294 // If the symbol is undefined, then whether the final value is known
295 // depends on whether we are doing a static link. If we are doing a
296 // dynamic link, then the final value could be filled in at runtime.
297 // This could reasonably be the case for a weak undefined symbol.
298 return parameters->doing_static_link();
299 }
300
301 // Class Symbol_table.
302
303 Symbol_table::Symbol_table(unsigned int count,
304 const Version_script_info& version_script)
305 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
306 forwarders_(), commons_(), forced_locals_(), warnings_(),
307 version_script_(version_script)
308 {
309 namepool_.reserve(count);
310 }
311
312 Symbol_table::~Symbol_table()
313 {
314 }
315
316 // The hash function. The key values are Stringpool keys.
317
318 inline size_t
319 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
320 {
321 return key.first ^ key.second;
322 }
323
324 // The symbol table key equality function. This is called with
325 // Stringpool keys.
326
327 inline bool
328 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
329 const Symbol_table_key& k2) const
330 {
331 return k1.first == k2.first && k1.second == k2.second;
332 }
333
334 // Make TO a symbol which forwards to FROM.
335
336 void
337 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
338 {
339 gold_assert(from != to);
340 gold_assert(!from->is_forwarder() && !to->is_forwarder());
341 this->forwarders_[from] = to;
342 from->set_forwarder();
343 }
344
345 // Resolve the forwards from FROM, returning the real symbol.
346
347 Symbol*
348 Symbol_table::resolve_forwards(const Symbol* from) const
349 {
350 gold_assert(from->is_forwarder());
351 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
352 this->forwarders_.find(from);
353 gold_assert(p != this->forwarders_.end());
354 return p->second;
355 }
356
357 // Look up a symbol by name.
358
359 Symbol*
360 Symbol_table::lookup(const char* name, const char* version) const
361 {
362 Stringpool::Key name_key;
363 name = this->namepool_.find(name, &name_key);
364 if (name == NULL)
365 return NULL;
366
367 Stringpool::Key version_key = 0;
368 if (version != NULL)
369 {
370 version = this->namepool_.find(version, &version_key);
371 if (version == NULL)
372 return NULL;
373 }
374
375 Symbol_table_key key(name_key, version_key);
376 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
377 if (p == this->table_.end())
378 return NULL;
379 return p->second;
380 }
381
382 // Resolve a Symbol with another Symbol. This is only used in the
383 // unusual case where there are references to both an unversioned
384 // symbol and a symbol with a version, and we then discover that that
385 // version is the default version. Because this is unusual, we do
386 // this the slow way, by converting back to an ELF symbol.
387
388 template<int size, bool big_endian>
389 void
390 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
391 const char* version ACCEPT_SIZE_ENDIAN)
392 {
393 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
394 elfcpp::Sym_write<size, big_endian> esym(buf);
395 // We don't bother to set the st_name field.
396 esym.put_st_value(from->value());
397 esym.put_st_size(from->symsize());
398 esym.put_st_info(from->binding(), from->type());
399 esym.put_st_other(from->visibility(), from->nonvis());
400 esym.put_st_shndx(from->shndx());
401 this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
402 if (from->in_reg())
403 to->set_in_reg();
404 if (from->in_dyn())
405 to->set_in_dyn();
406 }
407
408 // Record that a symbol is forced to be local by a version script.
409
410 void
411 Symbol_table::force_local(Symbol* sym)
412 {
413 if (!sym->is_defined() && !sym->is_common())
414 return;
415 if (sym->is_forced_local())
416 {
417 // We already got this one.
418 return;
419 }
420 sym->set_is_forced_local();
421 this->forced_locals_.push_back(sym);
422 }
423
424 // Add one symbol from OBJECT to the symbol table. NAME is symbol
425 // name and VERSION is the version; both are canonicalized. DEF is
426 // whether this is the default version.
427
428 // If DEF is true, then this is the definition of a default version of
429 // a symbol. That means that any lookup of NAME/NULL and any lookup
430 // of NAME/VERSION should always return the same symbol. This is
431 // obvious for references, but in particular we want to do this for
432 // definitions: overriding NAME/NULL should also override
433 // NAME/VERSION. If we don't do that, it would be very hard to
434 // override functions in a shared library which uses versioning.
435
436 // We implement this by simply making both entries in the hash table
437 // point to the same Symbol structure. That is easy enough if this is
438 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
439 // that we have seen both already, in which case they will both have
440 // independent entries in the symbol table. We can't simply change
441 // the symbol table entry, because we have pointers to the entries
442 // attached to the object files. So we mark the entry attached to the
443 // object file as a forwarder, and record it in the forwarders_ map.
444 // Note that entries in the hash table will never be marked as
445 // forwarders.
446 //
447 // SYM and ORIG_SYM are almost always the same. ORIG_SYM is the
448 // symbol exactly as it existed in the input file. SYM is usually
449 // that as well, but can be modified, for instance if we determine
450 // it's in a to-be-discarded section.
451
452 template<int size, bool big_endian>
453 Sized_symbol<size>*
454 Symbol_table::add_from_object(Object* object,
455 const char *name,
456 Stringpool::Key name_key,
457 const char *version,
458 Stringpool::Key version_key,
459 bool def,
460 const elfcpp::Sym<size, big_endian>& sym,
461 const elfcpp::Sym<size, big_endian>& orig_sym)
462 {
463 Symbol* const snull = NULL;
464 std::pair<typename Symbol_table_type::iterator, bool> ins =
465 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
466 snull));
467
468 std::pair<typename Symbol_table_type::iterator, bool> insdef =
469 std::make_pair(this->table_.end(), false);
470 if (def)
471 {
472 const Stringpool::Key vnull_key = 0;
473 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
474 vnull_key),
475 snull));
476 }
477
478 // ins.first: an iterator, which is a pointer to a pair.
479 // ins.first->first: the key (a pair of name and version).
480 // ins.first->second: the value (Symbol*).
481 // ins.second: true if new entry was inserted, false if not.
482
483 Sized_symbol<size>* ret;
484 bool was_undefined;
485 bool was_common;
486 if (!ins.second)
487 {
488 // We already have an entry for NAME/VERSION.
489 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
490 SELECT_SIZE(size));
491 gold_assert(ret != NULL);
492
493 was_undefined = ret->is_undefined();
494 was_common = ret->is_common();
495
496 this->resolve(ret, sym, orig_sym, object, version);
497
498 if (def)
499 {
500 if (insdef.second)
501 {
502 // This is the first time we have seen NAME/NULL. Make
503 // NAME/NULL point to NAME/VERSION.
504 insdef.first->second = ret;
505 }
506 else if (insdef.first->second != ret
507 && insdef.first->second->is_undefined())
508 {
509 // This is the unfortunate case where we already have
510 // entries for both NAME/VERSION and NAME/NULL. Note
511 // that we don't want to combine them if the existing
512 // symbol is going to override the new one. FIXME: We
513 // currently just test is_undefined, but this may not do
514 // the right thing if the existing symbol is from a
515 // shared library and the new one is from a regular
516 // object.
517
518 const Sized_symbol<size>* sym2;
519 sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
520 insdef.first->second
521 SELECT_SIZE(size));
522 Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
523 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
524 this->make_forwarder(insdef.first->second, ret);
525 insdef.first->second = ret;
526 }
527 }
528 }
529 else
530 {
531 // This is the first time we have seen NAME/VERSION.
532 gold_assert(ins.first->second == NULL);
533
534 was_undefined = false;
535 was_common = false;
536
537 if (def && !insdef.second)
538 {
539 // We already have an entry for NAME/NULL. If we override
540 // it, then change it to NAME/VERSION.
