From Craig Silverstein: Add support for --demangle.
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #include <string>
27 #include <utility>
28 #include <vector>
29
30 #include "elfcpp.h"
31 #include "parameters.h"
32 #include "stringpool.h"
33 #include "object.h"
34
35 #ifndef GOLD_SYMTAB_H
36 #define GOLD_SYMTAB_H
37
38 namespace gold
39 {
40
41 class Object;
42 class Relobj;
43 template<int size, bool big_endian>
44 class Sized_relobj;
45 class Dynobj;
46 template<int size, bool big_endian>
47 class Sized_dynobj;
48 class Versions;
49 class Input_objects;
50 class Output_data;
51 class Output_section;
52 class Output_segment;
53 class Output_file;
54 class Target;
55
56 // The base class of an entry in the symbol table. The symbol table
57 // can have a lot of entries, so we don't want this class to big.
58 // Size dependent fields can be found in the template class
59 // Sized_symbol. Targets may support their own derived classes.
60
61 class Symbol
62 {
63 public:
64 // Because we want the class to be small, we don't use any virtual
65 // functions. But because symbols can be defined in different
66 // places, we need to classify them. This enum is the different
67 // sources of symbols we support.
68 enum Source
69 {
70 // Symbol defined in a relocatable or dynamic input file--this is
71 // the most common case.
72 FROM_OBJECT,
73 // Symbol defined in an Output_data, a special section created by
74 // the target.
75 IN_OUTPUT_DATA,
76 // Symbol defined in an Output_segment, with no associated
77 // section.
78 IN_OUTPUT_SEGMENT,
79 // Symbol value is constant.
80 CONSTANT
81 };
82
83 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
84 // the offset means.
85 enum Segment_offset_base
86 {
87 // From the start of the segment.
88 SEGMENT_START,
89 // From the end of the segment.
90 SEGMENT_END,
91 // From the filesz of the segment--i.e., after the loaded bytes
92 // but before the bytes which are allocated but zeroed.
93 SEGMENT_BSS
94 };
95
96 // Return the symbol name.
97 const char*
98 name() const
99 { return this->name_; }
100
101 // Return the (ANSI) demangled version of the name, if
102 // parameters.demangle() is true. Otherwise, return the name. This
103 // is intended to be used only for logging errors, so it's not
104 // super-efficient.
105 std::string
106 demangled_name() const;
107
108 // Return the symbol version. This will return NULL for an
109 // unversioned symbol.
110 const char*
111 version() const
112 { return this->version_; }
113
114 // Return the symbol source.
115 Source
116 source() const
117 { return this->source_; }
118
119 // Return the object with which this symbol is associated.
120 Object*
121 object() const
122 {
123 gold_assert(this->source_ == FROM_OBJECT);
124 return this->u_.from_object.object;
125 }
126
127 // Return the index of the section in the input relocatable or
128 // dynamic object file.
129 unsigned int
130 shndx() const
131 {
132 gold_assert(this->source_ == FROM_OBJECT);
133 return this->u_.from_object.shndx;
134 }
135
136 // Return the output data section with which this symbol is
137 // associated, if the symbol was specially defined with respect to
138 // an output data section.
139 Output_data*
140 output_data() const
141 {
142 gold_assert(this->source_ == IN_OUTPUT_DATA);
143 return this->u_.in_output_data.output_data;
144 }
145
146 // If this symbol was defined with respect to an output data
147 // section, return whether the value is an offset from end.
148 bool
149 offset_is_from_end() const
150 {
151 gold_assert(this->source_ == IN_OUTPUT_DATA);
152 return this->u_.in_output_data.offset_is_from_end;
153 }
154
155 // Return the output segment with which this symbol is associated,
156 // if the symbol was specially defined with respect to an output
157 // segment.
158 Output_segment*
159 output_segment() const
160 {
161 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
162 return this->u_.in_output_segment.output_segment;
163 }
164
165 // If this symbol was defined with respect to an output segment,
166 // return the offset base.
167 Segment_offset_base
168 offset_base() const
169 {
170 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
171 return this->u_.in_output_segment.offset_base;
172 }
173
174 // Return the symbol binding.
175 elfcpp::STB
176 binding() const
177 { return this->binding_; }
178
179 // Return the symbol type.
180 elfcpp::STT
181 type() const
182 { return this->type_; }
183
184 // Return the symbol visibility.
185 elfcpp::STV
186 visibility() const
187 { return this->visibility_; }
188
189 // Return the non-visibility part of the st_other field.
190 unsigned char
191 nonvis() const
192 { return this->nonvis_; }
193
194 // Return whether this symbol is a forwarder. This will never be
195 // true of a symbol found in the hash table, but may be true of
196 // symbol pointers attached to object files.
197 bool
198 is_forwarder() const
199 { return this->is_forwarder_; }
200
201 // Mark this symbol as a forwarder.
202 void
203 set_forwarder()
204 { this->is_forwarder_ = true; }
205
206 // Return whether this symbol has an alias in the weak aliases table
207 // in Symbol_table.
208 bool
209 has_alias() const
210 { return this->has_alias_; }
211
212 // Mark this symbol as having an alias.
213 void
214 set_has_alias()
215 { this->has_alias_ = true; }
216
217 // Return whether this symbol needs an entry in the dynamic symbol
218 // table.
219 bool
220 needs_dynsym_entry() const
221 {
222 return (this->needs_dynsym_entry_
223 || (this->in_reg() && this->in_dyn()));
224 }
225
226 // Mark this symbol as needing an entry in the dynamic symbol table.
227 void
228 set_needs_dynsym_entry()
229 { this->needs_dynsym_entry_ = true; }
230
231 // Return whether this symbol should be added to the dynamic symbol
232 // table.
