4c0698c0dda5f78ce2d6079a8c303408122142bf
[deliverable/linux.git] / include / asm-s390 / pgtable.h
1 /*
2 * include/asm-s390/pgtable.h
3 *
4 * S390 version
5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (weigand@de.ibm.com)
8 * Martin Schwidefsky (schwidefsky@de.ibm.com)
9 *
10 * Derived from "include/asm-i386/pgtable.h"
11 */
12
13 #ifndef _ASM_S390_PGTABLE_H
14 #define _ASM_S390_PGTABLE_H
15
16 /*
17 * The Linux memory management assumes a three-level page table setup. For
18 * s390 31 bit we "fold" the mid level into the top-level page table, so
19 * that we physically have the same two-level page table as the s390 mmu
20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
21 * the hardware provides (region first and region second tables are not
22 * used).
23 *
24 * The "pgd_xxx()" functions are trivial for a folded two-level
25 * setup: the pgd is never bad, and a pmd always exists (as it's folded
26 * into the pgd entry)
27 *
28 * This file contains the functions and defines necessary to modify and use
29 * the S390 page table tree.
30 */
31 #ifndef __ASSEMBLY__
32 #include <linux/mm_types.h>
33 #include <asm/bitops.h>
34 #include <asm/bug.h>
35 #include <asm/processor.h>
36
37 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
38 extern void paging_init(void);
39 extern void vmem_map_init(void);
40
41 /*
42 * The S390 doesn't have any external MMU info: the kernel page
43 * tables contain all the necessary information.
44 */
45 #define update_mmu_cache(vma, address, pte) do { } while (0)
46
47 /*
48 * ZERO_PAGE is a global shared page that is always zero: used
49 * for zero-mapped memory areas etc..
50 */
51 extern char empty_zero_page[PAGE_SIZE];
52 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
53 #endif /* !__ASSEMBLY__ */
54
55 /*
56 * PMD_SHIFT determines the size of the area a second-level page
57 * table can map
58 * PGDIR_SHIFT determines what a third-level page table entry can map
59 */
60 #ifndef __s390x__
61 # define PMD_SHIFT 20
62 # define PUD_SHIFT 20
63 # define PGDIR_SHIFT 20
64 #else /* __s390x__ */
65 # define PMD_SHIFT 20
66 # define PUD_SHIFT 31
67 # define PGDIR_SHIFT 42
68 #endif /* __s390x__ */
69
70 #define PMD_SIZE (1UL << PMD_SHIFT)
71 #define PMD_MASK (~(PMD_SIZE-1))
72 #define PUD_SIZE (1UL << PUD_SHIFT)
73 #define PUD_MASK (~(PUD_SIZE-1))
74 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
75 #define PGDIR_MASK (~(PGDIR_SIZE-1))
76
77 /*
78 * entries per page directory level: the S390 is two-level, so
79 * we don't really have any PMD directory physically.
80 * for S390 segment-table entries are combined to one PGD
81 * that leads to 1024 pte per pgd
82 */
83 #define PTRS_PER_PTE 256
84 #ifndef __s390x__
85 #define PTRS_PER_PMD 1
86 #define PTRS_PER_PUD 1
87 #else /* __s390x__ */
88 #define PTRS_PER_PMD 2048
89 #define PTRS_PER_PUD 2048
90 #endif /* __s390x__ */
91 #define PTRS_PER_PGD 2048
92
93 #define FIRST_USER_ADDRESS 0
94
95 #define pte_ERROR(e) \
96 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
97 #define pmd_ERROR(e) \
98 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
99 #define pud_ERROR(e) \
100 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
101 #define pgd_ERROR(e) \
102 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
103
104 #ifndef __ASSEMBLY__
105 /*
106 * The vmalloc area will always be on the topmost area of the kernel
107 * mapping. We reserve 96MB (31bit) / 1GB (64bit) for vmalloc,
108 * which should be enough for any sane case.
109 * By putting vmalloc at the top, we maximise the gap between physical
110 * memory and vmalloc to catch misplaced memory accesses. As a side
111 * effect, this also makes sure that 64 bit module code cannot be used
112 * as system call address.
