[S390] Add four level page tables for CONFIG_64BIT=y.
[deliverable/linux.git] / include / asm-s390 / pgtable.h
1 /*
2 * include/asm-s390/pgtable.h
3 *
4 * S390 version
5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (weigand@de.ibm.com)
8 * Martin Schwidefsky (schwidefsky@de.ibm.com)
9 *
10 * Derived from "include/asm-i386/pgtable.h"
11 */
12
13 #ifndef _ASM_S390_PGTABLE_H
14 #define _ASM_S390_PGTABLE_H
15
16 /*
17 * The Linux memory management assumes a three-level page table setup. For
18 * s390 31 bit we "fold" the mid level into the top-level page table, so
19 * that we physically have the same two-level page table as the s390 mmu
20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
21 * the hardware provides (region first and region second tables are not
22 * used).
23 *
24 * The "pgd_xxx()" functions are trivial for a folded two-level
25 * setup: the pgd is never bad, and a pmd always exists (as it's folded
26 * into the pgd entry)
27 *
28 * This file contains the functions and defines necessary to modify and use
29 * the S390 page table tree.
30 */
31 #ifndef __ASSEMBLY__
32 #include <linux/mm_types.h>
33 #include <asm/bug.h>
34 #include <asm/processor.h>
35
36 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
37 extern void paging_init(void);
38 extern void vmem_map_init(void);
39
40 /*
41 * The S390 doesn't have any external MMU info: the kernel page
42 * tables contain all the necessary information.
43 */
44 #define update_mmu_cache(vma, address, pte) do { } while (0)
45
46 /*
47 * ZERO_PAGE is a global shared page that is always zero: used
48 * for zero-mapped memory areas etc..
49 */
50 extern char empty_zero_page[PAGE_SIZE];
51 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
52 #endif /* !__ASSEMBLY__ */
53
54 /*
55 * PMD_SHIFT determines the size of the area a second-level page
56 * table can map
57 * PGDIR_SHIFT determines what a third-level page table entry can map
58 */
59 #ifndef __s390x__
60 # define PMD_SHIFT 20
61 # define PUD_SHIFT 20
62 # define PGDIR_SHIFT 20
63 #else /* __s390x__ */
64 # define PMD_SHIFT 20
65 # define PUD_SHIFT 31
66 # define PGDIR_SHIFT 42
67 #endif /* __s390x__ */
68
69 #define PMD_SIZE (1UL << PMD_SHIFT)
70 #define PMD_MASK (~(PMD_SIZE-1))
71 #define PUD_SIZE (1UL << PUD_SHIFT)
72 #define PUD_MASK (~(PUD_SIZE-1))
73 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
74 #define PGDIR_MASK (~(PGDIR_SIZE-1))
75
76 /*
77 * entries per page directory level: the S390 is two-level, so
78 * we don't really have any PMD directory physically.
79 * for S390 segment-table entries are combined to one PGD
80 * that leads to 1024 pte per pgd
81 */
82 #define PTRS_PER_PTE 256
83 #ifndef __s390x__
84 #define PTRS_PER_PMD 1
85 #define PTRS_PER_PUD 1
86 #else /* __s390x__ */
87 #define PTRS_PER_PMD 2048
88 #define PTRS_PER_PUD 2048
89 #endif /* __s390x__ */
90 #define PTRS_PER_PGD 2048
91
92 #define FIRST_USER_ADDRESS 0
93
94 #define pte_ERROR(e) \
95 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
96 #define pmd_ERROR(e) \
97 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
98 #define pud_ERROR(e) \
99 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
100 #define pgd_ERROR(e) \
101 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
102
103 #ifndef __ASSEMBLY__
104 /*
105 * The vmalloc area will always be on the topmost area of the kernel
106 * mapping. We reserve 96MB (31bit) / 1GB (64bit) for vmalloc,
107 * which should be enough for any sane case.
108 * By putting vmalloc at the top, we maximise the gap between physical
109 * memory and vmalloc to catch misplaced memory accesses. As a side
110 * effect, this also makes sure that 64 bit module code cannot be used
111 * as system call address.
