ea8915c03594199a133e07c74db03b0006373eff
[deliverable/binutils-gdb.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "x86_64.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "copy-relocs.h"
36 #include "target.h"
37 #include "target-reloc.h"
38 #include "target-select.h"
39 #include "tls.h"
40 #include "freebsd.h"
41 #include "gc.h"
42
43 namespace
44 {
45
46 using namespace gold;
47
48 class Output_data_plt_x86_64;
49
50 // The x86_64 target class.
51 // See the ABI at
52 // http://www.x86-64.org/documentation/abi.pdf
53 // TLS info comes from
54 // http://people.redhat.com/drepper/tls.pdf
55 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
56
57 class Target_x86_64 : public Target_freebsd<64, false>
58 {
59 public:
60 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
61 // uses only Elf64_Rela relocation entries with explicit addends."
62 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
63
64 Target_x86_64()
65 : Target_freebsd<64, false>(&x86_64_info),
66 got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
67 copy_relocs_(elfcpp::R_X86_64_COPY), dynbss_(NULL),
68 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false)
69 { }
70
71 // Hook for a new output section.
72 void
73 do_new_output_section(Output_section*) const;
74
75 // Scan the relocations to look for symbol adjustments.
76 void
77 gc_process_relocs(Symbol_table* symtab,
78 Layout* layout,
79 Sized_relobj<64, false>* object,
80 unsigned int data_shndx,
81 unsigned int sh_type,
82 const unsigned char* prelocs,
83 size_t reloc_count,
84 Output_section* output_section,
85 bool needs_special_offset_handling,
86 size_t local_symbol_count,
87 const unsigned char* plocal_symbols);
88
89 // Scan the relocations to look for symbol adjustments.
90 void
91 scan_relocs(Symbol_table* symtab,
92 Layout* layout,
93 Sized_relobj<64, false>* object,
94 unsigned int data_shndx,
95 unsigned int sh_type,
96 const unsigned char* prelocs,
97 size_t reloc_count,
98 Output_section* output_section,
99 bool needs_special_offset_handling,
100 size_t local_symbol_count,
101 const unsigned char* plocal_symbols);
102
103 // Finalize the sections.
104 void
105 do_finalize_sections(Layout*);
106
107 // Return the value to use for a dynamic which requires special
108 // treatment.
109 uint64_t
110 do_dynsym_value(const Symbol*) const;
111
112 // Relocate a section.
113 void
114 relocate_section(const Relocate_info<64, false>*,
115 unsigned int sh_type,
116 const unsigned char* prelocs,
117 size_t reloc_count,
118 Output_section* output_section,
119 bool needs_special_offset_handling,
120 unsigned char* view,
121 elfcpp::Elf_types<64>::Elf_Addr view_address,
122 section_size_type view_size,
123 const Reloc_symbol_changes*);
124
125 // Scan the relocs during a relocatable link.
126 void
127 scan_relocatable_relocs(Symbol_table* symtab,
128 Layout* layout,
129 Sized_relobj<64, false>* object,
130 unsigned int data_shndx,
131 unsigned int sh_type,
132 const unsigned char* prelocs,
133 size_t reloc_count,
134 Output_section* output_section,
135 bool needs_special_offset_handling,
136 size_t local_symbol_count,
137 const unsigned char* plocal_symbols,
138 Relocatable_relocs*);
139
140 // Relocate a section during a relocatable link.
141 void
142 relocate_for_relocatable(const Relocate_info<64, false>*,
143 unsigned int sh_type,
144 const unsigned char* prelocs,
145 size_t reloc_count,
146 Output_section* output_section,
147 off_t offset_in_output_section,
148 const Relocatable_relocs*,
149 unsigned char* view,
150 elfcpp::Elf_types<64>::Elf_Addr view_address,
151 section_size_type view_size,
152 unsigned char* reloc_view,
153 section_size_type reloc_view_size);
154
155 // Return a string used to fill a code section with nops.
156 std::string
157 do_code_fill(section_size_type length) const;
158
159 // Return whether SYM is defined by the ABI.
160 bool
161 do_is_defined_by_abi(const Symbol* sym) const
162 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
163
164 // Adjust -fstack-split code which calls non-stack-split code.
165 void
166 do_calls_non_split(Relobj* object, unsigned int shndx,
167 section_offset_type fnoffset, section_size_type fnsize,
168 unsigned char* view, section_size_type view_size,
169 std::string* from, std::string* to) const;
170
171 // Return the size of the GOT section.
172 section_size_type
173 got_size()
174 {
175 gold_assert(this->got_ != NULL);
176 return this->got_->data_size();
177 }
178
179 private:
180 // The class which scans relocations.
181 class Scan
182 {
183 public:
184 Scan()
185 : issued_non_pic_error_(false)
186 { }
187
188 inline void
189 local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
190 Sized_relobj<64, false>* object,
191 unsigned int data_shndx,
192 Output_section* output_section,
193 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
194 const elfcpp::Sym<64, false>& lsym);
195
196 inline void
197 global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
198 Sized_relobj<64, false>* object,
199 unsigned int data_shndx,
200 Output_section* output_section,
201 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
202 Symbol* gsym);
203
204 private:
205 static void
206 unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
207
208 static void
209 unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
210 Symbol*);
211
212 void
213 check_non_pic(Relobj*, unsigned int r_type);
214
215 // Whether we have issued an error about a non-PIC compilation.
216 bool issued_non_pic_error_;
217 };
218
219 // The class which implements relocation.
220 class Relocate
221 {
222 public:
223 Relocate()
224 : skip_call_tls_get_addr_(false), saw_tls_block_reloc_(false)
225 { }
226
227 ~Relocate()
228 {
229 if (this->skip_call_tls_get_addr_)
230 {
231 // FIXME: This needs to specify the location somehow.
232 gold_error(_("missing expected TLS relocation"));
233 }
234 }
235
236 // Do a relocation. Return false if the caller should not issue
237 // any warnings about this relocation.
238 inline bool
239 relocate(const Relocate_info<64, false>*, Target_x86_64*, Output_section*,
240 size_t relnum, const elfcpp::Rela<64, false>&,
241 unsigned int r_type, const Sized_symbol<64>*,
242 const Symbol_value<64>*,
243 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
244 section_size_type);
245
246 private:
247 // Do a TLS relocation.
248 inline void
249 relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
250 size_t relnum, const elfcpp::Rela<64, false>&,
251 unsigned int r_type, const Sized_symbol<64>*,
252 const Symbol_value<64>*,
253 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
254 section_size_type);
255
256 // Do a TLS General-Dynamic to Initial-Exec transition.
257 inline void
258 tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
259 Output_segment* tls_segment,
260 const elfcpp::Rela<64, false>&, unsigned int r_type,
261 elfcpp::Elf_types<64>::Elf_Addr value,
262 unsigned char* view,
263 elfcpp::Elf_types<64>::Elf_Addr,
264 section_size_type view_size);
265
266 // Do a TLS General-Dynamic to Local-Exec transition.
267 inline void
268 tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
269 Output_segment* tls_segment,
270 const elfcpp::Rela<64, false>&, unsigned int r_type,
271 elfcpp::Elf_types<64>::Elf_Addr value,
272 unsigned char* view,
273 section_size_type view_size);
274
275 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
276 inline void
277 tls_desc_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
278 Output_segment* tls_segment,
279 const elfcpp::Rela<64, false>&, unsigned int r_type,
280 elfcpp::Elf_types<64>::Elf_Addr value,
281 unsigned char* view,
282 elfcpp::Elf_types<64>::Elf_Addr,
283 section_size_type view_size);
284
285 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
286 inline void
287 tls_desc_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
288 Output_segment* tls_segment,
289 const elfcpp::Rela<64, false>&, unsigned int r_type,
290 elfcpp::Elf_types<64>::Elf_Addr value,
291 unsigned char* view,
292 section_size_type view_size);
293
294 // Do a TLS Local-Dynamic to Local-Exec transition.
295 inline void
296 tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
297 Output_segment* tls_segment,
298 const elfcpp::Rela<64, false>&, unsigned int r_type,
299 elfcpp::Elf_types<64>::Elf_Addr value,
300 unsigned char* view,
301 section_size_type view_size);
302
303 // Do a TLS Initial-Exec to Local-Exec transition.
304 static inline void
305 tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
306 Output_segment* tls_segment,
307 const elfcpp::Rela<64, false>&, unsigned int r_type,
308 elfcpp::Elf_types<64>::Elf_Addr value,
309 unsigned char* view,
310 section_size_type view_size);
311
312 // This is set if we should skip the next reloc, which should be a
313 // PLT32 reloc against ___tls_get_addr.
314 bool skip_call_tls_get_addr_;
315
316 // This is set if we see a relocation which could load the address
317 // of the TLS block. Whether we see such a relocation determines
318 // how we handle the R_X86_64_DTPOFF32 relocation, which is used
319 // in debugging sections.
320 bool saw_tls_block_reloc_;
321 };
322
323 // A class which returns the size required for a relocation type,
324 // used while scanning relocs during a relocatable link.
325 class Relocatable_size_for_reloc
326 {
327 public:
328 unsigned int
329 get_size_for_reloc(unsigned int, Relobj*);
330 };
331
332 // Adjust TLS relocation type based on the options and whether this
333 // is a local symbol.
334 static tls::Tls_optimization
335 optimize_tls_reloc(bool is_final, int r_type);
336
337 // Get the GOT section, creating it if necessary.
338 Output_data_got<64, false>*
339 got_section(Symbol_table*, Layout*);
340
341 // Get the GOT PLT section.
342 Output_data_space*
343 got_plt_section() const
344 {
345 gold_assert(this->got_plt_ != NULL);
346 return this->got_plt_;
347 }
348
349 // Create the PLT section.
350 void
351 make_plt_section(Symbol_table* symtab, Layout* layout);
352
353 // Create a PLT entry for a global symbol.
354 void
355 make_plt_entry(Symbol_table*, Layout*, Symbol*);
356
357 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
358 void
359 define_tls_base_symbol(Symbol_table*, Layout*);
360
361 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
362 void
363 reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
364
365 // Create a GOT entry for the TLS module index.
366 unsigned int
367 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
368 Sized_relobj<64, false>* object);
369
370 // Get the PLT section.
371 Output_data_plt_x86_64*
372 plt_section() const
373 {
374 gold_assert(this->plt_ != NULL);
375 return this->plt_;
376 }
377
378 // Get the dynamic reloc section, creating it if necessary.
379 Reloc_section*
380 rela_dyn_section(Layout*);
381
382 // Add a potential copy relocation.
383 void
384 copy_reloc(Symbol_table* symtab, Layout* layout,
385 Sized_relobj<64, false>* object,
386 unsigned int shndx, Output_section* output_section,
387 Symbol* sym, const elfcpp::Rela<64, false>& reloc)
388 {
389 this->copy_relocs_.copy_reloc(symtab, layout,
390 symtab->get_sized_symbol<64>(sym),
391 object, shndx, output_section,
392 reloc, this->rela_dyn_section(layout));
393 }
394
395 // Information about this specific target which we pass to the
396 // general Target structure.
397 static const Target::Target_info x86_64_info;
398
399 enum Got_type
400 {
401 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
402 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
403 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
404 GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair
405 };
406
407 // The GOT section.
