Merge tag 'f2fs-for-3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk...
[deliverable/linux.git] / include / linux / dmaengine.h
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
20 */
21 #ifndef LINUX_DMAENGINE_H
22 #define LINUX_DMAENGINE_H
23
24 #include <linux/device.h>
25 #include <linux/err.h>
26 #include <linux/uio.h>
27 #include <linux/bug.h>
28 #include <linux/scatterlist.h>
29 #include <linux/bitmap.h>
30 #include <linux/types.h>
31 #include <asm/page.h>
32
33 /**
34 * typedef dma_cookie_t - an opaque DMA cookie
35 *
36 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
37 */
38 typedef s32 dma_cookie_t;
39 #define DMA_MIN_COOKIE 1
40
41 static inline int dma_submit_error(dma_cookie_t cookie)
42 {
43 return cookie < 0 ? cookie : 0;
44 }
45
46 /**
47 * enum dma_status - DMA transaction status
48 * @DMA_COMPLETE: transaction completed
49 * @DMA_IN_PROGRESS: transaction not yet processed
50 * @DMA_PAUSED: transaction is paused
51 * @DMA_ERROR: transaction failed
52 */
53 enum dma_status {
54 DMA_COMPLETE,
55 DMA_IN_PROGRESS,
56 DMA_PAUSED,
57 DMA_ERROR,
58 };
59
60 /**
61 * enum dma_transaction_type - DMA transaction types/indexes
62 *
63 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
64 * automatically set as dma devices are registered.
65 */
66 enum dma_transaction_type {
67 DMA_MEMCPY,
68 DMA_XOR,
69 DMA_PQ,
70 DMA_XOR_VAL,
71 DMA_PQ_VAL,
72 DMA_INTERRUPT,
73 DMA_SG,
74 DMA_PRIVATE,
75 DMA_ASYNC_TX,
76 DMA_SLAVE,
77 DMA_CYCLIC,
78 DMA_INTERLEAVE,
79 /* last transaction type for creation of the capabilities mask */
80 DMA_TX_TYPE_END,
81 };
82
83 /**
84 * enum dma_transfer_direction - dma transfer mode and direction indicator
85 * @DMA_MEM_TO_MEM: Async/Memcpy mode
86 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
87 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
88 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
89 */
90 enum dma_transfer_direction {
91 DMA_MEM_TO_MEM,
92 DMA_MEM_TO_DEV,
93 DMA_DEV_TO_MEM,
94 DMA_DEV_TO_DEV,
95 DMA_TRANS_NONE,
96 };
97
98 /**
99 * Interleaved Transfer Request
100 * ----------------------------
101 * A chunk is collection of contiguous bytes to be transfered.
102 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
103 * ICGs may or maynot change between chunks.
104 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
105 * that when repeated an integral number of times, specifies the transfer.
106 * A transfer template is specification of a Frame, the number of times
107 * it is to be repeated and other per-transfer attributes.
108 *
109 * Practically, a client driver would have ready a template for each
110 * type of transfer it is going to need during its lifetime and
111 * set only 'src_start' and 'dst_start' before submitting the requests.
112 *
113 *
114 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
115 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
116 *
117 * == Chunk size
118 * ... ICG
119 */
120
121 /**
122 * struct data_chunk - Element of scatter-gather list that makes a frame.
123 * @size: Number of bytes to read from source.
124 * size_dst := fn(op, size_src), so doesn't mean much for destination.
125 * @icg: Number of bytes to jump after last src/dst address of this
126 * chunk and before first src/dst address for next chunk.
127 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
128 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
129 */
130 struct data_chunk {
131 size_t size;
132 size_t icg;
133 };
134
135 /**
136 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
137 * and attributes.
138 * @src_start: Bus address of source for the first chunk.
139 * @dst_start: Bus address of destination for the first chunk.
140 * @dir: Specifies the type of Source and Destination.
141 * @src_inc: If the source address increments after reading from it.
142 * @dst_inc: If the destination address increments after writing to it.
143 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
144 * Otherwise, source is read contiguously (icg ignored).
145 * Ignored if src_inc is false.
