Use special value when we refer a function symbol in some way other
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #include <string>
27 #include <utility>
28 #include <vector>
29
30 #include "elfcpp.h"
31 #include "parameters.h"
32 #include "stringpool.h"
33 #include "object.h"
34
35 #ifndef GOLD_SYMTAB_H
36 #define GOLD_SYMTAB_H
37
38 namespace gold
39 {
40
41 class Object;
42 class Relobj;
43 template<int size, bool big_endian>
44 class Sized_relobj;
45 class Dynobj;
46 template<int size, bool big_endian>
47 class Sized_dynobj;
48 class Versions;
49 class Output_data;
50 class Output_section;
51 class Output_segment;
52 class Output_file;
53 class Target;
54
55 // The base class of an entry in the symbol table. The symbol table
56 // can have a lot of entries, so we don't want this class to big.
57 // Size dependent fields can be found in the template class
58 // Sized_symbol. Targets may support their own derived classes.
59
60 class Symbol
61 {
62 public:
63 // Because we want the class to be small, we don't use any virtual
64 // functions. But because symbols can be defined in different
65 // places, we need to classify them. This enum is the different
66 // sources of symbols we support.
67 enum Source
68 {
69 // Symbol defined in a relocatable or dynamic input file--this is
70 // the most common case.
71 FROM_OBJECT,
72 // Symbol defined in an Output_data, a special section created by
73 // the target.
74 IN_OUTPUT_DATA,
75 // Symbol defined in an Output_segment, with no associated
76 // section.
77 IN_OUTPUT_SEGMENT,
78 // Symbol value is constant.
79 CONSTANT
80 };
81
82 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
83 // the offset means.
84 enum Segment_offset_base
85 {
86 // From the start of the segment.
87 SEGMENT_START,
88 // From the end of the segment.
89 SEGMENT_END,
90 // From the filesz of the segment--i.e., after the loaded bytes
91 // but before the bytes which are allocated but zeroed.
92 SEGMENT_BSS
93 };
94
95 // Return the symbol name.
96 const char*
97 name() const
98 { return this->name_; }
99
100 // Return the symbol version. This will return NULL for an
101 // unversioned symbol.
102 const char*
103 version() const
104 { return this->version_; }
105
106 // Return the symbol source.
107 Source
108 source() const
109 { return this->source_; }
110
111 // Return the object with which this symbol is associated.
112 Object*
113 object() const
114 {
115 gold_assert(this->source_ == FROM_OBJECT);
116 return this->u_.from_object.object;
117 }
118
119 // Return the index of the section in the input relocatable or
120 // dynamic object file.
121 unsigned int
122 shndx() const
123 {
124 gold_assert(this->source_ == FROM_OBJECT);
125 return this->u_.from_object.shndx;
126 }
127
128 // Return the output data section with which this symbol is
129 // associated, if the symbol was specially defined with respect to
130 // an output data section.
131 Output_data*
132 output_data() const
133 {
134 gold_assert(this->source_ == IN_OUTPUT_DATA);
135 return this->u_.in_output_data.output_data;
136 }
137
138 // If this symbol was defined with respect to an output data
139 // section, return whether the value is an offset from end.
140 bool
141 offset_is_from_end() const
142 {
143 gold_assert(this->source_ == IN_OUTPUT_DATA);
144 return this->u_.in_output_data.offset_is_from_end;
145 }
146
147 // Return the output segment with which this symbol is associated,
148 // if the symbol was specially defined with respect to an output
149 // segment.
150 Output_segment*
151 output_segment() const
152 {
153 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
154 return this->u_.in_output_segment.output_segment;
155 }
156
157 // If this symbol was defined with respect to an output segment,
158 // return the offset base.
159 Segment_offset_base
160 offset_base() const
161 {
162 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
163 return this->u_.in_output_segment.offset_base;
164 }
165
166 // Return the symbol binding.
167 elfcpp::STB
168 binding() const
169 { return this->binding_; }
170
171 // Return the symbol type.
172 elfcpp::STT
173 type() const
174 { return this->type_; }
175
176 // Return the symbol visibility.
177 elfcpp::STV
178 visibility() const
179 { return this->visibility_; }
180
181 // Return the non-visibility part of the st_other field.
182 unsigned char
183 nonvis() const
184 { return this->nonvis_; }
185
186 // Return whether this symbol is a forwarder. This will never be
187 // true of a symbol found in the hash table, but may be true of
188 // symbol pointers attached to object files.