408 Output_data_got<64, false>* got_;
409 // The PLT section.
410 Output_data_plt_x86_64* plt_;
411 // The GOT PLT section.
412 Output_data_space* got_plt_;
413 // The dynamic reloc section.
414 Reloc_section* rela_dyn_;
415 // Relocs saved to avoid a COPY reloc.
416 Copy_relocs<elfcpp::SHT_RELA, 64, false> copy_relocs_;
417 // Space for variables copied with a COPY reloc.
418 Output_data_space* dynbss_;
419 // Offset of the GOT entry for the TLS module index.
420 unsigned int got_mod_index_offset_;
421 // True if the _TLS_MODULE_BASE_ symbol has been defined.
422 bool tls_base_symbol_defined_;
423 };
424
425 const Target::Target_info Target_x86_64::x86_64_info =
426 {
427 64, // size
428 false, // is_big_endian
429 elfcpp::EM_X86_64, // machine_code
430 false, // has_make_symbol
431 false, // has_resolve
432 true, // has_code_fill
433 true, // is_default_stack_executable
434 '\0', // wrap_char
435 "/lib/ld64.so.1", // program interpreter
436 0x400000, // default_text_segment_address
437 0x1000, // abi_pagesize (overridable by -z max-page-size)
438 0x1000, // common_pagesize (overridable by -z common-page-size)
439 elfcpp::SHN_UNDEF, // small_common_shndx
440 elfcpp::SHN_X86_64_LCOMMON, // large_common_shndx
441 0, // small_common_section_flags
442 elfcpp::SHF_X86_64_LARGE // large_common_section_flags
443 };
444
445 // This is called when a new output section is created. This is where
446 // we handle the SHF_X86_64_LARGE.
447
448 void
449 Target_x86_64::do_new_output_section(Output_section *os) const
450 {
451 if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
452 os->set_is_large_section();
453 }
454
455 // Get the GOT section, creating it if necessary.
456
457 Output_data_got<64, false>*
458 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
459 {
460 if (this->got_ == NULL)
461 {
462 gold_assert(symtab != NULL && layout != NULL);
463
464 this->got_ = new Output_data_got<64, false>();
465
466 Output_section* os;
467 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
468 (elfcpp::SHF_ALLOC
469 | elfcpp::SHF_WRITE),
470 this->got_);
471 os->set_is_relro();
472
473 // The old GNU linker creates a .got.plt section. We just
474 // create another set of data in the .got section. Note that we
475 // always create a PLT if we create a GOT, although the PLT
476 // might be empty.
477 this->got_plt_ = new Output_data_space(8, "** GOT PLT");
478 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
479 (elfcpp::SHF_ALLOC
480 | elfcpp::SHF_WRITE),
481 this->got_plt_);
482 os->set_is_relro();
483
484 // The first three entries are reserved.
485 this->got_plt_->set_current_data_size(3 * 8);
486
487 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
488 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
489 this->got_plt_,
490 0, 0, elfcpp::STT_OBJECT,
491 elfcpp::STB_LOCAL,
492 elfcpp::STV_HIDDEN, 0,
493 false, false);
494 }
495
496 return this->got_;
497 }
498
499 // Get the dynamic reloc section, creating it if necessary.
500
501 Target_x86_64::Reloc_section*
502 Target_x86_64::rela_dyn_section(Layout* layout)
503 {
504 if (this->rela_dyn_ == NULL)
505 {
506 gold_assert(layout != NULL);
507 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
508 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
509 elfcpp::SHF_ALLOC, this->rela_dyn_);
510 }
511 return this->rela_dyn_;
512 }
513
514 // A class to handle the PLT data.
515
516 class Output_data_plt_x86_64 : public Output_section_data
517 {
518 public:
519 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
520
521 Output_data_plt_x86_64(Layout*, Output_data_got<64, false>*,
522 Output_data_space*);
523
524 // Add an entry to the PLT.
525 void
526 add_entry(Symbol* gsym);
527
528 // Add the reserved TLSDESC_PLT entry to the PLT.
529 void
530 reserve_tlsdesc_entry(unsigned int got_offset)
531 { this->tlsdesc_got_offset_ = got_offset; }
532
533 // Return true if a TLSDESC_PLT entry has been reserved.
534 bool
535 has_tlsdesc_entry() const
536 { return this->tlsdesc_got_offset_ != -1U; }
537
538 // Return the GOT offset for the reserved TLSDESC_PLT entry.
539 unsigned int
540 get_tlsdesc_got_offset() const
541 { return this->tlsdesc_got_offset_; }
542
543 // Return the offset of the reserved TLSDESC_PLT entry.
544 unsigned int
545 get_tlsdesc_plt_offset() const
546 { return (this->count_ + 1) * plt_entry_size; }
547
548 // Return the .rel.plt section data.
549 const Reloc_section*
550 rel_plt() const
551 { return this->rel_; }
552
553 protected:
554 void
555 do_adjust_output_section(Output_section* os);
556
557 // Write to a map file.
558 void
559 do_print_to_mapfile(Mapfile* mapfile) const
560 { mapfile->print_output_data(this, _("** PLT")); }
561
562 private:
563 // The size of an entry in the PLT.
564 static const int plt_entry_size = 16;
565
566 // The first entry in the PLT.
567 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
568 // procedure linkage table for both programs and shared objects."
569 static unsigned char first_plt_entry[plt_entry_size];
570
571 // Other entries in the PLT for an executable.
572 static unsigned char plt_entry[plt_entry_size];
573
574 // The reserved TLSDESC entry in the PLT for an executable.
575 static unsigned char tlsdesc_plt_entry[plt_entry_size];
576
577 // Set the final size.
578 void
579 set_final_data_size();
580
581 // Write out the PLT data.
582 void
583 do_write(Output_file*);
584
585 // The reloc section.
586 Reloc_section* rel_;
587 // The .got section.
588 Output_data_got<64, false>* got_;
589 // The .got.plt section.
590 Output_data_space* got_plt_;
591 // The number of PLT entries.
592 unsigned int count_;
593 // Offset of the reserved TLSDESC_GOT entry when needed.
594 unsigned int tlsdesc_got_offset_;
595 };
596
597 // Create the PLT section. The ordinary .got section is an argument,
598 // since we need to refer to the start. We also create our own .got
599 // section just for PLT entries.
600
601 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
602 Output_data_got<64, false>* got,
603 Output_data_space* got_plt)
604 : Output_section_data(8), got_(got), got_plt_(got_plt), count_(0),
605 tlsdesc_got_offset_(-1U)
606 {
607 this->rel_ = new Reloc_section(false);
608 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
609 elfcpp::SHF_ALLOC, this->rel_);
610 }
611
612 void
613 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
614 {
615 os->set_entsize(plt_entry_size);
616 }
617
618 // Add an entry to the PLT.
619
620 void
621 Output_data_plt_x86_64::add_entry(Symbol* gsym)
622 {
623 gold_assert(!gsym->has_plt_offset());
624
625 // Note that when setting the PLT offset we skip the initial
626 // reserved PLT entry.
627 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
628
629 ++this->count_;
630
631 section_offset_type got_offset = this->got_plt_->current_data_size();
632
633 // Every PLT entry needs a GOT entry which points back to the PLT
634 // entry (this will be changed by the dynamic linker, normally
635 // lazily when the function is called).
636 this->got_plt_->set_current_data_size(got_offset + 8);
637
638 // Every PLT entry needs a reloc.
639 gsym->set_needs_dynsym_entry();
640 this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
641 got_offset, 0);
642
643 // Note that we don't need to save the symbol. The contents of the
644 // PLT are independent of which symbols are used. The symbols only
645 // appear in the relocations.
646 }
647
648 // Set the final size.
649 void
650 Output_data_plt_x86_64::set_final_data_size()
651 {
652 unsigned int count = this->count_;
653 if (this->has_tlsdesc_entry())
654 ++count;
655 this->set_data_size((count + 1) * plt_entry_size);
656 }
657
658 // The first entry in the PLT for an executable.
659
660 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
661 {
662 // From AMD64 ABI Draft 0.98, page 76
663 0xff, 0x35, // pushq contents of memory address
664 0, 0, 0, 0, // replaced with address of .got + 8
665 0xff, 0x25, // jmp indirect
666 0, 0, 0, 0, // replaced with address of .got + 16
667 0x90, 0x90, 0x90, 0x90 // noop (x4)
668 };
669
670 // Subsequent entries in the PLT for an executable.
671
672 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
673 {
674 // From AMD64 ABI Draft 0.98, page 76
675 0xff, 0x25, // jmpq indirect
676 0, 0, 0, 0, // replaced with address of symbol in .got
677 0x68, // pushq immediate
678 0, 0, 0, 0, // replaced with offset into relocation table
679 0xe9, // jmpq relative
680 0, 0, 0, 0 // replaced with offset to start of .plt
681 };
682
683 // The reserved TLSDESC entry in the PLT for an executable.
684
685 unsigned char Output_data_plt_x86_64::tlsdesc_plt_entry[plt_entry_size] =
686 {
687 // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
688 // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
689 0xff, 0x35, // pushq x(%rip)
690 0, 0, 0, 0, // replaced with address of linkmap GOT entry (at PLTGOT + 8)
691 0xff, 0x25, // jmpq *y(%rip)
692 0, 0, 0, 0, // replaced with offset of reserved TLSDESC_GOT entry
693 0x0f, 0x1f, // nop
694 0x40, 0
695 };
696
697 // Write out the PLT. This uses the hand-coded instructions above,
698 // and adjusts them as needed. This is specified by the AMD64 ABI.
699
700 void
701 Output_data_plt_x86_64::do_write(Output_file* of)
702 {
703 const off_t offset = this->offset();
704 const section_size_type oview_size =
705 convert_to_section_size_type(this->data_size());
706 unsigned char* const oview = of->get_output_view(offset, oview_size);
707
708 const off_t got_file_offset = this->got_plt_->offset();
709 const section_size_type got_size =
710 convert_to_section_size_type(this->got_plt_->data_size());
711 unsigned char* const got_view = of->get_output_view(got_file_offset,
712 got_size);
713
714 unsigned char* pov = oview;
715
716 // The base address of the .plt section.
717 elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
718 // The base address of the .got section.
719 elfcpp::Elf_types<64>::Elf_Addr got_base = this->got_->address();
720 // The base address of the PLT portion of the .got section,
721 // which is where the GOT pointer will point, and where the
722 // three reserved GOT entries are located.
723 elfcpp::Elf_types<64>::Elf_Addr got_address = this->got_plt_->address();
724
725 memcpy(pov, first_plt_entry, plt_entry_size);
726 // We do a jmp relative to the PC at the end of this instruction.
727 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
728 (got_address + 8
729 - (plt_address + 6)));
730 elfcpp::Swap<32, false>::writeval(pov + 8,
731 (got_address + 16
732 - (plt_address + 12)));
733 pov += plt_entry_size;
734
735 unsigned char* got_pov = got_view;
736
737 memset(got_pov, 0, 24);
738 got_pov += 24;
739
740 unsigned int plt_offset = plt_entry_size;
741 unsigned int got_offset = 24;
742 const unsigned int count = this->count_;
743 for (unsigned int plt_index = 0;
744 plt_index < count;
745 ++plt_index,
746 pov += plt_entry_size,
747 got_pov += 8,
748 plt_offset += plt_entry_size,
749 got_offset += 8)
750 {
751 // Set and adjust the PLT entry itself.
