Print symbol table statistics with --stats.
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #include <string>
27 #include <utility>
28 #include <vector>
29
30 #include "elfcpp.h"
31 #include "parameters.h"
32 #include "stringpool.h"
33 #include "object.h"
34
35 #ifndef GOLD_SYMTAB_H
36 #define GOLD_SYMTAB_H
37
38 namespace gold
39 {
40
41 class Object;
42 class Relobj;
43 template<int size, bool big_endian>
44 class Sized_relobj;
45 class Dynobj;
46 template<int size, bool big_endian>
47 class Sized_dynobj;
48 class Versions;
49 class Input_objects;
50 class Output_data;
51 class Output_section;
52 class Output_segment;
53 class Output_file;
54 class Target;
55
56 // The base class of an entry in the symbol table. The symbol table
57 // can have a lot of entries, so we don't want this class to big.
58 // Size dependent fields can be found in the template class
59 // Sized_symbol. Targets may support their own derived classes.
60
61 class Symbol
62 {
63 public:
64 // Because we want the class to be small, we don't use any virtual
65 // functions. But because symbols can be defined in different
66 // places, we need to classify them. This enum is the different
67 // sources of symbols we support.
68 enum Source
69 {
70 // Symbol defined in a relocatable or dynamic input file--this is
71 // the most common case.
72 FROM_OBJECT,
73 // Symbol defined in an Output_data, a special section created by
74 // the target.
75 IN_OUTPUT_DATA,
76 // Symbol defined in an Output_segment, with no associated
77 // section.
78 IN_OUTPUT_SEGMENT,
79 // Symbol value is constant.
80 CONSTANT
81 };
82
83 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
84 // the offset means.
85 enum Segment_offset_base
86 {
87 // From the start of the segment.
88 SEGMENT_START,
89 // From the end of the segment.
90 SEGMENT_END,
91 // From the filesz of the segment--i.e., after the loaded bytes
92 // but before the bytes which are allocated but zeroed.
93 SEGMENT_BSS
94 };
95
96 // Return the symbol name.
97 const char*
98 name() const
99 { return this->name_; }
100
101 // Return the (ANSI) demangled version of the name, if
102 // parameters.demangle() is true. Otherwise, return the name. This
103 // is intended to be used only for logging errors, so it's not
104 // super-efficient.
105 std::string
106 demangled_name() const;
107
108 // Return the symbol version. This will return NULL for an
109 // unversioned symbol.
110 const char*
111 version() const
112 { return this->version_; }
113
114 // Return the symbol source.
115 Source
116 source() const
117 { return this->source_; }
118
119 // Return the object with which this symbol is associated.
120 Object*
121 object() const
122 {
123 gold_assert(this->source_ == FROM_OBJECT);
124 return this->u_.from_object.object;
125 }
126
127 // Return the index of the section in the input relocatable or
128 // dynamic object file.
129 unsigned int
130 shndx() const
131 {
132 gold_assert(this->source_ == FROM_OBJECT);
133 return this->u_.from_object.shndx;
134 }
135
136 // Return the output data section with which this symbol is
137 // associated, if the symbol was specially defined with respect to
138 // an output data section.
139 Output_data*
140 output_data() const
141 {
142 gold_assert(this->source_ == IN_OUTPUT_DATA);
143 return this->u_.in_output_data.output_data;
144 }
145
146 // If this symbol was defined with respect to an output data
147 // section, return whether the value is an offset from end.
148 bool
149 offset_is_from_end() const
150 {
151 gold_assert(this->source_ == IN_OUTPUT_DATA);
152 return this->u_.in_output_data.offset_is_from_end;
153 }
154
155 // Return the output segment with which this symbol is associated,
156 // if the symbol was specially defined with respect to an output
157 // segment.
158 Output_segment*
159 output_segment() const
160 {
161 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
162 return this->u_.in_output_segment.output_segment;
163 }
164
165 // If this symbol was defined with respect to an output segment,
166 // return the offset base.
167 Segment_offset_base
168 offset_base() const
169 {
170 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
171 return this->u_.in_output_segment.offset_base;
172 }
173
174 // Return the symbol binding.
175 elfcpp::STB
176 binding() const
177 { return this->binding_; }
178
179 // Return the symbol type.
180 elfcpp::STT
181 type() const
182 { return this->type_; }
183
184 // Return the symbol visibility.
185 elfcpp::STV
186 visibility() const
187 { return this->visibility_; }
188
189 // Return the non-visibility part of the st_other field.
190 unsigned char
191 nonvis() const
192 { return this->nonvis_; }
193
194 // Return whether this symbol is a forwarder. This will never be
195 // true of a symbol found in the hash table, but may be true of
196 // symbol pointers attached to object files.
197 bool
198 is_forwarder() const
199 { return this->is_forwarder_; }
200
201 // Mark this symbol as a forwarder.
202 void
203 set_forwarder()
204 { this->is_forwarder_ = true; }
205
206 // Return whether this symbol has an alias in the weak aliases table
207 // in Symbol_table.
208 bool
209 has_alias() const
210 { return this->has_alias_; }
211
212 // Mark this symbol as having an alias.
213 void
214 set_has_alias()
215 { this->has_alias_ = true; }
216
217 // Return whether this symbol needs an entry in the dynamic symbol
218 // table.
219 bool
220 needs_dynsym_entry() const
221 {
222 return (this->needs_dynsym_entry_
223 || (this->in_reg() && this->in_dyn()));
224 }
225
226 // Mark this symbol as needing an entry in the dynamic symbol table.
227 void
228 set_needs_dynsym_entry()
229 { this->needs_dynsym_entry_ = true; }
230
231 // Return whether this symbol should be added to the dynamic symbol
232 // table.