112 */
113 #ifndef __s390x__
114 #define VMALLOC_START 0x78000000UL
115 #define VMALLOC_END 0x7e000000UL
116 #define VMEM_MAP_END 0x80000000UL
117 #else /* __s390x__ */
118 #define VMALLOC_START 0x3e000000000UL
119 #define VMALLOC_END 0x3e040000000UL
120 #define VMEM_MAP_END 0x40000000000UL
121 #endif /* __s390x__ */
122
123 /*
124 * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1
125 * mapping. This needs to be calculated at compile time since the size of the
126 * VMEM_MAP is static but the size of struct page can change.
127 */
128 #define VMEM_MAX_PAGES ((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page))
129 #define VMEM_MAX_PFN min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES)
130 #define VMEM_MAX_PHYS ((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1))
131 #define VMEM_MAP ((struct page *) VMALLOC_END)
132
133 /*
134 * A 31 bit pagetable entry of S390 has following format:
135 * | PFRA | | OS |
136 * 0 0IP0
137 * 00000000001111111111222222222233
138 * 01234567890123456789012345678901
139 *
140 * I Page-Invalid Bit: Page is not available for address-translation
141 * P Page-Protection Bit: Store access not possible for page
142 *
143 * A 31 bit segmenttable entry of S390 has following format:
144 * | P-table origin | |PTL
145 * 0 IC
146 * 00000000001111111111222222222233
147 * 01234567890123456789012345678901
148 *
149 * I Segment-Invalid Bit: Segment is not available for address-translation
150 * C Common-Segment Bit: Segment is not private (PoP 3-30)
151 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
152 *
153 * The 31 bit segmenttable origin of S390 has following format:
154 *
155 * |S-table origin | | STL |
156 * X **GPS
157 * 00000000001111111111222222222233
158 * 01234567890123456789012345678901
159 *
160 * X Space-Switch event:
161 * G Segment-Invalid Bit: *
162 * P Private-Space Bit: Segment is not private (PoP 3-30)
163 * S Storage-Alteration:
164 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
165 *
166 * A 64 bit pagetable entry of S390 has following format:
167 * | PFRA |0IP0| OS |
168 * 0000000000111111111122222222223333333333444444444455555555556666
169 * 0123456789012345678901234567890123456789012345678901234567890123
170 *
171 * I Page-Invalid Bit: Page is not available for address-translation
172 * P Page-Protection Bit: Store access not possible for page
173 *
174 * A 64 bit segmenttable entry of S390 has following format:
175 * | P-table origin | TT
176 * 0000000000111111111122222222223333333333444444444455555555556666
177 * 0123456789012345678901234567890123456789012345678901234567890123
178 *
179 * I Segment-Invalid Bit: Segment is not available for address-translation
180 * C Common-Segment Bit: Segment is not private (PoP 3-30)
181 * P Page-Protection Bit: Store access not possible for page
182 * TT Type 00
183 *
184 * A 64 bit region table entry of S390 has following format:
185 * | S-table origin | TF TTTL
186 * 0000000000111111111122222222223333333333444444444455555555556666
187 * 0123456789012345678901234567890123456789012345678901234567890123
188 *
189 * I Segment-Invalid Bit: Segment is not available for address-translation
190 * TT Type 01
191 * TF
192 * TL Table length
193 *
194 * The 64 bit regiontable origin of S390 has following format:
195 * | region table origon | DTTL
196 * 0000000000111111111122222222223333333333444444444455555555556666
197 * 0123456789012345678901234567890123456789012345678901234567890123
198 *
199 * X Space-Switch event:
200 * G Segment-Invalid Bit:
201 * P Private-Space Bit:
202 * S Storage-Alteration:
203 * R Real space
204 * TL Table-Length:
205 *
206 * A storage key has the following format:
207 * | ACC |F|R|C|0|
208 * 0 3 4 5 6 7
209 * ACC: access key
210 * F : fetch protection bit
211 * R : referenced bit
212 * C : changed bit
213 */
214
215 /* Hardware bits in the page table entry */
216 #define _PAGE_RO 0x200 /* HW read-only bit */
217 #define _PAGE_INVALID 0x400 /* HW invalid bit */
218
219 /* Software bits in the page table entry */
220 #define _PAGE_SWT 0x001 /* SW pte type bit t */
221 #define _PAGE_SWX 0x002 /* SW pte type bit x */
222
223 /* Six different types of pages. */
224 #define _PAGE_TYPE_EMPTY 0x400
225 #define _PAGE_TYPE_NONE 0x401
226 #define _PAGE_TYPE_SWAP 0x403
227 #define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
228 #define _PAGE_TYPE_RO 0x200
229 #define _PAGE_TYPE_RW 0x000
230 #define _PAGE_TYPE_EX_RO 0x202
231 #define _PAGE_TYPE_EX_RW 0x002
232
233 /*
234 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
235 * pte_none and pte_file to find out the pte type WITHOUT holding the page
236 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
237 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
238 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
239 * This change is done while holding the lock, but the intermediate step
240 * of a previously valid pte with the hw invalid bit set can be observed by
241 * handle_pte_fault. That makes it necessary that all valid pte types with
242 * the hw invalid bit set must be distinguishable from the four pte types
243 * empty, none, swap and file.
