Pull output-switch into test branch
[deliverable/linux.git] / include / asm-x86_64 / bitops.h
1 #ifndef _X86_64_BITOPS_H
2 #define _X86_64_BITOPS_H
3
4 /*
5 * Copyright 1992, Linus Torvalds.
6 */
7
8 #include <asm/alternative.h>
9
10 #if __GNUC__ < 4 || __GNUC_MINOR__ < 1
11 /* Technically wrong, but this avoids compilation errors on some gcc
12 versions. */
13 #define ADDR "=m" (*(volatile long *) addr)
14 #else
15 #define ADDR "+m" (*(volatile long *) addr)
16 #endif
17
18 /**
19 * set_bit - Atomically set a bit in memory
20 * @nr: the bit to set
21 * @addr: the address to start counting from
22 *
23 * This function is atomic and may not be reordered. See __set_bit()
24 * if you do not require the atomic guarantees.
25 * Note that @nr may be almost arbitrarily large; this function is not
26 * restricted to acting on a single-word quantity.
27 */
28 static __inline__ void set_bit(int nr, volatile void * addr)
29 {
30 __asm__ __volatile__( LOCK_PREFIX
31 "btsl %1,%0"
32 :ADDR
33 :"dIr" (nr) : "memory");
34 }
35
36 /**
37 * __set_bit - Set a bit in memory
38 * @nr: the bit to set
39 * @addr: the address to start counting from
40 *
41 * Unlike set_bit(), this function is non-atomic and may be reordered.
42 * If it's called on the same region of memory simultaneously, the effect
43 * may be that only one operation succeeds.
44 */
45 static __inline__ void __set_bit(int nr, volatile void * addr)
46 {
47 __asm__ volatile(
48 "btsl %1,%0"
49 :ADDR
50 :"dIr" (nr) : "memory");
51 }
52
53 /**
54 * clear_bit - Clears a bit in memory
55 * @nr: Bit to clear
56 * @addr: Address to start counting from
57 *
58 * clear_bit() is atomic and may not be reordered. However, it does
59 * not contain a memory barrier, so if it is used for locking purposes,
60 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
61 * in order to ensure changes are visible on other processors.
62 */
63 static __inline__ void clear_bit(int nr, volatile void * addr)
64 {
65 __asm__ __volatile__( LOCK_PREFIX
66 "btrl %1,%0"
67 :ADDR
68 :"dIr" (nr));
69 }
70
71 static __inline__ void __clear_bit(int nr, volatile void * addr)
72 {
73 __asm__ __volatile__(
74 "btrl %1,%0"
75 :ADDR
76 :"dIr" (nr));
77 }
78
79 #define smp_mb__before_clear_bit() barrier()
80 #define smp_mb__after_clear_bit() barrier()
81
82 /**
83 * __change_bit - Toggle a bit in memory
84 * @nr: the bit to change
85 * @addr: the address to start counting from
86 *
87 * Unlike change_bit(), this function is non-atomic and may be reordered.
88 * If it's called on the same region of memory simultaneously, the effect
89 * may be that only one operation succeeds.
90 */
91 static __inline__ void __change_bit(int nr, volatile void * addr)
92 {
93 __asm__ __volatile__(
94 "btcl %1,%0"
95 :ADDR
96 :"dIr" (nr));
97 }
98
99 /**
100 * change_bit - Toggle a bit in memory
101 * @nr: Bit to change
102 * @addr: Address to start counting from
103 *
104 * change_bit() is atomic and may not be reordered.
105 * Note that @nr may be almost arbitrarily large; this function is not
106 * restricted to acting on a single-word quantity.
107 */
108 static __inline__ void change_bit(int nr, volatile void * addr)
109 {
110 __asm__ __volatile__( LOCK_PREFIX
111 "btcl %1,%0"
112 :ADDR
113 :"dIr" (nr));
114 }
115
116 /**
117 * test_and_set_bit - Set a bit and return its old value
118 * @nr: Bit to set
119 * @addr: Address to count from
120 *
121 * This operation is atomic and cannot be reordered.
122 * It also implies a memory barrier.
123 */
124 static __inline__ int test_and_set_bit(int nr, volatile void * addr)
125 {
126 int oldbit;
127
128 __asm__ __volatile__( LOCK_PREFIX
129 "btsl %2,%1\n\tsbbl %0,%0"
130 :"=r" (oldbit),ADDR
131 :"dIr" (nr) : "memory");
132 return oldbit;
133 }
134
135 /**
136 * __test_and_set_bit - Set a bit and return its old value
137 * @nr: Bit to set
138 * @addr: Address to count from
139 *
140 * This operation is non-atomic and can be reordered.