233 bool
234 should_add_dynsym_entry() const;
235
236 // Return whether this symbol has been seen in a regular object.
237 bool
238 in_reg() const
239 { return this->in_reg_; }
240
241 // Mark this symbol as having been seen in a regular object.
242 void
243 set_in_reg()
244 { this->in_reg_ = true; }
245
246 // Return whether this symbol has been seen in a dynamic object.
247 bool
248 in_dyn() const
249 { return this->in_dyn_; }
250
251 // Mark this symbol as having been seen in a dynamic object.
252 void
253 set_in_dyn()
254 { this->in_dyn_ = true; }
255
256 // Return the index of this symbol in the output file symbol table.
257 // A value of -1U means that this symbol is not going into the
258 // output file. This starts out as zero, and is set to a non-zero
259 // value by Symbol_table::finalize. It is an error to ask for the
260 // symbol table index before it has been set.
261 unsigned int
262 symtab_index() const
263 {
264 gold_assert(this->symtab_index_ != 0);
265 return this->symtab_index_;
266 }
267
268 // Set the index of the symbol in the output file symbol table.
269 void
270 set_symtab_index(unsigned int index)
271 {
272 gold_assert(index != 0);
273 this->symtab_index_ = index;
274 }
275
276 // Return whether this symbol already has an index in the output
277 // file symbol table.
278 bool
279 has_symtab_index() const
280 { return this->symtab_index_ != 0; }
281
282 // Return the index of this symbol in the dynamic symbol table. A
283 // value of -1U means that this symbol is not going into the dynamic
284 // symbol table. This starts out as zero, and is set to a non-zero
285 // during Layout::finalize. It is an error to ask for the dynamic
286 // symbol table index before it has been set.
287 unsigned int
288 dynsym_index() const
289 {
290 gold_assert(this->dynsym_index_ != 0);
291 return this->dynsym_index_;
292 }
293
294 // Set the index of the symbol in the dynamic symbol table.
295 void
296 set_dynsym_index(unsigned int index)
297 {
298 gold_assert(index != 0);
299 this->dynsym_index_ = index;
300 }
301
302 // Return whether this symbol already has an index in the dynamic
303 // symbol table.
304 bool
305 has_dynsym_index() const
306 { return this->dynsym_index_ != 0; }
307
308 // Return whether this symbol has an entry in the GOT section.
309 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
310 bool
311 has_got_offset() const
312 { return this->has_got_offset_; }
313
314 // Return the offset into the GOT section of this symbol.
315 unsigned int
316 got_offset() const
317 {
318 gold_assert(this->has_got_offset());
319 return this->got_offset_;
320 }
321
322 // Set the GOT offset of this symbol.
323 void
324 set_got_offset(unsigned int got_offset)
325 {
326 this->has_got_offset_ = true;
327 this->got_offset_ = got_offset;
328 }
329
330 // Return whether this TLS symbol has an entry in the GOT section for
331 // its module index or, if NEED_PAIR is true, has a pair of entries
332 // for its module index and dtv-relative offset.
333 bool
334 has_tls_got_offset(bool need_pair) const
335 {
336 return (this->has_tls_mod_got_offset_
337 && (!need_pair || this->has_tls_pair_got_offset_));
338 }
339
340 // Return the offset into the GOT section for this symbol's TLS module
341 // index or, if NEED_PAIR is true, for the pair of entries for the
342 // module index and dtv-relative offset.
343 unsigned int
344 tls_got_offset(bool need_pair) const
345 {
346 gold_assert(this->has_tls_got_offset(need_pair));
347 return this->tls_mod_got_offset_;
348 }
349
350 // Set the GOT offset of this symbol.
351 void
352 set_tls_got_offset(unsigned int got_offset, bool have_pair)
353 {
354 this->has_tls_mod_got_offset_ = true;
355 this->has_tls_pair_got_offset_ = have_pair;
356 this->tls_mod_got_offset_ = got_offset;
357 }
358
359 // Return whether this symbol has an entry in the PLT section.
360 bool
361 has_plt_offset() const
362 { return this->has_plt_offset_; }
363
364 // Return the offset into the PLT section of this symbol.
365 unsigned int
366 plt_offset() const
367 {
368 gold_assert(this->has_plt_offset());
369 return this->plt_offset_;
370 }
371
372 // Set the PLT offset of this symbol.
373 void
374 set_plt_offset(unsigned int plt_offset)
375 {
376 this->has_plt_offset_ = true;
377 this->plt_offset_ = plt_offset;
378 }
379
380 // Return whether this dynamic symbol needs a special value in the
381 // dynamic symbol table.
382 bool
383 needs_dynsym_value() const
384 { return this->needs_dynsym_value_; }
385
386 // Set that this dynamic symbol needs a special value in the dynamic
387 // symbol table.
388 void
389 set_needs_dynsym_value()
390 {
391 gold_assert(this->object()->is_dynamic());
392 this->needs_dynsym_value_ = true;
393 }
394
395 // Return true if the final value of this symbol is known at link
396 // time.
397 bool
398 final_value_is_known() const;
399
400 // Return whether this is a defined symbol (not undefined or
401 // common).
402 bool
403 is_defined() const
404 {
405 return (this->source_ != FROM_OBJECT
406 || (this->shndx() != elfcpp::SHN_UNDEF
407 && this->shndx() != elfcpp::SHN_COMMON));
408 }
409
410 // Return true if this symbol is from a dynamic object.
411 bool
412 is_from_dynobj() const
413 {
414 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
415 }
416
417 // Return whether this is an undefined symbol.
418 bool
419 is_undefined() const
420 {
421 return this->source_ == FROM_OBJECT && this->shndx() == elfcpp::SHN_UNDEF;
422 }
423
424 // Return whether this is a common symbol.