541 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
542 insdef.first->second
543 SELECT_SIZE(size));
544 this->resolve(ret, sym, orig_sym, object, version);
545 ins.first->second = ret;
546 }
547 else
548 {
549 Sized_target<size, big_endian>* target =
550 object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
551 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
552 if (!target->has_make_symbol())
553 ret = new Sized_symbol<size>();
554 else
555 {
556 ret = target->make_symbol();
557 if (ret == NULL)
558 {
559 // This means that we don't want a symbol table
560 // entry after all.
561 if (!def)
562 this->table_.erase(ins.first);
563 else
564 {
565 this->table_.erase(insdef.first);
566 // Inserting insdef invalidated ins.
567 this->table_.erase(std::make_pair(name_key,
568 version_key));
569 }
570 return NULL;
571 }
572 }
573
574 ret->init(name, version, object, sym);
575
576 ins.first->second = ret;
577 if (def)
578 {
579 // This is the first time we have seen NAME/NULL. Point
580 // it at the new entry for NAME/VERSION.
581 gold_assert(insdef.second);
582 insdef.first->second = ret;
583 }
584 }
585 }
586
587 // Record every time we see a new undefined symbol, to speed up
588 // archive groups.
589 if (!was_undefined && ret->is_undefined())
590 ++this->saw_undefined_;
591
592 // Keep track of common symbols, to speed up common symbol
593 // allocation.
594 if (!was_common && ret->is_common())
595 this->commons_.push_back(ret);
596
597 ret->set_is_default(def);
598 return ret;
599 }
600
601 // Add all the symbols in a relocatable object to the hash table.
602
603 template<int size, bool big_endian>
604 void
605 Symbol_table::add_from_relobj(
606 Sized_relobj<size, big_endian>* relobj,
607 const unsigned char* syms,
608 size_t count,
609 const char* sym_names,
610 size_t sym_name_size,
611 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
612 {
613 gold_assert(size == relobj->target()->get_size());
614 gold_assert(size == parameters->get_size());
615
616 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
617
618 const unsigned char* p = syms;
619 for (size_t i = 0; i < count; ++i, p += sym_size)
620 {
621 elfcpp::Sym<size, big_endian> sym(p);
622 elfcpp::Sym<size, big_endian>* psym = &sym;
623
624 unsigned int st_name = psym->get_st_name();
625 if (st_name >= sym_name_size)
626 {
627 relobj->error(_("bad global symbol name offset %u at %zu"),
628 st_name, i);
629 continue;
630 }
631
632 const char* name = sym_names + st_name;
633
634 // A symbol defined in a section which we are not including must
635 // be treated as an undefined symbol.
636 unsigned char symbuf[sym_size];
637 elfcpp::Sym<size, big_endian> sym2(symbuf);
638 unsigned int st_shndx = psym->get_st_shndx();
639 if (st_shndx != elfcpp::SHN_UNDEF
640 && st_shndx < elfcpp::SHN_LORESERVE
641 && !relobj->is_section_included(st_shndx))
642 {
643 memcpy(symbuf, p, sym_size);
644 elfcpp::Sym_write<size, big_endian> sw(symbuf);
645 sw.put_st_shndx(elfcpp::SHN_UNDEF);
646 psym = &sym2;
647 }
648
649 // In an object file, an '@' in the name separates the symbol
650 // name from the version name. If there are two '@' characters,
651 // this is the default version.
652 const char* ver = strchr(name, '@');
653 int namelen = 0;
654 // DEF: is the version default? LOCAL: is the symbol forced local?
655 bool def = false;
656 bool local = false;
657
658 if (ver != NULL)
659 {
660 // The symbol name is of the form foo@VERSION or foo@@VERSION
661 namelen = ver - name;
662 ++ver;
663 if (*ver == '@')
664 {
665 def = true;
666 ++ver;
667 }
668 }
669 else if (!version_script_.empty())
670 {
671 // The symbol name did not have a version, but
672 // the version script may assign a version anyway.
673 namelen = strlen(name);
674 def = true;
675 // Check the global: entries from the version script.
676 const std::string& version =
677 version_script_.get_symbol_version(name);
678 if (!version.empty())
679 ver = version.c_str();
680 // Check the local: entries from the version script
681 if (version_script_.symbol_is_local(name))
682 local = true;
683 }
684
685 Sized_symbol<size>* res;
686 if (ver == NULL)
687 {
688 Stringpool::Key name_key;
689 name = this->namepool_.add(name, true, &name_key);
690 res = this->add_from_object(relobj, name, name_key, NULL, 0,
691 false, *psym, sym);
692 if (local)
693 this->force_local(res);
694 }
695 else
696 {
697 Stringpool::Key name_key;
698 name = this->namepool_.add_with_length(name, namelen, true,
699 &name_key);
700 Stringpool::Key ver_key;
701 ver = this->namepool_.add(ver, true, &ver_key);
702
703 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
704 def, *psym, sym);
705 }
706
707 (*sympointers)[i] = res;
708 }
709 }
710
711 // Add all the symbols in a dynamic object to the hash table.
712
713 template<int size, bool big_endian>
714 void
715 Symbol_table::add_from_dynobj(
716 Sized_dynobj<size, big_endian>* dynobj,
717 const unsigned char* syms,
718 size_t count,
719 const char* sym_names,
720 size_t sym_name_size,
721 const unsigned char* versym,
722 size_t versym_size,
723 const std::vector<const char*>* version_map)
724 {
725 gold_assert(size == dynobj->target()->get_size());
726 gold_assert(size == parameters->get_size());
727
728 if (versym != NULL && versym_size / 2 < count)
729 {
730 dynobj->error(_("too few symbol versions"));
731 return;
732 }
733
734 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
735
736 // We keep a list of all STT_OBJECT symbols, so that we can resolve
737 // weak aliases. This is necessary because if the dynamic object
738 // provides the same variable under two names, one of which is a
739 // weak definition, and the regular object refers to the weak
740 // definition, we have to put both the weak definition and the
741 // strong definition into the dynamic symbol table. Given a weak
742 // definition, the only way that we can find the corresponding
743 // strong definition, if any, is to search the symbol table.
744 std::vector<Sized_symbol<size>*> object_symbols;
745
746 const unsigned char* p = syms;
747 const unsigned char* vs = versym;
748 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
749 {
750 elfcpp::Sym<size, big_endian> sym(p);
751
752 // Ignore symbols with local binding.
753 if (sym.get_st_bind() == elfcpp::STB_LOCAL)
754 continue;
755
756 unsigned int st_name = sym.get_st_name();
757 if (st_name >= sym_name_size)
758 {
759 dynobj->error(_("bad symbol name offset %u at %zu"),
760 st_name, i);
761 continue;
762 }
763
764 const char* name = sym_names + st_name;
765
766 Sized_symbol<size>* res;
767
768 if (versym == NULL)
769 {
770 Stringpool::Key name_key;
771 name = this->namepool_.add(name, true, &name_key);
772 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
773 false, sym, sym);
774 }
775 else
776 {
777 // Read the version information.
778
779 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
780
781 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
782 v &= elfcpp::VERSYM_VERSION;
783
784 // The Sun documentation says that V can be VER_NDX_LOCAL,
785 // or VER_NDX_GLOBAL, or a version index. The meaning of
786 // VER_NDX_LOCAL is defined as "Symbol has local scope."
787 // The old GNU linker will happily generate VER_NDX_LOCAL
788 // for an undefined symbol. I don't know what the Sun
789 // linker will generate.
790
791 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
792 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
793 {
794 // This symbol should not be visible outside the object.
795 continue;
796 }
797
798 // At this point we are definitely going to add this symbol.
799 Stringpool::Key name_key;
800 name = this->namepool_.add(name, true, &name_key);
801
802 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
803 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
804 {
805 // This symbol does not have a version.