233 bool
234 should_add_dynsym_entry() const;
235
236 // Return whether this symbol has been seen in a regular object.
237 bool
238 in_reg() const
239 { return this->in_reg_; }
240
241 // Mark this symbol as having been seen in a regular object.
242 void
243 set_in_reg()
244 { this->in_reg_ = true; }
245
246 // Return whether this symbol has been seen in a dynamic object.
247 bool
248 in_dyn() const
249 { return this->in_dyn_; }
250
251 // Mark this symbol as having been seen in a dynamic object.
252 void
253 set_in_dyn()
254 { this->in_dyn_ = true; }
255
256 // Return the index of this symbol in the output file symbol table.
257 // A value of -1U means that this symbol is not going into the
258 // output file. This starts out as zero, and is set to a non-zero
259 // value by Symbol_table::finalize. It is an error to ask for the
260 // symbol table index before it has been set.
261 unsigned int
262 symtab_index() const
263 {
264 gold_assert(this->symtab_index_ != 0);
265 return this->symtab_index_;
266 }
267
268 // Set the index of the symbol in the output file symbol table.
269 void
270 set_symtab_index(unsigned int index)
271 {
272 gold_assert(index != 0);
273 this->symtab_index_ = index;
274 }
275
276 // Return whether this symbol already has an index in the output
277 // file symbol table.
278 bool
279 has_symtab_index() const
280 { return this->symtab_index_ != 0; }
281
282 // Return the index of this symbol in the dynamic symbol table. A
283 // value of -1U means that this symbol is not going into the dynamic
284 // symbol table. This starts out as zero, and is set to a non-zero
285 // during Layout::finalize. It is an error to ask for the dynamic
286 // symbol table index before it has been set.
287 unsigned int
288 dynsym_index() const
289 {
290 gold_assert(this->dynsym_index_ != 0);
291 return this->dynsym_index_;
292 }
293
294 // Set the index of the symbol in the dynamic symbol table.
295 void
296 set_dynsym_index(unsigned int index)
297 {
298 gold_assert(index != 0);
299 this->dynsym_index_ = index;
300 }
301
302 // Return whether this symbol already has an index in the dynamic
303 // symbol table.
304 bool
305 has_dynsym_index() const
306 { return this->dynsym_index_ != 0; }
307
308 // Return whether this symbol has an entry in the GOT section.
309 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
310 bool
311 has_got_offset() const
312 { return this->has_got_offset_; }
313
314 // Return the offset into the GOT section of this symbol.
315 unsigned int
316 got_offset() const
317 {
318 gold_assert(this->has_got_offset());
319 return this->got_offset_;
320 }
321
322 // Set the GOT offset of this symbol.
323 void
324 set_got_offset(unsigned int got_offset)
325 {
326 this->has_got_offset_ = true;
327 this->got_offset_ = got_offset;
328 }
329
330 // Return whether this TLS symbol has an entry in the GOT section for
331 // its module index or, if NEED_PAIR is true, has a pair of entries
332 // for its module index and dtv-relative offset.
333 bool
334 has_tls_got_offset(bool need_pair) const
335 {
336 return (this->has_tls_mod_got_offset_
337 && (!need_pair || this->has_tls_pair_got_offset_));
338 }
339
340 // Return the offset into the GOT section for this symbol's TLS module
341 // index or, if NEED_PAIR is true, for the pair of entries for the
342 // module index and dtv-relative offset.
343 unsigned int
344 tls_got_offset(bool need_pair) const
345 {
346 gold_assert(this->has_tls_got_offset(need_pair));
347 return this->tls_mod_got_offset_;
348 }
349
350 // Set the GOT offset of this symbol.
351 void
352 set_tls_got_offset(unsigned int got_offset, bool have_pair)
353 {
354 this->has_tls_mod_got_offset_ = true;
355 this->has_tls_pair_got_offset_ = have_pair;
356 this->tls_mod_got_offset_ = got_offset;
357 }
358
359 // Return whether this symbol has an entry in the PLT section.
360 bool
361 has_plt_offset() const
362 { return this->has_plt_offset_; }
363
364 // Return the offset into the PLT section of this symbol.
365 unsigned int
366 plt_offset() const
367 {
368 gold_assert(this->has_plt_offset());
369 return this->plt_offset_;
370 }
371
372 // Set the PLT offset of this symbol.
373 void
374 set_plt_offset(unsigned int plt_offset)
375 {
376 this->has_plt_offset_ = true;
377 this->plt_offset_ = plt_offset;
378 }
379
380 // Return whether this dynamic symbol needs a special value in the
381 // dynamic symbol table.
382 bool
383 needs_dynsym_value() const
384 { return this->needs_dynsym_value_; }
385
386 // Set that this dynamic symbol needs a special value in the dynamic
387 // symbol table.
388 void
389 set_needs_dynsym_value()
390 {
391 gold_assert(this->object()->is_dynamic());
392 this->needs_dynsym_value_ = true;
393 }
394
395 // Return true if the final value of this symbol is known at link
396 // time.
397 bool
398 final_value_is_known() const;
399
400 // Return whether this is a defined symbol (not undefined or
401 // common).
402 bool
403 is_defined() const
404 {
405 return (this->source_ != FROM_OBJECT
406 || (this->shndx() != elfcpp::SHN_UNDEF
407 && this->shndx() != elfcpp::SHN_COMMON));
408 }
409
410 // Return true if this symbol is from a dynamic object.
411 bool
412 is_from_dynobj() const
413 {
414 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
415 }
416
417 // Return whether this is an undefined symbol.
