[S390] Change vmalloc defintions
[deliverable/linux.git] / include / asm-s390 / pgtable.h
1 /*
2 * include/asm-s390/pgtable.h
3 *
4 * S390 version
5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (weigand@de.ibm.com)
8 * Martin Schwidefsky (schwidefsky@de.ibm.com)
9 *
10 * Derived from "include/asm-i386/pgtable.h"
11 */
12
13 #ifndef _ASM_S390_PGTABLE_H
14 #define _ASM_S390_PGTABLE_H
15
16 /*
17 * The Linux memory management assumes a three-level page table setup. For
18 * s390 31 bit we "fold" the mid level into the top-level page table, so
19 * that we physically have the same two-level page table as the s390 mmu
20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
21 * the hardware provides (region first and region second tables are not
22 * used).
23 *
24 * The "pgd_xxx()" functions are trivial for a folded two-level
25 * setup: the pgd is never bad, and a pmd always exists (as it's folded
26 * into the pgd entry)
27 *
28 * This file contains the functions and defines necessary to modify and use
29 * the S390 page table tree.
30 */
31 #ifndef __ASSEMBLY__
32 #include <linux/mm_types.h>
33 #include <asm/bug.h>
34 #include <asm/processor.h>
35
36 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
37 extern void paging_init(void);
38 extern void vmem_map_init(void);
39
40 /*
41 * The S390 doesn't have any external MMU info: the kernel page
42 * tables contain all the necessary information.
43 */
44 #define update_mmu_cache(vma, address, pte) do { } while (0)
45
46 /*
47 * ZERO_PAGE is a global shared page that is always zero: used
48 * for zero-mapped memory areas etc..
49 */
50 extern char empty_zero_page[PAGE_SIZE];
51 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
52 #endif /* !__ASSEMBLY__ */
53
54 /*
55 * PMD_SHIFT determines the size of the area a second-level page
56 * table can map
57 * PGDIR_SHIFT determines what a third-level page table entry can map
58 */
59 #ifndef __s390x__
60 # define PMD_SHIFT 22
61 # define PUD_SHIFT 22
62 # define PGDIR_SHIFT 22
63 #else /* __s390x__ */
64 # define PMD_SHIFT 21
65 # define PUD_SHIFT 31
66 # define PGDIR_SHIFT 31
67 #endif /* __s390x__ */
68
69 #define PMD_SIZE (1UL << PMD_SHIFT)
70 #define PMD_MASK (~(PMD_SIZE-1))
71 #define PUD_SIZE (1UL << PUD_SHIFT)
72 #define PUD_MASK (~(PUD_SIZE-1))
73 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
74 #define PGDIR_MASK (~(PGDIR_SIZE-1))
75
76 /*
77 * entries per page directory level: the S390 is two-level, so
78 * we don't really have any PMD directory physically.
79 * for S390 segment-table entries are combined to one PGD
80 * that leads to 1024 pte per pgd
81 */
82 #ifndef __s390x__
83 # define PTRS_PER_PTE 1024
84 # define PTRS_PER_PMD 1
85 # define PTRS_PER_PUD 1
86 # define PTRS_PER_PGD 512
87 #else /* __s390x__ */
88 # define PTRS_PER_PTE 512
89 # define PTRS_PER_PMD 1024
90 # define PTRS_PER_PUD 1
91 # define PTRS_PER_PGD 2048
92 #endif /* __s390x__ */
93
94 #define FIRST_USER_ADDRESS 0
95
96 #define pte_ERROR(e) \
97 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
98 #define pmd_ERROR(e) \
99 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
100 #define pud_ERROR(e) \
101 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
102 #define pgd_ERROR(e) \
103 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
104
105 #ifndef __ASSEMBLY__
106 /*
107 * The vmalloc area will always be on the topmost area of the kernel
108 * mapping. We reserve 96MB (31bit) / 1GB (64bit) for vmalloc,
109 * which should be enough for any sane case.
110 * By putting vmalloc at the top, we maximise the gap between physical
111 * memory and vmalloc to catch misplaced memory accesses. As a side
112 * effect, this also makes sure that 64 bit module code cannot be used
113 * as system call address.
