daily update
[deliverable/binutils-gdb.git] / gold / target.h
1 // target.h -- target support for gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // The abstract class Target is the interface for target specific
24 // support. It defines abstract methods which each target must
25 // implement. Typically there will be one target per processor, but
26 // in some cases it may be necessary to have subclasses.
27
28 // For speed and consistency we want to use inline functions to handle
29 // relocation processing. So besides implementations of the abstract
30 // methods, each target is expected to define a template
31 // specialization of the relocation functions.
32
33 #ifndef GOLD_TARGET_H
34 #define GOLD_TARGET_H
35
36 #include "elfcpp.h"
37 #include "options.h"
38 #include "parameters.h"
39 #include "debug.h"
40
41 namespace gold
42 {
43
44 class Object;
45 class Relobj;
46 template<int size, bool big_endian>
47 class Sized_relobj;
48 class Relocatable_relocs;
49 template<int size, bool big_endian>
50 class Relocate_info;
51 class Reloc_symbol_changes;
52 class Symbol;
53 template<int size>
54 class Sized_symbol;
55 class Symbol_table;
56 class Output_section;
57 class Input_objects;
58
59 // The abstract class for target specific handling.
60
61 class Target
62 {
63 public:
64 virtual ~Target()
65 { }
66
67 // Virtual function which is set to return true by a target if
68 // it can use relocation types to determine if a function's
69 // pointer is taken.
70 virtual bool
71 can_check_for_function_pointers() const
72 { return false; }
73
74 // Return the bit size that this target implements. This should
75 // return 32 or 64.
76 int
77 get_size() const
78 { return this->pti_->size; }
79
80 // Return whether this target is big-endian.
81 bool
82 is_big_endian() const
83 { return this->pti_->is_big_endian; }
84
85 // Machine code to store in e_machine field of ELF header.
86 elfcpp::EM
87 machine_code() const
88 { return this->pti_->machine_code; }
89
90 // Processor specific flags to store in e_flags field of ELF header.
91 elfcpp::Elf_Word
92 processor_specific_flags() const
93 { return this->processor_specific_flags_; }
94
95 // Whether processor specific flags are set at least once.
96 bool
97 are_processor_specific_flags_set() const
98 { return this->are_processor_specific_flags_set_; }
99
100 // Whether this target has a specific make_symbol function.
101 bool
102 has_make_symbol() const
103 { return this->pti_->has_make_symbol; }
104
105 // Whether this target has a specific resolve function.
106 bool
107 has_resolve() const
108 { return this->pti_->has_resolve; }
109
110 // Whether this target has a specific code fill function.
111 bool
112 has_code_fill() const
113 { return this->pti_->has_code_fill; }
114
115 // Return the default name of the dynamic linker.
116 const char*
117 dynamic_linker() const
118 { return this->pti_->dynamic_linker; }
119
120 // Return the default address to use for the text segment.
121 uint64_t
122 default_text_segment_address() const
123 { return this->pti_->default_text_segment_address; }
124
125 // Return the ABI specified page size.
126 uint64_t
127 abi_pagesize() const
128 {
129 if (parameters->options().max_page_size() > 0)
130 return parameters->options().max_page_size();
131 else
132 return this->pti_->abi_pagesize;
133 }
134
135 // Return the common page size used on actual systems.
136 uint64_t
137 common_pagesize() const
138 {
139 if (parameters->options().common_page_size() > 0)
140 return std::min(parameters->options().common_page_size(),
141 this->abi_pagesize());
142 else
143 return std::min(this->pti_->common_pagesize,
144 this->abi_pagesize());
145 }
146
147 // If we see some object files with .note.GNU-stack sections, and
148 // some objects files without them, this returns whether we should
149 // consider the object files without them to imply that the stack
150 // should be executable.
151 bool
152 is_default_stack_executable() const
153 { return this->pti_->is_default_stack_executable; }
154
155 // Return a character which may appear as a prefix for a wrap
156 // symbol. If this character appears, we strip it when checking for
157 // wrapping and add it back when forming the final symbol name.
158 // This should be '\0' if not special prefix is required, which is
159 // the normal case.
160 char
161 wrap_char() const
162 { return this->pti_->wrap_char; }
163
164 // Return the special section index which indicates a small common
165 // symbol. This will return SHN_UNDEF if there are no small common
166 // symbols.