418 bool
419 is_undefined() const
420 {
421 return this->source_ == FROM_OBJECT && this->shndx() == elfcpp::SHN_UNDEF;
422 }
423
424 // Return whether this is a common symbol.
425 bool
426 is_common() const
427 {
428 return (this->source_ == FROM_OBJECT
429 && (this->shndx() == elfcpp::SHN_COMMON
430 || this->type_ == elfcpp::STT_COMMON));
431 }
432
433 // Return whether this symbol can be seen outside this object.
434 bool
435 is_externally_visible() const
436 {
437 return (this->visibility_ == elfcpp::STV_DEFAULT
438 || this->visibility_ == elfcpp::STV_PROTECTED);
439 }
440
441 // Return true if this symbol can be preempted by a definition in
442 // another link unit.
443 bool
444 is_preemptible() const
445 {
446 // It doesn't make sense to ask whether a symbol defined in
447 // another object is preemptible.
448 gold_assert(!this->is_from_dynobj());
449
450 return (this->visibility_ != elfcpp::STV_INTERNAL
451 && this->visibility_ != elfcpp::STV_HIDDEN
452 && this->visibility_ != elfcpp::STV_PROTECTED
453 && parameters->output_is_shared()
454 && !parameters->symbolic());
455 }
456
457 // Return true if this symbol is a function that needs a PLT entry.
458 // If the symbol is defined in a dynamic object or if it is subject
459 // to pre-emption, we need to make a PLT entry.
460 bool
461 needs_plt_entry() const
462 {
463 return (this->type() == elfcpp::STT_FUNC
464 && (this->is_from_dynobj() || this->is_preemptible()));
465 }
466
467 // Given a direct absolute or pc-relative static relocation against
468 // the global symbol, this function returns whether a dynamic relocation
469 // is needed.
470
471 bool
472 needs_dynamic_reloc(bool is_absolute_ref, bool is_function_call) const
473 {
474 // An absolute reference within a position-independent output file
475 // will need a dynamic relocaion.
476 if (is_absolute_ref && parameters->output_is_position_independent())
477 return true;
478
479 // A function call that can branch to a local PLT entry does not need
480 // a dynamic relocation.
481 if (is_function_call && this->has_plt_offset())
482 return false;
483
484 // A reference to any PLT entry in a non-position-independent executable
485 // does not need a dynamic relocation.
486 if (!parameters->output_is_position_independent()
487 && this->has_plt_offset())
488 return false;
489
490 // A reference to a symbol defined in a dynamic object or to a
491 // symbol that is preemptible will need a dynamic relocation.
492 if (this->is_from_dynobj() || this->is_preemptible())
493 return true;
494
495 // For all other cases, return FALSE.
496 return false;
497 }
498
499 // Given a direct absolute static relocation against
500 // the global symbol, where a dynamic relocation is needed, this
501 // function returns whether a relative dynamic relocation can be used.
502 // The caller must determine separately whether the static relocation
503 // is compatible with a relative relocation.
504
505 bool
506 can_use_relative_reloc(bool is_function_call) const
507 {
508 // A function call that can branch to a local PLT entry can
509 // use a RELATIVE relocation.
510 if (is_function_call && this->has_plt_offset())
511 return true;
512
513 // A reference to a symbol defined in a dynamic object or to a
514 // symbol that is preemptible can not use a RELATIVE relocaiton.
515 if (this->is_from_dynobj() || this->is_preemptible())
516 return false;
517
518 // For all other cases, return TRUE.
519 return true;
520 }
521
522 // Return whether there should be a warning for references to this
523 // symbol.
524 bool
525 has_warning() const
526 { return this->has_warning_; }
527
528 // Mark this symbol as having a warning.
529 void
530 set_has_warning()
531 { this->has_warning_ = true; }
532
533 // Return whether this symbol is defined by a COPY reloc from a
534 // dynamic object.
535 bool
536 is_copied_from_dynobj() const
537 { return this->is_copied_from_dynobj_; }
538
539 // Mark this symbol as defined by a COPY reloc.
540 void
541 set_is_copied_from_dynobj()
542 { this->is_copied_from_dynobj_ = true; }
543
544 // Mark this symbol as needing its value written to the GOT even when
545 // the value is subject to dynamic relocation (e.g., when the target
546 // uses a RELATIVE relocation for the GOT entry).
547 void
548 set_needs_value_in_got()
549 { this->needs_value_in_got_ = true; }
550
551 // Return whether this symbol needs its value written to the GOT even
552 // when the value is subject to dynamic relocation.
553 bool
554 needs_value_in_got() const
555 { return this->needs_value_in_got_; }
556
557 protected:
558 // Instances of this class should always be created at a specific
559 // size.
560 Symbol()
561 { memset(this, 0, sizeof *this); }
562
563 // Initialize the general fields.
564 void
565 init_fields(const char* name, const char* version,
566 elfcpp::STT type, elfcpp::STB binding,
567 elfcpp::STV visibility, unsigned char nonvis);
568
569 // Initialize fields from an ELF symbol in OBJECT.
570 template<int size, bool big_endian>
571 void
572 init_base(const char *name, const char* version, Object* object,
573 const elfcpp::Sym<size, big_endian>&);
574
575 // Initialize fields for an Output_data.
576 void
577 init_base(const char* name, Output_data*, elfcpp::STT, elfcpp::STB,
578 elfcpp::STV, unsigned char nonvis, bool offset_is_from_end);
579
580 // Initialize fields for an Output_segment.
581 void
582 init_base(const char* name, Output_segment* os, elfcpp::STT type,
583 elfcpp::STB binding, elfcpp::STV visibility,
584 unsigned char nonvis, Segment_offset_base offset_base);
585
586 // Initialize fields for a constant.