806 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
807 false, sym, sym);
808 }
809 else
810 {
811 if (v >= version_map->size())
812 {
813 dynobj->error(_("versym for symbol %zu out of range: %u"),
814 i, v);
815 continue;
816 }
817
818 const char* version = (*version_map)[v];
819 if (version == NULL)
820 {
821 dynobj->error(_("versym for symbol %zu has no name: %u"),
822 i, v);
823 continue;
824 }
825
826 Stringpool::Key version_key;
827 version = this->namepool_.add(version, true, &version_key);
828
829 // If this is an absolute symbol, and the version name
830 // and symbol name are the same, then this is the
831 // version definition symbol. These symbols exist to
832 // support using -u to pull in particular versions. We
833 // do not want to record a version for them.
834 if (sym.get_st_shndx() == elfcpp::SHN_ABS
835 && name_key == version_key)
836 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
837 false, sym, sym);
838 else
839 {
840 const bool def = (!hidden
841 && (sym.get_st_shndx()
842 != elfcpp::SHN_UNDEF));
843 res = this->add_from_object(dynobj, name, name_key, version,
844 version_key, def, sym, sym);
845 }
846 }
847 }
848
849 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
850 && sym.get_st_type() == elfcpp::STT_OBJECT)
851 object_symbols.push_back(res);
852 }
853
854 this->record_weak_aliases(&object_symbols);
855 }
856
857 // This is used to sort weak aliases. We sort them first by section
858 // index, then by offset, then by weak ahead of strong.
859
860 template<int size>
861 class Weak_alias_sorter
862 {
863 public:
864 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
865 };
866
867 template<int size>
868 bool
869 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
870 const Sized_symbol<size>* s2) const
871 {
872 if (s1->shndx() != s2->shndx())
873 return s1->shndx() < s2->shndx();
874 if (s1->value() != s2->value())
875 return s1->value() < s2->value();
876 if (s1->binding() != s2->binding())
877 {
878 if (s1->binding() == elfcpp::STB_WEAK)
879 return true;
880 if (s2->binding() == elfcpp::STB_WEAK)
881 return false;
882 }
883 return std::string(s1->name()) < std::string(s2->name());
884 }
885
886 // SYMBOLS is a list of object symbols from a dynamic object. Look
887 // for any weak aliases, and record them so that if we add the weak
888 // alias to the dynamic symbol table, we also add the corresponding
889 // strong symbol.
890
891 template<int size>
892 void
893 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
894 {
895 // Sort the vector by section index, then by offset, then by weak
896 // ahead of strong.
897 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
898
899 // Walk through the vector. For each weak definition, record
900 // aliases.
901 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
902 symbols->begin();
903 p != symbols->end();
904 ++p)
905 {
906 if ((*p)->binding() != elfcpp::STB_WEAK)
907 continue;
908
909 // Build a circular list of weak aliases. Each symbol points to
910 // the next one in the circular list.
911
912 Sized_symbol<size>* from_sym = *p;
913 typename std::vector<Sized_symbol<size>*>::const_iterator q;
914 for (q = p + 1; q != symbols->end(); ++q)
915 {
916 if ((*q)->shndx() != from_sym->shndx()
917 || (*q)->value() != from_sym->value())
918 break;
919
920 this->weak_aliases_[from_sym] = *q;
921 from_sym->set_has_alias();
922 from_sym = *q;
923 }
924
925 if (from_sym != *p)
926 {
927 this->weak_aliases_[from_sym] = *p;
928 from_sym->set_has_alias();
929 }
930
931 p = q - 1;
932 }
933 }
934
935 // Create and return a specially defined symbol. If ONLY_IF_REF is
936 // true, then only create the symbol if there is a reference to it.
937 // If this does not return NULL, it sets *POLDSYM to the existing
938 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
939
940 template<int size, bool big_endian>
941 Sized_symbol<size>*
942 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
943 bool only_if_ref,
944 Sized_symbol<size>** poldsym
945 ACCEPT_SIZE_ENDIAN)
946 {
947 Symbol* oldsym;
948 Sized_symbol<size>* sym;
949 bool add_to_table = false;
950 typename Symbol_table_type::iterator add_loc = this->table_.end();
951
952 // If the caller didn't give us a version, see if we get one from
953 // the version script.
954 if (*pversion == NULL)
955 {
956 const std::string& v(this->version_script_.get_symbol_version(*pname));
957 if (!v.empty())
958 *pversion = v.c_str();
959 }
960
961 if (only_if_ref)
962 {
963 oldsym = this->lookup(*pname, *pversion);
964 if (oldsym == NULL || !oldsym->is_undefined())
965 return NULL;
966
967 *pname = oldsym->name();
968 *pversion = oldsym->version();
969 }
970 else
971 {
972 // Canonicalize NAME and VERSION.
973 Stringpool::Key name_key;
974 *pname = this->namepool_.add(*pname, true, &name_key);
975
976 Stringpool::Key version_key = 0;
977 if (*pversion != NULL)
978 *pversion = this->namepool_.add(*pversion, true, &version_key);
979
980 Symbol* const snull = NULL;
981 std::pair<typename Symbol_table_type::iterator, bool> ins =
982 this->table_.insert(std::make_pair(std::make_pair(name_key,
983 version_key),
984 snull));
985
986 if (!ins.second)
987 {
988 // We already have a symbol table entry for NAME/VERSION.
989 oldsym = ins.first->second;
990 gold_assert(oldsym != NULL);
991 }
992 else
993 {
994 // We haven't seen this symbol before.
995 gold_assert(ins.first->second == NULL);
996 add_to_table = true;
997 add_loc = ins.first;
998 oldsym = NULL;
999 }
1000 }
1001
1002 const Target* target = parameters->target();
1003 if (!target->has_make_symbol())
1004 sym = new Sized_symbol<size>();
1005 else
1006 {
1007 gold_assert(target->get_size() == size);
1008 gold_assert(target->is_big_endian() ? big_endian : !big_endian);
1009 typedef Sized_target<size, big_endian> My_target;
1010 const My_target* sized_target =
1011 static_cast<const My_target*>(target);
1012 sym = sized_target->make_symbol();
1013 if (sym == NULL)
1014 return NULL;
1015 }
1016
1017 if (add_to_table)
1018 add_loc->second = sym;
1019 else
1020 gold_assert(oldsym != NULL);
1021
1022 *poldsym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
1023 SELECT_SIZE(size));
1024
1025 return sym;
1026 }
1027
1028 // Define a symbol based on an Output_data.
1029
1030 Symbol*
1031 Symbol_table::define_in_output_data(const char* name,
1032 const char* version,
1033 Output_data* od,
1034 uint64_t value,
1035 uint64_t symsize,
1036 elfcpp::STT type,
1037 elfcpp::STB binding,
1038 elfcpp::STV visibility,
1039 unsigned char nonvis,
1040 bool offset_is_from_end,
1041 bool only_if_ref)
1042 {
1043 if (parameters->get_size() == 32)
1044 {
1045 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1046 return this->do_define_in_output_data<32>(name, version, od,
1047 value, symsize, type, binding,
1048 visibility, nonvis,
1049 offset_is_from_end,
1050 only_if_ref);
1051 #else
1052 gold_unreachable();
1053 #endif
1054 }
1055 else if (parameters->get_size() == 64)
1056 {
1057 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1058 return this->do_define_in_output_data<64>(name, version, od,
1059 value, symsize, type, binding,
1060 visibility, nonvis,
1061 offset_is_from_end,
1062 only_if_ref);
1063 #else
1064 gold_unreachable();
1065 #endif
1066 }
1067 else
1068 gold_unreachable();
1069 }
1070
1071 // Define a symbol in an Output_data, sized version.