425 bool
426 is_common() const
427 {
428 return (this->source_ == FROM_OBJECT
429 && (this->shndx() == elfcpp::SHN_COMMON
430 || this->type_ == elfcpp::STT_COMMON));
431 }
432
433 // Return whether this symbol can be seen outside this object.
434 bool
435 is_externally_visible() const
436 {
437 return (this->visibility_ == elfcpp::STV_DEFAULT
438 || this->visibility_ == elfcpp::STV_PROTECTED);
439 }
440
441 // Return true if this symbol can be preempted by a definition in
442 // another link unit.
443 bool
444 is_preemptible() const
445 {
446 // It doesn't make sense to ask whether a symbol defined in
447 // another object is preemptible.
448 gold_assert(!this->is_from_dynobj());
449
450 return (this->visibility_ != elfcpp::STV_INTERNAL
451 && this->visibility_ != elfcpp::STV_HIDDEN
452 && this->visibility_ != elfcpp::STV_PROTECTED
453 && parameters->output_is_shared()
454 && !parameters->symbolic());
455 }
456
457 // Return true if this symbol is a function that needs a PLT entry.
458 // If the symbol is defined in a dynamic object or if it is subject
459 // to pre-emption, we need to make a PLT entry.
460 bool
461 needs_plt_entry() const
462 {
463 return (this->type() == elfcpp::STT_FUNC
464 && (this->is_from_dynobj() || this->is_preemptible()));
465 }
466
467 // Given a direct absolute or pc-relative static relocation against
468 // the global symbol, this function returns whether a dynamic relocation
469 // is needed.
470
471 bool
472 needs_dynamic_reloc(bool is_absolute_ref, bool is_function_call) const
473 {
474 // An absolute reference within a position-independent output file
475 // will need a dynamic relocaion.
476 if (is_absolute_ref && parameters->output_is_position_independent())
477 return true;
478
479 // A function call that can branch to a local PLT entry does not need
480 // a dynamic relocation.
481 if (is_function_call && this->has_plt_offset())
482 return false;
483
484 // A reference to any PLT entry in a non-position-independent executable
485 // does not need a dynamic relocation.
486 if (!parameters->output_is_position_independent()
487 && this->has_plt_offset())
488 return false;
489
490 // A reference to a symbol defined in a dynamic object or to a
491 // symbol that is preemptible will need a dynamic relocation.
492 if (this->is_from_dynobj() || this->is_preemptible())
493 return true;
494
495 // For all other cases, return FALSE.
496 return false;
497 }
498
499 // Given a direct absolute static relocation against
500 // the global symbol, where a dynamic relocation is needed, this
501 // function returns whether a relative dynamic relocation can be used.
502 // The caller must determine separately whether the static relocation
503 // is compatible with a relative relocation.
504
505 bool
506 can_use_relative_reloc(bool is_function_call) const
507 {
508 // A function call that can branch to a local PLT entry can
509 // use a RELATIVE relocation.
510 if (is_function_call && this->has_plt_offset())
511 return true;
512
513 // A reference to a symbol defined in a dynamic object or to a
514 // symbol that is preemptible can not use a RELATIVE relocaiton.
515 if (this->is_from_dynobj() || this->is_preemptible())
516 return false;
517
518 // For all other cases, return TRUE.
519 return true;
520 }
521
522 // Return whether there should be a warning for references to this
523 // symbol.
524 bool
525 has_warning() const
526 { return this->has_warning_; }
527
528 // Mark this symbol as having a warning.
529 void
530 set_has_warning()
531 { this->has_warning_ = true; }
532
533 // Return whether this symbol is defined by a COPY reloc from a
534 // dynamic object.
535 bool
536 is_copied_from_dynobj() const
537 { return this->is_copied_from_dynobj_; }
538
539 // Mark this symbol as defined by a COPY reloc.
540 void
541 set_is_copied_from_dynobj()
542 { this->is_copied_from_dynobj_ = true; }
543
544 // Mark this symbol as needing its value written to the GOT even when
545 // the value is subject to dynamic relocation (e.g., when the target
546 // uses a RELATIVE relocation for the GOT entry).
547 void
548 set_needs_value_in_got()
549 { this->needs_value_in_got_ = true; }
550
551 // Return whether this symbol needs its value written to the GOT even
552 // when the value is subject to dynamic relocation.
553 bool
554 needs_value_in_got() const
555 { return this->needs_value_in_got_; }
556
557 protected:
558 // Instances of this class should always be created at a specific
559 // size.
560 Symbol()
561 { memset(this, 0, sizeof *this); }
562
563 // Initialize the general fields.
564 void
565 init_fields(const char* name, const char* version,
566 elfcpp::STT type, elfcpp::STB binding,
567 elfcpp::STV visibility, unsigned char nonvis);
568
569 // Initialize fields from an ELF symbol in OBJECT.
570 template<int size, bool big_endian>
571 void
572 init_base(const char *name, const char* version, Object* object,
573 const elfcpp::Sym<size, big_endian>&);
574
575 // Initialize fields for an Output_data.
576 void
577 init_base(const char* name, Output_data*, elfcpp::STT, elfcpp::STB,
578 elfcpp::STV, unsigned char nonvis, bool offset_is_from_end);
579
580 // Initialize fields for an Output_segment.
581 void
582 init_base(const char* name, Output_segment* os, elfcpp::STT type,
583 elfcpp::STB binding, elfcpp::STV visibility,
584 unsigned char nonvis, Segment_offset_base offset_base);
585
586 // Initialize fields for a constant.
587 void
588 init_base(const char* name, elfcpp::STT type, elfcpp::STB binding,
589 elfcpp::STV visibility, unsigned char nonvis);
590
591 // Override existing symbol.