587 void
588 init_base(const char* name, elfcpp::STT type, elfcpp::STB binding,
589 elfcpp::STV visibility, unsigned char nonvis);
590
591 // Override existing symbol.
592 template<int size, bool big_endian>
593 void
594 override_base(const elfcpp::Sym<size, big_endian>&, Object* object,
595 const char* version);
596
597 // Override existing symbol with a special symbol.
598 void
599 override_base_with_special(const Symbol* from);
600
601 private:
602 Symbol(const Symbol&);
603 Symbol& operator=(const Symbol&);
604
605 // Symbol name (expected to point into a Stringpool).
606 const char* name_;
607 // Symbol version (expected to point into a Stringpool). This may
608 // be NULL.
609 const char* version_;
610
611 union
612 {
613 // This struct is used if SOURCE_ == FROM_OBJECT.
614 struct
615 {
616 // Object in which symbol is defined, or in which it was first
617 // seen.
618 Object* object;
619 // Section number in object_ in which symbol is defined.
620 unsigned int shndx;
621 } from_object;
622
623 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
624 struct
625 {
626 // Output_data in which symbol is defined. Before
627 // Layout::finalize the symbol's value is an offset within the
628 // Output_data.
629 Output_data* output_data;
630 // True if the offset is from the end, false if the offset is
631 // from the beginning.
632 bool offset_is_from_end;
633 } in_output_data;
634
635 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
636 struct
637 {
638 // Output_segment in which the symbol is defined. Before
639 // Layout::finalize the symbol's value is an offset.
640 Output_segment* output_segment;
641 // The base to use for the offset before Layout::finalize.
642 Segment_offset_base offset_base;
643 } in_output_segment;
644 } u_;
645
646 // The index of this symbol in the output file. If the symbol is
647 // not going into the output file, this value is -1U. This field
648 // starts as always holding zero. It is set to a non-zero value by
649 // Symbol_table::finalize.
650 unsigned int symtab_index_;
651
652 // The index of this symbol in the dynamic symbol table. If the
653 // symbol is not going into the dynamic symbol table, this value is
654 // -1U. This field starts as always holding zero. It is set to a
655 // non-zero value during Layout::finalize.
656 unsigned int dynsym_index_;
657
658 // If this symbol has an entry in the GOT section (has_got_offset_
659 // is true), this is the offset from the start of the GOT section.
660 // For a TLS symbol, if has_tls_tpoff_got_offset_ is true, this
661 // serves as the GOT offset for the GOT entry that holds its
662 // TP-relative offset.
663 unsigned int got_offset_;
664
665 // If this is a TLS symbol and has an entry in the GOT section
666 // for a module index or a pair of entries (module index,
667 // dtv-relative offset), these are the offsets from the start
668 // of the GOT section.
669 unsigned int tls_mod_got_offset_;
670 unsigned int tls_pair_got_offset_;
671
672 // If this symbol has an entry in the PLT section (has_plt_offset_
673 // is true), then this is the offset from the start of the PLT
674 // section.
675 unsigned int plt_offset_;
676
677 // Symbol type.
678 elfcpp::STT type_ : 4;
679 // Symbol binding.
680 elfcpp::STB binding_ : 4;
681 // Symbol visibility.
682 elfcpp::STV visibility_ : 2;
683 // Rest of symbol st_other field.
684 unsigned int nonvis_ : 6;
685 // The type of symbol.
686 Source source_ : 3;
687 // True if this symbol always requires special target-specific
688 // handling.
689 bool is_target_special_ : 1;
690 // True if this is the default version of the symbol.
691 bool is_def_ : 1;
692 // True if this symbol really forwards to another symbol. This is
693 // used when we discover after the fact that two different entries
694 // in the hash table really refer to the same symbol. This will
695 // never be set for a symbol found in the hash table, but may be set
696 // for a symbol found in the list of symbols attached to an Object.
697 // It forwards to the symbol found in the forwarders_ map of
698 // Symbol_table.
699 bool is_forwarder_ : 1;
700 // True if the symbol has an alias in the weak_aliases table in
701 // Symbol_table.
702 bool has_alias_ : 1;
703 // True if this symbol needs to be in the dynamic symbol table.
704 bool needs_dynsym_entry_ : 1;
705 // True if we've seen this symbol in a regular object.
706 bool in_reg_ : 1;
707 // True if we've seen this symbol in a dynamic object.
708 bool in_dyn_ : 1;
709 // True if the symbol has an entry in the GOT section.
710 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
711 bool has_got_offset_ : 1;
712 // True if the symbol has an entry in the GOT section for its
713 // module index.
714 bool has_tls_mod_got_offset_ : 1;
715 // True if the symbol has a pair of entries in the GOT section for its
716 // module index and dtv-relative offset.
717 bool has_tls_pair_got_offset_ : 1;
718 // True if the symbol has an entry in the PLT section.
719 bool has_plt_offset_ : 1;
720 // True if this is a dynamic symbol which needs a special value in
721 // the dynamic symbol table.
722 bool needs_dynsym_value_ : 1;
723 // True if there is a warning for this symbol.
724 bool has_warning_ : 1;
725 // True if we are using a COPY reloc for this symbol, so that the
726 // real definition lives in a dynamic object.
727 bool is_copied_from_dynobj_ : 1;
728 // True if the static value should be written to the GOT even
729 // when the final value is subject to dynamic relocation.
730 bool needs_value_in_got_ : 1;
731 };
732
733 // The parts of a symbol which are size specific. Using a template
734 // derived class like this helps us use less space on a 32-bit system.
735
736 template<int size>
737 class Sized_symbol : public Symbol
738 {
739 public:
740 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
741 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
742
743 Sized_symbol()
744 { }
745
746 // Initialize fields from an ELF symbol in OBJECT.