114 */
115 #ifndef __s390x__
116 #define VMALLOC_START 0x78000000UL
117 #define VMALLOC_END 0x7e000000UL
118 #define VMEM_MAP_MAX 0x80000000UL
119 #else /* __s390x__ */
120 #define VMALLOC_START 0x3e000000000UL
121 #define VMALLOC_END 0x3e040000000UL
122 #define VMEM_MAP_MAX 0x40000000000UL
123 #endif /* __s390x__ */
124
125 #define VMEM_MAP ((struct page *) VMALLOC_END)
126 #define VMEM_MAP_SIZE ((VMALLOC_START / PAGE_SIZE) * sizeof(struct page))
127
128 /*
129 * A 31 bit pagetable entry of S390 has following format:
130 * | PFRA | | OS |
131 * 0 0IP0
132 * 00000000001111111111222222222233
133 * 01234567890123456789012345678901
134 *
135 * I Page-Invalid Bit: Page is not available for address-translation
136 * P Page-Protection Bit: Store access not possible for page
137 *
138 * A 31 bit segmenttable entry of S390 has following format:
139 * | P-table origin | |PTL
140 * 0 IC
141 * 00000000001111111111222222222233
142 * 01234567890123456789012345678901
143 *
144 * I Segment-Invalid Bit: Segment is not available for address-translation
145 * C Common-Segment Bit: Segment is not private (PoP 3-30)
146 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
147 *
148 * The 31 bit segmenttable origin of S390 has following format:
149 *
150 * |S-table origin | | STL |
151 * X **GPS
152 * 00000000001111111111222222222233
153 * 01234567890123456789012345678901
154 *
155 * X Space-Switch event:
156 * G Segment-Invalid Bit: *
157 * P Private-Space Bit: Segment is not private (PoP 3-30)
158 * S Storage-Alteration:
159 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
160 *
161 * A 64 bit pagetable entry of S390 has following format:
162 * | PFRA |0IP0| OS |
163 * 0000000000111111111122222222223333333333444444444455555555556666
164 * 0123456789012345678901234567890123456789012345678901234567890123
165 *
166 * I Page-Invalid Bit: Page is not available for address-translation
167 * P Page-Protection Bit: Store access not possible for page
168 *
169 * A 64 bit segmenttable entry of S390 has following format:
170 * | P-table origin | TT
171 * 0000000000111111111122222222223333333333444444444455555555556666
172 * 0123456789012345678901234567890123456789012345678901234567890123
173 *
174 * I Segment-Invalid Bit: Segment is not available for address-translation
175 * C Common-Segment Bit: Segment is not private (PoP 3-30)
176 * P Page-Protection Bit: Store access not possible for page
177 * TT Type 00
178 *
179 * A 64 bit region table entry of S390 has following format:
180 * | S-table origin | TF TTTL
181 * 0000000000111111111122222222223333333333444444444455555555556666
182 * 0123456789012345678901234567890123456789012345678901234567890123
183 *
184 * I Segment-Invalid Bit: Segment is not available for address-translation
185 * TT Type 01
186 * TF
187 * TL Table length
188 *
189 * The 64 bit regiontable origin of S390 has following format:
190 * | region table origon | DTTL
191 * 0000000000111111111122222222223333333333444444444455555555556666
192 * 0123456789012345678901234567890123456789012345678901234567890123
193 *
194 * X Space-Switch event:
195 * G Segment-Invalid Bit:
196 * P Private-Space Bit:
197 * S Storage-Alteration:
198 * R Real space
199 * TL Table-Length:
200 *
201 * A storage key has the following format:
202 * | ACC |F|R|C|0|
203 * 0 3 4 5 6 7
204 * ACC: access key
205 * F : fetch protection bit
206 * R : referenced bit
207 * C : changed bit
208 */
209
210 /* Hardware bits in the page table entry */
211 #define _PAGE_RO 0x200 /* HW read-only bit */
212 #define _PAGE_INVALID 0x400 /* HW invalid bit */
213
214 /* Software bits in the page table entry */
215 #define _PAGE_SWT 0x001 /* SW pte type bit t */
216 #define _PAGE_SWX 0x002 /* SW pte type bit x */
217
218 /* Six different types of pages. */
219 #define _PAGE_TYPE_EMPTY 0x400
220 #define _PAGE_TYPE_NONE 0x401
221 #define _PAGE_TYPE_SWAP 0x403
222 #define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
223 #define _PAGE_TYPE_RO 0x200
224 #define _PAGE_TYPE_RW 0x000
225 #define _PAGE_TYPE_EX_RO 0x202
226 #define _PAGE_TYPE_EX_RW 0x002
227
228 /*
229 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
230 * pte_none and pte_file to find out the pte type WITHOUT holding the page
231 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
232 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
233 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
234 * This change is done while holding the lock, but the intermediate step
235 * of a previously valid pte with the hw invalid bit set can be observed by
236 * handle_pte_fault. That makes it necessary that all valid pte types with
237 * the hw invalid bit set must be distinguishable from the four pte types
238 * empty, none, swap and file.