189 bool
190 is_forwarder() const
191 { return this->is_forwarder_; }
192
193 // Mark this symbol as a forwarder.
194 void
195 set_forwarder()
196 { this->is_forwarder_ = true; }
197
198 // Return whether this symbol needs an entry in the dynamic symbol
199 // table.
200 bool
201 needs_dynsym_entry() const
202 {
203 return (this->needs_dynsym_entry_
204 || (this->in_reg() && this->in_dyn()));
205 }
206
207 // Mark this symbol as needing an entry in the dynamic symbol table.
208 void
209 set_needs_dynsym_entry()
210 { this->needs_dynsym_entry_ = true; }
211
212 // Return whether this symbol has been seen in a regular object.
213 bool
214 in_reg() const
215 { return this->in_reg_; }
216
217 // Mark this symbol as having been seen in a regular object.
218 void
219 set_in_reg()
220 { this->in_reg_ = true; }
221
222 // Return whether this symbol has been seen in a dynamic object.
223 bool
224 in_dyn() const
225 { return this->in_dyn_; }
226
227 // Mark this symbol as having been seen in a dynamic object.
228 void
229 set_in_dyn()
230 { this->in_dyn_ = true; }
231
232 // Return the index of this symbol in the output file symbol table.
233 // A value of -1U means that this symbol is not going into the
234 // output file. This starts out as zero, and is set to a non-zero
235 // value by Symbol_table::finalize. It is an error to ask for the
236 // symbol table index before it has been set.
237 unsigned int
238 symtab_index() const
239 {
240 gold_assert(this->symtab_index_ != 0);
241 return this->symtab_index_;
242 }
243
244 // Set the index of the symbol in the output file symbol table.
245 void
246 set_symtab_index(unsigned int index)
247 {
248 gold_assert(index != 0);
249 this->symtab_index_ = index;
250 }
251
252 // Return whether this symbol already has an index in the output
253 // file symbol table.
254 bool
255 has_symtab_index() const
256 { return this->symtab_index_ != 0; }
257
258 // Return the index of this symbol in the dynamic symbol table. A
259 // value of -1U means that this symbol is not going into the dynamic
260 // symbol table. This starts out as zero, and is set to a non-zero
261 // during Layout::finalize. It is an error to ask for the dynamic
262 // symbol table index before it has been set.
263 unsigned int
264 dynsym_index() const
265 {
266 gold_assert(this->dynsym_index_ != 0);
267 return this->dynsym_index_;
268 }
269
270 // Set the index of the symbol in the dynamic symbol table.
271 void
272 set_dynsym_index(unsigned int index)
273 {
274 gold_assert(index != 0);
275 this->dynsym_index_ = index;
276 }
277
278 // Return whether this symbol already has an index in the dynamic
279 // symbol table.
280 bool
281 has_dynsym_index() const
282 { return this->dynsym_index_ != 0; }
283
284 // Return whether this symbol has an entry in the GOT section.
285 bool
286 has_got_offset() const
287 { return this->has_got_offset_; }
288
289 // Return the offset into the GOT section of this symbol.
290 unsigned int
291 got_offset() const
292 {
293 gold_assert(this->has_got_offset());
294 return this->got_offset_;
295 }
296
297 // Set the GOT offset of this symbol.
298 void
299 set_got_offset(unsigned int got_offset)
300 {
301 this->has_got_offset_ = true;
302 this->got_offset_ = got_offset;
303 }
304
305 // Return whether this symbol has an entry in the PLT section.
306 bool
307 has_plt_offset() const
308 { return this->has_plt_offset_; }
309
310 // Return the offset into the PLT section of this symbol.
311 unsigned int
312 plt_offset() const
313 {
314 gold_assert(this->has_plt_offset());
315 return this->plt_offset_;
316 }
317
318 // Set the PLT offset of this symbol.
319 void
320 set_plt_offset(unsigned int plt_offset)
321 {
322 this->has_plt_offset_ = true;
323 this->plt_offset_ = plt_offset;
324 }
325
326 // Return whether this dynamic symbol needs a special value in the
327 // dynamic symbol table.
328 bool
329 needs_dynsym_value() const
330 { return this->needs_dynsym_value_; }
331
332 // Set that this dynamic symbol needs a special value in the dynamic
333 // symbol table.
334 void
335 set_needs_dynsym_value()
336 {
337 gold_assert(this->object()->is_dynamic());
338 this->needs_dynsym_value_ = true;
339 }
340
341 // Return true if the final value of this symbol is known at link
342 // time.