747 template<bool big_endian>
748 void
749 init(const char *name, const char* version, Object* object,
750 const elfcpp::Sym<size, big_endian>&);
751
752 // Initialize fields for an Output_data.
753 void
754 init(const char* name, Output_data*, Value_type value, Size_type symsize,
755 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis,
756 bool offset_is_from_end);
757
758 // Initialize fields for an Output_segment.
759 void
760 init(const char* name, Output_segment*, Value_type value, Size_type symsize,
761 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis,
762 Segment_offset_base offset_base);
763
764 // Initialize fields for a constant.
765 void
766 init(const char* name, Value_type value, Size_type symsize,
767 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis);
768
769 // Override existing symbol.
770 template<bool big_endian>
771 void
772 override(const elfcpp::Sym<size, big_endian>&, Object* object,
773 const char* version);
774
775 // Override existing symbol with a special symbol.
776 void
777 override_with_special(const Sized_symbol<size>*);
778
779 // Return the symbol's value.
780 Value_type
781 value() const
782 { return this->value_; }
783
784 // Return the symbol's size (we can't call this 'size' because that
785 // is a template parameter).
786 Size_type
787 symsize() const
788 { return this->symsize_; }
789
790 // Set the symbol size. This is used when resolving common symbols.
791 void
792 set_symsize(Size_type symsize)
793 { this->symsize_ = symsize; }
794
795 // Set the symbol value. This is called when we store the final
796 // values of the symbols into the symbol table.
797 void
798 set_value(Value_type value)
799 { this->value_ = value; }
800
801 private:
802 Sized_symbol(const Sized_symbol&);
803 Sized_symbol& operator=(const Sized_symbol&);
804
805 // Symbol value. Before Layout::finalize this is the offset in the
806 // input section. This is set to the final value during
807 // Layout::finalize.
808 Value_type value_;
809 // Symbol size.
810 Size_type symsize_;
811 };
812
813 // A struct describing a symbol defined by the linker, where the value
814 // of the symbol is defined based on an output section. This is used
815 // for symbols defined by the linker, like "_init_array_start".
816
817 struct Define_symbol_in_section
818 {
819 // The symbol name.
820 const char* name;
821 // The name of the output section with which this symbol should be
822 // associated. If there is no output section with that name, the
823 // symbol will be defined as zero.
824 const char* output_section;
825 // The offset of the symbol within the output section. This is an
826 // offset from the start of the output section, unless start_at_end
827 // is true, in which case this is an offset from the end of the
828 // output section.
829 uint64_t value;
830 // The size of the symbol.
831 uint64_t size;
832 // The symbol type.
833 elfcpp::STT type;
834 // The symbol binding.
835 elfcpp::STB binding;
836 // The symbol visibility.
837 elfcpp::STV visibility;
838 // The rest of the st_other field.
839 unsigned char nonvis;
840 // If true, the value field is an offset from the end of the output
841 // section.
842 bool offset_is_from_end;
843 // If true, this symbol is defined only if we see a reference to it.
844 bool only_if_ref;
845 };
846
847 // A struct describing a symbol defined by the linker, where the value
848 // of the symbol is defined based on a segment. This is used for
849 // symbols defined by the linker, like "_end". We describe the
850 // segment with which the symbol should be associated by its
851 // characteristics. If no segment meets these characteristics, the
852 // symbol will be defined as zero. If there is more than one segment
853 // which meets these characteristics, we will use the first one.
854
855 struct Define_symbol_in_segment
856 {
857 // The symbol name.
858 const char* name;
859 // The segment type where the symbol should be defined, typically
860 // PT_LOAD.
861 elfcpp::PT segment_type;
862 // Bitmask of segment flags which must be set.
863 elfcpp::PF segment_flags_set;
864 // Bitmask of segment flags which must be clear.
865 elfcpp::PF segment_flags_clear;
866 // The offset of the symbol within the segment. The offset is
867 // calculated from the position set by offset_base.
868 uint64_t value;
869 // The size of the symbol.
870 uint64_t size;
871 // The symbol type.
872 elfcpp::STT type;
873 // The symbol binding.
874 elfcpp::STB binding;
875 // The symbol visibility.
876 elfcpp::STV visibility;
877 // The rest of the st_other field.
878 unsigned char nonvis;
879 // The base from which we compute the offset.
880 Symbol::Segment_offset_base offset_base;
881 // If true, this symbol is defined only if we see a reference to it.
882 bool only_if_ref;
883 };
884
885 // This class manages warnings. Warnings are a GNU extension. When
886 // we see a section named .gnu.warning.SYM in an object file, and if
887 // we wind using the definition of SYM from that object file, then we
888 // will issue a warning for any relocation against SYM from a
889 // different object file. The text of the warning is the contents of
890 // the section. This is not precisely the definition used by the old
891 // GNU linker; the old GNU linker treated an occurrence of
892 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
893 // would trigger a warning on any reference. However, it was
894 // inconsistent in that a warning in a dynamic object only triggered
895 // if there was no definition in a regular object. This linker is
896 // different in that we only issue a warning if we use the symbol
897 // definition from the same object file as the warning section.
898
899 class Warnings
900 {
901 public:
902 Warnings()
903 : warnings_()
904 { }
905
906 // Add a warning for symbol NAME in section SHNDX in object OBJ.
907 void
908 add_warning(Symbol_table* symtab, const char* name, Object* obj,
909 unsigned int shndx);
910
911 // For each symbol for which we should give a warning, make a note
912 // on the symbol.
913 void
914 note_warnings(Symbol_table* symtab);
915
916 // Issue a warning for a reference to SYM at RELINFO's location.