113 */
114 #ifndef __s390x__
115 #define VMALLOC_START 0x78000000UL
116 #define VMALLOC_END 0x7e000000UL
117 #define VMEM_MAP_END 0x80000000UL
118 #else /* __s390x__ */
119 #define VMALLOC_START 0x3e000000000UL
120 #define VMALLOC_END 0x3e040000000UL
121 #define VMEM_MAP_END 0x40000000000UL
122 #endif /* __s390x__ */
123
124 /*
125 * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1
126 * mapping. This needs to be calculated at compile time since the size of the
127 * VMEM_MAP is static but the size of struct page can change.
128 */
129 #define VMEM_MAX_PAGES ((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page))
130 #define VMEM_MAX_PFN min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES)
131 #define VMEM_MAX_PHYS ((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1))
132 #define VMEM_MAP ((struct page *) VMALLOC_END)
133
134 /*
135 * A 31 bit pagetable entry of S390 has following format:
136 * | PFRA | | OS |
137 * 0 0IP0
138 * 00000000001111111111222222222233
139 * 01234567890123456789012345678901
140 *
141 * I Page-Invalid Bit: Page is not available for address-translation
142 * P Page-Protection Bit: Store access not possible for page
143 *
144 * A 31 bit segmenttable entry of S390 has following format:
145 * | P-table origin | |PTL
146 * 0 IC
147 * 00000000001111111111222222222233
148 * 01234567890123456789012345678901
149 *
150 * I Segment-Invalid Bit: Segment is not available for address-translation
151 * C Common-Segment Bit: Segment is not private (PoP 3-30)
152 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
153 *
154 * The 31 bit segmenttable origin of S390 has following format:
155 *
156 * |S-table origin | | STL |
157 * X **GPS
158 * 00000000001111111111222222222233
159 * 01234567890123456789012345678901
160 *
161 * X Space-Switch event:
162 * G Segment-Invalid Bit: *
163 * P Private-Space Bit: Segment is not private (PoP 3-30)
164 * S Storage-Alteration:
165 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
166 *
167 * A 64 bit pagetable entry of S390 has following format:
168 * | PFRA |0IP0| OS |
169 * 0000000000111111111122222222223333333333444444444455555555556666
170 * 0123456789012345678901234567890123456789012345678901234567890123
171 *
172 * I Page-Invalid Bit: Page is not available for address-translation
173 * P Page-Protection Bit: Store access not possible for page
174 *
175 * A 64 bit segmenttable entry of S390 has following format:
176 * | P-table origin | TT
177 * 0000000000111111111122222222223333333333444444444455555555556666
178 * 0123456789012345678901234567890123456789012345678901234567890123
179 *
180 * I Segment-Invalid Bit: Segment is not available for address-translation
181 * C Common-Segment Bit: Segment is not private (PoP 3-30)
182 * P Page-Protection Bit: Store access not possible for page
183 * TT Type 00
184 *
185 * A 64 bit region table entry of S390 has following format:
186 * | S-table origin | TF TTTL
187 * 0000000000111111111122222222223333333333444444444455555555556666
188 * 0123456789012345678901234567890123456789012345678901234567890123
189 *
190 * I Segment-Invalid Bit: Segment is not available for address-translation
191 * TT Type 01
192 * TF
193 * TL Table length
194 *
195 * The 64 bit regiontable origin of S390 has following format:
196 * | region table origon | DTTL
197 * 0000000000111111111122222222223333333333444444444455555555556666
198 * 0123456789012345678901234567890123456789012345678901234567890123
199 *
200 * X Space-Switch event:
201 * G Segment-Invalid Bit:
202 * P Private-Space Bit:
203 * S Storage-Alteration:
204 * R Real space
205 * TL Table-Length:
206 *
207 * A storage key has the following format:
208 * | ACC |F|R|C|0|
209 * 0 3 4 5 6 7
210 * ACC: access key
211 * F : fetch protection bit
212 * R : referenced bit
213 * C : changed bit
214 */
215
216 /* Hardware bits in the page table entry */
217 #define _PAGE_RO 0x200 /* HW read-only bit */
218 #define _PAGE_INVALID 0x400 /* HW invalid bit */
219
220 /* Software bits in the page table entry */
221 #define _PAGE_SWT 0x001 /* SW pte type bit t */
222 #define _PAGE_SWX 0x002 /* SW pte type bit x */
223
224 /* Six different types of pages. */
225 #define _PAGE_TYPE_EMPTY 0x400
226 #define _PAGE_TYPE_NONE 0x401
227 #define _PAGE_TYPE_SWAP 0x403
228 #define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
229 #define _PAGE_TYPE_RO 0x200
230 #define _PAGE_TYPE_RW 0x000
231 #define _PAGE_TYPE_EX_RO 0x202
232 #define _PAGE_TYPE_EX_RW 0x002
233
234 /*
235 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
236 * pte_none and pte_file to find out the pte type WITHOUT holding the page
237 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
238 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
239 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
240 * This change is done while holding the lock, but the intermediate step
241 * of a previously valid pte with the hw invalid bit set can be observed by
242 * handle_pte_fault. That makes it necessary that all valid pte types with
243 * the hw invalid bit set must be distinguishable from the four pte types
244 * empty, none, swap and file.