146 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
147 * Otherwise, destination is filled contiguously (icg ignored).
148 * Ignored if dst_inc is false.
149 * @numf: Number of frames in this template.
150 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
151 * @sgl: Array of {chunk,icg} pairs that make up a frame.
152 */
153 struct dma_interleaved_template {
154 dma_addr_t src_start;
155 dma_addr_t dst_start;
156 enum dma_transfer_direction dir;
157 bool src_inc;
158 bool dst_inc;
159 bool src_sgl;
160 bool dst_sgl;
161 size_t numf;
162 size_t frame_size;
163 struct data_chunk sgl[0];
164 };
165
166 /**
167 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
168 * control completion, and communicate status.
169 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
170 * this transaction
171 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
172 * acknowledges receipt, i.e. has has a chance to establish any dependency
173 * chains
174 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
175 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
176 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
177 * sources that were the result of a previous operation, in the case of a PQ
178 * operation it continues the calculation with new sources
179 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
180 * on the result of this operation
181 */
182 enum dma_ctrl_flags {
183 DMA_PREP_INTERRUPT = (1 << 0),
184 DMA_CTRL_ACK = (1 << 1),
185 DMA_PREP_PQ_DISABLE_P = (1 << 2),
186 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
187 DMA_PREP_CONTINUE = (1 << 4),
188 DMA_PREP_FENCE = (1 << 5),
189 };
190
191 /**
192 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
193 * on a running channel.
194 * @DMA_TERMINATE_ALL: terminate all ongoing transfers
195 * @DMA_PAUSE: pause ongoing transfers
196 * @DMA_RESUME: resume paused transfer
197 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
198 * that need to runtime reconfigure the slave channels (as opposed to passing
199 * configuration data in statically from the platform). An additional
200 * argument of struct dma_slave_config must be passed in with this
201 * command.
202 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
203 * into external start mode.
204 */
205 enum dma_ctrl_cmd {
206 DMA_TERMINATE_ALL,
207 DMA_PAUSE,
208 DMA_RESUME,
209 DMA_SLAVE_CONFIG,
210 FSLDMA_EXTERNAL_START,
211 };
212
213 /**
214 * enum sum_check_bits - bit position of pq_check_flags
215 */
216 enum sum_check_bits {
217 SUM_CHECK_P = 0,
218 SUM_CHECK_Q = 1,
219 };
220
221 /**
222 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
223 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
224 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
225 */
226 enum sum_check_flags {
227 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
228 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
229 };
230
231
232 /**
233 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
234 * See linux/cpumask.h
235 */
236 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
237
238 /**
239 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
240 * @memcpy_count: transaction counter
241 * @bytes_transferred: byte counter
242 */
243
244 struct dma_chan_percpu {
245 /* stats */
246 unsigned long memcpy_count;
247 unsigned long bytes_transferred;
248 };
249
250 /**
251 * struct dma_chan - devices supply DMA channels, clients use them
252 * @device: ptr to the dma device who supplies this channel, always !%NULL
253 * @cookie: last cookie value returned to client
254 * @completed_cookie: last completed cookie for this channel
255 * @chan_id: channel ID for sysfs
256 * @dev: class device for sysfs
257 * @device_node: used to add this to the device chan list
258 * @local: per-cpu pointer to a struct dma_chan_percpu
259 * @client_count: how many clients are using this channel
260 * @table_count: number of appearances in the mem-to-mem allocation table
261 * @private: private data for certain client-channel associations
262 */
263 struct dma_chan {
264 struct dma_device *device;
265 dma_cookie_t cookie;
266 dma_cookie_t completed_cookie;
267
268 /* sysfs */
269 int chan_id;
270 struct dma_chan_dev *dev;
271
272 struct list_head device_node;
273 struct dma_chan_percpu __percpu *local;
274 int client_count;
275 int table_count;
276 void *private;
277 };
278
279 /**
280 * struct dma_chan_dev - relate sysfs device node to backing channel device
281 * @chan: driver channel device
282 * @device: sysfs device
283 * @dev_id: parent dma_device dev_id
284 * @idr_ref: reference count to gate release of dma_device dev_id
285 */
286 struct dma_chan_dev {
287 struct dma_chan *chan;
288 struct device device;
289 int dev_id;
290 atomic_t *idr_ref;
291 };
292
293 /**
294 * enum dma_slave_buswidth - defines bus width of the DMA slave
295 * device, source or target buses
296 */
297 enum dma_slave_buswidth {
298 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
299 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
300 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
301 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
302 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
303 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
304 };
305
306 /**
307 * struct dma_slave_config - dma slave channel runtime config
308 * @direction: whether the data shall go in or out on this slave
309 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
310 * legal values.