752 memcpy(pov, plt_entry, plt_entry_size);
753 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
754 (got_address + got_offset
755 - (plt_address + plt_offset
756 + 6)));
757
758 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
759 elfcpp::Swap<32, false>::writeval(pov + 12,
760 - (plt_offset + plt_entry_size));
761
762 // Set the entry in the GOT.
763 elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
764 }
765
766 if (this->has_tlsdesc_entry())
767 {
768 // Set and adjust the reserved TLSDESC PLT entry.
769 unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
770 memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
771 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
772 (got_address + 8
773 - (plt_address + plt_offset
774 + 6)));
775 elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
776 (got_base
777 + tlsdesc_got_offset
778 - (plt_address + plt_offset
779 + 12)));
780 pov += plt_entry_size;
781 }
782
783 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
784 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
785
786 of->write_output_view(offset, oview_size, oview);
787 of->write_output_view(got_file_offset, got_size, got_view);
788 }
789
790 // Create the PLT section.
791
792 void
793 Target_x86_64::make_plt_section(Symbol_table* symtab, Layout* layout)
794 {
795 if (this->plt_ == NULL)
796 {
797 // Create the GOT sections first.
798 this->got_section(symtab, layout);
799
800 this->plt_ = new Output_data_plt_x86_64(layout, this->got_,
801 this->got_plt_);
802 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
803 (elfcpp::SHF_ALLOC
804 | elfcpp::SHF_EXECINSTR),
805 this->plt_);
806 }
807 }
808
809 // Create a PLT entry for a global symbol.
810
811 void
812 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
813 Symbol* gsym)
814 {
815 if (gsym->has_plt_offset())
816 return;
817
818 if (this->plt_ == NULL)
819 this->make_plt_section(symtab, layout);
820
821 this->plt_->add_entry(gsym);
822 }
823
824 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
825
826 void
827 Target_x86_64::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
828 {
829 if (this->tls_base_symbol_defined_)
830 return;
831
832 Output_segment* tls_segment = layout->tls_segment();
833 if (tls_segment != NULL)
834 {
835 bool is_exec = parameters->options().output_is_executable();
836 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
837 tls_segment, 0, 0,
838 elfcpp::STT_TLS,
839 elfcpp::STB_LOCAL,
840 elfcpp::STV_HIDDEN, 0,
841 (is_exec
842 ? Symbol::SEGMENT_END
843 : Symbol::SEGMENT_START),
844 true);
845 }
846 this->tls_base_symbol_defined_ = true;
847 }
848
849 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
850
851 void
852 Target_x86_64::reserve_tlsdesc_entries(Symbol_table* symtab,
853 Layout* layout)
854 {
855 if (this->plt_ == NULL)
856 this->make_plt_section(symtab, layout);
857
858 if (!this->plt_->has_tlsdesc_entry())
859 {
860 // Allocate the TLSDESC_GOT entry.
861 Output_data_got<64, false>* got = this->got_section(symtab, layout);
862 unsigned int got_offset = got->add_constant(0);
863
864 // Allocate the TLSDESC_PLT entry.
865 this->plt_->reserve_tlsdesc_entry(got_offset);
866 }
867 }
868
869 // Create a GOT entry for the TLS module index.
870
871 unsigned int
872 Target_x86_64::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
873 Sized_relobj<64, false>* object)
874 {
875 if (this->got_mod_index_offset_ == -1U)
876 {
877 gold_assert(symtab != NULL && layout != NULL && object != NULL);
878 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
879 Output_data_got<64, false>* got = this->got_section(symtab, layout);
880 unsigned int got_offset = got->add_constant(0);
881 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
882 got_offset, 0);
883 got->add_constant(0);
884 this->got_mod_index_offset_ = got_offset;
885 }
886 return this->got_mod_index_offset_;
887 }
888
889 // Optimize the TLS relocation type based on what we know about the
890 // symbol. IS_FINAL is true if the final address of this symbol is
891 // known at link time.
892
893 tls::Tls_optimization
894 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
895 {
896 // If we are generating a shared library, then we can't do anything
897 // in the linker.
898 if (parameters->options().shared())
899 return tls::TLSOPT_NONE;
900
901 switch (r_type)
902 {
903 case elfcpp::R_X86_64_TLSGD:
904 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
905 case elfcpp::R_X86_64_TLSDESC_CALL:
906 // These are General-Dynamic which permits fully general TLS
907 // access. Since we know that we are generating an executable,
908 // we can convert this to Initial-Exec. If we also know that
909 // this is a local symbol, we can further switch to Local-Exec.
910 if (is_final)
911 return tls::TLSOPT_TO_LE;
912 return tls::TLSOPT_TO_IE;
913
914 case elfcpp::R_X86_64_TLSLD:
915 // This is Local-Dynamic, which refers to a local symbol in the
916 // dynamic TLS block. Since we know that we generating an
917 // executable, we can switch to Local-Exec.
918 return tls::TLSOPT_TO_LE;
919
920 case elfcpp::R_X86_64_DTPOFF32:
921 case elfcpp::R_X86_64_DTPOFF64:
922 // Another Local-Dynamic reloc.
923 return tls::TLSOPT_TO_LE;
924
925 case elfcpp::R_X86_64_GOTTPOFF:
926 // These are Initial-Exec relocs which get the thread offset
927 // from the GOT. If we know that we are linking against the
928 // local symbol, we can switch to Local-Exec, which links the
929 // thread offset into the instruction.
930 if (is_final)
931 return tls::TLSOPT_TO_LE;
932 return tls::TLSOPT_NONE;
933
934 case elfcpp::R_X86_64_TPOFF32:
935 // When we already have Local-Exec, there is nothing further we
936 // can do.
937 return tls::TLSOPT_NONE;
938
939 default:
940 gold_unreachable();
941 }
942 }
943
944 // Report an unsupported relocation against a local symbol.
945
946 void
947 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
948 unsigned int r_type)
949 {
950 gold_error(_("%s: unsupported reloc %u against local symbol"),
951 object->name().c_str(), r_type);
952 }
953
954 // We are about to emit a dynamic relocation of type R_TYPE. If the
955 // dynamic linker does not support it, issue an error. The GNU linker
956 // only issues a non-PIC error for an allocated read-only section.
957 // Here we know the section is allocated, but we don't know that it is
958 // read-only. But we check for all the relocation types which the
959 // glibc dynamic linker supports, so it seems appropriate to issue an
960 // error even if the section is not read-only.
961
962 void
963 Target_x86_64::Scan::check_non_pic(Relobj* object, unsigned int r_type)
964 {
965 switch (r_type)
966 {
967 // These are the relocation types supported by glibc for x86_64.
968 case elfcpp::R_X86_64_RELATIVE:
969 case elfcpp::R_X86_64_GLOB_DAT:
970 case elfcpp::R_X86_64_JUMP_SLOT:
971 case elfcpp::R_X86_64_DTPMOD64:
972 case elfcpp::R_X86_64_DTPOFF64:
973 case elfcpp::R_X86_64_TPOFF64:
974 case elfcpp::R_X86_64_64:
975 case elfcpp::R_X86_64_32:
976 case elfcpp::R_X86_64_PC32:
977 case elfcpp::R_X86_64_COPY:
978 return;
979
980 default:
981 // This prevents us from issuing more than one error per reloc
982 // section. But we can still wind up issuing more than one
983 // error per object file.
984 if (this->issued_non_pic_error_)
985 return;
986 gold_assert(parameters->options().output_is_position_independent());
987 object->error(_("requires unsupported dynamic reloc; "
988 "recompile with -fPIC"));
989 this->issued_non_pic_error_ = true;
990 return;
991
992 case elfcpp::R_X86_64_NONE:
993 gold_unreachable();
994 }
995 }
996
997 // Scan a relocation for a local symbol.
998
999 inline void
1000 Target_x86_64::Scan::local(Symbol_table* symtab,
1001 Layout* layout,
1002 Target_x86_64* target,
1003 Sized_relobj<64, false>* object,
1004 unsigned int data_shndx,
1005 Output_section* output_section,
1006 const elfcpp::Rela<64, false>& reloc,
1007 unsigned int r_type,
1008 const elfcpp::Sym<64, false>& lsym)
1009 {
1010 switch (r_type)
1011 {
1012 case elfcpp::R_X86_64_NONE:
1013 case elfcpp::R_386_GNU_VTINHERIT:
1014 case elfcpp::R_386_GNU_VTENTRY:
1015 break;
1016
1017 case elfcpp::R_X86_64_64:
1018 // If building a shared library (or a position-independent
1019 // executable), we need to create a dynamic relocation for this
1020 // location. The relocation applied at link time will apply the
1021 // link-time value, so we flag the location with an
1022 // R_X86_64_RELATIVE relocation so the dynamic loader can
1023 // relocate it easily.
1024 if (parameters->options().output_is_position_independent())
1025 {
1026 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1027 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1028 rela_dyn->add_local_relative(object, r_sym,
1029 elfcpp::R_X86_64_RELATIVE,
1030 output_section, data_shndx,
1031 reloc.get_r_offset(),
1032 reloc.get_r_addend());
1033 }
1034 break;
1035
1036 case elfcpp::R_X86_64_32:
1037 case elfcpp::R_X86_64_32S:
1038 case elfcpp::R_X86_64_16:
1039 case elfcpp::R_X86_64_8:
1040 // If building a shared library (or a position-independent
1041 // executable), we need to create a dynamic relocation for this
1042 // location. We can't use an R_X86_64_RELATIVE relocation
1043 // because that is always a 64-bit relocation.
1044 if (parameters->options().output_is_position_independent())
1045 {
1046 this->check_non_pic(object, r_type);
1047
1048 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1049 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1050 if (lsym.get_st_type() != elfcpp::STT_SECTION)
1051 rela_dyn->add_local(object, r_sym, r_type, output_section,
1052 data_shndx, reloc.get_r_offset(),
1053 reloc.get_r_addend());
1054 else
1055 {
1056 gold_assert(lsym.get_st_value() == 0);
1057 unsigned int shndx = lsym.get_st_shndx();
1058 bool is_ordinary;
1059 shndx = object->adjust_sym_shndx(r_sym, shndx,
1060 &is_ordinary);
1061 if (!is_ordinary)
1062 object->error(_("section symbol %u has bad shndx %u"),
1063 r_sym, shndx);
1064 else
1065 rela_dyn->add_local_section(object, shndx,
1066 r_type, output_section,
1067 data_shndx, reloc.get_r_offset(),
1068 reloc.get_r_addend());
1069 }
1070 }
1071 break;
1072
1073 case elfcpp::R_X86_64_PC64:
1074 case elfcpp::R_X86_64_PC32:
1075 case elfcpp::R_X86_64_PC16:
1076 case elfcpp::R_X86_64_PC8:
1077 break;
1078
1079 case elfcpp::R_X86_64_PLT32:
1080 // Since we know this is a local symbol, we can handle this as a
1081 // PC32 reloc.