245 *
246 * irxt ipte irxt
247 * _PAGE_TYPE_EMPTY 1000 -> 1000
248 * _PAGE_TYPE_NONE 1001 -> 1001
249 * _PAGE_TYPE_SWAP 1011 -> 1011
250 * _PAGE_TYPE_FILE 11?1 -> 11?1
251 * _PAGE_TYPE_RO 0100 -> 1100
252 * _PAGE_TYPE_RW 0000 -> 1000
253 * _PAGE_TYPE_EX_RO 0110 -> 1110
254 * _PAGE_TYPE_EX_RW 0010 -> 1010
255 *
256 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
257 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
258 * pte_file is true for bits combinations 1101, 1111
259 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
260 */
261
262 /* Page status table bits for virtualization */
263 #define RCP_PCL_BIT 55
264 #define RCP_HR_BIT 54
265 #define RCP_HC_BIT 53
266 #define RCP_GR_BIT 50
267 #define RCP_GC_BIT 49
268
269 #ifndef __s390x__
270
271 /* Bits in the segment table address-space-control-element */
272 #define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
273 #define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
274 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
275 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
276 #define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
277
278 /* Bits in the segment table entry */
279 #define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
280 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
281 #define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
282 #define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
283
284 #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
285 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
286
287 #else /* __s390x__ */
288
289 /* Bits in the segment/region table address-space-control-element */
290 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
291 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
292 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
293 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
294 #define _ASCE_REAL_SPACE 0x20 /* real space control */
295 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
296 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
297 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
298 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
299 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
300 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
301
302 /* Bits in the region table entry */
303 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
304 #define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
305 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
306 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
307 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
308 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
309 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
310
311 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
312 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
313 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
314 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
315 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
316 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
317
318 /* Bits in the segment table entry */
319 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
320 #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
321 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
322
323 #define _SEGMENT_ENTRY (0)
324 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
325
326 #endif /* __s390x__ */
327
328 /*
329 * A user page table pointer has the space-switch-event bit, the
330 * private-space-control bit and the storage-alteration-event-control
331 * bit set. A kernel page table pointer doesn't need them.
332 */
333 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
334 _ASCE_ALT_EVENT)
335
336 /* Bits int the storage key */
337 #define _PAGE_CHANGED 0x02 /* HW changed bit */
338 #define _PAGE_REFERENCED 0x04 /* HW referenced bit */
339
340 /*
341 * Page protection definitions.
342 */
343 #define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
344 #define PAGE_RO __pgprot(_PAGE_TYPE_RO)
345 #define PAGE_RW __pgprot(_PAGE_TYPE_RW)
346 #define PAGE_EX_RO __pgprot(_PAGE_TYPE_EX_RO)
347 #define PAGE_EX_RW __pgprot(_PAGE_TYPE_EX_RW)
348
349 #define PAGE_KERNEL PAGE_RW
350 #define PAGE_COPY PAGE_RO
351
352 /*
353 * Dependent on the EXEC_PROTECT option s390 can do execute protection.