343 bool
344 final_value_is_known() const
345 {
346 if (parameters->output_is_shared())
347 return false;
348 return this->source_ != FROM_OBJECT || !this->object()->is_dynamic();
349 }
350
351 // Return whether this is a defined symbol (not undefined or
352 // common).
353 bool
354 is_defined() const
355 {
356 return (this->source_ != FROM_OBJECT
357 || (this->shndx() != elfcpp::SHN_UNDEF
358 && this->shndx() != elfcpp::SHN_COMMON));
359 }
360
361 // Return true if this symbol is from a dynamic object.
362 bool
363 is_from_dynobj() const
364 {
365 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
366 }
367
368 // Return whether this is an undefined symbol.
369 bool
370 is_undefined() const
371 {
372 return this->source_ == FROM_OBJECT && this->shndx() == elfcpp::SHN_UNDEF;
373 }
374
375 // Return whether this is a common symbol.
376 bool
377 is_common() const
378 {
379 return (this->source_ == FROM_OBJECT
380 && (this->shndx() == elfcpp::SHN_COMMON
381 || this->type_ == elfcpp::STT_COMMON));
382 }
383
384 // Return whether this symbol can be seen outside this object.
385 bool
386 is_externally_visible() const
387 {
388 return (this->visibility_ == elfcpp::STV_DEFAULT
389 || this->visibility_ == elfcpp::STV_PROTECTED);
390 }
391
392 // Return whether there should be a warning for references to this
393 // symbol.
394 bool
395 has_warning() const
396 { return this->has_warning_; }
397
398 // Mark this symbol as having a warning.
399 void
400 set_has_warning()
401 { this->has_warning_ = true; }
402
403 protected:
404 // Instances of this class should always be created at a specific
405 // size.
406 Symbol()
407 { memset(this, 0, sizeof *this); }
408
409 // Initialize the general fields.
410 void
411 init_fields(const char* name, const char* version,
412 elfcpp::STT type, elfcpp::STB binding,
413 elfcpp::STV visibility, unsigned char nonvis);
414
415 // Initialize fields from an ELF symbol in OBJECT.
416 template<int size, bool big_endian>
417 void
418 init_base(const char *name, const char* version, Object* object,
419 const elfcpp::Sym<size, big_endian>&);
420
421 // Initialize fields for an Output_data.
422 void
423 init_base(const char* name, Output_data*, elfcpp::STT, elfcpp::STB,
424 elfcpp::STV, unsigned char nonvis, bool offset_is_from_end);
425
426 // Initialize fields for an Output_segment.
427 void
428 init_base(const char* name, Output_segment* os, elfcpp::STT type,
429 elfcpp::STB binding, elfcpp::STV visibility,
430 unsigned char nonvis, Segment_offset_base offset_base);
431
432 // Initialize fields for a constant.
433 void
434 init_base(const char* name, elfcpp::STT type, elfcpp::STB binding,
435 elfcpp::STV visibility, unsigned char nonvis);
436
437 // Override existing symbol.
438 template<int size, bool big_endian>
439 void
440 override_base(const elfcpp::Sym<size, big_endian>&, Object* object,
441 const char* version);
442
443 // Override existing symbol with a special symbol.
444 void
445 override_base_with_special(const Symbol* from);
446
447 private:
448 Symbol(const Symbol&);
449 Symbol& operator=(const Symbol&);
450
451 // Symbol name (expected to point into a Stringpool).
452 const char* name_;
453 // Symbol version (expected to point into a Stringpool). This may
454 // be NULL.
455 const char* version_;
456
457 union
458 {
459 // This struct is used if SOURCE_ == FROM_OBJECT.
460 struct
461 {
462 // Object in which symbol is defined, or in which it was first
463 // seen.
464 Object* object;
465 // Section number in object_ in which symbol is defined.
466 unsigned int shndx;
467 } from_object;
468
469 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
470 struct
471 {
472 // Output_data in which symbol is defined. Before
473 // Layout::finalize the symbol's value is an offset within the
474 // Output_data.
475 Output_data* output_data;
476 // True if the offset is from the end, false if the offset is
477 // from the beginning.
478 bool offset_is_from_end;
479 } in_output_data;
480
481 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
482 struct
483 {
484 // Output_segment in which the symbol is defined. Before
485 // Layout::finalize the symbol's value is an offset.
486 Output_segment* output_segment;
487 // The base to use for the offset before Layout::finalize.