244 *
245 * irxt ipte irxt
246 * _PAGE_TYPE_EMPTY 1000 -> 1000
247 * _PAGE_TYPE_NONE 1001 -> 1001
248 * _PAGE_TYPE_SWAP 1011 -> 1011
249 * _PAGE_TYPE_FILE 11?1 -> 11?1
250 * _PAGE_TYPE_RO 0100 -> 1100
251 * _PAGE_TYPE_RW 0000 -> 1000
252 * _PAGE_TYPE_EX_RO 0110 -> 1110
253 * _PAGE_TYPE_EX_RW 0010 -> 1010
254 *
255 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
256 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
257 * pte_file is true for bits combinations 1101, 1111
258 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
259 */
260
261 #ifndef __s390x__
262
263 /* Bits in the segment table address-space-control-element */
264 #define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
265 #define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
266 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
267 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
268 #define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
269
270 /* Bits in the segment table entry */
271 #define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
272 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
273 #define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
274 #define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
275
276 #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
277 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
278
279 #else /* __s390x__ */
280
281 /* Bits in the segment/region table address-space-control-element */
282 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
283 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
284 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
285 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
286 #define _ASCE_REAL_SPACE 0x20 /* real space control */
287 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
288 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
289 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
290 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
291 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
292 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
293
294 /* Bits in the region table entry */
295 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
296 #define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
297 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
298 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
299 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
300 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
301 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
302
303 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
304 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
305 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
306 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
307 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
308 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
309
310 /* Bits in the segment table entry */
311 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
312 #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
313 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
314
315 #define _SEGMENT_ENTRY (0)
316 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
317
318 #endif /* __s390x__ */
319
320 /*
321 * A user page table pointer has the space-switch-event bit, the
322 * private-space-control bit and the storage-alteration-event-control
323 * bit set. A kernel page table pointer doesn't need them.
324 */
325 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
326 _ASCE_ALT_EVENT)
327
328 /* Bits int the storage key */
329 #define _PAGE_CHANGED 0x02 /* HW changed bit */
330 #define _PAGE_REFERENCED 0x04 /* HW referenced bit */
331
332 /*
333 * Page protection definitions.
334 */
335 #define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
336 #define PAGE_RO __pgprot(_PAGE_TYPE_RO)
337 #define PAGE_RW __pgprot(_PAGE_TYPE_RW)
338 #define PAGE_EX_RO __pgprot(_PAGE_TYPE_EX_RO)
339 #define PAGE_EX_RW __pgprot(_PAGE_TYPE_EX_RW)
340
341 #define PAGE_KERNEL PAGE_RW
342 #define PAGE_COPY PAGE_RO
343
344 /*
345 * Dependent on the EXEC_PROTECT option s390 can do execute protection.
346 * Write permission always implies read permission. In theory with a
347 * primary/secondary page table execute only can be implemented but
348 * it would cost an additional bit in the pte to distinguish all the
349 * different pte types. To avoid that execute permission currently
350 * implies read permission as well.