1082 break;
1083
1084 case elfcpp::R_X86_64_GOTPC32:
1085 case elfcpp::R_X86_64_GOTOFF64:
1086 case elfcpp::R_X86_64_GOTPC64:
1087 case elfcpp::R_X86_64_PLTOFF64:
1088 // We need a GOT section.
1089 target->got_section(symtab, layout);
1090 // For PLTOFF64, we'd normally want a PLT section, but since we
1091 // know this is a local symbol, no PLT is needed.
1092 break;
1093
1094 case elfcpp::R_X86_64_GOT64:
1095 case elfcpp::R_X86_64_GOT32:
1096 case elfcpp::R_X86_64_GOTPCREL64:
1097 case elfcpp::R_X86_64_GOTPCREL:
1098 case elfcpp::R_X86_64_GOTPLT64:
1099 {
1100 // The symbol requires a GOT entry.
1101 Output_data_got<64, false>* got = target->got_section(symtab, layout);
1102 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1103 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
1104 {
1105 // If we are generating a shared object, we need to add a
1106 // dynamic relocation for this symbol's GOT entry.
1107 if (parameters->options().output_is_position_independent())
1108 {
1109 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1110 // R_X86_64_RELATIVE assumes a 64-bit relocation.
1111 if (r_type != elfcpp::R_X86_64_GOT32)
1112 rela_dyn->add_local_relative(
1113 object, r_sym, elfcpp::R_X86_64_RELATIVE, got,
1114 object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
1115 else
1116 {
1117 this->check_non_pic(object, r_type);
1118
1119 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
1120 rela_dyn->add_local(
1121 object, r_sym, r_type, got,
1122 object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
1123 }
1124 }
1125 }
1126 // For GOTPLT64, we'd normally want a PLT section, but since
1127 // we know this is a local symbol, no PLT is needed.
1128 }
1129 break;
1130
1131 case elfcpp::R_X86_64_COPY:
1132 case elfcpp::R_X86_64_GLOB_DAT:
1133 case elfcpp::R_X86_64_JUMP_SLOT:
1134 case elfcpp::R_X86_64_RELATIVE:
1135 // These are outstanding tls relocs, which are unexpected when linking
1136 case elfcpp::R_X86_64_TPOFF64:
1137 case elfcpp::R_X86_64_DTPMOD64:
1138 case elfcpp::R_X86_64_TLSDESC:
1139 gold_error(_("%s: unexpected reloc %u in object file"),
1140 object->name().c_str(), r_type);
1141 break;
1142
1143 // These are initial tls relocs, which are expected when linking
1144 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1145 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1146 case elfcpp::R_X86_64_TLSDESC_CALL:
1147 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1148 case elfcpp::R_X86_64_DTPOFF32:
1149 case elfcpp::R_X86_64_DTPOFF64:
1150 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1151 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1152 {
1153 bool output_is_shared = parameters->options().shared();
1154 const tls::Tls_optimization optimized_type
1155 = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
1156 switch (r_type)
1157 {
1158 case elfcpp::R_X86_64_TLSGD: // General-dynamic
1159 if (optimized_type == tls::TLSOPT_NONE)
1160 {
1161 // Create a pair of GOT entries for the module index and
1162 // dtv-relative offset.
1163 Output_data_got<64, false>* got
1164 = target->got_section(symtab, layout);
1165 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1166 unsigned int shndx = lsym.get_st_shndx();
1167 bool is_ordinary;
1168 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1169 if (!is_ordinary)
1170 object->error(_("local symbol %u has bad shndx %u"),
1171 r_sym, shndx);
1172 else
1173 got->add_local_pair_with_rela(object, r_sym,
1174 shndx,
1175 GOT_TYPE_TLS_PAIR,
1176 target->rela_dyn_section(layout),
1177 elfcpp::R_X86_64_DTPMOD64, 0);
1178 }
1179 else if (optimized_type != tls::TLSOPT_TO_LE)
1180 unsupported_reloc_local(object, r_type);
1181 break;
1182
1183 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1184 target->define_tls_base_symbol(symtab, layout);
1185 if (optimized_type == tls::TLSOPT_NONE)
1186 {
1187 // Create reserved PLT and GOT entries for the resolver.
1188 target->reserve_tlsdesc_entries(symtab, layout);
1189
1190 // Generate a double GOT entry with an R_X86_64_TLSDESC reloc.
1191 Output_data_got<64, false>* got
1192 = target->got_section(symtab, layout);
1193 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1194 unsigned int shndx = lsym.get_st_shndx();
1195 bool is_ordinary;
1196 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1197 if (!is_ordinary)
1198 object->error(_("local symbol %u has bad shndx %u"),
1199 r_sym, shndx);
1200 else
1201 got->add_local_pair_with_rela(object, r_sym,
1202 shndx,
1203 GOT_TYPE_TLS_DESC,
1204 target->rela_dyn_section(layout),
1205 elfcpp::R_X86_64_TLSDESC, 0);
1206 }
1207 else if (optimized_type != tls::TLSOPT_TO_LE)
1208 unsupported_reloc_local(object, r_type);
1209 break;
1210
1211 case elfcpp::R_X86_64_TLSDESC_CALL:
1212 break;
1213
1214 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1215 if (optimized_type == tls::TLSOPT_NONE)
1216 {
1217 // Create a GOT entry for the module index.
1218 target->got_mod_index_entry(symtab, layout, object);
1219 }
1220 else if (optimized_type != tls::TLSOPT_TO_LE)
1221 unsupported_reloc_local(object, r_type);
1222 break;
1223
1224 case elfcpp::R_X86_64_DTPOFF32:
1225 case elfcpp::R_X86_64_DTPOFF64:
1226 break;
1227
1228 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1229 layout->set_has_static_tls();
1230 if (optimized_type == tls::TLSOPT_NONE)
1231 {
1232 // Create a GOT entry for the tp-relative offset.
1233 Output_data_got<64, false>* got
1234 = target->got_section(symtab, layout);
1235 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1236 got->add_local_with_rela(object, r_sym, GOT_TYPE_TLS_OFFSET,
1237 target->rela_dyn_section(layout),
1238 elfcpp::R_X86_64_TPOFF64);
1239 }
1240 else if (optimized_type != tls::TLSOPT_TO_LE)
1241 unsupported_reloc_local(object, r_type);
1242 break;
1243
1244 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1245 layout->set_has_static_tls();
1246 if (output_is_shared)
1247 unsupported_reloc_local(object, r_type);
1248 break;
1249
1250 default:
1251 gold_unreachable();
1252 }
1253 }
1254 break;
1255
1256 case elfcpp::R_X86_64_SIZE32:
1257 case elfcpp::R_X86_64_SIZE64:
1258 default:
1259 gold_error(_("%s: unsupported reloc %u against local symbol"),
1260 object->name().c_str(), r_type);
1261 break;
1262 }
1263 }
1264
1265
1266 // Report an unsupported relocation against a global symbol.
1267
1268 void
1269 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
1270 unsigned int r_type,
1271 Symbol* gsym)
1272 {
1273 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1274 object->name().c_str(), r_type, gsym->demangled_name().c_str());
1275 }
1276
1277 // Scan a relocation for a global symbol.
1278
1279 inline void
1280 Target_x86_64::Scan::global(Symbol_table* symtab,
1281 Layout* layout,
1282 Target_x86_64* target,
1283 Sized_relobj<64, false>* object,
1284 unsigned int data_shndx,
1285 Output_section* output_section,
1286 const elfcpp::Rela<64, false>& reloc,
1287 unsigned int r_type,
1288 Symbol* gsym)
1289 {
1290 switch (r_type)
1291 {
1292 case elfcpp::R_X86_64_NONE:
1293 case elfcpp::R_386_GNU_VTINHERIT:
1294 case elfcpp::R_386_GNU_VTENTRY:
1295 break;
1296
1297 case elfcpp::R_X86_64_64:
1298 case elfcpp::R_X86_64_32:
1299 case elfcpp::R_X86_64_32S:
1300 case elfcpp::R_X86_64_16:
1301 case elfcpp::R_X86_64_8:
1302 {
1303 // Make a PLT entry if necessary.
1304 if (gsym->needs_plt_entry())
1305 {
1306 target->make_plt_entry(symtab, layout, gsym);
1307 // Since this is not a PC-relative relocation, we may be
1308 // taking the address of a function. In that case we need to
1309 // set the entry in the dynamic symbol table to the address of
1310 // the PLT entry.
1311 if (gsym->is_from_dynobj() && !parameters->options().shared())
1312 gsym->set_needs_dynsym_value();
1313 }
1314 // Make a dynamic relocation if necessary.
1315 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
1316 {
1317 if (gsym->may_need_copy_reloc())
1318 {
1319 target->copy_reloc(symtab, layout, object,
1320 data_shndx, output_section, gsym, reloc);
1321 }
1322 else if (r_type == elfcpp::R_X86_64_64
1323 && gsym->can_use_relative_reloc(false))
1324 {
1325 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1326 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1327 output_section, object,
1328 data_shndx, reloc.get_r_offset(),
1329 reloc.get_r_addend());
1330 }
1331 else
1332 {
1333 this->check_non_pic(object, r_type);
1334 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1335 rela_dyn->add_global(gsym, r_type, output_section, object,
1336 data_shndx, reloc.get_r_offset(),
1337 reloc.get_r_addend());
1338 }
1339 }
1340 }
1341 break;
1342
1343 case elfcpp::R_X86_64_PC64:
1344 case elfcpp::R_X86_64_PC32:
1345 case elfcpp::R_X86_64_PC16:
1346 case elfcpp::R_X86_64_PC8:
1347 {
1348 // Make a PLT entry if necessary.
1349 if (gsym->needs_plt_entry())
1350 target->make_plt_entry(symtab, layout, gsym);
1351 // Make a dynamic relocation if necessary.
1352 int flags = Symbol::NON_PIC_REF;
1353 if (gsym->type() == elfcpp::STT_FUNC)
1354 flags |= Symbol::FUNCTION_CALL;
1355 if (gsym->needs_dynamic_reloc(flags))
1356 {
1357 if (gsym->may_need_copy_reloc())
1358 {
1359 target->copy_reloc(symtab, layout, object,
1360 data_shndx, output_section, gsym, reloc);
1361 }
1362 else
1363 {
1364 this->check_non_pic(object, r_type);
1365 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1366 rela_dyn->add_global(gsym, r_type, output_section, object,
1367 data_shndx, reloc.get_r_offset(),
1368 reloc.get_r_addend());
1369 }
1370 }
1371 }
1372 break;
1373
1374 case elfcpp::R_X86_64_GOT64:
1375 case elfcpp::R_X86_64_GOT32:
1376 case elfcpp::R_X86_64_GOTPCREL64:
1377 case elfcpp::R_X86_64_GOTPCREL:
1378 case elfcpp::R_X86_64_GOTPLT64:
1379 {
1380 // The symbol requires a GOT entry.
1381 Output_data_got<64, false>* got = target->got_section(symtab, layout);
1382 if (gsym->final_value_is_known())
1383 got->add_global(gsym, GOT_TYPE_STANDARD);
1384 else
1385 {
1386 // If this symbol is not fully resolved, we need to add a
1387 // dynamic relocation for it.