1072
1073 template<int size>
1074 Sized_symbol<size>*
1075 Symbol_table::do_define_in_output_data(
1076 const char* name,
1077 const char* version,
1078 Output_data* od,
1079 typename elfcpp::Elf_types<size>::Elf_Addr value,
1080 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1081 elfcpp::STT type,
1082 elfcpp::STB binding,
1083 elfcpp::STV visibility,
1084 unsigned char nonvis,
1085 bool offset_is_from_end,
1086 bool only_if_ref)
1087 {
1088 Sized_symbol<size>* sym;
1089 Sized_symbol<size>* oldsym;
1090
1091 if (parameters->is_big_endian())
1092 {
1093 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1094 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1095 &name, &version, only_if_ref, &oldsym
1096 SELECT_SIZE_ENDIAN(size, true));
1097 #else
1098 gold_unreachable();
1099 #endif
1100 }
1101 else
1102 {
1103 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1104 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1105 &name, &version, only_if_ref, &oldsym
1106 SELECT_SIZE_ENDIAN(size, false));
1107 #else
1108 gold_unreachable();
1109 #endif
1110 }
1111
1112 if (sym == NULL)
1113 return NULL;
1114
1115 gold_assert(version == NULL || oldsym != NULL);
1116 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1117 offset_is_from_end);
1118
1119 if (oldsym == NULL)
1120 {
1121 if (binding == elfcpp::STB_LOCAL
1122 || this->version_script_.symbol_is_local(name))
1123 this->force_local(sym);
1124 return sym;
1125 }
1126
1127 if (Symbol_table::should_override_with_special(oldsym))
1128 this->override_with_special(oldsym, sym);
1129 delete sym;
1130 return oldsym;
1131 }
1132
1133 // Define a symbol based on an Output_segment.
1134
1135 Symbol*
1136 Symbol_table::define_in_output_segment(const char* name,
1137 const char* version, Output_segment* os,
1138 uint64_t value,
1139 uint64_t symsize,
1140 elfcpp::STT type,
1141 elfcpp::STB binding,
1142 elfcpp::STV visibility,
1143 unsigned char nonvis,
1144 Symbol::Segment_offset_base offset_base,
1145 bool only_if_ref)
1146 {
1147 if (parameters->get_size() == 32)
1148 {
1149 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1150 return this->do_define_in_output_segment<32>(name, version, os,
1151 value, symsize, type,
1152 binding, visibility, nonvis,
1153 offset_base, only_if_ref);
1154 #else
1155 gold_unreachable();
1156 #endif
1157 }
1158 else if (parameters->get_size() == 64)
1159 {
1160 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1161 return this->do_define_in_output_segment<64>(name, version, os,
1162 value, symsize, type,
1163 binding, visibility, nonvis,
1164 offset_base, only_if_ref);
1165 #else
1166 gold_unreachable();
1167 #endif
1168 }
1169 else
1170 gold_unreachable();
1171 }
1172
1173 // Define a symbol in an Output_segment, sized version.
1174
1175 template<int size>
1176 Sized_symbol<size>*
1177 Symbol_table::do_define_in_output_segment(
1178 const char* name,
1179 const char* version,
1180 Output_segment* os,
1181 typename elfcpp::Elf_types<size>::Elf_Addr value,
1182 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1183 elfcpp::STT type,
1184 elfcpp::STB binding,
1185 elfcpp::STV visibility,
1186 unsigned char nonvis,
1187 Symbol::Segment_offset_base offset_base,
1188 bool only_if_ref)
1189 {
1190 Sized_symbol<size>* sym;
1191 Sized_symbol<size>* oldsym;
1192
1193 if (parameters->is_big_endian())
1194 {
1195 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1196 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1197 &name, &version, only_if_ref, &oldsym
1198 SELECT_SIZE_ENDIAN(size, true));
1199 #else
1200 gold_unreachable();
1201 #endif
1202 }
1203 else
1204 {
1205 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1206 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1207 &name, &version, only_if_ref, &oldsym
1208 SELECT_SIZE_ENDIAN(size, false));
1209 #else
1210 gold_unreachable();
1211 #endif
1212 }
1213
1214 if (sym == NULL)
1215 return NULL;
1216
1217 gold_assert(version == NULL || oldsym != NULL);
1218 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1219 offset_base);
1220
1221 if (oldsym == NULL)
1222 {
1223 if (binding == elfcpp::STB_LOCAL
1224 || this->version_script_.symbol_is_local(name))
1225 this->force_local(sym);
1226 return sym;
1227 }
1228
1229 if (Symbol_table::should_override_with_special(oldsym))
1230 this->override_with_special(oldsym, sym);
1231 delete sym;
1232 return oldsym;
1233 }
1234
1235 // Define a special symbol with a constant value. It is a multiple
1236 // definition error if this symbol is already defined.
1237
1238 Symbol*
1239 Symbol_table::define_as_constant(const char* name,
1240 const char* version,
1241 uint64_t value,
1242 uint64_t symsize,
1243 elfcpp::STT type,
1244 elfcpp::STB binding,
1245 elfcpp::STV visibility,
1246 unsigned char nonvis,
1247 bool only_if_ref)
1248 {
1249 if (parameters->get_size() == 32)
1250 {
1251 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1252 return this->do_define_as_constant<32>(name, version, value,
1253 symsize, type, binding,
1254 visibility, nonvis, only_if_ref);
1255 #else
1256 gold_unreachable();
1257 #endif
1258 }
1259 else if (parameters->get_size() == 64)
1260 {
1261 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1262 return this->do_define_as_constant<64>(name, version, value,
1263 symsize, type, binding,
1264 visibility, nonvis, only_if_ref);
1265 #else
1266 gold_unreachable();
1267 #endif
1268 }
1269 else
1270 gold_unreachable();
1271 }
1272
1273 // Define a symbol as a constant, sized version.
1274
1275 template<int size>
1276 Sized_symbol<size>*
1277 Symbol_table::do_define_as_constant(
1278 const char* name,
1279 const char* version,
1280 typename elfcpp::Elf_types<size>::Elf_Addr value,
1281 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1282 elfcpp::STT type,
1283 elfcpp::STB binding,
1284 elfcpp::STV visibility,
1285 unsigned char nonvis,
1286 bool only_if_ref)
1287 {
1288 Sized_symbol<size>* sym;
1289 Sized_symbol<size>* oldsym;
1290
1291 if (parameters->is_big_endian())
1292 {
1293 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1294 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1295 &name, &version, only_if_ref, &oldsym
1296 SELECT_SIZE_ENDIAN(size, true));
1297 #else
1298 gold_unreachable();
1299 #endif
1300 }
1301 else
1302 {
1303 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1304 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1305 &name, &version, only_if_ref, &oldsym
1306 SELECT_SIZE_ENDIAN(size, false));
1307 #else
1308 gold_unreachable();
1309 #endif
1310 }
1311
1312 if (sym == NULL)
1313 return NULL;
1314
1315 gold_assert(version == NULL || version == name || oldsym != NULL);
1316 sym->init(name, value, symsize, type, binding, visibility, nonvis);
1317
1318 if (oldsym == NULL)
1319 {
1320 if (binding == elfcpp::STB_LOCAL
1321 || this->version_script_.symbol_is_local(name))
1322 this->force_local(sym);
1323 return sym;
1324 }
1325
1326 if (Symbol_table::should_override_with_special(oldsym))
1327 this->override_with_special(oldsym, sym);
1328 delete sym;
1329 return oldsym;
1330 }
1331
1332 // Define a set of symbols in output sections.
1333
1334 void
1335 Symbol_table::define_symbols(const Layout* layout, int count,
1336 const Define_symbol_in_section* p)
1337 {
1338 for (int i = 0; i < count; ++i, ++p)
1339 {
1340 Output_section* os = layout->find_output_section(p->output_section);
1341 if (os != NULL)
1342 this->define_in_output_data(p->name, NULL, os, p->value,
1343 p->size, p->type, p->binding,
1344 p->visibility, p->nonvis,
1345 p->offset_is_from_end, p->only_if_ref);
1346 else
1347 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1348 p->binding, p->visibility, p->nonvis,
1349 p->only_if_ref);
1350 }
1351 }
1352
1353 // Define a set of symbols in output segments.