141 * If two examples of this operation race, one can appear to succeed
142 * but actually fail. You must protect multiple accesses with a lock.
143 */
144 static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
145 {
146 int oldbit;
147
148 __asm__(
149 "btsl %2,%1\n\tsbbl %0,%0"
150 :"=r" (oldbit),ADDR
151 :"dIr" (nr));
152 return oldbit;
153 }
154
155 /**
156 * test_and_clear_bit - Clear a bit and return its old value
157 * @nr: Bit to clear
158 * @addr: Address to count from
159 *
160 * This operation is atomic and cannot be reordered.
161 * It also implies a memory barrier.
162 */
163 static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
164 {
165 int oldbit;
166
167 __asm__ __volatile__( LOCK_PREFIX
168 "btrl %2,%1\n\tsbbl %0,%0"
169 :"=r" (oldbit),ADDR
170 :"dIr" (nr) : "memory");
171 return oldbit;
172 }
173
174 /**
175 * __test_and_clear_bit - Clear a bit and return its old value
176 * @nr: Bit to clear
177 * @addr: Address to count from
178 *
179 * This operation is non-atomic and can be reordered.
180 * If two examples of this operation race, one can appear to succeed
181 * but actually fail. You must protect multiple accesses with a lock.
182 */
183 static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
184 {
185 int oldbit;
186
187 __asm__(
188 "btrl %2,%1\n\tsbbl %0,%0"
189 :"=r" (oldbit),ADDR
190 :"dIr" (nr));
191 return oldbit;
192 }
193
194 /* WARNING: non atomic and it can be reordered! */
195 static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
196 {
197 int oldbit;
198
199 __asm__ __volatile__(
200 "btcl %2,%1\n\tsbbl %0,%0"
201 :"=r" (oldbit),ADDR
202 :"dIr" (nr) : "memory");
203 return oldbit;
204 }
205
206 /**
207 * test_and_change_bit - Change a bit and return its old value
208 * @nr: Bit to change
209 * @addr: Address to count from
210 *
211 * This operation is atomic and cannot be reordered.
212 * It also implies a memory barrier.
213 */
214 static __inline__ int test_and_change_bit(int nr, volatile void * addr)
215 {
216 int oldbit;
217
218 __asm__ __volatile__( LOCK_PREFIX
219 "btcl %2,%1\n\tsbbl %0,%0"
220 :"=r" (oldbit),ADDR
221 :"dIr" (nr) : "memory");
222 return oldbit;
223 }
224
225 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
226 /**
227 * test_bit - Determine whether a bit is set
228 * @nr: bit number to test
229 * @addr: Address to start counting from
230 */
231 static int test_bit(int nr, const volatile void * addr);
232 #endif
233
234 static __inline__ int constant_test_bit(int nr, const volatile void * addr)
235 {
236 return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
237 }
238
239 static __inline__ int variable_test_bit(int nr, volatile const void * addr)
240 {
241 int oldbit;
242
243 __asm__ __volatile__(
244 "btl %2,%1\n\tsbbl %0,%0"
245 :"=r" (oldbit)
246 :"m" (*(volatile long *)addr),"dIr" (nr));
247 return oldbit;
248 }
249
250 #define test_bit(nr,addr) \
251 (__builtin_constant_p(nr) ? \
252 constant_test_bit((nr),(addr)) : \
253 variable_test_bit((nr),(addr)))
254
255 #undef ADDR
256
257 extern long find_first_zero_bit(const unsigned long * addr, unsigned long size);
258 extern long find_next_zero_bit (const unsigned long * addr, long size, long offset);
259 extern long find_first_bit(const unsigned long * addr, unsigned long size);
260 extern long find_next_bit(const unsigned long * addr, long size, long offset);
261
262 /* return index of first bet set in val or max when no bit is set */
263 static inline unsigned long __scanbit(unsigned long val, unsigned long max)
264 {
265 asm("bsfq %1,%0 ; cmovz %2,%0" : "=&r" (val) : "r" (val), "r" (max));
266 return val;
267 }
268
269 #define find_first_bit(addr,size) \
270 ((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
271 (__scanbit(*(unsigned long *)addr,(size))) : \
272 find_first_bit(addr,size)))
273
274 #define find_next_bit(addr,size,off) \
275 ((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
276 ((off) + (__scanbit((*(unsigned long *)addr) >> (off),(size)-(off)))) : \
277 find_next_bit(addr,size,off)))
278
279 #define find_first_zero_bit(addr,size) \
280 ((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
281 (__scanbit(~*(unsigned long *)addr,(size))) : \
282 find_first_zero_bit(addr,size)))
283
284 #define find_next_zero_bit(addr,size,off) \
285 ((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
286 ((off)+(__scanbit(~(((*(unsigned long *)addr)) >> (off)),(size)-(off)))) : \
287 find_next_zero_bit(addr,size,off)))
288
289 /*
290 * Find string of zero bits in a bitmap. -1 when not found.