488 Segment_offset_base offset_base;
489 } in_output_segment;
490 } u_;
491
492 // The index of this symbol in the output file. If the symbol is
493 // not going into the output file, this value is -1U. This field
494 // starts as always holding zero. It is set to a non-zero value by
495 // Symbol_table::finalize.
496 unsigned int symtab_index_;
497
498 // The index of this symbol in the dynamic symbol table. If the
499 // symbol is not going into the dynamic symbol table, this value is
500 // -1U. This field starts as always holding zero. It is set to a
501 // non-zero value during Layout::finalize.
502 unsigned int dynsym_index_;
503
504 // If this symbol has an entry in the GOT section (has_got_offset_
505 // is true), this is the offset from the start of the GOT section.
506 unsigned int got_offset_;
507
508 // If this symbol has an entry in the PLT section (has_plt_offset_
509 // is true), then this is the offset from the start of the PLT
510 // section.
511 unsigned int plt_offset_;
512
513 // Symbol type.
514 elfcpp::STT type_ : 4;
515 // Symbol binding.
516 elfcpp::STB binding_ : 4;
517 // Symbol visibility.
518 elfcpp::STV visibility_ : 2;
519 // Rest of symbol st_other field.
520 unsigned int nonvis_ : 6;
521 // The type of symbol.
522 Source source_ : 3;
523 // True if this symbol always requires special target-specific
524 // handling.
525 bool is_target_special_ : 1;
526 // True if this is the default version of the symbol.
527 bool is_def_ : 1;
528 // True if this symbol really forwards to another symbol. This is
529 // used when we discover after the fact that two different entries
530 // in the hash table really refer to the same symbol. This will
531 // never be set for a symbol found in the hash table, but may be set
532 // for a symbol found in the list of symbols attached to an Object.
533 // It forwards to the symbol found in the forwarders_ map of
534 // Symbol_table.
535 bool is_forwarder_ : 1;
536 // True if this symbol needs to be in the dynamic symbol table.
537 bool needs_dynsym_entry_ : 1;
538 // True if we've seen this symbol in a regular object.
539 bool in_reg_ : 1;
540 // True if we've seen this symbol in a dynamic object.
541 bool in_dyn_ : 1;
542 // True if the symbol has an entry in the GOT section.
543 bool has_got_offset_ : 1;
544 // True if the symbol has an entry in the PLT section.
545 bool has_plt_offset_ : 1;
546 // True if this is a dynamic symbol which needs a special value in
547 // the dynamic symbol table.
548 bool needs_dynsym_value_ : 1;
549 // True if there is a warning for this symbol.
550 bool has_warning_ : 1;
551 };
552
553 // The parts of a symbol which are size specific. Using a template
554 // derived class like this helps us use less space on a 32-bit system.
555
556 template<int size>
557 class Sized_symbol : public Symbol
558 {
559 public:
560 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
561 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
562
563 Sized_symbol()
564 { }
565
566 // Initialize fields from an ELF symbol in OBJECT.
567 template<bool big_endian>
568 void
569 init(const char *name, const char* version, Object* object,
570 const elfcpp::Sym<size, big_endian>&);
571
572 // Initialize fields for an Output_data.
573 void
574 init(const char* name, Output_data*, Value_type value, Size_type symsize,
575 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis,
576 bool offset_is_from_end);
577
578 // Initialize fields for an Output_segment.
579 void
580 init(const char* name, Output_segment*, Value_type value, Size_type symsize,
581 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis,
582 Segment_offset_base offset_base);
583
584 // Initialize fields for a constant.
585 void
586 init(const char* name, Value_type value, Size_type symsize,
587 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis);
588
589 // Override existing symbol.
590 template<bool big_endian>
591 void
592 override(const elfcpp::Sym<size, big_endian>&, Object* object,
593 const char* version);
594
595 // Override existing symbol with a special symbol.
596 void
597 override_with_special(const Sized_symbol<size>*);
598
599 // Return the symbol's value.
600 Value_type
601 value() const
602 { return this->value_; }
603
604 // Return the symbol's size (we can't call this 'size' because that
605 // is a template parameter).
606 Size_type
607 symsize() const
608 { return this->symsize_; }
609
610 // Set the symbol size. This is used when resolving common symbols.
611 void
612 set_symsize(Size_type symsize)
613 { this->symsize_ = symsize; }
614
615 // Set the symbol value. This is called when we store the final
616 // values of the symbols into the symbol table.