1388 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1389 if (gsym->is_from_dynobj()
1390 || gsym->is_undefined()
1391 || gsym->is_preemptible())
1392 got->add_global_with_rela(gsym, GOT_TYPE_STANDARD, rela_dyn,
1393 elfcpp::R_X86_64_GLOB_DAT);
1394 else
1395 {
1396 if (got->add_global(gsym, GOT_TYPE_STANDARD))
1397 rela_dyn->add_global_relative(
1398 gsym, elfcpp::R_X86_64_RELATIVE, got,
1399 gsym->got_offset(GOT_TYPE_STANDARD), 0);
1400 }
1401 }
1402 // For GOTPLT64, we also need a PLT entry (but only if the
1403 // symbol is not fully resolved).
1404 if (r_type == elfcpp::R_X86_64_GOTPLT64
1405 && !gsym->final_value_is_known())
1406 target->make_plt_entry(symtab, layout, gsym);
1407 }
1408 break;
1409
1410 case elfcpp::R_X86_64_PLT32:
1411 // If the symbol is fully resolved, this is just a PC32 reloc.
1412 // Otherwise we need a PLT entry.
1413 if (gsym->final_value_is_known())
1414 break;
1415 // If building a shared library, we can also skip the PLT entry
1416 // if the symbol is defined in the output file and is protected
1417 // or hidden.
1418 if (gsym->is_defined()
1419 && !gsym->is_from_dynobj()
1420 && !gsym->is_preemptible())
1421 break;
1422 target->make_plt_entry(symtab, layout, gsym);
1423 break;
1424
1425 case elfcpp::R_X86_64_GOTPC32:
1426 case elfcpp::R_X86_64_GOTOFF64:
1427 case elfcpp::R_X86_64_GOTPC64:
1428 case elfcpp::R_X86_64_PLTOFF64:
1429 // We need a GOT section.
1430 target->got_section(symtab, layout);
1431 // For PLTOFF64, we also need a PLT entry (but only if the
1432 // symbol is not fully resolved).
1433 if (r_type == elfcpp::R_X86_64_PLTOFF64
1434 && !gsym->final_value_is_known())
1435 target->make_plt_entry(symtab, layout, gsym);
1436 break;
1437
1438 case elfcpp::R_X86_64_COPY:
1439 case elfcpp::R_X86_64_GLOB_DAT:
1440 case elfcpp::R_X86_64_JUMP_SLOT:
1441 case elfcpp::R_X86_64_RELATIVE:
1442 // These are outstanding tls relocs, which are unexpected when linking
1443 case elfcpp::R_X86_64_TPOFF64:
1444 case elfcpp::R_X86_64_DTPMOD64:
1445 case elfcpp::R_X86_64_TLSDESC:
1446 gold_error(_("%s: unexpected reloc %u in object file"),
1447 object->name().c_str(), r_type);
1448 break;
1449
1450 // These are initial tls relocs, which are expected for global()
1451 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1452 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1453 case elfcpp::R_X86_64_TLSDESC_CALL:
1454 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1455 case elfcpp::R_X86_64_DTPOFF32:
1456 case elfcpp::R_X86_64_DTPOFF64:
1457 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1458 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1459 {
1460 const bool is_final = gsym->final_value_is_known();
1461 const tls::Tls_optimization optimized_type
1462 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1463 switch (r_type)
1464 {
1465 case elfcpp::R_X86_64_TLSGD: // General-dynamic
1466 if (optimized_type == tls::TLSOPT_NONE)
1467 {
1468 // Create a pair of GOT entries for the module index and
1469 // dtv-relative offset.
1470 Output_data_got<64, false>* got
1471 = target->got_section(symtab, layout);
1472 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_PAIR,
1473 target->rela_dyn_section(layout),
1474 elfcpp::R_X86_64_DTPMOD64,
1475 elfcpp::R_X86_64_DTPOFF64);
1476 }
1477 else if (optimized_type == tls::TLSOPT_TO_IE)
1478 {
1479 // Create a GOT entry for the tp-relative offset.
1480 Output_data_got<64, false>* got
1481 = target->got_section(symtab, layout);
1482 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1483 target->rela_dyn_section(layout),
1484 elfcpp::R_X86_64_TPOFF64);
1485 }
1486 else if (optimized_type != tls::TLSOPT_TO_LE)
1487 unsupported_reloc_global(object, r_type, gsym);
1488 break;
1489
1490 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1491 target->define_tls_base_symbol(symtab, layout);
1492 if (optimized_type == tls::TLSOPT_NONE)
1493 {
1494 // Create reserved PLT and GOT entries for the resolver.
1495 target->reserve_tlsdesc_entries(symtab, layout);
1496
1497 // Create a double GOT entry with an R_X86_64_TLSDESC reloc.
1498 Output_data_got<64, false>* got
1499 = target->got_section(symtab, layout);
1500 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_DESC,
1501 target->rela_dyn_section(layout),
1502 elfcpp::R_X86_64_TLSDESC, 0);
1503 }
1504 else if (optimized_type == tls::TLSOPT_TO_IE)
1505 {
1506 // Create a GOT entry for the tp-relative offset.
1507 Output_data_got<64, false>* got
1508 = target->got_section(symtab, layout);
1509 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1510 target->rela_dyn_section(layout),
1511 elfcpp::R_X86_64_TPOFF64);
1512 }
1513 else if (optimized_type != tls::TLSOPT_TO_LE)
1514 unsupported_reloc_global(object, r_type, gsym);
1515 break;
1516
1517 case elfcpp::R_X86_64_TLSDESC_CALL:
1518 break;
1519
1520 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1521 if (optimized_type == tls::TLSOPT_NONE)
1522 {
1523 // Create a GOT entry for the module index.
1524 target->got_mod_index_entry(symtab, layout, object);
1525 }
1526 else if (optimized_type != tls::TLSOPT_TO_LE)
1527 unsupported_reloc_global(object, r_type, gsym);
1528 break;
1529
1530 case elfcpp::R_X86_64_DTPOFF32:
1531 case elfcpp::R_X86_64_DTPOFF64:
1532 break;
1533
1534 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1535 layout->set_has_static_tls();
1536 if (optimized_type == tls::TLSOPT_NONE)
1537 {
1538 // Create a GOT entry for the tp-relative offset.
1539 Output_data_got<64, false>* got
1540 = target->got_section(symtab, layout);
1541 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1542 target->rela_dyn_section(layout),
1543 elfcpp::R_X86_64_TPOFF64);
1544 }
1545 else if (optimized_type != tls::TLSOPT_TO_LE)
1546 unsupported_reloc_global(object, r_type, gsym);
1547 break;
1548
1549 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1550 layout->set_has_static_tls();
1551 if (parameters->options().shared())
1552 unsupported_reloc_local(object, r_type);
1553 break;
1554
1555 default:
1556 gold_unreachable();
1557 }
1558 }
1559 break;
1560
1561 case elfcpp::R_X86_64_SIZE32:
1562 case elfcpp::R_X86_64_SIZE64:
1563 default:
1564 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1565 object->name().c_str(), r_type,
1566 gsym->demangled_name().c_str());
1567 break;
1568 }
1569 }
1570
1571 void
1572 Target_x86_64::gc_process_relocs(Symbol_table* symtab,
1573 Layout* layout,
1574 Sized_relobj<64, false>* object,
1575 unsigned int data_shndx,
1576 unsigned int sh_type,
1577 const unsigned char* prelocs,
1578 size_t reloc_count,
1579 Output_section* output_section,
1580 bool needs_special_offset_handling,
1581 size_t local_symbol_count,
1582 const unsigned char* plocal_symbols)
1583 {
1584
1585 if (sh_type == elfcpp::SHT_REL)
1586 {
1587 return;
1588 }
1589
1590 gold::gc_process_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1591 Target_x86_64::Scan>(
1592 symtab,
1593 layout,
1594 this,
1595 object,
1596 data_shndx,
1597 prelocs,
1598 reloc_count,
1599 output_section,
1600 needs_special_offset_handling,
1601 local_symbol_count,
1602 plocal_symbols);
1603
1604 }
1605 // Scan relocations for a section.
1606
1607 void
1608 Target_x86_64::scan_relocs(Symbol_table* symtab,
1609 Layout* layout,
1610 Sized_relobj<64, false>* object,
1611 unsigned int data_shndx,
1612 unsigned int sh_type,
1613 const unsigned char* prelocs,
1614 size_t reloc_count,
1615 Output_section* output_section,
1616 bool needs_special_offset_handling,
1617 size_t local_symbol_count,
1618 const unsigned char* plocal_symbols)
1619 {
1620 if (sh_type == elfcpp::SHT_REL)
1621 {
1622 gold_error(_("%s: unsupported REL reloc section"),
1623 object->name().c_str());
1624 return;
1625 }
1626
1627 gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1628 Target_x86_64::Scan>(
1629 symtab,
1630 layout,
1631 this,
1632 object,
1633 data_shndx,
1634 prelocs,
1635 reloc_count,
1636 output_section,
1637 needs_special_offset_handling,
1638 local_symbol_count,
1639 plocal_symbols);
1640 }
1641
1642 // Finalize the sections.
1643
1644 void
1645 Target_x86_64::do_finalize_sections(Layout* layout)
1646 {
1647 // Fill in some more dynamic tags.
1648 Output_data_dynamic* const odyn = layout->dynamic_data();
1649 if (odyn != NULL)
1650 {
1651 if (this->got_plt_ != NULL)
1652 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1653
1654 if (this->plt_ != NULL)
1655 {
1656 const Output_data* od = this->plt_->rel_plt();
1657 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1658 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1659 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1660 if (this->plt_->has_tlsdesc_entry())
1661 {
1662 unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
1663 unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
1664 this->got_->finalize_data_size();
1665 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
1666 this->plt_, plt_offset);
1667 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
1668 this->got_, got_offset);
1669 }
1670 }
1671
1672 if (this->rela_dyn_ != NULL)
1673 {
1674 const Output_data* od = this->rela_dyn_;
1675 odyn->add_section_address(elfcpp::DT_RELA, od);
1676 odyn->add_section_size(elfcpp::DT_RELASZ, od);
1677 odyn->add_constant(elfcpp::DT_RELAENT,
1678 elfcpp::Elf_sizes<64>::rela_size);
1679 }
1680
1681 if (!parameters->options().shared())
1682 {
1683 // The value of the DT_DEBUG tag is filled in by the dynamic
1684 // linker at run time, and used by the debugger.
1685 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1686 }
1687 }
1688
1689 // Emit any relocs we saved in an attempt to avoid generating COPY
1690 // relocs.
1691 if (this->copy_relocs_.any_saved_relocs())
1692 this->copy_relocs_.emit(this->rela_dyn_section(layout));
1693 }
1694
1695 // Perform a relocation.