167 elfcpp::Elf_Half
168 small_common_shndx() const
169 { return this->pti_->small_common_shndx; }
170
171 // Return values to add to the section flags for the section holding
172 // small common symbols.
173 elfcpp::Elf_Xword
174 small_common_section_flags() const
175 {
176 gold_assert(this->pti_->small_common_shndx != elfcpp::SHN_UNDEF);
177 return this->pti_->small_common_section_flags;
178 }
179
180 // Return the special section index which indicates a large common
181 // symbol. This will return SHN_UNDEF if there are no large common
182 // symbols.
183 elfcpp::Elf_Half
184 large_common_shndx() const
185 { return this->pti_->large_common_shndx; }
186
187 // Return values to add to the section flags for the section holding
188 // large common symbols.
189 elfcpp::Elf_Xword
190 large_common_section_flags() const
191 {
192 gold_assert(this->pti_->large_common_shndx != elfcpp::SHN_UNDEF);
193 return this->pti_->large_common_section_flags;
194 }
195
196 // This hook is called when an output section is created.
197 void
198 new_output_section(Output_section* os) const
199 { this->do_new_output_section(os); }
200
201 // This is called to tell the target to complete any sections it is
202 // handling. After this all sections must have their final size.
203 void
204 finalize_sections(Layout* layout, const Input_objects* input_objects,
205 Symbol_table* symtab)
206 { return this->do_finalize_sections(layout, input_objects, symtab); }
207
208 // Return the value to use for a global symbol which needs a special
209 // value in the dynamic symbol table. This will only be called if
210 // the backend first calls symbol->set_needs_dynsym_value().
211 uint64_t
212 dynsym_value(const Symbol* sym) const
213 { return this->do_dynsym_value(sym); }
214
215 // Return a string to use to fill out a code section. This is
216 // basically one or more NOPS which must fill out the specified
217 // length in bytes.
218 std::string
219 code_fill(section_size_type length) const
220 { return this->do_code_fill(length); }
221
222 // Return whether SYM is known to be defined by the ABI. This is
223 // used to avoid inappropriate warnings about undefined symbols.
224 bool
225 is_defined_by_abi(const Symbol* sym) const
226 { return this->do_is_defined_by_abi(sym); }
227
228 // Adjust the output file header before it is written out. VIEW
229 // points to the header in external form. LEN is the length.
230 void
231 adjust_elf_header(unsigned char* view, int len) const
232 { return this->do_adjust_elf_header(view, len); }
233
234 // Return whether NAME is a local label name. This is used to implement the
235 // --discard-locals options.
236 bool
237 is_local_label_name(const char* name) const
238 { return this->do_is_local_label_name(name); }
239
240 // Get the symbol index to use for a target specific reloc.
241 unsigned int
242 reloc_symbol_index(void* arg, unsigned int type) const
243 { return this->do_reloc_symbol_index(arg, type); }
244
245 // Get the addend to use for a target specific reloc.
246 uint64_t
247 reloc_addend(void* arg, unsigned int type, uint64_t addend) const
248 { return this->do_reloc_addend(arg, type, addend); }
249
250 // Return true if a reference to SYM from a reloc of type R_TYPE
251 // means that the current function may call an object compiled
252 // without -fsplit-stack. SYM is known to be defined in an object
253 // compiled without -fsplit-stack.
254 bool
255 is_call_to_non_split(const Symbol* sym, unsigned int r_type) const
256 { return this->do_is_call_to_non_split(sym, r_type); }
257
258 // A function starts at OFFSET in section SHNDX in OBJECT. That
259 // function was compiled with -fsplit-stack, but it refers to a
260 // function which was compiled without -fsplit-stack. VIEW is a
261 // modifiable view of the section; VIEW_SIZE is the size of the
262 // view. The target has to adjust the function so that it allocates
263 // enough stack.
264 void
265 calls_non_split(Relobj* object, unsigned int shndx,
266 section_offset_type fnoffset, section_size_type fnsize,
267 unsigned char* view, section_size_type view_size,
268 std::string* from, std::string* to) const
269 {
270 this->do_calls_non_split(object, shndx, fnoffset, fnsize, view, view_size,
271 from, to);
272 }
273
274 // Make an ELF object.