617 void
618 set_value(Value_type value)
619 { this->value_ = value; }
620
621 private:
622 Sized_symbol(const Sized_symbol&);
623 Sized_symbol& operator=(const Sized_symbol&);
624
625 // Symbol value. Before Layout::finalize this is the offset in the
626 // input section. This is set to the final value during
627 // Layout::finalize.
628 Value_type value_;
629 // Symbol size.
630 Size_type symsize_;
631 };
632
633 // A struct describing a symbol defined by the linker, where the value
634 // of the symbol is defined based on an output section. This is used
635 // for symbols defined by the linker, like "_init_array_start".
636
637 struct Define_symbol_in_section
638 {
639 // The symbol name.
640 const char* name;
641 // The name of the output section with which this symbol should be
642 // associated. If there is no output section with that name, the
643 // symbol will be defined as zero.
644 const char* output_section;
645 // The offset of the symbol within the output section. This is an
646 // offset from the start of the output section, unless start_at_end
647 // is true, in which case this is an offset from the end of the
648 // output section.
649 uint64_t value;
650 // The size of the symbol.
651 uint64_t size;
652 // The symbol type.
653 elfcpp::STT type;
654 // The symbol binding.
655 elfcpp::STB binding;
656 // The symbol visibility.
657 elfcpp::STV visibility;
658 // The rest of the st_other field.
659 unsigned char nonvis;
660 // If true, the value field is an offset from the end of the output
661 // section.
662 bool offset_is_from_end;
663 // If true, this symbol is defined only if we see a reference to it.
664 bool only_if_ref;
665 };
666
667 // A struct describing a symbol defined by the linker, where the value
668 // of the symbol is defined based on a segment. This is used for
669 // symbols defined by the linker, like "_end". We describe the
670 // segment with which the symbol should be associated by its
671 // characteristics. If no segment meets these characteristics, the
672 // symbol will be defined as zero. If there is more than one segment
673 // which meets these characteristics, we will use the first one.
674
675 struct Define_symbol_in_segment
676 {
677 // The symbol name.
678 const char* name;
679 // The segment type where the symbol should be defined, typically
680 // PT_LOAD.
681 elfcpp::PT segment_type;
682 // Bitmask of segment flags which must be set.
683 elfcpp::PF segment_flags_set;
684 // Bitmask of segment flags which must be clear.
685 elfcpp::PF segment_flags_clear;
686 // The offset of the symbol within the segment. The offset is
687 // calculated from the position set by offset_base.
688 uint64_t value;
689 // The size of the symbol.
690 uint64_t size;
691 // The symbol type.
692 elfcpp::STT type;
693 // The symbol binding.
694 elfcpp::STB binding;
695 // The symbol visibility.
696 elfcpp::STV visibility;
697 // The rest of the st_other field.
698 unsigned char nonvis;
699 // The base from which we compute the offset.
700 Symbol::Segment_offset_base offset_base;
701 // If true, this symbol is defined only if we see a reference to it.
702 bool only_if_ref;
703 };
704
705 // This class manages warnings. Warnings are a GNU extension. When
706 // we see a section named .gnu.warning.SYM in an object file, and if
707 // we wind using the definition of SYM from that object file, then we
708 // will issue a warning for any relocation against SYM from a
709 // different object file. The text of the warning is the contents of
710 // the section. This is not precisely the definition used by the old
711 // GNU linker; the old GNU linker treated an occurrence of
712 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
713 // would trigger a warning on any reference. However, it was
714 // inconsistent in that a warning in a dynamic object only triggered
715 // if there was no definition in a regular object. This linker is
716 // different in that we only issue a warning if we use the symbol
717 // definition from the same object file as the warning section.
718
719 class Warnings
720 {
721 public:
722 Warnings()
723 : warnings_()
724 { }
725
726 // Add a warning for symbol NAME in section SHNDX in object OBJ.
727 void
728 add_warning(Symbol_table* symtab, const char* name, Object* obj,
729 unsigned int shndx);
730
731 // For each symbol for which we should give a warning, make a note
732 // on the symbol.
733 void
734 note_warnings(Symbol_table* symtab);
735
736 // Issue a warning for a reference to SYM at LOCATION.
737 void
738 issue_warning(const Symbol* sym, const std::string& location) const;
739
740 private:
741 Warnings(const Warnings&);
742 Warnings& operator=(const Warnings&);
743
744 // What we need to know to get the warning text.