592 template<int size, bool big_endian>
593 void
594 override_base(const elfcpp::Sym<size, big_endian>&, Object* object,
595 const char* version);
596
597 // Override existing symbol with a special symbol.
598 void
599 override_base_with_special(const Symbol* from);
600
601 // Allocate a common symbol by giving it a location in the output
602 // file.
603 void
604 allocate_base_common(Output_data*);
605
606 private:
607 Symbol(const Symbol&);
608 Symbol& operator=(const Symbol&);
609
610 // Symbol name (expected to point into a Stringpool).
611 const char* name_;
612 // Symbol version (expected to point into a Stringpool). This may
613 // be NULL.
614 const char* version_;
615
616 union
617 {
618 // This struct is used if SOURCE_ == FROM_OBJECT.
619 struct
620 {
621 // Object in which symbol is defined, or in which it was first
622 // seen.
623 Object* object;
624 // Section number in object_ in which symbol is defined.
625 unsigned int shndx;
626 } from_object;
627
628 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
629 struct
630 {
631 // Output_data in which symbol is defined. Before
632 // Layout::finalize the symbol's value is an offset within the
633 // Output_data.
634 Output_data* output_data;
635 // True if the offset is from the end, false if the offset is
636 // from the beginning.
637 bool offset_is_from_end;
638 } in_output_data;
639
640 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
641 struct
642 {
643 // Output_segment in which the symbol is defined. Before
644 // Layout::finalize the symbol's value is an offset.
645 Output_segment* output_segment;
646 // The base to use for the offset before Layout::finalize.
647 Segment_offset_base offset_base;
648 } in_output_segment;
649 } u_;
650
651 // The index of this symbol in the output file. If the symbol is
652 // not going into the output file, this value is -1U. This field
653 // starts as always holding zero. It is set to a non-zero value by
654 // Symbol_table::finalize.
655 unsigned int symtab_index_;
656
657 // The index of this symbol in the dynamic symbol table. If the
658 // symbol is not going into the dynamic symbol table, this value is
659 // -1U. This field starts as always holding zero. It is set to a
660 // non-zero value during Layout::finalize.
661 unsigned int dynsym_index_;
662
663 // If this symbol has an entry in the GOT section (has_got_offset_
664 // is true), this is the offset from the start of the GOT section.
665 // For a TLS symbol, if has_tls_tpoff_got_offset_ is true, this
666 // serves as the GOT offset for the GOT entry that holds its
667 // TP-relative offset.
668 unsigned int got_offset_;
669
670 // If this is a TLS symbol and has an entry in the GOT section
671 // for a module index or a pair of entries (module index,
672 // dtv-relative offset), these are the offsets from the start
673 // of the GOT section.
674 unsigned int tls_mod_got_offset_;
675 unsigned int tls_pair_got_offset_;
676
677 // If this symbol has an entry in the PLT section (has_plt_offset_
678 // is true), then this is the offset from the start of the PLT
679 // section.
680 unsigned int plt_offset_;
681
682 // Symbol type.
683 elfcpp::STT type_ : 4;
684 // Symbol binding.
685 elfcpp::STB binding_ : 4;
686 // Symbol visibility.
687 elfcpp::STV visibility_ : 2;
688 // Rest of symbol st_other field.
689 unsigned int nonvis_ : 6;
690 // The type of symbol.
691 Source source_ : 3;
692 // True if this symbol always requires special target-specific
693 // handling.
694 bool is_target_special_ : 1;
695 // True if this is the default version of the symbol.
696 bool is_def_ : 1;
697 // True if this symbol really forwards to another symbol. This is
698 // used when we discover after the fact that two different entries
699 // in the hash table really refer to the same symbol. This will
700 // never be set for a symbol found in the hash table, but may be set
701 // for a symbol found in the list of symbols attached to an Object.
702 // It forwards to the symbol found in the forwarders_ map of
703 // Symbol_table.
704 bool is_forwarder_ : 1;
705 // True if the symbol has an alias in the weak_aliases table in
706 // Symbol_table.
707 bool has_alias_ : 1;
708 // True if this symbol needs to be in the dynamic symbol table.
709 bool needs_dynsym_entry_ : 1;
710 // True if we've seen this symbol in a regular object.
711 bool in_reg_ : 1;
712 // True if we've seen this symbol in a dynamic object.
713 bool in_dyn_ : 1;
714 // True if the symbol has an entry in the GOT section.
715 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
716 bool has_got_offset_ : 1;
717 // True if the symbol has an entry in the GOT section for its
718 // module index.
719 bool has_tls_mod_got_offset_ : 1;
720 // True if the symbol has a pair of entries in the GOT section for its
721 // module index and dtv-relative offset.
722 bool has_tls_pair_got_offset_ : 1;
723 // True if the symbol has an entry in the PLT section.
724 bool has_plt_offset_ : 1;
725 // True if this is a dynamic symbol which needs a special value in
726 // the dynamic symbol table.
727 bool needs_dynsym_value_ : 1;
728 // True if there is a warning for this symbol.
729 bool has_warning_ : 1;
730 // True if we are using a COPY reloc for this symbol, so that the
731 // real definition lives in a dynamic object.
732 bool is_copied_from_dynobj_ : 1;
733 // True if the static value should be written to the GOT even
734 // when the final value is subject to dynamic relocation.
735 bool needs_value_in_got_ : 1;
736 };
737
738 // The parts of a symbol which are size specific. Using a template
739 // derived class like this helps us use less space on a 32-bit system.
740
741 template<int size>
742 class Sized_symbol : public Symbol
743 {
744 public:
745 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
746 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
747
748 Sized_symbol()
749 { }
750
751 // Initialize fields from an ELF symbol in OBJECT.