1696
1697 inline bool
1698 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1699 Target_x86_64* target,
1700 Output_section*,
1701 size_t relnum,
1702 const elfcpp::Rela<64, false>& rela,
1703 unsigned int r_type,
1704 const Sized_symbol<64>* gsym,
1705 const Symbol_value<64>* psymval,
1706 unsigned char* view,
1707 elfcpp::Elf_types<64>::Elf_Addr address,
1708 section_size_type view_size)
1709 {
1710 if (this->skip_call_tls_get_addr_)
1711 {
1712 if ((r_type != elfcpp::R_X86_64_PLT32
1713 && r_type != elfcpp::R_X86_64_PC32)
1714 || gsym == NULL
1715 || strcmp(gsym->name(), "__tls_get_addr") != 0)
1716 {
1717 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1718 _("missing expected TLS relocation"));
1719 }
1720 else
1721 {
1722 this->skip_call_tls_get_addr_ = false;
1723 return false;
1724 }
1725 }
1726
1727 // Pick the value to use for symbols defined in shared objects.
1728 Symbol_value<64> symval;
1729 if (gsym != NULL
1730 && gsym->use_plt_offset(r_type == elfcpp::R_X86_64_PC64
1731 || r_type == elfcpp::R_X86_64_PC32
1732 || r_type == elfcpp::R_X86_64_PC16
1733 || r_type == elfcpp::R_X86_64_PC8))
1734 {
1735 symval.set_output_value(target->plt_section()->address()
1736 + gsym->plt_offset());
1737 psymval = &symval;
1738 }
1739
1740 const Sized_relobj<64, false>* object = relinfo->object;
1741 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1742
1743 // Get the GOT offset if needed.
1744 // The GOT pointer points to the end of the GOT section.
1745 // We need to subtract the size of the GOT section to get
1746 // the actual offset to use in the relocation.
1747 bool have_got_offset = false;
1748 unsigned int got_offset = 0;
1749 switch (r_type)
1750 {
1751 case elfcpp::R_X86_64_GOT32:
1752 case elfcpp::R_X86_64_GOT64:
1753 case elfcpp::R_X86_64_GOTPLT64:
1754 case elfcpp::R_X86_64_GOTPCREL:
1755 case elfcpp::R_X86_64_GOTPCREL64:
1756 if (gsym != NULL)
1757 {
1758 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
1759 got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
1760 }
1761 else
1762 {
1763 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1764 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
1765 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
1766 - target->got_size());
1767 }
1768 have_got_offset = true;
1769 break;
1770
1771 default:
1772 break;
1773 }
1774
1775 switch (r_type)
1776 {
1777 case elfcpp::R_X86_64_NONE:
1778 case elfcpp::R_386_GNU_VTINHERIT:
1779 case elfcpp::R_386_GNU_VTENTRY:
1780 break;
1781
1782 case elfcpp::R_X86_64_64:
1783 Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1784 break;
1785
1786 case elfcpp::R_X86_64_PC64:
1787 Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1788 address);
1789 break;
1790
1791 case elfcpp::R_X86_64_32:
1792 // FIXME: we need to verify that value + addend fits into 32 bits:
1793 // uint64_t x = value + addend;
1794 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1795 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1796 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1797 break;
1798
1799 case elfcpp::R_X86_64_32S:
1800 // FIXME: we need to verify that value + addend fits into 32 bits:
1801 // int64_t x = value + addend; // note this quantity is signed!
1802 // x == static_cast<int64_t>(static_cast<int32_t>(x))
1803 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1804 break;
1805
1806 case elfcpp::R_X86_64_PC32:
1807 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1808 address);
1809 break;
1810
1811 case elfcpp::R_X86_64_16:
1812 Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1813 break;
1814
1815 case elfcpp::R_X86_64_PC16:
1816 Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1817 address);
1818 break;
1819
1820 case elfcpp::R_X86_64_8:
1821 Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1822 break;
1823
1824 case elfcpp::R_X86_64_PC8:
1825 Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1826 address);
1827 break;
1828
1829 case elfcpp::R_X86_64_PLT32:
1830 gold_assert(gsym == NULL
1831 || gsym->has_plt_offset()
1832 || gsym->final_value_is_known()
1833 || (gsym->is_defined()
1834 && !gsym->is_from_dynobj()
1835 && !gsym->is_preemptible()));
1836 // Note: while this code looks the same as for R_X86_64_PC32, it
1837 // behaves differently because psymval was set to point to
1838 // the PLT entry, rather than the symbol, in Scan::global().
1839 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1840 address);
1841 break;
1842
1843 case elfcpp::R_X86_64_PLTOFF64:
1844 {
1845 gold_assert(gsym);
1846 gold_assert(gsym->has_plt_offset()
1847 || gsym->final_value_is_known());
1848 elfcpp::Elf_types<64>::Elf_Addr got_address;
1849 got_address = target->got_section(NULL, NULL)->address();
1850 Relocate_functions<64, false>::rela64(view, object, psymval,
1851 addend - got_address);
1852 }
1853
1854 case elfcpp::R_X86_64_GOT32:
1855 gold_assert(have_got_offset);
1856 Relocate_functions<64, false>::rela32(view, got_offset, addend);
1857 break;
1858
1859 case elfcpp::R_X86_64_GOTPC32:
1860 {
1861 gold_assert(gsym);
1862 elfcpp::Elf_types<64>::Elf_Addr value;
1863 value = target->got_plt_section()->address();
1864 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1865 }
1866 break;
1867
1868 case elfcpp::R_X86_64_GOT64:
1869 // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1870 // Since we always add a PLT entry, this is equivalent.
1871 case elfcpp::R_X86_64_GOTPLT64:
1872 gold_assert(have_got_offset);
1873 Relocate_functions<64, false>::rela64(view, got_offset, addend);
1874 break;
1875
1876 case elfcpp::R_X86_64_GOTPC64:
1877 {
1878 gold_assert(gsym);
1879 elfcpp::Elf_types<64>::Elf_Addr value;
1880 value = target->got_plt_section()->address();
1881 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1882 }
1883 break;
1884
1885 case elfcpp::R_X86_64_GOTOFF64:
1886 {
1887 elfcpp::Elf_types<64>::Elf_Addr value;
1888 value = (psymval->value(object, 0)
1889 - target->got_plt_section()->address());
1890 Relocate_functions<64, false>::rela64(view, value, addend);
1891 }
1892 break;
1893
1894 case elfcpp::R_X86_64_GOTPCREL:
1895 {
1896 gold_assert(have_got_offset);
1897 elfcpp::Elf_types<64>::Elf_Addr value;
1898 value = target->got_plt_section()->address() + got_offset;
1899 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1900 }
1901 break;
1902
1903 case elfcpp::R_X86_64_GOTPCREL64:
1904 {
1905 gold_assert(have_got_offset);
1906 elfcpp::Elf_types<64>::Elf_Addr value;
1907 value = target->got_plt_section()->address() + got_offset;
1908 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1909 }
1910 break;
1911
1912 case elfcpp::R_X86_64_COPY:
1913 case elfcpp::R_X86_64_GLOB_DAT:
1914 case elfcpp::R_X86_64_JUMP_SLOT:
1915 case elfcpp::R_X86_64_RELATIVE:
1916 // These are outstanding tls relocs, which are unexpected when linking
1917 case elfcpp::R_X86_64_TPOFF64:
1918 case elfcpp::R_X86_64_DTPMOD64:
1919 case elfcpp::R_X86_64_TLSDESC:
1920 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1921 _("unexpected reloc %u in object file"),
1922 r_type);
1923 break;
1924
1925 // These are initial tls relocs, which are expected when linking
1926 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1927 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1928 case elfcpp::R_X86_64_TLSDESC_CALL:
1929 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1930 case elfcpp::R_X86_64_DTPOFF32:
1931 case elfcpp::R_X86_64_DTPOFF64:
1932 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1933 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1934 this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
1935 view, address, view_size);
1936 break;
1937
1938 case elfcpp::R_X86_64_SIZE32:
1939 case elfcpp::R_X86_64_SIZE64:
1940 default:
1941 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1942 _("unsupported reloc %u"),
1943 r_type);
1944 break;
1945 }
1946
1947 return true;
1948 }
1949
1950 // Perform a TLS relocation.
1951
1952 inline void
1953 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1954 Target_x86_64* target,
1955 size_t relnum,
1956 const elfcpp::Rela<64, false>& rela,
1957 unsigned int r_type,
1958 const Sized_symbol<64>* gsym,
1959 const Symbol_value<64>* psymval,
1960 unsigned char* view,
1961 elfcpp::Elf_types<64>::Elf_Addr address,
1962 section_size_type view_size)
1963 {
1964 Output_segment* tls_segment = relinfo->layout->tls_segment();
1965
1966 const Sized_relobj<64, false>* object = relinfo->object;
1967 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1968
1969 elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1970
1971 const bool is_final = (gsym == NULL
1972 ? !parameters->options().output_is_position_independent()
1973 : gsym->final_value_is_known());
1974 const tls::Tls_optimization optimized_type
1975 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1976 switch (r_type)
1977 {
1978 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1979 this->saw_tls_block_reloc_ = true;
1980 if (optimized_type == tls::TLSOPT_TO_LE)
1981 {
1982 gold_assert(tls_segment != NULL);
1983 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1984 rela, r_type, value, view,
1985 view_size);
1986 break;
1987 }
1988 else
1989 {
1990 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
1991 ? GOT_TYPE_TLS_OFFSET
1992 : GOT_TYPE_TLS_PAIR);
1993 unsigned int got_offset;
1994 if (gsym != NULL)
1995 {
1996 gold_assert(gsym->has_got_offset(got_type));
1997 got_offset = gsym->got_offset(got_type) - target->got_size();
1998 }
1999 else
2000 {
2001 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2002 gold_assert(object->local_has_got_offset(r_sym, got_type));
2003 got_offset = (object->local_got_offset(r_sym, got_type)
2004 - target->got_size());
2005 }
2006 if (optimized_type == tls::TLSOPT_TO_IE)
2007 {
2008 gold_assert(tls_segment != NULL);
2009 value = target->got_plt_section()->address() + got_offset;
2010 this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
2011 value, view, address, view_size);
2012 break;
2013 }
2014 else if (optimized_type == tls::TLSOPT_NONE)
2015 {
2016 // Relocate the field with the offset of the pair of GOT
2017 // entries.
2018 value = target->got_plt_section()->address() + got_offset;
2019 Relocate_functions<64, false>::pcrela32(view, value, addend,
2020 address);
2021 break;
2022 }
2023 }
2024 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2025 _("unsupported reloc %u"), r_type);
2026 break;
2027
2028 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
2029 case elfcpp::R_X86_64_TLSDESC_CALL:
2030 this->saw_tls_block_reloc_ = true;
2031 if (optimized_type == tls::TLSOPT_TO_LE)
2032 {
2033 gold_assert(tls_segment != NULL);
2034 this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
2035 rela, r_type, value, view,
2036 view_size);
2037 break;
2038 }
2039 else
2040 {
2041 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2042 ? GOT_TYPE_TLS_OFFSET
2043 : GOT_TYPE_TLS_DESC);
2044 unsigned int got_offset;
2045 if (gsym != NULL)
2046 {
2047 gold_assert(gsym->has_got_offset(got_type));
2048 got_offset = gsym->got_offset(got_type) - target->got_size();
2049 }
2050 else
2051 {
2052 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2053 gold_assert(object->local_has_got_offset(r_sym, got_type));
2054 got_offset = (object->local_got_offset(r_sym, got_type)
2055 - target->got_size());
2056 }
2057 if (optimized_type == tls::TLSOPT_TO_IE)
2058 {
2059 gold_assert(tls_segment != NULL);
2060 value = target->got_plt_section()->address() + got_offset;
2061 this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
2062 rela, r_type, value, view, address,
2063 view_size);
2064 break;
2065 }
2066 else if (optimized_type == tls::TLSOPT_NONE)
2067 {
2068 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2069 {
2070 // Relocate the field with the offset of the pair of GOT
2071 // entries.