239 *
240 * irxt ipte irxt
241 * _PAGE_TYPE_EMPTY 1000 -> 1000
242 * _PAGE_TYPE_NONE 1001 -> 1001
243 * _PAGE_TYPE_SWAP 1011 -> 1011
244 * _PAGE_TYPE_FILE 11?1 -> 11?1
245 * _PAGE_TYPE_RO 0100 -> 1100
246 * _PAGE_TYPE_RW 0000 -> 1000
247 * _PAGE_TYPE_EX_RO 0110 -> 1110
248 * _PAGE_TYPE_EX_RW 0010 -> 1010
249 *
250 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
251 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
252 * pte_file is true for bits combinations 1101, 1111
253 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
254 */
255
256 #ifndef __s390x__
257
258 /* Bits in the segment table address-space-control-element */
259 #define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
260 #define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
261 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
262 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
263 #define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
264
265 /* Bits in the segment table entry */
266 #define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
267 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
268 #define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
269 #define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
270
271 #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
272 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
273
274 #else /* __s390x__ */
275
276 /* Bits in the segment/region table address-space-control-element */
277 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
278 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
279 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
280 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
281 #define _ASCE_REAL_SPACE 0x20 /* real space control */
282 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
283 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
284 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
285 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
286 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
287 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
288
289 /* Bits in the region table entry */
290 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
291 #define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
292 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
293 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
294 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
295 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
296 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
297
298 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
299 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
300 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
301 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
302 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
303 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
304
305 /* Bits in the segment table entry */
306 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
307 #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
308 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
309
310 #define _SEGMENT_ENTRY (0)
311 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
312
313 #endif /* __s390x__ */
314
315 /*
316 * A user page table pointer has the space-switch-event bit, the
317 * private-space-control bit and the storage-alteration-event-control
318 * bit set. A kernel page table pointer doesn't need them.
319 */
320 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
321 _ASCE_ALT_EVENT)
322
323 /* Bits int the storage key */
324 #define _PAGE_CHANGED 0x02 /* HW changed bit */
325 #define _PAGE_REFERENCED 0x04 /* HW referenced bit */
326
327 /*
328 * Page protection definitions.
329 */
330 #define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
331 #define PAGE_RO __pgprot(_PAGE_TYPE_RO)
332 #define PAGE_RW __pgprot(_PAGE_TYPE_RW)
333 #define PAGE_EX_RO __pgprot(_PAGE_TYPE_EX_RO)
334 #define PAGE_EX_RW __pgprot(_PAGE_TYPE_EX_RW)
335
336 #define PAGE_KERNEL PAGE_RW
337 #define PAGE_COPY PAGE_RO
338
339 /*
340 * Dependent on the EXEC_PROTECT option s390 can do execute protection.
341 * Write permission always implies read permission. In theory with a
342 * primary/secondary page table execute only can be implemented but
343 * it would cost an additional bit in the pte to distinguish all the
344 * different pte types. To avoid that execute permission currently
345 * implies read permission as well.