354 * Write permission always implies read permission. In theory with a
355 * primary/secondary page table execute only can be implemented but
356 * it would cost an additional bit in the pte to distinguish all the
357 * different pte types. To avoid that execute permission currently
358 * implies read permission as well.
359 */
360 /*xwr*/
361 #define __P000 PAGE_NONE
362 #define __P001 PAGE_RO
363 #define __P010 PAGE_RO
364 #define __P011 PAGE_RO
365 #define __P100 PAGE_EX_RO
366 #define __P101 PAGE_EX_RO
367 #define __P110 PAGE_EX_RO
368 #define __P111 PAGE_EX_RO
369
370 #define __S000 PAGE_NONE
371 #define __S001 PAGE_RO
372 #define __S010 PAGE_RW
373 #define __S011 PAGE_RW
374 #define __S100 PAGE_EX_RO
375 #define __S101 PAGE_EX_RO
376 #define __S110 PAGE_EX_RW
377 #define __S111 PAGE_EX_RW
378
379 #ifndef __s390x__
380 # define PxD_SHADOW_SHIFT 1
381 #else /* __s390x__ */
382 # define PxD_SHADOW_SHIFT 2
383 #endif /* __s390x__ */
384
385 static inline void *get_shadow_table(void *table)
386 {
387 unsigned long addr, offset;
388 struct page *page;
389
390 addr = (unsigned long) table;
391 offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1);
392 page = virt_to_page((void *)(addr ^ offset));
393 return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL);
394 }
395
396 /*
397 * Certain architectures need to do special things when PTEs
398 * within a page table are directly modified. Thus, the following
399 * hook is made available.
400 */
401 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
402 pte_t *ptep, pte_t entry)
403 {
404 *ptep = entry;
405 if (mm->context.noexec) {
406 if (!(pte_val(entry) & _PAGE_INVALID) &&
407 (pte_val(entry) & _PAGE_SWX))
408 pte_val(entry) |= _PAGE_RO;
409 else
410 pte_val(entry) = _PAGE_TYPE_EMPTY;
411 ptep[PTRS_PER_PTE] = entry;
412 }
413 }
414
415 /*
416 * pgd/pmd/pte query functions
417 */
418 #ifndef __s390x__
419
420 static inline int pgd_present(pgd_t pgd) { return 1; }
421 static inline int pgd_none(pgd_t pgd) { return 0; }
422 static inline int pgd_bad(pgd_t pgd) { return 0; }
423
424 static inline int pud_present(pud_t pud) { return 1; }
425 static inline int pud_none(pud_t pud) { return 0; }
426 static inline int pud_bad(pud_t pud) { return 0; }
427
428 #else /* __s390x__ */
429
430 static inline int pgd_present(pgd_t pgd)
431 {
432 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
433 return 1;
434 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
435 }
436
437 static inline int pgd_none(pgd_t pgd)
438 {
439 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
440 return 0;
441 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
442 }
443
444 static inline int pgd_bad(pgd_t pgd)
445 {
446 /*
447 * With dynamic page table levels the pgd can be a region table
448 * entry or a segment table entry. Check for the bit that are
449 * invalid for either table entry.
450 */
451 unsigned long mask =
452 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
453 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
454 return (pgd_val(pgd) & mask) != 0;
455 }
456
457 static inline int pud_present(pud_t pud)
458 {
459 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
460 return 1;
461 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
462 }
463
464 static inline int pud_none(pud_t pud)
465 {
466 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
467 return 0;
468 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
469 }
470
471 static inline int pud_bad(pud_t pud)
472 {
473 /*
474 * With dynamic page table levels the pud can be a region table
475 * entry or a segment table entry. Check for the bit that are
476 * invalid for either table entry.