311 * @src_addr: this is the physical address where DMA slave data
312 * should be read (RX), if the source is memory this argument is
313 * ignored.
314 * @dst_addr: this is the physical address where DMA slave data
315 * should be written (TX), if the source is memory this argument
316 * is ignored.
317 * @src_addr_width: this is the width in bytes of the source (RX)
318 * register where DMA data shall be read. If the source
319 * is memory this may be ignored depending on architecture.
320 * Legal values: 1, 2, 4, 8.
321 * @dst_addr_width: same as src_addr_width but for destination
322 * target (TX) mutatis mutandis.
323 * @src_maxburst: the maximum number of words (note: words, as in
324 * units of the src_addr_width member, not bytes) that can be sent
325 * in one burst to the device. Typically something like half the
326 * FIFO depth on I/O peripherals so you don't overflow it. This
327 * may or may not be applicable on memory sources.
328 * @dst_maxburst: same as src_maxburst but for destination target
329 * mutatis mutandis.
330 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
331 * with 'true' if peripheral should be flow controller. Direction will be
332 * selected at Runtime.
333 * @slave_id: Slave requester id. Only valid for slave channels. The dma
334 * slave peripheral will have unique id as dma requester which need to be
335 * pass as slave config.
336 *
337 * This struct is passed in as configuration data to a DMA engine
338 * in order to set up a certain channel for DMA transport at runtime.
339 * The DMA device/engine has to provide support for an additional
340 * command in the channel config interface, DMA_SLAVE_CONFIG
341 * and this struct will then be passed in as an argument to the
342 * DMA engine device_control() function.
343 *
344 * The rationale for adding configuration information to this struct is as
345 * follows: if it is likely that more than one DMA slave controllers in
346 * the world will support the configuration option, then make it generic.
347 * If not: if it is fixed so that it be sent in static from the platform
348 * data, then prefer to do that.
349 */
350 struct dma_slave_config {
351 enum dma_transfer_direction direction;
352 dma_addr_t src_addr;
353 dma_addr_t dst_addr;
354 enum dma_slave_buswidth src_addr_width;
355 enum dma_slave_buswidth dst_addr_width;
356 u32 src_maxburst;
357 u32 dst_maxburst;
358 bool device_fc;
359 unsigned int slave_id;
360 };
361
362 /**
363 * enum dma_residue_granularity - Granularity of the reported transfer residue
364 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
365 * DMA channel is only able to tell whether a descriptor has been completed or
366 * not, which means residue reporting is not supported by this channel. The
367 * residue field of the dma_tx_state field will always be 0.
368 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
369 * completed segment of the transfer (For cyclic transfers this is after each
370 * period). This is typically implemented by having the hardware generate an
371 * interrupt after each transferred segment and then the drivers updates the
372 * outstanding residue by the size of the segment. Another possibility is if
373 * the hardware supports scatter-gather and the segment descriptor has a field
374 * which gets set after the segment has been completed. The driver then counts
375 * the number of segments without the flag set to compute the residue.
376 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
377 * burst. This is typically only supported if the hardware has a progress
378 * register of some sort (E.g. a register with the current read/write address
379 * or a register with the amount of bursts/beats/bytes that have been
380 * transferred or still need to be transferred).