346 */
347 /*xwr*/
348 #define __P000 PAGE_NONE
349 #define __P001 PAGE_RO
350 #define __P010 PAGE_RO
351 #define __P011 PAGE_RO
352 #define __P100 PAGE_EX_RO
353 #define __P101 PAGE_EX_RO
354 #define __P110 PAGE_EX_RO
355 #define __P111 PAGE_EX_RO
356
357 #define __S000 PAGE_NONE
358 #define __S001 PAGE_RO
359 #define __S010 PAGE_RW
360 #define __S011 PAGE_RW
361 #define __S100 PAGE_EX_RO
362 #define __S101 PAGE_EX_RO
363 #define __S110 PAGE_EX_RW
364 #define __S111 PAGE_EX_RW
365
366 #ifndef __s390x__
367 # define PxD_SHADOW_SHIFT 1
368 #else /* __s390x__ */
369 # define PxD_SHADOW_SHIFT 2
370 #endif /* __s390x__ */
371
372 static inline struct page *get_shadow_page(struct page *page)
373 {
374 if (s390_noexec && page->index)
375 return virt_to_page((void *)(addr_t) page->index);
376 return NULL;
377 }
378
379 static inline void *get_shadow_pte(void *table)
380 {
381 unsigned long addr, offset;
382 struct page *page;
383
384 addr = (unsigned long) table;
385 offset = addr & (PAGE_SIZE - 1);
386 page = virt_to_page((void *)(addr ^ offset));
387 return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL);
388 }
389
390 static inline void *get_shadow_table(void *table)
391 {
392 unsigned long addr, offset;
393 struct page *page;
394
395 addr = (unsigned long) table;
396 offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1);
397 page = virt_to_page((void *)(addr ^ offset));
398 return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL);
399 }
400
401 /*
402 * Certain architectures need to do special things when PTEs
403 * within a page table are directly modified. Thus, the following
404 * hook is made available.
405 */
406 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
407 pte_t *pteptr, pte_t pteval)
408 {
409 pte_t *shadow_pte = get_shadow_pte(pteptr);
410
411 *pteptr = pteval;
412 if (shadow_pte) {
413 if (!(pte_val(pteval) & _PAGE_INVALID) &&
414 (pte_val(pteval) & _PAGE_SWX))
415 pte_val(*shadow_pte) = pte_val(pteval) | _PAGE_RO;
416 else
417 pte_val(*shadow_pte) = _PAGE_TYPE_EMPTY;
418 }
419 }
420
421 /*
422 * pgd/pmd/pte query functions
423 */
424 #ifndef __s390x__
425
426 static inline int pgd_present(pgd_t pgd) { return 1; }
427 static inline int pgd_none(pgd_t pgd) { return 0; }
428 static inline int pgd_bad(pgd_t pgd) { return 0; }
429
430 static inline int pud_present(pud_t pud) { return 1; }
431 static inline int pud_none(pud_t pud) { return 0; }
432 static inline int pud_bad(pud_t pud) { return 0; }
433
434 #else /* __s390x__ */
435
436 static inline int pgd_present(pgd_t pgd) { return 1; }
437 static inline int pgd_none(pgd_t pgd) { return 0; }
438 static inline int pgd_bad(pgd_t pgd) { return 0; }
439
440 static inline int pud_present(pud_t pud)
441 {
442 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
443 }
444
445 static inline int pud_none(pud_t pud)
446 {
447 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
448 }
449
450 static inline int pud_bad(pud_t pud)
451 {
452 unsigned long mask = ~_REGION_ENTRY_ORIGIN & ~_REGION_ENTRY_INV;
453 return (pud_val(pud) & mask) != _REGION3_ENTRY;
454 }
455
456 #endif /* __s390x__ */
457
458 static inline int pmd_present(pmd_t pmd)
459 {
460 return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
461 }
462
463 static inline int pmd_none(pmd_t pmd)
464 {
465 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
466 }
467
468 static inline int pmd_bad(pmd_t pmd)
469 {
470 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
471 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
472 }
473
474 static inline int pte_none(pte_t pte)
475 {
476 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
477 }
478
479 static inline int pte_present(pte_t pte)
480 {
481 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
482 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
483 (!(pte_val(pte) & _PAGE_INVALID) &&
484 !(pte_val(pte) & _PAGE_SWT));
485 }
486
487 static inline int pte_file(pte_t pte)
488 {
489 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
490 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
491 }
492
493 #define __HAVE_ARCH_PTE_SAME
494 #define pte_same(a,b) (pte_val(a) == pte_val(b))
495
496 /*
497 * query functions pte_write/pte_dirty/pte_young only work if
498 * pte_present() is true. Undefined behaviour if not..
499 */
500 static inline int pte_write(pte_t pte)
501 {
502 return (pte_val(pte) & _PAGE_RO) == 0;
503 }
504
505 static inline int pte_dirty(pte_t pte)
506 {
507 /* A pte is neither clean nor dirty on s/390. The dirty bit
508 * is in the storage key. See page_test_and_clear_dirty for
509 * details.