351 */
352 /*xwr*/
353 #define __P000 PAGE_NONE
354 #define __P001 PAGE_RO
355 #define __P010 PAGE_RO
356 #define __P011 PAGE_RO
357 #define __P100 PAGE_EX_RO
358 #define __P101 PAGE_EX_RO
359 #define __P110 PAGE_EX_RO
360 #define __P111 PAGE_EX_RO
361
362 #define __S000 PAGE_NONE
363 #define __S001 PAGE_RO
364 #define __S010 PAGE_RW
365 #define __S011 PAGE_RW
366 #define __S100 PAGE_EX_RO
367 #define __S101 PAGE_EX_RO
368 #define __S110 PAGE_EX_RW
369 #define __S111 PAGE_EX_RW
370
371 #ifndef __s390x__
372 # define PxD_SHADOW_SHIFT 1
373 #else /* __s390x__ */
374 # define PxD_SHADOW_SHIFT 2
375 #endif /* __s390x__ */
376
377 static inline void *get_shadow_table(void *table)
378 {
379 unsigned long addr, offset;
380 struct page *page;
381
382 addr = (unsigned long) table;
383 offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1);
384 page = virt_to_page((void *)(addr ^ offset));
385 return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL);
386 }
387
388 /*
389 * Certain architectures need to do special things when PTEs
390 * within a page table are directly modified. Thus, the following
391 * hook is made available.
392 */
393 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
394 pte_t *ptep, pte_t entry)
395 {
396 *ptep = entry;
397 if (mm->context.noexec) {
398 if (!(pte_val(entry) & _PAGE_INVALID) &&
399 (pte_val(entry) & _PAGE_SWX))
400 pte_val(entry) |= _PAGE_RO;
401 else
402 pte_val(entry) = _PAGE_TYPE_EMPTY;
403 ptep[PTRS_PER_PTE] = entry;
404 }
405 }
406
407 /*
408 * pgd/pmd/pte query functions
409 */
410 #ifndef __s390x__
411
412 static inline int pgd_present(pgd_t pgd) { return 1; }
413 static inline int pgd_none(pgd_t pgd) { return 0; }
414 static inline int pgd_bad(pgd_t pgd) { return 0; }
415
416 static inline int pud_present(pud_t pud) { return 1; }
417 static inline int pud_none(pud_t pud) { return 0; }
418 static inline int pud_bad(pud_t pud) { return 0; }
419
420 #else /* __s390x__ */
421
422 static inline int pgd_present(pgd_t pgd)
423 {
424 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
425 }
426
427 static inline int pgd_none(pgd_t pgd)
428 {
429 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
430 }
431
432 static inline int pgd_bad(pgd_t pgd)
433 {
434 unsigned long mask =
435 ~_REGION_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
436 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
437 return (pgd_val(pgd) & mask) != 0;
438 }
439
440 static inline int pud_present(pud_t pud)
441 {
442 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
443 }
444
445 static inline int pud_none(pud_t pud)
446 {
447 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
448 }
449
450 static inline int pud_bad(pud_t pud)
451 {
452 unsigned long mask =
453 ~_REGION_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
454 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
455 return (pud_val(pud) & mask) != 0;
456 }
457
458 #endif /* __s390x__ */
459
460 static inline int pmd_present(pmd_t pmd)
461 {
462 return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
463 }
464
465 static inline int pmd_none(pmd_t pmd)
466 {
467 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
468 }
469
470 static inline int pmd_bad(pmd_t pmd)
471 {
472 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
473 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
474 }
475
476 static inline int pte_none(pte_t pte)
477 {
478 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
479 }
480
481 static inline int pte_present(pte_t pte)
482 {
483 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
484 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
485 (!(pte_val(pte) & _PAGE_INVALID) &&
486 !(pte_val(pte) & _PAGE_SWT));
487 }
488
489 static inline int pte_file(pte_t pte)
490 {
491 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
492 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
493 }
494
495 #define __HAVE_ARCH_PTE_SAME
496 #define pte_same(a,b) (pte_val(a) == pte_val(b))
497
498 /*
499 * query functions pte_write/pte_dirty/pte_young only work if
500 * pte_present() is true. Undefined behaviour if not..
501 */
502 static inline int pte_write(pte_t pte)
503 {
504 return (pte_val(pte) & _PAGE_RO) == 0;
505 }
506
507 static inline int pte_dirty(pte_t pte)
508 {
509 /* A pte is neither clean nor dirty on s/390. The dirty bit
510 * is in the storage key. See page_test_and_clear_dirty for
511 * details.