381 */
382 enum dma_residue_granularity {
383 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
384 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
385 DMA_RESIDUE_GRANULARITY_BURST = 2,
386 };
387
388 /* struct dma_slave_caps - expose capabilities of a slave channel only
389 *
390 * @src_addr_widths: bit mask of src addr widths the channel supports
391 * @dstn_addr_widths: bit mask of dstn addr widths the channel supports
392 * @directions: bit mask of slave direction the channel supported
393 * since the enum dma_transfer_direction is not defined as bits for each
394 * type of direction, the dma controller should fill (1 << <TYPE>) and same
395 * should be checked by controller as well
396 * @cmd_pause: true, if pause and thereby resume is supported
397 * @cmd_terminate: true, if terminate cmd is supported
398 * @residue_granularity: granularity of the reported transfer residue
399 */
400 struct dma_slave_caps {
401 u32 src_addr_widths;
402 u32 dstn_addr_widths;
403 u32 directions;
404 bool cmd_pause;
405 bool cmd_terminate;
406 enum dma_residue_granularity residue_granularity;
407 };
408
409 static inline const char *dma_chan_name(struct dma_chan *chan)
410 {
411 return dev_name(&chan->dev->device);
412 }
413
414 void dma_chan_cleanup(struct kref *kref);
415
416 /**
417 * typedef dma_filter_fn - callback filter for dma_request_channel
418 * @chan: channel to be reviewed
419 * @filter_param: opaque parameter passed through dma_request_channel
420 *
421 * When this optional parameter is specified in a call to dma_request_channel a
422 * suitable channel is passed to this routine for further dispositioning before
423 * being returned. Where 'suitable' indicates a non-busy channel that
424 * satisfies the given capability mask. It returns 'true' to indicate that the
425 * channel is suitable.
426 */
427 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
428
429 typedef void (*dma_async_tx_callback)(void *dma_async_param);
430
431 struct dmaengine_unmap_data {
432 u8 map_cnt;
433 u8 to_cnt;
434 u8 from_cnt;
435 u8 bidi_cnt;
436 struct device *dev;
437 struct kref kref;
438 size_t len;
439 dma_addr_t addr[0];
440 };
441
442 /**
443 * struct dma_async_tx_descriptor - async transaction descriptor
444 * ---dma generic offload fields---
445 * @cookie: tracking cookie for this transaction, set to -EBUSY if
446 * this tx is sitting on a dependency list
447 * @flags: flags to augment operation preparation, control completion, and
448 * communicate status
449 * @phys: physical address of the descriptor
450 * @chan: target channel for this operation
451 * @tx_submit: set the prepared descriptor(s) to be executed by the engine
452 * @callback: routine to call after this operation is complete
453 * @callback_param: general parameter to pass to the callback routine
454 * ---async_tx api specific fields---
455 * @next: at completion submit this descriptor
456 * @parent: pointer to the next level up in the dependency chain
457 * @lock: protect the parent and next pointers
458 */
459 struct dma_async_tx_descriptor {
460 dma_cookie_t cookie;
461 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
462 dma_addr_t phys;
463 struct dma_chan *chan;
464 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
465 dma_async_tx_callback callback;
466 void *callback_param;
467 struct dmaengine_unmap_data *unmap;
468 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
469 struct dma_async_tx_descriptor *next;
470 struct dma_async_tx_descriptor *parent;
471 spinlock_t lock;
472 #endif
473 };
474
475 #ifdef CONFIG_DMA_ENGINE
476 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
477 struct dmaengine_unmap_data *unmap)
478 {
479 kref_get(&unmap->kref);
480 tx->unmap = unmap;
481 }
482
483 struct dmaengine_unmap_data *
484 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
485 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
486 #else
487 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
488 struct dmaengine_unmap_data *unmap)
489 {
490 }
491 static inline struct dmaengine_unmap_data *
492 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
493 {
494 return NULL;
495 }
496 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
497 {
498 }
499 #endif
500
501 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
502 {
503 if (tx->unmap) {
504 dmaengine_unmap_put(tx->unmap);
505 tx->unmap = NULL;
506 }
507 }
508
509 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
510 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
511 {
512 }
513 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
514 {
515 }
516 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
517 {
518 BUG();
519 }
520 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
521 {
522 }
523 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
524 {
525 }
526 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
527 {
528 return NULL;
529 }
530 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
531 {
532 return NULL;
533 }
534
535 #else
536 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
537 {
538 spin_lock_bh(&txd->lock);
539 }
540 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
541 {
542 spin_unlock_bh(&txd->lock);
543 }
544 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
545 {
546 txd->next = next;
547 next->parent = txd;
548 }
549 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
550 {
551 txd->parent = NULL;
552 }
553 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
554 {
555 txd->next = NULL;
556 }
557 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
558 {
559 return txd->parent;
560 }
561 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
562 {
563 return txd->next;
564 }
565 #endif
566
567 /**
568 * struct dma_tx_state - filled in to report the status of
569 * a transfer.