1354
1355 void
1356 Symbol_table::define_symbols(const Layout* layout, int count,
1357 const Define_symbol_in_segment* p)
1358 {
1359 for (int i = 0; i < count; ++i, ++p)
1360 {
1361 Output_segment* os = layout->find_output_segment(p->segment_type,
1362 p->segment_flags_set,
1363 p->segment_flags_clear);
1364 if (os != NULL)
1365 this->define_in_output_segment(p->name, NULL, os, p->value,
1366 p->size, p->type, p->binding,
1367 p->visibility, p->nonvis,
1368 p->offset_base, p->only_if_ref);
1369 else
1370 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1371 p->binding, p->visibility, p->nonvis,
1372 p->only_if_ref);
1373 }
1374 }
1375
1376 // Define CSYM using a COPY reloc. POSD is the Output_data where the
1377 // symbol should be defined--typically a .dyn.bss section. VALUE is
1378 // the offset within POSD.
1379
1380 template<int size>
1381 void
1382 Symbol_table::define_with_copy_reloc(
1383 Sized_symbol<size>* csym,
1384 Output_data* posd,
1385 typename elfcpp::Elf_types<size>::Elf_Addr value)
1386 {
1387 gold_assert(csym->is_from_dynobj());
1388 gold_assert(!csym->is_copied_from_dynobj());
1389 Object* object = csym->object();
1390 gold_assert(object->is_dynamic());
1391 Dynobj* dynobj = static_cast<Dynobj*>(object);
1392
1393 // Our copied variable has to override any variable in a shared
1394 // library.
1395 elfcpp::STB binding = csym->binding();
1396 if (binding == elfcpp::STB_WEAK)
1397 binding = elfcpp::STB_GLOBAL;
1398
1399 this->define_in_output_data(csym->name(), csym->version(),
1400 posd, value, csym->symsize(),
1401 csym->type(), binding,
1402 csym->visibility(), csym->nonvis(),
1403 false, false);
1404
1405 csym->set_is_copied_from_dynobj();
1406 csym->set_needs_dynsym_entry();
1407
1408 this->copied_symbol_dynobjs_[csym] = dynobj;
1409
1410 // We have now defined all aliases, but we have not entered them all
1411 // in the copied_symbol_dynobjs_ map.
1412 if (csym->has_alias())
1413 {
1414 Symbol* sym = csym;
1415 while (true)
1416 {
1417 sym = this->weak_aliases_[sym];
1418 if (sym == csym)
1419 break;
1420 gold_assert(sym->output_data() == posd);
1421
1422 sym->set_is_copied_from_dynobj();
1423 this->copied_symbol_dynobjs_[sym] = dynobj;
1424 }
1425 }
1426 }
1427
1428 // SYM is defined using a COPY reloc. Return the dynamic object where
1429 // the original definition was found.
1430
1431 Dynobj*
1432 Symbol_table::get_copy_source(const Symbol* sym) const
1433 {
1434 gold_assert(sym->is_copied_from_dynobj());
1435 Copied_symbol_dynobjs::const_iterator p =
1436 this->copied_symbol_dynobjs_.find(sym);
1437 gold_assert(p != this->copied_symbol_dynobjs_.end());
1438 return p->second;
1439 }
1440
1441 // Set the dynamic symbol indexes. INDEX is the index of the first
1442 // global dynamic symbol. Pointers to the symbols are stored into the
1443 // vector SYMS. The names are added to DYNPOOL. This returns an
1444 // updated dynamic symbol index.
1445
1446 unsigned int
1447 Symbol_table::set_dynsym_indexes(unsigned int index,
1448 std::vector<Symbol*>* syms,
1449 Stringpool* dynpool,
1450 Versions* versions)
1451 {
1452 for (Symbol_table_type::iterator p = this->table_.begin();
1453 p != this->table_.end();
1454 ++p)
1455 {
1456 Symbol* sym = p->second;
1457
1458 // Note that SYM may already have a dynamic symbol index, since
1459 // some symbols appear more than once in the symbol table, with
1460 // and without a version.
1461
1462 if (!sym->should_add_dynsym_entry())
1463 sym->set_dynsym_index(-1U);
1464 else if (!sym->has_dynsym_index())
1465 {
1466 sym->set_dynsym_index(index);
1467 ++index;
1468 syms->push_back(sym);
1469 dynpool->add(sym->name(), false, NULL);
1470
1471 // Record any version information.
1472 if (sym->version() != NULL)
1473 versions->record_version(this, dynpool, sym);
1474 }
1475 }
1476
1477 // Finish up the versions. In some cases this may add new dynamic
1478 // symbols.
1479 index = versions->finalize(this, index, syms);
1480
1481 return index;
1482 }
1483
1484 // Set the final values for all the symbols. The index of the first
1485 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1486 // file offset OFF. Add their names to POOL. Return the new file
1487 // offset. Update *PLOCAL_SYMCOUNT if necessary.
1488
1489 off_t
1490 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1491 size_t dyncount, Stringpool* pool,
1492 unsigned int *plocal_symcount)
1493 {
1494 off_t ret;
1495
1496 gold_assert(*plocal_symcount != 0);
1497 this->first_global_index_ = *plocal_symcount;
1498
1499 this->dynamic_offset_ = dynoff;
1500 this->first_dynamic_global_index_ = dyn_global_index;
1501 this->dynamic_count_ = dyncount;
1502
1503 if (parameters->get_size() == 32)
1504 {
1505 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1506 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1507 #else
1508 gold_unreachable();
1509 #endif
1510 }
1511 else if (parameters->get_size() == 64)
1512 {
1513 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1514 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1515 #else
1516 gold_unreachable();
1517 #endif
1518 }
1519 else
1520 gold_unreachable();
1521
1522 // Now that we have the final symbol table, we can reliably note
1523 // which symbols should get warnings.
1524 this->warnings_.note_warnings(this);
1525
1526 return ret;
1527 }
1528
1529 // SYM is going into the symbol table at *PINDEX. Add the name to
1530 // POOL, update *PINDEX and *POFF.
1531
1532 template<int size>
1533 void
1534 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1535 unsigned int* pindex, off_t* poff)
1536 {
1537 sym->set_symtab_index(*pindex);
1538 pool->add(sym->name(), false, NULL);
1539 ++*pindex;
1540 *poff += elfcpp::Elf_sizes<size>::sym_size;
1541 }
1542
1543 // Set the final value for all the symbols. This is called after
1544 // Layout::finalize, so all the output sections have their final
1545 // address.
1546
1547 template<int size>
1548 off_t
1549 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1550 unsigned int* plocal_symcount)
1551 {
1552 off = align_address(off, size >> 3);
1553 this->offset_ = off;
1554
1555 unsigned int index = *plocal_symcount;
1556 const unsigned int orig_index = index;
1557
1558 // First do all the symbols which have been forced to be local, as
1559 // they must appear before all global symbols.
1560 for (Forced_locals::iterator p = this->forced_locals_.begin();
1561 p != this->forced_locals_.end();
1562 ++p)
1563 {
1564 Symbol* sym = *p;
1565 gold_assert(sym->is_forced_local());
1566 if (this->sized_finalize_symbol<size>(sym))
1567 {
1568 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1569 ++*plocal_symcount;
1570 }
1571 }
1572
1573 // Now do all the remaining symbols.
1574 for (Symbol_table_type::iterator p = this->table_.begin();
1575 p != this->table_.end();
1576 ++p)
1577 {
1578 Symbol* sym = p->second;
1579 if (this->sized_finalize_symbol<size>(sym))
1580 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1581 }
1582
1583 this->output_count_ = index - orig_index;
1584
1585 return off;
1586 }
1587
1588 // Finalize the symbol SYM. This returns true if the symbol should be
1589 // added to the symbol table, false otherwise.
1590
1591 template<int size>
1592 bool
1593 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1594 {
1595 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
1596
1597 // The default version of a symbol may appear twice in the symbol
1598 // table. We only need to finalize it once.