275 template<int size, bool big_endian>
276 Object*
277 make_elf_object(const std::string& name, Input_file* input_file,
278 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
279 { return this->do_make_elf_object(name, input_file, offset, ehdr); }
280
281 // Make an output section.
282 Output_section*
283 make_output_section(const char* name, elfcpp::Elf_Word type,
284 elfcpp::Elf_Xword flags)
285 { return this->do_make_output_section(name, type, flags); }
286
287 // Return true if target wants to perform relaxation.
288 bool
289 may_relax() const
290 {
291 // Run the dummy relaxation pass twice if relaxation debugging is enabled.
292 if (is_debugging_enabled(DEBUG_RELAXATION))
293 return true;
294
295 return this->do_may_relax();
296 }
297
298 // Perform a relaxation pass. Return true if layout may be changed.
299 bool
300 relax(int pass, const Input_objects* input_objects, Symbol_table* symtab,
301 Layout* layout)
302 {
303 // Run the dummy relaxation pass twice if relaxation debugging is enabled.
304 if (is_debugging_enabled(DEBUG_RELAXATION))
305 return pass < 2;
306
307 return this->do_relax(pass, input_objects, symtab, layout);
308 }
309
310 // Return the target-specific name of attributes section. This is
311 // NULL if a target does not use attributes section or if it uses
312 // the default section name ".gnu.attributes".
313 const char*
314 attributes_section() const
315 { return this->pti_->attributes_section; }
316
317 // Return the vendor name of vendor attributes.
318 const char*
319 attributes_vendor() const
320 { return this->pti_->attributes_vendor; }
321
322 // Whether a section called NAME is an attribute section.
323 bool
324 is_attributes_section(const char* name) const
325 {
326 return ((this->pti_->attributes_section != NULL
327 && strcmp(name, this->pti_->attributes_section) == 0)
328 || strcmp(name, ".gnu.attributes") == 0);
329 }
330
331 // Return a bit mask of argument types for attribute with TAG.
332 int
333 attribute_arg_type(int tag) const
334 { return this->do_attribute_arg_type(tag); }
335
336 // Return the attribute tag of the position NUM in the list of fixed
337 // attributes. Normally there is no reordering and
338 // attributes_order(NUM) == NUM.
339 int
340 attributes_order(int num) const
341 { return this->do_attributes_order(num); }
342
343 // When a target is selected as the default target, we call this method,
344 // which may be used for expensive, target-specific initialization.
345 void
346 select_as_default_target()
347 { this->do_select_as_default_target(); }
348
349 protected:
350 // This struct holds the constant information for a child class. We
351 // use a struct to avoid the overhead of virtual function calls for
352 // simple information.
353 struct Target_info
354 {
355 // Address size (32 or 64).
356 int size;
357 // Whether the target is big endian.
358 bool is_big_endian;
359 // The code to store in the e_machine field of the ELF header.
360 elfcpp::EM machine_code;
361 // Whether this target has a specific make_symbol function.
362 bool has_make_symbol;
363 // Whether this target has a specific resolve function.
364 bool has_resolve;
365 // Whether this target has a specific code fill function.
366 bool has_code_fill;
367 // Whether an object file with no .note.GNU-stack sections implies
368 // that the stack should be executable.
369 bool is_default_stack_executable;
370 // Prefix character to strip when checking for wrapping.
371 char wrap_char;
372 // The default dynamic linker name.
373 const char* dynamic_linker;
374 // The default text segment address.
375 uint64_t default_text_segment_address;
376 // The ABI specified page size.
377 uint64_t abi_pagesize;
378 // The common page size used by actual implementations.
379 uint64_t common_pagesize;
380 // The special section index for small common symbols; SHN_UNDEF
381 // if none.
382 elfcpp::Elf_Half small_common_shndx;
383 // The special section index for large common symbols; SHN_UNDEF
384 // if none.
385 elfcpp::Elf_Half large_common_shndx;
386 // Section flags for small common section.
387 elfcpp::Elf_Xword small_common_section_flags;
388 // Section flags for large common section.
389 elfcpp::Elf_Xword large_common_section_flags;
390 // Name of attributes section if it is not ".gnu.attributes".
391 const char* attributes_section;
392 // Vendor name of vendor attributes.