917 template<int size, bool big_endian>
918 void
919 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
920 size_t relnum, off_t reloffset) const;
921
922 private:
923 Warnings(const Warnings&);
924 Warnings& operator=(const Warnings&);
925
926 // What we need to know to get the warning text.
927 struct Warning_location
928 {
929 // The object the warning is in.
930 Object* object;
931 // The index of the warning section.
932 unsigned int shndx;
933 // The warning text if we have already loaded it.
934 std::string text;
935
936 Warning_location()
937 : object(NULL), shndx(0), text()
938 { }
939
940 void
941 set(Object* o, unsigned int s)
942 {
943 this->object = o;
944 this->shndx = s;
945 }
946
947 void
948 set_text(const char* t, off_t l)
949 { this->text.assign(t, l); }
950 };
951
952 // A mapping from warning symbol names (canonicalized in
953 // Symbol_table's namepool_ field) to warning information.
954 typedef Unordered_map<const char*, Warning_location> Warning_table;
955
956 Warning_table warnings_;
957 };
958
959 // The main linker symbol table.
960
961 class Symbol_table
962 {
963 public:
964 Symbol_table();
965
966 ~Symbol_table();
967
968 // Add COUNT external symbols from the relocatable object RELOBJ to
969 // the symbol table. SYMS is the symbols, SYM_NAMES is their names,
970 // SYM_NAME_SIZE is the size of SYM_NAMES. This sets SYMPOINTERS to
971 // point to the symbols in the symbol table.
972 template<int size, bool big_endian>
973 void
974 add_from_relobj(Sized_relobj<size, big_endian>* relobj,
975 const unsigned char* syms, size_t count,
976 const char* sym_names, size_t sym_name_size,
977 typename Sized_relobj<size, big_endian>::Symbols*);
978
979 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
980 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
981 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
982 // symbol version data.
983 template<int size, bool big_endian>
984 void
985 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
986 const unsigned char* syms, size_t count,
987 const char* sym_names, size_t sym_name_size,
988 const unsigned char* versym, size_t versym_size,
989 const std::vector<const char*>*);
990
991 // Define a special symbol based on an Output_data. It is a
992 // multiple definition error if this symbol is already defined.
993 Symbol*
994 define_in_output_data(const Target*, const char* name, const char* version,
995 Output_data*, uint64_t value, uint64_t symsize,
996 elfcpp::STT type, elfcpp::STB binding,
997 elfcpp::STV visibility, unsigned char nonvis,
998 bool offset_is_from_end, bool only_if_ref);
999
1000 // Define a special symbol based on an Output_segment. It is a
1001 // multiple definition error if this symbol is already defined.
1002 Symbol*
1003 define_in_output_segment(const Target*, const char* name,
1004 const char* version, Output_segment*,
1005 uint64_t value, uint64_t symsize,
1006 elfcpp::STT type, elfcpp::STB binding,
1007 elfcpp::STV visibility, unsigned char nonvis,
1008 Symbol::Segment_offset_base, bool only_if_ref);
1009
1010 // Define a special symbol with a constant value. It is a multiple
1011 // definition error if this symbol is already defined.
1012 Symbol*
1013 define_as_constant(const Target*, const char* name, const char* version,
1014 uint64_t value, uint64_t symsize, elfcpp::STT type,
1015 elfcpp::STB binding, elfcpp::STV visibility,
1016 unsigned char nonvis, bool only_if_ref);
1017
1018 // Define a set of symbols in output sections.
1019 void
1020 define_symbols(const Layout*, const Target*, int count,
1021 const Define_symbol_in_section*);
1022
1023 // Define a set of symbols in output segments.
1024 void
1025 define_symbols(const Layout*, const Target*, int count,
1026 const Define_symbol_in_segment*);
1027
1028 // Define SYM using a COPY reloc. POSD is the Output_data where the
1029 // symbol should be defined--typically a .dyn.bss section. VALUE is
1030 // the offset within POSD.
1031 template<int size>
1032 void
1033 define_with_copy_reloc(const Target*, Sized_symbol<size>* sym,
1034 Output_data* posd, uint64_t value);
1035
1036 // Look up a symbol.
1037 Symbol*
1038 lookup(const char*, const char* version = NULL) const;
1039
1040 // Return the real symbol associated with the forwarder symbol FROM.
1041 Symbol*
1042 resolve_forwards(const Symbol* from) const;
1043
1044 // Return the sized version of a symbol in this table.
1045 template<int size>
1046 Sized_symbol<size>*
1047 get_sized_symbol(Symbol* ACCEPT_SIZE) const;
1048
1049 template<int size>
1050 const Sized_symbol<size>*
1051 get_sized_symbol(const Symbol* ACCEPT_SIZE) const;
1052
1053 // Return the count of undefined symbols seen.
1054 int
1055 saw_undefined() const
1056 { return this->saw_undefined_; }
1057
1058 // Allocate the common symbols
1059 void
1060 allocate_commons(const General_options&, Layout*);
1061
1062 // Add a warning for symbol NAME in section SHNDX in object OBJ.
1063 void
1064 add_warning(const char* name, Object* obj, unsigned int shndx)
1065 { this->warnings_.add_warning(this, name, obj, shndx); }
1066
1067 // Canonicalize a symbol name for use in the hash table.
1068 const char*
1069 canonicalize_name(const char* name)
1070 { return this->namepool_.add(name, true, NULL); }
1071
1072 // Possibly issue a warning for a reference to SYM at LOCATION which
1073 // is in OBJ.