510 */
511 return 0;
512 }
513
514 static inline int pte_young(pte_t pte)
515 {
516 /* A pte is neither young nor old on s/390. The young bit
517 * is in the storage key. See page_test_and_clear_young for
518 * details.
519 */
520 return 0;
521 }
522
523 /*
524 * pgd/pmd/pte modification functions
525 */
526
527 #ifndef __s390x__
528
529 #define pgd_clear(pgd) do { } while (0)
530 #define pud_clear(pud) do { } while (0)
531
532 static inline void pmd_clear_kernel(pmd_t * pmdp)
533 {
534 pmd_val(pmdp[0]) = _SEGMENT_ENTRY_EMPTY;
535 pmd_val(pmdp[1]) = _SEGMENT_ENTRY_EMPTY;
536 pmd_val(pmdp[2]) = _SEGMENT_ENTRY_EMPTY;
537 pmd_val(pmdp[3]) = _SEGMENT_ENTRY_EMPTY;
538 }
539
540 #else /* __s390x__ */
541
542 #define pgd_clear(pgd) do { } while (0)
543
544 static inline void pud_clear_kernel(pud_t *pud)
545 {
546 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
547 }
548
549 static inline void pud_clear(pud_t * pud)
550 {
551 pud_t *shadow = get_shadow_table(pud);
552
553 pud_clear_kernel(pud);
554 if (shadow)
555 pud_clear_kernel(shadow);
556 }
557
558 static inline void pmd_clear_kernel(pmd_t * pmdp)
559 {
560 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
561 pmd_val1(*pmdp) = _SEGMENT_ENTRY_EMPTY;
562 }
563
564 #endif /* __s390x__ */
565
566 static inline void pmd_clear(pmd_t * pmdp)
567 {
568 pmd_t *shadow_pmd = get_shadow_table(pmdp);
569
570 pmd_clear_kernel(pmdp);
571 if (shadow_pmd)
572 pmd_clear_kernel(shadow_pmd);
573 }
574
575 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
576 {
577 pte_t *shadow_pte = get_shadow_pte(ptep);
578
579 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
580 if (shadow_pte)
581 pte_val(*shadow_pte) = _PAGE_TYPE_EMPTY;
582 }
583
584 /*
585 * The following pte modification functions only work if
586 * pte_present() is true. Undefined behaviour if not..
587 */
588 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
589 {
590 pte_val(pte) &= PAGE_MASK;
591 pte_val(pte) |= pgprot_val(newprot);
592 return pte;
593 }
594
595 static inline pte_t pte_wrprotect(pte_t pte)
596 {
597 /* Do not clobber _PAGE_TYPE_NONE pages! */
598 if (!(pte_val(pte) & _PAGE_INVALID))
599 pte_val(pte) |= _PAGE_RO;
600 return pte;
601 }
602
603 static inline pte_t pte_mkwrite(pte_t pte)
604 {
605 pte_val(pte) &= ~_PAGE_RO;
606 return pte;
607 }
608
609 static inline pte_t pte_mkclean(pte_t pte)
610 {
611 /* The only user of pte_mkclean is the fork() code.
612 We must *not* clear the *physical* page dirty bit
613 just because fork() wants to clear the dirty bit in
614 *one* of the page's mappings. So we just do nothing. */
615 return pte;
616 }
617
618 static inline pte_t pte_mkdirty(pte_t pte)
619 {
620 /* We do not explicitly set the dirty bit because the
621 * sske instruction is slow. It is faster to let the
622 * next instruction set the dirty bit.
623 */
624 return pte;
625 }
626
627 static inline pte_t pte_mkold(pte_t pte)
628 {
629 /* S/390 doesn't keep its dirty/referenced bit in the pte.
630 * There is no point in clearing the real referenced bit.
631 */
632 return pte;
633 }
634
635 static inline pte_t pte_mkyoung(pte_t pte)
636 {
637 /* S/390 doesn't keep its dirty/referenced bit in the pte.
638 * There is no point in setting the real referenced bit.