393 const char* attributes_vendor;
394 };
395
396 Target(const Target_info* pti)
397 : pti_(pti), processor_specific_flags_(0),
398 are_processor_specific_flags_set_(false)
399 { }
400
401 // Virtual function which may be implemented by the child class.
402 virtual void
403 do_new_output_section(Output_section*) const
404 { }
405
406 // Virtual function which may be implemented by the child class.
407 virtual void
408 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*)
409 { }
410
411 // Virtual function which may be implemented by the child class.
412 virtual uint64_t
413 do_dynsym_value(const Symbol*) const
414 { gold_unreachable(); }
415
416 // Virtual function which must be implemented by the child class if
417 // needed.
418 virtual std::string
419 do_code_fill(section_size_type) const
420 { gold_unreachable(); }
421
422 // Virtual function which may be implemented by the child class.
423 virtual bool
424 do_is_defined_by_abi(const Symbol*) const
425 { return false; }
426
427 // Adjust the output file header before it is written out. VIEW
428 // points to the header in external form. LEN is the length, and
429 // will be one of the values of elfcpp::Elf_sizes<size>::ehdr_size.
430 // By default, we do nothing.
431 virtual void
432 do_adjust_elf_header(unsigned char*, int) const
433 { }
434
435 // Virtual function which may be overriden by the child class.
436 virtual bool
437 do_is_local_label_name(const char*) const;
438
439 // Virtual function that must be overridden by a target which uses
440 // target specific relocations.
441 virtual unsigned int
442 do_reloc_symbol_index(void*, unsigned int) const
443 { gold_unreachable(); }
444
445 // Virtual function that must be overidden by a target which uses
446 // target specific relocations.
447 virtual uint64_t
448 do_reloc_addend(void*, unsigned int, uint64_t) const
449 { gold_unreachable(); }
450
451 // Virtual function which may be overridden by the child class. The
452 // default implementation is that any function not defined by the
453 // ABI is a call to a non-split function.
454 virtual bool
455 do_is_call_to_non_split(const Symbol* sym, unsigned int) const;
456
457 // Virtual function which may be overridden by the child class.
458 virtual void
459 do_calls_non_split(Relobj* object, unsigned int, section_offset_type,
460 section_size_type, unsigned char*, section_size_type,
461 std::string*, std::string*) const;
462
463 // make_elf_object hooks. There are four versions of these for
464 // different address sizes and endianness.
465
466 // Set processor specific flags.
467 void
468 set_processor_specific_flags(elfcpp::Elf_Word flags)
469 {
470 this->processor_specific_flags_ = flags;
471 this->are_processor_specific_flags_set_ = true;
472 }
473
474 #ifdef HAVE_TARGET_32_LITTLE
475 // Virtual functions which may be overriden by the child class.
476 virtual Object*
477 do_make_elf_object(const std::string&, Input_file*, off_t,
478 const elfcpp::Ehdr<32, false>&);
479 #endif
480
481 #ifdef HAVE_TARGET_32_BIG
482 // Virtual functions which may be overriden by the child class.
483 virtual Object*
484 do_make_elf_object(const std::string&, Input_file*, off_t,
485 const elfcpp::Ehdr<32, true>&);
486 #endif
487
488 #ifdef HAVE_TARGET_64_LITTLE
489 // Virtual functions which may be overriden by the child class.
490 virtual Object*
491 do_make_elf_object(const std::string&, Input_file*, off_t,
492 const elfcpp::Ehdr<64, false>& ehdr);
493 #endif
494
495 #ifdef HAVE_TARGET_64_BIG
496 // Virtual functions which may be overriden by the child class.
497 virtual Object*
498 do_make_elf_object(const std::string& name, Input_file* input_file,
499 off_t offset, const elfcpp::Ehdr<64, true>& ehdr);
500 #endif
501
502 // Virtual functions which may be overriden by the child class.
503 virtual Output_section*
504 do_make_output_section(const char* name, elfcpp::Elf_Word type,
505 elfcpp::Elf_Xword flags);
506
507 // Virtual function which may be overriden by the child class.
508 virtual bool
509 do_may_relax() const
510 { return parameters->options().relax(); }
511
512 // Virtual function which may be overriden by the child class.
513 virtual bool
514 do_relax(int, const Input_objects*, Symbol_table*, Layout*)
515 { return false; }
516
517 // A function for targets to call. Return whether BYTES/LEN matches
518 // VIEW/VIEW_SIZE at OFFSET.