477 */
478 unsigned long mask =
479 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
480 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
481 return (pud_val(pud) & mask) != 0;
482 }
483
484 #endif /* __s390x__ */
485
486 static inline int pmd_present(pmd_t pmd)
487 {
488 return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
489 }
490
491 static inline int pmd_none(pmd_t pmd)
492 {
493 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
494 }
495
496 static inline int pmd_bad(pmd_t pmd)
497 {
498 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
499 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
500 }
501
502 static inline int pte_none(pte_t pte)
503 {
504 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
505 }
506
507 static inline int pte_present(pte_t pte)
508 {
509 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
510 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
511 (!(pte_val(pte) & _PAGE_INVALID) &&
512 !(pte_val(pte) & _PAGE_SWT));
513 }
514
515 static inline int pte_file(pte_t pte)
516 {
517 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
518 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
519 }
520
521 #define __HAVE_ARCH_PTE_SAME
522 #define pte_same(a,b) (pte_val(a) == pte_val(b))
523
524 static inline void rcp_lock(pte_t *ptep)
525 {
526 #ifdef CONFIG_PGSTE
527 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
528 preempt_disable();
529 while (test_and_set_bit(RCP_PCL_BIT, pgste))
530 ;
531 #endif
532 }
533
534 static inline void rcp_unlock(pte_t *ptep)
535 {
536 #ifdef CONFIG_PGSTE
537 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
538 clear_bit(RCP_PCL_BIT, pgste);
539 preempt_enable();
540 #endif
541 }
542
543 /* forward declaration for SetPageUptodate in page-flags.h*/
544 static inline void page_clear_dirty(struct page *page);
545 #include <linux/page-flags.h>
546
547 static inline void ptep_rcp_copy(pte_t *ptep)
548 {
549 #ifdef CONFIG_PGSTE
550 struct page *page = virt_to_page(pte_val(*ptep));
551 unsigned int skey;
552 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
553
554 skey = page_get_storage_key(page_to_phys(page));
555 if (skey & _PAGE_CHANGED)
556 set_bit_simple(RCP_GC_BIT, pgste);
557 if (skey & _PAGE_REFERENCED)
558 set_bit_simple(RCP_GR_BIT, pgste);
559 if (test_and_clear_bit_simple(RCP_HC_BIT, pgste))
560 SetPageDirty(page);
561 if (test_and_clear_bit_simple(RCP_HR_BIT, pgste))
562 SetPageReferenced(page);
563 #endif
564 }
565
566 /*
567 * query functions pte_write/pte_dirty/pte_young only work if
568 * pte_present() is true. Undefined behaviour if not..
569 */
570 static inline int pte_write(pte_t pte)
571 {
572 return (pte_val(pte) & _PAGE_RO) == 0;
573 }
574
575 static inline int pte_dirty(pte_t pte)
576 {
577 /* A pte is neither clean nor dirty on s/390. The dirty bit
578 * is in the storage key. See page_test_and_clear_dirty for
579 * details.
580 */
581 return 0;
582 }
583
584 static inline int pte_young(pte_t pte)
585 {
586 /* A pte is neither young nor old on s/390. The young bit
587 * is in the storage key. See page_test_and_clear_young for
588 * details.
589 */
590 return 0;
591 }
592
593 /*
594 * pgd/pmd/pte modification functions
595 */
596
597 #ifndef __s390x__
598
599 #define pgd_clear(pgd) do { } while (0)
600 #define pud_clear(pud) do { } while (0)
601
602 #else /* __s390x__ */
603
604 static inline void pgd_clear_kernel(pgd_t * pgd)
605 {
606 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
607 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
608 }
609
610 static inline void pgd_clear(pgd_t * pgd)
611 {
612 pgd_t *shadow = get_shadow_table(pgd);
613
614 pgd_clear_kernel(pgd);
615 if (shadow)
616 pgd_clear_kernel(shadow);
617 }
618
619 static inline void pud_clear_kernel(pud_t *pud)
620 {
621 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
622 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
623 }
624
625 static inline void pud_clear(pud_t *pud)
626 {
627 pud_t *shadow = get_shadow_table(pud);
628
629 pud_clear_kernel(pud);
630 if (shadow)
631 pud_clear_kernel(shadow);
632 }
633
634 #endif /* __s390x__ */
635
636 static inline void pmd_clear_kernel(pmd_t * pmdp)
637 {
638 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
639 }
640
641 static inline void pmd_clear(pmd_t *pmd)
642 {
643 pmd_t *shadow = get_shadow_table(pmd);
644
645 pmd_clear_kernel(pmd);
646 if (shadow)
647 pmd_clear_kernel(shadow);
648 }
649
650 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
651 {
652 if (mm->context.pgstes)
653 ptep_rcp_copy(ptep);
654 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
655 if (mm->context.noexec)
656 pte_val(ptep[PTRS_PER_PTE]) = _PAGE_TYPE_EMPTY;
657 }
658
659 /*
660 * The following pte modification functions only work if
661 * pte_present() is true. Undefined behaviour if not..