745 struct Warning_location
746 {
747 // The object the warning is in.
748 Object* object;
749 // The index of the warning section.
750 unsigned int shndx;
751 // The warning text if we have already loaded it.
752 std::string text;
753
754 Warning_location()
755 : object(NULL), shndx(0), text()
756 { }
757
758 void
759 set(Object* o, unsigned int s)
760 {
761 this->object = o;
762 this->shndx = s;
763 }
764
765 void
766 set_text(const char* t, off_t l)
767 { this->text.assign(t, l); }
768 };
769
770 // A mapping from warning symbol names (canonicalized in
771 // Symbol_table's namepool_ field) to
772 typedef Unordered_map<const char*, Warning_location> Warning_table;
773
774 Warning_table warnings_;
775 };
776
777 // The main linker symbol table.
778
779 class Symbol_table
780 {
781 public:
782 Symbol_table();
783
784 ~Symbol_table();
785
786 // Add COUNT external symbols from the relocatable object RELOBJ to
787 // the symbol table. SYMS is the symbols, SYM_NAMES is their names,
788 // SYM_NAME_SIZE is the size of SYM_NAMES. This sets SYMPOINTERS to
789 // point to the symbols in the symbol table.
790 template<int size, bool big_endian>
791 void
792 add_from_relobj(Sized_relobj<size, big_endian>* relobj,
793 const unsigned char* syms, size_t count,
794 const char* sym_names, size_t sym_name_size,
795 Symbol** sympointers);
796
797 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
798 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
799 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
800 // symbol version data.
801 template<int size, bool big_endian>
802 void
803 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
804 const unsigned char* syms, size_t count,
805 const char* sym_names, size_t sym_name_size,
806 const unsigned char* versym, size_t versym_size,
807 const std::vector<const char*>*);
808
809 // Define a special symbol based on an Output_data. It is a
810 // multiple definition error if this symbol is already defined.
811 Symbol*
812 define_in_output_data(const Target*, const char* name, const char* version,
813 Output_data*, uint64_t value, uint64_t symsize,
814 elfcpp::STT type, elfcpp::STB binding,
815 elfcpp::STV visibility, unsigned char nonvis,
816 bool offset_is_from_end, bool only_if_ref);
817
818 // Define a special symbol based on an Output_segment. It is a
819 // multiple definition error if this symbol is already defined.
820 Symbol*
821 define_in_output_segment(const Target*, const char* name,
822 const char* version, Output_segment*,
823 uint64_t value, uint64_t symsize,
824 elfcpp::STT type, elfcpp::STB binding,
825 elfcpp::STV visibility, unsigned char nonvis,
826 Symbol::Segment_offset_base, bool only_if_ref);
827
828 // Define a special symbol with a constant value. It is a multiple
829 // definition error if this symbol is already defined.
830 Symbol*
831 define_as_constant(const Target*, const char* name, const char* version,
832 uint64_t value, uint64_t symsize, elfcpp::STT type,
833 elfcpp::STB binding, elfcpp::STV visibility,
834 unsigned char nonvis, bool only_if_ref);
835
836 // Define a set of symbols in output sections.
837 void
838 define_symbols(const Layout*, const Target*, int count,
839 const Define_symbol_in_section*);
840
841 // Define a set of symbols in output segments.
842 void
843 define_symbols(const Layout*, const Target*, int count,
844 const Define_symbol_in_segment*);
845
846 // Look up a symbol.
847 Symbol*
848 lookup(const char*, const char* version = NULL) const;
849
850 // Return the real symbol associated with the forwarder symbol FROM.
851 Symbol*
852 resolve_forwards(const Symbol* from) const;
853
854 // Return the bitsize (32 or 64) of the symbols in the table.
855 int
856 get_size() const
857 { return this->size_; }
858
859 // Return the sized version of a symbol in this table.
860 template<int size>
861 Sized_symbol<size>*
862 get_sized_symbol(Symbol* ACCEPT_SIZE) const;
863
864 template<int size>
865 const Sized_symbol<size>*
866 get_sized_symbol(const Symbol* ACCEPT_SIZE) const;
867
868 // Return the count of undefined symbols seen.
869 int
870 saw_undefined() const
871 { return this->saw_undefined_; }
872
873 // Allocate the common symbols
874 void
875 allocate_commons(const General_options&, Layout*);
876
877 // Add a warning for symbol NAME in section SHNDX in object OBJ.