752 template<bool big_endian>
753 void
754 init(const char *name, const char* version, Object* object,
755 const elfcpp::Sym<size, big_endian>&);
756
757 // Initialize fields for an Output_data.
758 void
759 init(const char* name, Output_data*, Value_type value, Size_type symsize,
760 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis,
761 bool offset_is_from_end);
762
763 // Initialize fields for an Output_segment.
764 void
765 init(const char* name, Output_segment*, Value_type value, Size_type symsize,
766 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis,
767 Segment_offset_base offset_base);
768
769 // Initialize fields for a constant.
770 void
771 init(const char* name, Value_type value, Size_type symsize,
772 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis);
773
774 // Override existing symbol.
775 template<bool big_endian>
776 void
777 override(const elfcpp::Sym<size, big_endian>&, Object* object,
778 const char* version);
779
780 // Override existing symbol with a special symbol.
781 void
782 override_with_special(const Sized_symbol<size>*);
783
784 // Return the symbol's value.
785 Value_type
786 value() const
787 { return this->value_; }
788
789 // Return the symbol's size (we can't call this 'size' because that
790 // is a template parameter).
791 Size_type
792 symsize() const
793 { return this->symsize_; }
794
795 // Set the symbol size. This is used when resolving common symbols.
796 void
797 set_symsize(Size_type symsize)
798 { this->symsize_ = symsize; }
799
800 // Set the symbol value. This is called when we store the final
801 // values of the symbols into the symbol table.
802 void
803 set_value(Value_type value)
804 { this->value_ = value; }
805
806 // Allocate a common symbol by giving it a location in the output
807 // file.
808 void
809 allocate_common(Output_data*, Value_type value);
810
811 private:
812 Sized_symbol(const Sized_symbol&);
813 Sized_symbol& operator=(const Sized_symbol&);
814
815 // Symbol value. Before Layout::finalize this is the offset in the
816 // input section. This is set to the final value during
817 // Layout::finalize.
818 Value_type value_;
819 // Symbol size.
820 Size_type symsize_;
821 };
822
823 // A struct describing a symbol defined by the linker, where the value
824 // of the symbol is defined based on an output section. This is used
825 // for symbols defined by the linker, like "_init_array_start".
826
827 struct Define_symbol_in_section
828 {
829 // The symbol name.
830 const char* name;
831 // The name of the output section with which this symbol should be
832 // associated. If there is no output section with that name, the
833 // symbol will be defined as zero.
834 const char* output_section;
835 // The offset of the symbol within the output section. This is an
836 // offset from the start of the output section, unless start_at_end
837 // is true, in which case this is an offset from the end of the
838 // output section.
839 uint64_t value;
840 // The size of the symbol.
841 uint64_t size;
842 // The symbol type.
843 elfcpp::STT type;
844 // The symbol binding.
845 elfcpp::STB binding;
846 // The symbol visibility.
847 elfcpp::STV visibility;
848 // The rest of the st_other field.
849 unsigned char nonvis;
850 // If true, the value field is an offset from the end of the output
851 // section.
852 bool offset_is_from_end;
853 // If true, this symbol is defined only if we see a reference to it.
854 bool only_if_ref;
855 };
856
857 // A struct describing a symbol defined by the linker, where the value
858 // of the symbol is defined based on a segment. This is used for
859 // symbols defined by the linker, like "_end". We describe the
860 // segment with which the symbol should be associated by its
861 // characteristics. If no segment meets these characteristics, the
862 // symbol will be defined as zero. If there is more than one segment
863 // which meets these characteristics, we will use the first one.
864
865 struct Define_symbol_in_segment
866 {
867 // The symbol name.
868 const char* name;
869 // The segment type where the symbol should be defined, typically
870 // PT_LOAD.
871 elfcpp::PT segment_type;
872 // Bitmask of segment flags which must be set.
873 elfcpp::PF segment_flags_set;
874 // Bitmask of segment flags which must be clear.
875 elfcpp::PF segment_flags_clear;
876 // The offset of the symbol within the segment. The offset is
877 // calculated from the position set by offset_base.
878 uint64_t value;
879 // The size of the symbol.
880 uint64_t size;
881 // The symbol type.
882 elfcpp::STT type;
883 // The symbol binding.
884 elfcpp::STB binding;
885 // The symbol visibility.
886 elfcpp::STV visibility;
887 // The rest of the st_other field.
888 unsigned char nonvis;
889 // The base from which we compute the offset.
890 Symbol::Segment_offset_base offset_base;
891 // If true, this symbol is defined only if we see a reference to it.
892 bool only_if_ref;
893 };
894
895 // This class manages warnings. Warnings are a GNU extension. When
896 // we see a section named .gnu.warning.SYM in an object file, and if
897 // we wind using the definition of SYM from that object file, then we
898 // will issue a warning for any relocation against SYM from a
899 // different object file. The text of the warning is the contents of
900 // the section. This is not precisely the definition used by the old
901 // GNU linker; the old GNU linker treated an occurrence of
902 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
903 // would trigger a warning on any reference. However, it was
904 // inconsistent in that a warning in a dynamic object only triggered
905 // if there was no definition in a regular object. This linker is
906 // different in that we only issue a warning if we use the symbol
907 // definition from the same object file as the warning section.
908
909 class Warnings
910 {
911 public:
912 Warnings()
913 : warnings_()
914 { }
915
916 // Add a warning for symbol NAME in section SHNDX in object OBJ.
917 void
918 add_warning(Symbol_table* symtab, const char* name, Object* obj,
919 unsigned int shndx);
920
921 // For each symbol for which we should give a warning, make a note
922 // on the symbol.
923 void
924 note_warnings(Symbol_table* symtab);
925
926 // Issue a warning for a reference to SYM at RELINFO's location.