662 */
663 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
664 {
665 pte_val(pte) &= PAGE_MASK;
666 pte_val(pte) |= pgprot_val(newprot);
667 return pte;
668 }
669
670 static inline pte_t pte_wrprotect(pte_t pte)
671 {
672 /* Do not clobber _PAGE_TYPE_NONE pages! */
673 if (!(pte_val(pte) & _PAGE_INVALID))
674 pte_val(pte) |= _PAGE_RO;
675 return pte;
676 }
677
678 static inline pte_t pte_mkwrite(pte_t pte)
679 {
680 pte_val(pte) &= ~_PAGE_RO;
681 return pte;
682 }
683
684 static inline pte_t pte_mkclean(pte_t pte)
685 {
686 /* The only user of pte_mkclean is the fork() code.
687 We must *not* clear the *physical* page dirty bit
688 just because fork() wants to clear the dirty bit in
689 *one* of the page's mappings. So we just do nothing. */
690 return pte;
691 }
692
693 static inline pte_t pte_mkdirty(pte_t pte)
694 {
695 /* We do not explicitly set the dirty bit because the
696 * sske instruction is slow. It is faster to let the
697 * next instruction set the dirty bit.
698 */
699 return pte;
700 }
701
702 static inline pte_t pte_mkold(pte_t pte)
703 {
704 /* S/390 doesn't keep its dirty/referenced bit in the pte.
705 * There is no point in clearing the real referenced bit.
706 */
707 return pte;
708 }
709
710 static inline pte_t pte_mkyoung(pte_t pte)
711 {
712 /* S/390 doesn't keep its dirty/referenced bit in the pte.
713 * There is no point in setting the real referenced bit.
714 */
715 return pte;
716 }
717
718 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
719 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
720 unsigned long addr, pte_t *ptep)
721 {
722 #ifdef CONFIG_PGSTE
723 unsigned long physpage;
724 int young;
725 unsigned long *pgste;
726
727 if (!vma->vm_mm->context.pgstes)
728 return 0;
729 physpage = pte_val(*ptep) & PAGE_MASK;
730 pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
731
732 young = ((page_get_storage_key(physpage) & _PAGE_REFERENCED) != 0);
733 rcp_lock(ptep);
734 if (young)
735 set_bit_simple(RCP_GR_BIT, pgste);
736 young |= test_and_clear_bit_simple(RCP_HR_BIT, pgste);
737 rcp_unlock(ptep);
738 return young;
739 #endif
740 return 0;
741 }
742
743 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
744 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
745 unsigned long address, pte_t *ptep)
746 {
747 /* No need to flush TLB
748 * On s390 reference bits are in storage key and never in TLB
749 * With virtualization we handle the reference bit, without we
750 * we can simply return */
751 #ifdef CONFIG_PGSTE
752 return ptep_test_and_clear_young(vma, address, ptep);
753 #endif
754 return 0;
755 }
756
757 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
758 {
759 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
760 #ifndef __s390x__
761 /* pto must point to the start of the segment table */
762 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
763 #else
764 /* ipte in zarch mode can do the math */
765 pte_t *pto = ptep;
766 #endif
767 asm volatile(
768 " ipte %2,%3"
769 : "=m" (*ptep) : "m" (*ptep),
770 "a" (pto), "a" (address));
771 }
772 }
773
774 static inline void ptep_invalidate(struct mm_struct *mm,
775 unsigned long address, pte_t *ptep)
776 {
777 if (mm->context.pgstes) {
778 rcp_lock(ptep);
779 __ptep_ipte(address, ptep);
780 ptep_rcp_copy(ptep);
781 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
782 rcp_unlock(ptep);
783 return;
784 }
785 __ptep_ipte(address, ptep);
786 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
787 if (mm->context.noexec) {
788 __ptep_ipte(address, ptep + PTRS_PER_PTE);
789 pte_val(*(ptep + PTRS_PER_PTE)) = _PAGE_TYPE_EMPTY;
790 }
791 }
792
793 /*
794 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
795 * both clear the TLB for the unmapped pte. The reason is that
796 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
797 * to modify an active pte. The sequence is
798 * 1) ptep_get_and_clear
799 * 2) set_pte_at
800 * 3) flush_tlb_range
801 * On s390 the tlb needs to get flushed with the modification of the pte
802 * if the pte is active. The only way how this can be implemented is to
803 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
804 * is a nop.