570 * @last: last completed DMA cookie
571 * @used: last issued DMA cookie (i.e. the one in progress)
572 * @residue: the remaining number of bytes left to transmit
573 * on the selected transfer for states DMA_IN_PROGRESS and
574 * DMA_PAUSED if this is implemented in the driver, else 0
575 */
576 struct dma_tx_state {
577 dma_cookie_t last;
578 dma_cookie_t used;
579 u32 residue;
580 };
581
582 /**
583 * struct dma_device - info on the entity supplying DMA services
584 * @chancnt: how many DMA channels are supported
585 * @privatecnt: how many DMA channels are requested by dma_request_channel
586 * @channels: the list of struct dma_chan
587 * @global_node: list_head for global dma_device_list
588 * @cap_mask: one or more dma_capability flags
589 * @max_xor: maximum number of xor sources, 0 if no capability
590 * @max_pq: maximum number of PQ sources and PQ-continue capability
591 * @copy_align: alignment shift for memcpy operations
592 * @xor_align: alignment shift for xor operations
593 * @pq_align: alignment shift for pq operations
594 * @fill_align: alignment shift for memset operations
595 * @dev_id: unique device ID
596 * @dev: struct device reference for dma mapping api
597 * @device_alloc_chan_resources: allocate resources and return the
598 * number of allocated descriptors
599 * @device_free_chan_resources: release DMA channel's resources
600 * @device_prep_dma_memcpy: prepares a memcpy operation
601 * @device_prep_dma_xor: prepares a xor operation
602 * @device_prep_dma_xor_val: prepares a xor validation operation
603 * @device_prep_dma_pq: prepares a pq operation
604 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
605 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
606 * @device_prep_slave_sg: prepares a slave dma operation
607 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
608 * The function takes a buffer of size buf_len. The callback function will
609 * be called after period_len bytes have been transferred.
610 * @device_prep_interleaved_dma: Transfer expression in a generic way.
611 * @device_control: manipulate all pending operations on a channel, returns
612 * zero or error code
613 * @device_tx_status: poll for transaction completion, the optional
614 * txstate parameter can be supplied with a pointer to get a
615 * struct with auxiliary transfer status information, otherwise the call
616 * will just return a simple status code
617 * @device_issue_pending: push pending transactions to hardware
618 * @device_slave_caps: return the slave channel capabilities
619 */
620 struct dma_device {
621
622 unsigned int chancnt;
623 unsigned int privatecnt;
624 struct list_head channels;
625 struct list_head global_node;
626 dma_cap_mask_t cap_mask;
627 unsigned short max_xor;
628 unsigned short max_pq;
629 u8 copy_align;
630 u8 xor_align;
631 u8 pq_align;
632 u8 fill_align;
633 #define DMA_HAS_PQ_CONTINUE (1 << 15)
634
635 int dev_id;
636 struct device *dev;
637
638 int (*device_alloc_chan_resources)(struct dma_chan *chan);
639 void (*device_free_chan_resources)(struct dma_chan *chan);
640
641 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
642 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
643 size_t len, unsigned long flags);
644 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
645 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
646 unsigned int src_cnt, size_t len, unsigned long flags);
647 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
648 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
649 size_t len, enum sum_check_flags *result, unsigned long flags);
650 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
651 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
652 unsigned int src_cnt, const unsigned char *scf,
653 size_t len, unsigned long flags);
654 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
655 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
656 unsigned int src_cnt, const unsigned char *scf, size_t len,
657 enum sum_check_flags *pqres, unsigned long flags);
658 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
659 struct dma_chan *chan, unsigned long flags);
660 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
661 struct dma_chan *chan,
662 struct scatterlist *dst_sg, unsigned int dst_nents,
663 struct scatterlist *src_sg, unsigned int src_nents,
664 unsigned long flags);
665
666 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
667 struct dma_chan *chan, struct scatterlist *sgl,
668 unsigned int sg_len, enum dma_transfer_direction direction,
669 unsigned long flags, void *context);