927 template<int size, bool big_endian>
928 void
929 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
930 size_t relnum, off_t reloffset) const;
931
932 private:
933 Warnings(const Warnings&);
934 Warnings& operator=(const Warnings&);
935
936 // What we need to know to get the warning text.
937 struct Warning_location
938 {
939 // The object the warning is in.
940 Object* object;
941 // The index of the warning section.
942 unsigned int shndx;
943 // The warning text if we have already loaded it.
944 std::string text;
945
946 Warning_location()
947 : object(NULL), shndx(0), text()
948 { }
949
950 void
951 set(Object* o, unsigned int s)
952 {
953 this->object = o;
954 this->shndx = s;
955 }
956
957 void
958 set_text(const char* t, off_t l)
959 { this->text.assign(t, l); }
960 };
961
962 // A mapping from warning symbol names (canonicalized in
963 // Symbol_table's namepool_ field) to warning information.
964 typedef Unordered_map<const char*, Warning_location> Warning_table;
965
966 Warning_table warnings_;
967 };
968
969 // The main linker symbol table.
970
971 class Symbol_table
972 {
973 public:
974 Symbol_table();
975
976 ~Symbol_table();
977
978 // Add COUNT external symbols from the relocatable object RELOBJ to
979 // the symbol table. SYMS is the symbols, SYM_NAMES is their names,
980 // SYM_NAME_SIZE is the size of SYM_NAMES. This sets SYMPOINTERS to
981 // point to the symbols in the symbol table.
982 template<int size, bool big_endian>
983 void
984 add_from_relobj(Sized_relobj<size, big_endian>* relobj,
985 const unsigned char* syms, size_t count,
986 const char* sym_names, size_t sym_name_size,
987 typename Sized_relobj<size, big_endian>::Symbols*);
988
989 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
990 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
991 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
992 // symbol version data.
993 template<int size, bool big_endian>
994 void
995 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
996 const unsigned char* syms, size_t count,
997 const char* sym_names, size_t sym_name_size,
998 const unsigned char* versym, size_t versym_size,
999 const std::vector<const char*>*);
1000
1001 // Define a special symbol based on an Output_data. It is a
1002 // multiple definition error if this symbol is already defined.
1003 Symbol*
1004 define_in_output_data(const Target*, const char* name, const char* version,
1005 Output_data*, uint64_t value, uint64_t symsize,
1006 elfcpp::STT type, elfcpp::STB binding,
1007 elfcpp::STV visibility, unsigned char nonvis,
1008 bool offset_is_from_end, bool only_if_ref);
1009
1010 // Define a special symbol based on an Output_segment. It is a
1011 // multiple definition error if this symbol is already defined.
1012 Symbol*
1013 define_in_output_segment(const Target*, const char* name,
1014 const char* version, Output_segment*,
1015 uint64_t value, uint64_t symsize,
1016 elfcpp::STT type, elfcpp::STB binding,
1017 elfcpp::STV visibility, unsigned char nonvis,
1018 Symbol::Segment_offset_base, bool only_if_ref);
1019
1020 // Define a special symbol with a constant value. It is a multiple
1021 // definition error if this symbol is already defined.
1022 Symbol*
1023 define_as_constant(const Target*, const char* name, const char* version,
1024 uint64_t value, uint64_t symsize, elfcpp::STT type,
1025 elfcpp::STB binding, elfcpp::STV visibility,
1026 unsigned char nonvis, bool only_if_ref);
1027
1028 // Define a set of symbols in output sections.
1029 void
1030 define_symbols(const Layout*, const Target*, int count,
1031 const Define_symbol_in_section*);
1032
1033 // Define a set of symbols in output segments.
1034 void
1035 define_symbols(const Layout*, const Target*, int count,
1036 const Define_symbol_in_segment*);
1037
1038 // Define SYM using a COPY reloc. POSD is the Output_data where the
1039 // symbol should be defined--typically a .dyn.bss section. VALUE is
1040 // the offset within POSD.
1041 template<int size>
1042 void
1043 define_with_copy_reloc(const Target*, Sized_symbol<size>* sym,
1044 Output_data* posd, uint64_t value);
1045
1046 // Look up a symbol.
1047 Symbol*
1048 lookup(const char*, const char* version = NULL) const;
1049
1050 // Return the real symbol associated with the forwarder symbol FROM.
1051 Symbol*
1052 resolve_forwards(const Symbol* from) const;
1053
1054 // Return the sized version of a symbol in this table.
1055 template<int size>
1056 Sized_symbol<size>*
1057 get_sized_symbol(Symbol* ACCEPT_SIZE) const;
1058
1059 template<int size>
1060 const Sized_symbol<size>*
1061 get_sized_symbol(const Symbol* ACCEPT_SIZE) const;
1062
1063 // Return the count of undefined symbols seen.
1064 int
1065 saw_undefined() const
1066 { return this->saw_undefined_; }
1067
1068 // Allocate the common symbols
1069 void
1070 allocate_commons(const General_options&, Layout*);
1071
1072 // Add a warning for symbol NAME in section SHNDX in object OBJ.
1073 void
1074 add_warning(const char* name, Object* obj, unsigned int shndx)
1075 { this->warnings_.add_warning(this, name, obj, shndx); }
1076
1077 // Canonicalize a symbol name for use in the hash table.
1078 const char*
1079 canonicalize_name(const char* name)
1080 { return this->namepool_.add(name, true, NULL); }
1081
1082 // Possibly issue a warning for a reference to SYM at LOCATION which
1083 // is in OBJ.