291 */
292 extern unsigned long
293 find_next_zero_string(unsigned long *bitmap, long start, long nbits, int len);
294
295 static inline void set_bit_string(unsigned long *bitmap, unsigned long i,
296 int len)
297 {
298 unsigned long end = i + len;
299 while (i < end) {
300 __set_bit(i, bitmap);
301 i++;
302 }
303 }
304
305 static inline void __clear_bit_string(unsigned long *bitmap, unsigned long i,
306 int len)
307 {
308 unsigned long end = i + len;
309 while (i < end) {
310 __clear_bit(i, bitmap);
311 i++;
312 }
313 }
314
315 /**
316 * ffz - find first zero in word.
317 * @word: The word to search
318 *
319 * Undefined if no zero exists, so code should check against ~0UL first.
320 */
321 static __inline__ unsigned long ffz(unsigned long word)
322 {
323 __asm__("bsfq %1,%0"
324 :"=r" (word)
325 :"r" (~word));
326 return word;
327 }
328
329 /**
330 * __ffs - find first bit in word.
331 * @word: The word to search
332 *
333 * Undefined if no bit exists, so code should check against 0 first.
334 */
335 static __inline__ unsigned long __ffs(unsigned long word)
336 {
337 __asm__("bsfq %1,%0"
338 :"=r" (word)
339 :"rm" (word));
340 return word;
341 }
342
343 /*
344 * __fls: find last bit set.
345 * @word: The word to search
346 *
347 * Undefined if no zero exists, so code should check against ~0UL first.
348 */
349 static __inline__ unsigned long __fls(unsigned long word)
350 {
351 __asm__("bsrq %1,%0"
352 :"=r" (word)
353 :"rm" (word));
354 return word;
355 }
356
357 #ifdef __KERNEL__
358
359 #include <asm-generic/bitops/sched.h>
360
361 /**
362 * ffs - find first bit set
363 * @x: the word to search
364 *
365 * This is defined the same way as
366 * the libc and compiler builtin ffs routines, therefore
367 * differs in spirit from the above ffz (man ffs).
368 */
369 static __inline__ int ffs(int x)
370 {
371 int r;
372
373 __asm__("bsfl %1,%0\n\t"
374 "cmovzl %2,%0"
375 : "=r" (r) : "rm" (x), "r" (-1));
376 return r+1;
377 }
378
379 /**
380 * fls64 - find last bit set in 64 bit word
381 * @x: the word to search
382 *
383 * This is defined the same way as fls.
384 */
385 static __inline__ int fls64(__u64 x)
386 {
387 if (x == 0)
388 return 0;
389 return __fls(x) + 1;
390 }
391
392 /**
393 * fls - find last bit set
394 * @x: the word to search
395 *
396 * This is defined the same way as ffs.
397 */
398 static __inline__ int fls(int x)
399 {
400 int r;
401
402 __asm__("bsrl %1,%0\n\t"
403 "cmovzl %2,%0"
404 : "=&r" (r) : "rm" (x), "rm" (-1));
405 return r+1;
406 }
407
408 #define ARCH_HAS_FAST_MULTIPLIER 1
409
410 #include <asm-generic/bitops/hweight.h>
411
412 #endif /* __KERNEL__ */
413
414 #ifdef __KERNEL__
415
416 #include <asm-generic/bitops/ext2-non-atomic.h>
417
418 #define ext2_set_bit_atomic(lock,nr,addr) \
419 test_and_set_bit((nr),(unsigned long*)addr)
420 #define ext2_clear_bit_atomic(lock,nr,addr) \
421 test_and_clear_bit((nr),(unsigned long*)addr)
422
423 #include <asm-generic/bitops/minix.h>
424
425 #endif /* __KERNEL__ */
426
427 #endif /* _X86_64_BITOPS_H */
This page took 0.039052 seconds and 6 git commands to generate.