670 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
671 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
672 size_t period_len, enum dma_transfer_direction direction,
673 unsigned long flags);
674 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
675 struct dma_chan *chan, struct dma_interleaved_template *xt,
676 unsigned long flags);
677 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
678 unsigned long arg);
679
680 enum dma_status (*device_tx_status)(struct dma_chan *chan,
681 dma_cookie_t cookie,
682 struct dma_tx_state *txstate);
683 void (*device_issue_pending)(struct dma_chan *chan);
684 int (*device_slave_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
685 };
686
687 static inline int dmaengine_device_control(struct dma_chan *chan,
688 enum dma_ctrl_cmd cmd,
689 unsigned long arg)
690 {
691 if (chan->device->device_control)
692 return chan->device->device_control(chan, cmd, arg);
693
694 return -ENOSYS;
695 }
696
697 static inline int dmaengine_slave_config(struct dma_chan *chan,
698 struct dma_slave_config *config)
699 {
700 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
701 (unsigned long)config);
702 }
703
704 static inline bool is_slave_direction(enum dma_transfer_direction direction)
705 {
706 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
707 }
708
709 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
710 struct dma_chan *chan, dma_addr_t buf, size_t len,
711 enum dma_transfer_direction dir, unsigned long flags)
712 {
713 struct scatterlist sg;
714 sg_init_table(&sg, 1);
715 sg_dma_address(&sg) = buf;
716 sg_dma_len(&sg) = len;
717
718 return chan->device->device_prep_slave_sg(chan, &sg, 1,
719 dir, flags, NULL);
720 }
721
722 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
723 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
724 enum dma_transfer_direction dir, unsigned long flags)
725 {
726 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
727 dir, flags, NULL);
728 }
729
730 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
731 struct rio_dma_ext;
732 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
733 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
734 enum dma_transfer_direction dir, unsigned long flags,
735 struct rio_dma_ext *rio_ext)
736 {
737 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
738 dir, flags, rio_ext);
739 }
740 #endif
741
742 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
743 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
744 size_t period_len, enum dma_transfer_direction dir,
745 unsigned long flags)
746 {
747 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
748 period_len, dir, flags);
749 }
750
751 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
752 struct dma_chan *chan, struct dma_interleaved_template *xt,
753 unsigned long flags)
754 {
755 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
756 }
757
758 static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
759 {
760 if (!chan || !caps)
761 return -EINVAL;
762
763 /* check if the channel supports slave transactions */
764 if (!test_bit(DMA_SLAVE, chan->device->cap_mask.bits))
765 return -ENXIO;
766
767 if (chan->device->device_slave_caps)
768 return chan->device->device_slave_caps(chan, caps);
769
770 return -ENXIO;
771 }
772
773 static inline int dmaengine_terminate_all(struct dma_chan *chan)
774 {
775 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
776 }
777
778 static inline int dmaengine_pause(struct dma_chan *chan)
779 {
780 return dmaengine_device_control(chan, DMA_PAUSE, 0);
781 }
782
783 static inline int dmaengine_resume(struct dma_chan *chan)
784 {
785 return dmaengine_device_control(chan, DMA_RESUME, 0);
786 }
787
788 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
789 dma_cookie_t cookie, struct dma_tx_state *state)
790 {
791 return chan->device->device_tx_status(chan, cookie, state);
792 }
793
794 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
795 {
796 return desc->tx_submit(desc);
797 }
798
799 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
800 {
801 size_t mask;
802
803 if (!align)
804 return true;
805 mask = (1 << align) - 1;
806 if (mask & (off1 | off2 | len))
807 return false;
808 return true;
809 }
810
811 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
812 size_t off2, size_t len)
813 {
814 return dmaengine_check_align(dev->copy_align, off1, off2, len);
815 }
816
817 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
818 size_t off2, size_t len)
819 {
820 return dmaengine_check_align(dev->xor_align, off1, off2, len);