1599 if (sym->has_symtab_index())
1600 return false;
1601
1602 if (!sym->in_reg())
1603 {
1604 gold_assert(!sym->has_symtab_index());
1605 sym->set_symtab_index(-1U);
1606 gold_assert(sym->dynsym_index() == -1U);
1607 return false;
1608 }
1609
1610 typename Sized_symbol<size>::Value_type value;
1611
1612 switch (sym->source())
1613 {
1614 case Symbol::FROM_OBJECT:
1615 {
1616 unsigned int shndx = sym->shndx();
1617
1618 // FIXME: We need some target specific support here.
1619 if (shndx >= elfcpp::SHN_LORESERVE
1620 && shndx != elfcpp::SHN_ABS)
1621 {
1622 gold_error(_("%s: unsupported symbol section 0x%x"),
1623 sym->demangled_name().c_str(), shndx);
1624 shndx = elfcpp::SHN_UNDEF;
1625 }
1626
1627 Object* symobj = sym->object();
1628 if (symobj->is_dynamic())
1629 {
1630 value = 0;
1631 shndx = elfcpp::SHN_UNDEF;
1632 }
1633 else if (shndx == elfcpp::SHN_UNDEF)
1634 value = 0;
1635 else if (shndx == elfcpp::SHN_ABS)
1636 value = sym->value();
1637 else
1638 {
1639 Relobj* relobj = static_cast<Relobj*>(symobj);
1640 section_offset_type secoff;
1641 Output_section* os = relobj->output_section(shndx, &secoff);
1642
1643 if (os == NULL)
1644 {
1645 sym->set_symtab_index(-1U);
1646 gold_assert(sym->dynsym_index() == -1U);
1647 return false;
1648 }
1649
1650 if (sym->type() == elfcpp::STT_TLS)
1651 value = sym->value() + os->tls_offset() + secoff;
1652 else
1653 value = sym->value() + os->address() + secoff;
1654 }
1655 }
1656 break;
1657
1658 case Symbol::IN_OUTPUT_DATA:
1659 {
1660 Output_data* od = sym->output_data();
1661 value = sym->value() + od->address();
1662 if (sym->offset_is_from_end())
1663 value += od->data_size();
1664 }
1665 break;
1666
1667 case Symbol::IN_OUTPUT_SEGMENT:
1668 {
1669 Output_segment* os = sym->output_segment();
1670 value = sym->value() + os->vaddr();
1671 switch (sym->offset_base())
1672 {
1673 case Symbol::SEGMENT_START:
1674 break;
1675 case Symbol::SEGMENT_END:
1676 value += os->memsz();
1677 break;
1678 case Symbol::SEGMENT_BSS:
1679 value += os->filesz();
1680 break;
1681 default:
1682 gold_unreachable();
1683 }
1684 }
1685 break;
1686
1687 case Symbol::CONSTANT:
1688 value = sym->value();
1689 break;
1690
1691 default:
1692 gold_unreachable();
1693 }
1694
1695 sym->set_value(value);
1696
1697 if (parameters->strip_all())
1698 {
1699 sym->set_symtab_index(-1U);
1700 return false;
1701 }
1702
1703 return true;
1704 }
1705
1706 // Write out the global symbols.
1707
1708 void
1709 Symbol_table::write_globals(const Input_objects* input_objects,
1710 const Stringpool* sympool,
1711 const Stringpool* dynpool, Output_file* of) const
1712 {
1713 if (parameters->get_size() == 32)
1714 {
1715 if (parameters->is_big_endian())
1716 {
1717 #ifdef HAVE_TARGET_32_BIG
1718 this->sized_write_globals<32, true>(input_objects, sympool,
1719 dynpool, of);
1720 #else
1721 gold_unreachable();
1722 #endif
1723 }
1724 else
1725 {
1726 #ifdef HAVE_TARGET_32_LITTLE
1727 this->sized_write_globals<32, false>(input_objects, sympool,
1728 dynpool, of);
1729 #else
1730 gold_unreachable();
1731 #endif
1732 }
1733 }
1734 else if (parameters->get_size() == 64)
1735 {
1736 if (parameters->is_big_endian())
1737 {
1738 #ifdef HAVE_TARGET_64_BIG
1739 this->sized_write_globals<64, true>(input_objects, sympool,
1740 dynpool, of);
1741 #else
1742 gold_unreachable();
1743 #endif
1744 }
1745 else
1746 {
1747 #ifdef HAVE_TARGET_64_LITTLE
1748 this->sized_write_globals<64, false>(input_objects, sympool,
1749 dynpool, of);
1750 #else
1751 gold_unreachable();
1752 #endif
1753 }
1754 }
1755 else
1756 gold_unreachable();
1757 }
1758
1759 // Write out the global symbols.
1760
1761 template<int size, bool big_endian>
1762 void
1763 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1764 const Stringpool* sympool,
1765 const Stringpool* dynpool,
1766 Output_file* of) const
1767 {
1768 const Target* const target = input_objects->target();
1769
1770 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1771
1772 const unsigned int output_count = this->output_count_;
1773 const section_size_type oview_size = output_count * sym_size;
1774 const unsigned int first_global_index = this->first_global_index_;
1775 unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1776
1777 const unsigned int dynamic_count = this->dynamic_count_;
1778 const section_size_type dynamic_size = dynamic_count * sym_size;
1779 const unsigned int first_dynamic_global_index =
1780 this->first_dynamic_global_index_;
1781 unsigned char* dynamic_view;
1782 if (this->dynamic_offset_ == 0)
1783 dynamic_view = NULL;
1784 else
1785 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1786
1787 for (Symbol_table_type::const_iterator p = this->table_.begin();
1788 p != this->table_.end();
1789 ++p)
1790 {
1791 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1792
1793 // Possibly warn about unresolved symbols in shared libraries.
1794 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1795
1796 unsigned int sym_index = sym->symtab_index();
1797 unsigned int dynsym_index;
1798 if (dynamic_view == NULL)
1799 dynsym_index = -1U;
1800 else
1801 dynsym_index = sym->dynsym_index();
1802
1803 if (sym_index == -1U && dynsym_index == -1U)
1804 {
1805 // This symbol is not included in the output file.
1806 continue;
1807 }
1808
1809 unsigned int shndx;
1810 typename elfcpp::Elf_types<32>::Elf_Addr value = sym->value();
1811 switch (sym->source())
1812 {
1813 case Symbol::FROM_OBJECT:
1814 {
1815 unsigned int in_shndx = sym->shndx();
1816
1817 // FIXME: We need some target specific support here.
1818 if (in_shndx >= elfcpp::SHN_LORESERVE
1819 && in_shndx != elfcpp::SHN_ABS)
1820 {
1821 gold_error(_("%s: unsupported symbol section 0x%x"),
1822 sym->demangled_name().c_str(), in_shndx);
1823 shndx = in_shndx;
1824 }
1825 else
1826 {
1827 Object* symobj = sym->object();
1828 if (symobj->is_dynamic())
1829 {
1830 if (sym->needs_dynsym_value())
1831 value = target->dynsym_value(sym);
1832 shndx = elfcpp::SHN_UNDEF;
1833 }
1834 else if (in_shndx == elfcpp::SHN_UNDEF
1835 || in_shndx == elfcpp::SHN_ABS)
1836 shndx = in_shndx;
1837 else
1838 {
1839 Relobj* relobj = static_cast<Relobj*>(symobj);
1840 section_offset_type secoff;
1841 Output_section* os = relobj->output_section(in_shndx,
1842 &secoff);
1843 gold_assert(os != NULL);
1844 shndx = os->out_shndx();
1845 }
1846 }
1847 }
1848 break;
1849
1850 case Symbol::IN_OUTPUT_DATA:
1851 shndx = sym->output_data()->out_shndx();
1852 break;
1853
1854 case Symbol::IN_OUTPUT_SEGMENT:
1855 shndx = elfcpp::SHN_ABS;
1856 break;
1857
1858 case Symbol::CONSTANT:
1859 shndx = elfcpp::SHN_ABS;
1860 break;
1861
1862 default:
1863 gold_unreachable();
1864 }
1865
1866 if (sym_index != -1U)
1867 {
1868 sym_index -= first_global_index;
1869 gold_assert(sym_index < output_count);
1870 unsigned char* ps = psyms + (sym_index * sym_size);
1871 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1872 sym, sym->value(), shndx, sympool, ps
1873 SELECT_SIZE_ENDIAN(size, big_endian));
1874 }
1875
1876 if (dynsym_index != -1U)
1877 {
1878 dynsym_index -= first_dynamic_global_index;
1879 gold_assert(dynsym_index < dynamic_count);
1880 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1881 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1882 sym, value, shndx, dynpool, pd
1883 SELECT_SIZE_ENDIAN(size, big_endian));
1884 }
1885 }
1886
1887 of->write_output_view(this->offset_, oview_size, psyms);
1888 if (dynamic_view != NULL)
1889 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1890 }
1891
1892 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
1893 // strtab holding the name.