519 bool
520 match_view(const unsigned char* view, section_size_type view_size,
521 section_offset_type offset, const char* bytes, size_t len) const;
522
523 // Set the contents of a VIEW/VIEW_SIZE to nops starting at OFFSET
524 // for LEN bytes.
525 void
526 set_view_to_nop(unsigned char* view, section_size_type view_size,
527 section_offset_type offset, size_t len) const;
528
529 // This must be overriden by the child class if it has target-specific
530 // attributes subsection in the attribute section.
531 virtual int
532 do_attribute_arg_type(int) const
533 { gold_unreachable(); }
534
535 // This may be overridden by the child class.
536 virtual int
537 do_attributes_order(int num) const
538 { return num; }
539
540 // This may be overridden by the child class.
541 virtual void
542 do_select_as_default_target()
543 { }
544
545 private:
546 // The implementations of the four do_make_elf_object virtual functions are
547 // almost identical except for their sizes and endianness. We use a template.
548 // for their implementations.
549 template<int size, bool big_endian>
550 inline Object*
551 do_make_elf_object_implementation(const std::string&, Input_file*, off_t,
552 const elfcpp::Ehdr<size, big_endian>&);
553
554 Target(const Target&);
555 Target& operator=(const Target&);
556
557 // The target information.
558 const Target_info* pti_;
559 // Processor-specific flags.
560 elfcpp::Elf_Word processor_specific_flags_;
561 // Whether the processor-specific flags are set at least once.
562 bool are_processor_specific_flags_set_;
563 };
564
565 // The abstract class for a specific size and endianness of target.
566 // Each actual target implementation class should derive from an
567 // instantiation of Sized_target.
568
569 template<int size, bool big_endian>
570 class Sized_target : public Target
571 {
572 public:
573 // Make a new symbol table entry for the target. This should be
574 // overridden by a target which needs additional information in the
575 // symbol table. This will only be called if has_make_symbol()
576 // returns true.
577 virtual Sized_symbol<size>*
578 make_symbol() const
579 { gold_unreachable(); }
580
581 // Resolve a symbol for the target. This should be overridden by a
582 // target which needs to take special action. TO is the
583 // pre-existing symbol. SYM is the new symbol, seen in OBJECT.
584 // VERSION is the version of SYM. This will only be called if
585 // has_resolve() returns true.
586 virtual void
587 resolve(Symbol*, const elfcpp::Sym<size, big_endian>&, Object*,
588 const char*)
589 { gold_unreachable(); }
590
591 // Process the relocs for a section, and record information of the
592 // mapping from source to destination sections. This mapping is later
593 // used to determine unreferenced garbage sections. This procedure is
594 // only called during garbage collection.
595 virtual void
596 gc_process_relocs(Symbol_table* symtab,
597 Layout* layout,
598 Sized_relobj<size, big_endian>* object,
599 unsigned int data_shndx,
600 unsigned int sh_type,
601 const unsigned char* prelocs,
602 size_t reloc_count,
603 Output_section* output_section,
604 bool needs_special_offset_handling,
605 size_t local_symbol_count,
606 const unsigned char* plocal_symbols) = 0;
607
608 // Scan the relocs for a section, and record any information
609 // required for the symbol. SYMTAB is the symbol table. OBJECT is
610 // the object in which the section appears. DATA_SHNDX is the
611 // section index that these relocs apply to. SH_TYPE is the type of
612 // the relocation section, SHT_REL or SHT_RELA. PRELOCS points to
613 // the relocation data. RELOC_COUNT is the number of relocs.
614 // LOCAL_SYMBOL_COUNT is the number of local symbols.
615 // OUTPUT_SECTION is the output section.
616 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets to the output
617 // sections are not mapped as usual. PLOCAL_SYMBOLS points to the
618 // local symbol data from OBJECT. GLOBAL_SYMBOLS is the array of
619 // pointers to the global symbol table from OBJECT.
620 virtual void
621 scan_relocs(Symbol_table* symtab,
622 Layout* layout,
623 Sized_relobj<size, big_endian>* object,
624 unsigned int data_shndx,
625 unsigned int sh_type,
626 const unsigned char* prelocs,
627 size_t reloc_count,
628 Output_section* output_section,
629 bool needs_special_offset_handling,
630 size_t local_symbol_count,
631 const unsigned char* plocal_symbols) = 0;
632
633 // Relocate section data. SH_TYPE is the type of the relocation
634 // section, SHT_REL or SHT_RELA. PRELOCS points to the relocation
635 // information. RELOC_COUNT is the number of relocs.