512 */
513 return 0;
514 }
515
516 static inline int pte_young(pte_t pte)
517 {
518 /* A pte is neither young nor old on s/390. The young bit
519 * is in the storage key. See page_test_and_clear_young for
520 * details.
521 */
522 return 0;
523 }
524
525 /*
526 * pgd/pmd/pte modification functions
527 */
528
529 #ifndef __s390x__
530
531 #define pgd_clear(pgd) do { } while (0)
532 #define pud_clear(pud) do { } while (0)
533
534 #else /* __s390x__ */
535
536 static inline void pgd_clear_kernel(pgd_t * pgd)
537 {
538 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
539 }
540
541 static inline void pgd_clear(pgd_t * pgd)
542 {
543 pgd_t *shadow = get_shadow_table(pgd);
544
545 pgd_clear_kernel(pgd);
546 if (shadow)
547 pgd_clear_kernel(shadow);
548 }
549
550 static inline void pud_clear_kernel(pud_t *pud)
551 {
552 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
553 }
554
555 static inline void pud_clear(pud_t * pud)
556 {
557 pud_t *shadow = get_shadow_table(pud);
558
559 pud_clear_kernel(pud);
560 if (shadow)
561 pud_clear_kernel(shadow);
562 }
563
564 #endif /* __s390x__ */
565
566 static inline void pmd_clear_kernel(pmd_t * pmdp)
567 {
568 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
569 }
570
571 static inline void pmd_clear(pmd_t *pmd)
572 {
573 pmd_t *shadow = get_shadow_table(pmd);
574
575 pmd_clear_kernel(pmd);
576 if (shadow)
577 pmd_clear_kernel(shadow);
578 }
579
580 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
581 {
582 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
583 if (mm->context.noexec)
584 pte_val(ptep[PTRS_PER_PTE]) = _PAGE_TYPE_EMPTY;
585 }
586
587 /*
588 * The following pte modification functions only work if
589 * pte_present() is true. Undefined behaviour if not..
590 */
591 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
592 {
593 pte_val(pte) &= PAGE_MASK;
594 pte_val(pte) |= pgprot_val(newprot);
595 return pte;
596 }
597
598 static inline pte_t pte_wrprotect(pte_t pte)
599 {
600 /* Do not clobber _PAGE_TYPE_NONE pages! */
601 if (!(pte_val(pte) & _PAGE_INVALID))
602 pte_val(pte) |= _PAGE_RO;
603 return pte;
604 }
605
606 static inline pte_t pte_mkwrite(pte_t pte)
607 {
608 pte_val(pte) &= ~_PAGE_RO;
609 return pte;
610 }
611
612 static inline pte_t pte_mkclean(pte_t pte)
613 {
614 /* The only user of pte_mkclean is the fork() code.
615 We must *not* clear the *physical* page dirty bit
616 just because fork() wants to clear the dirty bit in
617 *one* of the page's mappings. So we just do nothing. */
618 return pte;
619 }
620
621 static inline pte_t pte_mkdirty(pte_t pte)
622 {
623 /* We do not explicitly set the dirty bit because the
624 * sske instruction is slow. It is faster to let the
625 * next instruction set the dirty bit.
626 */
627 return pte;
628 }
629
630 static inline pte_t pte_mkold(pte_t pte)
631 {
632 /* S/390 doesn't keep its dirty/referenced bit in the pte.
633 * There is no point in clearing the real referenced bit.
634 */
635 return pte;
636 }
637
638 static inline pte_t pte_mkyoung(pte_t pte)
639 {
640 /* S/390 doesn't keep its dirty/referenced bit in the pte.
641 * There is no point in setting the real referenced bit.