2072 value = target->got_plt_section()->address() + got_offset;
2073 Relocate_functions<64, false>::pcrela32(view, value, addend,
2074 address);
2075 }
2076 break;
2077 }
2078 }
2079 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2080 _("unsupported reloc %u"), r_type);
2081 break;
2082
2083 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2084 this->saw_tls_block_reloc_ = true;
2085 if (optimized_type == tls::TLSOPT_TO_LE)
2086 {
2087 gold_assert(tls_segment != NULL);
2088 this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
2089 value, view, view_size);
2090 break;
2091 }
2092 else if (optimized_type == tls::TLSOPT_NONE)
2093 {
2094 // Relocate the field with the offset of the GOT entry for
2095 // the module index.
2096 unsigned int got_offset;
2097 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
2098 - target->got_size());
2099 value = target->got_plt_section()->address() + got_offset;
2100 Relocate_functions<64, false>::pcrela32(view, value, addend,
2101 address);
2102 break;
2103 }
2104 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2105 _("unsupported reloc %u"), r_type);
2106 break;
2107
2108 case elfcpp::R_X86_64_DTPOFF32:
2109 if (optimized_type == tls::TLSOPT_TO_LE)
2110 {
2111 // This relocation type is used in debugging information.
2112 // In that case we need to not optimize the value. If we
2113 // haven't seen a TLSLD reloc, then we assume we should not
2114 // optimize this reloc.
2115 if (this->saw_tls_block_reloc_)
2116 {
2117 gold_assert(tls_segment != NULL);
2118 value -= tls_segment->memsz();
2119 }
2120 }
2121 Relocate_functions<64, false>::rela32(view, value, addend);
2122 break;
2123
2124 case elfcpp::R_X86_64_DTPOFF64:
2125 if (optimized_type == tls::TLSOPT_TO_LE)
2126 {
2127 // See R_X86_64_DTPOFF32, just above, for why we test this.
2128 if (this->saw_tls_block_reloc_)
2129 {
2130 gold_assert(tls_segment != NULL);
2131 value -= tls_segment->memsz();
2132 }
2133 }
2134 Relocate_functions<64, false>::rela64(view, value, addend);
2135 break;
2136
2137 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2138 if (optimized_type == tls::TLSOPT_TO_LE)
2139 {
2140 gold_assert(tls_segment != NULL);
2141 Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
2142 rela, r_type, value, view,
2143 view_size);
2144 break;
2145 }
2146 else if (optimized_type == tls::TLSOPT_NONE)
2147 {
2148 // Relocate the field with the offset of the GOT entry for
2149 // the tp-relative offset of the symbol.
2150 unsigned int got_offset;
2151 if (gsym != NULL)
2152 {
2153 gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
2154 got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
2155 - target->got_size());
2156 }
2157 else
2158 {
2159 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2160 gold_assert(object->local_has_got_offset(r_sym,
2161 GOT_TYPE_TLS_OFFSET));
2162 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
2163 - target->got_size());
2164 }
2165 value = target->got_plt_section()->address() + got_offset;
2166 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2167 break;
2168 }
2169 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2170 _("unsupported reloc type %u"),
2171 r_type);
2172 break;
2173
2174 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2175 value -= tls_segment->memsz();
2176 Relocate_functions<64, false>::rela32(view, value, addend);
2177 break;
2178 }
2179 }
2180
2181 // Do a relocation in which we convert a TLS General-Dynamic to an
2182 // Initial-Exec.
2183
2184 inline void
2185 Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
2186 size_t relnum,
2187 Output_segment*,
2188 const elfcpp::Rela<64, false>& rela,
2189 unsigned int,
2190 elfcpp::Elf_types<64>::Elf_Addr value,
2191 unsigned char* view,
2192 elfcpp::Elf_types<64>::Elf_Addr address,
2193 section_size_type view_size)
2194 {
2195 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
2196 // .word 0x6666; rex64; call __tls_get_addr
2197 // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
2198
2199 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
2200 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2201
2202 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2203 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
2204 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2205 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2206
2207 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
2208
2209 const elfcpp::Elf_Xword addend = rela.get_r_addend();
2210 Relocate_functions<64, false>::pcrela32(view + 8, value, addend - 8, address);
2211
2212 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2213 // We can skip it.
2214 this->skip_call_tls_get_addr_ = true;
2215 }
2216
2217 // Do a relocation in which we convert a TLS General-Dynamic to a
2218 // Local-Exec.
2219
2220 inline void
2221 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
2222 size_t relnum,
2223 Output_segment* tls_segment,
2224 const elfcpp::Rela<64, false>& rela,
2225 unsigned int,
2226 elfcpp::Elf_types<64>::Elf_Addr value,
2227 unsigned char* view,
2228 section_size_type view_size)
2229 {
2230 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
2231 // .word 0x6666; rex64; call __tls_get_addr
2232 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
2233
2234 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
2235 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2236
2237 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2238 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
2239 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2240 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2241
2242 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
2243
2244 value -= tls_segment->memsz();
2245 Relocate_functions<64, false>::rela32(view + 8, value, 0);
2246
2247 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2248 // We can skip it.
2249 this->skip_call_tls_get_addr_ = true;
2250 }
2251
2252 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
2253
2254 inline void
2255 Target_x86_64::Relocate::tls_desc_gd_to_ie(
2256 const Relocate_info<64, false>* relinfo,
2257 size_t relnum,
2258 Output_segment*,
2259 const elfcpp::Rela<64, false>& rela,
2260 unsigned int r_type,
2261 elfcpp::Elf_types<64>::Elf_Addr value,
2262 unsigned char* view,
2263 elfcpp::Elf_types<64>::Elf_Addr address,
2264 section_size_type view_size)
2265 {
2266 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2267 {
2268 // leaq foo@tlsdesc(%rip), %rax
2269 // ==> movq foo@gottpoff(%rip), %rax
2270 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2271 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2272 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2273 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
2274 view[-2] = 0x8b;
2275 const elfcpp::Elf_Xword addend = rela.get_r_addend();
2276 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2277 }
2278 else
2279 {
2280 // call *foo@tlscall(%rax)
2281 // ==> nop; nop
2282 gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
2283 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
2284 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2285 view[0] == 0xff && view[1] == 0x10);
2286 view[0] = 0x66;
2287 view[1] = 0x90;
2288 }
2289 }
2290
2291 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
2292
2293 inline void
2294 Target_x86_64::Relocate::tls_desc_gd_to_le(
2295 const Relocate_info<64, false>* relinfo,
2296 size_t relnum,
2297 Output_segment* tls_segment,
2298 const elfcpp::Rela<64, false>& rela,
2299 unsigned int r_type,
2300 elfcpp::Elf_types<64>::Elf_Addr value,
2301 unsigned char* view,
2302 section_size_type view_size)
2303 {
2304 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2305 {
2306 // leaq foo@tlsdesc(%rip), %rax
2307 // ==> movq foo@tpoff, %rax
2308 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2309 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2310 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2311 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
2312 view[-2] = 0xc7;
2313 view[-1] = 0xc0;
2314 value -= tls_segment->memsz();
2315 Relocate_functions<64, false>::rela32(view, value, 0);
2316 }
2317 else
2318 {
2319 // call *foo@tlscall(%rax)
2320 // ==> nop; nop
2321 gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
2322 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
2323 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2324 view[0] == 0xff && view[1] == 0x10);
2325 view[0] = 0x66;
2326 view[1] = 0x90;
2327 }
2328 }
2329
2330 inline void
2331 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
2332 size_t relnum,
2333 Output_segment*,
2334 const elfcpp::Rela<64, false>& rela,
2335 unsigned int,
2336 elfcpp::Elf_types<64>::Elf_Addr,
2337 unsigned char* view,
2338 section_size_type view_size)
2339 {
2340 // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
2341 // ... leq foo@dtpoff(%rax),%reg
2342 // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
2343
2344 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2345 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
2346
2347 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2348 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
2349
2350 tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
2351
2352 memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
2353
2354 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2355 // We can skip it.
2356 this->skip_call_tls_get_addr_ = true;
2357 }
2358
2359 // Do a relocation in which we convert a TLS Initial-Exec to a
2360 // Local-Exec.
2361
2362 inline void
2363 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
2364 size_t relnum,
2365 Output_segment* tls_segment,
2366 const elfcpp::Rela<64, false>& rela,
2367 unsigned int,
2368 elfcpp::Elf_types<64>::Elf_Addr value,
2369 unsigned char* view,
2370 section_size_type view_size)
2371 {
2372 // We need to examine the opcodes to figure out which instruction we
2373 // are looking at.
2374
2375 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
2376 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
2377
2378 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2379 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2380
2381 unsigned char op1 = view[-3];
2382 unsigned char op2 = view[-2];
2383 unsigned char op3 = view[-1];
2384 unsigned char reg = op3 >> 3;
2385
2386 if (op2 == 0x8b)
2387 {
2388 // movq
2389 if (op1 == 0x4c)
2390 view[-3] = 0x49;
2391 view[-2] = 0xc7;
2392 view[-1] = 0xc0 | reg;
2393 }
2394 else if (reg == 4)
2395 {
2396 // Special handling for %rsp.
2397 if (op1 == 0x4c)
2398 view[-3] = 0x49;
2399 view[-2] = 0x81;
2400 view[-1] = 0xc0 | reg;
2401 }
2402 else
2403 {
2404 // addq
2405 if (op1 == 0x4c)
2406 view[-3] = 0x4d;
2407 view[-2] = 0x8d;
2408 view[-1] = 0x80 | reg | (reg << 3);
2409 }
2410
2411 value -= tls_segment->memsz();
2412 Relocate_functions<64, false>::rela32(view, value, 0);
2413 }
2414
2415 // Relocate section data.
2416
2417 void
2418 Target_x86_64::relocate_section(
2419 const Relocate_info<64, false>* relinfo,
2420 unsigned int sh_type,
2421 const unsigned char* prelocs,
2422 size_t reloc_count,
2423 Output_section* output_section,
2424 bool needs_special_offset_handling,
2425 unsigned char* view,
2426 elfcpp::Elf_types<64>::Elf_Addr address,
2427 section_size_type view_size,
2428 const Reloc_symbol_changes* reloc_symbol_changes)
2429 {
2430 gold_assert(sh_type == elfcpp::SHT_RELA);
2431
2432 gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
2433 Target_x86_64::Relocate>(
2434 relinfo,
2435 this,
2436 prelocs,
2437 reloc_count,
2438 output_section,
2439 needs_special_offset_handling,
2440 view,
2441 address,
2442 view_size,
2443 reloc_symbol_changes);
2444 }
2445
2446 // Return the size of a relocation while scanning during a relocatable
2447 // link.