821 }
822
823 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
824 size_t off2, size_t len)
825 {
826 return dmaengine_check_align(dev->pq_align, off1, off2, len);
827 }
828
829 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
830 size_t off2, size_t len)
831 {
832 return dmaengine_check_align(dev->fill_align, off1, off2, len);
833 }
834
835 static inline void
836 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
837 {
838 dma->max_pq = maxpq;
839 if (has_pq_continue)
840 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
841 }
842
843 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
844 {
845 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
846 }
847
848 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
849 {
850 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
851
852 return (flags & mask) == mask;
853 }
854
855 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
856 {
857 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
858 }
859
860 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
861 {
862 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
863 }
864
865 /* dma_maxpq - reduce maxpq in the face of continued operations
866 * @dma - dma device with PQ capability
867 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
868 *
869 * When an engine does not support native continuation we need 3 extra
870 * source slots to reuse P and Q with the following coefficients:
871 * 1/ {00} * P : remove P from Q', but use it as a source for P'
872 * 2/ {01} * Q : use Q to continue Q' calculation
873 * 3/ {00} * Q : subtract Q from P' to cancel (2)
874 *
875 * In the case where P is disabled we only need 1 extra source:
876 * 1/ {01} * Q : use Q to continue Q' calculation
877 */
878 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
879 {
880 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
881 return dma_dev_to_maxpq(dma);
882 else if (dmaf_p_disabled_continue(flags))
883 return dma_dev_to_maxpq(dma) - 1;
884 else if (dmaf_continue(flags))
885 return dma_dev_to_maxpq(dma) - 3;
886 BUG();
887 }
888
889 /* --- public DMA engine API --- */
890
891 #ifdef CONFIG_DMA_ENGINE
892 void dmaengine_get(void);
893 void dmaengine_put(void);
894 #else
895 static inline void dmaengine_get(void)
896 {
897 }
898 static inline void dmaengine_put(void)
899 {
900 }
901 #endif
902
903 #ifdef CONFIG_ASYNC_TX_DMA
904 #define async_dmaengine_get() dmaengine_get()
905 #define async_dmaengine_put() dmaengine_put()
906 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
907 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
908 #else
909 #define async_dma_find_channel(type) dma_find_channel(type)
910 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
911 #else
912 static inline void async_dmaengine_get(void)
913 {
914 }
915 static inline void async_dmaengine_put(void)
916 {
917 }
918 static inline struct dma_chan *
919 async_dma_find_channel(enum dma_transaction_type type)
920 {
921 return NULL;
922 }
923 #endif /* CONFIG_ASYNC_TX_DMA */
924 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
925 struct dma_chan *chan);
926
927 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
928 {
929 tx->flags |= DMA_CTRL_ACK;
930 }
931
932 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
933 {
934 tx->flags &= ~DMA_CTRL_ACK;
935 }
936
937 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
938 {
939 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
940 }
941
942 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
943 static inline void
944 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
945 {
946 set_bit(tx_type, dstp->bits);
947 }
948
949 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
950 static inline void
951 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
952 {
953 clear_bit(tx_type, dstp->bits);
954 }
955
956 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
957 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
958 {
959 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
960 }
961
962 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
963 static inline int
964 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
965 {
966 return test_bit(tx_type, srcp->bits);
967 }
968
969 #define for_each_dma_cap_mask(cap, mask) \
970 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
971
972 /**
973 * dma_async_issue_pending - flush pending transactions to HW
974 * @chan: target DMA channel
975 *
976 * This allows drivers to push copies to HW in batches,
977 * reducing MMIO writes where possible.