642 */
643 return pte;
644 }
645
646 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
647 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
648 unsigned long addr, pte_t *ptep)
649 {
650 return 0;
651 }
652
653 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
654 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
655 unsigned long address, pte_t *ptep)
656 {
657 /* No need to flush TLB; bits are in storage key */
658 return 0;
659 }
660
661 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
662 {
663 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
664 #ifndef __s390x__
665 /* pto must point to the start of the segment table */
666 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
667 #else
668 /* ipte in zarch mode can do the math */
669 pte_t *pto = ptep;
670 #endif
671 asm volatile(
672 " ipte %2,%3"
673 : "=m" (*ptep) : "m" (*ptep),
674 "a" (pto), "a" (address));
675 }
676 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
677 }
678
679 static inline void ptep_invalidate(struct mm_struct *mm,
680 unsigned long address, pte_t *ptep)
681 {
682 __ptep_ipte(address, ptep);
683 if (mm->context.noexec)
684 __ptep_ipte(address, ptep + PTRS_PER_PTE);
685 }
686
687 /*
688 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
689 * both clear the TLB for the unmapped pte. The reason is that
690 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
691 * to modify an active pte. The sequence is
692 * 1) ptep_get_and_clear
693 * 2) set_pte_at
694 * 3) flush_tlb_range
695 * On s390 the tlb needs to get flushed with the modification of the pte
696 * if the pte is active. The only way how this can be implemented is to
697 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
698 * is a nop.
699 */
700 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
701 #define ptep_get_and_clear(__mm, __address, __ptep) \
702 ({ \
703 pte_t __pte = *(__ptep); \
704 if (atomic_read(&(__mm)->mm_users) > 1 || \
705 (__mm) != current->active_mm) \
706 ptep_invalidate(__mm, __address, __ptep); \
707 else \
708 pte_clear((__mm), (__address), (__ptep)); \
709 __pte; \
710 })
711
712 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
713 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
714 unsigned long address, pte_t *ptep)
715 {
716 pte_t pte = *ptep;
717 ptep_invalidate(vma->vm_mm, address, ptep);
718 return pte;
719 }
720
721 /*
722 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
723 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
724 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
725 * cannot be accessed while the batched unmap is running. In this case
726 * full==1 and a simple pte_clear is enough. See tlb.h.
727 */
728 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
729 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
730 unsigned long addr,
731 pte_t *ptep, int full)
732 {
733 pte_t pte = *ptep;
734
735 if (full)
736 pte_clear(mm, addr, ptep);
737 else
738 ptep_invalidate(mm, addr, ptep);
739 return pte;
740 }
741
742 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
743 #define ptep_set_wrprotect(__mm, __addr, __ptep) \
744 ({ \
745 pte_t __pte = *(__ptep); \
746 if (pte_write(__pte)) { \
747 if (atomic_read(&(__mm)->mm_users) > 1 || \
748 (__mm) != current->active_mm) \
749 ptep_invalidate(__mm, __addr, __ptep); \
750 set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte)); \
751 } \
752 })
753
754 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
755 #define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty) \
756 ({ \
757 int __changed = !pte_same(*(__ptep), __entry); \
758 if (__changed) { \
759 ptep_invalidate((__vma)->vm_mm, __addr, __ptep); \
760 set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry); \
761 } \
762 __changed; \
763 })
764
765 /*
766 * Test and clear dirty bit in storage key.
767 * We can't clear the changed bit atomically. This is a potential
768 * race against modification of the referenced bit. This function
769 * should therefore only be called if it is not mapped in any
770 * address space.
771 */
772 #define __HAVE_ARCH_PAGE_TEST_DIRTY
773 static inline int page_test_dirty(struct page *page)
774 {
775 return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0;
776 }
777
778 #define __HAVE_ARCH_PAGE_CLEAR_DIRTY
779 static inline void page_clear_dirty(struct page *page)
780 {
781 page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY);
782 }
783
784 /*
785 * Test and clear referenced bit in storage key.
786 */
787 #define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
788 static inline int page_test_and_clear_young(struct page *page)
789 {
790 unsigned long physpage = page_to_phys(page);
791 int ccode;
792
793 asm volatile(
794 " rrbe 0,%1\n"
795 " ipm %0\n"
796 " srl %0,28\n"
797 : "=d" (ccode) : "a" (physpage) : "cc" );
798 return ccode & 2;
799 }
800
801 /*
802 * Conversion functions: convert a page and protection to a page entry,
803 * and a page entry and page directory to the page they refer to.