1074 template<int size, bool big_endian>
1075 void
1076 issue_warning(const Symbol* sym,
1077 const Relocate_info<size, big_endian>* relinfo,
1078 size_t relnum, off_t reloffset) const
1079 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1080
1081 // Check candidate_odr_violations_ to find symbols with the same name
1082 // but apparently different definitions (different source-file/line-no).
1083 void
1084 detect_odr_violations(const char* output_file_name) const;
1085
1086 // SYM is defined using a COPY reloc. Return the dynamic object
1087 // where the original definition was found.
1088 Dynobj*
1089 get_copy_source(const Symbol* sym) const;
1090
1091 // Set the dynamic symbol indexes. INDEX is the index of the first
1092 // global dynamic symbol. Pointers to the symbols are stored into
1093 // the vector. The names are stored into the Stringpool. This
1094 // returns an updated dynamic symbol index.
1095 unsigned int
1096 set_dynsym_indexes(const Target*, unsigned int index,
1097 std::vector<Symbol*>*, Stringpool*, Versions*);
1098
1099 // Finalize the symbol table after we have set the final addresses
1100 // of all the input sections. This sets the final symbol indexes,
1101 // values and adds the names to *POOL. INDEX is the index of the
1102 // first global symbol. OFF is the file offset of the global symbol
1103 // table, DYNOFF is the offset of the globals in the dynamic symbol
1104 // table, DYN_GLOBAL_INDEX is the index of the first global dynamic
1105 // symbol, and DYNCOUNT is the number of global dynamic symbols.
1106 // This records the parameters, and returns the new file offset.
1107 off_t
1108 finalize(unsigned int index, off_t off, off_t dynoff,
1109 size_t dyn_global_index, size_t dyncount, Stringpool* pool);
1110
1111 // Write out the global symbols.
1112 void
1113 write_globals(const Input_objects*, const Stringpool*, const Stringpool*,
1114 Output_file*) const;
1115
1116 // Write out a section symbol. Return the updated offset.
1117 void
1118 write_section_symbol(const Output_section*, Output_file*, off_t) const;
1119
1120 private:
1121 Symbol_table(const Symbol_table&);
1122 Symbol_table& operator=(const Symbol_table&);
1123
1124 // Make FROM a forwarder symbol to TO.
1125 void
1126 make_forwarder(Symbol* from, Symbol* to);
1127
1128 // Add a symbol.
1129 template<int size, bool big_endian>
1130 Sized_symbol<size>*
1131 add_from_object(Object*, const char *name, Stringpool::Key name_key,
1132 const char *version, Stringpool::Key version_key,
1133 bool def, const elfcpp::Sym<size, big_endian>& sym,
1134 const elfcpp::Sym<size, big_endian>& orig_sym);
1135
1136 // Resolve symbols.
1137 template<int size, bool big_endian>
1138 void
1139 resolve(Sized_symbol<size>* to,
1140 const elfcpp::Sym<size, big_endian>& sym,
1141 const elfcpp::Sym<size, big_endian>& orig_sym,
1142 Object*, const char* version);
1143
1144 template<int size, bool big_endian>
1145 void
1146 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
1147 const char* version ACCEPT_SIZE_ENDIAN);
1148
1149 // Whether we should override a symbol, based on flags in
1150 // resolve.cc.
1151 static bool
1152 should_override(const Symbol*, unsigned int, Object*, bool*);
1153
1154 // Override a symbol.
1155 template<int size, bool big_endian>
1156 void
1157 override(Sized_symbol<size>* tosym,
1158 const elfcpp::Sym<size, big_endian>& fromsym,
1159 Object* object, const char* version);
1160
1161 // Whether we should override a symbol with a special symbol which
1162 // is automatically defined by the linker.
1163 static bool
1164 should_override_with_special(const Symbol*);
1165
1166 // Override a symbol with a special symbol.
1167 template<int size>
1168 void
1169 override_with_special(Sized_symbol<size>* tosym,
1170 const Sized_symbol<size>* fromsym);
1171
1172 // Record all weak alias sets for a dynamic object.
1173 template<int size>
1174 void
1175 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1176
1177 // Define a special symbol.
1178 template<int size, bool big_endian>
1179 Sized_symbol<size>*
1180 define_special_symbol(const Target* target, const char** pname,
1181 const char** pversion, bool only_if_ref,
1182 Sized_symbol<size>** poldsym ACCEPT_SIZE_ENDIAN);
1183
1184 // Define a symbol in an Output_data, sized version.
1185 template<int size>
1186 Sized_symbol<size>*
1187 do_define_in_output_data(const Target*, const char* name,
1188 const char* version, Output_data*,
1189 typename elfcpp::Elf_types<size>::Elf_Addr value,
1190 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1191 elfcpp::STT type, elfcpp::STB binding,
1192 elfcpp::STV visibility, unsigned char nonvis,
1193 bool offset_is_from_end, bool only_if_ref);
1194
1195 // Define a symbol in an Output_segment, sized version.
1196 template<int size>
1197 Sized_symbol<size>*
1198 do_define_in_output_segment(
1199 const Target*, const char* name, const char* version, Output_segment* os,
1200 typename elfcpp::Elf_types<size>::Elf_Addr value,
1201 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1202 elfcpp::STT type, elfcpp::STB binding,
1203 elfcpp::STV visibility, unsigned char nonvis,
1204 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1205
1206 // Define a symbol as a constant, sized version.
1207 template<int size>
1208 Sized_symbol<size>*
1209 do_define_as_constant(
1210 const Target*, const char* name, const char* version,
1211 typename elfcpp::Elf_types<size>::Elf_Addr value,
1212 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1213 elfcpp::STT type, elfcpp::STB binding,
1214 elfcpp::STV visibility, unsigned char nonvis,
1215 bool only_if_ref);
1216
1217 // Allocate the common symbols, sized version.