978 */
979 static inline void dma_async_issue_pending(struct dma_chan *chan)
980 {
981 chan->device->device_issue_pending(chan);
982 }
983
984 /**
985 * dma_async_is_tx_complete - poll for transaction completion
986 * @chan: DMA channel
987 * @cookie: transaction identifier to check status of
988 * @last: returns last completed cookie, can be NULL
989 * @used: returns last issued cookie, can be NULL
990 *
991 * If @last and @used are passed in, upon return they reflect the driver
992 * internal state and can be used with dma_async_is_complete() to check
993 * the status of multiple cookies without re-checking hardware state.
994 */
995 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
996 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
997 {
998 struct dma_tx_state state;
999 enum dma_status status;
1000
1001 status = chan->device->device_tx_status(chan, cookie, &state);
1002 if (last)
1003 *last = state.last;
1004 if (used)
1005 *used = state.used;
1006 return status;
1007 }
1008
1009 /**
1010 * dma_async_is_complete - test a cookie against chan state
1011 * @cookie: transaction identifier to test status of
1012 * @last_complete: last know completed transaction
1013 * @last_used: last cookie value handed out
1014 *
1015 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1016 * the test logic is separated for lightweight testing of multiple cookies
1017 */
1018 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1019 dma_cookie_t last_complete, dma_cookie_t last_used)
1020 {
1021 if (last_complete <= last_used) {
1022 if ((cookie <= last_complete) || (cookie > last_used))
1023 return DMA_COMPLETE;
1024 } else {
1025 if ((cookie <= last_complete) && (cookie > last_used))
1026 return DMA_COMPLETE;
1027 }
1028 return DMA_IN_PROGRESS;
1029 }
1030
1031 static inline void
1032 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1033 {
1034 if (st) {
1035 st->last = last;
1036 st->used = used;
1037 st->residue = residue;
1038 }
1039 }
1040
1041 #ifdef CONFIG_DMA_ENGINE
1042 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1043 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1044 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1045 void dma_issue_pending_all(void);
1046 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1047 dma_filter_fn fn, void *fn_param);
1048 struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
1049 const char *name);
1050 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1051 void dma_release_channel(struct dma_chan *chan);
1052 #else
1053 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1054 {
1055 return NULL;
1056 }
1057 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1058 {
1059 return DMA_COMPLETE;
1060 }
1061 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1062 {
1063 return DMA_COMPLETE;
1064 }
1065 static inline void dma_issue_pending_all(void)
1066 {
1067 }
1068 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1069 dma_filter_fn fn, void *fn_param)
1070 {
1071 return NULL;
1072 }
1073 static inline struct dma_chan *dma_request_slave_channel_reason(
1074 struct device *dev, const char *name)
1075 {
1076 return ERR_PTR(-ENODEV);
1077 }
1078 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1079 const char *name)
1080 {
1081 return NULL;
1082 }
1083 static inline void dma_release_channel(struct dma_chan *chan)
1084 {
1085 }
1086 #endif
1087
1088 /* --- DMA device --- */
1089
1090 int dma_async_device_register(struct dma_device *device);
1091 void dma_async_device_unregister(struct dma_device *device);
1092 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1093 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1094 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1095 struct dma_chan *net_dma_find_channel(void);
1096 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1097 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1098 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1099
1100 static inline struct dma_chan
1101 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1102 dma_filter_fn fn, void *fn_param,
1103 struct device *dev, char *name)
1104 {
1105 struct dma_chan *chan;
1106
1107 chan = dma_request_slave_channel(dev, name);
1108 if (chan)
1109 return chan;
1110
1111 return __dma_request_channel(mask, fn, fn_param);
1112 }
1113
1114 /* --- Helper iov-locking functions --- */
1115
1116 struct dma_page_list {
1117 char __user *base_address;
1118 int nr_pages;
1119 struct page **pages;
1120 };
1121
1122 struct dma_pinned_list {
1123 int nr_iovecs;
1124 struct dma_page_list page_list[0];
1125 };
1126
1127 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
1128 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
1129
1130 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
1131 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
1132 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
1133 struct dma_pinned_list *pinned_list, struct page *page,
1134 unsigned int offset, size_t len);
1135
1136 #endif /* DMAENGINE_H */
This page took 0.055515 seconds and 5 git commands to generate.