2448
2449 unsigned int
2450 Target_x86_64::Relocatable_size_for_reloc::get_size_for_reloc(
2451 unsigned int r_type,
2452 Relobj* object)
2453 {
2454 switch (r_type)
2455 {
2456 case elfcpp::R_X86_64_NONE:
2457 case elfcpp::R_386_GNU_VTINHERIT:
2458 case elfcpp::R_386_GNU_VTENTRY:
2459 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
2460 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
2461 case elfcpp::R_X86_64_TLSDESC_CALL:
2462 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2463 case elfcpp::R_X86_64_DTPOFF32:
2464 case elfcpp::R_X86_64_DTPOFF64:
2465 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2466 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2467 return 0;
2468
2469 case elfcpp::R_X86_64_64:
2470 case elfcpp::R_X86_64_PC64:
2471 case elfcpp::R_X86_64_GOTOFF64:
2472 case elfcpp::R_X86_64_GOTPC64:
2473 case elfcpp::R_X86_64_PLTOFF64:
2474 case elfcpp::R_X86_64_GOT64:
2475 case elfcpp::R_X86_64_GOTPCREL64:
2476 case elfcpp::R_X86_64_GOTPCREL:
2477 case elfcpp::R_X86_64_GOTPLT64:
2478 return 8;
2479
2480 case elfcpp::R_X86_64_32:
2481 case elfcpp::R_X86_64_32S:
2482 case elfcpp::R_X86_64_PC32:
2483 case elfcpp::R_X86_64_PLT32:
2484 case elfcpp::R_X86_64_GOTPC32:
2485 case elfcpp::R_X86_64_GOT32:
2486 return 4;
2487
2488 case elfcpp::R_X86_64_16:
2489 case elfcpp::R_X86_64_PC16:
2490 return 2;
2491
2492 case elfcpp::R_X86_64_8:
2493 case elfcpp::R_X86_64_PC8:
2494 return 1;
2495
2496 case elfcpp::R_X86_64_COPY:
2497 case elfcpp::R_X86_64_GLOB_DAT:
2498 case elfcpp::R_X86_64_JUMP_SLOT:
2499 case elfcpp::R_X86_64_RELATIVE:
2500 // These are outstanding tls relocs, which are unexpected when linking
2501 case elfcpp::R_X86_64_TPOFF64:
2502 case elfcpp::R_X86_64_DTPMOD64:
2503 case elfcpp::R_X86_64_TLSDESC:
2504 object->error(_("unexpected reloc %u in object file"), r_type);
2505 return 0;
2506
2507 case elfcpp::R_X86_64_SIZE32:
2508 case elfcpp::R_X86_64_SIZE64:
2509 default:
2510 object->error(_("unsupported reloc %u against local symbol"), r_type);
2511 return 0;
2512 }
2513 }
2514
2515 // Scan the relocs during a relocatable link.
2516
2517 void
2518 Target_x86_64::scan_relocatable_relocs(Symbol_table* symtab,
2519 Layout* layout,
2520 Sized_relobj<64, false>* object,
2521 unsigned int data_shndx,
2522 unsigned int sh_type,
2523 const unsigned char* prelocs,
2524 size_t reloc_count,
2525 Output_section* output_section,
2526 bool needs_special_offset_handling,
2527 size_t local_symbol_count,
2528 const unsigned char* plocal_symbols,
2529 Relocatable_relocs* rr)
2530 {
2531 gold_assert(sh_type == elfcpp::SHT_RELA);
2532
2533 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
2534 Relocatable_size_for_reloc> Scan_relocatable_relocs;
2535
2536 gold::scan_relocatable_relocs<64, false, elfcpp::SHT_RELA,
2537 Scan_relocatable_relocs>(
2538 symtab,
2539 layout,
2540 object,
2541 data_shndx,
2542 prelocs,
2543 reloc_count,
2544 output_section,
2545 needs_special_offset_handling,
2546 local_symbol_count,
2547 plocal_symbols,
2548 rr);
2549 }
2550
2551 // Relocate a section during a relocatable link.
2552
2553 void
2554 Target_x86_64::relocate_for_relocatable(
2555 const Relocate_info<64, false>* relinfo,
2556 unsigned int sh_type,
2557 const unsigned char* prelocs,
2558 size_t reloc_count,
2559 Output_section* output_section,
2560 off_t offset_in_output_section,
2561 const Relocatable_relocs* rr,
2562 unsigned char* view,
2563 elfcpp::Elf_types<64>::Elf_Addr view_address,
2564 section_size_type view_size,
2565 unsigned char* reloc_view,
2566 section_size_type reloc_view_size)
2567 {
2568 gold_assert(sh_type == elfcpp::SHT_RELA);
2569
2570 gold::relocate_for_relocatable<64, false, elfcpp::SHT_RELA>(
2571 relinfo,
2572 prelocs,
2573 reloc_count,
2574 output_section,
2575 offset_in_output_section,
2576 rr,
2577 view,
2578 view_address,
2579 view_size,
2580 reloc_view,
2581 reloc_view_size);
2582 }
2583
2584 // Return the value to use for a dynamic which requires special
2585 // treatment. This is how we support equality comparisons of function
2586 // pointers across shared library boundaries, as described in the
2587 // processor specific ABI supplement.
2588
2589 uint64_t
2590 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
2591 {
2592 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
2593 return this->plt_section()->address() + gsym->plt_offset();
2594 }
2595
2596 // Return a string used to fill a code section with nops to take up
2597 // the specified length.
2598
2599 std::string
2600 Target_x86_64::do_code_fill(section_size_type length) const
2601 {
2602 if (length >= 16)
2603 {
2604 // Build a jmpq instruction to skip over the bytes.
2605 unsigned char jmp[5];
2606 jmp[0] = 0xe9;
2607 elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
2608 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
2609 + std::string(length - 5, '\0'));
2610 }
2611
2612 // Nop sequences of various lengths.
2613 const char nop1[1] = { 0x90 }; // nop
2614 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
2615 const char nop3[3] = { 0x0f, 0x1f, 0x00 }; // nop (%rax)
2616 const char nop4[4] = { 0x0f, 0x1f, 0x40, 0x00}; // nop 0(%rax)
2617 const char nop5[5] = { 0x0f, 0x1f, 0x44, 0x00, // nop 0(%rax,%rax,1)
2618 0x00 };
2619 const char nop6[6] = { 0x66, 0x0f, 0x1f, 0x44, // nopw 0(%rax,%rax,1)
2620 0x00, 0x00 };
2621 const char nop7[7] = { 0x0f, 0x1f, 0x80, 0x00, // nopl 0L(%rax)
2622 0x00, 0x00, 0x00 };
2623 const char nop8[8] = { 0x0f, 0x1f, 0x84, 0x00, // nopl 0L(%rax,%rax,1)
2624 0x00, 0x00, 0x00, 0x00 };
2625 const char nop9[9] = { 0x66, 0x0f, 0x1f, 0x84, // nopw 0L(%rax,%rax,1)
2626 0x00, 0x00, 0x00, 0x00,
2627 0x00 };
2628 const char nop10[10] = { 0x66, 0x2e, 0x0f, 0x1f, // nopw %cs:0L(%rax,%rax,1)
2629 0x84, 0x00, 0x00, 0x00,
2630 0x00, 0x00 };
2631 const char nop11[11] = { 0x66, 0x66, 0x2e, 0x0f, // data16
2632 0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2633 0x00, 0x00, 0x00 };
2634 const char nop12[12] = { 0x66, 0x66, 0x66, 0x2e, // data16; data16
2635 0x0f, 0x1f, 0x84, 0x00, // nopw %cs:0L(%rax,%rax,1)
2636 0x00, 0x00, 0x00, 0x00 };
2637 const char nop13[13] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2638 0x2e, 0x0f, 0x1f, 0x84, // nopw %cs:0L(%rax,%rax,1)
2639 0x00, 0x00, 0x00, 0x00,
2640 0x00 };
2641 const char nop14[14] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2642 0x66, 0x2e, 0x0f, 0x1f, // data16
2643 0x84, 0x00, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2644 0x00, 0x00 };
2645 const char nop15[15] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2646 0x66, 0x66, 0x2e, 0x0f, // data16; data16
2647 0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2648 0x00, 0x00, 0x00 };
2649
2650 const char* nops[16] = {
2651 NULL,
2652 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
2653 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
2654 };
2655
2656 return std::string(nops[length], length);
2657 }
2658
2659 // FNOFFSET in section SHNDX in OBJECT is the start of a function
2660 // compiled with -fstack-split. The function calls non-stack-split
2661 // code. We have to change the function so that it always ensures
2662 // that it has enough stack space to run some random function.
2663
2664 void
2665 Target_x86_64::do_calls_non_split(Relobj* object, unsigned int shndx,
2666 section_offset_type fnoffset,
2667 section_size_type fnsize,
2668 unsigned char* view,
2669 section_size_type view_size,
2670 std::string* from,
2671 std::string* to) const
2672 {
2673 // The function starts with a comparison of the stack pointer and a
2674 // field in the TCB. This is followed by a jump.
2675
2676 // cmp %fs:NN,%rsp
2677 if (this->match_view(view, view_size, fnoffset, "\x64\x48\x3b\x24\x25", 5)
2678 && fnsize > 9)
2679 {
2680 // We will call __morestack if the carry flag is set after this
2681 // comparison. We turn the comparison into an stc instruction
2682 // and some nops.
2683 view[fnoffset] = '\xf9';
2684 this->set_view_to_nop(view, view_size, fnoffset + 1, 8);
2685 }
2686 // lea NN(%rsp),%r10
2687 else if (this->match_view(view, view_size, fnoffset, "\x4c\x8d\x94\x24", 4)
2688 && fnsize > 8)
2689 {
2690 // This is loading an offset from the stack pointer for a
2691 // comparison. The offset is negative, so we decrease the
2692 // offset by the amount of space we need for the stack. This
2693 // means we will avoid calling __morestack if there happens to
2694 // be plenty of space on the stack already.
2695 unsigned char* pval = view + fnoffset + 4;
2696 uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
2697 val -= parameters->options().split_stack_adjust_size();
2698 elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
2699 }
2700 else
2701 {
2702 if (!object->has_no_split_stack())
2703 object->error(_("failed to match split-stack sequence at "
2704 "section %u offset %0zx"),
2705 shndx, fnoffset);
2706 return;
2707 }
2708
2709 // We have to change the function so that it calls
2710 // __morestack_non_split instead of __morestack. The former will
2711 // allocate additional stack space.
2712 *from = "__morestack";
2713 *to = "__morestack_non_split";
2714 }
2715
2716 // The selector for x86_64 object files.
2717
2718 class Target_selector_x86_64 : public Target_selector_freebsd
2719 {
2720 public:
2721 Target_selector_x86_64()
2722 : Target_selector_freebsd(elfcpp::EM_X86_64, 64, false, "elf64-x86-64",
2723 "elf64-x86-64-freebsd")
2724 { }
2725
2726 Target*
2727 do_instantiate_target()
2728 { return new Target_x86_64(); }
2729
2730 };
2731
2732 Target_selector_x86_64 target_selector_x86_64;
2733
2734 } // End anonymous namespace.
This page took 0.196077 seconds and 4 git commands to generate.