1218 template<int size>
1219 void
1220 do_allocate_commons(const General_options&, Layout*);
1221
1222 // Implement detect_odr_violations.
1223 template<int size, bool big_endian>
1224 void
1225 sized_detect_odr_violations() const;
1226
1227 // Finalize symbols specialized for size.
1228 template<int size>
1229 off_t
1230 sized_finalize(unsigned int, off_t, Stringpool*);
1231
1232 // Write globals specialized for size and endianness.
1233 template<int size, bool big_endian>
1234 void
1235 sized_write_globals(const Input_objects*, const Stringpool*,
1236 const Stringpool*, Output_file*) const;
1237
1238 // Write out a symbol to P.
1239 template<int size, bool big_endian>
1240 void
1241 sized_write_symbol(Sized_symbol<size>*,
1242 typename elfcpp::Elf_types<size>::Elf_Addr value,
1243 unsigned int shndx,
1244 const Stringpool*, unsigned char* p
1245 ACCEPT_SIZE_ENDIAN) const;
1246
1247 // Possibly warn about an undefined symbol from a dynamic object.
1248 void
1249 warn_about_undefined_dynobj_symbol(const Input_objects*, Symbol*) const;
1250
1251 // Write out a section symbol, specialized for size and endianness.
1252 template<int size, bool big_endian>
1253 void
1254 sized_write_section_symbol(const Output_section*, Output_file*, off_t) const;
1255
1256 // The type of the symbol hash table.
1257
1258 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1259
1260 struct Symbol_table_hash
1261 {
1262 size_t
1263 operator()(const Symbol_table_key&) const;
1264 };
1265
1266 struct Symbol_table_eq
1267 {
1268 bool
1269 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1270 };
1271
1272 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1273 Symbol_table_eq> Symbol_table_type;
1274
1275 // The type of the list of common symbols.
1276 typedef std::vector<Symbol*> Commons_type;
1277
1278 // A map from symbols with COPY relocs to the dynamic objects where
1279 // they are defined.
1280 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1281
1282 // A map from symbol name (as a pointer into the namepool) to all
1283 // the locations the symbols is (weakly) defined (and certain other
1284 // conditions are met). This map will be used later to detect
1285 // possible One Definition Rule (ODR) violations.
1286 struct Symbol_location
1287 {
1288 Object* object; // Object where the symbol is defined.
1289 unsigned int shndx; // Section-in-object where the symbol is defined.
1290 off_t offset; // Offset-in-section where the symbol is defined.
1291 bool operator==(const Symbol_location& that) const
1292 {
1293 return (this->object == that.object
1294 && this->shndx == that.shndx
1295 && this->offset == that.offset);
1296 }
1297 };
1298
1299 struct Symbol_location_hash
1300 {
1301 size_t operator()(const Symbol_location& loc) const
1302 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1303 };
1304
1305 typedef Unordered_map<const char*,
1306 Unordered_set<Symbol_location, Symbol_location_hash> >
1307 Odr_map;
1308
1309 // We increment this every time we see a new undefined symbol, for
1310 // use in archive groups.
1311 int saw_undefined_;
1312 // The index of the first global symbol in the output file.
1313 unsigned int first_global_index_;
1314 // The file offset within the output symtab section where we should
1315 // write the table.
1316 off_t offset_;
1317 // The number of global symbols we want to write out.
1318 size_t output_count_;
1319 // The file offset of the global dynamic symbols, or 0 if none.
1320 off_t dynamic_offset_;
1321 // The index of the first global dynamic symbol.
1322 unsigned int first_dynamic_global_index_;
1323 // The number of global dynamic symbols, or 0 if none.
1324 off_t dynamic_count_;
1325 // The symbol hash table.
1326 Symbol_table_type table_;
1327 // A pool of symbol names. This is used for all global symbols.
1328 // Entries in the hash table point into this pool.
1329 Stringpool namepool_;
1330 // Forwarding symbols.
1331 Unordered_map<const Symbol*, Symbol*> forwarders_;
1332 // Weak aliases. A symbol in this list points to the next alias.
1333 // The aliases point to each other in a circular list.
1334 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1335 // We don't expect there to be very many common symbols, so we keep
1336 // a list of them. When we find a common symbol we add it to this
1337 // list. It is possible that by the time we process the list the
1338 // symbol is no longer a common symbol. It may also have become a
1339 // forwarder.
1340 Commons_type commons_;
1341 // Manage symbol warnings.
1342 Warnings warnings_;
1343 // Manage potential One Definition Rule (ODR) violations.
1344 Odr_map candidate_odr_violations_;
1345
1346 // When we emit a COPY reloc for a symbol, we define it in an
1347 // Output_data. When it's time to emit version information for it,
1348 // we need to know the dynamic object in which we found the original
1349 // definition. This maps symbols with COPY relocs to the dynamic
1350 // object where they were defined.
1351 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1352 };
1353
1354 // We inline get_sized_symbol for efficiency.
1355
1356 template<int size>
1357 Sized_symbol<size>*
1358 Symbol_table::get_sized_symbol(Symbol* sym ACCEPT_SIZE) const
1359 {
1360 gold_assert(size == parameters->get_size());
1361 return static_cast<Sized_symbol<size>*>(sym);
1362 }
1363
1364 template<int size>
1365 const Sized_symbol<size>*
1366 Symbol_table::get_sized_symbol(const Symbol* sym ACCEPT_SIZE) const
1367 {
1368 gold_assert(size == parameters->get_size());
1369 return static_cast<const Sized_symbol<size>*>(sym);
1370 }
1371
1372 } // End namespace gold.
1373
1374 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.057162 seconds and 5 git commands to generate.