805 */
806 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
807 #define ptep_get_and_clear(__mm, __address, __ptep) \
808 ({ \
809 pte_t __pte = *(__ptep); \
810 if (atomic_read(&(__mm)->mm_users) > 1 || \
811 (__mm) != current->active_mm) \
812 ptep_invalidate(__mm, __address, __ptep); \
813 else \
814 pte_clear((__mm), (__address), (__ptep)); \
815 __pte; \
816 })
817
818 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
819 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
820 unsigned long address, pte_t *ptep)
821 {
822 pte_t pte = *ptep;
823 ptep_invalidate(vma->vm_mm, address, ptep);
824 return pte;
825 }
826
827 /*
828 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
829 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
830 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
831 * cannot be accessed while the batched unmap is running. In this case
832 * full==1 and a simple pte_clear is enough. See tlb.h.
833 */
834 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
835 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
836 unsigned long addr,
837 pte_t *ptep, int full)
838 {
839 pte_t pte = *ptep;
840
841 if (full)
842 pte_clear(mm, addr, ptep);
843 else
844 ptep_invalidate(mm, addr, ptep);
845 return pte;
846 }
847
848 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
849 #define ptep_set_wrprotect(__mm, __addr, __ptep) \
850 ({ \
851 pte_t __pte = *(__ptep); \
852 if (pte_write(__pte)) { \
853 if (atomic_read(&(__mm)->mm_users) > 1 || \
854 (__mm) != current->active_mm) \
855 ptep_invalidate(__mm, __addr, __ptep); \
856 set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte)); \
857 } \
858 })
859
860 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
861 #define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty) \
862 ({ \
863 int __changed = !pte_same(*(__ptep), __entry); \
864 if (__changed) { \
865 ptep_invalidate((__vma)->vm_mm, __addr, __ptep); \
866 set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry); \
867 } \
868 __changed; \
869 })
870
871 /*
872 * Test and clear dirty bit in storage key.
873 * We can't clear the changed bit atomically. This is a potential
874 * race against modification of the referenced bit. This function
875 * should therefore only be called if it is not mapped in any
876 * address space.
877 */
878 #define __HAVE_ARCH_PAGE_TEST_DIRTY
879 static inline int page_test_dirty(struct page *page)
880 {
881 return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0;
882 }
883
884 #define __HAVE_ARCH_PAGE_CLEAR_DIRTY
885 static inline void page_clear_dirty(struct page *page)
886 {
887 page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY);
888 }
889
890 /*
891 * Test and clear referenced bit in storage key.
892 */
893 #define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
894 static inline int page_test_and_clear_young(struct page *page)
895 {
896 unsigned long physpage = page_to_phys(page);
897 int ccode;
898
899 asm volatile(
900 " rrbe 0,%1\n"
901 " ipm %0\n"
902 " srl %0,28\n"
903 : "=d" (ccode) : "a" (physpage) : "cc" );
904 return ccode & 2;
905 }
906
907 /*
908 * Conversion functions: convert a page and protection to a page entry,
909 * and a page entry and page directory to the page they refer to.