1084 template<int size, bool big_endian>
1085 void
1086 issue_warning(const Symbol* sym,
1087 const Relocate_info<size, big_endian>* relinfo,
1088 size_t relnum, off_t reloffset) const
1089 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1090
1091 // Check candidate_odr_violations_ to find symbols with the same name
1092 // but apparently different definitions (different source-file/line-no).
1093 void
1094 detect_odr_violations(const char* output_file_name) const;
1095
1096 // SYM is defined using a COPY reloc. Return the dynamic object
1097 // where the original definition was found.
1098 Dynobj*
1099 get_copy_source(const Symbol* sym) const;
1100
1101 // Set the dynamic symbol indexes. INDEX is the index of the first
1102 // global dynamic symbol. Pointers to the symbols are stored into
1103 // the vector. The names are stored into the Stringpool. This
1104 // returns an updated dynamic symbol index.
1105 unsigned int
1106 set_dynsym_indexes(const Target*, unsigned int index,
1107 std::vector<Symbol*>*, Stringpool*, Versions*);
1108
1109 // Finalize the symbol table after we have set the final addresses
1110 // of all the input sections. This sets the final symbol indexes,
1111 // values and adds the names to *POOL. INDEX is the index of the
1112 // first global symbol. OFF is the file offset of the global symbol
1113 // table, DYNOFF is the offset of the globals in the dynamic symbol
1114 // table, DYN_GLOBAL_INDEX is the index of the first global dynamic
1115 // symbol, and DYNCOUNT is the number of global dynamic symbols.
1116 // This records the parameters, and returns the new file offset.
1117 off_t
1118 finalize(unsigned int index, off_t off, off_t dynoff,
1119 size_t dyn_global_index, size_t dyncount, Stringpool* pool);
1120
1121 // Write out the global symbols.
1122 void
1123 write_globals(const Input_objects*, const Stringpool*, const Stringpool*,
1124 Output_file*) const;
1125
1126 // Write out a section symbol. Return the updated offset.
1127 void
1128 write_section_symbol(const Output_section*, Output_file*, off_t) const;
1129
1130 // Dump statistical information to stderr.
1131 void
1132 print_stats() const;
1133
1134 private:
1135 Symbol_table(const Symbol_table&);
1136 Symbol_table& operator=(const Symbol_table&);
1137
1138 // Make FROM a forwarder symbol to TO.
1139 void
1140 make_forwarder(Symbol* from, Symbol* to);
1141
1142 // Add a symbol.
1143 template<int size, bool big_endian>
1144 Sized_symbol<size>*
1145 add_from_object(Object*, const char *name, Stringpool::Key name_key,
1146 const char *version, Stringpool::Key version_key,
1147 bool def, const elfcpp::Sym<size, big_endian>& sym,
1148 const elfcpp::Sym<size, big_endian>& orig_sym);
1149
1150 // Resolve symbols.
1151 template<int size, bool big_endian>
1152 void
1153 resolve(Sized_symbol<size>* to,
1154 const elfcpp::Sym<size, big_endian>& sym,
1155 const elfcpp::Sym<size, big_endian>& orig_sym,
1156 Object*, const char* version);
1157
1158 template<int size, bool big_endian>
1159 void
1160 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
1161 const char* version ACCEPT_SIZE_ENDIAN);
1162
1163 // Whether we should override a symbol, based on flags in
1164 // resolve.cc.
1165 static bool
1166 should_override(const Symbol*, unsigned int, Object*, bool*);
1167
1168 // Override a symbol.
1169 template<int size, bool big_endian>
1170 void
1171 override(Sized_symbol<size>* tosym,
1172 const elfcpp::Sym<size, big_endian>& fromsym,
1173 Object* object, const char* version);
1174
1175 // Whether we should override a symbol with a special symbol which
1176 // is automatically defined by the linker.
1177 static bool
1178 should_override_with_special(const Symbol*);
1179
1180 // Override a symbol with a special symbol.
1181 template<int size>
1182 void
1183 override_with_special(Sized_symbol<size>* tosym,
1184 const Sized_symbol<size>* fromsym);
1185
1186 // Record all weak alias sets for a dynamic object.
1187 template<int size>
1188 void
1189 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1190
1191 // Define a special symbol.
1192 template<int size, bool big_endian>
1193 Sized_symbol<size>*
1194 define_special_symbol(const Target* target, const char** pname,
1195 const char** pversion, bool only_if_ref,
1196 Sized_symbol<size>** poldsym ACCEPT_SIZE_ENDIAN);
1197
1198 // Define a symbol in an Output_data, sized version.
1199 template<int size>
1200 Sized_symbol<size>*
1201 do_define_in_output_data(const Target*, const char* name,
1202 const char* version, Output_data*,
1203 typename elfcpp::Elf_types<size>::Elf_Addr value,
1204 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1205 elfcpp::STT type, elfcpp::STB binding,
1206 elfcpp::STV visibility, unsigned char nonvis,
1207 bool offset_is_from_end, bool only_if_ref);
1208
1209 // Define a symbol in an Output_segment, sized version.
1210 template<int size>
1211 Sized_symbol<size>*
1212 do_define_in_output_segment(
1213 const Target*, const char* name, const char* version, Output_segment* os,
1214 typename elfcpp::Elf_types<size>::Elf_Addr value,
1215 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1216 elfcpp::STT type, elfcpp::STB binding,
1217 elfcpp::STV visibility, unsigned char nonvis,
1218 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1219
1220 // Define a symbol as a constant, sized version.
1221 template<int size>
1222 Sized_symbol<size>*
1223 do_define_as_constant(
1224 const Target*, const char* name, const char* version,
1225 typename elfcpp::Elf_types<size>::Elf_Addr value,
1226 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1227 elfcpp::STT type, elfcpp::STB binding,
1228 elfcpp::STV visibility, unsigned char nonvis,
1229 bool only_if_ref);
1230
1231 // Allocate the common symbols, sized version.