878 void
879 add_warning(const char* name, Object* obj, unsigned int shndx)
880 { this->warnings_.add_warning(this, name, obj, shndx); }
881
882 // Canonicalize a symbol name for use in the hash table.
883 const char*
884 canonicalize_name(const char* name)
885 { return this->namepool_.add(name, NULL); }
886
887 // Possibly issue a warning for a reference to SYM at LOCATION which
888 // is in OBJ.
889 void
890 issue_warning(const Symbol* sym, const std::string& location) const
891 { this->warnings_.issue_warning(sym, location); }
892
893 // Set the dynamic symbol indexes. INDEX is the index of the first
894 // global dynamic symbol. Pointers to the symbols are stored into
895 // the vector. The names are stored into the Stringpool. This
896 // returns an updated dynamic symbol index.
897 unsigned int
898 set_dynsym_indexes(const General_options*, const Target*, unsigned int index,
899 std::vector<Symbol*>*, Stringpool*, Versions*);
900
901 // Finalize the symbol table after we have set the final addresses
902 // of all the input sections. This sets the final symbol indexes,
903 // values and adds the names to *POOL. INDEX is the index of the
904 // first global symbol. OFF is the file offset of the global symbol
905 // table, DYNOFF is the offset of the globals in the dynamic symbol
906 // table, DYN_GLOBAL_INDEX is the index of the first global dynamic
907 // symbol, and DYNCOUNT is the number of global dynamic symbols.
908 // This records the parameters, and returns the new file offset.
909 off_t
910 finalize(unsigned int index, off_t off, off_t dynoff,
911 size_t dyn_global_index, size_t dyncount, Stringpool* pool);
912
913 // Write out the global symbols.
914 void
915 write_globals(const Target*, const Stringpool*, const Stringpool*,
916 Output_file*) const;
917
918 // Write out a section symbol. Return the updated offset.
919 void
920 write_section_symbol(const Target*, const Output_section*, Output_file*,
921 off_t) const;
922
923 private:
924 Symbol_table(const Symbol_table&);
925 Symbol_table& operator=(const Symbol_table&);
926
927 // Set the size (32 or 64) of the symbols in the table.
928 void
929 set_size(int size)
930 { this->size_ = size; }
931
932 // Make FROM a forwarder symbol to TO.
933 void
934 make_forwarder(Symbol* from, Symbol* to);
935
936 // Add a symbol.
937 template<int size, bool big_endian>
938 Symbol*
939 add_from_object(Object*, const char *name, Stringpool::Key name_key,
940 const char *version, Stringpool::Key version_key,
941 bool def, const elfcpp::Sym<size, big_endian>& sym);
942
943 // Resolve symbols.
944 template<int size, bool big_endian>
945 static void
946 resolve(Sized_symbol<size>* to,
947 const elfcpp::Sym<size, big_endian>& sym,
948 Object*, const char* version);
949
950 template<int size, bool big_endian>
951 static void
952 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
953 const char* version ACCEPT_SIZE_ENDIAN);
954
955 // Whether we should override a symbol, based on flags in
956 // resolve.cc.
957 static bool
958 should_override(const Symbol*, unsigned int, bool*);
959
960 // Whether we should override a symbol with a special symbol which
961 // is automatically defined by the linker.
962 static bool
963 should_override_with_special(const Symbol*);
964
965 // Define a special symbol.
966 template<int size, bool big_endian>
967 Sized_symbol<size>*
968 define_special_symbol(const Target* target, const char** pname,
969 const char** pversion, bool only_if_ref,
970 Sized_symbol<size>** poldsym ACCEPT_SIZE_ENDIAN);
971
972 // Define a symbol in an Output_data, sized version.
973 template<int size>
974 Sized_symbol<size>*
975 do_define_in_output_data(const Target*, const char* name,
976 const char* version, Output_data*,
977 typename elfcpp::Elf_types<size>::Elf_Addr value,
978 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
979 elfcpp::STT type, elfcpp::STB binding,
980 elfcpp::STV visibility, unsigned char nonvis,
981 bool offset_is_from_end, bool only_if_ref);
982
983 // Define a symbol in an Output_segment, sized version.
984 template<int size>
985 Sized_symbol<size>*
986 do_define_in_output_segment(
987 const Target*, const char* name, const char* version, Output_segment* os,
988 typename elfcpp::Elf_types<size>::Elf_Addr value,
989 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
990 elfcpp::STT type, elfcpp::STB binding,
991 elfcpp::STV visibility, unsigned char nonvis,
992 Symbol::Segment_offset_base offset_base, bool only_if_ref);
993
994 // Define a symbol as a constant, sized version.