910 */
911 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
912 {
913 pte_t __pte;
914 pte_val(__pte) = physpage + pgprot_val(pgprot);
915 return __pte;
916 }
917
918 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
919 {
920 unsigned long physpage = page_to_phys(page);
921
922 return mk_pte_phys(physpage, pgprot);
923 }
924
925 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
926 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
927 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
928 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
929
930 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
931 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
932
933 #ifndef __s390x__
934
935 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
936 #define pud_deref(pmd) ({ BUG(); 0UL; })
937 #define pgd_deref(pmd) ({ BUG(); 0UL; })
938
939 #define pud_offset(pgd, address) ((pud_t *) pgd)
940 #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
941
942 #else /* __s390x__ */
943
944 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
945 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
946 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
947
948 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
949 {
950 pud_t *pud = (pud_t *) pgd;
951 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
952 pud = (pud_t *) pgd_deref(*pgd);
953 return pud + pud_index(address);
954 }
955
956 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
957 {
958 pmd_t *pmd = (pmd_t *) pud;
959 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
960 pmd = (pmd_t *) pud_deref(*pud);
961 return pmd + pmd_index(address);
962 }
963
964 #endif /* __s390x__ */
965
966 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
967 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
968 #define pte_page(x) pfn_to_page(pte_pfn(x))
969
970 #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
971
972 /* Find an entry in the lowest level page table.. */
973 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
974 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
975 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
976 #define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
977 #define pte_unmap(pte) do { } while (0)
978 #define pte_unmap_nested(pte) do { } while (0)
979
980 /*
981 * 31 bit swap entry format:
982 * A page-table entry has some bits we have to treat in a special way.
983 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
984 * exception will occur instead of a page translation exception. The
985 * specifiation exception has the bad habit not to store necessary
986 * information in the lowcore.
987 * Bit 21 and bit 22 are the page invalid bit and the page protection
988 * bit. We set both to indicate a swapped page.
989 * Bit 30 and 31 are used to distinguish the different page types. For
990 * a swapped page these bits need to be zero.
991 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
992 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
993 * plus 24 for the offset.
994 * 0| offset |0110|o|type |00|
995 * 0 0000000001111111111 2222 2 22222 33
996 * 0 1234567890123456789 0123 4 56789 01
997 *
998 * 64 bit swap entry format:
999 * A page-table entry has some bits we have to treat in a special way.
1000 * Bits 52 and bit 55 have to be zero, otherwise an specification
1001 * exception will occur instead of a page translation exception. The
1002 * specifiation exception has the bad habit not to store necessary
1003 * information in the lowcore.
1004 * Bit 53 and bit 54 are the page invalid bit and the page protection
1005 * bit. We set both to indicate a swapped page.
1006 * Bit 62 and 63 are used to distinguish the different page types. For
1007 * a swapped page these bits need to be zero.
1008 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1009 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1010 * plus 56 for the offset.
1011 * | offset |0110|o|type |00|
1012 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1013 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1014 */
1015 #ifndef __s390x__
1016 #define __SWP_OFFSET_MASK (~0UL >> 12)
1017 #else
1018 #define __SWP_OFFSET_MASK (~0UL >> 11)
1019 #endif
1020 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1021 {
1022 pte_t pte;
1023 offset &= __SWP_OFFSET_MASK;
1024 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1025 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1026 return pte;
1027 }
1028
1029 #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1030 #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1031 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1032
1033 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1034 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1035
1036 #ifndef __s390x__
1037 # define PTE_FILE_MAX_BITS 26
1038 #else /* __s390x__ */
1039 # define PTE_FILE_MAX_BITS 59
1040 #endif /* __s390x__ */
1041
1042 #define pte_to_pgoff(__pte) \
1043 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1044
1045 #define pgoff_to_pte(__off) \
1046 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1047 | _PAGE_TYPE_FILE })
1048
1049 #endif /* !__ASSEMBLY__ */
1050
1051 #define kern_addr_valid(addr) (1)
1052
1053 extern int add_shared_memory(unsigned long start, unsigned long size);
1054 extern int remove_shared_memory(unsigned long start, unsigned long size);
1055 extern int s390_enable_sie(void);
1056
1057 /*
1058 * No page table caches to initialise
1059 */
1060 #define pgtable_cache_init() do { } while (0)
1061
1062 #define __HAVE_ARCH_MEMMAP_INIT
1063 extern void memmap_init(unsigned long, int, unsigned long, unsigned long);
1064
1065 #include <asm-generic/pgtable.h>
1066
1067 #endif /* _S390_PAGE_H */
This page took 0.079925 seconds and 5 git commands to generate.