1894
1895 template<int size, bool big_endian>
1896 void
1897 Symbol_table::sized_write_symbol(
1898 Sized_symbol<size>* sym,
1899 typename elfcpp::Elf_types<size>::Elf_Addr value,
1900 unsigned int shndx,
1901 const Stringpool* pool,
1902 unsigned char* p
1903 ACCEPT_SIZE_ENDIAN) const
1904 {
1905 elfcpp::Sym_write<size, big_endian> osym(p);
1906 osym.put_st_name(pool->get_offset(sym->name()));
1907 osym.put_st_value(value);
1908 osym.put_st_size(sym->symsize());
1909 // A version script may have overridden the default binding.
1910 if (sym->is_forced_local())
1911 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
1912 else
1913 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1914 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1915 osym.put_st_shndx(shndx);
1916 }
1917
1918 // Check for unresolved symbols in shared libraries. This is
1919 // controlled by the --allow-shlib-undefined option.
1920
1921 // We only warn about libraries for which we have seen all the
1922 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
1923 // which were not seen in this link. If we didn't see a DT_NEEDED
1924 // entry, we aren't going to be able to reliably report whether the
1925 // symbol is undefined.
1926
1927 // We also don't warn about libraries found in the system library
1928 // directory (the directory were we find libc.so); we assume that
1929 // those libraries are OK. This heuristic avoids problems in
1930 // GNU/Linux, in which -ldl can have undefined references satisfied by
1931 // ld-linux.so.
1932
1933 inline void
1934 Symbol_table::warn_about_undefined_dynobj_symbol(
1935 const Input_objects* input_objects,
1936 Symbol* sym) const
1937 {
1938 if (sym->source() == Symbol::FROM_OBJECT
1939 && sym->object()->is_dynamic()
1940 && sym->shndx() == elfcpp::SHN_UNDEF
1941 && sym->binding() != elfcpp::STB_WEAK
1942 && !parameters->allow_shlib_undefined()
1943 && !input_objects->target()->is_defined_by_abi(sym)
1944 && !input_objects->found_in_system_library_directory(sym->object()))
1945 {
1946 // A very ugly cast.
1947 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
1948 if (!dynobj->has_unknown_needed_entries())
1949 gold_error(_("%s: undefined reference to '%s'"),
1950 sym->object()->name().c_str(),
1951 sym->demangled_name().c_str());
1952 }
1953 }
1954
1955 // Write out a section symbol. Return the update offset.
1956
1957 void
1958 Symbol_table::write_section_symbol(const Output_section *os,
1959 Output_file* of,
1960 off_t offset) const
1961 {
1962 if (parameters->get_size() == 32)
1963 {
1964 if (parameters->is_big_endian())
1965 {
1966 #ifdef HAVE_TARGET_32_BIG
1967 this->sized_write_section_symbol<32, true>(os, of, offset);
1968 #else
1969 gold_unreachable();
1970 #endif
1971 }
1972 else
1973 {
1974 #ifdef HAVE_TARGET_32_LITTLE
1975 this->sized_write_section_symbol<32, false>(os, of, offset);
1976 #else
1977 gold_unreachable();
1978 #endif
1979 }
1980 }
1981 else if (parameters->get_size() == 64)
1982 {
1983 if (parameters->is_big_endian())
1984 {
1985 #ifdef HAVE_TARGET_64_BIG
1986 this->sized_write_section_symbol<64, true>(os, of, offset);
1987 #else
1988 gold_unreachable();
1989 #endif
1990 }
1991 else
1992 {
1993 #ifdef HAVE_TARGET_64_LITTLE
1994 this->sized_write_section_symbol<64, false>(os, of, offset);
1995 #else
1996 gold_unreachable();
1997 #endif
1998 }
1999 }
2000 else
2001 gold_unreachable();
2002 }
2003
2004 // Write out a section symbol, specialized for size and endianness.
2005
2006 template<int size, bool big_endian>
2007 void
2008 Symbol_table::sized_write_section_symbol(const Output_section* os,
2009 Output_file* of,
2010 off_t offset) const
2011 {
2012 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2013
2014 unsigned char* pov = of->get_output_view(offset, sym_size);
2015
2016 elfcpp::Sym_write<size, big_endian> osym(pov);
2017 osym.put_st_name(0);
2018 osym.put_st_value(os->address());
2019 osym.put_st_size(0);
2020 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2021 elfcpp::STT_SECTION));
2022 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2023 osym.put_st_shndx(os->out_shndx());
2024
2025 of->write_output_view(offset, sym_size, pov);
2026 }
2027
2028 // Print statistical information to stderr. This is used for --stats.
2029
2030 void
2031 Symbol_table::print_stats() const
2032 {
2033 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2034 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2035 program_name, this->table_.size(), this->table_.bucket_count());
2036 #else
2037 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2038 program_name, this->table_.size());
2039 #endif
2040 this->namepool_.print_stats("symbol table stringpool");
2041 }
2042
2043 // We check for ODR violations by looking for symbols with the same
2044 // name for which the debugging information reports that they were
2045 // defined in different source locations. When comparing the source
2046 // location, we consider instances with the same base filename and
2047 // line number to be the same. This is because different object
2048 // files/shared libraries can include the same header file using
2049 // different paths, and we don't want to report an ODR violation in
2050 // that case.
2051
2052 // This struct is used to compare line information, as returned by
2053 // Dwarf_line_info::one_addr2line. It implements a < comparison
2054 // operator used with std::set.
2055
2056 struct Odr_violation_compare
2057 {
2058 bool
2059 operator()(const std::string& s1, const std::string& s2) const
2060 {
2061 std::string::size_type pos1 = s1.rfind('/');
2062 std::string::size_type pos2 = s2.rfind('/');
2063 if (pos1 == std::string::npos
2064 || pos2 == std::string::npos)
2065 return s1 < s2;
2066 return s1.compare(pos1, std::string::npos,
2067 s2, pos2, std::string::npos) < 0;
2068 }
2069 };
2070
2071 // Check candidate_odr_violations_ to find symbols with the same name
2072 // but apparently different definitions (different source-file/line-no).
2073
2074 void
2075 Symbol_table::detect_odr_violations(const Task* task,
2076 const char* output_file_name) const
2077 {
2078 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2079 it != candidate_odr_violations_.end();
2080 ++it)
2081 {
2082 const char* symbol_name = it->first;
2083 // We use a sorted set so the output is deterministic.
2084 std::set<std::string, Odr_violation_compare> line_nums;
2085
2086 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2087 locs = it->second.begin();
2088 locs != it->second.end();
2089 ++locs)
2090 {
2091 // We need to lock the object in order to read it. This
2092 // means that we have to run in a singleton Task. If we
2093 // want to run this in a general Task for better
2094 // performance, we will need one Task for object, plus
2095 // appropriate locking to ensure that we don't conflict with
2096 // other uses of the object.