995 template<int size>
996 Sized_symbol<size>*
997 do_define_as_constant(
998 const Target*, const char* name, const char* version,
999 typename elfcpp::Elf_types<size>::Elf_Addr value,
1000 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1001 elfcpp::STT type, elfcpp::STB binding,
1002 elfcpp::STV visibility, unsigned char nonvis,
1003 bool only_if_ref);
1004
1005 // Allocate the common symbols, sized version.
1006 template<int size>
1007 void
1008 do_allocate_commons(const General_options&, Layout*);
1009
1010 // Finalize symbols specialized for size.
1011 template<int size>
1012 off_t
1013 sized_finalize(unsigned int, off_t, Stringpool*);
1014
1015 // Write globals specialized for size and endianness.
1016 template<int size, bool big_endian>
1017 void
1018 sized_write_globals(const Target*, const Stringpool*, const Stringpool*,
1019 Output_file*) const;
1020
1021 // Write out a symbol to P.
1022 template<int size, bool big_endian>
1023 void
1024 sized_write_symbol(Sized_symbol<size>*,
1025 typename elfcpp::Elf_types<size>::Elf_Addr value,
1026 unsigned int shndx,
1027 const Stringpool*, unsigned char* p
1028 ACCEPT_SIZE_ENDIAN) const;
1029
1030 // Write out a section symbol, specialized for size and endianness.
1031 template<int size, bool big_endian>
1032 void
1033 sized_write_section_symbol(const Output_section*, Output_file*, off_t) const;
1034
1035 // The type of the symbol hash table.
1036
1037 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1038
1039 struct Symbol_table_hash
1040 {
1041 size_t
1042 operator()(const Symbol_table_key&) const;
1043 };
1044
1045 struct Symbol_table_eq
1046 {
1047 bool
1048 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1049 };
1050
1051 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1052 Symbol_table_eq> Symbol_table_type;
1053
1054 // The type of the list of common symbols.
1055
1056 typedef std::vector<Symbol*> Commons_type;
1057
1058 // The size of the symbols in the symbol table (32 or 64).
1059 int size_;
1060
1061 // We increment this every time we see a new undefined symbol, for
1062 // use in archive groups.
1063 int saw_undefined_;
1064
1065 // The index of the first global symbol in the output file.
1066 unsigned int first_global_index_;
1067
1068 // The file offset within the output symtab section where we should
1069 // write the table.
1070 off_t offset_;
1071
1072 // The number of global symbols we want to write out.
1073 size_t output_count_;
1074
1075 // The file offset of the global dynamic symbols, or 0 if none.
1076 off_t dynamic_offset_;
1077
1078 // The index of the first global dynamic symbol.
1079 unsigned int first_dynamic_global_index_;
1080
1081 // The number of global dynamic symbols, or 0 if none.
1082 off_t dynamic_count_;
1083
1084 // The symbol hash table.
1085 Symbol_table_type table_;
1086
1087 // A pool of symbol names. This is used for all global symbols.
1088 // Entries in the hash table point into this pool.
1089 Stringpool namepool_;
1090
1091 // Forwarding symbols.
1092 Unordered_map<const Symbol*, Symbol*> forwarders_;
1093
1094 // We don't expect there to be very many common symbols, so we keep
1095 // a list of them. When we find a common symbol we add it to this
1096 // list. It is possible that by the time we process the list the
1097 // symbol is no longer a common symbol. It may also have become a
1098 // forwarder.
1099 Commons_type commons_;
1100
1101 // Manage symbol warnings.
1102 Warnings warnings_;
1103 };
1104
1105 // We inline get_sized_symbol for efficiency.
1106
1107 template<int size>
1108 Sized_symbol<size>*
1109 Symbol_table::get_sized_symbol(Symbol* sym ACCEPT_SIZE) const
1110 {
1111 gold_assert(size == this->get_size());
1112 return static_cast<Sized_symbol<size>*>(sym);
1113 }
1114
1115 template<int size>
1116 const Sized_symbol<size>*
1117 Symbol_table::get_sized_symbol(const Symbol* sym ACCEPT_SIZE) const
1118 {
1119 gold_assert(size == this->get_size());
1120 return static_cast<const Sized_symbol<size>*>(sym);
1121 }
1122
1123 } // End namespace gold.
1124
1125 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.07105 seconds and 5 git commands to generate.