1232 template<int size>
1233 void
1234 do_allocate_commons(const General_options&, Layout*);
1235
1236 // Implement detect_odr_violations.
1237 template<int size, bool big_endian>
1238 void
1239 sized_detect_odr_violations() const;
1240
1241 // Finalize symbols specialized for size.
1242 template<int size>
1243 off_t
1244 sized_finalize(unsigned int, off_t, Stringpool*);
1245
1246 // Write globals specialized for size and endianness.
1247 template<int size, bool big_endian>
1248 void
1249 sized_write_globals(const Input_objects*, const Stringpool*,
1250 const Stringpool*, Output_file*) const;
1251
1252 // Write out a symbol to P.
1253 template<int size, bool big_endian>
1254 void
1255 sized_write_symbol(Sized_symbol<size>*,
1256 typename elfcpp::Elf_types<size>::Elf_Addr value,
1257 unsigned int shndx,
1258 const Stringpool*, unsigned char* p
1259 ACCEPT_SIZE_ENDIAN) const;
1260
1261 // Possibly warn about an undefined symbol from a dynamic object.
1262 void
1263 warn_about_undefined_dynobj_symbol(const Input_objects*, Symbol*) const;
1264
1265 // Write out a section symbol, specialized for size and endianness.
1266 template<int size, bool big_endian>
1267 void
1268 sized_write_section_symbol(const Output_section*, Output_file*, off_t) const;
1269
1270 // The type of the symbol hash table.
1271
1272 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1273
1274 struct Symbol_table_hash
1275 {
1276 size_t
1277 operator()(const Symbol_table_key&) const;
1278 };
1279
1280 struct Symbol_table_eq
1281 {
1282 bool
1283 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1284 };
1285
1286 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1287 Symbol_table_eq> Symbol_table_type;
1288
1289 // The type of the list of common symbols.
1290 typedef std::vector<Symbol*> Commons_type;
1291
1292 // A map from symbols with COPY relocs to the dynamic objects where
1293 // they are defined.
1294 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1295
1296 // A map from symbol name (as a pointer into the namepool) to all
1297 // the locations the symbols is (weakly) defined (and certain other
1298 // conditions are met). This map will be used later to detect
1299 // possible One Definition Rule (ODR) violations.
1300 struct Symbol_location
1301 {
1302 Object* object; // Object where the symbol is defined.
1303 unsigned int shndx; // Section-in-object where the symbol is defined.
1304 off_t offset; // Offset-in-section where the symbol is defined.
1305 bool operator==(const Symbol_location& that) const
1306 {
1307 return (this->object == that.object
1308 && this->shndx == that.shndx
1309 && this->offset == that.offset);
1310 }
1311 };
1312
1313 struct Symbol_location_hash
1314 {
1315 size_t operator()(const Symbol_location& loc) const
1316 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1317 };
1318
1319 typedef Unordered_map<const char*,
1320 Unordered_set<Symbol_location, Symbol_location_hash> >
1321 Odr_map;
1322
1323 // We increment this every time we see a new undefined symbol, for
1324 // use in archive groups.
1325 int saw_undefined_;
1326 // The index of the first global symbol in the output file.
1327 unsigned int first_global_index_;
1328 // The file offset within the output symtab section where we should
1329 // write the table.
1330 off_t offset_;
1331 // The number of global symbols we want to write out.
1332 size_t output_count_;
1333 // The file offset of the global dynamic symbols, or 0 if none.
1334 off_t dynamic_offset_;
1335 // The index of the first global dynamic symbol.
1336 unsigned int first_dynamic_global_index_;
1337 // The number of global dynamic symbols, or 0 if none.
1338 off_t dynamic_count_;
1339 // The symbol hash table.
1340 Symbol_table_type table_;
1341 // A pool of symbol names. This is used for all global symbols.
1342 // Entries in the hash table point into this pool.
1343 Stringpool namepool_;
1344 // Forwarding symbols.
1345 Unordered_map<const Symbol*, Symbol*> forwarders_;
1346 // Weak aliases. A symbol in this list points to the next alias.
1347 // The aliases point to each other in a circular list.
1348 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1349 // We don't expect there to be very many common symbols, so we keep
1350 // a list of them. When we find a common symbol we add it to this
1351 // list. It is possible that by the time we process the list the
1352 // symbol is no longer a common symbol. It may also have become a
1353 // forwarder.
1354 Commons_type commons_;
1355 // Manage symbol warnings.
1356 Warnings warnings_;
1357 // Manage potential One Definition Rule (ODR) violations.
1358 Odr_map candidate_odr_violations_;
1359
1360 // When we emit a COPY reloc for a symbol, we define it in an
1361 // Output_data. When it's time to emit version information for it,
1362 // we need to know the dynamic object in which we found the original
1363 // definition. This maps symbols with COPY relocs to the dynamic
1364 // object where they were defined.
1365 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1366 };
1367
1368 // We inline get_sized_symbol for efficiency.
1369
1370 template<int size>
1371 Sized_symbol<size>*
1372 Symbol_table::get_sized_symbol(Symbol* sym ACCEPT_SIZE) const
1373 {
1374 gold_assert(size == parameters->get_size());
1375 return static_cast<Sized_symbol<size>*>(sym);
1376 }
1377
1378 template<int size>
1379 const Sized_symbol<size>*
1380 Symbol_table::get_sized_symbol(const Symbol* sym ACCEPT_SIZE) const
1381 {
1382 gold_assert(size == parameters->get_size());
1383 return static_cast<const Sized_symbol<size>*>(sym);
1384 }
1385
1386 } // End namespace gold.
1387
1388 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.081222 seconds and 5 git commands to generate.