2097 Task_lock_obj<Object> tl(task, locs->object);
2098 std::string lineno = Dwarf_line_info::one_addr2line(
2099 locs->object, locs->shndx, locs->offset);
2100 if (!lineno.empty())
2101 line_nums.insert(lineno);
2102 }
2103
2104 if (line_nums.size() > 1)
2105 {
2106 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2107 "places (possible ODR violation):"),
2108 output_file_name, demangle(symbol_name).c_str());
2109 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2110 it2 != line_nums.end();
2111 ++it2)
2112 fprintf(stderr, " %s\n", it2->c_str());
2113 }
2114 }
2115 }
2116
2117 // Warnings functions.
2118
2119 // Add a new warning.
2120
2121 void
2122 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2123 const std::string& warning)
2124 {
2125 name = symtab->canonicalize_name(name);
2126 this->warnings_[name].set(obj, warning);
2127 }
2128
2129 // Look through the warnings and mark the symbols for which we should
2130 // warn. This is called during Layout::finalize when we know the
2131 // sources for all the symbols.
2132
2133 void
2134 Warnings::note_warnings(Symbol_table* symtab)
2135 {
2136 for (Warning_table::iterator p = this->warnings_.begin();
2137 p != this->warnings_.end();
2138 ++p)
2139 {
2140 Symbol* sym = symtab->lookup(p->first, NULL);
2141 if (sym != NULL
2142 && sym->source() == Symbol::FROM_OBJECT
2143 && sym->object() == p->second.object)
2144 sym->set_has_warning();
2145 }
2146 }
2147
2148 // Issue a warning. This is called when we see a relocation against a
2149 // symbol for which has a warning.
2150
2151 template<int size, bool big_endian>
2152 void
2153 Warnings::issue_warning(const Symbol* sym,
2154 const Relocate_info<size, big_endian>* relinfo,
2155 size_t relnum, off_t reloffset) const
2156 {
2157 gold_assert(sym->has_warning());
2158 Warning_table::const_iterator p = this->warnings_.find(sym->name());
2159 gold_assert(p != this->warnings_.end());
2160 gold_warning_at_location(relinfo, relnum, reloffset,
2161 "%s", p->second.text.c_str());
2162 }
2163
2164 // Instantiate the templates we need. We could use the configure
2165 // script to restrict this to only the ones needed for implemented
2166 // targets.
2167
2168 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2169 template
2170 void
2171 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2172 #endif
2173
2174 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2175 template
2176 void
2177 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2178 #endif
2179
2180 #ifdef HAVE_TARGET_32_LITTLE
2181 template
2182 void
2183 Symbol_table::add_from_relobj<32, false>(
2184 Sized_relobj<32, false>* relobj,
2185 const unsigned char* syms,
2186 size_t count,
2187 const char* sym_names,
2188 size_t sym_name_size,
2189 Sized_relobj<32, true>::Symbols* sympointers);
2190 #endif
2191
2192 #ifdef HAVE_TARGET_32_BIG
2193 template
2194 void
2195 Symbol_table::add_from_relobj<32, true>(
2196 Sized_relobj<32, true>* relobj,
2197 const unsigned char* syms,
2198 size_t count,
2199 const char* sym_names,
2200 size_t sym_name_size,
2201 Sized_relobj<32, false>::Symbols* sympointers);
2202 #endif
2203
2204 #ifdef HAVE_TARGET_64_LITTLE
2205 template
2206 void
2207 Symbol_table::add_from_relobj<64, false>(
2208 Sized_relobj<64, false>* relobj,
2209 const unsigned char* syms,
2210 size_t count,
2211 const char* sym_names,
2212 size_t sym_name_size,
2213 Sized_relobj<64, true>::Symbols* sympointers);
2214 #endif
2215
2216 #ifdef HAVE_TARGET_64_BIG
2217 template
2218 void
2219 Symbol_table::add_from_relobj<64, true>(
2220 Sized_relobj<64, true>* relobj,
2221 const unsigned char* syms,
2222 size_t count,
2223 const char* sym_names,
2224 size_t sym_name_size,
2225 Sized_relobj<64, false>::Symbols* sympointers);
2226 #endif
2227
2228 #ifdef HAVE_TARGET_32_LITTLE
2229 template
2230 void
2231 Symbol_table::add_from_dynobj<32, false>(
2232 Sized_dynobj<32, false>* dynobj,
2233 const unsigned char* syms,
2234 size_t count,
2235 const char* sym_names,
2236 size_t sym_name_size,
2237 const unsigned char* versym,
2238 size_t versym_size,
2239 const std::vector<const char*>* version_map);
2240 #endif
2241
2242 #ifdef HAVE_TARGET_32_BIG
2243 template
2244 void
2245 Symbol_table::add_from_dynobj<32, true>(
2246 Sized_dynobj<32, true>* dynobj,
2247 const unsigned char* syms,
2248 size_t count,
2249 const char* sym_names,
2250 size_t sym_name_size,
2251 const unsigned char* versym,
2252 size_t versym_size,
2253 const std::vector<const char*>* version_map);
2254 #endif
2255
2256 #ifdef HAVE_TARGET_64_LITTLE
2257 template
2258 void
2259 Symbol_table::add_from_dynobj<64, false>(
2260 Sized_dynobj<64, false>* dynobj,
2261 const unsigned char* syms,
2262 size_t count,
2263 const char* sym_names,
2264 size_t sym_name_size,
2265 const unsigned char* versym,
2266 size_t versym_size,
2267 const std::vector<const char*>* version_map);
2268 #endif
2269
2270 #ifdef HAVE_TARGET_64_BIG
2271 template
2272 void
2273 Symbol_table::add_from_dynobj<64, true>(
2274 Sized_dynobj<64, true>* dynobj,
2275 const unsigned char* syms,
2276 size_t count,
2277 const char* sym_names,
2278 size_t sym_name_size,
2279 const unsigned char* versym,
2280 size_t versym_size,
2281 const std::vector<const char*>* version_map);
2282 #endif
2283
2284 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2285 template
2286 void
2287 Symbol_table::define_with_copy_reloc<32>(
2288 Sized_symbol<32>* sym,
2289 Output_data* posd,
2290 elfcpp::Elf_types<32>::Elf_Addr value);
2291 #endif
2292
2293 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2294 template
2295 void
2296 Symbol_table::define_with_copy_reloc<64>(
2297 Sized_symbol<64>* sym,
2298 Output_data* posd,
2299 elfcpp::Elf_types<64>::Elf_Addr value);
2300 #endif
2301
2302 #ifdef HAVE_TARGET_32_LITTLE
2303 template
2304 void
2305 Warnings::issue_warning<32, false>(const Symbol* sym,
2306 const Relocate_info<32, false>* relinfo,
2307 size_t relnum, off_t reloffset) const;
2308 #endif
2309
2310 #ifdef HAVE_TARGET_32_BIG
2311 template
2312 void
2313 Warnings::issue_warning<32, true>(const Symbol* sym,
2314 const Relocate_info<32, true>* relinfo,
2315 size_t relnum, off_t reloffset) const;
2316 #endif
2317
2318 #ifdef HAVE_TARGET_64_LITTLE
2319 template
2320 void
2321 Warnings::issue_warning<64, false>(const Symbol* sym,
2322 const Relocate_info<64, false>* relinfo,
2323 size_t relnum, off_t reloffset) const;
2324 #endif
2325
2326 #ifdef HAVE_TARGET_64_BIG
2327 template
2328 void
2329 Warnings::issue_warning<64, true>(const Symbol* sym,
2330 const Relocate_info<64, true>* relinfo,
2331 size_t relnum, off_t reloffset) const;
2332 #endif
2333
2334 } // End namespace gold.
This page took 0.113784 seconds and 5 git commands to generate.