804 */
805 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
806 {
807 pte_t __pte;
808 pte_val(__pte) = physpage + pgprot_val(pgprot);
809 return __pte;
810 }
811
812 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
813 {
814 unsigned long physpage = page_to_phys(page);
815
816 return mk_pte_phys(physpage, pgprot);
817 }
818
819 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
820 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
821 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
822 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
823
824 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
825 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
826
827 #ifndef __s390x__
828
829 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
830 #define pud_deref(pmd) ({ BUG(); 0UL; })
831 #define pgd_deref(pmd) ({ BUG(); 0UL; })
832
833 #define pud_offset(pgd, address) ((pud_t *) pgd)
834 #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
835
836 #else /* __s390x__ */
837
838 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
839 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
840 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
841
842 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
843 {
844 pud_t *pud = (pud_t *) pgd_deref(*pgd);
845 return pud + pud_index(address);
846 }
847
848 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
849 {
850 pmd_t *pmd = (pmd_t *) pud_deref(*pud);
851 return pmd + pmd_index(address);
852 }
853
854 #endif /* __s390x__ */
855
856 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
857 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
858 #define pte_page(x) pfn_to_page(pte_pfn(x))
859
860 #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
861
862 /* Find an entry in the lowest level page table.. */
863 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
864 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
865 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
866 #define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
867 #define pte_unmap(pte) do { } while (0)
868 #define pte_unmap_nested(pte) do { } while (0)
869
870 /*
871 * 31 bit swap entry format:
872 * A page-table entry has some bits we have to treat in a special way.
873 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
874 * exception will occur instead of a page translation exception. The
875 * specifiation exception has the bad habit not to store necessary
876 * information in the lowcore.
877 * Bit 21 and bit 22 are the page invalid bit and the page protection
878 * bit. We set both to indicate a swapped page.
879 * Bit 30 and 31 are used to distinguish the different page types. For
880 * a swapped page these bits need to be zero.
881 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
882 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
883 * plus 24 for the offset.
884 * 0| offset |0110|o|type |00|
885 * 0 0000000001111111111 2222 2 22222 33
886 * 0 1234567890123456789 0123 4 56789 01
887 *
888 * 64 bit swap entry format:
889 * A page-table entry has some bits we have to treat in a special way.
890 * Bits 52 and bit 55 have to be zero, otherwise an specification
891 * exception will occur instead of a page translation exception. The
892 * specifiation exception has the bad habit not to store necessary
893 * information in the lowcore.
894 * Bit 53 and bit 54 are the page invalid bit and the page protection
895 * bit. We set both to indicate a swapped page.
896 * Bit 62 and 63 are used to distinguish the different page types. For
897 * a swapped page these bits need to be zero.
898 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
899 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
900 * plus 56 for the offset.
901 * | offset |0110|o|type |00|
902 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
903 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
904 */
905 #ifndef __s390x__
906 #define __SWP_OFFSET_MASK (~0UL >> 12)
907 #else
908 #define __SWP_OFFSET_MASK (~0UL >> 11)
909 #endif
910 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
911 {
912 pte_t pte;
913 offset &= __SWP_OFFSET_MASK;
914 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
915 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
916 return pte;
917 }
918
919 #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
920 #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
921 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
922
923 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
924 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
925
926 #ifndef __s390x__
927 # define PTE_FILE_MAX_BITS 26
928 #else /* __s390x__ */
929 # define PTE_FILE_MAX_BITS 59
930 #endif /* __s390x__ */
931
932 #define pte_to_pgoff(__pte) \
933 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
934
935 #define pgoff_to_pte(__off) \
936 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
937 | _PAGE_TYPE_FILE })
938
939 #endif /* !__ASSEMBLY__ */
940
941 #define kern_addr_valid(addr) (1)
942
943 extern int add_shared_memory(unsigned long start, unsigned long size);
944 extern int remove_shared_memory(unsigned long start, unsigned long size);
945
946 /*
947 * No page table caches to initialise
948 */
949 #define pgtable_cache_init() do { } while (0)
950
951 #define __HAVE_ARCH_MEMMAP_INIT
952 extern void memmap_init(unsigned long, int, unsigned long, unsigned long);
953
954 #include <asm-generic/pgtable.h>
955
956 #endif /* _S390_PAGE_H */
This page took 0.068514 seconds and 6 git commands to generate.