636 // OUTPUT_SECTION is the output section.
637 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets must be mapped
638 // to correspond to the output section. VIEW is a view into the
639 // output file holding the section contents, VIEW_ADDRESS is the
640 // virtual address of the view, and VIEW_SIZE is the size of the
641 // view. If NEEDS_SPECIAL_OFFSET_HANDLING is true, the VIEW_xx
642 // parameters refer to the complete output section data, not just
643 // the input section data.
644 virtual void
645 relocate_section(const Relocate_info<size, big_endian>*,
646 unsigned int sh_type,
647 const unsigned char* prelocs,
648 size_t reloc_count,
649 Output_section* output_section,
650 bool needs_special_offset_handling,
651 unsigned char* view,
652 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
653 section_size_type view_size,
654 const Reloc_symbol_changes*) = 0;
655
656 // Scan the relocs during a relocatable link. The parameters are
657 // like scan_relocs, with an additional Relocatable_relocs
658 // parameter, used to record the disposition of the relocs.
659 virtual void
660 scan_relocatable_relocs(Symbol_table* symtab,
661 Layout* layout,
662 Sized_relobj<size, big_endian>* object,
663 unsigned int data_shndx,
664 unsigned int sh_type,
665 const unsigned char* prelocs,
666 size_t reloc_count,
667 Output_section* output_section,
668 bool needs_special_offset_handling,
669 size_t local_symbol_count,
670 const unsigned char* plocal_symbols,
671 Relocatable_relocs*) = 0;
672
673 // Relocate a section during a relocatable link. The parameters are
674 // like relocate_section, with additional parameters for the view of
675 // the output reloc section.
676 virtual void
677 relocate_for_relocatable(const Relocate_info<size, big_endian>*,
678 unsigned int sh_type,
679 const unsigned char* prelocs,
680 size_t reloc_count,
681 Output_section* output_section,
682 off_t offset_in_output_section,
683 const Relocatable_relocs*,
684 unsigned char* view,
685 typename elfcpp::Elf_types<size>::Elf_Addr
686 view_address,
687 section_size_type view_size,
688 unsigned char* reloc_view,
689 section_size_type reloc_view_size) = 0;
690
691 // Perform target-specific processing in a relocatable link. This is
692 // only used if we use the relocation strategy RELOC_SPECIAL.
693 // RELINFO points to a Relocation_info structure. SH_TYPE is the relocation
694 // section type. PRELOC_IN points to the original relocation. RELNUM is
695 // the index number of the relocation in the relocation section.
696 // OUTPUT_SECTION is the output section to which the relocation is applied.
697 // OFFSET_IN_OUTPUT_SECTION is the offset of the relocation input section
698 // within the output section. VIEW points to the output view of the
699 // output section. VIEW_ADDRESS is output address of the view. VIEW_SIZE
700 // is the size of the output view and PRELOC_OUT points to the new
701 // relocation in the output object.
702 //
703 // A target only needs to override this if the generic code in
704 // target-reloc.h cannot handle some relocation types.
705
706 virtual void
707 relocate_special_relocatable(const Relocate_info<size, big_endian>*
708 /*relinfo */,
709 unsigned int /* sh_type */,
710 const unsigned char* /* preloc_in */,
711 size_t /* relnum */,
712 Output_section* /* output_section */,
713 off_t /* offset_in_output_section */,
714 unsigned char* /* view */,
715 typename elfcpp::Elf_types<size>::Elf_Addr
716 /* view_address */,
717 section_size_type /* view_size */,
718 unsigned char* /* preloc_out*/)
719 { gold_unreachable(); }
720
721 protected:
722 Sized_target(const Target::Target_info* pti)
723 : Target(pti)
724 {
725 gold_assert(pti->size == size);
726 gold_assert(pti->is_big_endian ? big_endian : !big_endian);
727 }
728 };
729
730 } // End namespace gold.
731
732 #endif // !defined(GOLD_TARGET_H)
This page took 0.047407 seconds and 4 git commands to generate.