639 */
640 return pte;
641 }
642
643 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
644 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
645 unsigned long addr, pte_t *ptep)
646 {
647 return 0;
648 }
649
650 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
651 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
652 unsigned long address, pte_t *ptep)
653 {
654 /* No need to flush TLB; bits are in storage key */
655 return 0;
656 }
657
658 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
659 {
660 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
661 #ifndef __s390x__
662 /* S390 has 1mb segments, we are emulating 4MB segments */
663 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
664 #else
665 /* ipte in zarch mode can do the math */
666 pte_t *pto = ptep;
667 #endif
668 asm volatile(
669 " ipte %2,%3"
670 : "=m" (*ptep) : "m" (*ptep),
671 "a" (pto), "a" (address));
672 }
673 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
674 }
675
676 static inline void ptep_invalidate(unsigned long address, pte_t *ptep)
677 {
678 __ptep_ipte(address, ptep);
679 ptep = get_shadow_pte(ptep);
680 if (ptep)
681 __ptep_ipte(address, ptep);
682 }
683
684 /*
685 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
686 * both clear the TLB for the unmapped pte. The reason is that
687 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
688 * to modify an active pte. The sequence is
689 * 1) ptep_get_and_clear
690 * 2) set_pte_at
691 * 3) flush_tlb_range
692 * On s390 the tlb needs to get flushed with the modification of the pte
693 * if the pte is active. The only way how this can be implemented is to
694 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
695 * is a nop.
696 */
697 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
698 #define ptep_get_and_clear(__mm, __address, __ptep) \
699 ({ \
700 pte_t __pte = *(__ptep); \
701 if (atomic_read(&(__mm)->mm_users) > 1 || \
702 (__mm) != current->active_mm) \
703 ptep_invalidate(__address, __ptep); \
704 else \
705 pte_clear((__mm), (__address), (__ptep)); \
706 __pte; \
707 })
708
709 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
710 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
711 unsigned long address, pte_t *ptep)
712 {
713 pte_t pte = *ptep;
714 ptep_invalidate(address, ptep);
715 return pte;
716 }
717
718 /*
719 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
720 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
721 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
722 * cannot be accessed while the batched unmap is running. In this case
723 * full==1 and a simple pte_clear is enough. See tlb.h.
724 */
725 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
726 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
727 unsigned long addr,
728 pte_t *ptep, int full)
729 {
730 pte_t pte = *ptep;
731
732 if (full)
733 pte_clear(mm, addr, ptep);
734 else
735 ptep_invalidate(addr, ptep);
736 return pte;
737 }
738
739 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
740 #define ptep_set_wrprotect(__mm, __addr, __ptep) \
741 ({ \
742 pte_t __pte = *(__ptep); \
743 if (pte_write(__pte)) { \
744 if (atomic_read(&(__mm)->mm_users) > 1 || \
745 (__mm) != current->active_mm) \
746 ptep_invalidate(__addr, __ptep); \
747 set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte)); \
748 } \
749 })
750
751 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
752 #define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty) \
753 ({ \
754 int __changed = !pte_same(*(__ptep), __entry); \
755 if (__changed) { \
756 ptep_invalidate(__addr, __ptep); \
757 set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry); \
758 } \
759 __changed; \
760 })
761
762 /*
763 * Test and clear dirty bit in storage key.
764 * We can't clear the changed bit atomically. This is a potential
765 * race against modification of the referenced bit. This function
766 * should therefore only be called if it is not mapped in any
767 * address space.
768 */
769 #define __HAVE_ARCH_PAGE_TEST_DIRTY
770 static inline int page_test_dirty(struct page *page)
771 {
772 return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0;
773 }
774
775 #define __HAVE_ARCH_PAGE_CLEAR_DIRTY
776 static inline void page_clear_dirty(struct page *page)
777 {
778 page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY);
779 }
780
781 /*
782 * Test and clear referenced bit in storage key.
783 */
784 #define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
785 static inline int page_test_and_clear_young(struct page *page)
786 {
787 unsigned long physpage = page_to_phys(page);
788 int ccode;
789
790 asm volatile(
791 " rrbe 0,%1\n"
792 " ipm %0\n"
793 " srl %0,28\n"
794 : "=d" (ccode) : "a" (physpage) : "cc" );
795 return ccode & 2;
796 }
797
798 /*
799 * Conversion functions: convert a page and protection to a page entry,
800 * and a page entry and page directory to the page they refer to.
801 */
802 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
803 {
804 pte_t __pte;
805 pte_val(__pte) = physpage + pgprot_val(pgprot);
806 return __pte;
807 }
808
809 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
810 {
811 unsigned long physpage = page_to_phys(page);
812
813 return mk_pte_phys(physpage, pgprot);
814 }
815
816 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
817 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
818 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
819 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
820
821 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
822 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
823
824 #ifndef __s390x__
825
826 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
827 #define pud_deref(pmd) ({ BUG(); 0UL; })
828 #define pgd_deref(pmd) ({ BUG(); 0UL; })
829
830 #define pud_offset(pgd, address) ((pud_t *) pgd)
831 #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
832
833 #else /* __s390x__ */
834
835 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
836 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
837 #define pgd_deref(pgd) ({ BUG(); 0UL; })
838
839 #define pud_offset(pgd, address) ((pud_t *) pgd)
840
841 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
842 {
843 pmd_t *pmd = (pmd_t *) pud_deref(*pud);
844 return pmd + pmd_index(address);
845 }
846
847 #endif /* __s390x__ */
848
849 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
850 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
851 #define pte_page(x) pfn_to_page(pte_pfn(x))
852
853 #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
854
855 /* Find an entry in the lowest level page table.. */
856 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
857 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
858 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
859 #define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
860 #define pte_unmap(pte) do { } while (0)
861 #define pte_unmap_nested(pte) do { } while (0)
862
863 /*
864 * 31 bit swap entry format:
865 * A page-table entry has some bits we have to treat in a special way.
866 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
867 * exception will occur instead of a page translation exception. The
868 * specifiation exception has the bad habit not to store necessary
869 * information in the lowcore.
870 * Bit 21 and bit 22 are the page invalid bit and the page protection
871 * bit. We set both to indicate a swapped page.
872 * Bit 30 and 31 are used to distinguish the different page types. For
873 * a swapped page these bits need to be zero.
874 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
875 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
876 * plus 24 for the offset.
877 * 0| offset |0110|o|type |00|
878 * 0 0000000001111111111 2222 2 22222 33
879 * 0 1234567890123456789 0123 4 56789 01
880 *
881 * 64 bit swap entry format:
882 * A page-table entry has some bits we have to treat in a special way.
883 * Bits 52 and bit 55 have to be zero, otherwise an specification
884 * exception will occur instead of a page translation exception. The
885 * specifiation exception has the bad habit not to store necessary
886 * information in the lowcore.
887 * Bit 53 and bit 54 are the page invalid bit and the page protection
888 * bit. We set both to indicate a swapped page.
889 * Bit 62 and 63 are used to distinguish the different page types. For
890 * a swapped page these bits need to be zero.
891 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
892 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
893 * plus 56 for the offset.
894 * | offset |0110|o|type |00|
895 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
896 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
897 */
898 #ifndef __s390x__
899 #define __SWP_OFFSET_MASK (~0UL >> 12)
900 #else
901 #define __SWP_OFFSET_MASK (~0UL >> 11)
902 #endif
903 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
904 {
905 pte_t pte;
906 offset &= __SWP_OFFSET_MASK;
907 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
908 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
909 return pte;
910 }
911
912 #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
913 #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
914 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
915
916 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
917 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
918
919 #ifndef __s390x__
920 # define PTE_FILE_MAX_BITS 26
921 #else /* __s390x__ */
922 # define PTE_FILE_MAX_BITS 59
923 #endif /* __s390x__ */
924
925 #define pte_to_pgoff(__pte) \
926 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
927
928 #define pgoff_to_pte(__off) \
929 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
930 | _PAGE_TYPE_FILE })
931
932 #endif /* !__ASSEMBLY__ */
933
934 #define kern_addr_valid(addr) (1)
935
936 extern int add_shared_memory(unsigned long start, unsigned long size);
937 extern int remove_shared_memory(unsigned long start, unsigned long size);
938
939 /*
940 * No page table caches to initialise
941 */
942 #define pgtable_cache_init() do { } while (0)
943
944 #define __HAVE_ARCH_MEMMAP_INIT
945 extern void memmap_init(unsigned long, int, unsigned long, unsigned long);
946
947 #include <asm-generic/pgtable.h>
948
949 #endif /* _S390_PAGE_H */
This page took 0.050699 seconds and 5 git commands to generate.